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Radio frequency interference (RFI) in the measurements of Earth-observing radiometers is increasing over time with the
increase in frequency spectrum demand for active services [1]. RFI contamination may lead to erroneous retrieval of the
critical geophysical parameters in passive remote sensing missions. To overcome this problem, several detection and mitigation
algorithms have been proposed and implemented with only limited success in cases of weak or noise-like interference [2].
The existing algorithms can be divided into two categories based on the number of dimensions used in the detection process,
i.e., single (e.g., pulse blanking [3]) and multiple dimensions (e.g., SMAP radiometer [4]) algorithms. It should be noted
that the cumulative information from the multiple dimensions is proven to be more effective than the algorithms that rely on
a single dimension [5, 6]. Furthermore, the occurrence of RFI is diverse. Therefore, currently, there is no labeled baseline
dataset is available for RFI-contaminated data. Taking these into consideration, in this work, we have proposed the one class
support vector machine algorithm (OCSVM) to use the information from RFI-free measurements alone. Furthermore, we have
performed an extensive feature analysis to differentiate between the RFI-contaminated and RFI-free measurements.

We have performed the experiments on simulated radiometer measurements where the RFI-free measurements are con-
sidered as normally distributed. The interference signal is assumed to be pulsed sinusoidal. Since the RFI is additive, we
have added the interference signal to RFI-free measurements to create the RFI contaminated measurements. The baseband
radiometer measurements in the presence of the RFI are mathematically described in Eq. (1).
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The first term in Eq. (1) denotes the normally distributed white Gaussian noise with zero—mean and the standard deviation o,
and the second term denotes the pulsed sinusoidal interference signal. The undetermined parameters in the interference source
are the amplitude (A;), frequency (f;), and the duty cycle (d; = ). The distribution of these parameters is considered uniform
in the respective ranges. For instance, the amplitude is distributed in the minimum and the maximum ranges corresponds to the
variation of the INR from —20 dB to 10 dB. The frequency is uniformly distributed with in the bandwidth of the digital backend
of the PALS radiometer which is ranging from 15 to 35 MHz. The phase of the interference signal is uniformly varied from
zero to 2m. Finally, the width of the pulse envelope is varied in such a way that the DC of the pulse is uniformly distributed
between 1% to 100%. The starting time of the pulse at each integration time is varied randomly across the integration time
ranging from zero to 27 which corresponds to the variation in the integration time ranging from zero to 350 us. The goal is to
evaluate the performance of the proposed detection algorithm against the INR of the multi—source RFI model.

Each measurement is described by a vector of thirty—one features extracted in time (i.e., mean, variance, power, peak to
peak distance, median, average over absolute value of first differences, average over time series differences, mean of the auto-
correlation coefficient, distance, Ljung—Box (LB) test), spectral (i.e., power spectral maximum, centroid shift, spectral spread,
spectral entropy, spectral skewness, spectral kurtosis, spectral crest, spectral flatness, spectral flux), and statistical(i.e., Jarque—
Bera (JB), Lilliefors (L), Anderson—Darling (AD) tests, skewness (m3), kurtosis (my), 5 to 10 standard moments (ms — m19),
and inter quantile range (IQR)) domains. Dataset is constructed using 400 numbers of measurement vectors belonging to each
RFI-contaminated and RFI-free classes. Features are ranked based on the summation of false alarms and misdetections such
that a lower value of the summation indicates that the feature is more discriminant than the feature with a higher value. Features
with higher discriminating ability are selected to construct the proposed algorithm.
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For given dataset, the OCSVM finds the hyper—plane that separates the given RFI-free measurements from the origin of
the training data in a higher dimensional feature space. The OCSVM model is trained using the RFI-free measurements in the
dataset such that the optimal decision boundary away from the origin of the RFI free measurements is computed. The reported
values for performance metrics are five—fold cross validated. Finally, the performance of the proposed approach in each fold is
evaluated using the accuracy, precision, and recall metrics and averaged over the number of folds. Finally, we have compared
the performance of the OCSVM with the traditional RFI detection algorithms such as kurtosis detection, pulse blanking, and
kurtosis detection or pulse blanking (we will refer this algorithm as *“ OR algorithm™). Here, both kurtosis detection and pulse
blanking algorithms are implemented by threshholding in such a way that kurtosis and power values deviates from mean by
three standard deviations are detected as RFI-contaminated. OR algorithm is implemented by combining the detection outputs
of kurtosis detection and pulse blanking by logical OR operation.

Fig. 1 (a) shows the receiver operating characteristics (RoC) of the OCSVM with two features (dashed line) and additionally
introduced features using our feature selection algorithm (solid line) as a function of INR. Fig. 1 (b) shows the RoC of the
kurtosis detection (dashed line) and pulse blanking (solid line) as a function of INR. From the figure, it can be observed that
when the INR < —25 dB, OCSVM and pulse blanking act similar to an random classifier. Similarly, kurtosis detection acts as
an random classifier for INR < —5 dB.
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Fig. 1. RoC of the OCSVM (a) and the traditional RFI detection algorithms (b) as a function of INR.

For the RFI cases with INR ranges from —25 dB to —16 dB increasing the number of informative features increases the
overall performance. When the INR of the RFI is ranging from —25 dB to —16 dB, OCSVM detects more RFI—contaminated
measurements than the OR method. The results demonstrate a significant improvements over existing RFI detection techniques,
especially, for RFI contaminated cases with low INR. As future work, we plan to extend this study to include different types of
RFI signals so that new features providing a better representation of a dynamic RFI environment can be identified.
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