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ABSTRACT This article proposes a quantitative framework for optimally allocating task functions in human-
autonomy teaming (HAT). HAT involves cooperation between humans and autonomous agents to achieve
common goals. As humans and autonomous agents possess different capabilities, function allocation plays
a crucial role in ensuring effective HAT. However, designing the best adaptive function allocation remains a
challenge, as existing methods often rely on qualitative rules and intensive human-subject studies. To address
this limitation, we propose a computational function allocation approach that leverages cognitive engineering,
computational work models, and optimization techniques. The proposed optimal adaptive function allocation
method is composed of three main elements: 1) analyze the teamwork to identify a set of all possible function
allocations within a team construction, 2) numerically simulate the teamwork in temporal semantics to
explore the interaction of the team with complex environments using the identified function allocations in a
trial-and-error manner, and 3) optimize the adaptive function allocation with respect to a given situation such
as physical conditions, available information resources, and human mental workload. For the optimization,
we utilize performance metrics such as task performance, human mental workload, and coherency in function
allocations. To illustrate the effectiveness of the proposed framework, we present a simulated HAT scenario
involving a human work model and drone fleet for last-mile delivery in disaster relief operations.

INDEX TERMS Computational work model, function allocation, human-automation interaction, human-
autonomy teaming, human-vehicle systems.

I. INTRODUCTION

Human-Autonomy teaming (HAT) is a collaborative work-
ing strategy involving at least one human and one au-
tonomous agent [1]. An autonomous agent is a system capable
of responding to the environment with a degree of self-
governance [2]. Recent studies on HAT have demonstrated
that autonomous agents can enhance task performance when
working as teammates with humans rather than mere tools.
However, introducing autonomous agents does not imply
that humans can simply delegate team tasks to them in
complex environments [3]. Cognitive scientists emphasize
the need to coordinate and distribute teamwork among the

different teammates by considering their interactions and
interdependencies, as the introduction of autonomous agents
creates a new cognitive system [4], [5]. An effective HAT
design should consider the unique capabilities, limitations,
and interdependencies of each teammate to foster symbiotic
teamwork, especially in handling off-nominal conditions. For
example, humans can contribute with their high-level cogni-
tive control in unseen situations, while autonomous agents can
excel within operational boundary conditions [6].

Function allocation coordinates task functions within
a human-autonomy team. Well known traditional
methods are Men-are-better-at/Machines-are-better-at
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(MABA-MABA) [7], Levels of Automation (LOA) [8],
and adaptive function allocation [9]. MABA-MABA laid a
solid foundation for HAT function allocation but it has been
criticized for assuming fixed human and autonomous agent
capabilities [10]. LOA uses a continuum of automation levels
in four function classes (information acquisition, information
analysis, decision selection, and action implementation). It
offers valuable insights and design flexibility. However, LOA
faces challenges due to its broad classifications [5]. Adaptive
function allocation methods have been actively explored to
specify who does what and when in HAT [9]. These methods
enable human-autonomy teams to assign functions based
on relevant variables such as task performance and human
mental workload. However, one major concern is the need for
computational models and simulation methods for effective
and efficient quantitative analysis [11].

A. RELATED WORK

1) COMPUTATIONAL MODELING

State-of-the-art findings in computational modeling tech-
niques and cognitive engineering have been integrated to
address function allocation issues. Computational work mod-
els (CWMs) focus on examining multi-agent concepts of
operation by analyzing work and team constructions [12].
The CWM is a simulation engine that can propagate the
state of the system operated by a HAT design while ac-
counting for constraints and interdependencies of physical
and information resources among heterogeneous agents [13].
CWM frameworks can incorporate cognitive work analysis
(CWA) to identify work requirements systematically [14] and
agent-based simulation [15] to demonstrate function alloca-
tions in temporal semantics [5]. This approach helps avoid
the substitution myth (the wrong assumption that an au-
tonomous agent can seamlessly replace a human in HAT [16])
in function allocation through clarifying the teamwork dy-
namics instead of focusing solely on who does what. The
analysis provides quantified measures of teamwork and in-
teractions, even in complex scenarios like air traffic control
under off-nominal conditions [12], [17]. However, the cur-
rent work is limited to fixed function allocations in HAT
and lacks an effective approach to analyze adaptive function
allocations using CWMs. Although the computational mod-
els in [12], [17] have laid a robust groundwork for function
allocation studies, their models are not formulated as a math-
ematical representation conducive to standard optimization
techniques.

2) CYBER-PHYSICAL-HUMAN SYSTEMS

Cyber-physical-human systems (CPHSs) encompass systems
that involve cyber, physical, and human layers, interacting
in time and space [18], [19]. Many applications in CPHS
are closely related HAT such as human-in-the-loop control
systems and human-robot interaction. Regarding the function
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(or task) allocation problem, several CPHS studies have mod-
eled human behaviors and cognitive states to assist humans.
For example, shared control approaches between pilots and
autopilots have been explored to enhance safety by allocat-
ing functions based on the timeline of off-nominal condi-
tions [20]. In other shared control approaches, cyber-physical
systems can assist humans by partially or completely tak-
ing on control functions based on observed human behaviors
and inferred cognitive states [21], [22]. Physical human-
robot interaction (pHRI) techniques ensure safe and efficient
working spaces in manufacturing by providing necessary as-
sistive functions based on inferred human intention [23].
However, optimal function allocation are not the primary
focus in these applications. In human-robot collaboration
studies, various optimization frameworks aim to maximize
production performance in manufacturing [24], [25], [26].
Nevertheless, most of the existing work concentrates on inter-
actions in the same physical location. The function allocation
in terms of information flow for remotely operated sys-
tems may require further investigation for enhancing human
perception [18] (p.259).

B. CONTRIBUTIONS

In this article, we propose a quantitative framework for opti-
mal adaptive function allocation in the HAT context to address
limitations in existing methods. Our main contributions can
be summarized in two parts. First, we introduce a system-
atic approach for formulating the CWM as a discrete-time
stochastic control process. The formulated work model of-
fers a concise representation of complex team interactions to
facilitate the simulation of HAT designs. We employ a param-
eterized human work model in place of real human-subjects
to efficiently assess a range of feasible function allocations
in a computationally tractable manner and eliminate the need
for exhaustive human-subject studies during the early HAT
design phase. Second, we present a computational optimiza-
tion framework for determining an optimal function allocation
policy that adapts to various team situations or states. This
framework can accommodate diverse performance metrics,
including mission completion time, human mental workload,
and the coherency of function allocations [17]. It is versatile
enough to consider a wide array of simulated situations, such
as initiating teamwork, gathering information, and accounting
for off-nominal conditions. Furthermore, it offers flexibility in
updating computational models to enable the incorporation of
modified scenarios, human work models, and other factors for
re-optimizing function allocation in new situations or under
new models.

C. APPROACH

The proposed framework comprises three technical elements:
1) identifying teamwork and all allowed function allocations
in terms of interaction, constraints, and interdependency using
CWA, 2) simulating a wide range of randomized scenarios
to demonstrate and evaluate identified teamwork and function
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FIGURE 1. An illustrative HAT scenario on disaster relief package delivery
with drones (CC: command center).

allocations using CWM, and 3) finding the optimal adaptive
function allocation (i.e., situation-dependent function alloca-
tion) using an optimization technique.

The remainder of this article is organized as follows. In
Section II, an illustrative HAT scenario is presented to contex-
tualize the proposed framework. Section III presents technical
elements in detail. Simulation results and discussion are given
in Sections I'V and V, respectively. Section VI concludes the
article.

I.. HUMAN-AUTONOMY TEAMING SCENARIO

We consider a drone fleet scenario for last-mile delivery in
disaster scenes [27]. This scenario has two important features
for realistic simulations. First, the system and environment
can be simulated under off-nominal conditions that include
drone faults (e.g., sensor or actuator faults) and environmental
anomalies (e.g., obstacles). These complexities are vital for
testing a variety of function allocations. Second, the existing
studies in interaction between humans and drones allow us
to incorporate empirical findings into constructing a realistic
CWM [28].

As shown in Fig. 1, we present a HAT scenario involving a
command center, one human operator, and three drones. The
team’s mission is to deliver disaster relief packages, such as
medicine, to designated target points safely and timely. The
command center serves as the source of mission information
such as target points and environmental conditions, which
must be communicated to the team. The human operator
is responsible for collaborating with the drones to execute
the mission under both nominal and off-nominal conditions.
Remotely operating via an interface with the team, the hu-
man operator also needs to report the current mission status
to the command center. The drones are the only physical
entities capable of performing the mission within the en-
vironment. The key functions for the drones are guidance,
navigation, and control (GNC), which can be autonomously
conducted by the drones or managed manually by the human
operator.

In complex and uncertain environments, maintaining and
sharing a high level of situation awareness (SA) is crucial
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for the team to handle unexpected problems [29]. Let SA.
represent the critical SA space required for the team’s safe
and efficient operation [30]. Its elements are given as:

SA. ={X,F,E, M} (1)

where X denotes the physical state space of the drones,
including position, velocity, and attitude. F represents the
fault information space, encompassing sensor and/or actuator
faults. E denotes the environmental anomalies space, such as
unexpected wind gusts or obstacles encountered. M represents
the current mission information space, such as the position
of target points, which can be updated at any time by the
command center.

The team must continually perform GNC functions to
achieve its common goal. Navigation provides the physical
state of the drones (X). To move the drones to target points,
guidance and control must be executed based on the mission
information (M). The team is also responsible for monitor-
ing, detecting, and resolving faults (F) and environmental
anomalies (E). Therefore, GNC and SA-related actions are
considered generalized functions for the team. Further infor-
mation will be provided in Section III.

The detailed setups for the scenario are as follows. The
mission space is limited to a 200 m x 200 m x 30 m space.
The maximum speed of the drones is 5 m/s under nominal
conditions and limited to 1 m/s when there is an unresolved
fault. The simulation time extends up to 300 seconds with a
discrete step of Af = 0.1 seconds. The mission completion
time is recorded once all packages are delivered. Each drone
is assumed to have a maximum of four visiting points (e.g.,
due to battery capacity and payload weight limitations).

Throughout this article, the term “human” refers to a simu-
lated human work model. To concentrate on the computational
function allocation problem, we make two assumptions. First,
autonomous agents suggest a function allocation to the human
based on the current situation, and the human accepts it with
full trust. Although automation misuse, disuse, and abuse are
critical problems in human factors [31], we intentionally omit
this part to present an illustrative example with acceptable
complexity. Second, we assume that the human can per-
form the given task without making mistakes. This assump-
tion has been widely accepted in work model simulations
[12], [13].

I1l. PROPOSED APPROACH

Fig. 2 presents the architecture of the proposed optimal func-
tion allocation framework in HAT. All necessary technical
details are followed.

A. COGNITIVE WORK ANALYSIS

We employ the CWA to analyze the work prior to simulation.
The CWA is a formative approach used to analyze sociotech-
nical systems in complex environments [14]. It is especially
suitable for identifying the full range of constraints and the
work domain rather than determining who is in charge of each
sub-task [5]. The formative nature of the CWA allows us to
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FIGURE 2. The proposed framework for optimal adaptive function
allocation in HAT.

focus on describing the system and all possible function allo-
cations in the HAT context. Consequently, the CWA provides
valuable insights into the emergent behaviors of sociotechni-
cal systems rather than the simple decomposition of tasks into
sub-tasks. We utilize the CWA to analyze the requirements for
the HAT design. A well-organized summary of the CWA can
be found in [32] (p. 16).

We use a modified work domain analysis (WDA) to model
the work in the human-autonomy team [13]. The WDA is
the first phase of the CWA, describing the work domain,
including tasks, functions, goals, constraints, and the context
in which the work is performed. In Fig. 3, the abstraction
hierarchy (AH) breaks down the work domain into levels of
abstraction for conducting WDA. This structure establishes
means-ends links within a systematic hierarchy. Each node
represents what it does, an upper-level node answers the
question of why it is required, and a lower-level node shows
how it can be done. The AH captures the system’s flexibility
by illustrating that goals can be achieved through multi-
ple approaches within the constraints. The levels are named
functional purpose, abstract function, generalized function,
physical function, and resource. We also present which entity
can undertake each generalized and physical function. Each
generalized function and physical function are presented us-
ing colors to show the entity responsible for undertaking it
in Fig. 3.

We utilize the second phase of the CWA, control task
analysis (ConTA), to describe recurring actions in the work
domain. The decision-ladder in Fig. 4 represents a sequence
of information processes that iterate in the work domain for
every time step. There are two different nodes in the process:
a rectangular node represents data-processing activities and
a oval node denotes the states of knowledge. Navigation is
always required to perform the task. SA-related information
needs to be observed, identified, interpreted, and resolved if
there are any changes in the drones’ state (e.g., faults), envi-
ronmental anomalies, or the mission. These processes produce
all essential SA elements in (1). Note that there are shortcuts
in the decision-ladder. For instance, if there are no changes in
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SA and guidance is already completed, the team can move on
to control directly after the SA observation.

B. COMPUTATIONAL WORK MODEL
In the proposed framework, the CWM aims to simulate the
dynamic teamwork based on the identified work domain. The
CWM provides further insight into the teamwork in terms
of how a specific function allocation induces interactions,
dependencies, and constraints that influence the teamwork.
The CWM enables our framework to propagate the state of
the system over time so that all possible function allocations
can be evaluated in terms of the performance metrics. Further
details of the CWM can be found in [12], [33].

Let s; be the state of the human, drones, and environment
at time step k € Z=o:

Sk = h(xg, f, ex, mg, wi) € R", 2

where x;, € X denotes the physical states and f, € F de-
notes the fault of the drones, respectively. ¢; € E represents
the environmental anomalies and m; € M is the mission in-
formation. wy € Z=¢ denotes the quantified (human mental)
workload. h is the user-defined mapping function from CWM
variables to the state s;. For the HAT scenario in Section II,
we can define the state s; as the concatenated vector of all el-
ements of xi, fi, €k, my, and wi. The CWM can propagate the
state with respect to the current state and function allocation
ag:

Sk41 = 8(Sk, ar), 3)

where g is the state propagation function that is modeled as
a discrete-time stochastic control process in the CWM. In
the target scenario, the function allocation a; € {0, 1} is a
binary vector of dimension m. Its elements are zero or one,
indicating whether the corresponding function is allocated to
the human or the drones, respectively. We assume that the
assigned function cannot be reallocated to another agent until
it is completed by the corresponding agent, in order to prevent
unnecessary complexity and inefficiency, such as reallocat-
ing the function at every single time step. Table 1 provides
a detailed representation of the state s;. For example, fault
information for a drone can be represented as a 4-dimensional
vector, including binary variables on fault occurrence (0 or
1), fault detection (0 or 1), fault isolation (0 or 1), and fault
recovery (0 or 1).

To propagate the state, the CWM consists of the agents with
physical functions that interact with a given environment. The
agents exert their actions on the environment to gef resources
(e.g., read information values) or sef resources (e.g., drone
position changes). The environment includes the dynamics
of drones in the three-dimensional space, drone faults, any
anomalies such as obstacles, and initial and updated mission
information from the command center. Thus, the CWM can
simulate any changes in physical or information resources
given by any work. The CWM can incorporate dependencies
and constraints. For example, in the target scenario, the drones
should obtain their physical state through the get drone state
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FIGURE 4. The decision-ladder. The shortcuts represent (1) no situation
awareness (SA) needs to be addressed except for the navigation, and no
need to update guidance; (2) no SA needs to be addressed, but guidance
needs updating; (3) no SA needs to be addressed, but the mission needs to
be assigned among the drones; (4) an existing SA issue is resolved, but no
need to update guidance; and (5) an existing SA issue is resolved, and
guidance needs to be updated, respectively.

function before they control their position using the sef drone
control function.

Additional teamwork actions are necessary when there is an
authority-responsibility mismatch [13], [17]. When a specific
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TABLE 1. The state s; e [R% of the human-drones CWM.

State Value | Dimension
Initialization Oor 1l 1
Human: remaining action time || Integer 16
Human: delayed action Integer 1
Drone 1: generalized function Oorl 6
Drone 1: SA (F, E, M) Qor 1 3
Drone 2: generalized function Oorl 6
Drone 2: SA (F, E, M) Oorl 3
Drone 3: generalized function Oorl 6
Drone 3: SA (F, E, M) Qorl 3
Drone 1: distance to target Integer 4
Drone 2: distance to target Integer 4
Drone 3: distance fo target Integer 4
Drone 1: fault information Oorl 4
Drone 2: fault information Oor1l 4
Drone 3: fault information Oorl 4
Drone 1: Anomaly information || 0 or 1 7
Drone 2: Anomaly information Oorl 7
Drone 3: Anomaly information Oorl 7
Drones: Anomaly proximity Oor 1 1
Termination Oorl 1
Sum 3

function is allocated to the drones but the human is respon-
sible for that, the human needs to monitor or confirm the
function. A total of six teamwork actions are considered in the
CWM. Monifor and Control teamwork actions are required
simultaneously with the work. Command and Confirm actions
need to be conducted before and after the work. Information
Pull and Push are known to play an important role in team-
work when teammates want to proactively share information
before it is actually necessary [2], [34]. For instance, when
the drones are taking the mission information directly from
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the command center, the human is requested to confirm the e
. i A - i : Start * Navigation =
taken mission information since the human is responsible for ~ \__ ™ /1 =
obtaining mission information in the HAT design.
Workload is known to be one of the key considerations in Isolate and

function allocation [35]. In the existing work model litera-
ture, the workload has been modeled in simple forms. For
instance, the workload was modeled as the total number of
tasks that the human undertook [12] or the total busy time in
teamwork [13]. However, these models cannot reflect situa-
tions with low-demanding but time-consuming tasks. Thus,
we are inspired by cognitive architecture-based workload
models that can distinguish the required time and intensity of
a task [36]. We assume that low workload is imposed when a
human action is mainly involved with perceptual-model mod-
ules (visual, aural, and motor modules). Likewise, a human
action that primarily activates central modules (procedural
and goal modules) is assumed to cause mid workload. Human
actions immersed in memory modules (declarative and imagi-
nal modules) are assumed to invoke high workload. Low, mid,
and high workloads correspond to quantified workload 1, 2,
and 4, respectively [36]. In the CWM, we assume that there
is a maximum allowed workload wpy,x = 6 for the human. If
the current function allocation requires a higher workload for
the human than wy,,,, overflowed functions would be delayed.
The priority of the function follows the decision-ladder in
Fig. 4. Note that we have the flexibility to consider different
values for wmax since the proposed framework allows for pa-
rameter variation. For example, if we choose a value for wpax
larger than 6, the mission completion time would decrease as
the human can handle more functions simultaneously without
causing delays.

To account for the distinct capabilities of each agent, we
adopt the skill-rule-knowledge (SRK) taxonomy [37]. Cog-
nitive engineering approaches recognize that autonomous
agents may require human intervention when faced with un-
foreseen situations [6], [38]. Humans can efficiently handle
uncertainties, such as effectively isolating and recovering
drone faults, detecting environmental anomalies in longer
ranges, and managing complex communication for mission
updates. The drones excel in skill and rule-based tasks, in-
cluding sensor-based navigation, tracking control, avoiding
detected anomalies, and optimizing drone assignments to in-
dividual target points using an optimization technique. In this
study, we implement obstacle avoidance for the drones using
an artificial potential approach [39] and the brute-force opti-
mization for target assignments of drones.

Flowcharts are provided to explicitly illustrate the structure
of the CWM. Fig. 5 represents the state propagation function
in (3) and the information processes over time. Note that this
figure is closely linked to Fig. 4. Fig. 5 illustrates how the team
state s evolves based on the occurrence of off-nominal con-
ditions. Each function in Fig. 5 must be allocated to either the
human or drones based on the function allocation policy. The
flowchart in Fig. 6 demonstrates how the functions allocated
to the human can be categorized as either delayed or active
functions depending on the situation. As shown in Fig. 7, if
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FIGURE 5. The flowchart representation of the state propagation function
in (3) over time. The navigation and control functions (dotted boxes) are
active at every time step, while the others are conditionally activated
based on the current states.

Allocated Prerequisite Yes Yes
function done?
Mo | No |

f App:end Update state
POCHOID " of the team
‘Delayed’
I
f App_end Update Engage
unction to +
gEie workload wy, function
‘Active

FIGURE 6. The flowchart illustration for the allocated function to the
human. The allocated function can be categorized as either a delayed
function or an active function based on the satisfaction of prerequisite
functions and workload constraint.
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FIGURE 7. The flowchart for handling active functions. Once a function is
categorized as active, its time duration is taken into account to determine
whether the function is completed. This completion can have an impact on
the environment, for example, changing the position of drones based on
their dynamics.

an active function is completed (i.e., its elapsed time is equal
to or greater than the time duration), it has an impact on
the environment. In contrast, delayed functions need to wait
until the human can perform the corresponding action (i.e.,
all prerequisite functions are completed and the workload has
room for the delayed function). In this example, the drones
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FIGURE 9. The workload pertains to both the active functions and delayed
functions allocated to the human. The timing of drone faults and mission
updates is represented using the vertical lines.

do not have a workload constraint, but prerequisites are still
required.

In summary, there are total 19 functions and 9 of them
can be allocated to both human and drones, i.e., m = 9. An
illustrative example of teamwork with adaptive function al-
location is presented in Fig. 8 through Fig. 11. Figs. 8 and
9 depict drone trajectories and human workload over simula-
tion time, respectively. In Fig. 10, the majority of guidance
functions and fault functions are allocated to the drones and
humans, respectively. However, some environmental anomaly
functions, such as Gef anomaly and Sef anomaly, are allocated
to both. It shows the adaptability of the function allocation
policy to the team’s state. Even though the human is not
involved in Get mission in this specific case, they are still
required to perform Confirm mission and Report mission to
interact with the drones and the command center, respectively.
Fig. 11 illustrates the distance to each next target point for
the drones. This figure demonstrates that physical variables,
such as drone positions, can be simulated alongside function
allocation decisions over time. We present the details of the
CWM elements for the target scenario in Table 2.

There may be criticism that the presented model is too
simple and may not fully reflect complex human factors.
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areas represent the time duration affected by the fault before recovery by
the team.

However, we would like to note that the strength of the pro-
posed framework lies in its flexibility. Any parts of the CWM
can be updated without affecting other parts. Thus, the func-
tion allocation analysis can be re-assessed without the need
for exhaustive rebuilding of the entire model. This flexibility
provides a fast and effective initial HAT design process.

C. OPTIMIZATION USING REINFORCEMENT LEARNING

The purpose of the optimization is to allocate functions while
maximizing the reward from the teamwork. We present the
problem formulation to formally address the optimal adap-
tive function allocation. The optimization incorporates the
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TABLE 2. The list of physical functions in the computational work model (GF: generalized function and H | D: human or drone).

Function GF Teamwork | Responsibility | Duration by H[D | Workload | Update Rate
Monitor drone state Navigation Monitor Human 0.1 sec | N/A Low 0.1 sec
Get drone state Navigation Monitor Drone N/A | 0.1 sec N/A 0.1 sec
Set safety constraint Guidance | Command Human 5 sec | 1 sec Mid N/A
Set mission priority Guidance Command Human 5 sec | 1 sec Mid N/A
Set mission sequence Guidance Command Drone 10 sec | 2 sec High N/A
Set waypoint Guidance Command Drone 10 sec | 2 sec High N/A
Set trajectory Control N/A Drone N/A | 1 sec N/A N/A
Set drone control Control Control Drone N/A ] 0.1 sec Mid 0.1 sec
Get drone fault Fault N/A Drone 1 sec | N/A N/A 1 sec
Pull drone fault Fault Pull Human 2 sec | N/A Mid N/A
Isolate drone fault Fault Monitor Human 5 sec | 30 sec High N/A
Recover drone fault Fault Push Human 5 sec | 30 sec High N/A
Confirm drone fault Fault Confirm Human 2 sec | N/A Mid N/A
Get anomaly Anomaly Monitor Human 3 sec | 1 sec Mid 30 sec
Set anomaly Anomaly Push Human 3 sec | 1 sec Mid N/A
Confirm anomaly Anomaly Confirm Human 2 sec | N/A Mid N/A
Get mission Mission Pull Human 5sec | 1 sec High N/A
Confirm mission Mission Confirm Human 5 sec | N/A Mid N/A
Report mission Mission Push Human 3 sec | N/A Mid 30 sec

Anomaly detection ranges are set to 100 m and 20 m for human and drones (from the drone position), respectively.

CWM in (3) and the performance metrics to find the state-
dependent optimal function allocation. For the target scenario,
we formulate a weighted reward function with three elements:
mission completion time T as the task performance, work-
load wy, and the coherency in function allocations ¢ € R for
el Tyl

re=—(m1+ 14 powf + pacy) @)

where

Vk € {0,...,T) 5)

and Zf’:] wi=1, u;i = 0Vi e {1, 2, 3} are the weight param-
eters of the reward function. The workload is squared (i.e.,
using wf) in the reward function (4) to penalize the high
workload. The coherency cy is designed to generate penalty
for any function allocation changes from the initial allocation
to avoid frequent function reallocation. In other words, the
coherency ¢ is a measure of the stability in function alloca-
tion. For instance, if the function allocation is erratic, it may
negatively impact human cognition [17]. Note that the initial
function allocation, ay, is used instead of the previous function
allocation, aj_1, in (5) to compute coherency based on our
pre-pilot human-subject experiment. During the experiments,
the human-subjects tended to be more familiar with the initial
function allocation rather than the function allocation in the
previous time step. As an initial condition, we assign all guid-
ance functions to the drones and SA related functions to the
human. The navigation and and control functions are fixed to
each agent. By modifying p;, we can investigate the trade-off
space of the function allocation.

The CWM presented in (3) and the reward function in
(4) can be formulated as a Markov decision process (MDP).
As a result, we can leverage reinforcement learning (RL) to
determine the optimal adaptive function allocation based on

) 2
¢ == |lag — apll*,
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the given CWM and reward function. Note that our proposed
framework is not limited to a specific optimization technique.
Instead, any alternative optimization methods capable of solv-
ing the MDP optimization problem can be applied. We opt for
RL due to its generality and widespread accessibility within
the research community. The optimization problem is formu-
lated as:

max Vz (sp)
subject to  Spy 1 = g(Sk, k), Wi < Wmax
Yee {0, 1, ..., T—1} (6)
where
T
Vi(s) :=E [Z Y| so = s} ™
k=0

is called the value function. y € [0, 1] is the discount-rate.
We use y = 1 since we focus on an episodic scenario with
a finite termination time and consider all time history equally.
Wmax = 6 is the workload constraint. 7 (s ) denotes the state-
dependent policy that is equivalent to the function allocation
in this optimization problem. In other words, the proposed
framework decides the function allocation based on the cur-
rent situation. The final output of the proposed framework
is the optimal function allocation a* and the corresponding
optimal policy 7 *:

(®)

The proposed framework uses the model to simulate the
scenarios, but the model might be too complex to be repre-
sented explicitly as the function in (3). Thus, we choose a
RL method that utilizes experience (i.e., sample sequences
of the states, function allocations, and rewards). Since the
state and function allocation are also complex, we can apply a

a* = n*(s) := arg max V,(s).
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linear method to approximate the action-value function [40].
It simplifies the problem while maintaining information that
allows the optimization problem to be solved efficiently. The
action-value function Q is linearized with the feature and
weight parameters as 0:

0x(s,a) =E[rig1 + ¥Valsip1) | Sk =s,ak =a]  (9)

d
O (s,a)= ) _ bii(s,a) = 0" ¢(s,a)

i=1

(10)

where 6 = [0, ..., 6,17 € RY denotes the unknown weight
vector and @;(s,a) = [¢1, ..., ¢s17 € R? is the predefined
feature. The feature is designed as:

o(s,a) = [l,sT,aT,slal, ...,s;aj,...,s,,am]r (1)
where i e {1,...,n}, je{l,...,m}, s =[s1,...,5,0", and
S [al,...,am]T.Noted = 1+ n+ m + nm for the feature

in (11). For each episode, we can update the weight using the
episodic semi-gradient Sarsa method [40] (p. 244).

Okt = Ok + o [ — Ok ar)| p(se, ar) (12)

where 6, € R? denotes the weight vector at time step k£ and
a > 0 is the step size. The e-greedy method is used for train-
ing to balance between exploration and exploitation of the
current value function, i.e., choosing any of non-optimal func-
tion allocations with the probability of €. Then, the optimal
function allocation is obtained as:

13)

a; = argmax Q(sk, ax)
with breaking ties randomly.

IV. NUMERICAL SIMULATION
We present a series of numerical simulation results to demon-
strate the effectiveness of the proposed framework in con-
ducting a trade-off study. The specific details of the HAT
scenario are provided in Table 3. The objective of the trade-off
study is to evaluate a set of weight parameters {1, 2, (3}
in (4) upon specific demands. To establish baselines for team
performance, we compare two fixed function allocations. The
study cases are outlined as follows.
® (Human) All functions are assigned to the human.
® (Autonomy) All functions are assigned to the drones.
® (Time) The mission completion time is the only perfor-
mance metric, i.e., {1, w2, u3} = {1, 0, 0}.

® (Workload) Workload is the only performance metric,
ie., {p1, na, p3} = {0, 1,0}

® (Coherency) Coherency in function allocations is the
only performance metric, i.e., {i1, g2, p3} = {0, 0, 1}.

* (Balance) All performance metrics are balanced with
{r1, w2, pa} = {0.8,0.1,0.1}.

For each case, we used 3000 random episodes for training
and an identical set of 100 random episodes for testing. We
thoroughly analyzed all performance metrics, including the
mission completion time, workload, and coherency in func-
tion allocations for each case in Fig. 12. The workload and

40

TABLE 3. The HAT scenario is used for RL training and testing.

Element Value
Start position [0,0,0]"
Termination time 300 sec

[100,5,10]", [5, 100, 10]",
[100, 95, 20]%, [110, 70, 10]7,
[75,120,15]7, (30,90, 10]7,
[80,75,15]", 110,120, 20]7,

[120, 110, 15]T
(£[5,5, 5|7 for each)
[45,105,12]", 10
[10,55,5]", 10
[60,10,5]7,10
Drone 1: 45 £+ 10 sec
Drone 2: 35 £ 10 sec
Drone 3: 55 + 10 sec
Occurrence probability:
0.5 for each fault
Anomaly 1: [60,80, 13]7,10
Anomaly 2: [100, 40, IO]T, 10
Anomaly 3: [100,120,17]7, 20
[75,120, 15]7,[30,90, 10]",
[160, 100, 15]7, at 65 sec
(£[5,5, 5] for each)
Step size a=10"
e-greedy e =0.05
The values denoted by + represent uniformly distributed
random values within the corresponding range. The position
unit is measured in meters (m).

Initial
target points

Static obstacle
position, radius

Faults timing

Anomaly
position, radius

Update mission
position, timing

coherency levels were averaged for each episode, resulting
in 100 samples for each performance metric (one sample for
each episode). Furthermore, a post-analysis was conducted to
offer additional insights and information.

In Fig. 12(a), the mission completion time T results are pre-
sented for each case. Among the two baseline cases, Human
and Autonomy, the relatively worse mission completion time
is observed, which indicates their failure to effectively lever-
age the diverse capabilities of the team members to reduce
mission completion time. Notably, the Time case achieves the
best mission completion time, demonstrating the framework’s
ability to allocate functions to meet specific requirements. The
Workload case, which allocates a majority of functions to
drones to reduce workload but sacrifices team performance,
exhibits a very high mission completion time. Conversely, the
Coherency case, with nearly fixed function allocation due to
its reward function, demonstrates a lower mission completion
time compared to the other fixed function allocation cases.
The observation supports that the initial guess of function
allocation (i.e., guidance functions by the drones and SA
related functions by the human) is a reasonable choice for
team performance. The Balance case achieves the second-best
mission completion time despite its weighted considerations
on workload and coherency. This fact shows its effectiveness
in achieving a balance among performance metrics.

To further investigate the trade-off, the averaged work-
load is presented in Fig. 12(b). The Human case records
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Mission completion time (s)

Human Autonomy Time WorkloadCoherency Balance

(a) The mission completion time comparison for each case.

Human Autonomy  Time

Workload Coherency Balance

(b) The averaged workload comparison for each case.
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(c) The averaged coherency in function allocations comparison
for each case.

FIGURE 12. The mission completion time, averaged workload, and
averaged coherency in function allocations comparison results for each
case. The error bars denote 1-¢ standard deviations.

the highest workload, requiring significant human interven-
tions. On the other hand, the lowest workload levels are
observed in the Autonomy and Workload cases, where
most functions are allocated to the drones, minimizing hu-
man engagement but leading to higher mission completion
time. The remaining three cases (Time, Coherency, and
Balance) demonstrate moderate workload levels compared
to the extreme cases. Interestingly, the Time case, which
does not explicitly account for workload, results in relatively
low workload. This finding suggests a potential correla-
tion between mission completion time and workload in the
HAT scenario. For instance, high workload could induce
delayed functions for the human, which deteriorates the
mission completion time. Hence, workload should be main-
tained within the saturation range to expedite the mission
progress.

VOLUME 3, 2024

The coherency of function allocations ¢ examines the sta-
bility of the team structure. A lower averaged ¢; indicates
that the team adheres more closely to the initial function
allocation. The comparison results are shown in Fig. 12(c).
The Human and Autonomy cases represent two extremes
with a consistently zero averaged coherency variable ¢; at
every time step. The Coherency case exhibits a very low
coherency level, though not precisely zero, which may be
attributed to approximation errors in the action-value function
in (10). In contrast, the Workload case consistently allocates
all functions to the drones to reduce workload. This fact re-
sults in the high ¢ in average since the SA related functions
are initially allocated to the human. The Time and Balance
cases occasionally deviate from the initial function allocation,
but they maintain stable function allocations over time. The
Balance case is even more stable compared to the Time
case since it directly considers the coherency as a part of its
reward.

The cumulative workload results cwy := foz{) w;Afr are
presented in Fig. 13. Note that the branches of the results
are induced by the probability of the fault occurrence in
Table 3. These results reveal that each case chooses differ-
ent function allocation strategies. For instance, in time-wise
efficient cases, including Time and Balance, the human en-
gages in Get anomaly at the beginning phase more often.
This policy enables the team to detect anomalies early by
leveraging the human’s capability. Then, the drones can ob-
tain time-optimal trajectories based on the obtained anomaly
information. Even though the Human case also allocates
Get anomaly to the human at the early phase, it is not
time-efficient since the human is overloaded, and the de-
layed functions cause degradation in mission completion
time. We can examine the workload saturation by observ-
ing the slope of each case in Fig. 13. The adaptive function
allocation cases can alleviate the workload saturation by del-
egating some functions to the drones based on the current
situation.

A summary of the numerical results is presented in Table 4.
The comparison includes two baselines (Human and Au-
tonomy) alongside the adaptive function allocations (Time,
‘Workload, Coherency, and Balance), based on the mission
completion time, workload, and coherency. The results indi-
cate that there is no single dominant function allocation for
all metrics in the given scenario. Instead, the proposed frame-
work allows for the consideration of various performance
metrics with different weights in the trade-off study. The pro-
posed framework empowers the HAT designer to identify the
best adaptive function allocation strategy by accommodating
various performance metrics quantitatively.

V. DISCUSSION

'We propose a computational framework for optimizing func-
tion allocation in HAT to enhance cooperation between human
and autonomous agents. The proposed framework identifies
and explores all possible function allocations using a compu-
tational work model to seek the optimal function allocation
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TABLE 4. The performance metric differences (mean) between two
baselines and four adaptive function allocations for the mission
completion time (T), workload (W), and coherency in function
allacations (C).

Human Autonomy

T: -30.4660 T: -27.3110

Time W: -1.1768 W: +0.7563
C: +1.4838 | C: +1.4838

T: —2.7400 T: 40.4150

Workload W: -1.8654 W: +0.0677
C: +3.9622 | C: +3.9622

T: —24.4320 | T: —21.2770

Coherency || W: —0.9075 | W: 41.0256
C: +0.0599 C: +0.0599

T: -28.4430 T: -25.2880

Balance W: —1.1048 | W: +0.8283
C: +1.3510 C: +1.3510

A decrease (-) indicates improvement, while an
increase (+) represents degradation, respectively. Top
two results are presented in bold among four row
cases.

that can adapt for the dynamically changing situation. A key
strength of the proposed framework lies in its flexibility to
build and update the computational work model’s parameters
while considering any performance metrics.

The proposed framework offers the advantage of person-
alizing function allocation due to its flexible structure. For
instance, the work model parameters in Table 2 can be cus-
tomized based on individual user characteristics. An expert
human may exhibit shorter duration and lower workload for
specific physical functions [21]. However, this flexibility also
implies that determining the human model parameters may
pose additional challenges. As a result, the proposed frame-
work may not provide an immediate solution for determining
the best function allocation. Instead, it serves as a valuable
tool to explore function allocations based on the available
work model and performance metrics. The work model can
be updated through human-subject experiments in the final
design phase, considering factors such as personality, inter-
face design, and scenarios. Then, the proposed framework can
perform a computational trade-off study of the HAT design
instead of conducting it with additional human-subject exper-
iments that are expensive in terms of time and cost.

We acknowledge that the proposed optimal function al-
location framework would benefit from further elaboration
of its human work model, particularly concerning cognitive
state modeling. The significance of human cognitive states in
function allocation has been studied [35]. For workload and
SA, computational models based on the well-known cognitive
architecture adaptive control thought-rational (ACT-R) are
available [36], [41]. These cognitive models could enhance the
CWM by simulating human behaviors, such as making mis-
takes and unintentionally losing SA. Another crucial cognitive
state is human trust in autonomy. While we assumed that
humans always accept the allocated functions by autonomy,
this may not hold if trust is low. Implementing computational
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approaches for dynamic trust in the CWM can calibrate trust
in HAT scenarios [35].

VL. CONCLUSION

'We proposed a quantitative framework for optimal adaptive
function allocation in human-autonomy teaming (HAT). The
framework leverages systematic approaches in cognitive en-
gineering and computational work modeling. By considering
performance metrics such as mission completion time, work-
load, and coherency in function allocations, the proposed
framework can compute the optimal situation-dependent
function allocation. Additionally, the framework allows for
flexible HAT design and easy adaptation to changes in the
computational work model during the early design phase. An
illustrative numerical example with a simulated human and
drone fleet teaming scenario demonstrated the effectiveness
of the proposed optimal function allocation framework.
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