Triplet Reconstruction and all other
Phylogenetic CSPs are Approximation Resistant

Vaggos Chatziafratis
Computer Science and Engineering
University of California at Santa Cruz
Santa Cruz, CA, USA
vaggos @ucsc.edu

Abstract—We study the natural problem of Triplet Re-
construction (also known as Rooted Triplets Consistency or
Triplet Clustering), originally motivated by applications in
computational biology and relational databases (Aho, Sagiv,
Szymanski, and Ullman, 1981) [2]: given n datapoints, we
want to embed them onto the n leaves of a rooted binary
tree (also known as a hierarchical clustering, or ultrametric
embedding) such that a given set of m triplet constraints is
satisfied. A triplet constraint ij|k for points i, j, k indicates
that i, j are more closely related to each other than to k,”
(in terms of distances d(7,j) < d(i, k) and d(¢, 5) < d(j, k))
and we say that a tree satisfies the triplet 5|k if the distance
in the tree between ¢, j is smaller than the distance between
i,k (or j,k). Among all possible trees with »n leaves, can
we efficiently find one that satisfies a large fraction of the
m given triplets?

Aho et al. (1981) [2] studied the decision version and
gave an elegant polynomial-time algorithm that determines
whether or not there exists a tree that satisfies all of the
m constraints. Moreover, it is straightforward to see that a
random binary tree achieves a constant %-approximation,
since there are only 3 distinct triplets ij|k, ik|j, jk|i (each
will be satisfied w.p. %). Unfortunately, despite more than
four decades of research by various communities, there is
no better approximation algorithm for this basic Triplet
Reconstruction problem.

Our main theorem—which captures Triplet Reconstruc-
tion as a special case—is a general hardness of approxima-
tion result about Constraint Satisfaction Problems (CSPs)
over infinite domains (CSPs where instead of boolean
values {0,1} or a fixed-size domain, the variables can be
mapped to any of the n leaves of a tree). Specifically, we
prove that assuming the Unique Games Conjecture [57],
Triplet Reconstruction and more generally, every Constraint
Satisfaction Problem (CSP) over hierarchies is approxima-
tion resistant, i.e., there is no polynomial-time algorithm
that does asymptotically better than a biased random
assignment.

Our result settles the approximability not only for Triplet
Reconstruction, but for many interesting problems that
have been studied by various scientific communities such as
the popular Quartet Reconstruction and Subtree/Supertree

Vaggos Chatziafratis was supported by a UCSC start-up grant. Part
of this work was done while VC was a postdoc at Northwestern, and
a FODSI fellow at MIT and Northeastern.

Konstantin Makarychev was supported by NSF Awards CCF-
1955351, CCF-1934931, and EECS-2216970.

Konstantin Makarychev
Department of Computer Science
Northwestern University
Evanston, IL, USA
konstantin @northwestern.edu

Aggregation Problems. More broadly, our result signifi-
cantly extends the list of approximation resistant predicates
by pointing to a large new family of hard problems over
hierarchies. Our main theorem is a generalization of Gu-
ruswami, Hastad, Manokaran, Raghavendra, and Charikar
(2011) [36], who showed that ordering CSPs (CSPs over
permutations of n elements, e.g., Max Acyclic Subgraph,
Betweenness, Non-Betweenness) are approximation resis-
tant. The main challenge in our analyses stems from the fact
that trees have fopology (in contrast to permutations and
ordering CSPs) and it is the tree topology that determines
whether a given constraint on the variables is satisfied or
not. As a byproduct, we also present some of the first CSPs
where their approximation resistance is proved against
biased random assignments, instead of uniformly random
assignments.

Index Terms—Constraint Satisfaction, Approximation
Resistance, Unique Games

I. INTRODUCTION

The algorithmic task of constructing hierarchical rep-
resentations of data has been studied by various com-
munities over many decades with applications ranging
from statistics [44], [82] and databases [2] to the analysis
of complex networks, such as the Internet or social net-
works [29], [66], and more recently, to machine learning,
where hierarchical embeddings have proven useful for
understanding text, images, graphs and multi-relational
data [63]. The reason why they are so ubiquitous is
that many real data sets stemming from nature or soci-
ety are organized according to a latent hierarchy [66].
Interestingly, many relevant questions and algorithmic
ideas originated in the field of Taxonomy and Phylo-
genetics [31], [34], [71] with the goal of classifying all
living and extinct organisms into the Tree of Life.

The easiest way to visualize such hierarchical repre-
sentations for a given data set is by using a dendrogram,
also known as a Hierarchical Clustering. Hierarchical
clustering is an embedding of the data set to a tree, often
depicted as a rooted binary tree whose leaves are in one-
to-one correspondence with the points in the data set,
see Figure 1. The hierarchical clustering tree shows the
recursive partitioning of the data set into successively

smaller and smaller clusters. Observe that all data points
are clustered together at the root, but eventually they
get separated at the leaves (internal nodes correspond to
intermediate subclusters formed by descendant leaves).

In contrast to “flat” clustering techniques like k-
means/k-median which cannot capture fine-grained rela-
tionships among points or groups of points, hierarchical
clustering reveals the structure of a data set at multi-
ple levels of granularity simultaneously. For example,
consider triplet queries of the form “Among 3 items
1, J, k, which two are most closely related?”; a quick look
at the hierarchical clustering (see Fig. 1) immediately
reveals the answer by locating the 3 leaves ¢, 7, k and
noticing which of the 3 gets separated first from the
other two. Answering such triplet comparisons is easy
for humans which makes them popular in metric learning
and crowdsourcing settings [10], [32], [77], [80], and
understanding how to accurately aggregate a large collec-
tion of such triplet queries into a hierarchical clustering
was the primary motivation of our work. As we will see,
studying triplets will lead us to interesting connections
with hardness of approximation and approximation re-
sistant predicates.

In this paper, we study the approximability of a large
class of Constraint Satisfaction Problems (CSPs) over
hierarchies, i.e., trees, which have been studied in various
communities, including in databases [2], in logic and
algebra [18], in computational biology [24], [34] and in
theoretical computer science [5], [19], [28], [54], [72].
The input is a collection of (potentially inconsistent)
local relationships between k items of a ground set (with
total size n), and we are asked to find the hierarchical
clustering that maximizes agreement with the input. Such
local relationships can take the form of triplet or quartet
constraints (or even quintuples etc.), and more generally,
they can be a k-arity constraint on %k data points which
prescribes how the £ data points should be split by the
final hierarchy. For the most common examples of triplet
and quartet constraints, please see Figure 1.

For readers familiar with Correlation Clustering [13],
we should note here that it is different in at least three
important ways: first, in correlation clustering the desired
output is a (flat) partition of the data points (whereas in
hierarchical clustering we want a mapping to the n leaves
of a tree), second, constraints in correlation clustering
are between pairs of points (whereas in hierarchical
clustering the input specifies constraints on triplets, quar-
tets etc.) and third, there are technical differences (as
we show) in terms of their behavior with respect to
approximation resistance.

A. Our Contributions

We revisit several old questions in Hierarchical Clus-
tering and CSPs over Infinite-Domains and prove tight

upper and lower bounds under the Unique Games Con-
jecture [57], thus settling the approximability of a large
class of hierarchical reconstruction problems. Interest-
ingly, we extend the notion of approximation resistant
CSPs [41] to allow for biased random assignments
(instead of uniform random assignments), and our main
hardness result for CSPs over trees holds under this
extended definition, which could be of independent
interest. As far as we know, our results provide the
first approximation resistant CSPs where the optimal
approximation threshold is achieved by a non-uniform
random assignment.

Recall that for CSPs over infinite domains, the vari-
ables are not boolean and instead of taking values {0, 1}
(or in a fixed-size domain), they are allowed to be
mapped to infinite domains. Prominent examples include
Correlation Clustering [13] and Ordering CSPs, i.e.,
CSPs over permutations of n elements, such as Max
Acyclic Subgraph, Betweenness, Non-Betweenness [36];
for our case, the infinite domain corresponds to the
n leaves of a hierarchical tree which of course grows
as the number n of data points grows. In fact, our
results generalize the hardness results of Guruswami et
al. (2011) [36], since a permutation corresponds (in a
formal sense) to a special case of hierarchical clustering
(because we consider ordered trees). At a high-level,
the main challenge in our problems comes from the
fact that CSPs over trees depend on the tree’s topology
and whether a given constraint is satisfied or not is
determined by how and in what order exactly various
data points got split at intermediate nodes. Observe
that this is irrelevant for correlation clustering and for
permutations. Specifically, we settle the approximability
of Triplet Reconstruction, Quartet Reconstruction, and
General CSPs over Trees.

Triplet Reconstruction (also Rooted Triplets Con-
sistency): Aggregating triplets into a hierarchical clus-
tering was originally asked in the context of relational
databases by Aho et al. (1981) [2]. A triplet constraint
ij|k indicates that “items ¢, j are more similar to each
other than to k.” Given m triplets, we would like to
construct a hierarchical clustering on the n items, that
satisfies as many constraints as possible, i.e., k is split
first from 4, j (see also Fig. 1).

Quartet Reconstruction: When constraints are on
4 points a, b, c,d, they are called “quartet” constraints.
The task is to find a (rooted or unrooted) tree that
satisfies as many of the quartet constraints as possible
(Fig. 1). A special case of Quartet Reconstruction is
the popular “Unrooted Quartet Consistency” problem in
computational biology [5], [15], [34], [54], [72], [73],
[75].

General CSPs over Trees: The previous two prob-
lems are only two special cases of general CSPs over

internal node

\ |: dolphin
whale LCA of all 3
B tuna \
- lion
root —

—

tiger

LCA of all 4
tiger
|: tiger \{ lion
lion | |: tuna
——— tuna whale

Fig. 1. Hierarchical Clustering on 5 points (Left), a triplet constraint (Middle) and a quartet constraint (Right) satisfied by hierarchical clustering.
The internal node shown corresponds to the subcluster {whale, dolphin, tuna}. The basic constituent of a hierarchy is a triplet comparison
or triplet constraint, e.g., {{1ion, tiger}|{tuna}} indicates the closest pair among the 3. Formally, the Lowest Common Ancestor (LCA)

of {lion, tiger} is a descendant of the LCA of all 3. Another
quartet comparison {{lion, tiger}|{tuna, whale}} prescribe
satisfies the shown triplet and quartet constraint (it also satisfies triplets {
{{whale, tuna}|{tiger}}, and quartets {{whale, dolphin}

trees. Specifically, Triplet Reconstruction is a CSP of
arity 3 and Quartet Reconstruction is a CSP of arity 4.
However, there is no reason to stop there; in fact, the
algebraic and logic communities have extensively studied
what happens if we allow for trees with larger fan-out
degree, or for conjunctions (logical A) or disjunctions
(logical V) between constraints,' or for the constraints to
be of arity k. In the algebraic and logic literature [16],
[18], such CSPs are termed Phylogenetic CSPs due to
their connections to popular “Consensus Tree” or “Sub-
tree/Supertree Aggregation” methods in computational
biology [1], [53], [61], [68], [75].

Before stating our general theorem, let us focus only
on our first result about the Triplet Reconstruction prob-
lem and highlight its status in terms of approximability
and hardness. Then, it will be much easier to understand
our results for Quartet Reconstruction and for General
CSPs over Trees (along with the main technical chal-
lenges).

B. Result I: Beating Random is Hard for Triplet Recon-
struction

We will need the following simple definitions (for
examples, see Fig 1):

Definition 1.1 (Triplet). A triplet t, denoted t = ab|c,
is a rooted, unordered, binary tree on 3 leaves a,b,c.
A rooted, unordered, binary tree T (containing leaves
a, b, c) is said to be consistent with ¢ (or T satisfies t), if
the LCA(a,b) in T is a proper descendant of LCA(a,c)
in T. Otherwise, the triplet and the tree are inconsistent
with each other (or T' violates t). In general, triplets can
also have weights weight(ablc).

The natural optimization problem associated with
Triplet Reconstruction is MAXTRIPLETS:

For example, 45|k V ik|j captures the forbidden triplets problem,
that forbids triplets jk|i from the final hierarchy.

type of a more complicated comparison is among 4 points, e.g., the
s what’s the correct split. We can see that the hierarchical clustering
{whale, dolphin}|{tuna}}, {{whale, dolphin}|{lion}},
[{lion, tiger}}, {{{whale, dolphin}|{tuna}}|{lion}}.

Definition .2 (MAXTRIPLETS Problem). Given a set X
of n data points and m triplets defined on data points
from X, find the hierarchical clustering (i.e., the binary
rooted tree) that is consistent with as many triplets as
possible (per the definition above).

MAXTRIPLETS is NP-hard in general instances, but
Aho, Sagiv, Szymanski, and Ullman (1981) [2] pre-
sented an algorithm for completely satisfiable instances
of MAXTRIPLETS: This algorithm finds a tree that is
consistent with all given triplets, if such tree exists, oth-
erwise it halts and declares that the triplets are conflicting
and no tree can satisfy all of the triplets.

The following trivial algorithm achieves a 3-
approximation: “output a uniformly random tree on the
n data points.” Observe that for 3 items a,b,c, there
are only 3 distinct triplets—namely ab|c, ac|b, bc|a—and
so with probability % the uniformly random tree will
satisfy each of the input triplets. Surprisingly, despite
four decades of research, this is currently the best known
approximation for triplet reconstruction. Our first result
shows that being stuck at the trivial %—approximation
ratio is not a coincidence:

Theorem L.3. For every constant € > 0, it is UG-
hard to distinguish instances of MAXTRIPLETS,
where a (1 —) fraction of the triplets can
be satisfied by a hierarchical clustering, from
MAXTRIPLETS instances where at most a (§+¢)
fraction can be satisfied.

J

Stated simply, we prove that if p is the expected
fraction of constraints satisfied by a uniformly random
tree, then obtaining a p’-approximation for any constant
o > p is UG-hard. In other words, we show that
MAXTRIPLETS is approximation resistant. Recall that
a predicate is approximation resistant if it is NP-hard (or
UG-hard in our case) to approximate the corresponding

CSP significantly better than what is achieved by the triv-
ial algorithm that picks an assignment uniformly at ran-
dom. For example, 3SAT is approximation resistant [41]
and so is every ordering CSP such as Max Acyclic
Subgraph, Betweenness, Non-Betweenness [36]. Prior to
our work, the best known hardness of approximation for
MAXTRIPLETS was %3 due to Chatziafratis, Mahdian,
and Ahmadian (2021) [27].

C. Result II: From Triplets to Hardness of General CSPs
over Trees

Given our first result on the hardness of MAX-
TRIPLETS, it is natural to wonder what happens in
terms of approximability if we increase the arity of the
constraints from 3 to 4, i.e., what happens for Quartet Re-
construction and its associated optimization versions of
MAXQUARTETS (we defer the exact definitions for now,
but hopefully the problem is clear). For MAXQUARTETS
even though there are results [54] that give a PTAS for
very dense instances (density here implies that there is a
quartet for every four data points, thus m = Q(n?)), the
approximability in the general case remained open: How
well can we approximate MAXQUARTETS in polynomial
time? Again, for the most well-studied case of unrooted
quartet reconstruction [15], [34], [54], a trivial algorithm
that outputs an unrooted tree uniformly at random is a
constant approximation, and this has been the state-of-
the-art in the worst-case for many decades. In light of our
Theorem 1.3, we are able to settle the approximability
for MAXQUARTETS, proving that this trivial algorithm
is again optimal (under UGC) (see Appendix C).

a) General CSPs over Trees.: Triplets and Quartets
are two special cases of a more general family of
CSPs over trees that are not well-understood from a
theoretical perspective. Such general CSPs over trees
are also studied in the algebraic and logic communities
under the name Phylogenetic CSPs [16]-[18], which will
be borrowed here.2 For formal definitions, please see
Preliminaries (Section III).

After seeing our hardness results for MAXTRIPLETS
and MAXQUARTERS, one may assume that the random
assignment algorithm always gives the best possible
approximation (ignoring o(1) terms). However, as we
discuss in Section IV, this is not the case. In fact, for
some phylogenetic CSPs the uniform random assignment
algorithm satisfies exponentially small in & fraction of all
constraints while other algorithms satisfy e.g., a constant
(not depending on k) fraction of all constraints. It turns

2 A technical comment is that our definition of Phylogenetic CSPs is
slightly more general than the one in the logic community [17]: they
only focused on unordered, rooted trees, whereas our results hold even
for CSPs on ordered trees (left and right children are distinguishable)
and on unrooted trees. Ordered trees play an important role when
mapping a hierarchy to a permutation on its leaves with specific
structure [14], [35], [52] and in consensus methods [51], [53].

out that the best algorithms for arbitrary phylogenetic
CSPs are biased random assignment algorithms. We
show the following result.

Theorem 1.4 (Informal). Assuming the UGC,
every Phylogenetic CSP is approximation resis-
tant. Interestingly, this holds for a more general
notion of approximation resistance, where biased
random solutions are allowed (not just uniformly
random outputs like in boolean CSPs and order-
ing CSPs).

b) On Approximation Resistance.: The subject of
approximation resistance is a fascinating topic in com-
putation with a rich literature, and despite the intensive
efforts to characterize the approximability of CSPs, it
is not yet clear what properties characterize them in
general. It is perhaps striking, but many CSPs are ap-
proximation resistant, and two fundamental examples are
MAX3SAT, MAX3LIN [41]. In contrast, for arity 2,
Hastad (2005) [42] showed that no predicate that depends
on two inputs (e.g., MAXCUT) from an arbitrary finite
domain can be approximation resistant. Investigating
higher arity CSPs has also yielded interesting results:
for arity 3, a precise classification of approximation
resistant 3CSPs is known [83], but for arity 4 and
higher the situation is unclear [8], [9], [40], [43]. For
example, Hast gave a characterization for 355 out of 400
different predicate types for binary 4CSPs. Moreover,
Hastad (2007) [43] showed, under UGC, that a random
k-ary predicate for large k is approximation resistant.
More recently, Guruswami and Lee (2015) [38] showed
hardness for the family of symmetric CSPs (predicates
whose set of accepting strings is permutation invariant).
For more, see also [7], [46], [64].

¢) Ordering and Ordinary CSPs: Beyond the above
finite-domain CSPs, approximation resistance has been
studied for infinite-domain CSPs (or “growing” do-
main CSPs). Several prominent such examples that
were shown approximation resistant include Maximum
Acyclic Subgraph [39], Betweenness, Non-Betweenness,
Cyclic Ordering [25] and in fact, any other ordering CSP
(CSPs over permutations of n elements) is approximation
resistant [36]. Each predicate or payoff function of an
ordering CSP depends on the ordering of variables on a
line.

In this paper, we will use not only phylogenetic CSPs
but also CSPs with finite alphabet and ordering CSPs.
To distinguish finite alphabet CSPs from other CSPs, we
will refer to them as ordinary CSPs.

II. TECHNICAL CONTRIBUTIONS AND CHALLENGES

Most closely related to our paper, both at a conceptual
and technical level is the paper by Guruswami, Hastad,

Manokaran, Raghavendra, and Charikar (2011) [36] who
showed that every ordering CSP is approximation re-
sistant assuming the Unique Games Conjecture (see
also [25], [39]). Our main technical contribution is a
hardness preserving reduction from ordering CSPs to
phylogenetic CSPs. At a high-level, we must deal with
three main challenges:

Trees Have Topology: In Phylogenetic CSPs, whether
a phylogenetic constraint is satisfied or not crucially
depends on the topology of the tree. Contrast this with
what happens in ordering CSPs, where simply knowing
the position of an item in the permutation determines
if the constraint is satisfied. For trees, the notion of
“position” is more complicated and how we split the n
items at internal tree nodes is important (see also the
discussion on random assignments).

Many Types of Trees: Theorem 1.4 provides hardness
for large collections of problems studied e.g., in logic,
algebra and computational biology, where trees may be
ordered (left and right children are distinguishable). Con-
trast this with ordering CSPs where such considerations
are irrelevant.

Biased Random Assignment: Perhaps counterintu-
itively, even the definition of a “random tree” for Phylo-
genetic CSPs requires some attention. Simply outputting
a uniformly random tree on n leaves can result in very
poor solutions. Instead, we define a natural “biased”
version of a random assignment that generalizes prior
methods. We show that it achieves the best possible
approximation, under UGC. Contrast this with ordering
CSPs, where we simply output a random permutation of
n items and this is optimal.

In this paper, we present a reduction from ordering
CSPs. Let us stress that a naive reduction from ordering
CSPs to phylogenetic CSPs does not give the desired
hardness results. For example, the Triplet Consistency
predicate uv|w can be satisfied when the vertices are
ordered as (u,v,w), (v,u,w), (w,u,v), and (w,v,u).
So, the best hardness for Triplet Consistency we could
hope for if we used the naive reduction would be 4/3! =
2/3.

Our main technical and conceptual contributions are
as follows:

o We define a new class of biased random assignment
algorithms for phylogenetic CSPs with one and
many payoff functions and prove matching hardness
of approximation results.

o We show that the “gap instance” from the paper
by Guruswami et al. (2011) [36] can be adapted to
serve as a “gadget” in the reduction from ordering
to phylogenetic CSPs. A priori, it is not clear that
this gap instance can be used for phylogenetic

CSPs because phylogenetic CSPs are quite different
from ordering CSPs. We also modify the hardness
reduction by Guruswami et al. (2011) [36] to make
it compatible with our own reduction. Their original
reduction “erases the tree structure” of our instances
because it cyclically shifts positions of variables.
This preserves the relative order of most k-tuples
of variables on the line but not in the tree.

e We provide a new definition of coarse solutions
for phylogenetic CSPs. This definition substantially
differs from the definition of coarse solutions for
ordering CSPs [26], [36]. The most important dif-
ference is that we need to assign colors to different
buckets of vertices. Without this new ingredient, it
is not possible to show that every solution to the
phylogenetic CSP (with payoff function f,n,) can
be transformed to a better coarse solution (for an
altered payoff function f).

« Finally, we extend our results to phylogenetic CSPs
with more than one payoff function. The best al-
gorithm for such CSPs first finds the best possible
biased assignment and then uses it to obtain a
random solution.

III. PRELIMINARIES

Trees. For ease of exposition, this discussion is focused
only on ordered, rooted, binary trees. Our results also
hold for unordered and unrooted trees since phylogenetic
CSPs on rooted unordered and unrooted unordered trees
are special cases of phylogenetic CSPs on ordered trees.
Let T = (V, E) be a rooted tree with root r. A tree T is
called ordered if the child nodes of every internal node
u are ordered from left to right. In an ordered tree, all
leaves are also ordered from left to right as in a planar
drawing of that tree. In Section IX-B, we discuss an
extension of our results for higher arity trees. Let us note
that we will use auxiliary higher arity trees in the proof
of our hardness result even for binary trees. From now
on, we simply use the word “tree” to refer to ordered,
rooted trees.

For u,v € V, we say that u lies below v if the path
from u to the root r passes through v; in this case, we
may also say that v lies above u. The Lowest Common
Ancestor (LCA) of a set of vertices S C V is the node
u that lies above all vertices in S and has the largest
distance from r (the LCA node is uniquely determined
by the set 5).

a) Tree Homeomorphism: We now define a phylo-
genetic payoff function. Given a tree 7' and k distinct
leaves ui,...,ur of T, a phylogenetic payoff function
fphy returns a value (payoff) in [0, 1]. Loosely speaking,
this payoff can only depend on the relative positions of
leaves u1, . .., ux and their least common ancestors in the
tree. Below, we formalize the definition using the notion

of homeomorphism for labeled ordered rooted trees.
Then, we examine two ways of defining phylogenetic
payoff functions using pattern tables and formulas with
bracket predicates. Pattern tables correspond to truth
tables of ordinary CSPs, and formulas with bracket
predicates correspond to formulas with and, or, not
predicates for ordinary CSPs.

Consider a graph G and vertex u in G of degree 2. Let
v1 and vy be the neighbours of u. We call the following
operation smoothing u out: Remove vertex u along with
edges (u,v1) and (u,v2) from G and then add edge
(vl, ’UQ) to G.

Definition IIL.1. Consider two ordered rooted trees A
and B. Let uy,...,u be distinct leaves in A and
v1, ...,V be distinct leaves in B.

1. We say that A with labeled leaves uy, . ..,u and B
with labeled leaves v1, ... ,vy are isomorphic if there
exists an isomorphism of ordered trees A and B that
maps every u; to v;. Note that an isomorphism g of
ordered trees must preserve the order of vertices. That
is, if u is to the left of v, then g(u) must be to the left
of g(v). Also, A’s root must be mapped to B’s root.

II. We say that A with labeled leaves u,...,u and B
with with labeled leaves v, . .., vy are homeomorphic if
A and B can be transformed to isomorphic trees A’ and
B’ using the following three operations: (1) removing
every non-labeled leaf in A or B (i.e., any leaf other
than uy, ..., u in A; and any leaf other than v, . .
in B); (2) smoothing out vertices of degree 2 in A or B
(see above for the definition); (3) removing the root if its
degree is 1 and making its only child the new root.

.5 Uk

In the definition of homeomorphic trees, we can as-
sume that A’ and B’ are irreducible trees i.e., trees that
cannot be further minimized using operations (1), (2),
and (3). Note that each tree with k£ labeled leaves has a
unique irreducible tree because operations (1), (2), and
(3) commute. Consequently, the homeomorphic relation
between labeled trees is transitive.

We now can formally define phylogenetic payoff func-
tions.

Definition IIL.2. A function fpn, that takes as in-
put a tree T and k leaves x1,.. and returns
a value in the range [0,1], is a phylogenetic payoff
function if it satisfies the following condition: for any

<y L

two trees A and B, and any leaves uy,...,uj in
A and vy,...,v; in B, if A with labels uq, ..., uy
and B with labels v+, ...,v, are homeomorphic, then
fohy (A ut, ..o ug) = fory(B,vi,...,v,). The value

returned by fpny is called a payoff.

To simplify notation, we will omit the tree and write
fory(x1, ...,) instead of fopy (T, 21,...,2x) when it

is clear that z1, ...,z are leaves of 7. In this paper, we
will only deal with payoff functions whose maximum
payoff equals 1. We call such functions satisfiable. Be-
fore, we proceed to the definition of phylogenetic CSPs,
we discuss how to define phylogenetic functions using
tree patterns and formulas with bracket predicates.

Tree Patterns. Intuitively, a pattern (or motif) is a small
graph that we want to find in a larger graph. Here, we
are interested in tree patterns.

Definition IIL.3. A tree pattern P is a tree with k leaves
that are labeled by k variable names x1,. .., xj.

We refer the reader to Section D for examples of
different tree patterns.

Definition III.4. Consider a tree T and k leaves
Ui, ...,up in T. We say that leaves ui,...,u; match
pattern P(xq,...,xg) in T if tree T with labeled leaves
U, ..., u and P with leaves x1, ..., x) are homeomor-
phic.

Every (ordinary) Boolean predicate or function can be
specified using a truth table. We now define an analog
of a truth table for phylogenetic trees. A pattern table
for fpny is a list of distinct (non-homeomorphic) patterns
with k variables x1, . . .,z and payoffs in [0, 1] assigned
to the patterns. The value of phylogenetic payoff function
fphy defined by a pattern table on leaves u1, . .. uy equals
to the payoff assigned to the pattern P if wq,...,ug
matches P(z1,...,xy) for some pattern P in the table;
and 0 if uq, ..., ux do not match any pattern in the table.
In Figure 4 in Appendix D, we show patterns in the
pattern table for the Triplet Consistency problem; each
pattern in Figure 4 is assigned a payoff of 1.

Bracket Predicates [a,b < c]. We can specify patterns
using “bracket predicates.” Consider three leaves a, b, c
of a tree T. We say that [a < b] if a appears to the
left of b in T. We write [a,b <] if vertices a and
b lie in the left subtree of LCA(a,b,c) and c lies in
the right subtree of LCA(a,b,c). Similarly, we write
[a < b,c] if a lies in the left subtree of LCA(a,b,c)
and b, c lie in the right subtree. It is not hard to see
that every pattern can be expressed as a conjunction of
bracket predicates. We show how to represent patterns for
the Triplet Consistency payoff function as a conjunction
of bracket predicates in Figure 4. We prove the following
Lemma III.5 in Section X.

Lemma IILS5. Every pattern can be expressed as a
conjunction of bracket predicates.

In Section X, we prove that every phylogenetic payoff
function can be defined using a pattern table.

Phylogenetic CSPs. A phylogenetic CSP problem I' is
defined by one or several phylogenetic payoff functions

f}g?y,..., ng; of arity k. An instance Z of I' con-

sists of a set of variables V' and sets of k-hyperedges
C . - one set for each predicate fzsz)y in T'. Thus,

phy
7 = (V,Cf(l),...,C’). A hyperedge (ui,...,ug)
phy

(A)
fph'y

() represents a constraint f;%)y on variables
phy .
u1,...,ug. The weight of a hyperedge (uq,..
C,u is denoted by w) (u,...,ug).

fphy fphy

in Cf

.,’LLk;) in

In this paper, we will focus on phylogenetic CSPs
with one payoff function. However, all results we prove
in this paper also hold for phylogenetic CSPs with
multiple payoff functions. We will discuss such CSPs
in Section IX-A. When we refer to phylogenetic CSPs
with one payoff function, we will omit the index 7 in
féz)y and denote the set of payoff functions by C' and
weights of constraints by weight(uq, ..., uk).

A solution for an instance Z of phylogenetic CSP I'
is an assignment of variables V' to leaves of a binary
ordered tree T (the tree 1" is also a part of the solution).
We denote the set of all solutions by ®(Z). The value of a
solution ¢ € ®(Z), which we denote by val(¢p,Z), equals
the expected value of payoff functions on a random
hyperedge in Z:

(9, 7]) = ————
val(, Z) weight(Z) .

X Z weight (uq, ... 7uk)f£;2y(<p(u1), oo o(ur)),
ic{l,...,A}
(3717~--1"1/'k')€cf(i)
‘phy

where weight(Z) is the total weight of all hyperedges
(constraints) in Z:

weight(Z) = » >

i (u,..., up)eC (i)
fphy

weight(uq, ..., ug).

We denote the maximum value of a solution ¢ € ®(Z) by
opt(Z). When the have a single payoff function f,,,, we
denote the average value of solution ¢ over all constraints
in Cy,, by

AVg(ul,...,uk)GI fphy(@(ul)a SR (p('LLk))

Ordering Payoff Functions. We remind the reader
that an ordering payoff function f,.q4 of arity k£ is a
function that given k distinct values z1,...,z; in R
returns a value in [0, 1]. The value of f,.; depends only
on the relative order of x1,...,x;. An example of an
ordering payoff function is 1(x; < x2). Another example
is the betweeness predicate 1(zx; < xo < x3 or 3 <
2o < x1). Guruswami et al. (2011) [36] showed that all
Ordering CSPs (i.e, CSPs with ordering payoff functions)
are approximation resistant.

IV. BIASED RANDOM ASSIGNMENT AND
APPROXIMATION RESISTANCE

In this section, we explore definitions of randomized
assignment, biased randomized assignment, and approx-
imation resistance. Recall that a randomized assignment
algorithm for ordinary CSPs assigns a random value from
the alphabet X to each variable. Similarly, a random as-
signment algorithm for ordering CSPs permutes all vari-
ables in a random order. An analogue of these algorithms
for phylogenetic CSPs randomly partitions all variables
of an instance Z into two groups and then assigns the
first group to the left subtree and the second group to
the right subtree. It recursively partitions variables in the
left and right subtrees till each node contains at most one
variable. This algorithm works well for MAXTRIPLETS
and MAXQUARTETS. For these problems, it gives a 1/3
approximation. However, it drastically fails for some
other phylogenetic CSPs.

Consider the following problem, which we call “split
one node to the right” (see Figure 6). The payoff function
Sphy(T1,- -, xy) returns 1 if at every node when three
or more variables split, only one of those variables goes
to the right subtree and the other variables go to the
left subtree. The abovementioned randomized assignment
algorithm satisfies a predicate spny(21,...,25) with
probability exponentially small in k. However, a biased
randomized assignment algorithm that places every ver-
tex to the left subtree with probability 1 — § and to
the right subtree with probability § satisfies predicate
s with probability close to 1 if § is sufficiently small.
In Section XI, we consider a more interesting example.
In that example, a randomized assignment algorithm
should split vertices into two groups with probabilities
that change from one recursive call to another.

The discussion above leads us to the following def-
inition of a biased random assignment algorithm (for
biased random assignments for ordinary CSPs, see [37]).
A biased random assignment algorithm is specified by
an absolutely continuous probability measure p on the
interval [0,1]. We remind the reader that p is absolutely
continuous if there exists a measurable function h such
that p(S) = [h(t)dt for every measurable subset S of
[0, 1]. The measure of the interval [0, 1] equals 1 because
p is a probability measure. We assign every node of
the infinite complete binary tree a subinterval of [0, 1].
The root of the tree is assigned [0, 1]. Its left child is
assigned [0, 1/2] and right child is assigned [1/2, 1]. This
assignment defines weights of all nodes — the weight p(u)
equals to the measure of the interval corresponding to w.

We now assume that the algorithm is given oracle
access to p. The algorithm recursively partitions variables
in Z. Initially, it assigns all variables to the root of
the binary tree. At every step, the algorithm picks a
node u of the binary tree that contains more than one

variable, creates two child nodes w;.f; and w,igns, and
randomly splits all variables in u between wu;.s; and
Uright- Namely, it assigns each z in u t0 uje ¢ and Up;ghs
with probabilities p(ucrt)/p(u) and p(urignt)/p(u), re-
spectively.

Let a,(fpny) be the approximation factor of the biased
random assignment algorithm with measure p for phylo-
genetic payoff function fphy and aopt(fpny) be the best
approximation factor of a biased randomized assignment
algorithm for fpp,:

Qopt (fphy) = Sup @, (fpny)-
P

As we mentioned earlier, we now consider phylogenetic
CSPs with one payoff function f,,. If phylogenetic CSP
I" has several payoff functions, then the algorithm should
first randomly choose the appropriate measure p. We
discuss such CSPs in Section IX-A. If a phylogenetic
CSP I' has only one payoff function, we will write
aopt(T) = aopt(fpny)- We call aop(I) the random
assignment approximation factor for I'.

We note that every measurable function h can be ap-
proximated by a piecewise constant function h’. Function
' is a constant on each interval Sy, ..., .S, that partition
[0,1] into ¢ parts. Moreover, we can assume that the
enpoints of intervals S; are binary rational numbers.
This lets us define p’-biased algorithms in the following
equivalent way. A p’-biased algorithm is defined by a
constant-size tree T and a probability distribution p’ on
the leaves of T'. The algorithm first assigns every variable
to one of the leaves of T using the distribution p’. Then,
it recursively partitions variables splitting them 50%/50%
at every step. The running time of this algorithm is linear
in n (the number of variables). We have the following
theorem.

Theorem IV.1. For every phylogenetic CSP I" and every
positive €, there exists a linear-time biased randomized
rounding algorithm that has an approximation factor of
Qopt (F) — &

We discuss the case of CSPs with more than one
payoff section in Section IX-A. Finally, we define ap-
proximation resistance for phylogenetic CSPs.

Definition IV.2. A phylogenetic CSP T is approximation
resistant if for every positive ¢, it is NP-hard to distin-
guish between instances of I that (a) have a solution of
value greater than 1 — ¢ and (b) do not have a solution
of value greater than cp(T') + €.

We show that all phylogenetic CSPs are approximation
resistant. In particular, this means that, unless P = NP
(assuming UGC), for every phylogenetic CSP I, there is
no approximation algorithm with a constant approxima-
tion factor better than ap:(I') + €.

V. PROOF OVERVIEW

In this section, we give an overview of our hardness
result for phylogenetic CSPs. We first show that the
Triplets Consistency problem (MAXTRIPLETS) is ap-
proximation resistant by providing a reduction from a
specially crafted ordering CSP problem to the Triplets
Consistency problem. This reduction works for Triplets
Consistency and some other phylogenetic problems,
however, fails in the general case. We then show how
to modify the construction by Guruswami, Hastad,
Manokaran, Raghavendra, and Charikar (2011) [36] to
make our reduction work for all phylogenetic CSPs.

Consider a phylogenetic CSP I';;,,,. In this section, we
assume that this phylogenetic CSP has only one payoff
function fpp,, of arity k. We will discuss the case when
I'pny has several payoff functions in Section IX-A. Let Z
be an instance of I'yy,. Denote the value of the optimal
solution for Z by opt(Z). Observe that every solution ¢
to Z defines an ordering on the variables of the instance
7. In this ordering, the variables are arranged from left
to right according to their position in the embedding ¢ in
the binary tree. We denote the ordering of the variables
in Z by order(p). Let ®.(Z) be the set of all solutions
for instance 7 in which the order of variables is 7 (i.e.,
order(y) = m); and let opt(Z | 7) be the value of the
best solution ¢ in ®,(Z):

opt(Z |) = max_val(p,T). (1)

pe®-(T)

Gap instance. Following [36], we use a gap instance
I_(;ap in our reduction. The variables of this instance are
leaves of an ordered perfect k-ary tree of depth d (in this
tree all internal nodes have k children; and the depth
of all leaves is d). Each constraint in the instance is
a payoff function f on a subset of k leaves/variables.
To define the instance, we introduce a random map
Lim:{1,...,k} =V, where V is the set of leaves and
m = |V|. Random map Ly, works as follows: it picks
a random ¢ from set {0,1,...,d—1} and then a random
(internal) node u at level 7 of the tree T". Let uq, ..., ug
be the child nodes of u arranged from left to right. In
the subtrees T, ,...,Ty, rooted at vertices uy, ..., U,
we independently pick random leaves [y, . .., [; and map
each j in {1,...,k} to [; ie., we let Ly »,(j) = ;.
Now, for every k vertices l1, .. .,l;, we add hyperedge
(I1,...,1;) to the set of constraints C. The weight of
(l1,..., 1) equals Pr{Lim(1) = l1,...,Lgm(k) =
Ir}. Note that we use exactly the same gap instance
as [36]. In their instance, the payoff function is an
ordering payoff function. We will use this instance with
ordering, phylogenetic, and ordinary payoff functions. In
fact, we will think of Zy,), as a template for k-ary CSP
instances (formally, Z,,, = C' is the set of hyperedges).

Then, Z/,, = (f,C) is an instantiation of this template
with the payoff function f. Note that we can consider gap
instances Igap with ordinary, ordering, and phylogenetic
payoff functions f.

Guruswami et al. (2011) [36] showed that

L I_gg;;d is a completely satisfiable instance of an
ordering CSP; for every ordering payoff function
fora with forq(id) = 1, where id is the iden-
tity permutation. That is, if f,.q(id) = 1, then
opt(Igg;d) = 1. Note that for every satisfiable
payoff function f,.4, We can rearrange its inputs
using some permutation o so that f,.q00(id) = 1.

II. The cost of any so-called coarse solution to this
instance is at most « + €, where « is the expected
value of the random assignment algorithm (which
is unique for ordering CSPs unlike phylogenetic
CSPs), and ¢ tends to 0 as the depth d (see above)
of tree 7' tends to infinity.

In our proof, we will also use coarse solutions. However,
we postpone the discussion of such solutions till Sec-
tion VI-B, where we define coarse solutions for phylo-
genetic CSPs (note that coarse solutions for phylogenetic
CSPs and ordering CSPs differ in several important
ways). In this paper, we will use the following lemma,
which is an analog of property II above (for ordinary
payoff functions).

Lemma V.1. Fix natural numbers k > 1, ¢ > 1 and
positive real number € > 0. Then, there exists a natural
m”* such that for every template Ly, with at least m*
leaves from the family defined above, every ordinary
payoff function f, of arity k defined on alphabet ¥ of size
q (i.e., fo is a function from X to [0, 1)), the following
claim holds:

opt(Z7e

gap axk):l + €,

) < maxEg, [fo(21, ... (2)
p
where p is a probability distribution on Y; and all

Z1,...,T are drawn from p independently.

The lemma is similar to Theorem 11.1 from the
paper by Guruswami, Hastad, Manokaran, Raghavendra,
and Charikar (2011) [36]. For completeness, we pro-
vide a proof of Lemma V.1 in Section VIII. To prove
Lemma V.1, we rewrite bound (2) as a bound on the KL-
divergence of certain random variables. Then, we prove
the new bound on the KL-divergence using the chain rule
for conditional entropy. We believe that our approach is
somewhat simpler than the original approach used by
Guruswami et al. (2011) [36].

We also show that the gap instance I_g}i}:y is completely
satisfiable for every satisfiable phylogenetic payoff func-
tion fpny. We present a proof of the following lemma in
Section VI-A. Note that this statement is not obvious

for phylogenetic CSPs and does not follow from the
previously known results.

Lemma V.2. For every phylogenetic CSP I" with payoff
function fpny and gap instance Igﬁg” of arbitrary size,
we have opt(I;cZZy) =1

The main technical tool in our reduction is The-
orem V.3. This theorem shows that opt(Iggf,yh) ~
Aopt(fpny) for a uniformly random permutation 7. A
crucial ingredient in the proof of this theorem is a new
definition of coarse solutions and colorings, which we
discuss in Section VI-B.

Theorem V.3. Consider a phylogenetic CSP T" with a
payoff function fpp,. For every positive € > 0, there
exists a sufficiently large gap instance Igg;;y of phyloge-
netic CSP T such that opt (Igg;”) = 1, and for a random
permutation T of variables of Igg;;y :

E- [opt(Igggy |)] < aopt(fony) +¢.

We prove this theorem in Section VI. We now discuss
how to use this theorem to construct a gap preserving
reduction from a certain ordering CSP problem to I',,.
Fix e > 0. Let Ig(’;,’;y be a gap instance from Theorem V.3
and m be the number of variables in Igg;;y. Define an
auxiliary ordering CSP I',,,.; with a payoff function o
of arity m. The value of o(w) on variables z1, ...
equals

amm

0(71'(1'1), . ,W(xm)) — Opt(Igggy

|),

where the instance Ig{;;‘,y is also defined on z1,...,Z.m,.
In other words, the value of payoff function o with
variables x1,...,x, on permutation 7 equals to the
best solution ¢ for instance I_Jg;;y with the same set of
variables x1,...,Z,, subject to the constraint that the
variables in solution ¢ are ordered according to .

Reduction. Let 'y, be the class of phylogenetic CSPs
with payoff function fpny, and I's.q be the class of
ordering CSPs with payoff function o. We now de-
fine a reduction hoprg—pny from CSPs I'y.q to CSPs
I'phy. We take an arbitrary instance Z,.q of I'p.q and
transform it to an instance Zp, of I'p,, on the same
set of variables as Z,,.4. In instance Z,.q, we replace
every constraint (z;,,---,x;,) for payoff function o
with a copy of the gap instance Ig{;;‘,y on variables
Tiys T, That is, Tpyp, is the union of copies of
the gap instances (“gadgets’”) Igg;” — one “gadget” for
every constraint (z;,,...,2;,) in Z,.q. We denote the
obtained instance of phylogenetic CSP I',y, by Z,p,.
We let hord—)phy(zord) = Iphy-

Note that for every solution ¢ to the phylogenetic CSP
ZIphy» there is a corresponding solution 7 to the ordering
CSP Z,,4. This solution 7 orders all variables in Z,,4 in

the same way as they are ordered by solution ¢ in the
phylogenetic tree for Z,p,, i.e., 1 = order(y). The value
of each payoff function o on 7 is jgreater than or equal to
the value of ¢ on the copy of Zy%3" created for o. This
is the case, because ¢ is a possible solution for that copy
of Igg,’;y (since the variables in ¢ are ordered according
to 7). We have the following claim.

Claim V4. Consider instances Lyrq to Lypy of ordering
and phylogenetic CSPs as above. Then,

opt(Zora) > opt(Zpny).

Unfortunately, we cannot claim that opt(Z,.q4) =
opt(Zphy). It is possible that opt(Z,rq) > opt(Zpny).
This may happen if there exists an ordering of variables
7 such that for every constraint u = (uq,...,uy,) in
Tord» there exists a good local solution ¢, € ®,(I):

o(pu(u), .., pulum)) = 1.

Note that ¢,, may depend on the constraint u. However,
there is no good global solution ¢ € ®,.(Z) that works
for all constraints (ui,...,um,) (on average) in Zpp,.
That is, for every ¢ € ®,(Z),

Val(@’Iphy) = Avg fphy(@(ul)v s p(um)) < 1

s
(ul ---7um)€Iphy

Hardness of approximation. We now discuss how to
use reduction hopq—phy to show that I'yp,, is approxima-
tion resistant. The ordering CSP I',,,.4 is approximation
resistant as every ordering CSP ([36]). By Theorem V.3,
the expected value of payoff function o on a random
permutation 7 is at most copt (fpry)+€. Hence, assuming
the Unique Games conjecture, it is NP-hard to distinguish
between

A. instances of I, that are at most (vopt(fphy)+€)+€
satisfiable; and
B. instances of T',,.q that are at least (1 —) satisfiable.

To finish the proof, we would like to show that
hord—sphy 18 a gap preserving reduction. Namely,
hord—sphy maps (a) every instance Z,,q of value at most
Qopt (fphy) + 2¢ to an instance Z,p, of value at most
topt(fpry) + 2¢; and (b) every instance Z,,.q of value at
least 1 — ¢ to an instance of 'y, of value 1 — O(e). If
hord—sphy satisfied these properties, we would conclude
that, assuming UGC, it is NP-hard to distinguish between
(A) instances of T'p,, that are at most cop;(fpny) + 2¢
satisfiable; and (B) instances of I',,, that are at least
1 — O(e) satisfiable.

Property (a) immediately follows from Claim V.4
because reduction hd—spry does not increase the value
of the instance. Unfortunately, property (b) is not satisfied
for many payoff functions fpp,. Nevertheless, in the next
section, we show that property (b) holds for one partic-
ular function fJ;, -~ and, consequently, the phylogenetic

10

*

CSP with that payoff function fJ, ~is approximation
resistant. We will use this result to prove that Triplets
Consistency is also approximation resistant.

In Section VII, we will deal with arbitrary phyloge-
netic CSPs. Specifically, we will modify the hardness
reduction by [36] and obtain a reduction hyg—orq from
Unique Games to I',.; such that the composition of
reductions

hUG—>phy = hm‘d—)phy © hUG—mrd
is gap preserving.
A. Hardness for Triplets Consistency

In this section, we define a special payoff func-
tion f,,, of arity 3 for which the hardness reduc-
tion hord—sphy (described in the previous section) maps
almost satisfiable instances of I',.4 to almost satisfi-
able instances of I',p,. Fix a small 6 € (0,1). Let
triplet(u, v, w) be the Triplet Consistency payoff func-
tion: triplet(u,v,w) = 1, if LCA(u,w) = LCA(v,w)
(in other words, w is separated from u and v before u
and v are separated); triplet(u,v,w) = 0, otherwise.
Now let f,,, (u,v,w) = triplet(u, v, w) if the ordering
of variables u, v, and w in the phylogenetic tree is
u, v, and w; f,, (u,v,w) (1 — 9) triplet(u, v, w),
otherwise. Observe that f), (u,v,w) is a satisfiable
payoff function i.e., its maximum value is 1. Let I'pp,
be the phylogenetic CSP with payoff function f;,, and
T4 be the corresponding ordering CSP.

Lemma V.5. Reduction hord—phy maps every (1 —¢)-
satisfiable instance of Torq 10 a (1 — £/8)-satisfiable
instance of I'pp,.

Proof. Consider a (1 — ¢)-satisfiable instance Z,,4 of or-
dering CSP I',,,.q and the corresponding instance Zp, =
hord—phy(Zora) of phylogenetic CSP I, Let 7 be the
optimal solution to Z,,.4. Consider the “left” caterpillar
binary tree T' with n leaves. Tree 7' is a binary tree in
which the right child of every internal node is a leaf. We
construct 7" by taking a path of length n and attaching
a right child to every node but last (see Figure 7 in
Appendix). We now define a solution for instance Z,p,,
that maps every variable of Z,;, to a leaf of 7. We
number all leaves in the tree from left to right. Then, we
map every variable u to the leaf number 7(u). Thus, the
ordering of variables in solution ¢ is 7.

We prove that val(p,Z,p,) > 1 — ¢/J. Observe that
Fony (P(w), @(v), p(w)) 1 for a triplet (u,v,w) if
and only if m(u) < m(v) < 7(w) (because ¢ maps all
vertices to the leaves of the left caterpillar tree). So, it
is sufficient to show that 7(u) < m(v) < w(w) for all
but at most 1 — ¢/ fraction of all constraints in Zp,,.
In other words, we need to show

1(m(u) <7w(v) <7(w)) =1-¢/5, (3)

Avg

(u,0,w)ELppy

where 1(7(u) < w(v) < w(w)) is the indicator of
the event w(u) < 7(v) < m(w). Recall that for every
ordering constraint x = (21, ..., T,) in Zy.q, we created
a copy Zx of the gap instance Ig;p. Instance Iy, is the
union of instances Z, over all constraints x in Z,,,.4. Thus,

m(v) <m(w))
(m(u) < m(v) <7(w)).

AVg(u,’u,u})GIphy 1 (’R’(U)

Avg Avg
XE€Lord (u,v,w)ELx

< <
= 1 <

Consider an ordering constraint x = (z1,...,Z,;,) in
Tord- The value of the ordering payoff function o on x
equals (by the definition of o):

fphy
Igap

f;hy(@x(u)a QOX(’U% @x(w))

o(m(x1),...,m(xm)) = opt(| 7) =

max Avg
ex €@ (Iphy) (u,v,w)ELx

Observe that
f;hy((px(u)a Px(v), px(w)) <
<(1=68)+6-1(m(u) < 7(v) < m(w)).

This is because every ¢y in @ (Zpp,) must order u, v,
w according to permutation 7. So, if 1(7(u) < w(v) <

m(w)) = 0, then f*(px(u), px(v), px(w)) < 1 -4
Therefore,

o(m(z1),...,m(xm)) <
<(1-=6)4+0 Avg 1(n(u) < 7(v) < 7(w)).
(u,v,w)ELx
Since 7 satisfies at least (1 —¢) fraction of all constraints
in Z,,4, we have

>

(1-6)+6Avg Avg 1(m(u) < w(v) < 7(w))

XE€ZLora (u,v,w)ETx
>1—c¢.

This inequality implies (3). This concludes the proof of
Lemma V.5. O

By Lemma V.4 and Lemma V.5, reduction horg—sphy
maps (a) instances of I',.q with value at most o’ + 2¢
to instances of I',p, also with value at most o + 2¢;
and (b) almost satisfiable instances of I',.; to almost
satisfiable instances of I'pp,, where o' is the value of
the best biased random assignment for f, . Therefore,
phylogenetic CSP I'pp, with payoff function fg, = is
approximation resistant.

We now show that the Triplets Consistency prob-
lem is also approximation resistant. First, observe that
triplet(u, v, w) > Fony (s v,w) for all variables u, v, w.
Hence, o/ < a = 1/3, where « is the value of the best
biased random assignment for the Triplets Consistency
problem. Then, note that a (1 — ¢)-satisfiable instance
of the problem with payoff function f;, is also a

11

(1 — ¢)-satisfiable instance of the problem with pay-
off function triplet (simply because triplet(u,v,w) >
f;‘hy(u, v, w)). Finally, every instance with value at most
« + ¢ with payoff function f;, ~has a value at most
(a +¢€)/(1 — 6) with payoff function triplet, because
(1 = 0) triplet(u, v,w) < fo,, (u,v,w) for all u, v, w.
This implies that the Triplets Consistency problem is
approximation resistant.

a) Hardness for Quartets Consistency.: Using our
hardness results for triplets, a simple reduction then
proves that MAXQUARTETS is also approximation re-
sistant (see Claim D.1 in Appendix C):

Corollary V.6. Unrooted Quartet Reconstruction
(MAXQUARTETS) is approximation resistant, so it is
UGC-hard to beat the (trivial) random assignment
algorithm that achieves a %-approximation.

VI. FILLING THE GAPS

In this section, we build machinery to prove Theo-
rem V.3. First, we show that every gap instance I;{;Zy of
a phylogenetic CSP with payoff function f,5, is com-
pletely satisfiable. Then, we introduce coarse solutions
for phylogenetic CSPs and prove important results about
such solutions. In the end of this section, we put all parts
together and prove Theorem V.3.

A. Gap Instance is Completely Satisfiable

Consider a phylogenetic CSP with a satisfiable payoff
function fpy, of arity k. Let P be the pattern of fy,4,y
with a payoff of 1. Pattern P is a tree with k leaves
li,...,lg such that fpp,(l1,...,ly) = 1. By permuting
the arguments of the payoff function fp,, we may
assume that the leaves [y,...,[; are ordered from left
to right in P. We now show that I;‘ggy is a satisfiable
instance of I'pp,. We will need the following definition.

Definition VI.1. Consider k leaves I, ..., l; of a full
tree T of arity k. Let u be their least common ancestor
and uy, . ..,uy be the child nodes of u ordered from left
to right. We say that lq,...,l; are cousins if each l; is
a leaf in the subtree T,,; rooted at u;. We also define a
predicate cousins: cousins(ly, ..., lx) = 1, if l1,..., 1k
are cousins; and cousins(ly, . ..,ly) = 0, otherwise.

Lemma VL2. Let f,hy be a satisfiable phylogenetic
payoff function and P be a pattern as above. Consider an
instance T = (V,C) of phylogenetic CSP with a payoff
Sfunction fpp, and a mapping 1 of variables V of 1 to a
k-ary tree T. Then, there exists a binary tree T’ with the
same set of leaves as 'T' such that the following statement
holds: If x1, ...,z are mapped to cousins in T by 1),

then fpny(Y(z1),...,¥(zx)) =1in T

Observe that in the gap instance Igg;;y all payoff func-

tions are defined on leaves that are cousins. Hence, the

conditions of Lemma VI.2 are satisfied for the identity
map . Therefore, we have the following immediate
corollary.

Corollary VL.3. Every gap instance Igf{;‘,y with phy-

logenetic payoff function fpn, as above is completely
satisfiable.

Proof of Lemma VL2. Let r be the root of pattern P
and lq,...,l; be its leaves. We build a binary tree 7"
by replacing every node and its children in 7" with the
pattern P. See Figure 8. Formally, we define T as
follows. For every internal vertex u of T, we create a
copy of pattern P. Denote it by P*. We identify every
vertex u of T" with the root of P“. Also, we identify the
i-th leaf of P“ with the i-th child of w. Now consider
a payoff function fpp, on variables x1, ...,). Suppose
that ¥ (x1),...,¥(xy) are cousins in tree 7. Let u be
their least common ancestor and w1, . .., u; be u’s child
nodes. Then, each 1 (x;) lies in the subtree rooted in
u;. Let us now examine where (z1),...,9%(x) are
located in the new tree 7”. Each t(x;) also lies in
the subtree rooted at u;. However, in T, uq,...uy are
not child nodes of u but rather leaves of a copy of
the pattern P. Thus, ¢ (z1),...,%(x)) match pattern P
in T". Consequently, fpny (¥ (z1),...,%(zx)) = 1 for
solution 1) on phylogenetic tree 7. [

B. Coarse Solutions, Labelling, and Coloring

In this section, we define coarse solutions for phyloge-
netic CSPs and discuss how to measure the value of such
solutions. A coarse solution embeds the set of variables
V into leaves of a binary tree 7. Unlike a true solution for
a phylogenetic CSP, in a coarse solution, many variables
can and, in most cases, will be mapped to the same leaf.
A coarse solution also assigns a color to every leaf of 7.
We denote the leaf assigned to variable z by £(z) and
color assigned to the leaf by color({(x)). We say that a
coarse solution £ is in class Z, 4 ~(Z) (where ¢ € RT,
q € N, 7 is an ordering of V) if it satisfies the following
properties:>

1) (coarse) tree 1" has at most ¢ leaves;

2) at most ¢|V| distinct variables have the same color;
and

3) moreover, variables mapped to a leaf [are consec-
utive variables in ordering 7.

Note that this definition differs a lot from the definition
of a coarse solution for ordering CSPs. In particular,
coarse solutions for ordering CSPs do not assign colors
to variables.

We now define two value functions for a coarse solu-
tion £. Consider an instance Z = (V, C') of phylogenetic
CSP with payoff function f,, and an arbitrary constraint

3These conditions are slightly more complex for phylogenetic CSPs
on non-binary trees.

12

(z1,...,2,) € C. If all variables x1,...,x) have
distinct colors in the coarse solution i.e., color({(x;)) #
color(&(x;)) for all 4, j, then we let

P €@1)s - € (k) = L (€G1), - EC1)
= fphy(g(x1)7 e 7§(xk))7
here fpny(&(z1), -+ ,€&(zx)) is well defined
because all leaves &(z1),...,&(xr) are distinct.

If, however, two variables have the same color
(i.e., color(&(x;)) color(¢(z;)) for some i, 7),

then we let f, (§(z1),...,&(zk)) = 0 and
f;by(f(xl), ..., &(xk)) = 1. We then define
WIET) = Ave) E) @
Val+(§7z) = AVg f;zy(g(xl)>a€(xk)) (5)
(1. zk)ET

In both expressions above, we are averaging over all
constraints (z1,...,xy) in instance Z.

We will use coarse instances and value functions val™,
val™ to prove Theorem V.3. Our plan is as follows. We
first show that for every (true) solution ¢ € &, for
instance Z, there exists a coarse solution { € Z. 4«
with val™ (¢,7) > val(p,Z) (see Lemma VI.4). We then
argue that for a random ordering 7 and § € =, ; », we
have val™ (¢£,7) — val~ (€,7) < ¢ with high probability
(see Lemma VI.10 for the precise statement). Loosely
speaking, this is the case because for a random ordering
m, the expected fraction of constraints (z1, ..., zy) with
at least two variables having the same color is very small;
but val™ (£, fpny) and val™ (€, f,n,) differ only on such
constraints. Finally, we use Lemma VI.6 to show that
val™ (&, Igfg;;y) < a + €. The above chain of inequalities
implies that

prhy

Ffohy
gap T,

gap

)

fohy
Igap

t = 1,
opt(| m) gggiva(w

< max valt(¢,
EEEE,Q,TF

)

prhy) + e

< max val (& Ty

€Zc,q,7

<a+2e

with high probability if 7 is a random ordering of
variables in Ij,”g;;y.

C. How to Transform True Solution to Better Coarse
Solution?

We now show that for every true solution ¢ for Z, there
exists a coarse solution with val™ (¢,7) > val(p,Z). In
this coarse solution ¢ the variables are ordered in the
same way as in ¢.

Lemma VIL4. Consider an instance T = (V,C) of
a phylogenetic CSP T'pp,. Let ¢ > 1/|V|. For every
permutation w and every solution ¢ € ®,(Z) for Z, there

exists a coarse solution § € =, 4 (1) with ¢ < 16/¢
such that

val™ (¢, 7) > val(p, T). (6)

Proof. Let T be the tree used in solution ¢, and A be
the set of its leaves. Solution ¢ maps the set of variables
V to A. We now define a function A : A — A that maps
all leaves of T to at most ¢ distinct leaves of 7. This
function also assigns a color to every leaf in the image.
Then, we define the coarse solution £ = A o ¢. That is,
& uses the true solution ¢ to map a variable z to a leaf
[and then uses function A to assign x one of g chosen
leaves of T'.

Algorithm. We describe an algorithm for finding func-
tion A. The algorithm first assigns a label to every leaf u
of T and a color to every label. Then, it maps each label
to an arbitrary (e.g., the leftmost) leaf of 7" that has that
label.

Our algorithm considers all nodes of the tree in the
bottom-up order. Denote the subtree rooted at node u by
T.. For every u, the algorithm either processes subtree
T, and marks T, as processed or skips node wu. It
processes u if one of the following conditions is met:

e w 1S the root of T'; or

o both the left and right subtrees of u contain at least
one already processed node; or

« the number of yet unlabelled leaves in T}, is greater
than £|V]/2.

Note that the second item can be rephrased as follows:
u is the least common ancestor (LCA) of two already
processed nodes.

To process a node u, the algorithm creates four new
labels LL,,,LR,,RL,,RR, and assigns the same new
color to all of them. It assigns the first two labels LL,,,
LR, to leaves in the left subtree of v and the second
two labels RL,, RR, to leaves in the right subtree of u.
Consider the left subtree. If it does not contain already
processed nodes, then all leaves of the tree receive label
LL,. Otherwise, there should be one processed node v
such that subtree T, contains all other processed nodes
in the left subtree of T,. This node v is the least common
ancestor (LCA) of all processed nodes in the left subtree
of T,,. We assign label LL, to the leaves in the left
subtree of u that are to the left of T, and label LR, to
the leaves in the left subtree of w that are to the right
of T,. We assign labels in the right subtree in a similar
way. See Figure 9 in the Appendix.

Value of the solution. We now show that for the
coarse solution ¢ constructed above, inequality (6) holds.
Consider a constraint (21, ..., ;) in Z. We need to show
that £, (6@1)se o E@R) = Fony (&), E(1).
If at least two variables x; and z; have the same

color, then ;hy(f(xl), ..., &(zk)) = 1 and, therefore,

13

Fog€(@1), o E(ar)) = 1> fony(E(x1), -, E(1).
So from now on, we assume that z1, ..., x; have distinct
colors.

Recall, that payoff function f,n, can be specified by
a list of patterns and corresponding payoffs: function
fohy (W1, ..., y,) returns a certain value if yi,...,yx
match the corresponding pattern. Each pattern P can
be described either by a tree with k leaves [y,...,[x
or as a conjunction of bracket predicates of the form
[Wa < Yb)s [War s < Yels [Ya < Yb,Ye). See Section X
and Lemma III.5 for details. In this proof, we will use
the latter type of pattern descriptions.

Claim VLS. If ¢(x1),...,0(2m) match a pattern P,
then £(x1), ..., (X,) match the same pattern P. Here,
@ is the original solution, and & is the corresponding
coarse solution.

Proof. Consider an arbitrary predicate [ya,yp < Yes
which is a part of P. If ¢(z1), ..., ¢(x,,)match P, then
the predicate [p(z,), ¢(xp) < p(z.)] must be true. We
show that [£(x,),&(zp) < &(x.)] is also true.

Examine node v in T where ¢(x,), p(xp), p(x.) are
split into two groups. This node w is the least com-
mon ancestor of o(x,), ¢(zp), @(z.) in tree T. Since
[p(xa), p(zy) < p(xc)] is true, p(zq) and p(z;) must
belong to the left subtree of w; and ¢ (z.) must belong to
the right subtree of u. Now, there are two possibilities:
u was or was not processed by the algorithm.

If u was processed by the algorithm, then ¢ (z,), ¢(zp)
received labels in the left subtree and ¢(z.) received
labels in the right subtree. In the coarse solution, labels
in the left subtree are mapped to leaves in the left subtree,
and labels in the right subtree mapped to leaves in the
right subtree. Hence, the predicate [{(x,), {(xp) < &(z¢)]
is true in the coarse solution.

Suppose now that v was not processed by the algo-
rithm but, of course, one of its ancestors was processed.
Denote the first ancestor of u which was processed by
v. Assume without loss of generality that u is in the
left subtree of v. When the algorithm processed v, it
assigned two new labels LL,, LR, to some leaves in
T,. These labels have the same color. Since ¢(z,),
o(xzp), @(x.) have distinct colors, only one of them
could have received label LL, or LR,. Therefore, the
other two leaves were assigned labels before v was
processed. Suppose they were assigned labels when v’
was processed. Note that v’ is a descendent of v and u
(if v’ was on the path from v to u, then v’ not v would be
the first ancestor of u that was processed). If v/ belonged
to the right subtree of w, only ¢(x.) would be its
descendant and, consequently, neither ¢(x,) nor p(zp)
would receive a label when v’ was processed. Hence, v’
is in the left subtree of u. Therefore, ¢(x.) must have
received label LR,, and z,, x; received labels in T}, .

Since all leaves having label LR, are to the right of
leaves in subtree T/, we get that [£(z,), () < &(c)]
is satisfied in the coarse solution. O

This completes the proof of bound (6). It remains
to bound the number of labels and colors used by the
algorithm.

The size of the coarse solution. We now show that
& € Ecq,x (see Section VI-B for definition of =, ;).
Consider the step of the algorithm when a node u is
processed. Observe that each label LL,, LR,, RL,,
RR, is assigned to consecutive leaves in m = order(yp).
All of them have the same color and no other label has
that color. The number of unlabeled leaves in the left and
right subtrees of w is at most £|V|/2. So, the total number
of leaves that get colored at this step of the algorithm is
at most ¢|V|.

We now estimate the number of leaves in the image
of & This number equals the number of labels we
create, which, in turn, equals the number of processed
vertices multiplied by 4. Each node w is processed by
the algorithm because of one the three reasons provided
in the definition of the algorithm. The number of nodes
u processed because T}, has more than ¢|V|/2 unlabelled
leaves is at most |V|/(¢|V]/2) = 2/e. The number of
nodes u with at least one processed node in both the left
and right subtrees of u is at most 2/¢ — 1. Additionally,
the algorithm always processes the root of 7. Thus,
the total number of processed nodes and, consequently,
number of colors is at most 4/¢. The number of labels
is upper bounded by 16/e. O

D. No Good Coarse Solution for Gap Instance

In the previous two sections, we proved that the gap
instance Igg;;y has a solution ¢ of value 1 and then
showed how to transform every true solution to a coarse
solution ¢ with val™ (¢,Z) > val(y, Z). Thus, we know
that for every € and ¢, there exists an ordering 7 and
coarse solution ¢ € Z. , -(Z) with Vaﬁ(g,zjggy) =1
We now prove that, in conrast, val™ (£ ,I;EZ") <a+e
for every £ € Z, , »(Z) if the gap instance is sufficiently
large.

Lemma VL.6. For every positive k,q € N and €' €
(0,1), there exists m* such that the following claim
holds. For every phylogenetic payoff function fpn, of
arity k, gap instance I;Z;;y = (V,C) with |V| > m*,
and coarse solution § € 2 4 », we have:

val (§,7) < a+¢€, (7

where o is the biased random assignment threshold for
payoff function fphy; € and T are arbitrary.

Proof. Consider a coarse solution £. It maps variables of

instance I;‘g;;y to leaves of some tree T'. Since § € 2. 4,

14

tree 1" has at most ¢ leaves lq,...,l,. We view this
coarse solution as a solution to an ordinary CSP with al-
phabet l1,...,l, and payoff function f[jhy This function
applied to variables x1, ...,z returns fppy(x1,. .. ,Xk)
if all colors assigned to x1,...,x; are distinct and O,
otherwise. By Lemma V.1, the value of this solution is
at most o' + ¢’, where ' is the expected value of the
optimal biased random assignment for payoff function
Fony-

To complete the proof, we show that o' < «. Consider
a biased random assignment algorithm with some prob-
ability distribution p on labels Iy,...,l,. We can use
this distribution to define a biased randomized algorithm
for phylogenetic CSP instance I;fg;;y. The biased assign-
ment algorithm first randomly and independently assigns
all vertices V' to leaves ly,...,l with probabilities
p(l1), ..., p(lg). Then, it recursively partitions vertices
assigned to each leaf each time splitting vertices between
the left and right subtrees with probability 50%/50%
(see Section IV for details). Note that the expected value
of this randomized algorithm for phylogenetic payoff
function fpp, is greater than or equal to the value of the
ordinary payoft function f;hy. This is the case because
both payoff functions have the same value if the colors
of the leaves assigned to their arguments are distinct.
However, f;ly(xl, ..., x) = 0 if the colors of two or
more leaves z; and x; are the same. This implies that

xk)] < EJ;in[fphy(xl’ . 7xk)]

O

El‘i"‘ﬂ[fp_hy(xl’ ey

E. Coarse Solutions for Random Orderings

In this section, we bound the maximum difference
maxecz, . (valt (¢, 7) — val™ (¢,7)) for a random or-
dering 7. We assume that the instance Z of phylogenetic
CSP is regular. That is, the weight of constraints that
contain a variable z is the same for all x € V. Note
that our gap instance Ijg;;y satisfies this condition. In
the lemma below, we will use the notion of the Gaifman
graph. The Gaifman graph for instance Z of a constraint
satisfaction problem is a weighted graph on the variables
V of Z. The weight of edge (z1,z2) equals the total
weight of all constraints that depend on z; and x5. Given
an instance Z, we construct the Gaifman graph for 7
as follows. For every constraint (21, ...,2), we add a
clique on x1,...,x; with the weight of edges equal to
the weight of constraint x1, ..., zg. It is easy to see that
if 7 is a regular instance (see above), then its Gaifman
graph is also regular.

Let H = (V, E) be the weighted Gaifman graph for a
regular instance Z. Consider an arbitrary coarse solution
€ € E¢ ¢,=(Z). Denote the total weight of monochromatic
edges in H by me(&, H): me(§, H) =

weight ({(z,y) € E : color(¢(z)) = color(¢(y))}).

We show mc(&, H) is small on average for a random
ordering .

Lemma VL7. For every ¢ € (0,1) and positive q €
N, there exists m* O(qlog(q/c)/€?) such that for
every regular instance T = (V,C) with |V| > m*, the
following bound holds:

e |

max

€2, ga(T

mc(f,H)} < 3¢ - weight(E). (8)
Here, H = (V, E) is the Gaifman graph of Z; m is a
random ordering of V.

Proof. Let m = |V|. We rescale the weights of all edges
so that the weight of edges leaving any node in H equals
2/m. Then, the total weight of all edges in H is 1. In
this proof, we will ignore the tree structure of the coarse
solution. The ordering 7 is a one-to-one mapping of V'
to {0,...,m — 1}. Thus, the coarse solution £ defines a
coloring x on {0,...,m — 1}: The color of i equals the
color assigned by ¢ to the preimage of i. That is,

x(0) = color(¢(n(i))-

Note that (1) ¢ assigns the same color to at most em
numbers; (2) the entire set {0,...,m — 1} is partitioned
in at most ¢ groups of consecutive numbers and each
group receives some color (every consecutive group
corresponds to a leaf in the coarse solution; different
groups may have the same color). We now rephrase the
statement of the lemma as follows:

Eﬂ[m;zxmc(xomH)} < 3¢,)

where Y is a coloring satisfying the conditions above; and
mc(x o, H) is the fraction of monochromatic edges in
H with respect to the coloring y o 7.

The proof follows a standard probabilistic argument.
First, we estimate the number of monochromatic edges
for a fixed coloring x and random permutation 7. Specif-
ically, we argue that for a fixed coloring, the expected
weight of monochromatic edges is at most €. Then, we
use Maurey’s concentration inequality for permutations
to show that for a typical permutation 7, the maximum
number of monochromatic edges mc(x o m, H) over
all colorings x is at most 2¢. This yields the desired
bound (9).

Consider a fixed coloring x. By the definition, it
assigns each color to at most em numbers. Let us now
orient all edges of H in an arbitrary way. The probability
that the right endpoint of an edge is assigned the number
of the same color as the left endpoint is at most . Thus,
the expected weight of monochromatic edges is at most
E.

The total number of different colorings satisfying
conditions (1), and (2) above is at most (gm)9, because
we can specify the leftmost number in each group in

15

at most m? ways; we can then assign colors to these ¢
groups in at most g¢ ways.

We will now use Maurey’s concentration inequality
[59] (see also Theorem 5.2.6 in the book by Vershynin
(2018) [79] and Theorem 13 in lecture notes by Naor
(2008) [60]) to bound the probability that for a random
7 the weight of monochromatic edges is greater than 2¢.
To this end, define the distance between two permutations
or orderings 7’ and 7"’ as the fraction of z where 7’ and
7" differ:

_ Hz eV in(z) # " (2)}]
Vi '

A function f Sym(m) — R is L-Lipschitz if
f(@") = f(#") < L - dist(x’, ") for all permutations
' 7’ € Sym(m). Here, Sym(m) is the group of all
permutations on m elements (symmetric group).

dist(n’, ")

Theorem V1.8 (Maurey). Consider an L-Lipschitz func-
tion f: Sym(m) — R. Let w be a random permutation
in Sym(m). Then,

CtQﬂL

Pr{|f(m) - E[f]| 2 t} < 2™ 2

(10)
for some constant ¢ > 0.

We will apply Theorem VI8 to the function 7
me(x o, H). To do so, we need the following claim.

Claim VI.9. The function m — mc(x o 7, H) is 2-
Lipschitz.

Proof. Consider two orderings 7’ and 7”/. We split all
edges of GG into two sets A and B. Set A contains edges
(z,y) with 7'(z) = 7"(z) and 7'(y) = 7"(y). Set
B contains the remaining edges. Each edge with both
endpoints in A is assigned the same colors by y o7’ and
x o7, Thus, it is either monochromatic with respect to
both colorings x o’ and x o 7"/, or not monochromatic
with respect to both colorings x o ' and x o 7w”.
Hence, mc(x o7/, H) — me(x o ", H) < weight(B).
However, each edge in B is incident on a node x with
7' (x) # «'(z). Since the number of such nodes equals
dist(7’, 7'") |V, the total weight of edges in B is at most
2dist(n’, 7). Here, we use that the total weight of edges
incident on any fixed vertex x is 2/|V/|. This concludes
the proof of Claim VI.9.

By Maurey’s concentration inequality (10), we have
Pr { me(fom H)—e > 5} < 2e—c'E’m

for some positive constant ¢’. We now apply the union
bound over all possible colorings x and the the following
inequality:

I:Tr{m)?x mc(H,xom) > 2} < Qe*CIEquqmq.

If m > C'qlog(q/e)/e? (for sufficiently large constant
C"), then the right hand side of the inequality is less
than . Since mc(x o) is upper bounded by the total
weight of all edges, which is 1, we get the desired bound
). O

We use Lemma VI.7
maX&EEs,q,w (Va‘l+ (57 I) —val™ (Ev I))

to bound

Lemma VL.10. For every ¢ € (0,1) and positive k,q €
N, there exists m* = O(qk®log(kq/c)/€?)) such that
for every regular instance I with at least m* variables,
the following bound holds:

E.| max (val™(£,7) —val™ (£,7))| <e.

§€Ec g

Y

Here, 7 is a random ordering of variables V of the
instance I.

Proof. Let H be the Gaifman graph for instance Z.
Consider a coarse solution ¢ and the induced coloring
of variables V. Let us now examine the definition of
functions val™ and val™ given in Equations (4) and
(5). These functions differ only on payoff functions
f&(z1),...,&(xr)) with two variables having the same
color (i.e., color(§(x;)) = color(&{(x;))). Thus,

val® (&,7) — val ™= (¢,7) < me(&, H).

Note that the total weight of all constraints in the instance
7 is 1; and the total weight of all edges in H is k(k —
1)/2, because for every payoff function in Z, we create
a clique of size k in H. We now apply Lemma V1.7 with
¢’ =2¢/(3k(k — 1)) and get inequality (11). O

FE. Proof of Theorem V.3

We now complete the proof of Theorem V.3. Consider
a phylogenetic payoff function fy5, of arity k. We
assume that the arguments of fphy are rearranged so
that there exists an assignment ¢ to the variables that
satisfies fpny and such that the ordering of variables in
pisxy,..., Ty (.e., order(y) = id). By Corollary V1.3,
the gap instance Igg;;y is completely satisfiable. Suppose
that the number of leaves in Igg;;y is larger than some
sufficiently large m*. By Lemma V1.4, we have
max (val(p, 7))

)] = Bx | e, 7))

gE,T[max (val* (£, 7))

[SCHEPR

E- | opt(Z4i"

]

By Lemma VI.10,

Eﬂ[erg?xw(val"'(g,l'))] <
< Eﬂ{ eHEliX,W(V&r (f,I))} +e.

16

Finally, Lemma VI.6,

EW[EH_laX (val™ (&, 7)) < a+e.

Se,q,m

This concludes the proof of Theorem V.3.

VII. MAKING THE REDUCTION FROM UNIQUE
GAMES WORK

We now examine the hardness reduction by
Guruswami, Hastad, Manokaran, Raghavendra, and
Charikar (2011) [36] and then modify it to make it
work with our own reduction horq—sphy. As most other
hardness reductions from the Unique Games Conjecture,
the hardness reduction in [36] relies on a dictatorship
test for the problem (see [56]-[58], [65]). A dictatorship
test is a special instance of the problem, in our case
ordering CSP T',.4, on variables in the grid [M]%.
On the one hand, this instance must have a dictator
solution ¢ of value at least 1 — €. On the other hand,
every T-pseudorandom solution for this instance must
have value at most o« + ¢, where « is the desired
approximation hardness of the problem. We remind
the reader that a dictator is a function ¢ defined on
z € [M]® that depends only on one coordinate z; of
z. That coordinate j is the dictator. A function ¢ is
T-pseudorandom if 7j_.¢ does not have influential
coordinates i.e., coordinates with influence greater than
7 (here T)_. is the noise operator that “flips” every
coordinate of z with probability). Note that we can
pick a constant M as we wish (it can depend on ¢,
which we treat as a fixed constant). However, the value
of R depends on the Unique Games instance we use in
the reduction and is not under our control (R equals the
number of labels in the Unique Games instance).

The general recipe for creating dictatorship tests was
provided by Raghavendra (2008) [65] in his influential
paper on optimal approximation algorithms and approx-
imation hardness for ordinary CSPs. His dictatorship
test was adapted for ordering CSPs by Guruswami et
al. (2011) [36]. Also, Guruswami et al. (2011) [36]
defined T-pseudorandom functions for ordering CSPs
(see Definition 4.2 in their paper) and developed tools
necessary for analyzing such functions.

We now outline the dictatorship test used by Gu-
ruswami et al. (2011) [36]. We will work with the
ordering predicate o of arity m defined in Section V.
Guruswami et al. (2011) [36] use a gap instance Igoap
with M variables. This is the same gap instance* as
we described in the proof in Section V only of a larger
size and applied to the ordering predicate o. Then, for
every tuple s of m variables s1, ..., sy, € [M] (m is the

4For technical reasons, they take several copies of this gap instance.
However, in our modified hardness reduction, we will use this instance

> .
Lgap as is.

arity of the ordering CSP), they define a random map
Lg that maps s1,. .., S,, to another m tuple in [N]* (in
their case N = M). This map should satisfy several
important conditions we examine in a moment. We give
a description of the dictatorship test in Figure 2.

~

Dictatorship Test from [36]:

- Pick a random constraint (s, ..., S,,) from
o
T .
- Draw m vectors zi,...,Z, € [N]

using R independent random functions
(1) (R).
Ls’/,...,Ls "

(Zgj), e Z%)) = ng)(sl, ce s Sm)-
Apply e-noise to each zgj) i.e. with probabil-
ity e, replace it with a random value in [V].
Return constraint (z, ..., %) for the pay-
off function o.

The instance Z of the ordering CSP I',,,.; gen-

erated by the dictatorship test consists of a set

of variables V = [N]® and set of constraints

C =V x --- x V. The weight of each constraint
N————

m

(21, ..,2m) equals the probability that this con-
straint is returned by the procedure above.

Fig. 2. Dictatorship Test

The map Lg should satisfy several conditions. First,
for every j, the dictatorship solution ¢ : z — z; (where
z € V = [M]® is a variable; z; is a number in [N])
should have value 1 — O(e). In this solution, several
distinct variables z can be mapped to the same position
i; in this case, we pick a random ordering among them,
but preserve their relative order with other z’s. Then, Lg
should be n-smooth i.e., for all ty,...,t,, € [N]T, we
have (for some 7 > 0)

Pr{LS(sh...,sm) = (tl,...,tm)} > .

The marginal distribution of each coordinate of Lg
should be uniform i.e., for every s € [M]™, every
i €{1,...,m}, and every t € [N],

12)

Pr{Ly(s); = t} = %

Here, Lg(s); denotes the i-th coordinate of Lg(s). Fi-
nally, there should exist a global SDP solution (the same
for all functions Lg) that match the first and second
moments of every Lsg.

Unfortunately, this dictatorship test instance does not
work for us as is. As we discussed earlier, we need to
get a hardness reduction hyyg—sorg from Unique Games
to ordering CSP T';.4, which not only maps almost

13)

17

satisfiable instances of Unique Games to almost satis-
fiable instances of I',,.4, but also satisfies the follow-
ing condition: The composition of hardness reductions
Nord—phy © huGg—orq maps almost satisfiable instances
of Unique Games to almost satisfiable instances of our
phylogenetic CSP I';,,. To satisfy this condition, we
need map Lg to have one additional property. Each
dictatorship solution ¢ : z +— z; must have value at
least 1 — O(e) when evaluated on the phylogenetic CSP
corresponding to the dictatorship test instance (i.e., the
image of the dictatorship test instance under horq—phy)-
Note that in order to make this dictatorship function
¢ : z +— z; a valid solution to the phylogenetic CSP,
we need to define a tree whose leaves are elements of
[N].

The map used in the paper by Guruswami et al.
(2011) [36] cyclically shifts elements in [N] (in their
case, N = M). This destroys any tree structure we can
define on [N]. Let us illustrate this point by example.
Consider the Triplet Consistency constraint uv|w and
binary tree of depth 2 with 4 leaves 1, 2, 3, 4. This
constraint is satisfied if u = 1, v = 2, w = 3. However,
if we shift values by one, u = 2, v = 3, w = 4, then the
constraint is no longer satisfied.

We are going to define an alternative random func-
tion L that maps all variables in [M] to some larger
domain [N]. The elements of [N] are associated with
leaves of a binary tree. We then let Lg(s1,...,sk) =
(L(s1),...,L(sx)) and plug these functions Ls into the
dictatorship test described above.

To make the proof of [36] work for this new function
L, we need to ensure that maps Lg satisfy the required
conditions. Finding a global SDP solution for L is easy:
We get it for free, because L is a global distribution and,
as such, is a convex combination of integral solutions
(each realization of L is an integral solution; it maps
variables in [M] to leaves in [N]). The smoothness
condition (12) can be easily obtained by perturbing L.

Now, we show that there exists a random function L :
[M] — [N] that satisfies the following conditions:

o forallu € [M]and v € [N], Pr{L(u) =v} =1/N

(cf. Equation (13));

o for every j and assignment ¢ : z — z;, we
have val(o, hord—sphy(Ztest)) > 1 — O(e), where
Tiest 1s the dictatorship test instance obtained using
function L.

Let us examine the second condition. Denote Z,..q =
hord—phy(Ziest). Recall that instance Z,.q is obtained
from the dictatorship test instance Z;.s; by replacing
every constraint (z1,...,%,;,) for the payoff function o
with a copy of the phylogenetic gap instance ijg;;y on
the same set of variables (z1,...,%,,). We remind the
reader that m is the number of leaves in the gap instance

Igg,hf’, and hence is a power of k. Similarly, M is the

number of leaves in the gap instance Igap and is a power
of m, and, consequently, a power of k. We let N = M?
for some constant d. Thus, m, M, and N are powers of
k. We will associate sets [m], [M], and [N] with leaves
of k-ary trees of appropriate depths. We will also map set
[N] to leaves of a binary tree using Lemma VI.2. We will
use this mapping to define val(p,Z.q). We now show
how to construct the desired function L for a sufficiently
large number N. Later, in Lemma VIL.4, we will prove
that L satisfies the required conditions.

Lemma VIL1. Fix a natural k > 1 and consider a
perfect k-ary tree Ty with M leaves labeled 0, . .., M —
1. For every positive €, there exists an integer N and a
random map L from leaves of Ty to leaves of another
k-ary tree T with N leaves labeled 0, ..., N — 1 such
that

o for every u € [M] and v € [N], we have
Pr{L(u) =v} =1/N;
ug in Ty,

L(ug))} = 1= 0(e);

e for every k cousins uy, ...,
Pr { cousins(L(u1),- -,
Pr{L(u;) = v; Vi} > 0.

Remark: We define the notion of cousins in Sec-
tion VI-A. Leaves u1,...,u; are cousins in a tree of
arity k if each u; lies in the subtree rooted at the i-th
child of LCA(uy, ..., ug).

Proof. Let N = M9 for d = 25l In(2). We create k-
ary tree Ty with N leaves 0,..., N — 1. We also define
a set of “shortcut” edges for 7. These edges go from
level 0 to d’, d’ to 2d’ and so on, where d' = log, M
is the depth of tree Th;. We will denote the tree with
shortcut edges by T.. This tree has arity M.

Consider the random map Ly, n defined in Section V.
It maps [M] to [N]. Note that it always maps leaves that
are cousins in T, to leaves that are cousins in Ty. We
define L using the following well-known lemma about
the optimal coupling of random variables.

Lemma VIL2 (Coupling Lemma; see e.g. [67]). Con-
sider two probability distributions P and Q on a finite
domain. Suppose random variable X has distribution
‘P, then there exists another random variable Y having
distribution Q such that

Pr{X #Y} =P - Qlrv,

where ||P— Q||1v is the total variation distance between

P and Q.

The random variable Y in Lemma VIL.2 can be
obtained from X using the maximum matching between
distributions P and Q. For each u € [M], we use

18

this lemma to find a random variable L(u) uniformly
distributed in [/N] such that

Pr{L(v) # Ly n(uw)} =
— L3 [Pr{man =) - | a9

vE[N]

The expression on the right hand side is the total
variation distance between the distribution of L,s n and
the uniform distribution on [N]. We now upper bound
this distance.

Claim VIL3. For all j € [M],

— Z ‘PI‘{LMN)—U}** <e.

UE[N

Proof. Consider a leaf v in M-ary tree T,.. Let
v(0),...,v(d) = v be the path from the root of the tree
to v. For every j € [M], we count the number of times
this path goes along the j-th branch of the tree. Namely,
we let B(v,j) be the number of nodes v(i) such that
v(i 4 1) is the j-th child of v(z).

Recall that random function Ljs n picks a random
t € 0,...,d—1 and then selects a random node w at
depth ¢ in tree Ty.. If for this random ¢, v(t + 1) is the
j-th child of v(t), then Pr{Ly; n(j) = v | t} = M/N
(because, in this case, Ly n(j) = v if two events occur:
u = v(t), and v is randomly chosen in the subtree rooted

at v(t + 1)). Otherwise, Pr{Ly n(j) = v | t} = 0.
Hence,
M B(v
PI‘{LMN()—U}—f (d)
We have
Z ‘PI‘{L]W NJ —U} — ‘ =
vE[N]
=S ‘% 1
o N N
vE[N]
. d
= FE’UG[N]‘B(U)]) - M)

Consider a random leaf v of T’y . The path from the root
to v is a random path. Every next vertex on this path
is randomly chosen among the children of the current
vertex. Thus, the probability that v(i + 1) is the j-th
child of v(i) is 1/M for every i. Consequently, B, ;
is the sum of d independent Bernoulli random variables
with parameter 1/M. By the Chernoff bound,

) d d _ 2y €

Pr{|B.j) ~ gl 2o pp 27T <
Inequality |B(v,j) —d/M| < d holds always. Thus,
d d € 2d

E, ‘B,'——’<~— S oa=2
€[N] (v,7) M_E M+Md Me

O

We now finish proof of Lemma VII.1. Random func-
tion L satisfies the first condition of Lemma VII.1
because each L(u) is a random variable with uniform
distribution in [N]. Function Ly ny maps every set of
cousins in 7T’y to cousins in 1. Thus, for all cousins

U1, ... ur in Thy, we have
Pr{ cousins(L(u1),- -+, L(ux))}
Z Pr { Cousins(LM,N(ul), e 7LJW,N(Uk))} — E‘k

=1-—c¢k.

Here, we used that Pr{L; n(u) # L(u)} < e for all
u € [M]. This proves the second condition of function
L and completes the proof of Lemma VII.1. O

We now verify that the random function L from
the previous lemma can be used in the dictatorship
test. Specifically, we prove that the second item of
Lemma VIL1 guarantees that val(p,Z..q) > 1 — O(e).
After that, we smooth L and plug it into the dictatorship
test. The smooth variant of L returns a completely
random mapping into [N] with a small probability 7’
and with the remaining probability 1 — 7/, it returns L.

Lemma VII4. Let L be the random map L
[M] — [N] from Lemma VILI. Consider the dic-
tatorship test instance Ly.s; constructed using L. Let
Ziest = hord—phy(ZLiest) be the corresponding instance
of phylogenetic CSP. Finally, let p be a solution defined
as ¢ : z +— z;. Then,

Val(@a red) >

> min Pr{ cousins(L(ay),...,
ai,...,a €[M]
cousins(ai,..., ag)=1

> L(ax)) = 1} —¢k.

Proof. Observe that the value of solution <p equals

fphy(410)7

where (z1,...,%,,) is a random constraint for the the
ordering payoff function o returned by the dictatorship
test; and (i1, ...,%x) is a random constraint in the copy
of Igg;;y created by the reduction hoyq—phy for constraint
(21, Zm)-

The probability that one of zgl sy zgk is affected by
e-noise and replaced by a random value at the third
step of the dictatorship test is at most ¢k, since each

of the values is changed with probability at most ¢. If
J J

J
R

val(p, Zred) =

.....

......

z;,...,2;, are not changed at the third step, then
(zl,....2]) = (LY (ss,),....LY(s3,)),
where (s1,...,S$,) is a random constraint in Igoap -

lected at the first step of the dictatorship test. Conse-
quently,

Val(@v-’[red) > E[fphy(L(j)(Sil)a BERE) L(j)(slk))} - 6]{:,

19

where the expectation on the right hand side is taken
over the random choice of si,...Sp,, %1,...,%, and
random realization of L(J). Variables in every constraint
in the gap instance qu;," are cousins; (Si,,...,8;,) 1S
a constraint in the copy of ijg;;y created for constraint
($1,--+,8m)- Thus, s;,,... are also cousins. Hence,

5 Siy,

Val(@vIred) >
> mi E L& .
aly--.r,rzlzlkne[M] [fony (L (@1), -,

cousins(ay,...,ar)=1

By Lemma VL2, fyn, (LY (ay),...
L(j)(al), ey

L9 (a))] — ek.

, LY (ay))
LY (ay) are cousins. Therefore,

1, if

Val(@v-’[red) 2
> min Pr{cousins(LY)(a1),...
A1 yeeny ake[l\i]
cousins(ai,...,ar)=1

LY (ar))}

—¢ck.

This concludes the proof of Lemma VIIL.4, because LY
has the same distribution as L. O

VIII. RANDOM SOLUTIONS FOR ORDINARY CSPs ON
THE GAP INSTANCE ARE ALMOST OPTIMAL

In this section, we prove Lemma V.1. Loosely speak-
ing, this lemma says that every solution to an ordinary
CSP instance Iggp has value at most « + ¢, where « is
the optimal biased random assignment for this ordinary
CSP:

o)

a = mgXEwin [fo(xl, ..

See Section V for details.

We first examine a variant of Lemma 11.3 from the
paper by Guruswami et al. (2011) [36]. Instance Iggp i
defined on a perfect k-ary tree T of depth d. Define a
probability distribution P on the internal nodes of 7. To
draw a random vertex from P, we first pick a random
leaf u of T" (with the uniform distribution). We denote the
path from the root to u by u(0),...,u(d—1),u(d) = u.
Then, we pick a random ¢ from 0 to d — 1 and output
u(t). Note that u(t) has exactly the same distribution as
the one we used in the definition of random map Ly,
and instance I({gp in Section V.

We now consider a solution ¢ for an ordinary CSP
with payoff function f,. Let u;(T,) be the fraction of
leaves in subtree T), (rooted at w) having label ¢ (i.e.,
leaves [in T, with ¢(l) = 4). Then, the following lemma
holds.

Lemma VIIL1 (cf. Lemma 11.3 in [36]).

q

1
Eu,th E Z Z ,Uv y Hi T())|] <
y€Echild(u(t)) i=1
< 2logs q
- d

A variant of this lemma was proved by Guruswami et
al. (2011) [36]. Their upper bound is a little worse than
ours. However, it is sufficient for our purposes, and we
could have used it in out proof of Lemma V.1, since it
tends to 0 as d goes to infinity.

We provide a proof of Lemma VIII.1 in Section B.
We now use Lemma VIII.1 to prove Lemma V.1.

Proof of Lemma V.I. Let ¢ be a solution for Iggp where
the depth d of the tree T (see above) is sufficiently
large. Specifically, d > (k/c)?log, g. The value of ¢

S
on instance Zy¢,, equals

E[fo(o(Lkm (1)) - o(Lim (k)]

because payoff functions in If o are defined on k-tuples
of leaves (L m(1),..., Ly m(kz)) Define another ran-
dom map L k,m- This functlon works as Ly, ,,, except after
choosing a random node u(t), ikm maps all numbers
1,...,k randomly into subtree rooted at u(t). For each
choice of u(t), the total variation distance between the
conditional distributions of Ly, (j) and Ly, (j) equals

1 q
5 2 1T, 0)
=1

Thus, we can couple (L (7)) and @(Ly. (7)) in such
a way that (see Lemma VII.2)

Pr (o(Lim(5)) # @(Lm (5) | u(?))
2 T

o(
1
=3 — 11i(Tugey) |-

Then,

Pr (HJ S.t. ‘p(Lk m(])) # @(zk m(J)) | u())

1
§ZZ|M1 wj(t

j=1i=1

= p1i(Tun))|-

Finally,

Pr(3j st (Lim(5) # ¢(Lim (7))

1 q
Eu,tNP |:

k
SO (T w)
i=1 j=1

1i(Tue)) \] :

By Lemma VIII.1, the right hand side is upper bounded

by k) 22529 Thy,
E[fo(e(Lim(1)), ..., o(Lim(k)] <
=< E[fo(@(zk,m(l)), cee @(ka(k))} +k 1028;5(1.

Here we used that f, is upper bound by 1. Now, observe
that when we use function Ly ,,,(k)), we essentially do
a biased random assignment. Namely, we first pick u(t)

20

and then randomly and independently pick labels for
Z1,...,% in the subtree rooted at w(t). It is important
that after u(¢) is chosen all variables 1, ..., z) are i.i.d.
Thus, the first term is upper bounded by «. We get

E[fo(@([/k,m(l))7 EERE QD(Lk,m(k'))] <

1
<a+k OQg;q <a+e.
This concludes the proof of Lemma V.1. O

IX. GENERALIZATIONS
A. Phylogenetic CSPs with Multiple Payoff Functions

We now discuss phylogenetic CSPs with multiple
payoff functions f(phys o dp h)y We assume that they are
scaled so that the maximum payoff of each f;;y is 1.
First, consider a special case of the problem when the
total weight of constraints of every type is prescribed
in advance. Namely, suppose that every instance must
have u; weight of constraints for payoff function f;g;z)y
ie. weight(C'f< 3) = p;. This variant of the problem is

essentially equlvalent to the problem with a composite
payoff function f; defined as follows:

1 1 2 T T
fﬂ(:vg),.. :E,(c),:cg),.. xfc),. xg),...7x,(€)):
:/‘lef hy(xl ,...,:L';l)).
i=1

More precisely, the phylogenetic CSP problem with
payoff function f is a special case of the problem with
functions {f},,} and prescribed weights p;. This is the
case simply because ;. can be expressed as the sum of
functions f? phy For every (1, we know the hardness of this
problem. It is defined by the approximation threshold
opt(f) = supa,(£) = sup > i (£15))-
P Poi=1

Let p* = argmin ,(f). Our phylogenetic problem with
functions f(h)y, c fzgh is at least as hard as f;;.. Con-
sequently, for almost satisfiable 1nstances of ;)hylogenetlc
CSPs with payoff functions f phy? phy, it is NP-
hard (assuming the Unique Games Conjecture) to find
a solution of value at least cvopi(f1,. .., fr) + €, where

(r)

1 *
Copt(Fypoy s Fyiy) = Capt(f;)
=sup 3 i g (fyn)
Pi=1
Note that approximation cvops(f;,llgﬁ cees ;,:L) —e can be

achieved. The algorithm can first find the ratios p; and
the corresponding distribution p (for example, we dis-
cretize possible values of p and store corresponding p in
the precomputed table). Furthermore, instead of finding

the best p for the current weights p, the algorithm can
pick a measure p at random from a list of measures. This
follows from von Neumann’s (1928) minimax theorem.

The reader may ask if we can use the same distribution
p for all instances of phylogenetic CSP I' with several
payoff function . It turns out that the answer is no.
Consider payoff functions one split to the left and one
split right to the right (see Figure 6). For every fixed
distribution p, we can find an instance of the problem for
which the biased randomized assignment satisfies expo-
nentially small in k fraction of all constraints. However,
if we first decide to satisfy only one type of predicates —
one split to the left and one split right to the right — and
pick the appropriate p for it, then we can satisfy 1/2 —¢
fraction of all constraints.

B. Higher Arity Trees

In this paper, we proved our main hardness result for
binary phylogenetic trees. However, the same hardness
result also holds for trees of an arbitrary fixed arity
r > 2. To make our proof work for r-ary trees, we
need to adjust the definitions of the coarse solution and
bracket predicates, and then slightly modify the proof
of Lemma VI.4. Specifically, the coarse solution must
satisfy the following conditions:

1. (coarse) tree T has at most ¢ leaves;

2. at most |V/| distinct variables have the same color;
and
3’. moreover, every color class is the union of at most

2r groups of consecutive variables in ordering 7.

The bracket predicates we need to use for r-ary trees
have form [u — a,v — b,w — ¢|. This predicate
indicates that u, v, and w must be in subtrees a, b, and
c of the LCA(u, v, w).

Finally, the algorithm from Lemma VI.4 should use
more than four labels at every step of recursion. When
node u is processed, it created r groups of labels, one
group for each of w’s children. In turn, every group
has r(r — 1) labels. So, the total number of labels is
r2(r — 1). Suppose that yet unlabeled leaf I belongs to
the subtree rooted at the a-th child of . Assume that
the top processed node in that tree is v. Then, [receives
label (a,b,c) where b and ¢ are indices of subtrees of
LCA(v,l), where v and [belong to. If there are no
processed nodes in the subtree rooted at the a-th child
of u, all leaves in that tree receive label (a,0,0).

X. TREE PATTERNS AND BRACKET PREDICATES

In this section, we prove (1) that every phylogenetic
payoff function can be defined by a list of pattern and
(2) every pattern can be expressed as a conjunction
of bracket predicates mentioned (Lemma IIL.5 in Sec-
tion III).

21

Claim X.1. Every phylogenetic payoff function can be
defined by a list of patterns (with a payoff assigned to
each pattern).

Proof. Consider a phylogenetic function fp4, of arity
k. Let P be the set of all non-isomorphic irreducible
patterns with k leaves labeled by x1,...,xx. This set
is finite because each irreducible tree has 2k — 1 nodes
(it is a full binary tree with k leaves). See Section III
for the definition of homeomorphic trees and reductions.
Now for every pattern P with leaves x1,...,2; in P,
we compute fpny (P, x1,...,2)) (the value of fyp, on
pattern P) and assign it to pattern P. Finally, we remove
all patterns with payoff 0.

We now prove that the obtained patterns define
function f,5,. Consider an arbitrary tree 7 and k
leaves u1,...,u. This tree with with leaves uq, ..., ux
can be reduced to some irreducible pattern P*.
This pattern P* with leaves wuj,...,u; and tree
T with leaves ui,...,ur are homeomorphic. Thus,
fory(Tour, ... ug) = fpry(P*,u1,...,ug). Since P*
is irreducible, it must be in the list P. The value
we assign to P* is fyny(P*,u1,...,u). Hence, the
function defined by the list of pattern obtained above
equals fphy. O

To prove Lemma II1.5, we need the following claim.

Claim X.2. Consider two irreducible non-isomorphic
patterns Py and P» with k leaves each labeled by
T1,...,Zk. Then, there exists a bracket predicate such
that Py satisfies this predicate, but P, does not.

Proof. We prove this claim by induction on k. For k = 1,
there is only pattern, so P; must be isomorphic to Ps.
Suppose k& > 2. Consider the left and right subtrees of P;
and P,: Pleft, prioht pleft and Pr*9"* Note that each
tree P/, P9t Pl Tand Py must be non-empty
because P; and P, are irreducible. Since P; and P, are
not isomorphic, one of the two pairs P;°/* and P;*""
or Pl and PJ"" must be non-isomorphic. Suppose
without loss of generality that P“/* and P/*9"" are non-
isomorphic. Then, we consider two cases.

LIf Pllef * contains the same set of leaves as P2lef "leg
{z3,x7,28}), then we apply the inductive hypothesis to
P/ and P)*/* and obtain the desired bracket predicate
satisfied by P/ but not PL/* . It is also satisfied by P
but not by P.

I1. Suppose now that P/*/* and PL*/* contain different
sets of variables (e.g., Plleft contains {z3,z7,xs} but
Péeft contains {z1,z7,zs}). If Plleft has a variable z;
which is not in P}*/*, and P}*/* has a variable z;; which
is not in Pllef ! then P; satisfies [x; < xg] but P, does
not. Otherwise, the set of variables in Plef ! must be a

. . left .
proper subset of variables in PQef or vice versa. Note

that if the set of variables in Pllef “isa proper subset of
variables in P./", then the set of variables in P*" is
a proper subset of variables in P.9"" In this case, let
o be a common variable in P/* and P)*, z. be a
common variable in P]:ight and P/ 2, be common
variable between P;*9"" and lee%t. We have that Py
satisfies the predicate [z, < p,x.] but P, does not.
The case when the set of variables in P2l€f " is a proper

subset of variables in P/ is handled similarly. [

Lemma IILS. Every pattern can be expressed as a
conjunction of bracket predicates.

Proof. Let P be a given (ordered, binary) tree pattern
on k leaves. We create all bracket constraints [z, <],
[€a,xp < xc], and [z, < xp,x.] that are satisfied in
P. We show that the conjunction of all these predicates
define the pattern P.

L If tree T with leaves ug, ..., u; matches pattern P
with leaves 1, ..., xg, then T must satisfy all generated
bracket constraints because P and 7' are homeomorphic
trees and reductions defined in Section III preserve the
value of every bracket predicate.

II. We now show that if 7" with leaves uq,...,u
does not match pattern P with leaves x1,...,x, then
there there is at least one pattern in the description of P
that does not match wq,...,ux in T. We reduce 1" with
leaves uq,...,u; to an irreducible tree P’ with leaves
U1, ..., ug. Leaves uy,...,uy in this tree or pattern P’
satisfy the same set of bracket predicates as in 7. By
Claim X.2, there exists a bracket predicate that is satisfied
in P but not in P’. The same predicate is not satisfied
in T

O

XI. EXAMPLE WHEN UNIFORM RANDOM
ASSIGNMENT FAILS

In Figure 10, we provide an example of a phylogenetic
predicate of 2k variables. If we use a biased random
assignment algorithm which assigns variables to the left
and right subtrees with fixed probabilities p;.r; and
Dright> then we will satisfy an exponentially small in &k
fraction of all predicates.

Instead, we should split variables with probability
50%/50% in the root r of the tree. Then, in each vertex
u in the left subtree of r, we will assign variables to
the left part with probability 1 — § and right part with
probability §. We do the opposite in the right subtree of
r. If § is sufficiently small, then the probability that we
satisfy this predicate is almost the same as the probability
that we split the variables into two equal groups in the
root, which equals (2,5) /2% = Q(1/VE).

22

XII. CONCLUSION

Here we studied a large class of problems that have
been studied in various communities that concern how
to find hierarchical representation of data, when given
as input a collection of local constraints among n data
points. Specifically, the input is a set of local information
on k items of interest (e.g., species of animals, docu-
ments, images etc.) and the goal is to aggregate it into
a global hierarchy on the whole dataset of size n that
closely agrees with the local information. The most basic
case is when the input contains triplet constraints that
give information about the relative similarity between 3
points a, b, c; such triplet queries are especially useful
in crowdsourcing, databases, metric learning, logic, and
computational biology. Furthermore, there are various
other objectives that have been studied depending on
the types of input information that is allowed and/or the
properties required of the final hierarchy. Overall, the
corresponding problems form a class of constraint satis-
faction problems (CSPs) over hierarchies, that are called
Phylogenetic CSPs and have been formally studied in the
algebraic and logic communities. We note that many of
the problems over hierarchies resemble at a high-level
analogous formulations of well-motivated problems in
the (flat) clustering and ranking literature, e.g., Correla-
tion Clustering, Maximum Acyclic Subgraph, Between-
ness etc.

Even though Phylogenetic CSPs have been studied for
more than four decades, their approximability was not
well-understood. The main result in the paper is that
Phylogenetic CSPs are approximation resistant, meaning
that they are hard-to-approximate better than a (biased)
random assignment. This generalizes previously-known
results for ordering CSPs, extends the definition of
approximation resistance (to also allow for non-uniform
randomized assignments) and it significantly augments
the list of approximation resistant predicates by pointing
to a large family of hard problems.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers
for their useful feedback. VC also thanks Mohammad
Mahdian for early discussions while interning in his
group at Google New York in 2019.

APPENDIX A
HISTORY OF THE PROBLEMS AND FURTHER RELATED
WORK

Representing data as a tree is useful across various
domains in order to describe the fine-grained relations
between items of interest, or to visualize their treelike
structure (e.g., in large networks) or the evolutionary
history, e.g., for different species in taxonomy, and in
natural languages/manuscripts in linguistics.

The problems considered here are old problems going
back to more than four decades ago, to the original
work of Aho, Sagiv, Szymanski, and Ullman (1981) [2]
who wanted to understand how to build a hierarchical
clustering given ancestry relationships for the leaves. In
their paper titled “Inferring a Tree from Lowest Common
Ancestors with an Application to the Optimization of
Relational Expression” the explain how this seemingly
unrelated problem of aggregating triplets (triplet recon-
struction) has important applications in the area of rela-
tional databases. Since then problems finding hierarchical
representations on data has been been studied in various
communities, as we summarize below:

« Databases, Logic and Algebra: Aho et al. (1981) [2]
gave the first algorithm to aggregate triplet con-
straints that finds a tree that satisfies all of them,
if such a tree exists. Interestingly, similar algorith-
mic ideas were considered by Steel (1992) [75]
motivated by applications in computational biology.
Generalizations of the Triplet and Quartet Recon-
struction problems have been intensively studied
in the Computational Logic and Algebraic com-
munities, see for example [16]-[18] and refer-
ences therein. Specifically, they study CSPs over
trees called Phylogenetic CSPs, which are infinite-
domain CSPs and they are interested in the com-
plexity of related problems. Interestingly, there are
dichotomy results for Phylogenetic CSPs similar to
the dichotomy results observed in complexity of
boolean or finite-domain CSPs [21]-[23].

Theoretical Computer Science: After the work of
Aho et al. (1981) [2], many works built on im-
proving the runtime of their algorithm using spe-
cialized data structures or studying related ques-
tions in various settings [33], [45], [55], [62], [70].
As we mentioned in the introduction, in terms
of approximability not much was known. For the
maximization version the best approximation was
achieved by the random tree and no progress had
been made. Special instances like dense instances
were studied in an early work of Jiang et al.
(1998) [54], where they gave a PTAS using tech-
niques of Arora et al. (1995) [6] on instances with
m = Q(n*) constraints. Moreover, the work of
Byrka, Guillemot, and Jansson (2010) [24] stud-
ies approximation questions for maximization and
minimization variants of triplet reconstruction and
the work of Brodal, Fagerberg, Mailund, Pedersen,
and Sand (2013) [19] gives efficient algorithms for
computing distances between trees based on how
the two trees differ with respect to triplets. Other
methods for constructing trees or comparing trees
based on quartets have also been studied in theoret-
ical computer science, for example see the works of

23

Alon, Snir, and Yuster (2014) [5]; Alon, Naves, and
Sudakov (2016) [4]; Snir and Rao (2008, 2012) [72],
[73]; Snir and Yuster (2012) [74]. Finally, the more
general CSPs over trees that we studied here with
the constraints involving more than 3 or 4 items,
have also been studied as “subtree/supertree” ag-
gregation methods [30], [49], [50].
Crowdsourcing, Metric Learning and other Machine
Learning Applications: Recall, a triplet ab|c in-
dicates that “a and b are more similar to each
other than to ¢”. For example, in Figure 1, we had
{{lion, tiger}|{tuna}}. In the context of
finding a hierarchy over the dataset, such triplets are
interpreted as “must-link-before” constraints [80],
which are the analogue of the popular “must-link”
and “cannot-link” constraints that are used in the
clustering literature [81] (notice that in HC, all
points belong in the same cluster initially, and
all points are separated at the leaves, so such
“must-link”/“cannot-link” constraints do not apply).
Triplets are especially useful in crowdsourcing and
active learning. This is because humans are notori-
ously bad at providing accurate numerical informa-
tion, but are quick and precise at comparing items
(e.g., answering questions like which pair out of
{lion, tiger, tuna} is most similar); consequently,
triplet queries (or more generally “ordinal” interac-
tions) have been used to query users for a variety
of downstream tasks like tree reconstruction or
finding non-metric embeddings (also called ordinal
embeddings) [3], [11], [32], [47], [48], [69], [77],
[78].

Taxonomy and Computational Biology: The study
of hierarchical clustering is fundamental in evolu-
tionary biology and the scientific field of Taxonomy
tries to uncover the Tree of Life based on the evo-
lutionary relationships among organisms (e.g., by
finding similar genetic patterns in their DNA) [71].
Once again, such relationships often take the form
of triplets and quartets aggregation methods [12],
[20], [34], [61], [70], [75], [76].

APPENDIX B
PROOF OF LEMMA VIII.1

In this section, we will prove Lemma VIII.1 stated in
Section VIII. We will focus on one label i. To simplify
notation, let us call all leaves having that label red. Let
T, be the subtree of T rooted at z. Also, let R(T)
and u(7,) be the number of red leaves in T, and the
fraction of red leaves in T, respectively (for a subtree
T, of depth d’, we have u(T,) = R(T,)/k?). We claim
that for a random vertex w(t) (drawn from P) and each
of its children z, the number of red leaves in 7T, is close

to R(Ty))/k on average. Below, we denote the set of
k child nodes of u(t) by child(u(t)).

Lemma B.1. For a random internal node v ~ D, we
have

1
Eu7t~7:' 7

> T

y) — M(Tu(t))” <
yechild(u(t))

< u(T)\/mngl/“m. (15)

Proof. We will assume that 7" has at least one red leaf.
Define an auxiliary probability distribution Q on the in-
ternal nodes of the tree. Pick a random red vertex v in 7.
Then, as before, pick an independent ¢ in {0,--- ,d—1}
and output v(t) (where v(0),--- ,v(d — 1),v(d) = v is
the path from the root of the tree to v). Note that in the
definition of P, we pick u uniformly among all leaves
of T but in the definition of Q, we pick v uniformly
among all red leaves of T. Thus, v(t) = « if and only
if v is a red leaf in T, and ¢t is the depth of z in tree 7.
Consequently,

|(

. R(T) 1
rte®) =ak =g g
_ R(Ty)/kY k1
- W'(W &)
w(Te)/1(T)
_ ML) r {u(t) ==z
=D oo {u(t) = o
If 4(T,) # 0, then
P fut) =) = B pr (e =al.
Thus,
Eu,t~73|: Z ’ﬂ(Ty) - N(Tu(t))ﬂ =
y€Echild(u(t))
w(T)
:Ev,t~Q{u(Tv(t)) > ‘M(Ty)_U(Tv(t))”

yechild(v(t))

w(T,
:/J(T) . E'U,tNQ |: Z () 1‘:|
yEchild(v(t)) v(t)
_ R(T,) 1
—k,U,(T) ! Ev,tNQ |: Z R(Tv(t)) - E ’:| .

y€Echild(v(t))

In the expectation above, we ignore the terms with
R(T,)) = 0 — the probability of such v(t) equals 0.
For an internal node x of T, define two distributions,
A, and B, on the set of its children child(z). The first
distribution, A, is the uniform distribution on child(x).
The second distribution, B, picks a y in child(z) with

probability proportional to the number of red leaves in
T, i.e., for y € child(z),
R(T,)

y
P =y} = .

If T, does not have any red leaves and, consequently,
R(T,) = 0, then we let B, be the uniform distribution
on child(z).

For y € child(v(t)), we have

R(T,) 1) _
yEchild(v(t)) R(Tow) &
= P Y = e Y =
’ YNArU(t){ y} YNBIrl‘y(t){ y}
y€Echild(v(t))
= 2(STV(v(t)» v(t)

where 67y (Ay 1), Byr)) is the total variation distance
between A, ;) and B,). Thus,

>

y€Echild(u(t))
< 2(T) By o 0rv (Auey Bu) |- (16)

We will now show that the total variation distance
between A, ;) and B, is small on average for a random
node v(t) with v, ¢ ~ Q This will conclude the proof of
the lemma.

1

— T,
k

Y

)= (T

<

Eu,tN’P ’,u(

Lemma B.2. As before, let u(T) = R(T)/k? be the
fraction of red leaves in tree T. Suppose pu(T) > 0. Then,
for a random internal node v(t) having distribution Q,
we have

logy /1
2d

Proof. Let v be a random red vertex in 7. Random
variable v takes R(T") different values with probability
1/R(T) each. Hence, its entropy equals

= logy R(T) = log, (k" -
= d logy k — logy 1/u.

E, o 6TV(Av(t)an(t))} <

H{(v)

w(T) a7

By the chain rule of conditional entropy, we also have

d—1
= ZH(v(i +1) [v(@)). (18)

Observe that the conditional distribution of v(i+1) given
v(i) is By(iy. Thus,
H(v(i +1) [0(i)) = Ey[H (By).

From (18), we have

dZE

= E[H(By)],

71(1

24

here t is a random number in {0,...,d — 1} and,
consequently, v(t) has distribution Q. Using (17), we
get

log, 1/p
7

We now rearrange the terms and obtain the following
bound:

Ev,th [H(Bv(t))] = 10g2 k—

E, o |logy k — H(By)] = %.

For a fixed v and ¢, the support of distribution B,,;) con-
tains at most k distinct elements (namely, the £ children
of v(t) or some subset of them). Hence, H(B,«)) <
logy k. Moreover, if H(B,«)) = logy k, then B,y is the
uniform distribution on the set of children child(v(¢)).
That is, B, ;) = Ay(r). Thus, we interpret the expression
logy k — H(B,()) as the distance between B, and
Ay p)- In fact, it is exactly equal to the Kullback-Leibler
divergence between B, ;) and A,), since

Drr(Bywy || Avry) =

>

y€Echild(v(t))

Y = -lo
{ y} g2 Pr ~By(

Pr
t) {Y = y}

YNBU(t)

1
S Pr {Y =y} -log, -
D L Br Y =uy}logp
y€Echild(v(t))
log, k
- Z Pr {Y =y}log, L .
YNBU(t) PrYNBU(t) {Y == y}

y€Echild(v(t))

H(By (1))
Therefore,

log, 1//{
d
|

Eyi~o[Drr(Bowy | Avr))] =
By Pinsker’s inequality, we have

Ev,th [5TV(Bv(t)7 Av(t))] =
_E l DBy || Avry)
— Lyt~ Q

2
< \/Ev,tNQ |:DKL(Bv(t) | Aueey)
[logy 1/
2d

2
We use Lemma B.2 to bound the right hand side of
(16) and obtain the inequality (15). O]

O

Lemma VIII.1 immediately follows from Lemma B.1:

> Y lml®) - mTuw)] <

yechild(u(t)) i=1

1
Eu,tNP |:7

25

2logy 1/pi(T)
d

\/ < \/ 2log, a
- d

The function ¢ +— ty/logy !/t is concave and

1/¢> ;i (T) = 1/q. Thus by Jensen’s inequality:

1{ 1
¢ 2 (D) logy iitr) < —/logy g
=1

APPENDIX C
TRIPLETS TO QUARTETS REDUCTION

As we have shown in the main part of the paper, Triplet
Reconstruction MAXTRIPLETS is hard-to-approximate
better than a random assignment, which achieves a
%-approximation. A very similar situation appears for
another basic problem based on arity 4 constraints:

We will need the following simple definition:

Definition C.1 (Quartet). A quartet g, denoted q
abled, is an unrooted, unordered, trivalent’ tree (see
Figure 11). tree on 4 leaves a, b, c,d (see Figure 3, 11).
An unrooted, unordered, trivalent tree T (containing
leaves a,b,c,d) is said to be consistent with ¢ (or T
satisfies q), if the path in T between a,b is disjoint with
the path in T between c, d. Otherwise, the quartet and the
tree are inconsistent with each other (or T violates q). In
general, quartets can also have weights weight(ab|cd).

The natural optimization problem associated with
Quartet Reconstruction is MAXQUARTETS:

Definition C.2 (MAXQUARTETS Problem). Given a set
X of n data points and m quartets defined on data points
from X, find the unrooted, unordered, trivalent tree T
that is consistent with as many quartets as possible (per
the definition above).

We note that in phylogenetics the problem above is
called Unrooted Quartet Consistency. In general, Quartet
methods also have a long history and are widely deployed
in computational biology [12], [34], [76]. There are
other related versions of Quartet Reconstruction (where
constraints and the output need to be rooted). All of
our hardness results also hold for the rooted quartet
reconstruction problem.

APPENDIX D
THE REDUCTION

Here we present a simple reduction from the rooted
triplets consistency problem (MAXTRIPLETS) to the pop-
ular unrooted quartets consistency problem (MAXQUAR-
TETS) that has been extensively studied [5], [54], [72],
[74]. Recall that a triplet ab|c is a rooted tree with 3
leaves a,b,c and the output is a binary rooted tree,

STrivalent is an unrooted tree where every node has degree 3, except
the leaves that have degree 1.

whereas a quartet ab|cy is an unrooted tree with 4 leaves
and the output is an unrooted trivalent tree (every internal
node has degree 3).

Claim D.1. There is an approximation-preserving reduc-
tion from MAXTRIPLETS to MAXQUARTETS.

Proof. Given an instance of MAXTRIPLETS with m
triplets ¢1,%2,...,t,, over a set L of n labels, we
create an instance of MAXQUARTETS with m quartets
q1,q2, . .-, Gmn over a set L’ of n + 1 labels as follows:

o L' = LU{~}, where ~ is a distinguished vertex to
be used in order to define quartets below.

For every triplet t; = a;b;|c; of MAXTRIPLETS,
we generate a quartet ¢; = a;b;|c;7y. Notice that
is present in all generated quartets, and ~ always
appears on the side of the “outsider” item c; for
each of the triplets a;, b;|c;. See Figure 3.

We claim that the generated quartet instance is equivalent
to the triplet instance, in the sense that any candidate
solution 7" for triplets (binary rooted tree) can be turned
into a candidate solution 7" for quartets (trivalent un-
rooted tree) that satisfies the same number of constraints,
and vice versa.

Fig. 3. The transformation of a rooted triplet ab|c to an unrooted
quartet ab|cy used in the reduction of Claim D.1.

To do so, we start with 7" and connect its root vertex
r (that has degree 2) to another newly created vertex +.
Hence the degree of r becomes 3 and -y is a leaf (since
its degree is 1). The final tree corresponds to a trivalent
unrooted tree 7”. Notice that a triplet ab|c is satisfied
by T if and only if the quartet ab|cy is satisfied by T7,
because the unique path from a to b in T is disjoint
from the unique path from c to the root r and hence
also to the special vertex . Finally, to turn any unrooted
trivalent 7" into a binary rooted 7', we simply root 7"
at the special vertex +. Then, a quartet ab|cy is satisfied
by T if and only if the triplet ab|c is satisfied by T for
the same reason as previously. O

Corollary D.2. Unrooted Quartets Consistency
(MAXQUARTETS) is approximation resistant, so it is
UGC-hard to beat the (trivial) random assignment
algorithm that achieves a %-approximation.

26

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

[21]

REFERENCES

Edward N Adams III. Consensus techniques and the comparison
of taxonomic trees. Systematic Biology, 21(4):390-397, 1972.
Alfred V. Aho, Yehoshua Sagiv, Thomas G. Szymanski, and
Jeffrey D. Ullman. Inferring a tree from lowest common ancestors
with an application to the optimization of relational expressions.
SIAM Journal on Computing, 10(3):405-421, 1981.

Noga Alon, Mihai Bddoiu, Erik D Demaine, Martin Farach-
Colton, MohammadTaghi Hajiaghayi, and Anastasios Sidiropou-
los. Ordinal embeddings of minimum relaxation: general prop-
erties, trees, and ultrametrics. ACM Transactions on Algorithms
(TALG), 4(4):1-21, 2008.

Noga Alon, Humberto Naves, and Benny Sudakov.
maximum quartet distance between phylogenetic trees.
Journal on Discrete Mathematics, 30(2):718-735, 2016.
Noga Alon, Sagi Snir, and Raphael Yuster. On the compati-
bility of quartet trees. SIAM Journal on Discrete Mathematics,
28(3):1493-1507, 2014.

Sanjeev Arora, David Karger, and Marek Karpinski. Polynomial
time approximation schemes for dense instances of np-hard
problems. In Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, pages 284-293, 1995.

Per Austrin, Siavosh Benabbas, and Avner Magen. On quadratic
threshold csps. Discrete Mathematics & Theoretical Computer
Science, 14(Discrete Algorithms), 2012.

Per Austrin and Johan Héstad. Randomly supported independence
and resistance. In Proceedings of the forty-first annual ACM
symposium on Theory of computing, pages 483-492, 2009.

Per Austrin and Elchanan Mossel. Approximation resistant pred-
icates from pairwise independence. Computational Complexity,
18(2):249-271, 2009.

Dmitrii Avdiukhin, Grigory Yaroslavtsev, Danny Vainstein, Orr
Fischer, Sauman Das, and Faraz Mirza. Tree learning: optimal
sample complexity and algorithms. In Proceedings of the AAAI
Conference on Atrtificial Intelligence, volume 37, pages 6701—
6708, 2023.

Pranjal Awasthi, Maria Balcan, and Konstantin Voevodski. Local
algorithms for interactive clustering. In International Conference
on Machine Learning, pages 550-558. PMLR, 2014.
Hans-Jiirgen Bandelt and Andreas Dress. Reconstructing the
shape of a tree from observed dissimilarity data. Advances in
applied mathematics, 7(3):309-343, 1986.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla.
clustering. Machine learning, 56:89—113, 2004.
Ziv Bar-Joseph, David K Gifford, and Tommi S Jaakkola. Fast
optimal leaf ordering for hierarchical clustering. Bioinformatics,
17(suppl_1):522-S29, 2001.

Amir Ben-Dor, Benny Chor, Dan Graur, Ron Ophir, and Dan
Pelleg. Constructing phylogenies from quartets: elucidation of
eutherian superordinal relationships. Journal of computational
Biology, 5(3):377-390, 1998.

Manuel Bodirsky. Complexity classification in infinite-domain
constraint satisfaction. arXiv preprint arXiv:1201.0856, 2012.
Manuel Bodirsky, Peter Jonsson, and Trung Van Pham. The
complexity of phylogeny constraint satisfaction problems. ACM
Transactions on Computational Logic (TOCL), 18(3):1-42, 2017.
Manuel Bodirsky and Jens K Mueller. The complexity of rooted
phylogeny problems. In Proceedings of the 13th International
Conference on Database Theory, pages 165-173, 2010.

Gerth Stglting Brodal, Rolf Fagerberg, Thomas Mailund, Chris-
tian NS Pedersen, and Andreas Sand. Efficient algorithms
for computing the triplet and quartet distance between trees of
arbitrary degree. In Proceedings of the twenty-fourth annual
ACM-SIAM symposium on Discrete algorithms, pages 1814—
1832. SIAM, 2013.

David Bryant. Building trees, hunting for trees, and comparing
trees: theory and methods in phylogenetic analysis. PhD Thesis,
1997.

Andrei A Bulatov. A dichotomy theorem for constraint satisfac-
tion problems on a 3-element set. Journal of the ACM (JACM),
53(1):66-120, 2006.

On the
SIAM

Correlation

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Andrei A Bulatov. A dichotomy theorem for nonuniform csps. In
2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 319-330. IEEE, 2017.

Andrei A Bulatov and Peter Jeavons. An algebraic approach
to multi-sorted constraints. In International Conference on
Principles and Practice of Constraint Programming, pages 183—
198. Springer, 2003.

Jaroslaw Byrka, Sylvain Guillemot, and Jesper Jansson. New
results on optimizing rooted triplets consistency. Discrete Applied
Mathematics, 158(11):1136-1147, 2010.

Moses Charikar, Venkatesan Guruswami, and Rajsekar
Manokaran. Every permutation csp of arity 3 is approximation
resistant. In 2009 24th Annual IEEE Conference on
Computational Complexity, pages 62-73. IEEE, 2009.

Moses Charikar, Konstantin Makarychev, and Yury Makarychev.
On the advantage over random for maximum acyclic subgraph.
In 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’07), pages 625-633. IEEE, 2007.

Vaggos Chatziafratis, Mohammad Mahdian, and Sara Ahmadian.
Maximizing agreements for ranking, clustering and hierarchical
clustering via max-cut. In International Conference on Artificial
Intelligence and Statistics, pages 1657-1665. PMLR, 2021.
Andrew Chester, Riccardo Dondi, and Anthony Wirth. Resolving
rooted triplet inconsistency by dissolving multigraphs. In Inter-
national Conference on Theory and Applications of Models of
Computation, pages 260-271. Springer, 2013.

Aaron Clauset, Cristopher Moore, and Mark EJ Newman. Hier-
archical structure and the prediction of missing links in networks.
Nature, 453(7191):98-101, 2008.

Anders Dessmark, Jesper Jansson, Andrzej Lingas, and Eva-
Marta Lundell. Polynomial-time algorithms for the ordered
maximum agreement subtree problem. Algorithmica, 48(3):233—
248, 2007.

Michael B Eisen, Paul T Spellman, Patrick O Brown, and David
Botstein. Cluster analysis and display of genome-wide expression
patterns. Proceedings of the National Academy of Sciences,
95(25):14863-14868, 1998.

Ehsan Emamjomeh-Zadeh and David Kempe. Adaptive hierarchi-
cal clustering using ordinal queries. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 415-429. SIAM, 2018.

Martin Farach, Teresa M Przytycka, and Mikkel Thorup. On
the agreement of many trees. Information Processing Letters,
55(6):297-301, 1995.

Joseph Felsenstein. Inferring phylogenies, volume 2. Sinauer
associates Sunderland, MA, 2004.

Richard F Geary, Rajeev Raman, and Venkatesh Raman. Succinct
ordinal trees with level-ancestor queries. ACM Transactions on
Algorithms (TALG), 2(4):510-534, 2006.

Venkatesan Guruswami, Johan Hastad, Rajsekar Manokaran,
Prasad Raghavendra, and Moses Charikar. Beating the random
ordering is hard: Every ordering csp is approximation resistant.
SIAM Journal on Computing, 40(3):878-914, 2011.

Venkatesan Guruswami and Euiwoong Lee. Complexity of
approximating csp with balance/hard constraints. In Proceedings
of the 5th conference on Innovations in theoretical computer
science, pages 439448, 2014.

Venkatesan Guruswami and Euiwoong Lee. Towards a charac-
terization of approximation resistance for symmetric csps. In
Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2015). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

Venkatesan Guruswami, Rajsekar Manokaran, and Prasad
Raghavendra. Beating the random ordering is hard: Inapprox-
imability of maximum acyclic subgraph. In 2008 49th Annual
IEEE Symposium on Foundations of Computer Science, pages
573-582. IEEE, 2008.

Gustav Hast. Beating a random assignment. In Approximation,
Randomization and Combinatorial Optimization. Algorithms and
Techniques, pages 134—145. Springer, 2005.

Johan Hastad. Some optimal inapproximability results. Journal
of the ACM (JACM), 48(4):798-859, 2001.

27

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Johan Hastad. Every 2-csp allows nontrivial approximation. In
Proceedings of the thirty-seventh Annual ACM Symposium on
Theory of Computing, pages 740-746, 2005.

Johan Hastad. On the approximation resistance of a random
predicate. In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, pages 149-163.
Springer, 2007.

Trevor Hastie, Robert Tibshirani, and Jerome H Friedman. The
elements of statistical learning: data mining, inference, and
prediction, volume 2. Springer, 2009.

Monika Rauch Henzinger, Valerie King, and Tandy Warnow. Con-
structing a tree from homeomorphic subtrees, with applications
to computational evolutionary biology. Algorithmica, 24(1):1-13,
1999.

Neng Huang and Aaron Potechin. On the approximability of
presidential type predicates. arXiv preprint arXiv:1907.04451,
2019.

Lalit Jain, Kevin G Jamieson, and Rob Nowak. Finite sample
prediction and recovery bounds for ordinal embedding. Advances
in neural information processing systems, 29, 2016.

Kevin G Jamieson and Robert D Nowak. Low-dimensional
embedding using adaptively selected ordinal data. In 2011 49th
Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 1077-1084. IEEE, 2011.

Jesper Jansson, Richard S Lemence, and Andrzej Lingas. The
complexity of inferring a minimally resolved phylogenetic su-
pertree. SIAM Journal on Computing, 41(1):272-291, 2012.
Jesper Jansson, Joseph H-K Ng, Kunihiko Sadakane, and Wing-
Kin Sung. Rooted maximum agreement supertrees. Algorithmica,
43:293-307, 2005.

Jesper Jansson, Nguyen Bao Nguyen, and Wing-Kin Sung. Al-
gorithms for combining rooted triplets into a galled phylogenetic
network. SIAM Journal on Computing, 35(5):1098-1121, 2006.
Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Ultra-
succinct representation of ordered trees. In SODA, volume 7,
pages 575-584, 2007.

Jesper Jansson, Chuanqgi Shen, and Wing-Kin Sung. Improved
algorithms for constructing consensus trees. Journal of the ACM
(JACM), 63(3):1-24, 2016.

Tao Jiang, Paul Kearney, and Ming Li. Orchestrating quartets:
approximation and data correction. In Proceedings 39th An-
nual Symposium on Foundations of Computer Science (Cat. No.
98CB36280), pages 416-425. IEEE, 1998.

Sampath Kannan, Tandy Warnow, and Shibu Yooseph. Comput-
ing the local consensus of trees. SIAM Journal on Computing,
27(6):1695-1724, 1998.

S Khot and O Regev. Vertex cover might be hard to approximate
to within 2-/spl epsiv. In I8th IEEE Annual Conference on
Computational Complexity, 2003. Proceedings., pages 379-386.
IEEE, 2003.

Subhash Khot. On the power of unique 2-prover 1-round games.
In Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pages 767775, 2002.

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan
O’Donnell. Optimal inapproximability results for max-cut and
other 2-variable csps? SIAM Journal on Computing, 37(1):319—
357, 2007.

Bernard Maurey. Construction de suites symétriques. CR Acad.
Sci. Paris Sér. AB, 288(14):A679-A681, 1979.

Assaf Naor. Concentration of measure. https://web.math.
princeton.edu/~naor/homepagefiles/ConcentrationofMeasure.pdf,
2008.

Meei Pyng Ng, Mike Steel, and Nicholas C Wormald. The
difficulty of constructing a leaf-labelled tree including or avoiding
given subtrees. Discrete Applied Mathematics, 98(3):227-235,
2000.

Meei Pyng Ng and Nicholas C Wormald. Reconstruction of
rooted trees from subtrees. Discrete applied mathematics, 69(1-
2):19-31, 1996.

Maximillian Nickel and Douwe Kiela.
for learning hierarchical representations.
information processing systems, 30, 2017.

Poincaré embeddings
Advances in neural

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

(791

[80]

[81]

[82]

[83]

Aaron Potechin. On the approximation resistance of balanced
linear threshold functions. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pages 430—
441, 2019.

Prasad Raghavendra. Optimal algorithms and inapproximability
results for every csp? In Proceedings of the fortieth annual ACM
symposium on Theory of computing, pages 245-254, 2008.
Erzsébet Ravasz and Albert-Laszl6 Barabdsi. Hierarchical orga-
nization in complex networks. Physical review E, 67(2):026112,
2003.

Sebastien Roch. Modern discrete probability: An essential toolkit.
https://people.math.wisc.edu/~roch/mdp/roch-mdp-chap4.pdf,
2022.

Michael J Sanderson, Andy Purvis, and Chris Henze. Phyloge-
netic supertrees: assembling the trees of life. Trends in Ecology
& Evolution, 13(3):105-109, 1998.

Matthew Schultz and Thorsten Joachims. Learning a distance
metric from relative comparisons. Advances in neural information
processing systems, 16, 2003.

Charles Semple and Mike Steel. A supertree method for rooted
trees. Discrete Applied Mathematics, 105(1-3):147-158, 2000.
Peter HA Sneath and Robert R Sokal. Numerical taxonomy. The
principles and practice of numerical classification. W.H. Freeman
and Company; Ist edition (January 1, 1963), 1963.

Sagi Snir and Satish Rao. Quartets maxcut: a divide and conquer
quartets algorithm. [EEE/ACM Transactions on Computational
Biology and Bioinformatics, 7(4):704-718, 2008.

Sagi Snir and Satish Rao. Quartet maxcut: a fast algorithm
for amalgamating quartet trees. Molecular phylogenetics and
evolution, 62(1):1-8, 2012.

Sagi Snir and Raphael Yuster. Reconstructing approximate phylo-
genetic trees from quartet samples. SIAM Journal on Computing,
41(6):1466-1480, 2012.

Michael Steel. The complexity of reconstructing trees from
qualitative characters and subtrees. Journal of classification,
9(1):91-116, 1992.

Korbinian Strimmer and Arndt Von Haeseler. Quartet puzzling:
a quartet maximum-likelihood method for reconstructing tree
topologies. Molecular biology and evolution, 13(7):964-969,
1996.

Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and
Adam Tauman Kalai. Adaptively learning the crowd kernel. 28th
International Conference on Machine Learning (ICML), 2011.
Yoshikazu Terada and Ulrike Luxburg. Local ordinal embedding.
In International Conference on Machine Learning, pages 847—
855. PMLR, 2014.

Roman Vershynin. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cambridge
university press, 2018.

Sharad Vikram and Sanjoy Dasgupta. Interactive bayesian hi-
erarchical clustering. In International Conference on Machine
Learning, pages 2081-2090. PMLR, 2016.

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrodl.
Constrained k-means clustering with background knowledge. In
Icml, volume 1, pages 577-584, 2001.

Joe H Ward Jr. Hierarchical grouping to optimize an objec-
tive function. Journal of the American statistical association,
58(301):236-244, 1963.

Uri Zwick. Approximation algorithms for constraint satisfaction
problems involving at most three variables per constraint. In
SODA, volume 98, pages 201-210, 1998.

28

FIGURES

AR g 1

Fig. 4. Four patterns that define the Triplets Consistency problem. These pattern can also be specified using the “square brackets notation”. First
pattern: [z1,z2 < x3] & [z1 < x2]. Second pattern: [z1,x2 < z3] & [r2 < z1]. Third pattern: [r3 < z1,x2] & [z1 < x2]. Fourth pattern:
[(Eg < 121,272] & [1'2 < (El].

DA

Fig. 5. Consider the leftmost tree P above. It is a pattern on variables x1, x2, x3. Let fj,1,, be payoff function defined by this pattern. Namely,
let fpny(a,b,c) =1, if a, b, ¢ match P; 0, otherwise. Then, f,ny(a,b,c) =1 for the tree I. However, fphy(a, b, c) = 0 for tree II, because
a and b are ordered incorrectly. Also, f,ny(a,b,c) = 0 for tree III, because a is the first node that splits from a,b, and c.

29

Fig. 6. The left tree is a pattern for the split-one-to-the-right constraint. The right tree is a pattern for the split-one-to-the-left constraint. Each
of the constraints contains all 6! permutations of variables x1, ..., z¢. So, the order in which variables split from others is not important.

Fig. 7. Binary left caterpillar with five leaves. The right child of each internal node is a leaf. Observe that triplet(a,b,c) =1if a < b < c.
For example, triplet(1,3,4) = 1.

30

Fig. 8. Binary tree T constructed based on ternary tree T'. Nodes w1, us2,us are children of u in ternary tree T'. They are leaves in the pattern
tree that consists of vertices u, =, u1, ug2, and u3. Similarly, vertices w1, w2, w3 are children of w in 7. They are leaves in the pattern tree
that consists of vertices w = us, y, wi, wa, and ws.

Fig. 9. Algorithm for constructing a coarse solution. Vertices PP; and P> are already processed by the algorithm. The algorithm is currently
processing vertex w. It assigns four labels LL,,, LR., RL,, RR, to yet unlabeled leaves in subtree rooted at w.

31

Fig. 10. This phylogenetic predicate consists of patterns obtained from the pattern above by permuting variables x1,...,xz10. The predicate
requires that at some node w variables x1,...,2z10 are split into two equal groups. The first group is assigned to the left subtree; the second
group is assigned to the right subtree. Then, the variables in the first group should satisfy the split-one-to-the-right constraint, and variables in
the second group should satisfy the splir-one-to-the-left constraint (see Figure 6).

lion .\
/‘—

tiger @

/. tuna
@

™~

@ vhale

Fig. 11. A quartet tree is the smallest informative unrooted tree used in phylogenetic reconstruction ([34], [72]). Here the quartet
{{lion, tiger},{tuna, whale}} is shown.

a . ./.c a.>.—.<.b a.\.—./.c

N

b./ @®d c ®! /@ \.b

Fig. 12. There are only 3 different (unrooted) quartet trees for items a, b, c,d. The performance of a random assignment achieves a %—
approximation, in expectation.

32

