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Abstract: Machine Learning (ML) opens exciting scientific opportunities in K-12 STEM
classrooms. However, students struggle with interpreting ML patterns due to limited data
literacy. Face glyphs offer unique benefit by leveraging our brain’s facial feature processing.
Yet, they have limitations like lacking contextual information and data biases. To address this,
we created three enhanced face glyph visualizations: feature-independent and feature-aligned
range views, and the sequential feature inspector. In a study with 25 high school students,
feature-aligned range visualization helped contextual analysis, and the sequential feature
inspector reduced missing data risks. Face glyphs also benefit the global interpretation of data.

Introduction

Similar to how microscopes reveal the micro world, 21st-century learners can use machine learning (ML) to
uncover hidden patterns in multidimensional scientific data. This data-driven discovery aligns with K-12 science
practices and crosscutting concepts learning (NGSS, 2013). However, children face challenges in understanding
ML patterns due to limited ML knowledge. Exploring multidimensional data globally, rather than focusing on
individual attributes, remains a hurdle for K-12 learners (Ben-Zvi & Arcavi, 2001). Face glyphs visually map
individual attributes to facial features, like eye radius (Chernoff, 1973). They offer unique benefits for children
analyzing ML-revealed patterns due to how our brains process facial features and glyphs’ affordance for
superposition comparison & direct manipulation. However, face glyphs have two main limitations. First, they
often lack an obvious connection between visual features and data context (attribute and value range). To address
this, we propose feature-aligned face scales and feature-independent bar scales. Second, distinct facial features
may lead to attention biases toward different data attributes. To mitigate this, we designed a dial gadget based on
guided search theory (Healey & Enns, 2012), forcing students to explore all facial features sequentially. We
evaluated these enhanced face glyphs against a segment-style star glyph with 25 high school students.

Theoretical framework

Existing research demonstrated that children have the potential to apply basic ML methods to discover scientific
knowledge from ML-revealed multidimensional patterns (Wan et al., 2020). We chose k-means clustering to mine
the patterns for students to analyze for two reasons. First, cluster analysis is widely used in the science community
to reveal knowledge (Romesburg, 2004), and thus offer diverse curriculum-aligned contexts. Second, k-means
clustering, with its focus on multidimensional data, similarity computation, and centroids, serves as a foundational
ML concept. This knowledge can transfer to other ML methods.

Challenges in supporting global interpretation of patterns revealed by ML. This involves identifying,
describing, and explaining multidimensional patterns and trends (Ben-Zvi & Arcavi, 2001). It is challenging for
children to understand multiple factors that jointly affect an outcome (Kuhn et al., 2015), and to read data graphs
and tables (Shah & Hoeffner, 2002). Glyphs encode multiple attributes with visual features accessible to novice
learners (Ward, 2015) and utilize perceptual organization principles to assist efficient information processing.

Unique benefits afforded by face glyph to tackle the challenges. First, visualization of faces is particularly
attractive to children (Ryokai et al., 2012). Being fun and unusual, face glyphs may stimulate low-performance
students’ self-efficacy and intrinsic enjoyment (Moyer, 2001). Second, with the human brain’s special processing
of facial features, children may process global patterns in an accessible way, potentially better than adults
(Tsurusawa et al., 2008). Third, face glyphs outperformed other iconic glyphs (e.g., stars) in similarity comparison
(Wilkinson, 1982), which is fundamental in ML-supported pattern mining. However, face glyphs have two major
limitations. First, the context of data attributes and values, which is critical for data-driven scientific inquiry
(Valero-Mora & Ledesma, 2011), is absent from existing iconic glyphs. Second, it is critical to have a global view
of multidimensional data without missing any interesting attributes, especially for exploratory analysis. Glyphs
might cause biases in recognizing attributes--people pay more attention to eyes than noses (Ward et al., 2015).

Integrate context information. Little effort has been spent on integrating the dataset value context (i.e.,
the data range) into face glyphs. The superposition comparative visualization approach is efficient in minimizing
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attention switches in data analysis during exploratory visual analysis. This suggests a feature-aligned
visualization--displaying data range by the same graphical mark (Thompson et al., 2021). When learners interact
with the same graphical marks, there is no attention switch from facial features to another visual form. This leads
to one less step than using a different graphical feature.

Support less biased feature inspection. To support a less biased visual search of identifying features of
interest in glyphs, we utilize the guided search theory, which decomposes visual search into bottom-up and top-
down activation processes (Healey & Enns, 2012). Bottom-up activation measures the differences between a
visual element and its neighbors, while top-down activation is driven by users intentionally searching for the
visual information needed. The theory hypothesized that the attention will be drawn to peaks in the image area
with the largest combination of bottom-up and top-down activation. This suggests an interactive element guiding
learners to sequentially distribute their attention across different attributes more equally. Sequential guidance of
learners’ attention may also reduce cognitive load during analysis. Fixed-order inspection reduced the working
memory needed for what features they have already considered previously (Shneiderman et al., 2016).

Figure 1
Face glyph design elements and the segment-style star glyph. B
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Figure 2
Cluster analysis of an ecosystem dataset with (a) face glyphs and (b) star glyphs.
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Glyph design for global interpretation of data

Face Glyph Enhancements

To encode data attributes, we selected facial features including eyebrow slant degree, eye radius, cheek size,
mouth curvature, and nose width (Fig. 1). In the overlay view for a group of data, face glyphs turn semi-transparent
and are stacked together. Learners utilize color saturation, and contour thickness (i.e., facial feature variation) to
analyze the value range and distribution of a certain group of data (Fig. 2).

Two scale designs for range visualization. First, face scales provide feature-aligned range visualization
(Fig. 1 Face scale). Once it is activated by cursor hovering (Fig. 1.b) or by a dial gadget (Fig. 1.c), the data attribute
and value range are highlighted. Second, displaying bar scales off glyphs supports the overview + detail scheme
(Cockburn et al., 2009). Learners first form an overview of patterns and then look into the details. As feature-
independent, bar scales will pop up when learners hover their cursor over individual facial features (Fig. 1.a).

A dial gadget as the sequential feature inspector. This forces learners to browse all the data attributes in
sequential order. This element looks like a clock hand and triggers the context information (data attribute and
range visualization). When the dial is dragged over a certain facial feature (e.g., cheek size), the context
information will be triggered on the glyph. When a learner needs more detailed information to analyze a certain
data attribute, they need to drag the dial to scan through all the rest of the data attributes. This could mitigate
people’s potential attention differences across different facial features. The dial aims to guide learners away from
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fixating on a single glyph feature and to reduce biases in analysis. By providing a mechanism for sequentially
exploring different attributes, the dial design encourages learners to take a more holistic view of the data.

Star glyph design for comparison

Star glyphs, commonly compared with face glyphs in empirical studies, mainly encode the value either as a line
length or as a segment length. Star glyphs carry no extra distracting semantic meanings and are closer to
conventional charts in K-12, such as bar charts and pie charts. We chose segment style (Fig. 1.d) as it also supports
superposition comparative visualization (Fig. 2.b). To make an attribute with minimal value visible in the overlay
view, the start of each data attribute is offset from the center to avoid ambiguity. For range visualization, we added
two yellow circles to represent the min and max for each attribute, using the same graphical mark as the glyph
visual feature. For less biased feature inspection, with identical visual channels encoding data, star-based glyphs
afford uniformity across different attributes.

Research method

Research participants and procedure. Following our approved Institutional Review Board protocol, we recruited
25 participants (10 females, 14 males, and one preferred not to disclose their gender). Their grade levels ranged
from seven to 11 (Mean = 9.76, SD = 1.16). 16 students had no prior Al experience, five were familiar with Al-
related products, and four had basic coding knowledge. The study was conducted online via Zoom, with each
session lasting about 1.5 hours. Participants experienced all design conditions in different sequences to minimize
learning effects. We used partial counterbalancing and the Latin square method to determine condition
combinations for four participant groups. Four datasets were rotated across the design options. A pre-survey
collected students’ background information. Then participants were asked to "think aloud" while going through a
set of data analysis tasks independently. The researcher reminded participants to keep verbalizing their actions
and reasoning process when they fell into silence.

Data analysis. We tested whether data interpretation performance differed by glyph designs through
within-subject analysis. The data was not normally distributed based on the Shapiro-Wilk test. We used a non-
parametric test, the Friedman test, on each measure to assess differences between the four conditions. For further
pairwise comparison, we applied the Wilcoxon signed-rank test to each combination. The Bonferroni adjusted-p
=.01(0.05/6) is used to avoid the Type I error in multiple comparisons.

Results

Support global interpretation of multidimensional data for children

Face glyphs outperformed star glyphs in the accuracy of global interpretation. The Friedman test revealed
significant differences across different glyph designs (X?(3) = 16.50, p <.001). Among all four glyphs, star glyphs
performed the worst. Post hoc analysis using the Wilcoxon test showed that face glyphs with face scales only (p
=.001) and dial & face scales (p < .001) significantly outperformed star glyphs. When analyzing patterns, face
glyph users noticed similarities within clusters and differences between groups. In contrast, star glyph users tended
to focus on local features, ignoring between-group differences. Face glyph users identified facial features that
split clusters, interpreted intra-group patterns, and compared differences between cluster groups.

Support analyzing data in the context

We compared face glyphs with face scales and bar scales. The Friedman test revealed significant differences in
students’ performance for contextualizing analysis with both data attributes (X*(3) = 27.69, p < .001) and data
range (X*(3) = 43.00, p =.007). Post hoc analysis showed that face scales significantly outperformed bar scales
(p <.001) for data attribute context. Additionally, face glyphs with face scales performed better than face glyphs
with bar scales (p = .006 and .007) for data range context.

Sequential feature inspector for less biased feature inspection

We compared face glyphs with and without the dial for sequential feature inspection. The Friedman test revealed
significant differences across different glyph designs (X?(3) = 10.32, p = .02). Post hoc analysis using the
Wilcoxon test showed that face glyphs with a dial performed significantly better in inspecting individual data
attributes equally compared to face glyphs with bar scales (p = .008), face scales only (p = .009), and star glyphs
(p = .04). Interestingly, not all learners utilized the dial inspection function consistently: eight used it for all tasks,
12 for half or less, and three not at all. Further analysis showed significantly less bias (t(153) = 2.46, p=.01) in
tasks where participants used the dial.
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Conclusion and Discussion

To support children in analyzing patterns revealed by k-means clustering, we proposed four glyph designs. A
study with 25 high school students showed that the sequential feature inspector (the dial) effectively supported
less biased interpretation of data attributes, and the feature-aligned range visualization (face scales) is effective
for contextualized analysis. Many iconic glyphs lack data range information. Feature-aligned range visualization
can benefit other iconic glyphs (e.g., cars, flowers). The dial successfully mitigated face glyphs’ limitations of
biased feature inspection. This confirms the effectiveness of utilizing guide search theory for more effective data
analysis and offloading short-term memory by forcing sequential inspection. Not all participants fully utilized the
dial, and this suggests adapting the design based on different learner styles and making the dial interaction more
inviting and rewarding. Furthermore, face glyphs supported the global interpretation of multidimensional patterns
better than star glyphs. Global interpretation of data involves recognizing relationships across multiple attributes,
requiring memorization of data details. Face glyphs outperform star glyphs, possibly because facial features aid
recognition and memorization (Applegate & Cohen, 2017). Face glyphs offer variability in expressing data,
enhancing pattern visibility (Fazlagi¢ et al., 2018).
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