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Chemical vapor infiltration (CVI) is a widely adopted manufacturing technique used in producing
carbon-carbon and carbon-silicon carbide composites. These materials are especially valued in the
aerospace and automotive industries for their robust strength and lightweight characteristics. The
densification process during CViI critically influences the final performance, quality, and consistency of
these composite materials. Experimentally optimizing the CVI processes is challenging due to the long
experimental time and large optimization space. To address these challenges, this work takes a
modeling-centric approach. Due to the complexities and limited experimental data of the isothermal
CVI densification process, we have developed a data-driven predictive model using the physics-
integrated neural differentiable (PiNDiff) modeling framework. An uncertainty quantification feature
has been embedded within the PiNDiff method, bolstering the model’s reliability and robustness.
Through comprehensive numerical experiments involving both synthetic and real-world
manufacturing data, the proposed method showcases its capability in modeling densification during
the CVI process. This research highlights the potential of the PiNDiff framework as an instrumental tool
for advancing our understanding, simulation, and optimization of the CVI manufacturing process,
particularly when faced with sparse data and an incomplete description of the underlying physics.

Carbon-carbon (C/C) and carbon-silicon carbide (C/SiC) composites are
recognized as vital materials for applications exposed to extreme thermal
conditions, notably in contexts such as airplane brake discs, reentry vehicle
heat shields, and rocket engine nozzles. These composites are distinguished
by their exceptional thermal stability and superior mechanical properties
under high temperatures. Their fabrication is largely achieved via the iso-
thermal chemical vapor infiltration (I-CVI) process, which is known for its
precision in defining final properties, its adaptability in accommodating
complex geometries, and its ability to yield final products that are both
lightweight and thermally robust. Since the performance, consistency, and
quality of these composites are largely influenced by the manufacturing
procedures, optimizing the I-CVI process is of great importance'”. How-
ever, this is not a trivial task and presents significant challenges, given the
long duration of I-CVI, often lasting months, rendering conventional trial-
and-error approaches infeasible’.

The inherently time-consuming nature of the I-CVI process
necessitates the creation of a predictive model that enables efficient
computer-based simulations. This strategic shift offers the potential for

markedly reduced turnover times, allowing for a comprehensive
exploration of varied manufacturing conditions. A reliable and efficient
computer-based predictive model can enable us to effectively optimize
the I-CVI process, exerting finer control over its intricacies, with the aim
of reducing production cycles and ensuring resultant materials meet
targeted properties. Although several numerical models, particularly
those focusing on Carbon and SiC deposits, have been developed for the
I-CVI process in the literature*™, they face inherent challenges. These
models often rely on multiple assumptions due to unresolved/unknown
physical phenomena, which compromise their accuracy and reliability.
Most of the time, these models are tailored to specific processes, limiting
their adaptability to other new process designs. Given the multifaceted
physical interactions of I-CVI and its nuanced mechanical and chemical
mechanisms, a purely physics-based modeling approach appears
impractical and non-scalable. Moreover, the development and simu-
lation of these models demand substantial computational resources,
restricting their immediate applicability for optimization and uncer-
tainty assessments.
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To effectively simulate and optimize the I-CVI process, the creation of
a new modeling framework that is both generally applicable and scalable is
indispensable. The growing availability of data offers promising avenues for
machine learning (ML)-based, data-driven modeling techniques to make
substantial advancements in this regard. Deep neural networks (DNNs),
cornerstones of ML, have long been recognized for their efficacy in diverse
fields, ranging from speech recognition and image analysis to natural lan-
guage processing. Harnessing the rapid advancements in computational
resources and algorithmic developments, along with a vast accumulation of
experimental and simulation data, DNNs have been established as essential
tools in the domain of scientific modeling and simulation. Their impact is
notably evident in the field of scientific machine learning (SciML), which is
progressively being adopted in composite manufacturing prediction’"" and
optimization'*"°. Through SciML, researchers have been able to identify
previously unknown constitutive relationships of composite materials and
have optimized the speed and efficiency of multiscale simulations'’. Wang et
al’, for instance, utilized ML techniques to analyze patterns within additive
manufacturing datasets and developed models that describe process-
structure-property relationships across different parameters. Huang et al."*
highlighted the advantages of their data-driven model, which was trained on
a previously published experimental dataset, in predicting the mechanical
characteristics of carbon nanotube-reinforced cement composites, espe-
cially when compared to traditional response surface methods. Nguyen
et al.” investigated the impact of curing on stress development and tensile
transverse failure response by integrating a thermo-chemo-mechanical
finite element model with a DNN-based constitutive model. This allowed
them to understand matrix mechanical property changes in relation to
temperature and curing levels. Kopal et al."® employed regression neural
networks to predict the curing properties of rubber blends enriched with
carbon black, considering both blend types and curing temperatures. Back
et al.” employed graph neural networks to study the effects of nanoparticle
distribution patterns and agglomeration phenomena in polymers. Li et al.*®
designed a data-driven DNN model to learn the nonlinear inter-
dependencies between I-CVI process parameters and the resulting physical
properties of C/C composites, which can be used for process optimization.
Keith et al.”” used a combination of NN for real-time inverse modeling and
multi-objective process optimization of composites for active manufactur-
ing control. Yang etal.”"* used ML with Bayesian optimization to optimize
thermal properties.

While these pure data-driven DNN methods have been successful
across diverse applications in composite manufacturing modeling, there is a
noticeable gap in the literature concerning their use for modeling the CVI
process. One of the primary obstacles is the substantial data requirement
intrinsic to these models. Collecting sufficient data to effectively train and
utilize a purely data-driven DNN model for CVI optimization can be
extremely challenging, if not infeasible. Another limitation is the restricted
generalizability of these models, where failures were often observed beyond
the training regimes'’, rendering them less suited for complex CVI processes
that operate under a spectrum of manufacturing conditions. The physics-
informed deep learning (PIDL) strategy, leveraging physics principles to
enhance the design, training, or inference of DNNS, presents a promising
potential solution to these challenges. It is worth noting that the PIDL
approach has garnered attention and demonstrated considerable potential
across various domains, including solid mechanics™ ™, turbulent flows™™,
materials”’, heat transfer’>*, and biomechanics® . A notable PIDL
method is the Physics-informed neural network (PINN)****, wherein the
governing equations are incorporated into the loss function to regularize the
training process, thereby reducing the required labeled data. This is achieved
by minimizing the violation of physics-based constraints and governing
laws, effectively guiding the neural network to learn solutions that not only
fit the observed data but also respect the physical principles. However, the
introduction of nonlinearity into the loss function can pose significant
challenges in optimization*, and the physics-based loss function requires
complete governing equations of the underlying physics, which are not
available for the intricate I-CVT processes.

To integrate incomplete physics with deep learning, the hybrid dif-
ferentiable neural modeling emerges as a notable alternative PIDL method,
which fuses physics-derived mathematical models with the robust learning
capability of neural networks, ensuring efficient learning even with limited
data. Differentiable programming (DP) serves as a cornerstone in this fra-
mework, allowing for the joint optimization of both DNNs and physics-
centric components within a unified training environment. The develop-
ment of differentiable physics solvers and hybrid neural models has recently
gained traction, exemplifying their adaptability across various scientific
fields*’. Notably, Akhare et al.”’ introduced a physics-integrated neural
differentiable (PiNDiff) framework, developed for the curing process of
composites. This approach seamlessly integrates partially-known physics
into neural networks while preserving the mathematical integrity of gov-
erning equations through DP. Akhare et al. demonstrated the effectiveness
of the PiNDiff method in capturing the interplay between heat transfer and
curing dynamics™. The method outperforms the traditional blackbox DNN
like ConvLSTM in terms of prediction accuracy and generalizability, and it
can be trained with indirect labels that are more accessible in practical
conditions™. Driven by its potential, our objective in this work is to employ
the PINDIff framework to develop a predictive model for the I-CVI process
in fabricating C/C composites, highlighting its ability to work with partially-
known physics and sparse indirect measurements. Extending from its ori-
ginal formulation, our study broadens the PiNDiff’s scope to the I-CVI
process, governed by both hyperbolic and elliptic partial differential equa-
tions (PDEs). A primary thrust of this effort is to distill the existing physics-
based model (Fig. 1) into a more concise PDE system (Fig. 2) that serves as
the physics-based backbone of the PINDiff model. Based on the distilled
PDE system and utilizing the differential hybrid methodology™, we con-
struct a network as depicted in Fig. 3 to build a predictive model for the
I-CVI process. However, this simplification, along with the potential over-
parameterization of neural operator components, may introduce errors in
predictions. To address this issue, we extend the PiNDiff framework by
integrating uncertainty quantification (UQ) features, utilizing Deep
Ensemble (DeepEn) techniques™. Consequently, our probabilistic PINDiff
I-CVI model is not only able to learn and predict I-CVI processes with
limited training data but also to gauge the confidence of its predictions. This
development facilitates a more comprehensive evaluation of the model’s
reliability, thereby guiding decision-making processes more adeptly. The
rest of the paper is organized as follows: Numerical experiments of the
proposed I-CVI model and its comparison with experimental data are
presented first in the “Results” section. Following this, the findings of the
paper are discussed in the “Discussion” section. Finally, the overall meth-
odology of the PINDiff I-CVI model is described in the “Methods” section.

Results

The existing physics-based model governing the I-CVI process is articulated
through Egs. (1)—(3), which are condensed to Egs. (4) and (5), as described
in the “Methods” section. The extracted backbone physics of I-CVI pro-
cesses involve the spatiotemporal dynamics of the porosity e(x,t) and
effective molarity C(x, t) fields inside preform, which vary based on oper-
ating conditions (temperature and partial pressure) and initial porosity &.
These complex dynamics are determined by effective diffusion coefficient
Deg(x, t) and reaction rate K(x, ) of the precursor gas along with the preform
deposition effective surface area S,(x,t), which are also spatiotemporal
fields. Given the initial porosity & and density of composite p.o (before
starting I-CVI process), and density of depositing material p,, the density of
composite at any time ¢ can be calculated as p., = (eg — &)ps + pco. Fur-
thermore, the total mass of the composite can be calculated as m, = [, ,dx,
which is usually observable during the manufacturing practice. This
extracted backbone physics enables the creation of a data-driven prediction
model with fewer trainable parameters, a crucial consideration given the
limited monitoring data for the I-CVI process. However, due to this sim-
plification, obtaining the closed form for Deg; K, and S, can be a challenging
task. Therefore, three distinct neural networks, D, (-; 0, ), K,,,,(-; 0 ), and
Spn(5 65 ), are employed to capture the unknown operators Deg(, ),
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Fig. 1 | A schematic illustrating the I-CVI process.
Depicted are the dominant chemical reactions spe-
cific to hydrocarbon deposition, integrated with
visual representations of the varying scales of mul-
tiphysical and multichemical phenomena inherent
in the process.
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K(x, t), and S,(x; 1), respectively, as detailed in the “Methods” section. Here,
Op,.. Ok, and O are trainable parameters. Based on this, a PINDiff I-CVI
network as deplcted in Fig. 3, was constructed for the I-CVI process pre-
diction model.

The PiNDiff I-CVI model, enhanced with a probabilistic learn-
ing approach, is evaluated using both synthetic and real experiment
datasets from C/C composite manufacturing processes. With the
synthetic dataset, a comprehensive set of numerical experiments is
conducted to investigate the model’s performance in inference, pre-
diction accuracy, and its capability to quantify uncertainty across
diverse training settings. In evaluating its real-world applicability, the
model also undergoes validation with an experimental dataset
sourced from Benzinger and Huttinger’s work’. This exercise
allows an exploration of the model’s effectiveness in forecasting the
densification process, especially under varied partial pressures, some
of which deviate from those seen during model training. Extending
the model’s evaluative scope, the PiNDiff approach is employed to
model the scenarios involving multiple I-CVT cycles, mirroring the
manufacturing protocols employed by Honeywell Inc. when

producing C/C composites for aeroplane brake systems. Both syn-
thetic and real multi-CVI datasets from Honeywell are used for this
assessment.

Inference of unknown physics

The PiNDiff I-CVI model incorporates three different neural networks,
D, (5 0p,), K5 8x), and S, (-5 65 ), to capture the unknown operators
D.(x, t), K(x, ), and S,(x, t), respectively, as detailed in the “Methods”
section. To evaluate the model’s capability in inferring these unknown fields
from indirect mass measurements, we conducted a set of three experiments
using synthetic data. In each synthetic experiment, one of the operators—
either D.g K, or S,—was treated as unknown and to be inferred with its
corresponding neural network. The representations for the other two
operators were provided based on the “ground truth” model presented in
the “Synthetic data generation” section. Due to the inherent difficulties in
collecting experimental data, the training dataset exclusively comprises
measurements of the preform’s mass taken at varied time intervals
throughout the I-CVI cycle. Namely, only these sparse mass data points are
used for model training (blue dots in the last column of Fig. 4). In the

npj Computational Materials | (2024)10:120



https://doi.org/10.1038/s41524-024-01307-5

Article

Fig. 3| The overview of the learning architecture of
the PiNDiff model for the I-CVI process. a The
auto-regressive learning architecture of the PINDiff
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synthetic experiments where Deg(x,f) and S,(x,f) were considered
unknown, training was conducted using a single simulation at a temperature
of 1300 K and a pressure of 3200 Pa. This setup aimed to evaluate the
model’s inference capabilities under limited data conditions. For synthetic
experiments with K(x, f) treated as unknown, the PINDiff model was trained
on simulations with three different temperatures (1200 K, 1250 K, and 1300
K) and a fixed pressure of 3200 Pa to test the model’s capability. This was
done to assess the model’s ability to establish a mapping between the
operational condition—specifically temperature—and the reaction rate,
influencing the precision of its predictions. In Fig. 4, the PINDiff model’s
predicted mass growth (represented by the solid line) aligns well with the
synthetic data (indicated by dots) across all three cases. The trained model is
also able to accurately capture the spatio-temporal dynamics of both the
unknown parameters (Deg, Sy, and K) and state variables (porosity and
molarity) just from the mass growth data points, as evident by examining
two critical locations on the preform: it’s center (green) and corner or
surface (red). Additionally, in the third synthetic experiment, the PINDiff
model accurately captured the mapping between the temperature and the
reaction rate K. The close match between the model’s predicted mean (solid
line) and the ground truth (dashed line) underscores the PiNDiff model’s
capability to infer unobserved states and parameters from limited, indirect
observations. Furthermore, the model provides a quantification of the
uncertainty associated with each prediction. These uncertainties are notably
low, given that only one of the functional representations is assumed to be
unknown.

An extended investigation was conducted where the functional
forms of all three operators, D, K, and S, were treated as unknown
and trained using the same dataset. The results of this exploration are
illustrated in Fig. 5. Although the predictions for mass remain
accurate, the inferred mean values for the hidden states and para-
meters are slightly deviated more than those observed in the previous
synthetic experiments. This discrepancy arises due to the increased
complexity introduced by a diminished extent of known physics.
However, the model’s uncertainty in its predictions is elevated,
indicating a reduced confidence in its predictions. This highlights the
PiNDiff model’s ability to reasonably signal prediction confidence
through UQ when faced with different levels of unknown physics of

the system. Moving forward, all subsequent analyses will operate
under the assumption that D, K, and S, are unknown, mirroring
real-world scenarios.

Generalizability with respect to operating conditions

To assess the model’s generalizability across different input parameters, we
trained it using synthetic data generated from a diverse range of operating
conditions. Subsequently, it was validated against different sets of operating
conditions not encountered during training. This approach provides insight
into the model’s capability to handle and predict the I-CVI process for new
input scenarios beyond its training conditions.

To facilitate the I-CVI model in learning spatial dynamics, the preform
sample was segmented into three non-uniform sections along the z-direc-
tion, as visualized in the top-left panel of Fig. 6. The training was performed
using mass data of these segmented sections over time, as shown by blue
dots. These noisy data were generated under nine varying conditions,
involving three different temperatures (1200 K, 1250 K, and 1300 K) and
three different partial pressures (800 Pa, 1600 Pa, and 3200 Pa), as illustrated
in Fig. 7. The model’s excellent predictive capability is evident in the bottom-
left segment of Fig. 6, where its estimations closely match the projected mass
evolution across a span of 350 h for each piece. Additionally, the model
adeptly infers the spatio-temporal trajectories of porosity ¢, molarity C,
effective diffusion coefficient D.g, and effective deposition rate KS,. As
shown in Fig. 6, the confidence interval provided by the model adequately
encompasses the ground truth for the entire duration, indicating that the
proposed PiNDiff model can effectively uncover the hidden states/para-
meters from indirect data with quantified uncertainty.

To assess the generalizability of the trained I-CVI model, we test it to a
range of 25 unseen operating conditions, spanning different temperatures T'
from 1175 K to 1375 K and partial pressures P from 400 Pa to 4400 Pa. This
evaluation covers both interpolation and extrapolation domains within this
T-P parameter space. The results, particularly the predicted porosity across
these testing conditions, are visualized in Fig. 7. For reference, conditions
encountered during training are marked by blue squares within the T-P
space. Note that the dynamics of predicted porosity at the two distinct
locations are displayed solely for the testing conditions. For the operating
conditions within the interpolation domain, the model demonstrates a
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higher level of accuracy—its predictions aligned well with the ground truth
and are accompanied by a relatively confined uncertainty range. Remark-
ably, even though the model’s training was based on the dataset obtained
from just nine operating conditions (blue squares), it still demonstrates
strong capability in extrapolation. As shown in Fig. 7, for the temperatures
and partial pressures beyond the training range, the model not only delivers
accurate predictions but also maintains a credible uncertainty envelope that
encompasses the ground truth. As we move further from the training
conditions, the confidence intervals of model predictions increase, indi-
cating a higher uncertainty. It is clear that the extrapolative predictions are
naturally paired with a more expansive uncertainty envelope compared to
those from the interpolation domain, demonstrating that the model is able
to account for potentially diminished prediction fidelity in these unfami-
liar zones.

Obtaining detailed measurement data by segmenting multiple C/C
composite samples during the manufacturing process can be labor-intensive
and often impractical. Building upon our earlier study, here we focus on
assessing the model’s ability to generalize within the input operating para-
meter space using only the total mass data from the entire unsegmented
composite sample. This implies that our training dataset lacks detailed
spatial information, presenting a substantial challenge to the model’s
capacity for spatial field inference and prediction. Specifically, the training of
the PINDiff model, in this case, is exclusively based on total mass data. To
enhance the model’s training, a richer set of conditions was included,
including five temperatures (1200 K, 1225 K, 1250 K, 1275 K, and 1300 K)
and three partial pressures (800, 1600, and 3200 Pa), leading to a total of 18
training conditions, as illustrated by blue squares in Fig. 9. This broader
spectrum was deemed necessary due to the absence of spatial information in
the training set. The prediction and inference results of one training con-
dition are shown in Fig. 8. As displayed in the bottom-left of Fig. 8, the
trained model can accurately trace the mass trajectory over a 350-h interval
with minimum uncertainty. However, the inferred spatio-temporal
dynamics for D and KS, are notably deviated from the ground truth,
primarily attributed to the limited and spatially non-informative data.
Nonetheless, the estimated uncertainty of the prediction signals its inac-
curacies, and the confidence interval still envelopes the ground truth.
Despite the less accurate inferences for Dey and KS,, the spatio-temporal
behavior of the porosity and molarity remains plausible, which can be
credited to the PiNDiff model’s inherent capability of maintaining the

mathematical structure of the physics-derived models. Furthermore, the
model’s uncertainty predictions for molarity and porosity are both rea-
sonable and inclusive of the ground truth. Hence, even when faced with
limited and less descriptive data, the model remains resilient, with its
quantified uncertainty adeptly capturing variations in data quality. The
PiNDiff model, once trained, is tested under 30 operating conditions that
were not part of the training set, spanning both interpolation and extra-
polation regions within the T-P (1187 K-1327 K, 400 Pa-4400 Pa) para-
meter space. Figure 9 presents the results for the predicted porosity under
these unseen conditions. Similar to the previous synthetic experiment, the
model continues to provide reliable spatio-temporal porosity predictions for
both interpolated and extrapolated unseen operating conditions, and its
uncertainty reasonably covers the ground truth. Compared to the previous
cases with detailed mass data of segmented samples, the mean prediction of
porosity in this scenario tends to be less accurate and the uncertainty margin
also increases when training is reliant on total mass measurements of the
entire sample.

In previous studies, our PINDiff model showed promising capability in
inferring spatio-temporal fields such as porosity from readily accessible
mass-growth data. Expanding upon these studies, we now aim to assess the
model’s effectiveness when it has access to detailed local porosity data as
training labels. Given the significant challenges in measuring local porosity
fields—often necessitating invasive experimental methods—it’s impractical
to acquire local porosity data at each time step. Therefore, we have chosen to
train our PiNDiff I-CVI model using local porosity field data available only
after the completion of the I-CVI cycle, in addition to mass growth data. For
this assessment, we provided the model with final local porosity, repre-
senting the average/integral porosity across behaviors areas
(€oe = [ rex et = t,)dx), at 12 sample locations. Our training dataset
included threé temperatures (1200 K, 1250 K, and 1300 K) and three partial
pressures (800 Pa, 1600 Pa, and 3200 Pa), resulting in nine distinct training
scenarios, represented by blue squares in Fig. 10b. The trained model
demonstrated impressive accuracy in predicting the mass growth trajectory
across 350 h with minimal uncertainty, as depicted in Fig. 10a. Notably,
incorporating porosity field data into the training further improved the
model’s capacity to infer spatio-temporal fields beyond what is achievable
with mass growth data alone, yielding more accurate predictions. Moreover,
the uncertainty of the model prediction of these hidden spatiotemporal
fields are reduced.
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Fig. 7 | PiNDiff predictions on porosity with uncertainty for unseen partial pressure and temperature. The model is trained on synthetic mass data for three pieces.

Once trained, the PiNDiff model was tested under 25 operating con-
ditions that were not part of the training set, spanning both interpolation
and extrapolation regions within the T-P range (1175 K-1375 K,
400 Pa-4400 Pa). In Fig. 10b, the results for the predicted porosity under
these unseen conditions are presented. Consistent with previous findings,
the model reliably delivers accurate spatio-temporal porosity predictions for
both interpolated and extrapolated unseen operating conditions, with its
uncertainty reasonably encompassing the ground truth. Compared to the
previous case trained only by mass data, incorporating final local porosity
field data with mass data during training leads to more accurate mean
predictions of porosity, along with a narrower confidence interval.

Training on real experimental data from literature

Previous studies primarily evaluate the PINDiff I-CVI model using synthetic
datasets. In this section, we shift the focus to its performance on real-world
data. In particular, the training and testing of the PINDiff model are based
on real experimental data, as detailed in Benzinger and Huttinger’s work™>™.
Their seminal experiments concentrated on the I-CVI densification process,
maintaining methane at a constant temperature of 1100 °C, while adjusting
total pressures to either 20 kPa™ or 100 kPa*. Within these setups,
methane’s partial pressure was modulated and varied during the experi-
ments. The selected substrate for these experiments was a cylindrical, porous

alumina ceramic, with dimensions of 20 mm in height and 16 mm in dia-
meter and a total porosity of 23%. During the experiment, the mass gain
over time is measured given different partial pressures, and thus, two
datasets at different total pressures are available. These sparse mass mea-
surement data are plotted as triangles in Fig. 11. For both cases, the PINDiff
[-CVI model is trained with mass data from three different partial pressures
(case 1:5,8.5, 15 kPa and case 2: 10, 20, 50 kPa) and subsequently undergoes
testing on the other four partial pressures (case 1: 2.5,7.5, 10,20 kPa and case
2:5, 15, 30, 100 kPa) absent from the training set. Notably, two of these test
scenarios (case 1: 2.5, 20 kPa and case 2: 5, 100 kPa) were in the extra-
polation zone, falling outside the training condition range. Separate train-
ings are carried out for each experimental dataset, corresponding to the
20kPa and 100 kPa total pressures. Comparative analysis between the
PiNDift I-CVI model’s predictions and the real measurements across both
training and testing scenarios can be viewed in Fig. 11. The model’s pre-
dictions exhibited excellent alignment with the real data for both training
and testing partial pressures, attesting the learning and predictive capability
of the proposed model. Moreover, it is important to note that the model’s
uncertainty predictions are higher in regions where the training data are
absent. And, during testing phases, higher prediction uncertainty is
observed for elevated pressure values, suggesting diminished confidence in
the model’s predictions in those specific regions.
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Fig. 8 | Prediction and inference results of the trained PiNDiff I-CVI model with quantified uncertainty. Model is trained with synthetic data of total mass for the entire
composite sample.
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the PiNDiff I-CVI trained model with quantified uncertainty, and b model’s predictions on porosity with uncertainty for unseen partial pressure and temperature.

Modeling densification process via multiple I-CVI cycles

Previous results have demonstrated the PiNDiff I-CVI model’s proficiency
in learning unknown physics operators across various operating para-
meters. Consequently, the model holds great potential for predictive and
optimization tasks. In industrial manufacturing settings, however, gathering

experimental data under varied operational conditions can be prohibitively
costly and time-intensive. The routine extraction of composites for mass
data collection throughout the process also poses practical challenges.
Therefore, in large-scale applications, such constraints might result in very
limited data across the parameter space, thereby restricting the model’s
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training and predictive capabilities under different conditions. However,
with substantial knowledge—like the porosity field derived from the PiN-
Diff I-CVI model—it becomes feasible to postulate parameters for sub-
sequent experiments, facilitating optimization. In this section, we focus on
evaluating the model’s inference capability in a more realistic manufacturing
setting but under a single operational condition.

During the I-CVI process, the concentration of the precursor reactant
gas diminishes as it diffuses deeper into the preform, leading to a decelerated
deposition rate toward the preform’s core. As a result, deposition on the
preform’s external surface is faster compared to its interior. This preferential
exterior deposition causes the outer pores to seal prematurely before the
interior is adequately filled, obstructing subsequent gas diffusion and
impeding the densification process. In response to this challenge, industrial
entities such as Honeywell have adopted a technique of machining that
removes the outer layer to expose these pores inside again. Consequently, we

need a series of multiple I-CVI cycles performed consecutively, along with
the machining process, to ensure enhanced densification. Figure 12 provides
a schematic representation of three such interlinked I-CVI and machining
cycles. This cyclic methodology is adopted by Honeywell in their C/C
composite brake manufacturing protocol. Typically, during the I-CVI
phases, the brakes gain mass, which is then reduced during the machining
stages. Data harvested from Honeywell’s iterative I-CVI brake production
serves as the training data for our PINDiff I-CVI model in inferring porosity
distribution. Nevertheless, a challenge arises in Honeywell’s real manu-
facturing cases as the inferred quantities lack accompanying validation data.
To address this, initial cross-validation of the model is undertaken using
synthetic data of multi-CVI/machining cycles, synthesized in alignment
with established industry practices.

The proposed PiNDiff I-CVI model is modified to accommodate
multiple I-CVI cycles interspersed with machining phases. In the machining
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Fig. 14 | Prediction and inference results of the trained PiNDiff model with quantified uncertainty for multi-I-CVI and machining cycles. The model is trained with

synthetic data of the total mass for an entire brake.

interval, attributes like geometry, computational grid, and foundational
physical parameters (e.g., porosity from the previous cycle) are re-calibrated
in line with the post-machining preform specifications. Synthetic mass data
is collected at the end of each cycle.

Initially, the model is trained using synthetic data, aiming to assess its
inference capability for a given operating condition (1300 K and 3200 Pa).
The data used for training include mass measurements of three unevenly
segmented portions cut along the z-axis of the brake sample (blue dots in
Fig. 13). After undergoing 500 epochs of training, the PINDiff model can
accurately forecast the incremental brake mass gain throughout the man-
ufacturing cycles, as illustrated in Fig. 13. Moreover, the model also

accurately infers the spatio-temporal dynamics of key hidden parameters
and states such as D.g, KS,, molarity, and porosity, with its predictions
aligning closely with the ground truth, as evinced by their confinement
within the confidence intervals. In line with the previous results, the
uncertainty is lower as the training data contains spatial information. While
the model’s predictions might warrant caution under varied operational
scenarios, the derived porosity remains crucial, offering substantive insights
into the composite’s characteristics, and thereby facilitating the subsequent
optimization endeavors.

The PiNDiff model’s efficacy is subsequently examined using the total
mass as synthetic data rather than multiple cuts. lllustrated in Fig. 14, the
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results follow a similar trend to the previous case. After a training of 500
epochs, the model accurately predicts the mass trajectory throughout the
fabrication process. Additionally, the hidden parameters and states like D,
KS,, molarity, and porosity are also estimated by the model, where the mean
values agree with the ground truth reasonably well. It's noteworthy that, in
this setup, the model’s uncertainty bounds are more expansive than those in
the previous scenario that utilizes localized mass data. The increased
uncertainty arises from the comparatively diminished spatial information in
the present training dataset.

Lastly, we evaluate the PiNDiff model for learning and predicting
multiple CVI cycles using the real measurement data from Honeywell’s C/C
brake manufacturing processes. The results are presented in Fig. 15. The
trained model successfully captures the evolution of the densification pro-
cess throughout the manufacturing phase. Crucially, during its training, the
model offers spatio-temporal forecasts of porosity, an indispensable para-
meter for optimization endeavors. While no supplementary experimental
data exists for direct validation of inferred quantities, the model’s perfor-
mance with synthetic data suggests a substantial degree of reliability in its
predictions. Such capabilities of the PINDiff I-CVI model hold significant
potential for enhancing optimization strategies of CVI processes and
informed decision-making in the industry.

Discussion

This study presents the development and assessment of a physics-integrated
neural differentiable model for I-CVI processes. By seamlessly integrating
the partially known physics into a deep learning framework via differenti-
able programming, the PiNDiff model has established itself as an effective
modeling framework for the I-CVI process, showing competency even
when reliant on limited, indirect training datasets.

The PiNDiff model has been thoroughly evaluated through a series of
synthetic experiments and tests, confirming its effectiveness and cap-
abilities. Even when trained on limited and indirect synthetic data, the
model exhibits promising performance, accurately predicting mass
deposition and inferring the spatio-temporal fields of porosity, diffusion
coefficient, deposition rate, and molarity. A salient feature of the model is
its intrinsic capability to encapsulate and quantify uncertainties, parti-
cularly when confronted with incomplete physics and scarce data. Fur-
thermore, the PiNDiff model demonstrates its capability to generalize

across different operational conditions by accurately predicting the
spatio-temporal dynamics of porosity under unseen temperatures and
partial pressures. The model exhibits excellent performance in both
interpolation and extrapolation scenarios, with lower model uncertainty
observed in interpolation cases and higher uncertainty in extrapolation
cases. This showcases the model’s versatility and potential to effectively
predict the I-CVI process under a wide range of conditions while
accounting for its prediction confidence.

By leveraging real experimental data, notably from studies by Ben-
zinger and Huttinger, along with data obtained from Honeywell’s manu-
facturing processes, the PINDiff model reaffirmed its effectiveness and
ability in predictive modeling of the I-CVI processes. Notably, the model
successfully captures the higher uncertainty in regions where data was
absent during training. The results highlight the model’s potential to sup-
port process optimization and decision-making tasks, emphasizing its
practical applicability in real-world scenarios.

To conclude, the PiNDiff model proves to be a valuable tool for
understanding, simulating, and predicting the I-CVI densification process.
Its ability to integrate partially-known physics with deep learning enables
effective predictive modeling using sparse and indirect measurements.
While further comprehensive validation with more experimental data is
desirable, the PiNDiff I-CVI model offers a promising approach for
advancing the manufacturing of carbon-based composites to enhance their
performance and quality.

Methods
Isothermal chemical vapor infiltration (I-CVI) process: an
overview
CVI stands as a pivotal process in the production of composite materials,
notably C/Cand C/SiC composites. The core principle behind this process is
the infiltration of a porous preform using reactive gases, which undergo
chemical reactions to deposit solid material into the interstitial spaces of the
preform’s structure (known as the matrix), thereby resulting in a reinforced
composite. The isothermal CVI variant, known as I-CVT, distinguishes itself
by maintaining a constant temperature throughout the infiltration process.
A typical I-CVI procedure unfolds as follows:

* Preform design and creation: using materials such as carbon fibers, a

porous preform is meticulously crafted. Its structure is designed to
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embody the desired shape, serving as the foundational framework for
the final composite.

* Reactor chamber setup: the crafted preform is situated within a spe-
cialized reactor chamber for the I-CVI procedure. This chamber is not
only constructed to endure high temperatures but also engineered to
regulate gas flow during infiltration.

* Gas selection and introduction: depending on the intended composi-
tion of the resulting composite, specific reactive gases, such as hydro-
carbons or silanes, are channeled into the chamber. These gases contain
the essential elements required for the desired chemical reactions and
material deposition.

* Chemical reactions & material deposition: as these gases permeate the
preform, they undergo thermal reactions, especially on the surface of the
preform. Such chemical reactions facilitate the progressive deposition of
solid material —commonly carbon or a carbon-silicon carbide mix—
into the matrix of the preform layer by layer. This deposition
methodically fills the preform’s voids, thereby reinforcing its structure.

* Regulation of temperature and duration: the I-CVI process is generally
executed at a consistently elevated temperature, frequently between
900 °C to 1200 °C. Both the temperature and the process duration are
meticulously regulated to guarantee accurate deposition and desired
material characteristics. Depending on the intended composite
thickness and properties, the procedure’s duration can range from a
few hours to multiple days.

* Post-process refinement/machining: following the main I-CVI
procedure, the produced composite might necessitate further refine-
ments, such as surface treatments or precise machining, to fine-tune its
properties and dimensions.

The I-CVI process involves complex multiphysical and multichemical
phenomena operating over multiple spatial and temporal scales. These
include fluid dynamics, homogeneous gas-phase reactions, as well as
intricate heterogeneous reactions leading to surface deposition. A com-
prehensive schematic illustrating the dominant chemical reactions for
hydrocarbon deposition, along with the varying scales of these multiphysics
phenomena, is presented in Fig. 1.

Physics-based modeling for I-CVI process and challenges

The I-CVI process encompasses multiple interconnected physical phe-
nomena, including gas flow, diffusion, and both homogeneous and het-
erogeneous reactions, which can be mathematically modeled as a set of
partial differential equations (PDEs) describing the mass and momentum
conservation”**;

* Mass balance (reaction-diffusion): this equation portrays the interplay

between the reaction and diffusion of gas-phase species:

Aeapy) + V- (gpw) = DV(gp) + o k=1,...,N

i )

* Mass balance (deposition): this equation captures the dynamics of
species that contribute to deposition:

d(xpy)
ot

+ V- (o) = D Vi(gp) + o k=1,...,N,.  (2)

* Momentum balance for gas species: this encapsulates the conservation
of momentum for gas-phase species:

d(p,u)
ot

+ V- (puu)=V.o+pg+F (3)

In the above equations, N = Ng+ N is the total number of species,
where N, is the number of species in the gas phase and N; is the number of

species resulting in deposition; & represents the volume fraction of the k-th
species, pr and py is the average intrinsic mass density of the k-th species and
gas, Dy is the diffusion coefficient of the k-th species, and @, is the pro-
duction rate of the k-th species; u represents the gas velocity, o denotes the
total stress tensor, g is the external body force per unit mass, and F is the
macro-scale momentum force.

While the I-CVI process can be described by an extensive set of physics
principles, using numerical techniques to simulate these intricate phe-
nomena poses substantial challenges in practice. At the forefront of these
challenges is the need for a comprehensive understanding of the dominant
reactions and key parameters, such as the collision integral, crucial for
determining the diffusion coefficient Dy for all species. Such detailed
information, however, often remains elusive in many real-world applica-
tions. Moreover, translating these foundational physics concepts into pre-
dictive simulations demands numerically solving N+ 1 sets of mass and
momentum PDEs to capture the behavior of N species, thereby com-
pounding the complexity. A noteworthy caveat is that the most rigorous
physics-based models often fall short in capturing the actual measurements,
possibly due to an incomplete understanding of the underlying physics. For
instance, Kang et al.”” compared the experimental results of SiC densifica-
tion with predictions from physics-based numerical models that incorpo-
rated a variety of experimentally established reaction equations. The models,
however, failed to accurately match the experimental data. On successfully
constructing a numerical model, one is still confronted with its intractable
computational costs, making it infeasible for tasks such as optimization and
UQ. Additionally, these models are often tailored for a specific precursor
gas, limiting their applicability to that particular substance and requiring
reconfiguration for alternative precursor gases.

Probabilistic physics-integrated neural differentiable modeling
for I-CVI process
To address the challenges highlighted above, the physics-integrated neural
differentiable (PiNDiff) modeling framework, as proposed by Akhare
et al.”’, emerges as an innovative approach for constructing an effective
predictive surrogate model for the I-CVI process. This strategy leverages
both the established knowledge of physics and the insights learned from
sparse, indirect data. Central to the PiNDiff modeling framework is its
seamless fusion of deep learning capabilities with foundational physics
principles, resulting in a hybrid neural solver. Within the PINDiff module,
trainable DNNs are utilized to learn unresolved/undetermined physics,
while the non-trainable networks are pre-determined by the PDE operators
from the partially known physics. Notably, the entire architecture of this
hybrid neural solver is fully differentiable, facilitating its holistic training and
optimization. Therefore, the entire PINDiff model can be trained with
indirect labels without the need of pre-training the embedded DNNs
separately. Namely, the PiNDiff model is able to infer unobservable para-
meters and states from indirect data that are more accessible in practice. To
account for data scarcity and inherent model-form error, the PiINDiff
modeling framework is extended in this work to equip it with UQ capability.
To construct a PiINDiff surrogate model for the I-CVI process, the
major foundational physics can be distilled based on a set of assumptions to
streamline the modeling process. Specifically, (1) the flow outside the fibrous
preform is considered to have negligible influence on the diffusion process
or the concentration of the precursor gas at the boundary of the preform; (2)
flow within the fibrous preform is assumed to be negligible, suggesting that
the transportation of the precursor gas is predominantly through diffusion;
and (3) instead of simulating multiple species, an aggregate representation is
used, introducing an effective species responsible for both diffusion and
deposition processes’. Operating under these assumptions allows for a more
simplified neural modeling strategy. Specifically, the flow outside the pre-
form becomes irrelevant to the model, restricting the domain of interest
solely to the preform itself. Additionally, the foundational physics is sub-
stantially reduced to two PDEs: one for reaction-diffusion and another for
deposition. By invoking a quasi-steady-state approximation, the time
derivative term in the reaction-diffusion equation can be eliminated, further
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simplifying the governing equations’. For the deposition reactions, a first-
order rate expression, given by @ = —M KS, C, is adopted™”. Finally, the
two PDEs can be derived as follows (see derivation details in Supplementary
Note 2. Derivation), Reaction-Diffusion mass balance equation:

D V*(C) = KS,C, (4)

Deposition mass balance equation:

de

po g = —AMKS,C. (5)
In the above equations, C= C(x,t) denotes the effective molarity field
(mol m ) of all reactive gases, € = &(x, t) is the porosity of the preform, g
represent a constant stichometric coefficient, M; is the molar mass (kg
mol ™), and p; is the density (kg m ) of the deposited solid (carbon or SiC).
D.gr= Deg(x, t) represents the effective diffusion coefficient field, K = K(x, £)
is the deposition reaction rate, and S, = Sy(x, f) corresponds to the surface-
to-volume ratio.

Deriving constitutive relations for the spatio-temporal functions
Des(x, 1), K(x, 1), and S,(x, ) poses significant challenging. Specifically, the
models for D.and K are sensitive to the choice of precursor gas, while S, is
influenced by the architecture of fibers and pores. Given these intricacies, we
propose to learn these constitutive relations from sparse measurements
within the PINDIff framework. Namely, these constitutive relations are
essentially unknown mappings between different spatio-temporal func-
tions, which can be approximated by trainable neural operators. Specifically,
the effective diffusion coefficient field D.g(x, ) and deposition rate field
K(x, t) are modeled as:

Dyr(x,6) = Dy [e(x, 1), T(x, 1), P(x, 1); 0, ©)
K(x, £) = K,y [T(x,1); 6] )

where D, and K, are neural operators with trainable parameters 6, and
0y respectively. As for the effective surface area Sy(x, £), an analytical model,
S, (x, t), is leveraged as the base model. To accommodate a broader range of
fiber configurations, a trainable neural operator S, with trainable para-
meters 0 , is introduced to augment and generalize the base model as
follows:

8,(x, 1) = 8,(x, (1 + 8,(x, 1)), ®)

SV(X, t) = Snn[gv(x7 t)7 S(X, t); asv]v (9)
~ 1—

8,(x, ) = ziTa‘) (10)

where ¢ is the initial porosity of the preform and r is the radius of fiber
filament (m).

In Fig. 3, the PiNDiff I-CVI model is presented, revealing a seamless
integration of known physics with trainable neural operators. These
operators are strategically interconnected, drawing inspiration from the
foundational principles delineated by the simplified governing PDEs in Egs.
(4) and (5). Within this architectural framework, the DNNs operate in a
pointwise fashion, effectively learning continuous functions/operators. This
design ensures both mesh and domain independence, enhancing the
model’s adaptability and versatility. As the building blocks, the PiNDiff
I-CVI module (Fig. 3b) operates as a sequential neural predictor, capturing
the evolution of molarity (C), porosity (¢), and composite density (p.) fields
from time step t to f+ 1. This module incorporates trainable neural
operators designed to approximate the spatiotemporal fields, namely
De(x, ), K(x,1), and Sy(x,f). These operators are interlinked by the

discretized governing PDEs with finite difference methods. An algorithm
for the PINDiff I-CVI model can be found in Supplementary Note 3. I-CVI
Solver. A unique aspect of this design is the harmonious merger of neural
networks and numerical PDEs via differentiable programming, ensuring
efficient gradient propagation throughout the model (detailed in the next
subsection). Upon domain-wide integration, the model is capable of pre-
dicting pertinent variables, notably the mass or weight of the materials
involved. The ability to predict such metrics is of significant importance,
especially given that monitoring material mass/weight is a common practice
in manufacturing processes. Leveraging the PINDiff I-CVI module, we can
construct sequential neural networks using auto-regressive techniques,
adeptly capturing the system’s temporal dynamics, as illustrated in Fig. 3a,
highlighting the structured sequential learning for the I-CVI process.

Auto-regressive training of PiNDiff model via differentiable
programming

To ensure its robust long-term forecast capabilities, the PINDiff I-CVI
model undergoes auto-regressive training throughout the entire rollout
sequence, which is achieved by differentiable programming (0P)*, a gen-
eralized concept of deep learning. Namely, the entire computer program is
architected for end-to-end differentiability. In the construction of the
PiNDift I-CVI model, we utilize the automatic differentiation (AD) engine
provided by JAX® to propagate gradients through this hybrid model,
enabling the optimization of all trainable parameters, denoted as
0 = {0p,,. 0, b; }, through stochastic gradient descent techniques. Nota-
bly, in contrast to traditional deep learning paradigms, this differentiable
framework offers the flexibility to train the model using indirect labels, even
if the state variables of interest are not directly observable.

In the context of I-CVI, experimentally monitoring the states such as
porosity &(x, f) and molarity C(x, ) during the manufacturing process is
impractical. Meanwhile, hidden physics such as effective diffusion, reaction,
and deposition mechanisms are not observable at all. Nonetheless, acquiring
measurements such as the mass of either the entire sample or its segments
and final porosity is considerably more feasible. Consequently, measure-
ments like mass (m,) at a few different time steps ¢ or porosity ¢, at the final
step £, serve as indirect labeled data m for training the PINDiff I-CVI model.
The associated loss function, £, is then defined as:

t, t,—1
L(0) = z—zo H./\/l(vt()’d())) —m, L + B o1, + B, ;) Hvt+1(i‘0) - vt(ilo)HLz
+; || Der(X10)V*C(®) — CRK(XI0)S,(KIO)]],, .
(11

where M : v — m is the state-to-observable map, which maps from the
state variables v = [e(x, 1), pc(x, 1), C(x, )] to the observables (e.g., mass and
porosity) of the composite sample, || - || represents the L2 norm, and
X = {x, t}. In the loss function, there are four different components play
distinct roles: The first component quantifies the deviation between the
model’s rollout predictions and the experimental labels of mass across the
entire temporal sequences; the second component acts as a regularization
term, promoting sparsity and avoiding overfitting; the third component
seeks to impose trajectory smoothness by penalizing non-physical
oscillations in the predictions; while the last loss component serves to
ensure efficient convergence of the elliptic solver by penalizing it’s residual
and also guide the model to avoid parameter regions where the elliptic solver
may become unstable, stabilizing the training process. The coefficients /3,
B2, and f3; are regularization term weights, and their magnitudes are typically
maintained at low values to preserve the fundamental nature of
regularization. The objective of the PiNDiff model training is to minimize
the total loss function £(6), seeking the optimal parameter set 8 that most
accurately aligns model predictions with experimental observations, subject
to the described constraints and regularization. The hyper-parameters to
train the PiNDiff I-CVI model can be found in Supplementary Note 4. It is
important to highlight that the loss function £(6) only contains the total
mass labels in its first term, with subsequent regularization terms depending
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solely on the model’s outputs and not on any extra training labels. This
design notably enables the inference of the spatio-temporal fields for
molarity (C), porosity (), diffusion coefficient (D.g), and deposition rate
(KS,) purely based on mass growth data, which can be easily monitored
during the manufacturing process.

Uncertainty quantification

The PiNDiff I-CVI model fuses a physics-derived model, sparse measure-
ments, and neural operators, aiming to capture the complex spatio-
temporal behaviors of the I-CVI process. Yet, challenges arise from
incomplete physics knowledge, the potential over-parameterization of
DNNeG, and the ever-present issue of data scarcity. These factors can com-
promise the model’s prediction reliability, especially when the extent of
missing physics is pronounced. In light of these challenges, UQ becomes a
critical step, ensuring a more reliable and robust prediction framework for
the I-CVI process.

In order to address the uncertainties inherent in PiNDiff model
predictions based on training dataset D, it is essential to determine
the posterior distribution over the model parameters, denoted as
p(0|D). Employing gradient descent leads to a singular realization of
p(6]D), resulting in the predicted state v(X|0) being one realization of
the model output, modeled as random variables V(x|0). Namely, the
inherent model prediction uncertainty can be quantified by the
probability distribution p(V|X,D), which can be obtained using the
Bayesian Model Averaging (BMA):

pVZ.D) = [ p(VIZ, 061D (12
and approximated using Monte Carlo integration:
1
X ~ — %. 6" (i)
pVIZ D)= M;p(vm,e ), 07 ~p(6ID), (13)

where posterior distribution p(8|D) of trainable parameters is theoretically
computed using Bayes’ theorem:

p(D10)p(6)

0 === 7
POD) = T Digyp6)de

(14)

In this context, p(6) represents the prior distribution over § and p(D|0) is the
joint likelihood of the dataset. Obtaining the posterior, as indicated by Eq.
(14), either analytically or through traditional Bayesian sampling techni-
ques, is computationally intractable’. As a solution, we employ the DeepEn
method™ here to tackle this challenge. The increasing appeal of ensemble-
based techniques lies in their capacity to explore the multi-modal posterior
landscape and their straightforward implementation®. To effectively
approximate parameter distribution and gauge model uncertainty, multiple
PiNDiff model instances are trained in parallel, each with a distinct
initialization. This approach enables capturing multiple local maximum a
posteriori (MAP) estimates in the posterior distribution for the parameter 0,
each corresponding to distinct local minima within the landscape of the loss
function £(6).

During the inference stage, predictions for each variable v are derived
using MAP samples {6 }jzil obtained through DeepEn training. As a result,
the mean and variance of the model predictions are calculated as:

M

E(VI%, D)~ > vixl6?), (1s)
M4
Var(V[x, D) = 1 EM (v(x]67) — E(VIX, D))’ (16)
M4

In this context, E(V|X, D) is the finalized model prediction, and thrice the
value of variance Var(V|x, D) (considering only its diagonal component) is
used to define the confidence interval. These estimations of mean and
variance equip us with a more robust predictive capability and facilitate
quantifying the uncertainties inherent in the model’s predictions.

Synthetic data generation

To assess the effectiveness of the proposed I-CVI PiNDiff model, a series of
virtual experiments have been conducted as preliminary steps prior to using
the real-world data. This necessitates the generation of synthetic data for
model training, where ground truth is available for validation. To this end, a
physics-based numerical model is developed, drawing inspiration from the
formulation presented by Wei et al.’. Gaussian noise is added to the syn-
thetic data to emulate real-world conditions. Specifically, the general model
of C/SiC deposition for synthetic data generation is based on Egs. (4) and
(5). For the carbon deposition in the I-CVI cycle, the “true” parameter values
for data generation are defined as follows: M;=0.01199 kgmol ',
ps=2260kgm™, q=1, and K = k,exp(7) with ky=2.62ms" and

RT
E,=1.46 x 10° Jmol ™. The effective diffusion coefficient is determined as
eDy D, . . . . . .
Dt = - pesby where D,p is the binary diffusion coefficient, 1 is the

. e o 1/2
torosity, and the Knudsen diffusion coefficient is given as Dy = % (88T) 1,

r represents the characteristic pore radius in meters. For the purpose of
demonstration, the binary diffusion coefficient is simplified as D,y =
%75 X 107> and torosity as 7o = 6.78. The true model form of surface-to-
volume ratio S, is defined as:

Sye = S50 [1—( % )m(i)y/z,
’ g I¢ 1—¢ £

where ¢ is the initial porosity, and for synthetic data generation, &, = 0.6.
Given that the C/C composite preforms examined in this investigation
exhibit axisymmetry, our simulations are performed within a 2-dimensional
axisymmetric domain, assuming no variation of physical properties in the
azimuthal plane. The resulting global variables, such as mass, are obtained
by integrating over the entire 3-dimensional domain.

(17)

Data availability
All data needed to evaluate the conclusions in the paper are either present in
the paper or can be regenerated by the code provided.

Code availability
The code required to reproduce these findings is available to download from
https://github.com/jx-wang-s-group/PiNDiff-CVI upon publication.
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