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Abstract—We propose a data-driven forward stochastic
reachability analysis algorithm for a system with unknown
dynamics. In this letter, we assume a limited number of
trajectory data is available and one cannot obtain additional
data from the target system. The proposed algorithm learns
the evolution of the state probability density function (pdf)
as a Gaussian mixture model (GMM) from the given tra-
jectory data and computes the pdf of the future state at
a desired future time instance. We leverage the bootstrap-
ping algorithm to account for the parameter estimation
error of the GMM by computing the confidence interval of
the estimated parameters. Then, the bootstrapped GMM is
synthesized by selecting the optimal parameters within the
confidence interval that yields the most informative model,
thereby providing more reliable prediction results. The
proposed algorithm is demonstrated via both numerical
simulations and human subject experiments.

Index Terms—Gaussian mixture model, reachability anal-
ysis, data-driven modeling.

|. INTRODUCTION

HE FORWARD reachable set is a collection of all the
possible states that a target system can reach at a specific
future time instance. Using the forward reachable set, one can
verify the safety of the target system by thoroughly examining
its future operation. Thanks to this benefit, the reachability
analysis has been widely used for the safety verification
of a system, particularly a safety-critical system such as a
human-in-the-loop system [1]. Nevertheless, the conventional
reachability analysis methods rely on the knowledge of the
dynamics model and thus, it is challenging to apply them to
systems with unknown (black-box) elements [2].
The data-driven reachability analysis, on the other hand,
does not require specific knowledge about the target system to
obtain a feasible result. The data-driven reachability analysis
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leverages the trajectory data generated from the target system
to compute a reachable set, making it suitable for a system
with black-box elements such as a system with human
intervention [2]. However, many existing algorithms assume
one can obtain arbitrarily many data points from the tar-
get system [3], which might not be guaranteed in practice.
Especially when the data is difficult or expensive to obtain,
such as human subject experiments that require specific types
of equipment with strict variable and scenario setting [4],
one needs to compute the reachable set only using a limited
amount of trajectory data. Meanwhile, some existing data-
driven reachability analysis algorithms might not be able to
explicitly consider the uncertainty inherent in a target system.
For instance, in [5], the Koopman operator-based method
was proposed but it is vulnerable to uncertainty or noisy
data. In [6], a matrix zonotope is computed to enclose the
uncertainty, which might yield overly conservative results [2].

Motivated by the aforementioned issues, we propose a data-
driven forward stochastic reachability analysis algorithm for a
system whose dynamics is unknown and only a limited number
of trajectory data is available. The objective of the proposed
algorithm is to compute the forward stochastic reachable set
which is inferred as a state probability density function (pdf)
at the desired future time instance. We assume the given
trajectory data is the only source of the information, i.e., there
is no side information.

Unlike many existing data-driven reachability analysis algo-
rithms that directly retrieve the dynamics, the proposed
algorithm learns the evolution of the state pdf as a Gaussian
mixture model (GMM) using the expectation maximization
(EM) algorithm. Then, the reachable set is computed based on
the trained GMM. The GMM has been widely used for various
applications to infer the characteristics of a target system from
its trajectories. For example, it has been applied to model the
behavior of complex systems, such as a human driver [4], and
to imitate and predict the behavior of a target system [7]. By
using the trained GMM instead of the dynamics model, one
can obtain a feasible prediction result while considering the
effect of uncertainty by leveraging only a set of trajectories.

One major issue that should be addressed in our approach
is the accuracy of the trained GMM, since the fidelity of the
GMM directly impacts the accuracy of the resulting reachable
set. Although the EM algorithm is shown to provide sufficient
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performance to train a GMM in many applications, it does not
provide information regarding the parameter (e.g., mean and
covariance) estimation errors [8]. This leads to the need for
additional methods to estimate and account for such errors.
Furthermore, one needs to fully utilize the information inherent
in the given trajectory data as there is no supplementary
information to infer the characteristics of the target system.
One straightforward approach is using the information matrix,
but the information matrix-based approaches require a large
amount of data for a GMM and the error tends to be
underestimated, making it not suitable for investigating the
parameter estimation error of a GMM [8].

To tackle this problem, we estimate the parameter estimation
error of the GMM using the bootstrapping algorithm. The
bootstrapping algorithm is a resampling method that can
quantify the characteristics of the estimated parameter such as
the standard error [9]. In this letter, we utilize the bootstrapping
algorithm to specify the confidence interval of the estimated
parameter. Then, the optimal value within the interval that
yields the most informative result is selected and composes a
new GMM which we called as bootstrapped GMM. The future
state pdf is then computed by propagating the current state pdf
based on the bootstrapped GMM, thereby generating a more
informative reachable set compared to the original GMM.

Our contributions in this letter are as follows: 1) We
propose a data-driven forward stochastic reachability analysis
algorithm that learns the evolution of the state pdf as a
GMM. The proposed algorithm can be applicable when only
a limited number of trajectory data is available and there is
no chance to obtain additional data; and 2) We synthesize the
bootstrapped GMM by leveraging the bootstrapping algorithm
to consider the parameter estimation error of the GMM.
Although no theoretical analysis is provided in this letter,
we show that the proposed algorithm can generate a more
informative reachable set through numerical simulations and
human subject experiments.

The rest of this letter is organized as follows: In Section II,
the bootstrapped GMM is presented. Section III provides the
details on how the data-driven forward stochastic reachable
set is computed. In Section IV, the numerical simulation
results and human subject experiment results are presented and
discussed. Lastly, the conclusion is given in Section V.

Il. BOOTSTRAPPED GAUSSIAN MIXTURE MODEL

A. Learning Transition Kernel as Gaussian Mixture
Model

In this letter, we consider a general nonlinear discrete-time
dynamical system driven by a process noise,

X1 = f Xk, Vi), (L

where x; € R" is the state vector at time step k, vy € R!
is the process noise, and f is the nonlinear dynamics of the
system which is unknown. Note that (1) also can be seen
as a closed-loop dynamics of a system controlled by a state-
feedback control law. In (1), the evolution of the state pdf
over time can be expressed using the Chapman-Kolmogorov
equation [10],

P(xip1) = / Pt X0 P(xr)dxr, 2)

where P(xy) is the state pdf at time step k and P(xg41|xk) 1S
called the transition kernel [11]. The objective of the proposed
algorithm is to compute the future state pdf of an unknown
system (1) at the desired future time step 7y > 0, P(xr,), by
solving (2). To this end, we first learn the evolution of the
state pdf as a form of a GMM using the trajectory data of a
target system.

The GMM is a convex combination of multiple Gaussian

distributions. The trained GMM, G, represents a joint
pdf between xy = [xlT,x2T, ...,xIZ\}D]T and x, =
[xg,xlT, ...,xlz\;D_l]T, P(x¢,xp), where Np is the number of

the data points in the given trajectory data. Let G be composed
of M number of Gaussian components and its i—th component
has mean (fi;) and covariance (X;) as follows [12]:

Af N Ef ﬁ:fvp
=00, 2 = E], 3
. (nf’) (E”f P )
£

where fi; € R" is the mean fraction corresponding to xy, [Lf €
R" is that of x,, and fllf e RV, flf e R, fl{’p e R,
and f)f /e R™M are the corresponding covariance fractions,
respectively. Then, we can define G as

Zm (i ). )

where 7; is the weight of each Gaussian component and
N(j;, $,) is the Gaussian distribution with mean ft; and
covariance f),: The weight, mean, and covariance of G can be
computed by using the EM algorithm while the number of the
Gaussian components M can be chosen using a proper model
selection criterion, such as the Bayesian information criterion
(BIC) [12].

Once G is trained, one can compute the transition kernel
P(x+1|xr) using the Gaussian mixture regression (GMR) from
G, which is necessary to solve (2). Nevertheless, G trained
using the conventional EM algorithm might include errors in
its estimated parameters (mean and covariance) that need to
be considered to obtain more informative prediction results.

g _Pxf,xp

B. Bootstrapping Model Parameters

In this subsection, we apply the bootstrapping algorithm to
compute the errors on the estimated parameter of G. Let 6 be
the estimated parameter of G computed with the EM algorithm
which can be defined as

6 =it s 211D, 2102, S )] 5)
where fli(j, k) is the (j, k) element of the covariance matrix of
the i—th Gaussian component. We utilize the nonparametric
bootstrapping algorithm to account for the parameter estima-

tion errors of @; and ﬁ?,-. Let 7 = {yl,yz,...,yND} be the
given trajectory data where y;, = [xfT i,x;i]T. xp; and X

are the i—th element of x; and x,, respectively. Then, the

bootstrapping algorithm operates with the following steps [9]:

1) Np bootstrap resamples {71, 7T2,..., TB.Ng} are

constructed by drawing Np random observations

with replacement from 7, i.e., compose Tp; =

DLy ooy, Vi= 1,2, Np wherey()ls ran-
domly selected from the element of T.
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2) Foreachi=1,2,..., Np, compute

A ni ni ni
QB,i = [ILB,la Kpos---s Bp s

Sp (LD, 25 (1,2), ... B y(n.m)] (6)

by feeding 75 to the EM algorithm.

3) Compute the sample mean and covariance of the param-
eters for each i =1, 2, ..., M. For the mean of the i—th
Gaussian component, we can compute

LY ! T
SBi= N Z(”’B,i - MB,i) (ILB,i - MB,i) . (D

where fg ; is defined as

ZuB i ®)

and the same for the covariance,

Mpi=

Np R _ )
0K = g 2 (Bl R) — B, 0) " ©)
Np
N I P
T5.iG. k) = N 1; 35 G, k). (10)

Using (7)-(10), one can analyze the desired properties, such
as the bias or standard error, of the estimated parameter 6.

In the following section, we compute the confidence interval
using the result of the bootstrapping algorithm to explicitly
account for the parameter estimation error.

C. Computing Confidence Interval to Account for
Parameter Estimation Error

In this letter, we consider the normal approximation, i.e., we
assume the parameter estimation error is normally distributed
and compute the normal confidence interval. Then, from
(7)-(10), one can achieve the 1 — § confidence interval of
covariance elements [Zp;(j, k), Zp.(j, k)] with [9]

5.0, k) = ZiG. k) = B k) = Zs\[s5,:G. k). (11a)
Bi ) = Bi. 0 = B, K) + Zs\ [5G k), (11D)

forall i =1,2,...,M and j,k = 1,2,...,n, where § > 0
is a design variable, Z(, is the critical value of the standard
normal distribution, and /31.’ G, k) = 2_33,,-(1', k) — f)i(j, k) is the
bias of (j, k) element of covariance.

A similar approach can be applied to the mean, but the
parameter estimation error on the mean can be easily addressed
by treating fi; as a Gaussian random variable as opposed to
computing its confidence interval. More specifically, we can
assume that the estimated mean f; is distributed by N(u; +
B;. sp,i) from the normal approximation, where B; = jip ; — L;
is the bias of the mean and u; is the true mean value [9].
Accordingly, the i—th Gaussian component of G can be seen
as a Gaussian distribution with mean distributed by another
Gaussian distribution, which is again a Gaussian distribution.

As a result, we can define a new GMM that encompasses both
mean and covariance parameter estimation errors as

M
gg = Zﬁﬂ\/(fblg,i, I:EB,i, 2:B,i] + SB,i)
i

where fig; = ji; — B;. One can explicitly account for both
mean and covariance parameter estimation error by using Gp
instead of G.

In the following subsection, we construct the bootstrapped
GMM Gy by optimizing its parameter é; to induce the most
informative result among all the possible combinations within
the confidence interval (11a) and (11b).

(12)

D. Maximizing the Volume of Confidence Ellipsoid

The confidence ellipsoid (£) of a random variable x ~
N(m, ) is defined as [13]

=xeR|x-w (o) @—p) <1} 13)

where ¢ € R is a constant. The center of £(u, Xc¢) is located
at the mean of a Gaussian distribution and it has the shape
matrix as the multiplication of the covariance matrix and c. If
we choose ¢ as

E(p, Xo)

c=(Fp) (-
where F, (-, n) is a cumulative distribution function (cdf) of
x? distribution with n degree of freedom, the probability that
xTx to be included in £(u, X¢) becomes 1 — § [13].

The idea of the proposed algorithm is to find the optimal
value in [Zp;(j, k), Tp.:(j, k)] for all j,k = 1,2,...,n that
maximizes the volume of each confidence ellipsoid. Since
all the values within the confidence interval are still valid
candidates, it is desirable to select the most informative one.
However, simply increasing the volume might not necessarily
lead Q; to be more informative, but on the contrary, it could
lead to the loss of information. For instance, if the confidence
ellipsoid of Gy has a shorter length in a certain axis than G,
the information regarding this axis would be lost even though
the volume is larger. To tackle this problem, we design a
constrained optimization problem that maximizes the volume
of the confidence ellipsoids while enforcing each confidence
ellipsoid of Gj; to include that of G.

Let the confidence ellipsoid of the i—th Gaussian compo-
nents in G as &g ; ({L;, ¥;¢) and that of G as Sg* (g, Xp et

sp.ic) where E* G k)€ [23,(] k), Zpi(j, k)] is the
optimization variable. From [14], Eg* i includes &g ; if there
exists A > O that satisfies the followmg Vx € &gi

8, n) (14)

-1

(x - fLBJ)T(EAJ;ic + sByic) (x — itp,)

e i) (8ie) - h) <12

Equation (15) can be rewritten as a corresponding LMI
condition. As a result, one can {naximize the volume of the
ellipsoid by finding the optimal X, ; that maximizes the trace

of ﬁg’ ; while satisfying the constraints [13]

tr(flg’ i)

15)

max

(16a)
kA
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subject to
N R R .~ N\ 12
_<E;,ic + SB,iC> mpi— I (Eic)
(ipi— i) r—1 0 |<0 (6b
RNV
(Eic) Y
A>0 (16¢)
35.>0 (16d)

25, k) < 25,0,k < Tpi. k) ¥ j.k=1,2,....n(16e)

From (16a)-(16e), we define G as

M
Gy = > AN (g 5.+ 58.1)- (17)
1

Consequently, one can compute the reachable set while
explicitly accounting for the parameter estimation error by
incorporating (17).

Remark 1: The feasibility of the normal approximation can
be assessed by using the quantile-quantile plot [9]. If the
normal approximation is not feasible, one can compute the
percentile confidence interval instead [9]. Then, the parameter
estimation error in the mean can be considered by generating a
new confidence ellipsoid £ that includes Eg ;(ft;, i) €D By
Vi=1,2,...,M, where € is the Minkowski sum, B, ; is a
ball whose radius r = max(|ft; — g ;| |it; — mp ;1)/2, and wp;
and pp; are the corresponding percentile confidence bounds.
Sucth-’ can be formulated as an optimization problem with
an LMI constraint [15].

[1l. FORWARD STOCHASTIC REACHABILITY ANALYSIS
USING UNCERTAINTY PROPAGATION

Once Gj is computed, one can compute the one-step
propagation transition kernel, P(xj41|x)), from Gj using the
GMR. Let the mean and covariance of gg be

~f
r M
"LB,' - Ap’ 5
l <’LB’1>

,i N A D 5 )
mhoR
where ﬁ’jl;,i’ [TL}I;J» € R" and Pg_i, Pg’; P%’f;, Pg_i e R™" are
the corresponding mean and covariance fraction of the i—th
component of Gj.
Then, using the GMR, the conditional pdf on the propagated
state can be computed as follows [12]:

(18)

19)

i
)

M
P@irilxo = Y #@oN (R0, ), (20)

i=1

where
(o) = iy + PP (xi — iy ). @1
55 = Py, — PRIPG P @2
2y = Ve .o Phi) o3
Zjﬂil N kag,j’ Pg,j)

Algorithm 1 Bootstrapped Gaussian Mixture Model-Based
Data-Driven Stochastic Reachability Analysis

Input: trajectory data 7, initial state pdf P(xg), desired

future time step 7, > 0, bootstrap sample number
Np, PGM filter sample number Np, and & Output:
P(xt,)

EM algorithm
M, G, 0 < computed by the EM algorithm and 7. M can
be chosen based on a proper criterion (e.g., BIC)

‘Bootstrapping

0p.i < bootstrapping sample (6) Vi=1,2,...,Np
(5, 2] < from ()-(10)V j=1,2,...,M
Gp < computed using (12)

Gj; < computed by solving (16a)-(16e)

Reachability analaysis

while £k < T; do
S; < sample from P(x;) VI=1,2,...,Np
P(:|S;)) < computed by G} (17) and GMR (20) VI =
1,2,...,Np
S) < propagate according to P(:|S;) VI=1,2,...,Np
P(xi41) < clustered as a GMM from
k<—k+1

end while

One can compute P(xr4;) by solving the Chapman-
Kolmogorov equation using (20)-(23). However, analytically
computing P(xj1) is challenging due to the state dependency
of (23). To tackle this problem, we apply the time update
algorithm of the particle Gaussian mixture (PGM) filter. The
time update algorithm of PGM filter starts by generating
Np € N number of samples, S;, i = 1,2,...,Np, from
P(xy). Then, the propagated samples S; are computed by
propagating S; through the transition kernel P(-|S;). P(Xg+1)
is then approximated by clustering S; as a GMM.

If P(xp41) is distributed by a GMM with M number of
Gaussian components (or approximated by the Gaussian sum
approximation [16]), with the perfect clustering algorithm,
there exists Np that allows the time update algorithm of PGM
filter to approximate the parameter of the P(xj1) with desired
confidence and accuracy [11]. Accordingly, one can predict
how the system state pdf will evolve based on Gj; with arbitrary
confidence and accuracy on its parameters. Algorithm 1 shows
the overall structure of the proposed algorithm.

IV. NUMERICAL SIMULATIONS
A. Case Study 1: Noise-Driven Double Integrator

In this section, we provide the numerical simulation results
of the proposed algorithm. We compare the results of
Algorithm 1 based on G} with that of G to show how the
proposed method enlarges the volume of the reachable set.
Moreover, we also compare the results with the true future
state pdf at the desired future time step 7 to check the
feasibility of the proposed method.

The target system is a noise-driven double integrator whose
true dynamics is given as
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bootstrapped GMM include all the validation data whereas the original GMM fails.

Xig1 = [(1) Alt}xk + [%Eg B} At 24)
where At = 0.1s is the discretization time interval. The
dynamics of the system is assumed to be unknown and
the reachable set should be computed only using given 20
trajectories randomly generate from (24). We set the number
of bootstrap samples (Np) as 100, the number of Gaussian
components (M) as 6, the number of samples for the PGM
filter (Np) as 500, and & as 0.01. Also, we assume the initial
state is distributed by N(jg, o) where py = [0,1]7 and
Yo = 0.06251,, where I is the 2 x 2 identity matrix.

Fig. 1 shows the result of the simulations. The upper figures
are the result using G and the lower figures are from G. In
the figures, the colored contour is the predicted state pdf at
the desired future time step 7y, P(x7,), the orange dots are the
given trajectory data, and the white dots are the validation data
obtained from (24) but never used to train the GMMs. The
white dashed line represents the 1 —& confidence bound of the
true state pdf while the red line represents the 1 —4 confidence
bound of the predicted state pdf. The bounds can be interpreted
as a §—accurate reachable set, where the probability of the
state to be within the bound is 1 — § (= 0.99) [3].

Throughout the simulation, one can easily notice that the
proposed algorithm generates more informative results in com-
parison with the original GMM. This shows that the proposed
scheme can increase the volume of each confidence ellipsoid
and thus, yield a more informative model. As a result, the
proposed algorithm succeeds in including the validation data
whereas the G occasionally fails to enclose them. Compared
to the true confidence area, the original GMM tends to
underestimate the reachable set due to the small number of
given trajectories. On the other hand, the proposed algorithm
compensates for such a gap by explicitly accounting for

the parameter estimation error, thereby generating a feasibly
expanded reachable set.

B. Case Study 2: Human Subject Experiment

In this subsection, we demonstrate the proposed algorithm
using the data obtained from human subject experiments.
During the experiment, the participants were asked to safely
land a multi-rotor in a virtual 2-D multi-rotor flight simulator.
There are two predefined routes (left and right) and the
participants were instructed to follow the routes assigned at
the beginning of each simulation. We collected a total of 240
trajectories from 3 participants' and used 100 trajectories (50
for each route) to train Gj. We also selected 60 trajectories
(30 for each route) as the validation data. We set the number
of bootstrap samples (Np) as 50, the number of Gaussian
components (M) as 6, the number of samples for the PGM
filter (Np) as 1000, and & as 0.05. The nonlinear dynamics
of the multi-rotor used in the flight simulator can be found
in [17].

Fig. 2(a) and (b) illustrate the result of the proposed
algorithm computed only using the initial state pdf of the
validation data. In the figures, the contour is the predicted state
pdf at the specific future time instance, the red line is the 1 —§
bound, the dashed gray line is the route that the participants
should follow, and the white dots and lines are the true position
and trajectory of the multi-rotor, respectively. As shown in
the figures, the proposed algorithm successfully computes
feasible reachable sets without knowing prior information
about the dynamics. The computed reachable set includes all
the validation trajectories showing that the proposed algorithm

IThe Institutional Review Board (IRB) at Purdue University approved the
study. IRB protocol number: IRB-2020-755.
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Fig. 2. Rechable sets and comparative simulation results using human subject experiment data.

can generate an informative reachable set based on G, without
additional data acquisition.

Meanwhile, the comparative simulation result between the
proposed and existing algorithms is provided in Fig. 2(c),
where each colored line describes the result of existing
algorithms [3], [6], [18]. Note that [3] requires a certain
amount of data for the probabilistic guarantee of the reachable
set while [18] relies on asymptotic properties and thus,
the given 100 trajectories might not be sufficient to fully
leverage the benefit of the existing algorithms. One can easily
observe that the existing algorithms show overly conservative
results, including both of the routes. On the other hand,
the proposed algorithm can reduce such conservativeness by
specifying the vehicle’s direction even with the scarce amount
of data. This shows that the proposed method can perform
well for an unknown (nonlinear) dynamical system controlled
by a human operator, thereby demonstrating its capability
to analyze a complex closed-loop (e.g., human-in-the-loop)
dynamics in real-world applications. This can be beneficial
in computing a reachable set for an unknown system, par-
ticularly if the additional trajectory data is too expensive to
obtain.

V. CONCLUSION

In this letter, we presented a data-driven forward stochastic
reachability analysis algorithm that can explicitly account
for the parameter estimation error using the nonparametric
bootstrapping technique. The proposed algorithm learns the
evolution of the state probability density function (pdf) as
a Gaussian mixture model (GMM) and compensates for the
parameter estimation errors by using the confidence intervals
computed from the bootstrapping. The stochastic reachable set
is then computed by propagating the state pdf using the trained
GMM and Gaussian mixture regression (GMR). The results of
numerical simulations and human subject experiments show
that the proposed algorithm can achieve informative prediction
results even if a limited number of trajectory data is provided.
In future work, we will extend our algorithm to the case
where the data can be incrementally increased or regularly
updated.
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