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Abstract—We report on the first experimental demon-
stration of five self-sustaining feedback oscillators
referenced to a single multimode resonator, using piezo-
electric aluminum nitride on silicon (AlN/Si) microelec-
tromechanical systems (MEMS) technology. Integrated
piezoelectric transduction enables efficient readout of five
resonance modes of the same AlN/Si MEMS resonator,
at 10, 30, 65, 95, and 233 MHz with quality (Q) factors of
18 600, 4350, 4230, 2630, and 2138, respectively, at room
temperature. Five stable self-sustaining oscillators are
built, each referenced to one of these high-Q modes, and
their mode-dependent phase noise and frequency stabil-
ity (Allan deviation) are measured and analyzed. The 10,
30, 65, 95, and 233 MHz oscillators exhibit low phase noise
of −116, −100, −105, −106, and −92 dBc/Hz at 1 kHz off-
set frequency, respectively. The 65 MHz oscillator yields
the Allan deviation of 4 × 10−9 and 2 × 10−7 at 1 and
1000 s averaging time, respectively. The 10 MHz oscilla-
tor’s low phase noise holds strong promise for clock and
timing applications. The five oscillators’ overall promising
performance suggests suitability for multimode resonant
sensing and real-time frequency tracking. This work also
elucidates mode dependency in oscillator noise and sta-
bility, one of the key attributes of mode-engineerable resonators.

Index Terms— Allan deviation, microelectromechanical systems (MEMS), multimode resonator, phase noise, piezo-
electric aluminum nitride on silicon (AlN/Si), self-sustaining feedback oscillators.
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I. INTRODUCTION

OVER the past two decades, radio frequency (RF)
microelectromechanical system (MEMS) resonators

have attracted great attention in a variety of research
fields [1], [2], [3], [4], [5], [6]. For next-generation wireless
communication, there is a rising need for high-performance,
single-chip, multiband, and customizable RF solutions. A sta-
ble frequency source is essential for RF transceivers since it
serves as a reference signal for signal modulation and synchro-
nization. A reconfigurable multifrequency source is desirable
when a single-chip multiband RF solution is required [7]. Usu-
ally, phase-locked loop (PLL) frequency synthesizers are used
as programmable frequency sources in RF transceivers [8].
However, the addition of a PLL greatly enhances the system’s
overall power consumption and the chip area devoted to
the oscillator. Furthermore, the output signal’s phase noise
is increased by at least 20log(N ) dB when the PLL pro-
duces a high-frequency signal by multiplying the frequency
of a reference oscillator [usually based on quartz or surface
acoustic wave (SAW) resonators] by an integer or fractional
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Highlights
• Demonstration of five stable self-sustaining feedback oscillators referenced to single multimode AlN/Si MEMS

resonator for the first time.

• The 10, 30, 65, 95 and 233 MHz oscillators exhibit low phase noise of −116, −100, −105, −106 and −92 dBc/Hz at
1 kHz offset frequency, respectively.

• The five oscillators’ overall promising performance suggests suitability for multimode resonant sensing and
tracking and elucidates mode dependency in oscillator noise and stability.

value N [8]. Instead of using a PLL, programmable MEMS
oscillators can be utilized to produce stable and accurate
frequency reference sources for integer-N or fractional-N fre-
quency synthesizers [9]. This strategy is advantageous because
it enables the dynamic selection of frequency references for
the best performance in each operational area. For application
in ultralow-power IoT sensor nodes, for instance, a low-
frequency MEMS resonant mode with high Q and strong
long-term stability can be chosen due to the requirement
for low power, compactness, low cost, and precise frequency
references [10], [11]. On the contrary, a high-frequency mode
can be utilized for agile frequency synthesis for future recon-
figurable RF front ends.

Recently, self-sustaining feedback oscillators using high-
QMEMS resonators as their frequency selecting elements have
become competitive or even better alternatives to traditional
quartz crystal oscillators [12], [13], [14], [15], [16]. Indeed,
programmable oscillators referenced to MEMS resonators are
now available commercially with impressive specifications for
timing applications. Some of the latest MEMS temperature-
compensated crystal oscillator (TCXO) products from SiTime
using single-crystal Si resonators already achieve long-term
stabilities better than ±100 ppb over the commercial temper-
ature range [17].

Due to their miniaturized dimensions, resonant MEMS
and nanoelectromechanical systems (NEMS) exhibit very
high responsivities to very small force, displacement,
and mass variations by converting them into small
frequency shifts that can be measured, thus enabling
new resonant sensors with unprecedented single-charge,
single-molecule, and single-atom sensitivities or resolu-
tions [18], [19], [20], [21], [22], [23], [24], [25], [26].

Over the past decade, mass sensing with NEMS resonators
has systematically improved to the point where they now offer
impressive capabilities for a new promising approach to mass
spectrometry [25], [26], [27], [28]. In proof-of-concept exper-
iments, carbon nanotube NEMS resonators have demonstrated
mass detection limit down to the yoctogram (10−24 g) level,
which is at the single proton mass sensitivity [29].

MEMS and NEMS resonators with multiple modes become
attractive as they can enhance the sensing performance and
also enable new sensing modalities. For example, while a
particle is attached to a cantilever beam, the frequency shift
is dependent on the location of the particle with respect to
the mode shapes. If a particle lands at the antinodes, large
frequency shifts are expected, while if the particle lands
at the nodal points, a minimal frequency shift is expected.
By using this mode-dependent information, an inertial imaging

technique has been proposed in which the NEMS resonators
and arrays can not only sense the particles but also can resolve
their sizes and spatial distributions [30], [31], [32], [33].
This opens an avenue toward nanomechanical imaging of
distributed biological species.

Given the important motivating forces discussed earlier, the
objectives of our work have been focused on: 1) studying
high-Q multimode resonators and 2) building stable, low-
noise multimode oscillators to enable new MEMS clocks
for real-time frequency tracking and sensing capabilities.
In our previous work, we have demonstrated three stable
self-sustaining oscillators referenced to the same multimode
aluminum nitride on silicon (AlN/Si) MEMS resonator [34].
Here, we extend the earlier work by demonstrating, for the
first time, five stable, low-noise feedback oscillators or clocks
at ∼10, 30, 65, 95, and 233 MHz, referenced to the 1st, 2nd,
3rd, 4th, and 5th length extensional (LE) modes, respectively,
of a single AlN/Si MEMS resonator. Fig. 1 shows an overview
of the concept, schematic design, and key outcome of this
work. Existing demonstrations of MEMS oscillators in such
frequency ranges have been based on electrostatically trans-
duced 10 MHz beam [35] and ∼60 MHz wine-glass disk
resonators [15], 11 MHz double-ended tuning fork (DETF)
resonators [36], and ∼10 MHz Ni micromechanical res-
onators [37]. Although simultaneous dual-mode excitation of
bulk acoustic wave (BAW) MEMS resonator-based oscillator
has been demonstrated for self-temperature sensing [38], stable
self-sustaining oscillators with more than two clock frequen-
cies generated by the same MEMS resonator, and their mode
dependency on phase noise and Allan deviation performance,
have not yet been reported.

Different modes have different effective masses, quality (Q)

factors, and power handling capabilities that set the ultimate
limits of phase noise and Allan deviation performance metrics.
In light of this fact, it is crucial to investigate the mode
dependency of phase noise and frequency stability (Allan
deviation) of multimode oscillators in the context of real-time
sensing and timing (clock) applications.

In this work, we employ all-piezoelectric transduction built
into AlN/Si MEMS to study five modes of the same res-
onator and build a self-sustaining oscillator for each mode.
We observe a phase noise of −116 dBc/Hz at 1 kHz offset
for the oscillator of the fundamental mode (10.28 MHz),
lower than those in the other modes. Oscillators referenced
to the 2nd mode (30.82 MHz), 3rd mode (65.51 MHz),
4th mode (95.86 MHz), and 5th mode (233.84 MHz) also
exhibit excellent and promising performance in phase noise
and frequency stability. In particular, oscillators referenced to
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Fig. 1. Schematic illustration of the design and demonstration of five stable self-sustaining oscillators referenced to five high-Q resonance modes
of the same piezoelectric AlN/Si MEMS resonator. The panels on the right highlight the excellent performance achieved by the five oscillators,
in both phase noise and Allan deviation specifications, all have been measured at room temperature and in moderate vacuum (∼20 mTorr) that is
readily attainable by state-of-the-art packaging technologies. PS, LNA, and BPF stand for phase shifter, low-noise amplifier, and bandpass filter,
respectively.

the 1st mode, 3rd mode, and 5th mode offer state-of-the-art
comparable combined short- and long-term Allan deviation
specifications.

II. DEVICE DESIGN, FABRICATION, AND
CHARACTERIZATION

The resonance frequency of an LE mode resonator is chosen
in such a way so that it is independent of the resonator’s
thickness. The fundamental LE mode resonance frequency of
the resonator can be written as [39]

f0 =
1

2L

√
t1 EY1 + t2 EY2

t1ρ1 + t2ρ2
(1)

where t1, ρ1, and EY1 are the thickness, mass density, and
Young’s modulus of Si, respectively, and t2, ρ2, and EY2 are
the thickness, mass density, and Young’s modulus of AlN,
respectively. The resonator is designed to have the fundamental
LE mode at 10 MHz, so the length is chosen to be 480 µm
as found from the finite element method (FEM) simulations
using COMSOL Multiphysics.

The AlN/Si MEMS resonator fabrication [40] starts with
a double-side polished Si-on-insulator (SOI) wafer with a
20 µm-thick phosphorus-doped (at 4.6 × 1019 cm−3 with a
resistivity of 1.59 M�-cm) Si layer and a 500 µm Si substrate
(see Fig. 2). By maintaining the high thickness ratio of the Si
substrate to the other layers, the mechanical loss is minimized.
A layer of 1 µm AlN (piezoelectric layer) is sputtered on top
of the highly doped Si layer and 100 nm Al for metal routing
is deposited as the top electrode and patterned through the
liftoff process. The reasons for using Al as metal routing are:
1) its good adhesion to AlN and 2) similar acoustic properties
to AlN, which reduce losses. Si can act as the ground layer
electrode for the piezoelectric stack, reducing the number of
layers and minimizing interface loss. Reactive ion etching

Fig. 2. AlN/Si resonator fabrication process. (a) SOI wafer. (b) AlN
deposition. (c) Electrode patterning using liftoff process. (d) RIE to
define the resonator dimensions. (e) DRIE to release the device and
form free-standing structure.

(RIE) through the buried oxide layer is used to define the
dimensions of the resonator. Finally, the device is released
from the back side using deep RIE (DRIE) and the buried
oxide layer is also removed.

A. Equivalent Circuit Model

We have derived a lumped equivalent circuit model using
Cadence Virtuoso for each mode. All modes have motional
resistance of less than 2.1 k�. The equivalent circuit param-
eters are summarized in Table I. Fig. 3(a) shows the physical
origins of the relevant equivalent circuit and parasitic compo-
nents. The electromechanical motional behavior is represented
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Fig. 3. (a) Illustration of physical origins of the relevant equivalent circuit and parasitic components. (b) Equivalent circuit model. (c) Fitting of
experimental data using Cadence Virtuoso. The magenta dashed line shows simulated data using Cadence.

by Rm , Lm , and Cm , which can be calculated as

Rm = 2Z0

(
10

|IL|
20 − 1

)
(2)

Lm =
Q(Rm + 2Z0)

2π f0
(3)

Cm =
1

Lm(2π f0)
2 (4)

where Z0 = 50 � is the terminal impedance of the mea-
surement device (network analyzer) and IL is the measured
insertion loss (magnitude of S21) in dB.

The parasitic capacitor C p is formed between the Au contact
pad and the Si layer. It can be modeled as a parallel-plate
capacitor C p = (∈r∈0 A/d) = 2.75 pF, where A is the
area of the bottom surface of the contact pad, ∈0 is the
permittivity of air, and ∈r = 8.9 and d are the dielectric
constant and thickness of the AlN layer, respectively. In addi-
tion, a feedthrough capacitor C f is present between the input
and output electrodes. The distance between the input and
output electrodes is ∼200 nm. We estimate C f ≈ 250 fF from
simulations of the equivalent circuit model using Cadence (see
Table I). Fig. 3(b) shows the circuit model of the resonator.
The green square box shows the resonator portion of the
equivalent circuit model. The fitting of experimental data using
a circuit model of 10 MHz mode is demonstrated using a
magenta dashed line in Fig. 3(c).

B. Characterization of Resonances

When an RF drive is applied to an electrode, the electric
field induced in the piezoelectric AlN layer produces lateral
stress at the same time due to the piezoelectric coefficient.
Eventually, the stress field induces charge at the other electrode
and the charge is sensed through the piezoelectric effect.
We first measure the fundamental mode resonance of the
piezoelectric resonator (10.28 MHz) by performing a two-port
network analysis [see Fig. 4(a)]. At an RF drive level of vRF =

100 mV, the device is still in the linear regime [see Fig. 4(b)].
Thus, the resonance data are analyzed by using the damped
(finite-Q) simple harmonic resonator model

a =

 02(
ω2

0 − ω2
)2

+

(
ω ω0

Q

)2


1/2

+ a0 (5)

TABLE I
SUMMARY OF DIFFERENT MODE PARAMETERS

where a0 represents a frequency-independent (flat) background
due to electrical feedthrough, a is the measured amplitude, and
0 is a fitting parameter. Fitting of this model yields a quality
factor of Q =18 600 [see Fig. 4(c)]. Next, we increase vRF
from 100 to 550 mV in 50 mV steps and observe the resonance
peak frequency decreasing with increasing vRF, displaying a
softening Duffing nonlinearity [see Fig. 5(a)]. The experimen-
tal Duffing coefficient for this mode is k3 = −3.7 × 105 N/m3

as obtained using the method described in [58]. The negative
Duffing coefficient could be attributed to the softening of the
equivalent Young’s modulus due to the distributed material
nonlinearity in Si and AlN [59]. Fig. 5(b) shows a bifurcation
diagram for upward and downward frequency sweeps at vRF =

400 mV drive with hysteresis clearly visible [60].

C. Calibration of Dynamic Range
We have been able to all-electrically measure the undriven

thermomechanical noise spectrum of the 10 MHz mode, which
is the first for this type of device (an AlN-on-Si resonator in
its LE mode), as shown in Fig. 6(a) and (b). The resonator is
always inherently interacting with its surroundings at finite
temperatures, i.e., the surroundings act as a thermal bath
in thermodynamic equilibrium with the resonator. Stochastic
forces from random agitations of the thermal bath push the
resonator into mechanical motion at constant temperature in
thermodynamic equilibrium. At the same time, the stochastic
forces also retard the motion of the resonator. This process,
which is referred to as fluctuation–dissipation thermome-
chanical motion, shares the same fundamental physics as
the Brownian motion [61], [62] and can be mathematically
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Fig. 4. (a) Illustration of measurement setup for all-electrical characterization of the AlN/Si resonator. (b) Magnitude and phase of the admittance
parameter Y21 (where Y21 (dB Ω−1) = 20 log10(Y21(Ω−1))) converted from measured S-parameters in the linear regime for the 10 MHz mode.
(c) Fitting of the resonance (magenta dashed line) using a damped (finite-Q) harmonic resonator model after background subtraction.

Fig. 5. (a) Electrically measured linear to nonlinear responses by
increasing RF drive vRF from 100 to 550 mV. (b) Nonlinear bifurcation
curves with both upward (blue) and downward (red) frequency sweeps.

Fig. 6. (a) Scheme for high-precision electrical measurement of
thermomechanical noise. (b) Electrically measured thermomechanical
noise spectrum for the fundamental mode at 10 MHz. (c) Calibration
of Duffing nonlinearity with thermomechanical noise for determination
of DR.

described by a Langevin equation [61]. The thermomechan-
ical motion of the MEMS resonator and its corresponding
noise imposes a fundamental limit on the device performance
(transduction and response).

In the frequency domain, the spectral density of the
resonator’s thermomechanical motion displacement can be

written as [63]

S1/2
x,th(ω) =

4 ω0 kB T
Q meff

1(
ω2

0 − ω2
)2

+

(
ω ω0

Q

)2


1/2

(6)

where kB, T , meff, Q, and ω0 are Boltzmann’s constant, tem-
perature, effective mass, quality factor, and angular resonance
frequency, respectively. The value of meff is estimated from
FEM in COMSOL for each mode. On resonance, (6) simplifies
to

S1/2
x,th(ω) =

(
4kBT Q
ω3

0meff

)1/2

. (7)

All-electrical calibration of thermomechanical noise has
been attained by using the undriven AlN/Si MEMS resonator
connected to a low-noise amplifier (LNA) [see Fig. 6(a)]. The
output of the MEMS resonator is connected to the input of
the LNA (Femto HVA-200M-40-F) [41], and the output of the
amplifier is connected to the spectrum analyzer. We use the
20 dB gain setting of the LNA for this measurement. To obtain
the thermomechanical noise of the resonator, we need to mea-
sure the noise floor of the amplifier and then refer everything to
its input. Thus, we have measured the noise floor of the LNA
by connecting its output (with 20 dB gain) to the spectrum
analyzer with the input of the amplifier grounded. We assume
that the noise sources are uncorrelated and subtract the LNA
noise floor from that of the resonator and amplifier noise by
using

S1/2
v,MEMS =

√(
S1/2

v,MEMS+LNA

)2
−

(
S1/2

v,LNA

)2
(8)

where S1/2
v,MEMS is the thermomechanical noise of the resonator

after calibration, S1/2
v,MEMS+LNA is the thermal noise of both

resonator and amplifier, and S1/2
v,LNA is the amplifier noise floor.

We note that both S1/2
v,MEMS+LNA and S1/2

v,LNA are referred to the
input of the amplifier by dividing both the output S1/2

v,MEMS+LNA

and S1/2
v,LNA by a factor of 10 (20 dB). From the measured

and calculated thermomechanical noise, we obtain the device’s
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displacement-to-voltage responsivity ℜ = 2.8 µV/pm. In addi-
tion, the red dashed line in Fig. 6(b) shows the best-fitting
thermomechanical noise spectrum predicted by (6) after doing
calibration.

The spectral density of thermomechanical motion, S1/2
x,th(ω)

can be integrated to obtain the noise floor of the resonator,
which is required to experimentally determine its intrinsic
dynamic range (DR) and power handling capability. The
intrinsic upper limit of the DR is imposed by the maximum
achievable vibration amplitude beyond which a bifurcation
point can exist, and the device response experiences hys-
teresis [see Fig. 5(b)] [64]. In physics and mechanics, it is
common to assume that nonlinearity begins abruptly right at
the bifurcation. However, in engineering practice, the onset of
nonlinearity is typically defined as the 1 dB compression point,
which frequently produces more conservative estimates than
using bifurcation. We can write the damped simple harmonic
resonator model, including nonlinear terms as

meff ẍ + γeff ẋ + keffx + k3x3
= F(t) (9)

where γeff = meffω0/Q is the damping coefficient, keff =

meffω0
2 is the effective spring constant, and F(t) is the driving

force. The maximum achievable vibration amplitude is 0.745xc

at the resonator’s 1 dB compression point, where xc is defined
as the critical displacement in rms units [65]. The intrinsic
DR of the resonator is obtained by taking the ratio of this
amplitude signal ceiling and the displacement noise floor
imposed by the thermomechanical motion referred to the input
of the amplifier, i.e.,

DR = 20 log

[
0.745xc

S1/2
x,thBW1/2

]
(10)

where BW is the measurement bandwidth (BW). The intrinsic
RF power handling of the fundamental 10 MHz LE mode,
defined by the onset of nonlinearity, is P= ω0keffx2

c

/
Q

≈90 nW [66]. The estimated DR for this mode is 120 dB
[see Fig. 6(c)].

III. OSCILLATOR CHARACTERIZATION

A. Oscillator Using the 10-MHz Resonance Mode
We first perform open-loop measurements [see

Fig. 7(a) and (b)] to satisfy the Barkhausen criteria [67],
with the overall open-loop gain being slightly greater than 1
(0 dB) near the resonance frequency and an overall phase
change of 2nπ , where n is an integer. After satisfying the
Barkhausen criteria, we close the loop [see Fig. 8(a)] and
characterize the stable self-oscillations in both frequency
and time domains [see Fig. 8(b) and (c)]. The measurement
results show near sinusoidal oscillations. The equipment used
in the measurement for all modes is summarized in Table II.

B. Phase Noise and Allan Deviation of 10-MHz Oscillator
Next, we systematically characterized the specifications and

performance of the 10 MHz oscillator (see also Fig. 1). First,
we examine the phase noise performance using the dedicated
phase noise analysis module in a spectrum analyzer [see

Fig. 7. (a) Scheme for open-loop characterization of the feedback
oscillators. (b) Open-loop gain and phase calibration for making the
10-MHz oscillator.

Fig. 8. (a) Measurement scheme for closed-loop characterization of
the oscillators. (b) Frequency-domain output spectrum of the 10 MHz
oscillator. (c) Time-domain output waveform of the 10 MHz oscillator.

Fig. 9(c)]. In wireless communication systems, low phase
noise in reference oscillators is important because the close-in
carrier phase noise increases the noise figure of the receiver by
adding noise in receiver bandwidth. Phase noise is generally
quantified as the sideband power spectral density (PSD) at
an offset frequency 1 f , normalized by the carrier power Pc,
L(1 f ) = 10 log

[
Psideband( fc + 1 f )/Pc

]
, with unit of dBc/Hz,

where fc is the carrier frequency [68], [69], [70], [71], [72].
The carrier frequency for the MEMS resonator is simply
its resonance frequency, fc = f0. The phase noise of a
weakly nonlinear oscillator can be often described by Leeson’s
model [68], [72]

L(1 f )=10 log

[
(2FnkBT/Pc).

(
1+

(
f0

2Q1 f

)2
)

.

(
1+

f1/ f 3

1 f

)]
(11)

where Fn is the equivalent noise factor, kB is Boltzmann’s
constant, T is temperature, and f1/ f 3 is the knee frequency.
This model is simplified and does not always have good
predictive power, but nevertheless is useful in understanding
for decreasing phase noise. From (11), we can see that to
design a low phase noise oscillator, we need to: 1) minimize
the amplifier and resonator noise; 2) increase the carrier power
Pc; and 3) maximize the resonator Q. The ultimate phase noise
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TABLE II
LIST OF LAB EQUIPMENT [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52],

[53], [54], [55], [56], [57] USED DURING THE EXPERIMENTS

performance limit of an oscillator is set by: 1) the intrinsic
thermomechanical fluctuations and 2) power handling level (or
DR) of the MEMS resonance mode [67]. Specifically, Leeson’s
model predicts that

L(1 f ) = 10 log
[(

kBT
2Pc Q2

)
( f0/1 f )2

]
(12)

in the 1/ f 2 regime. Once L(1 f ) is known, the usual figure
of merit (FoM) of an oscillator can be calculated using [73]

FoM(1 f ) = 20 log
(

f0

f

)
− L(1 f ) − 10 log

(
Pdc

1mW

)
(13)

where PDC is the dc power consumption of the oscillator.
However, we do not report the FoM in this article since our
oscillators used off-the-shelf LNAs (as listed in Table II) that
were not optimized for dc power consumption.

Phase noise can also be measured as frequency noise
S(1 f )1 f , as phase is the time integral of frequency. The
relationship between phase noise and frequency noise is

L(1 f ) = (1/1 f )2S(1 f )1 f. (14)

Equation (14) shows us that the power law of the phase
noise spectrum is two orders lower than that of the frequency
noise. For example, white noise (flat) and flicker noise (1/ f )

are converted into 1/ f 2 and 1/ f 3 power laws in the phase
noise spectrum, respectively.

From the measured result, we observe two distinct regions
in the phase noise behavior [see Fig. 9(c)]. Close to the
carrier frequency, the spectrum first follows a 1/ f 3 power law
from 250 to 700 Hz, which suggests contributions from flicker
noise. The spectrum flattens out at larger offset frequencies
suggesting that the amplitude noise is dominant in this region.
The measured phase noise data are empirically fit using
Leeson’s model [68], [72], which gives a 1/ f (i.e., 1/ f 3 in
phase noise) knee frequency of ∼970 Hz and an equivalent
noise factor of Fn = 4. The phase noise at 1 kHz offset
(which is a common FoM for oscillators) is approximately
−116 dBc/Hz. The ultimate phase noise limit imposed by
thermomechanical noise and DR of this resonance mode is
shown as the orange dashed line in Fig. 9(c). The measured
phase noise is ∼20–40 dB higher than the intrinsic limit in
the 0.1−1 kHz offset frequency range due to: 1) extrinsic
noise contributions from readout electronics and feedback
circuitry and 2) frequency fluctuations in the resonator beyond
its thermomechanical noise [74]. To clearly investigate the

Fig. 9. Phase noise of the 10 MHz mode oscillator obtained after
calibrating the noise level of the measurement system. (a) Simpli-
fied input-referred noise model for both voltage and current sensing.
(b) Calibration of noise level of the measurement system. (c) Phase
noise measured from the 10 MHz oscillator (blue) compared with
10 MHz beam [35] and 11 MHz DETF [36] resonators. The orange
dashed line displays the thermomechanical noise limit of the MEMS
resonator. The red dashed line shows the thermal noise limits of both
Femto LNA and Mini-Circuits phase shifter. The black dashed line shows
the thermal noise limits of the LNA (with 20 dB gain).

limitation of our active circuitry, we have carefully cali-
brated the noise level of the measurement system. First,
we analyze the input-referred noise model of the measurement
system. We consider the dominant sources of phase noise
to be the LNA, phase shifter, and the MEMS resonator.
A simplified input-referred noise model for both voltage- and
current-sensing LNA is shown in Fig. 9(a). In the circuit
model shown in Fig. 9(a), i2

n,MEMS is the noise current source
for the MEMS resonator, v2

n,LNA is the input-referred noise
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voltage of the LNA, and v2
n,PS is the input-referred noise

voltage of the phase shifter. The input impedance of the
LNA can be modeled as Z in = Rin||(1/sCin). For the Femto
HVA-200M-40B LNA [41], the nominal values of Rin and
Cin are 50 � and 12 pF, respectively. The peak of the PSD
of MEMS resonator noise (thermomechanical noise) occurs
near its resonance frequency and can be estimated from its
motional resistance Rm . The input-referred voltage noise for
the fundamental mode of the AlN/Si LE resonator is thus
expected to be (v2

n)
1/2

= (4kT Rm1)
1/2

= 4.3 nV/Hz1/2 at
room temperature. Usually, the measured MEMS noise PSD is
higher than the thermomechanical limit due to additional noise
mechanisms, including thermoelastic damping, temperature
fluctuations, and adsorption–desorption [13].

Fig. 9(b) summarizes the calibrated noise levels of the
measurement system. In Fig. 9(b), S1/2

v,SA, S1/2
v,PS, and S1/2

v,LNA
show the measured noise floor of the spectrum analyzer,
a phase shifter (Mini-Circuits JSPHS-12+) [43], and an LNA
(Femto HVA-200M-40B) [41]. The measured noise floor of
the phase shifter and spectrum analyzer is ∼4.5 nV/Hz1/2,
and for the LNA, the phase shifter and spectrum analyzer are
∼7.5 nV/Hz1/2.

From the datasheet, the input-referred voltage noise of
the LNA should be (e2

n)
1/2

≈ 3.5 nV/Hz1/2. However, our
measured results show a higher noise PSD of ∼5.7 nV/Hz1/2.
This increase is likely due to the LNA’s current noise, which
is known to be load-dependent. In fact, we can estimate
the current noise as (i2

n,MEMS)
1/2

= ((v2
n − e2

n/R2
m))1/2.

For the 10 MHz mode, the measured current noise PSD is
∼3.7 pA/Hz1/2, which is a fairly typical value for BJT-input
LNAs designed to operate at low impedance levels (e.g., 50 �

systems). The current noise PSDs for the other modes are
similar; the measured values for the 2nd, 3rd, 4th, and 5th
LE modes are 2.1, 2.4, 2.3, and 3.4 pA/Hz1/2, respectively.
The input-referred noise floor of the entire electronics chain
(LNA, phase shifter, attenuator, and splitter) is dominated
by the LNA, as expected, and has a measured value of
7.5 nV/Hz1/2. This result is larger than the ON-resonance
thermomechanical noise generated by the MEMS resonator,
S1/2

v,MEMS ∼4.1 nV/Hz1/2.
The thermal noise of the electronics is larger than, but just

about 2×, that of the MEMS resonator, they are both expected
to contribute to the phase noise of the 10 MHz oscillator. Nev-
ertheless, the phase noise of the 10 MHz oscillator is excellent,
surpassing that of earlier oscillators based on ∼10 MHz Si
beam resonators [35], 11 MHz DETF resonators [36], and
∼11 MHz Ni resonators [37], and therefore promising for
ultralow-power timing and clock applications.

Next, we characterize the frequency stability (Allan devia-
tion) [75], [76], [77] for this mode. For frequency-shift-based
sensing applications, the frequency fluctuation noise sets the
ultimate limit of detection sensitivity [74]. Finding the rela-
tionship between the rms fractional frequency shift and the
Allan deviation carefully requires analysis of their definitions
followed by comparison in the time domain. The instantaneous
fractional frequency shift can be written as

y(t) =
δ f0

f0
=

f (t) − f0

f0
. (15)

The measured value of fractional frequency shift for the
arbitrary i th time interval with averaging time τA is defined
as

yi =
1
τA

∫ ti+τA

ti
y(t)dt. (16)

The rms fractional frequency shift is defined as

δ f0

f0
=

〈(
f − f0

f0

)〉1/2

=
1
f0
⟨(F − f0)⟩

1/2 (17)

where ⟨. . .⟩ denotes infinite time average or ideal ensemble
average. For practical measurements, the rms fractional fre-
quency shift is dependent on a final ensemble average as

δ f0

f0

∼=

 1
(N − 1)

N−1∑
i=1

(
f i+1 − f i

f0

)2
1/2

(18)

where f i is the measured average frequency in the i th discrete
time interval of τA. The rms value is dependent on sample
standard deviation over the finite time interval.

The Allan variance is defined as the sample variance of two
adjacent averages of the instantaneous fractional frequency
shift, which is expressed as

σ 2
A(τA) =

〈(
yi+1 − yi

√
2

)2
〉
. (19)

Thus, the Allan variance from a finite data ensemble for a real
measurement can be written as

σA
2(τA) =

1
2(N − 1)

N−1∑
i=1

(
f i+1 − f i

f0

)2

. (20)

Since the Allan deviation is defined as the square root of
Allan variance, it is written as

σA(τA) =

 1
2(N − 1)

N−1∑
i=1

(
f i+1 − f i

f0

)2
1/2

. (21)

The frequency-domain phase noise and time-domain Allan
deviation are correlated as

σA(τA)=
2
√

2
( f0τA)

[∫
∞

0
L(1 f )

(
sin

1 f τA

2

)4

d(1 f )

]1/2

. (22)

Considering the frequency stability limit imposed by ther-
momechanical motion, we find that the Allan deviation has
σA(τA) ∼ τ

−1/2
A dependency using (13) and (22)

σA(τA) =
1
Q

√
πkBT
PcτA

. (23)

Similarly, we get σA(τA) ∼ τ
1/2
A for 1/ f 2 drifting frequency

noise (for which the phase noise follows a 1/ f 4 power law)
and σA(τA) independent of τA (∼τA

0) for 1/ f frequency noise
(for which phase noise follows a 1/ f 3 power law).

We measure the frequency fluctuations of the 10 MHz
mode oscillator using a frequency counter in the closed-loop
measurement scheme [see Fig. 8(a)]. From the raw data [long
frequency traces, Fig. 10(a)], we compute the Allan deviation
[see Fig. 10(b)] using (20). The computed Allan deviation
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Fig. 10. (a) Measured long-trace frequency of the 10 MHz oscillator
over 4 h. (b) Computed Allan deviation showing τ1/2

A and τ1
A power laws.

data from frequency fluctuations gives us both the short-term
stability (σA ≈ 5.5 × 10−9 for an averaging time of τA = 1 s)
and long-term stability (σA ≈ 1 × 10−6 for τA = 103 s). The
Allan deviation data follow a τ

1/2
A power law for short-term

averaging (τA = 3–15 s) and follow a τ 1
A power law for

long-term averaging (τA = 25–2000 s). Our measured best
Allan deviation of 5.5 × 10−9 at τA = 1 s for this mode is
smaller than for previously reported 10-MHz Si in-plane Lamé
mode resonators [63]. Given this mode’s effective mass meff =

3.92 × 10−10 kg and mass responsivity of ℜm = ω0/(2meff) =

0.08 Hz/ag, a mass sensitivity (or resolution) of ⟨δm⟩τA
=

2meff⟨δ f0/ f0⟩τA
= 6.1 fg is achieved for short measurement

times (τA = 1 s) [78]. This mode also shows a high force
sensitivity of ⟨δF⟩ = ((4kBT meffω0/Q))1/2

= 148 fN/Hz1/2

limited by its thermomechanical motion.
The correlation between frequency-domain phase noise

and time-domain frequency stability (Allan deviation) can
be understood from Figs. 9(c) and 10(b). While the white
and flicker noise affect the short-term stability, the long-term
stability is compromised by drift and aging performance.

C. Oscillator Using the 30 MHz Resonance Mode
We characterize [see Fig. 11(a)] the 2nd LE mode

(30.82 MHz) by increasing vRF from 100 mV to 1.2 V
and obtain Q= 4350 [see Fig. 11(b)] by using the simple
harmonic resonator model. Even at vRF = 1.2 V (highest
output voltage from the network analyzer), we find linear
resonance for this mode. Thus, the 2nd LE mode has higher
DR as well as RF power handling compared to the 1st LE
mode. We measure both open-loop response [see Fig. 12(a)]
and closed-loop oscillator performance [see Fig. 12(b)] using
the same measurement method as used for the 10 MHz
oscillator.

Fig. 11. (a) Magnitude and phase of the admittance parameter
Y21 converted from measured S-parameters in the linear regime for
the 30 MHz mode. (b) Fitting of the resonance using the damped
(finite-Q) harmonic resonator model.

Fig. 12. (a) Open-loop gain and phase calibration for realizing the
30 MHz oscillator. (b) Measured output power spectrum of the 30 MHz
oscillator.

D. Allan Deviation and Phase Noise of the 30 MHz
Oscillator

We first compute the Allan deviation for this oscil-
lator from frequency trace data recorded for 4 h [see
Fig. 13(a) and (b)]. This 30 MHz oscillator has short-term
stability σA (1 s) ≈ 1.8 × 10−7 and long-term stability σA

(103 s) ≈ 1.5 × 10−6 [see Fig. 13(b)], better than the Si coun-
terpart discussed in [79]. The Allan deviation data follow a
τ

1/2
A power law for long-term averaging (τA = 102–103 s). This

mode has an effective mass meff = 3.8 × 10−10 kg and a mass
responsivity ℜm = 0.25 Hz/ag. We accordingly calculate a
mass sensitivity (or resolution) of ⟨δm⟩τA

= 2meff⟨δ f0/ f0⟩τA
=

193 fg for short measurement time (τA = 1 s).
Next, we investigate the phase noise performance (see

Fig. 14), following the same procedure as in Section III-B.
Phase noise follows a 1/ f 2 power law over offset frequencies
from 1 kHz to 1 MHz, suggesting that it is dominated by
fluctuating sources with white spectra [69], [70]. This oscilla-
tor achieves a close-in carrier phase noise of −100 dBc/Hz (at
1 kHz offset) and far-from carrier phase noise of −160 dBc/Hz
(at 1 MHz offset). The far-from carrier phase noise for this
oscillator satisfies the 13 MHz GSM requirements [80]. The
higher close-in carrier phase noise in this mode can be due
to lower carrier power (−18 dBm), higher motional resistance
(2.1 k�), and lower Q compared to the fundamental mode.

E. Oscillator Using the 65 MHz Resonance Mode
We further study the 3rd LE mode resonance (65.51 MHz)

[see Fig. 15(a)] by increasing vRF from 100 mV to 1.2 V and
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Fig. 13. (a) Measured long-trace frequency of the 30 MHz oscillator
over 4 h. (b) Computed Allan deviation showing τ1/2

A power law.

obtain Q= 4230 [see Fig. 15(b)] by using the simple harmonic
resonator model. At vRF = 1.2 V, the device motion is still
in a linear regime similar to the 2nd LE mode. We measure
both open-loop responses [see Fig. 16(a)] and closed-loop
oscillator performance [see Fig. 16(b)] using the same mea-
surement method as discussed for the fundamental mode. The
closed-loop spectrum shows near sinusoidal oscillation with a
carrier power near 0 dBm.

F. Allan Deviation and Phase Noise of the 65 MHz
Oscillator

The frequency stability measured from the 65 MHz oscilla-
tor is impressive (see Fig. 17), which features the short-term
Allan deviation of σA (1 s) ≈ 4 × 10−9 and the long-term
stability of σA (103 s) ≈ 2 × 10−7, all at room temperature.
These are the best frequency stability specifications achieved
among our oscillators. The Allan deviation data follow a τ

1/2
A

power law from τA = 12−100 s and a τ 1
A power law from

τA = 200−1800 s. Given this mode’s effective mass meff =

3.14 × 10−10 kg and mass responsivity of ℜm = 0.104 Hz/ag,
a mass sensitivity (or resolution) of 3.55 fg is expected for
short measurement time (τA = 1 s). Even though this 3rd LE
mode has high stiffness (keff = 5.9 × 107 N/m), the oscillator
referenced to it still offers an intrinsic force sensitivity of
⟨δF⟩ = 748 fN/Hz1/2 limited by thermomechanical motion.

The measured phase noise of this 3rd oscillator follows 1/ f 3

power law in the 120 Hz−1.2 kHz offset frequency range
(suggesting contribution from flicker noise) and then flattens
out (suggesting contributions from amplitude noise), and after
that, it starts decreasing again (see Fig. 18). The phase noise is
−105 dBc/Hz at a 1 kHz offset and −130 dBc/Hz at a 1 MHz
offset. All these specifications are pretty good for a 65 MHz
MEMS oscillator.

Fig. 14. Phase noise measured from the 30 MHz oscillator. The
magenta dashed line shows 1/f2 power law.

Fig. 15. (a) Magnitude and phase of the admittance parameter Y21
converted from measured S-parameters in the linear regime for the
65 MHz mode. (b) Fitting of the resonance using the damped (finite-Q)
harmonic resonator model.

Fig. 16. (a) Open-loop gain and phase calibration for realizing the
65 MHz oscillator. (b) Measured output power spectrum of the 65 MHz
oscillator.

G. Oscillator Using the 95 MHz Resonance Mode

We characterize the 4th LE mode resonance (95.82 MHz)
[see Fig. 19(a)] by increasing vRF from 0.1 to 1.2 V and
obtain Q= 2630 [see Fig. 19(b)] by using the simple harmonic
resonator model. Even at vRF = 1.2 V, the device motion is
still in a linear regime similar to the 2nd and 3rd LE modes.
We measure both open-loop response [see Fig. 20(a)] and
closed-loop oscillator performance [see Fig. 20(b)] using the
same measurement method as discussed for the fundamental
mode. The closed-loop spectrum is nearly sinusoidal but
does exhibit unwanted spurs coming from spurious resonance
modes.

H. Allan Deviation and Phase Noise of the 95 MHz
Oscillator

We compute the Allan deviation from frequency trace data
recorded for 4 h [see Fig. 21(a) and (b)]. The 95 MHz
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Fig. 17. (a) Measured long-trace frequency of the 65 MHz oscillator
over 4 h. (b) Computed Allan deviation showing τ1/2

A and τ1
A power laws.

Fig. 18. Phase noise measured from the 65 MHz oscillator, which
follows 1/f3 power law from 100 Hz to 1 kHz offset frequency.

Fig. 19. (a) Magnitude and phase of the admittance parameter Y21
converted from measured S-parameters in the linear regime for the
95 MHz mode. (b) Fitting of resonance using the damped (finite-Q)
harmonic resonator model.

oscillator has the short-term stability σA (1 s) ≈ 5 × 10−8

and the long-term stability σA (103 s) ≈ 1.2 × 10−7 [see
Fig. 21(b)]. The Allan deviation data follow a τ

−1/2
A power

law for very short averaging time (τA = 0.1–0.4 s). This
mode has effective mass meff = 1.802 × 10−10 kg and mass
responsivity ℜm = 1.66 Hz/zg. We calculate a mass sensitivity

Fig. 20. (a) Open-loop gain and phase calibration for realizing the
95 MHz oscillator. (b) Measured output power spectrum of the 95 MHz
oscillator.

Fig. 21. (a) Measured frequency trace of the 95 MHz oscillator over
4 h. (b) Computed Allan deviation showing τ−1/2

A power law.

(or resolution) of 25.5 fg for short measurement time (τA =

1 s) for this oscillator mode.
Next, we investigate the phase noise performance (see

Fig. 22), following the same procedure as in earlier sections.
The phase noise of this oscillation mode follows a 1/ f 3

power law from 0.1 to 1 kHz range suggesting contribu-
tion from flicker noise. It is dominated by amplitude noise
from 6 to 10 kHz. We measure a close-in carrier phase
noise of –106 dBc/Hz at 1 kHz offset (which is lower than
previously reported ∼100 MHz AlN contour-mode resonator-
based oscillators [81]) and far-from carrier phase noise of
−132 dBc/Hz at 1 MHz offset. These are pretty good for a
95 MHz oscillator.

I. Oscillator Using the 233-MHz Resonance Mode

Finally, we characterize the 5th LE mode resonance
(233.84 MHz) [see Fig. 23(a)] by increasing vRF from 0.1 to
1.2 V and obtain Q= 2138. At vRF = 1.2 V, we find linear
resonance for this mode similar to the 2nd, 3rd, and 4th LE
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Fig. 22. Phase noise measured from the 95 MHz oscillator compared
with [81], which follows 1/f3 power law from 100 Hz to 1 kHz offset
frequency.

Fig. 23. (a) Magnitude and phase of the admittance parameter Y21
converted from measured S-parameters in the linear regime for the
233 MHz mode. (b) Open-loop gain and phase calibration for realizing
the 233 MHz oscillator. (c) Measured output power spectrum. (d) Time-
domain oscillation of the 233 MHz oscillator.

modes. There exists another resonance mode (234.2 MHz)
near the 5th LE mode. We carefully calibrate the open-loop
response so that the Barkhausen criteria are only satisfied for
the 5th LE mode at 233.8 MHz. The open-loop responses
[see Fig. 23(b)] and closed-loop oscillator performance [see
Fig. 23(c) and (d)] are measured in the same measurement
method as discussed in earlier sections. We use Miteq AU-3A-
0150 low-noise amplifier [42] and Mini-Circuits SPHSA-251+
phase shifter [47] for this oscillator characterization. The
closed-loop spectrum shows a carrier power near −3 dBm.

J. Allan Deviation and Phase Noise of 233 MHz
Oscillator

For the 233 MHz oscillator, we first compute the Allan
deviation from frequency trace data recorded for 4 h [see
Fig. 24(a) and (b)]. The oscillator has the short-term stability
of σA (1 s) ≈ 6.8 × 10−9 and the long-term stability of σA

(103 s) ≈ 2.5 × 10−7 [see Fig. 24(b)]. The Allan deviation data

Fig. 24. (a) Measured long-trace frequency of the 233 MHz oscillator
over 4 h. (b) Allan deviation computed from frequency trace largely
follows τ1

A power law for long averaging time.

Fig. 25. Phase noise measured from the 233 MHz oscillator compared
with [82]. The magenta and green dashed lines show 1/f3 and 1/f2 power
laws, respectively.

Fig. 26. Phase noise of all five oscillators benchmarked against
previously reported electrostatic MEMS oscillators [15], [35], [36].

remain constant (follows a τ 0
A power law) for short averaging

time (τA = 0.1–1 s) and follows a τ 1
A power law for long

averaging times (τA = 50–900 s). Given this mode’s effective
mass meff = 4.43 × 10−11 kg and mass responsivity ℜm =
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TABLE III
BENCHMARKING OF PHASE NOISE AND FREQUENCY STABILITY (ALLAN DEVIATION)

16.52 Hz/ag, we calculate a mass sensitivity (or resolution) of
⟨δm⟩τA

= 0.85 fg for short measurement time (τA = 1 s). This
is the best mass sensitivity achieved among all five oscillators.

We also investigate the phase noise performance (see
Fig. 25), following the same procedure as in earlier sections.
Phase noise follows a 1/ f 3 power law from 100 to 700 Hz
suggesting contribution from flicker noise and follows a 1/ f 2

power law from 1.5 to 15 kHz, suggesting that this region
is dominated by thermal noise. The measured phase noise is
−92 dBc/Hz at 1 kHz offset and −138 dBc/Hz at 1 MHz
offset. This oscillator’s close-in carrier phase noise at a
1 kHz offset is lower than that of the earlier 222 MHz AlN
contour-mode resonator [82].

IV. PERFORMANCE SUMMARY AND BENCHMARKING

For a fair comparison, the phase noise data of all oscillators
have been properly scaled to a 10 MHz carrier frequency.
From this plot (see Fig. 26), we can observe that the phase
noise of all our five oscillators (referenced to the five LE
modes) surpasses the performance of earlier oscillators based
on ∼10 MHz Si beam [35] and 11 MHz DETF resonators [36].
Thus, it is promising for ultralow-power timing and clock
applications.

The best Allan deviation reported for MEMS resonators is
1.5 × 10−9 for a dual Lamé mode resonator [83] with compli-
cated temperature compensation and ovenization. This device
was also encapsulated using SiTime’s very-high-temperature

(∼1100 ◦C) Epi-Seal technology [84]. In contrast, our AlN/Si
LE multimode oscillators show impressive stability even
in everyday lab conditions without any special tempera-
ture control, compensation, or packaging. Specifically, the
measured Allan deviation of the 10, 65, and 233 MHz oscil-
lators surpasses various MEMS/NEMS oscillators reported to
date. Furthermore, the Allan deviation data for these modes
are approximately one order of magnitude lower than the
previously reported piezoelectric MEMS/NEMS oscillators.
Table III summarizes the phase noise and Allan deviation of
all five oscillators and compares them with earlier work in this
frequency range.

V. CONCLUSION

In summary, we have demonstrated five stable
self-sustaining feedback oscillators (clocks) with clock
frequencies at ∼10, 30, 65, 95, and 233 MHz, referenced to
five high-Q LE modes of a single piezoelectric AlN/Si MEMS
resonator. All the five oscillators exhibit high performance
and impressive frequency stability, surpassing various
MEMS/NEMS oscillators reported to date. The 10 MHz
oscillator has better phase noise performance (−116 dBc/Hz
at 1 kHz offset) than earlier counterparts with capacitive
transduction. Due to low phase noise, these oscillators hold
great potential for next-generation single-chip multifrequency
RF transceivers. All five oscillators also clearly demonstrate
strong potential for real-time multimode resonant sensing and
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inertial imaging, with best frequency stability measured by
the Allan deviation down to 10−9 level. Future work includes
heterointegration of AlN/Si MEMS resonators with a CMOS
ASIC to realize a fully integrated multimode oscillator
system-in-package (SiP).
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