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1 | INTRODUCTION

Group II-nitride ultraviolet (UV) light emitting diodes (LEDs) have attained remarkable attention as a suitable and
eco-friendly light source for various applications, such as pharmaceutical applications, water and air purification, sur-
face disinfection, displays, and so forth." In the UV wavelength range, LEDs are used in a broad range of applications,
such as water purification, sterilization, chemical and bio-chemical sensing, smart sensor networks, advanced
manufacturing, and many more."* Various works on LEDs have been reported, such as InGaN LEDs used in an optical
link,” parallel flip-chip AIGaN LED whose electrical and optical characteristics display strong size dependence for com-
munication in the UV range,* and introduction of light-emitting commutating diodes (LECDs).” III-nitride materials
are capable of manufacturing lasers and LEDs,*’ but it is still difficult to get high efficiency GaN/InGaN LED. The
strong piezoelectric polarization (PZ), along the c-plane direction, induced by high lattice mismatch within GaN and
InGaN layers causes the quantum-confined Stark effect (QCSE)® which eventually causes reduction of device's effi-
ciency (EQE).”'® However the Stark effect is not preferable as it causes notable spatial separation of the carrier wave
functions.''?

From the past research, prestrained growth method plays a crucial role for improving the efficiency of GaN/InGaN
multi-quantum wells (MQWs)."* While depositing of the prestrain layers before the MQW, a tensile strain is created in
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the quantum barrier,"” thus enhancing the incorporation of large sized indium atoms. Consequently, this leads to the
reduction of QCSE.™*

Here, we have studied about strain relaxation in an electron blocking layer (EBL) free MQW LED nanowire when
we have examined the role of varying indium composition contained in the prestrained layers. The proposed LED
device consists of high indium composition and is based on silicon substrate.

The paper is structured as follows. Section 2 discusses about device structure and simulation methodology. Next, the
results are discussed in Section 3. Finally, the conclusions are provided in Section 4.

2 | DEVICE PARAMETERS AND NANO STRUCTURE

The computer-aided software Silvaco TCAD is used to study the role of prestrained InGaN interlayer in an EBL free
LED nanowire.'®

In this study, three LED nanowires are designed and their performance is scrutinized. The regular nanowire LED
(LED;) comprises of 1-um undoped GaN buffer layer grown on sapphire substrate, 1.8-pm n-AlGaN (Si doping concen-
tration: 1.5 x 10*°cm>), active region with four quantum wells (InGaN: 4nm and 20% indium) and barriers (GaN:
9nm), EBL of p-AlGaN (20 nm, Mg doping concentration: 2.5 x 10'*cm ™ and 16% aluminum), 60-nm p-AlGaN clad-
ding layer, and finally 80-nm p-GaN layer. The Shockley-Read-Hall recombination lifetime, radiative, Auger recombi-
nation coefficient, light extraction efficiency are taken as 15ns, 2.13 x 10 'cm?®/s, 2.88 x 10~ * cm®/s, and 15%,
respectively.'’

In order to obtain minimal strain and less PZ effect, we have modified the conventional device LED, by inserting
4-pairs of InGaN/GaN prestrain layer with 0.06 indium composition prior to the active region. This modified nanowire
LED is denoted as LED, in our context. However, to nullify the electron leakage affect, the EBL is now removed from
LED, and this proposed designed is represented as LED; (see Figure 1). LED; has a nominal indium composition of
0.15 in the prestrain layer.

From the energy band diagrams in Figure 2, the effective conduction band barrier height (CBBH) and valence band
barrier height (VBBH) are observed and numerical study on the three LEDs are performed. The effective CBBH at the
corresponding barrier (n) and EBL layer are denoted as @, and ®gp;, respectively. Similarly, the effective VBBH at
the corresponding barrier (n) is represented by &y,,. Each value from the energy band is listed in Tables 1 and 2. In
LED, and LED;, @, is gradually increasing with each barrier and thus prevents the overflow of electrons from jumping
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FIGURE 1 Schematic diagrams of the proposed electron blocking layer free GaN/InGaN multi-quantum well (MQW) light emitting
diode (LED) (LED3) with InGaN/GaN prestrained layer.
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FIGURE 2 Band diagram of (A) conventional LED, (B) LED,, and (C) LEDs. Electron accumulation (EA), hole depletion (HD), and
hole accumulation (HA) regions are shown in the figures.

out of the wells. Additionally, @, in LEDj is higher than LED, indicating that LED; is the suitable choice to trap the
electrons in the MQW. The high values of &y, in LED, and LED; indicate the improved hole confinement and
increased hole concentration in the active region.
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TABLE 1 Effective conduction band barrier height (CBBH) (in meV) in quantum barriers (®.,,) and electron blocking layer (EBL)
(QEBL) of LEDl, LEDz, and LED3

CBBH LED, LED, LED;
Dey 174.43 274.67 339.24
e 157.89 217.51 363.19
PDes 162.38 228.23 385.34
Des 166.46 238.19 392.93
i 342.94 524.79 -

Abbreviation: LED, light emitting diode.

TABLE 2 Effective valence band barrier height (VBBH) (in meV) of QBs (®y,,,) for LED;, LED,, and LED;.

VBBH LED,; LED, LED;
D1 89.55 145.76 212.05
Dy, 109.94 175.36 336.10
Dps 110.37 172.99 358.01
Dy 110.54 186.11 337.69

Abbreviation: LED, light emitting diode.
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FIGURE 3 External quantum efficiency (EQE) versus anode current for all the three designed light emitting diodes (LEDs).

3 | RESULTS AND DISCUSSION
3.1 | External quantum efficiency

The varying efficiencies for designed samples are shown in Figure 3. EQE can be expressed as shown below which indi-
cates a decrease of efficiency with increase in current'®:

where P, power; hy, photon energy emitted; I, injection current; and e, electronic charge. From the graph, LED; has the
maximum efficiency of 85.22% and a high efficiency of 65.43% at 40 mA. The efficiency droop of 3.848% is observed in
LED; at 40 mA. The partial strain relaxation inside the active region is primarily responsible for the enhancement of
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EQE in case of prestrain structures. As a result, there is a reduced band-edge tilt in each well and the overlap between
the carrier wave functions is improved. It means that the PZ field can be efficiently minimized by adding prestrain
interlayer inside the structure. Thus the proposed nanowire structure obtains an enhanced luminescence which can
benefit the light industry.

3.2 | Luminous power

Figure 4 illustrates the calculated optical power at 300 K for the designed LED samples. At 40 mA, LED nanowires have
their output powers as 3.12 mW, 5.74 mW, and 9.77 mW thus showing a superior power in LED; compared to the
remaining structures. Our proposed device has also obtained better optical power compared to some of the previously
mentioned studies.'®*° This enhancement in the power of LED, and LED; is due to the residual strain release, reduc-
tion of PZ and Stark effect, improvement of recombination rate and crystal quality in MQWSs, and, thus, results in
enhanced luminescence.
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FIGURE 4 Optical power of light emitting diode (LED) samples (L-I curve). Inset shows the enhanced ratio, that is, optical power of the
proposed sample (LED, and LED3) divided by regular (LED,).
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FIGURE 5 I-V characteristics of all light emitting diodes (LEDs). Inset illustrates I-V curves in a logarithmic scale. The calculated
currents at 3 V are listed in the inset.
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3.3 | I-V characteristics

I-V characteristics for the three samples of LED are shown in Figure 5. The figure depicts that the proposed LED has a
lower threshold voltage compared to the others. The heterointerface of the EBL and QW exhibits band bending in the
valence band, as seen from Figure 2A. This phenomena raises the turn-on voltage for LED; and LED, and lowers
the hole injection efficiency in the wells. In LED;, the series resistance is also reduced, showing a considerable improve-
ment in the transmission of holes.
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FIGURE 6 Carrier concentration of (A) LED,, (B) LED,, and (C) LEDs.
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3.4 | Carrier concentration

The carrier concentration of LED;, LED,, and LED; at 40 mA is illustrated in Figure 6. In presence of prestrain layers,
it indicates evident electron homogeneity because of the tilted band profile.*' The better electron confinement leads to
remarkable reduction of electron leakage into the p-region as displayed, and thus has superior carrier concentration.
Due to the absence of EBL in LED;, electrons are confined in the active region. Thus, there is minimum electron leak-
age in LED3, as shown in Figure 7.

3.5 | Recombination rate
Because of larger current densities in the active region and minimum electron leakage of LED3, it possesses larger radi-

ative recombination as shown in Figure 8. The degree of overlap between electrons and holes increases which eventu-
ally enhances the rate of radiative recombination for the proposed device LEDs.
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FIGURE 7 Electron leakage current density for all the three designed light emitting diodes (LEDs).
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FIGURE 8 Radiative recombination rate of all the three designed light emitting diodes (LEDs).
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3.6 | Power spectral density

The electroluminescence (EL) spectra of all the samples are shown in Figure 9 within a voltage range from 3 to 8 V.
The proposed structure LED; numerically accomplishes 23.8% higher peak intensity than LED, at 8 V.

For LED,, the EL spectra shows a blue-shift with decreasing bias voltage, later on toward red-shift shown in
Figure 9A. The PZ field is compensated by applied electric field hence the QCSE decreases along with a blue-shift.
When PZ field is of same value as the applied electric field, then the flat-band condition is obtained under which the PL
peak reaches the highest value. On further decreasing the bias voltage, the net electric field in the active region is
inverted and we observe a red-shift. The presence of low blue-shift is indicated in LED;. The dependency of energy
band-gap on temperature is demonstrated by using Varshni's formula as follows:

oT?
Eg = Eg(1—ox) TTp
where « and f are fitting parameters, also known as Varshni's parameters.>* This equation signifies a decrease of energy
band gap with rising temperature, hence the overall emission wavelength shifts to a higher value. This is the reason
due to which the overall emission shifts to a longer value with increase in temperature. According to Varshni's law, the
increase in temperature leads to a narrow energy band gap of QW.?* Initially the wavelength shifts toward a lower
value with increase in current, termed as blue-shift, which is caused due to the screening effect. However, with further
increase in current, the wavelength shifts to a longer value known as red-shift. This is caused by thermal effect formed
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FIGURE 9 Room temperature electroluminescence (EL) spectra of (A) LED, and (B) LED; as a function of applied bias voltage.
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FIGURE 10 Emission wavelengths as a function of injection currents for all the three designed light emitting diodes (LEDs).

TABLE 3 Optimized performance parameters of the proposed structure.

Parameters LED, LED, LED,
Electron concentration (cm™>) at 2nd QW 4.86 x 108 7.754 x 108 5.95 x 10%°
Hole concentration (cm™>) at 2nd QW 5.93 x 10'® 8.064 x 10'® 6.591 x 10'°
EQE (%) at 40 mA 20.95 38.16 65.43

Droop (%) 29.56 9.306 3.848

Power (mW) 3.12 5.74 9.77
Current density (A/cm?) 9.26 7.24 10.3
Recombination rate at 2nd QW (cm 3 s™%) 16.3 x 10* 32.7 x 10%° 51.1 x 10%°

Abbreviations: LED, light emitting diode; QW, quantum well.

by parasitic resistances at which there is a transition from blue toward red shift, drawn out from the dotted lines of
Figure 10. It can be noticed that the conventional LED has larger slope than ones with prestrain interlayer. The cur-
rents during the transition of wavelength of LED;, LED,, and LED; are 42.3, 39.9, and 33.5 mA, respectively at room
temperature which indicates a strong PZ field in LED;. Hence, it will require more injection carrier, that is, higher cur-
rent to fulfill QSCE screening with the active region.

Finally, the calculated parameters of the conventional and proposed LED nanowires are listed in Table 3. Thus, our
work presents a method to show the comparison of electrical and optical parameters within the MQW region of EBL
free InGaN LED and how it has been affected with varying indium composition in the InGaN/GaN prestrained layers.

4 | CONCLUSION

The impact of prestrained layer on the device parameters of an EBL free GaN/InGaN LED is investigated. In the pro-
posed device the strain is more relaxed as compared to LED,. It indicates poor QSCE in LEDj; and thus obtains a higher
efficiency of 65.43% at an injection current of 40 mA and weaker efficiency droop of 3.848%. At constant bias of 8 V,
LEDj; accomplishes 23.8% higher output power than LED,. The radiative recombination rates are higher with the pres-
trained interlayer. Also, the wavelength-current measurement shows that the proposed device LED; has low blue-shift
compared to the remaining structures. Therefore, a higher PZ field has to be effectively screened while inserting enough
carriers. The proposed device has a huge contribution toward strain release and minimizes QCSE which leads to
enhanced luminescence.
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