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ABSTRACT
Despite signi�cant advances in machine learning (ML) applications
within science, there is a notable gap in its integration into K-12
education to enhance data literacy and scienti�c inquiry (SI) skills.
To address this gap, we enable K-12 teachers with limited technical
expertise to apply ML for pattern discovery and explore how ML
can empower educators in teaching SI. We design a web-based tool,
ML4SI, for teachers to create ML-supported SI learning activities.
This tool can also facilitate collecting data about the interaction
between ML techniques and SI learning. A pilot study with three
K-12 teachers provides insights to prepare the next generation for
the era of big data through ML-supported SI learning.
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1 INTRODUCTION
Machine Learning (ML) has become a powerful tool for scienti�c
discovery, enabling new problem-solving approaches in several
scienti�c disciplines [2, 24, 35, 37]. Techniques such as cluster-
ing and classi�cation uncover patterns in large datasets that were
previously intractable, accelerating data-driven knowledge discov-
ery [6, 16, 51]. Scienti�c inquiry (SI) learning advocates for K-12
students to adopt practices akin to professional scientists for knowl-
edge construction [25]. In the era of big data and ML, it is therefore
important to explore the design of ML-supported SI activities for
K-12 STEM education [34]. The aspiration is to cultivate authentic
data and computational literacy at an early age, thereby equipping
the next generation with the expertise needed in a data-centric
world [49].

There remains a gap between ML concepts and K-12 STEM ped-
agogy [20, 45, 57]. To bridge the gap with meaningful learning
experiences for students from diverse backgrounds, it is crucial
to involve K-12 teachers in creating learning activities [30, 38, 54].
Teachers, however, often have limited ML expertise [30, 44] to craft
pedagogically sound ML practices that captivate students’ inter-
ests [31, 45]. To address these challenges, our ongoing work makes
two contributions:

(1) We present ML4SI, a web-based tool for K-12 teachers to
design ML-supported SI learning activities. It allows teachers
to construct learning activities by arranging pre-designed
ML & SI components in a side-by-side layout.

(2) With the data collected from ML4SI, we can model how K-
12 teachers and students apply di�erent ML methods
along with various SI behaviors, such as questioning and
formulating hypotheses [34].

Preliminary �ndings from a pilot study with three K-12 teachers
suggest strengths and opportunities for design for ML4SI, and a po-
tential interplay between ML techniques and SI learning behaviors.
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2 RELATEDWORK
2.1 Design Guidelines for End-User

Programming Environments
Various guidelines and frameworks have been proposed for design-
ing programming environments to support non-expert end-users
[4]. The cognitive dimensions of notations [18], for instance, pro-
vide a vocabulary by which notation designers can discuss the trade-
o�s made by design choices. These dimensions provide insights into
the user interface’s navigability, consistency, and error-proneness,
making them a valuable tool for assessing and improving the design
of systems intended for non-programmers. Building upon these
dimensions, Repenning and Ioannidou’s 13 design guidelines are
more implementation-focused [36]. For instance, strategies like
minimizing the possibility of syntactic errors, incorporating objects
as language elements, and fostering incremental development are
directly applicable during the design phase, ensuring a more ac-
cessible and intuitive user experience. Sarkar [39] proposes four
design principles for non-expert data analysis through ML: (1) start
the abstraction gradient at zero, (2) abstract complex processes
through heuristic automation, (3) build expertise through iteration
on multiple representations, and (4) support dialogue through meta-
models. These design dimensions and guidelines o�er insights into
the ML4SI interface and our pilot study with K-12 teachers.

2.2 Inquiry-Based Learning
Inquiry-based learning serves as an educational approach designed
to engage students in authentic SI practices [25]. It emphasizes
students’ active engagement in the SI learning process and their re-
sponsibility for uncovering novel knowledge through a dual process
of inductive and deductive reasoning [9, 50].

In ML4SI, we adopt a well-recognized framework for inquiry-
based learning [34] to extract the essential SI learning behaviors.
From the �ve key SI learning phases, we primarily focus on concep-
tualization, investigation, and conclusion—since they have a direct
connection with data.

Conceptualization illustrates the process where students actively
propose research questions to be explored or hypotheses to be
tested. Investigation is where students investigate research ques-
tions or hypotheses through exploration, experimentation, analysis,
and data interpretation—exploration emphasizes exploratory data
analysis and observation in which students make discoveries related
to their questions without a predetermined hypothesis; students,
during experimentation, test speci�c hypotheses by designing and
executing experiments; analysis is systematically analyzing data to
identify patterns and draw meaningful inferences; data interpreta-
tion derives meanings from patterns revealed by data analysis. Con-
clusion is where students address their original research questions
or hypotheses and determine whether they have been e�ectively
answered or supported by the results obtained from their study.

2.3 ML-Supported Scienti�c Inquiry
ML techniques, known for their ability to learn from experience and
identify complex patterns within data, have been rapidly adopted by
scientists across various disciplines in the pursuit of SI [1–3, 35, 37].
ML equips scientists with a powerful toolkit for automating the

analysis of large datasets, accelerating systematic investigations
and explorations [16, 32], and uncovering novel patterns that are
often hidden from conventional techniques [5]. Moreover, it can
guide the design of experiments and shape future data collection
strategies [27].

Despite the demonstrated potential of ML in SI, its integration
into K-12 STEM education has been slow. Two pioneering stud-
ies shed light on this matter. One study observed early signs of
SI learning behaviors, such as questioning and explaining, from
students during a hands-on data analysis experience that teaches K-
means clustering [46]. Another study used a prede�ned SI model to
guide K-12 teachers to create conceptual designs of ML-supported
SI learning activities [44, 55]. However, the structured nature of the
prede�ned model hindered the �delity of the designs in real-world
teaching scenarios, compared with an authentic ML tool.

To address this research gap, we develop ML4SI, an authoring
tool that provides teachers with �exibility in integrating ML into SI
practices, focusing on two ML algorithms: K-means clustering and
K-nearest neighbors (KNN). K-means clustering, an unsupervised
ML algorithm, is employed to discover patterns among similar
objects and create taxonomies [13, 14, 47], making it suitable for
exploratory data analysis [5]. K-nearest neighbors, a supervised
ML algorithm for the classi�cation task, with its primary objective
being to predict the class of a data point based on known examples.

2.4 Multidimensional Data Visualization
The interpretability of ML-revealed patterns is a signi�cant concern,
particularly for K-12 teachers and students with limited skills in
reading and interpreting multidimensional data [14, 29, 41].

There are two main types of multidimensional data visualization:
geometric methods and iconographic displays [12]. Geometric meth-
ods portray multidimensional data using the axes of selected shapes
[12]. Parallel coordinates, a widely-used geometric method [12, 22],
represent attributes by parallel vertical axes linearly scaled within
respective data ranges and depict each data point by a polygonal line
that intersects each axis at the corresponding value. Iconographic
displays, also known as glyphs, encode attributes and values into
visual features, such as size, shape, and color [12, 48]. It makes mul-
tidimensional information more accessible, particularly for novice
learners, compared with geometric methods [12, 48]. Face glyphs,
star glyphs, and pro�le glyphs are three common glyph methods
[7, 11, 12]. Face glyphs map attributes and values to facial features,
such as eye size and nose width [8]. Star glyphs represent attributes
as spokes of a circular wheel, with values encoded by the length
from outer points to a central point [15, 48]. Pro�le glyphs use
linear position/length to encode values [7, 11].

Each aforementioned visualization technique o�ers distinct ad-
vantages for multidimensional data analysis. For example, parallel
coordinates are particularly e�ective for discerning data distribu-
tion and functional dependencies [52]. Face glyphs leverage human
familiarity with facial elements, facilitating more e�ective data in-
tegration and stimulating greater interest in engaging with data
analysis [8, 23, 28]. Star glyphs and pro�le glyphs resemble con-
ventional visualization tools familiar to K-12 students, such as pie
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graphs and bar charts. We incorporate di�erent forms of visual-
izations into ML4SI, allowing teachers to decide the most suitable
visualization for speci�c inquiry activities based on their expertise.

3 ML4SI
3.1 Design Guidelines
We leverage design implications derived from a co-design study
with K-12 teachers [44, 56] and existing design guidelines for end-
user programming environments [4, 36] for developing ML4SI.

First, “abstraction gradient” assesses how the tool abstracts com-
plex ML processes into user-friendly interfaces. ML4SI simpli�es
ML algorithms like K-means clustering into drag-and-drop com-
ponents (Section 3.2.1), making advanced data analysis accessible
to teachers with limited ML expertise. Second, “closeness of map-
ping” evaluates how well the tool’s interface corresponds to the
real-world tasks of K-12 teachers. Our system’s side-by-side lay-
out of ML and SI components (Section 3.2.2) mirrors the natural
work�ow of teachers planning and executing lessons, thus align-
ing closely with their educational objectives and problem-solving
domain. Third, to support non-experts’ incremental development of
ML-supported analysis, ML4SI enables teachers to easily customize
input for individual ML components (Section 3.2.4) and execute
before the completion of the entire process. Such step-by-step cre-
ation with ML components that gradually reveal the computational
complexity (Section 3.2.1) avoids huge leaps in the challenge for
novices. Finally, ML4SI allows immersion. Teachers are immersed in
ML-supported tasks and actively experience the results through di-
rectly dragging & dropping data features onto glyph visual features
(Fig. 1.2, left column) along with real-time updates of results in the
consecutive steps (Section 3.2.5). Glyph visualizations (Section 3.2.3)
also have unique learning bene�ts for end users by a�ording direct
manipulation and interaction with multidimensional data points.

3.2 Design Features, By Example
Jeremy, a middle-school biology teacher, aims to demonstrate the
dynamic interactions between various ecological features. His ob-
jective is to create an SI learning activity for students to uncover re-
lationships among temperature, precipitation, canopy height, mam-
mal richness, and beetle richness. This task involves applying ML
algorithms to a multidimensional dataset gathered from extensive
�eld sites. Despite his high motivation, Jeremy has not yet acquired
su�cient expertise in ML to construct an e�ective lesson for his stu-
dents. ML4SI is designed to assist teachers like Jeremy in realizing
such educational objectives.

3.2.1 Drag & Drop Blocks to Initiate ML/SI Components. The top
bar of ML4SI has draggable components (Fig. 1.1). When Jeremy
drags and dropsML/SI components into themainworkspace (Fig. 1.2),
the corresponding ML methods or SI behaviors are initiated. This
enables Jeremy to begin exploring the dataset, interpreting patterns,
and creating speci�c steps in the learning activity.

ML components (Fig. 1.1, left column) allow the application of
ML techniques. For example, the pairwise comparison component
computes the similarity between two data points. Manual clustering

[46] reveals patterns in a subset by allowing users to manually over-
lay glyphs for similarity comparison through superposition com-
parative visualization [17]. Automatic clustering applies k-means
clustering on input data and visualizes the clusters. Prediction with
classi�ers guides users to predict unlabeled data with KNN and
evaluate the prediction result.

SI components (Fig. 1.1, right column) represent established SI
learning behaviors (e.g., questioning, hypothesis generation, data
analysis, conclusions) [34] as introduced in Section 2.2. Since inquiry-
based learning is self-directed, students may encounter challenges
in the learning process if they lack the necessary self-regulation
skills [53]. ML4SI therefore includes an instruction component that
teachers can use to create sca�olds to keep students metacogni-
tively, motivationally, and behaviorally engaged.

3.2.2 Side-by-Side Layout. This layout re�ects the visual presenta-
tion of the �nal design (Fig. 1.2). Users are able to add, reorder, and
remove individual or pairs of ML and SI components to tailor the
learning design. Jeremy experiments with di�erent pairs of ML and
SI components, by considering which ML components would best
support a particular SI learning behavior, or which SI behaviors
students are most likely to demonstrate while analyzing with a
speci�c ML technique.

3.2.3 Data Visualization Selection for Individual ML Components.
Jeremy can select from multiple data visualizations for each ML
component (Fig. 1.3). The choice of visualization in one component
does not a�ect the others, allowing for independent selection across
di�erent inquiry phases. More visualization options can be added
for di�erent ML techniques.

For instance, Jeremymight opt for face glyphs in early data explo-
ration to spark students’ interest in the intriguing patterns revealed
by the “smileys”. Later, he could switch to parallel coordinates for
his students to examine more detailed numerical patterns.

3.2.4 Input and Output for Individual ML Components. In each ML
component, Jeremy can input di�erent data, ranging from the entire
dataset to a cluster formed by a previous clustering component,
or a manually selected subset (Fig. 2.1 & 2.4). Additionally, Jeremy
can save the outputs of ML components. For instance, he might
preserve the clusters created by K-means clustering (Fig. 2.2 & 2.3)
for another round of clustering.

3.2.5 Real-Time Updates for Feature Selection. In feature selection
(Fig. 1.2, left column), any edits also trigger updates of subsequent
ML components. For example, Jeremy creates parallel coordinates
using all �ve data features from a �ve-dimensional dataset, fol-
lowed by automatic clustering. Clusters will then be generated
out of the �ve-dimensional data. Through cluster analysis, Jeremy
discovers that there are still large variations in the last data fea-
ture “mammal richness” in all clusters (Fig. 2.2). He hypothesizes
that this is not an important feature for clustering. He tests this
by removing the feature in the feature selection, and the change is
immediately re�ected in the clustering results. This allows users to
re�ne their hypotheses and explore the impact of feature selection
on ML outputs, encouraging experimentation and trial & error.
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Figure 1: (1) Draggable blocks to initiate ML & SI components; (2) Side-by-side layout for adding and designing ML (e.g.,
feature selection) and SI components (e.g., questioning); (3) A drop-down list to select a visualization method for a speci�c ML
component from the options provided.

Figure 2: (1) Select the entire dataset as the input for k-means clustering; (2) visualize the clustering results with parallel
coordinates; (3) click the button to save the clusters; (4) the input window is updated after the new clusters are saved from
k-means clustering.

4 PILOT STUDY
4.1 Participants
As an initial investigation, we invited three K-12 STEM teachers
(Table 1) to try ML4SI. We wished to evaluate ML4SI with K-12
teachers in a co-design setting for three reasons: (1) teachers’ exper-
tise is crucial due to the limited pedagogical theories on integrating
ML methods into K-12 scienti�c inquiry [44, 45]; (2) teachers often
underestimate their ability to teach with ML, leading to low self-
e�cacy; adequate support can mitigate this issue [21, 26, 30, 43];
and (3) involving teachers and ML experts helps balance between
user-centered and learner-centered methodologies; teachers can
engage with complex data and uncover meaningful patterns with
the support of experts [10, 19].

4.2 Study Procedure
The pilot study consists of two two-hour sessions. The study was
approved by the institutional Research Subjects Review Board.

Session 1: Teacher-as-Learner. Teachers familiarised themselves
with the ML4SI interface by analyzing an example dataset under
researcher guidance, including (1) di�erent data visualizations, (2)
ML components, (3) SI components, and (4) the �ow of designing
the learning activity in ML4SI. Participants asked questions and
provided feedback after interacting with each ML/SI component. At
the end of the �rst session, the teacher and the researcher discussed

the types of datasets or learning activities the teacher wished to
create during the second session.

A minimum of two days separated the �rst and second sessions.
In this interval, either the researcher or the participant acquired a
new dataset as per the discussion in the �rst session. The researcher
pre-processed the new dataset by eliminating data points with
missing values and non-numeric features. This ensured the dataset’s
compatibility with the ML algorithms implemented in ML4SI.

Session 2: Teacher-as-Designer. Teachers explored the dataset of
their choice with ML4SI. A researcher and an ML expert provided
facilitation when needed. Teachers asked questions that interested
them at each step, answered the inquiries based on the data visual-
ization, and planned subsequent actions. Following each step, the
researcher prompted teachers to consider any necessary adjust-
ments to the pairing of ML and SI components. Upon completion,
teachers were asked to review their process and contemplate mod-
i�cations to the learning activity they created. Finally, teachers
provided feedback on the system design.

4.3 Initial Data Collection and Analysis
We collect video recordings of the study sessions and the log data of
teachers’ interaction behaviors with ML4SI. We had two aims. First,
to investigate the analysis process of teachers applyingMLmethods
to explore the datasets of their interest. Second, to understand how
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Table 1: Demographics of study participants.

PID Gender Teaching Grade(s) Teaching Subject(s) Years of Teaching

P1 Female High school Algebra and AP Statistics 16 years
P2 Female Middle & high school Computer Science, Business Technology 5 years
P3 Male High school Math, Science 8 years

di�erent ML components support di�erent SI behaviors in the �nal
designed learning activity.

5 PRELIMINARY RESULTS
5.1 An Example Lesson Created in Our Pilot
This section describes a lesson designed by P2, a CS teacher in a
city school where students have low digital literacy and are from
underrepresented backgrounds in STEM. The learning objective is
to investigate what impacts a person’s income level. The essential
question for students to answer in the end is how college and career
planning in high school a�ect your life.

First, P2 began with introducing students to the key concepts in-
volved in the dataset by viewing data attributes’ de�nitions. Second,
P2 guided students to select speci�c data attributes - working hours,
age, gender, and education level - aligning with the target learning
objective. Third, P2 asked students to compare income predictions,
aiming to inspire students to question: “why some individuals are
predicted to have high income and others low?” After applying
KNN a few times, she hypothesized positive correlations between
higher education, longer working hours, and higher income. P2
expected her students would be able to achieve the same SI learning
behavior while interacting with KNN. Fourth, P2 directed students
to validate initial hypotheses with the patterns revealed by applying
k-means clustering on the entire dataset. P2 discovered trends that
clusters with high incomes have higher education, longer working
hours, and medium ages, while the low-income cluster has lower
education and fewer working hours (Fig. 3). Lastly, P2 added a step
for students to answer the essential question by contextualizing the
patterns in social, economic, and literacy development domains.

5.2 Feedback from K-12 STEM Teachers
A structured and �exible way to create SI learning activities. All

teachers appreciated how the side-by-side layout a�ords a struc-
tured way of conducting the open-ended exploration and iterating
the SI learning design after re�ection. Edit-triggered updates of fea-
ture selection and the ability to investigate any data subset helped
teachers experiment with ideas, and zoom in and out on di�erent
parts of the data. This enabled a deeper understanding of the pat-
terns and the ML algorithms through trial & error. After reviewing
their analysis process, teachers tended to create the �nal design to
incrementally build up the complexity of hypotheses, in an attempt
to sca�old for students to apprehend the challenges of iterating hy-
potheses with di�erent analysis methods applied to di�erent data.
Furthermore, teachers recognized ML4SI’s adaptability to incorpo-
rate existing teaching techniques, such as the graphic organizer, the
Three-Two-One technique (i.e., identify three interesting observa-
tions, ask two questions, raise one potential solution), self-directed
learning for small group activities, etc.

Integrating ML literacy into K-12 STEM contexts. All teachers
noted close connections between ML practices to K-12 science
objectives, data/computational literacy, and digital �uency required
by K-12 curriculum standards [33, 40, 42]. For example, comparing
the classi�cation results with the ground truth and tinkering with
the ML parameter supports the development of debugging skills.
Visualizations can make a range of patterns accessible for children
to analyze, such as intra-cluster patterns, outliers, variations, etc.
One math teacher pointed out that analyzing centroid, intra-cluster
similarity, and variation can create the opportunity for his students
to discuss the issues of using the average to represent a group of
data points with a large variation. Participants suggested a range of
K-12 STEM topics that can be taught with ML4SI, including career
readiness, nutrition, college applications, data-driven strategy for
football drafting, digital citizenship, bias and privacy issues in data,
AI recommendation systems, etc.

Introducing automated assistance. We noted opportunities for
adding intelligent assistance. One teacher suggested that students’
hypothesis generation and iteration can be automatically identi�ed,
extracted, and tracked throughout the analysis, and thus, sca�olding
can be personalized for di�erent learners at di�erent SI phases. After
manually selecting a few data points of his interest as the input
for manual clustering, one teacher suggested having the system
suggest input for an ML component to generate the optimal or
insightful results, based on the existing steps.

Opening the “black box”. Teachers asked for more technical de-
tails underlying the clustering and classi�cation algorithms, and
more advanced statistical information about the data. For example,
beyond learning about how KNN predicts an unknown value for a
data point based on its nearest neighbors, one teacher was also cu-
rious about how to improve the labeled data to increase prediction
accuracy. Another teacher requested a more advanced and detailed
statistical summary for a speci�c cluster.

Bene�ts and Limitations of Glyphs. Glyphs encode data at the
level of individual data points, as opposed to chart types that ag-
gregate data (e.g., bar charts). Teachers identi�ed glyphs’ unique
bene�t in directly visualizing individual data points for students to
manipulate and reason with, such as (1) the representation and cal-
culation of centroid, (2) the relationship between average, variation,
and individual values in a data group, (3) how global patterns such
as trends and correlations emerge from individual data points, and
(4) the algorithmic mechanism underlying KNN. This builds upon
Sarkar’s design principle of directly representing individual data
points for non-experts doing data analysis through ML, i.e., starting
the abstraction gradient at “zero” [39]. With the aforementioned
bene�ts of using glyphs for data exploration in K-12 classrooms,
it is important to note that the scalability of glyphs is limited by
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Figure 3: The pair of the ML and SI components (automatic clustering and data analysis) designed by P2 for high-school students
to investigate factors that impact a person’s income level.

the number of data features and the quantity of data points to be
visualized.

A�ordances of di�erent visualizations. Teachers appreciated the
ability to choose from multiple visualization types. Two teachers
whose students have lower data and computational literacy pre-
ferred face glyphs, compared to the traditional graphs introduced
in K-12 classrooms. They suggested that face glyphs could engage
students who are not pro�cient in reading data graphs. Teachers em-
phasized that if there are positive or negative implications behind
some data attributes, face glyphs can establish semantic meaning
between the visual representation and the patterns, and thus pro-
mote students’ analysis. One teacher envisioned that his students
might tell a compelling story about how to win baseball games by
interpreting the patterns visualized in happy faces.

6 CONCLUSIONS AND FUTUREWORK
The preliminary �ndings indicate that the integration of ML into
K-12 education can serve as an opportunity to enhance data literacy
and SI skills for young students. ML4SI is a step towards bridging
the gap between advanced ML tools and their use in K-12 STEM
classrooms, and demystifying ML. Furthermore, the positive feed-
back and synergy observed between ML elements and SI learning
behaviors suggest that our approach to designing ML-supported SI
activities shows potential.

Future research will involve more detailed evaluations of ML4SI
with teachers and ML experts. Iterative design improvements will
be made based on ongoing feedback collection, with an emphasis
on enhancing the user experience and enhancing the integration
with educational contexts.

Another essential next step is to analyze the patterns of how
teachers and students utilize di�erent ML methods along with
SI behaviors. This may involve network analysis, lag sequential
analysis, and frequent pattern mining.

We also plan to assess the e�ects of ML-supported SI learning
activities designed by teachers, on students’ engagement and de-
velopment of data/computational literacy. Future work may also
analyze the long-term e�ects of integrating ML into K-12 education,
including tracking the development of student’s critical thinking

and problem-solving skills over time, as well as their readiness for
advanced studies or careers in data-driven �elds.
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