
Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

0045-7825/© 2024 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Bayesian conditional diffusionmodels for versatile spatiotemporal
turbulence generationI

Han Gao a,c,1, Xu Han d,1, Xiantao Fan a, Luning Sun a,e, Li-Ping Liu d, Lian Duan f,
Jian-Xun Wang a,b,<
a Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN, USA
b Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN, USA
c School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA
d Department of Computer Science, Tufts University, Medford, MA, USA
e Lawrence Livermore National Laboratory, Livermore, CA, USA
f Department of Mechanical and Aerospace Engineering Department, The Ohio State University, Columbus, OH, USA

A R T I C L E I N F O

Keywords:
Turbulent flow
Generative modeling
Bayesian statistics
Surrogate modeling
Wall-bounded turbulence
Chaotic dynamics

A B S T R A C T

Turbulent flows, characterized by their chaotic and stochastic nature, have historically pre-
sented formidable challenges to predictive computational modeling. Traditional eddy-resolved
numerical simulations often require vast computational resources, making them impractical
or infeasible for numerous engineering applications. As an alternative, deep learning-based
surrogate models have emerged, offering data-drive solutions. However, these are typically
constructed within deterministic settings, leading to shortfall in capturing the innate chaotic
and stochastic behaviors of turbulent dynamics. In this study, we introduce a novel generative
framework grounded in probabilistic diffusion models for versatile generation of spatiotemporal
turbulence under various conditions. Our method unifies both unconditional and conditional
sampling strategies within a Bayesian framework, which can accommodate diverse conditioning
scenarios, including those with a direct differentiable link between specified conditions and
generated unsteady flow outcomes, as well as scenarios lacking such explicit correlations. A
notable feature of our approach is the method proposed for long-span flow sequence generation,
which is based on autoregressive gradient-based conditional sampling, eliminating the need
for cumbersome retraining processes. We evaluate and showcase the versatile turbulence
generation capability of our framework through a suite of numerical experiments, including:
(1) the synthesis of Large Eddy Simulations (LES) simulated instantaneous flow sequences
from unsteady Reynolds-Averaged Navier–Stokes (URANS) inputs; (2) holistic generation of
inhomogeneous, anisotropic wall-bounded turbulence, whether from given initial conditions,
prescribed turbulence statistics, or entirely from scratch; (3) super-resolved generation of
high-speed turbulent boundary layer flows from low-resolution data across a range of input
resolutions. Collectively, our numerical experiments highlight the merit and transformative
potential of the proposed methods, making a significant advance in the field of turbulence
generation.

I Videos of all numerical experiments can be found at https://sites.nd.edu/jianxun-wang/animations.
< Corresponding author at: Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN, USA.
E-mail address: jwang33@nd.edu (J.-X. Wang).

1 Contributed equally.

https://doi.org/10.1016/j.cma.2024.117023
Received 14 January 2024; Received in revised form 26 March 2024; Accepted 23 April 2024

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
https://sites.nd.edu/jianxun-wang/bayesian-conditional-diffusion-models-for-versatile-spatiotemporal-turbulence-generation/
mailto:jwang33@nd.edu
https://doi.org/10.1016/j.cma.2024.117023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2024.117023&domain=pdf
https://doi.org/10.1016/j.cma.2024.117023


Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

2

H. Gao et al.

1. Introduction

Turbulent flows, ubiquitous in diverse contexts such as high-speed aircraft operation, oceanic currents, and combustion processes,
exhibit complex unsteady and chaotic behaviors, characterized by swirling vortices and eddies over a wide spectrum of scales.
To investigate and simulate these intricate phenomena, researchers often resort to numerical solutions of the governing partial
differential equations (PDEs) of fluid dynamics. Eddy-resolved numerical simulations, notably Direct Numerical Simulation (DNS)
and Large Eddy Simulation (LES), aims to accurately capture the unsteady/chaotic dynamics inherent in turbulent structures
across extensive spatiotemporal scales. However, the computational demands of such methods can easily escalate to levels that
are prohibitively expensive or practically infeasible. This presents significant challenges, particularly for tasks requiring rapid
turnarounds, like real-time forecasting, or those that necessitating repeated model evaluations, as observed in design optimization
and uncertainty quantification.

Recent advances in deep learning (DL) offer new perspectives in addressing the intrinsic challenges of simulating unsteady
turbulent flows. Over the past few years, there has been a surge of interest in harnessing the power of DL to enhance computational
fluid dynamics (CFD) capabilities [1,2]. In this context, various DL-augmented CFD frameworks have emerged, wherein deep
neural networks (DNNs) are integrated with conventional CFD algorithms, enabling functionalities such as discovering high-order
discretizations [3,4], refining coarse-grid computations [5,6], learning turbulence closure models [7–9], and accelerating pressure
projection solvers [10]. Beyond enhancing existing CFD techniques, DL plays a pivotal role in creating rapid surrogate or reduced-
order models, which serve as substitutes for the computationally-intensive numerical solvers for emulating spatiotemporal flow
physics [11]. These innovations underscore the potential of DL in enhancing the accuracy and computational efficiency of fluid
simulations. Despite these advancements, several challenges persist when it comes to turbulence simulation and prediction. A major
concern is the reliability and robustness of DL-based solution, especially over a long time span. The chaotic nature of turbulence
means that even minor perturbations or modeling inaccuracies can lead to significant deviations in long-term predictions. Thus, the
deterministic nature of many DL-based fluid models often falls short in addressing the stochasticity intrinsic to turbulent flows.

In response, generative modeling, grounded in probabilistic frameworks, emerges as a promising alternative. In the realm of
data science, generative models encompass a set of algorithms designed to distill complex distributions of data. By leveraging latent
representations [12], adversarial learning schemes [13], or sequential data generation techniques [14], these models provide a
comprehensive toolkit for a variety of academic and industrial applications, including but not limited to image generation, language
processing, and anomaly detection [15]. The core of generative models lies in the objective of learning the underlying probability
distributions of the data, which allows the synthesis of new data samples that adhere to the statistical properties inherent in the
training set. In the context of turbulent flows, this implies the ability to generate instantaneous flow field realizations that mirror
the same statistical characteristics of the observed turbulence data, thereby bypassing the need for costly CFD simulations. In recent
years, there has been a growing interest in developing DL-based generative models for turbulent flows, motivated by their potential
in flow reconstruction and super-resolution, synthetic inflow generation, and surrogate turbulent flow emulation. These existing
methods can be broadly classified into following categories,

Autoregressive sequence models. Existing DL-based methods for turbulence generation are mainly based on autoregressive
learning architecture. These methods aim to learn the dynamic evolution of turbulent flow via neural networks based on
labeled data. After training, these models can take flow fields from preceding time step as input, outputting flow predictions
for subsequent steps. By rolling out the trained model given specified initial conditions, the sequence of turbulent flow fields
can be synthesized in an autoregressive manner. These approaches mainly rely on the learned temporal correlations within the
flow data, enabling the DL models to operate similarly to conventional explicit numerical solver. To address the challenge of
handling high-dimensional turbulent flow data, these methods often incorporate dimensionality reduction techniques, such as Proper
Orthogonal Decomposition (POD), Convolutional neural network (CNN) autoencoders, in conjunction with sequence networks. For
instance, Fukami et al. [16–18] developed convolutional autoencoder-based autoregressive learning models for inflow turbulence
synthesis, super-resolution or surrogate flow predictions. Yousif et al. [19] combined CNN autoencoder with Long Short-Term
Memory (LSTM) to achieve the similar goals, and their models have been further extended by introducing adversarial training and
attention mechanisms [20]. However, it is important to emphasize that these autoregressive neural forecasting models intrinsically
operate deterministically as they do not learn the underlying distribution of turbulence data, rendering them incapable of arbitrarily
generating instantaneous turbulent flow realizations as a stochastic process. Furthermore, such deterministic autoregressive models
are susceptible to cumulative error propagation, compromising the robustness of their long-term rollouts, with predictions either
escalating unpredictably or dampening important flow features converged to time-averaged values. The inherently chaotic nature
of turbulence exacerbates this vulnerability, leading to failures for long-term predictions. Uncertainty propagation in these models
have been recently explored [21,22].

GAN-based generative models. To actually learn the underlying probability distribution of turbulent flow data, allowing for
the random sampling of new realizations, Generative Adversarial Networks (GANs) have emerged as an effective tool. GANs rely
on a competitive dynamic between generator and discriminator: the former generates synthetic turbulent data, while the latter
differentiates synthetic from labeled data. Through iterative adversarial training, the outputs of the generator are progressively
refined, targeting convergence to the true distribution of the training data. Recent studies have demonstrated the applicability of
GANs in turbulent flow generation, super-resolution and inpainting. Several GAN variants, including the Wasserstein GAN (WGAN),
conditional GAN (cGAN), and deep convolutional GAN (DCGAN), have been adapted to synthesize individual snapshots of both
homogeneous isotropic turbulence and wall-bounded turbulent flows [23,24]. In the super-resolution (SR) context, methods such as



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

3

H. Gao et al.

super-resolution GAN (SRGAN), enhanced SRGAN, and cycle-consistent GAN (CycGAN) have been employed to enhance the low-
resolution or low-fidelity 2D/3D turbulence snapshots [25–28]. Buzzicotti et al. [29] leverage GAN to generate missing turbulence
data similar to image inpainting. However, these GAN-based models primarily focus on single-snapshot generation. Since such GANs
are trained on isolated flow snapshots (treated as 2D or 3D spatial images without temporal coherence), they intrinsically lack
the capacity for sequential saptiotemporal turbulent flow synthesis. While certain research endeavors have integrated GAN with
sequential networks [20]; however, these GANs largely serve as deterministic encoders, with their adversarial training paradigm
remaining decoupled from sequential networks, limiting their true stochastic generative potential. Only a few studies have rigorously
explored the potential of GANs to approximate the probabilistic distribution of flow sequence data without input–output labels for
training. Notably, Xie et al. [30] proposed TempoGAN, a combination of GAN and RNN, designed to generate stochastic, temporally
consistent fluid simulations with SR capability. Similar to TempoGAN, Kim and Lee [31] developed a combined WGAN+RNN model
to generate 2D inlet turbulence for 3D channel flow simulations. Despite the promise of GANs in turbulent flow synthesis, they face
several challenges: (1) the training of GAN can often be notoriously unstable, leading to frequent oscillations between the generator
and discriminator [32]; (2) moreover, GANs also often suffer from ‘‘mode collapse’’, producing limited varieties of outputs [33].

Normalizing flow (NF)-based generative models. Normalizing flows (NFs) have emerged as another notable subclass of genera-
tive models. At their core, NFs transform a basic, predefined probability distribution through a series of invertible, differentiable
functions, morphing it into a complex one that approximates the underlying data distribution. The strength of NFs is their potential
to model a complex distribution directly, bypassing the need for sampling-based approximations. Conceptually, this process of
transformation resembles a continuous flow, progressively shaping the initial distribution to align with the target data distribution.
Geneva and Zabaras [34] proposed a multi-fidelity deep generative model using NFs to simulate turbulent flows at different Reynolds
numbers. Efficient low-fidelity solver is leveraged to generate high-fidelity solution, significantly reducing the computational costs.
Their model incorporates a conditional invertible neural network with LSTM connections, trained through both data and governing
equations using a variational loss function. Another recent study integrated an attention-based sequence model into the NF-based
generative architecture, enabling the probabilistic synthesis of time-evolving turbulence [35]. Despite their promise, NFs are known
to have scalability issues with high-dimensional data, like turbulent flows, due to the requirement of computing Jacobians for
the transformations. Furthermore, developing conditional variants of NFs is notably challenging, limiting their adaptation to new
turbulent flow conditions.

Diffusion-based generative models. Diffusion models have recently marked a significant footprint in generative modeling, demon-
strating superior capabilities compared to GANs or NFs in multiple computer vision applications [36–38]. These models typically
involve a noise-addition process followed by a reverse denoising operation via deep neural networks. Categorically, diffusion models
can be classified into (i) Denoising Diffusion Probabilistic Models (DDPMs) [37], (ii) Score-based diffusion models [36], and (iii)
Stochastic Differential Equation (SDE) based models [39], with the latter considered as an overarching framework for the former
two. Diffusion generative models offer three primary advantages. First, their training process is straightforward, demanding minimal
architecture and hyperparameter fine-tuning. Second, their hidden variables mirror the physical characteristics of samples, enabling
seamless multi-scale feature capturing. Lastly, operating within a Bayesian framework, they provide a more direct way to enable
conditioned generation compared to normalizing flow-based models. Despite their evident success in fields like image generation
and super-resolution, their application in the physics domain, particularly turbulence modeling, remains limited. Some recent works
have made preliminary inroads on 2D Kolmogorov flows, targeting specific sub-tasks like super-resolution [40–42]. However, a
comprehensive application of diffusion models for spatiotemporal generation of inhomogeneous, anisotropic turbulence, particularly
via conditional frameworks, remains a largely uncharted territory. A gap exists in systematically generating intricate turbulent flows
under various conditional inputs, such as initial fields, boundary conditions, turbulence statistics, external forces, etc.

To this end, this work delves into the development and systematic investigation of conditional diffusion models designed for
generating complex inhomogeneous and anisotropic turbulent flows under various conditions. Unlike the majority of existing
literature on generative modeling that are primarily limited to single-snapshot generation, our emphasis lies in capturing the un-
derlying probabilistic distribution of time-evolving turbulent flow sequences. Essentially, our diffusion model can be conceptualized
as a stochastic spatiotemporal process, thereby allowing to generate new realizations of instantaneous turbulent flow sequences
through randomly sampling. Furthermore, to enhance the versatility of our generator, we integrate advanced Bayesian conditional
sampling techniques. By conditioning the generation (sampling) process on condition parameters such as initial flow fields, boundary
conditions, turbulent statistics, and coarse-grained solutions, our model adeptly synthesizes turbulent flows tailored to specific
constraints. The proposed Bayesian conditional sampling approach not only bridges parametric conditions with generated spatial–
temporal turbulent flows, but also magnifies the model’s flexibility, making it highly adaptable to a range of real-world scenarios.
As depicted in Fig. 1, the versatility of our proposed method is evident across a variety of turbulence generation scenarios. In
the context of 2D unsteady vortex flows over a backward-facing step, the model can reproduce LES-like eddy-resolved turbulence
given the corresponding low-fidelity URANS simulated solutions. For 3D turbulent channel flows, the figure emphasizes the model’s
capability at generating spatiotemporal sequences from varied initial conditions, specific flow statistics, or even entirely from scratch.
Furthermore, the 3D compressible supersonic turbulent boundary layers scenario showcased in the figure showcase our model’s
ability in super-resolution generation—demonstrating a conditioned generation from low-resolution inputs to high-fidelity DNS of
high-speed turbulent boundary layers. Collectively, Fig. 1 illustrates the robust adaptability and comprehensive capability of the
proposed conditional diffusion model in addressing diverse turbulence generation challenges.

The primary contributions of the paper are summarized as follows: (a) We present a novel generative framework for spatiotem-
poral turbulent flow, rooted in probabilistic diffusion modeling. This model operates within the Bayesian context, trained using the



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

4

H. Gao et al.

Fig. 1. Overview of the proposed versatile spatiotemporal turbulence generator via conditional diffusion modeling.

evidence lower bound, and is designed to randomly generate temporarily-coherent turbulent flow snapshots over a long-time span.
This approach sets it apart from other GAN-based methods that typically focus on generating single snapshots. (b) We proposed a
systematic approach to conditional generation, addressing two distinct scenarios of conditioning. The first establishes a differentiable
relationship between specified conditions and the corresponding spatial–temporal turbulence solutions. Notably, we leverage the
gradient from this connection via automatic differentiation to directly modify the unconditional score functions, allowing conditional
sampling without necessitating model retraining. For the second scenario, where conditions lack a direct correlation to the turbulent
flow, we treat them as additional inputs to our diffusion model. With transfer-retraining, the conditioned probability distribution
can be learned from conditioned datasets. (c) We proposed autoregressive conditioned generation techniques that enables long-span
flow generation. Its efficacy is benchmarked against the replacement method by Ho et al. [43] designed for prolonged video creation.
(d) Our framework, when conditioned on URANS simulations, is capable of generating LES-like solutions with unsteady dynamics
that are not captured by URANS, including phenomena such as Kelvin–Helmholtz instability and vortex shedding. (e) Through a
series of comprehensive experiments, we evaluate the performance of the proposed method in generating anisotropic, inhomogenous
wall-bounded turbulence, under different given conditions. These generated flows, both from unconditional and gradient-based
conditional sampling, are benchmarked against DNS results to affirm their fidelity and accuracy. (f) We also showcased our model’s
versatility through its application in super-resolution tasks for a high-speed turbulent boundary layer flow, with a particular emphasis
on handling various input resolutions.

The remainder of the paper is structured as follows. Section 2 delves into the methodology of the our diffusion-model-based
turbulence generator. Specifically, the formulation of the variational diffusion model for spatiotemporal turbulent flows is presented
in Section 2.1, while the unconditional and conditional sampling methods are discussed in Sections 2.2 and 2.3, respectively. The
generation of extended flow sequences using autoregressive gradient-based conditional sampling, which circumvents re-training, is
detailed in Section 2.4. In Section 3, we present a comprehensive set of numerical experiments to demonstrate and evaluate the
capability of the proposed method in diverse turbulence generation contexts. This section showcases: (1) the model’s proficiency in
simulating 2D unsteady flows over a backward-facing step, especially in generating LES-like turbulent flows from URANS solutions;
(2) Its capability in generating wall-bounded turbulence, whether from specified initial conditions, statistical data, or from scratch;
(3) Its ability in SR generation for compressible supersonic turbulent boundary layer flows, demonstrating resilience to diverse input
resolutions. Finally, the paper is concluded in Section 4, summarizing our principal findings and projecting avenues for subsequent
enhancements.

2. Methodology

2.1. Learning probability distribution of spatiotemporal turbulence via variational diffusion models

Turbulent flows are intrinsically characterized as stochastic spatiotemporal processes, reflecting their chaotic and random nature
across spatial and temporal scales. In this context, a generative model aims to capture and reproduce these complex dynamics by
learning the underlying probability distribution p(�0) of the spatiotemporal turbulent flow state variables �0(x, t), which can be
discretized into a sequence of spatial fields �0 À RNlengthùNdof , encompassing Nlength snapshots, with each having Ndof degree of
freedom. Our objective, therefore, is to construct a learning model p✓(�0) that approximates the true probability density p(�0) by



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

5

H. Gao et al.

learning from a training dataset Atrain œ RNlengthùNdof that contains many realizations of �0. This can be theoretically realized by
maximizing the likelihood of all training realizations �0 À Atrain as expressed by,

maximize
✓

…
�0ÀAtrain

log p✓(�0), (1)

where ✓ À RN✓ represents the model parameter vector, such as those in neural networks, which is to be optimized. Specifically, we
propose constructing a probabilistic diffusion model [44] that implicitly learns this underlying distribution, enabling rapid sampling
(generation) of new realizations of spatiotemporal turbulent flow fields. To this end, we introduce a series of latent variables,
�1,…�

Nnoise
À RNlengthùNdof , which are generated from the turbulent flow sequence �0 via a Markovian process,

q(�
j
�

i
) := N (↵

ji�i
, �

2

jiI), for any 0 f i < j f Nnoise, (2)

where N (a, b) represents a multi-variant Gaussian distribution with the mean a À RNlengthùNdof and covariance matrix b À

R(NlengthùNdof )
2

; I À R(NlengthùNdof )
2

is the identity matrix; the set of scalar {�
ji, ↵ji

ÛÛÛfor any 0 f i < j f Nnoise} are predefined such
that the marginalized distribution p(�

Nnoise
�0) converge to a zero-mean Gaussian distribution p(�

Nnoise
) = N (0, �2

Nnoise0I), which is
straightforward to sample [45]. The conditional distribution of each perturbed state given the turbulent flow sequence data �0 is
Gaussian,

q(�
i
�0) = N (↵

i
�0, �

2

i
I), (3)

where {↵
i
, �

i

ÛÛÛfor any 1 f i f Nnoise} are scalars that can be analytically derived from the predefined set {�
ji, ↵ji

ÛÛÛfor any 0 f i < j f
Nnoise} [37,46]. This process is known as the forward diffusion process, which is determined by handcrafting the transition kernels
to progressively transform the data distribution p(�0) into an accessible Gaussian distribution p(�

Nnoise
).

If this diffusion process can be inverted, such an reverse diffusion process would enable the synthesis of new realizations of
turbulent flow sequences simply by sampling from the Gaussian distribution p(�

Nnoise
). However, the reverse transition kernel

q(�
i*1�i

) is not known a priori and therefore necessitates learning through neural network parametrization. It is noteworthy that
the reverse transition kernel becomes tractable when conditioned on �0 [46,47],

q(�
i*1�i

) = q(�
i*1�i

,�0) =
q(�

i
�

i*1,�0)q(�i*1�0)

q(�
i
�0)

for any 2 f i f Nnoise, (4)

where the first equality is from the Markovian property and the second is based on the Bayes rule. If the perturbation step �
2

i
is

sufficiently small, the reverse transition kernel is also Gaussian, which can be analytically derived by substituting q(�
i
�

i*1) from
Eq. (2), and both q(�

i*1�0) and q(�
i
�0) from (3),

q(�
i*1�i

) = q(�
i*1�i

,�0) = N⇠
�

i*1; É�
�
�

i
,�0

�
, É�

2

i
I
⇡
, for any 2 f i f Nnoise, (5)

with mean É�
�
�

i
,�0

�
=

↵ii*1�2i*1
�
2

i

�
i
+

↵i*1�
2

ii*1
�
2

i

�0 and covariance É�
2

i
I =

�
2

ii*1�
2

i*1

�
2

i

I [45]. Given that �0 represent the generated flow
outcomes, which are not known a priori, we approximate q(�

i*1�i
,�0) by p✓(�i*1�i

) parameterized with trainable ✓, which can
be optimized by maximizing the evidence lower bound (ELBO) given the training set �0 À Atrain. The expression for ELBO is given
as,

ELBO✓(�0) = E
q(�1�0)

⌧
log p✓(�0�1)

�

* DKL

⇠
q(�

Nnoise
�0)

ÛÛÛ
ÛÛÛp(�Nnoise

)

⇡

*

Nnoise…
i=2

E
q(�i�0)

⌧
DKL

⇠
q(�

i*1�i
,�0)

ÛÛÛ
ÛÛÛp✓(�i*1�i

)

⇡�
.

(6)

Since the second term *DKL

⇠
q(�

Nnoise
�0)

ÛÛÛ
ÛÛÛp(�Nnoise

)

⇡
of Eq. (7) is non-trainable and close to zero given Eq. (2), we only need to

minimize the following terms,

*E
q(�1�0)

⌧
log p✓(�0�1)

�
+

Nnoise…
i=2

E
q(�i�0)

⌧
DKL

⇠
q(�

i*1�i
,�0)

ÛÛÛ
ÛÛÛp✓(�i*1�i

)

⇡�
. (7)

To parameterize p✓, we use the Eq. (5)

p✓(�i*1�i
) := q

�
�

i*1�i
, Ç�✓(�i

; i)
�
, (8)

where �0 is parameterized using deep neural networks with trainable parameters ✓,

�0 ˘
Ç�✓(�i

; i) = E�0Ìp(�0�i)
[�0]. (9)

In particular, from re-parametrization trick given by Eq. (3), �0 can be expressed as,

Ç�✓(�i
; i) =

�
i
* �

i
✏✓(�i

; i)

↵
i

(10)



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

6

H. Gao et al.

Fig. 2. The schematic illustrates the proposed Bayesian conditional diffusion model alongside the detailed architecture of the 3D U-Net used for denoising.
Turbulent flow sequences are represented as 4D tensors, with dimensions of timeùheightùwidthùchannel (t ùN

h
ùN

w
ù C). Spatial convolutions with residual

connections (shown in the lower right corner) are applied independently across temporal snapshots, scaling the N
h
ù N

w
dimensions by a factor of 2 while

maintaining a fixed channel size of 32. Additionally, a multi-head attention mechanism (shown in the lower left corner) is employed at each snapshot to enhance
spatial correlations and ensure temporal coherence. It is noteworthy that the position embedding for the diffusion step T is incorporated into every spatial
convolution operation. Furthermore, the position embedding for the time step t is introduced before the temporal attention processing.

where the noise ✏✓(�i
; i) is parameterized by a U-Net variant with residual blocks, attention, and positional embedding [43,47].

The overall schematic of proposed Bayesian condition diffusion model is presented in Fig. 2, where details regarding the neural
network structure of ✏✓(�i

; i) can be found in the bottom panel. Given that the KL divergence between two Gaussian distributions
has a closed form, maximizing the ELBO defined in Eq. (7) can be simplified to following optimization,

✓< = argmin

✓

…
�0ÀAtrain

E✏ÌN (0,I),iÌU (1,Nnoise)

⌅
C
i
Ò Ç�✓(�i

; i) *�0Ò2L2
⇧
, (11)

where C
i
=

↵
2

i*1
�
2

ii*1
2�

2

i*1
�
2

i

for i g 2 and C1 = 1; U (1,Nnoise) is the discrete uniform distribution from 1 to Nnoise; �i
is sampled using

re-parametrization based on Eq. (3) [37,45,47]. Namely, it can be computed by �
i
= ↵

i
�0 +�

i
✏, where ✏ is standard Gaussian noise,

i.e., ✏ Ì N (0, I) and �0 À Atrain.

2.2. Unconditional generation of spatiotemporal turbulent flow sequences

After training the diffusion model, we can generate new spatiotemporal turbulent flow sequences. This is achieved by sampling
the learned distribution via the reverse diffusion process, starting from a multivariate Gaussian distribution �

Nnoise
Ì N (0, �2

Nnoise0I).
Specifically, we progressively sample �

i*1 based on �i
using the learned reverse transition kernel,

p✓< (�i*1�i
) = N⇠

É�✓< (�i
; i), É�

2

i
I
⇡

for any 2 f i f Nnoise, (12)

where É�
2

i
=

�
2

ii*1�
2

i*1

�
2

i

and É�✓< (�i
; i) =

↵ii*1�2i*1
�
2

i

�
i
+

↵i*1�
2

ii*1
�
2

i

Ç�✓< (�i
; i). The Eq. (12) illustrates how we can sample �

i*1 based on
�

i
from a multivariate Gaussian with a mean of �✓< (�i

; i). This process can be equivalently perceived as �
i
being denoised to

move closer to Ç�✓< (�i
; i) [45]. Namely, the mean of the learned reverse transition kernel can be expressed in terms of the neural



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

7

H. Gao et al.

network-based noise estimate ✏✓< (�i
; i) as,

É�✓< (�i
; i) =

1

↵
ii*1

�
i
*

�
2

ii*1
↵
ii*1�i

✏✓< (�i
; i), (13)

To improve the quality of samples, a second-order noise correction is employed [43] as detailed,

✏correct✓< (�
i
; i) =

1

2

⇠
✏✓< (�i

; i) + ✏✓< ( É�✓< ; i)
⇡
, (14)

Subsequently, by substituting the original noise estimate, ✏✓< (�i
; i) in Eq. (13) with ✏correct✓< (�

i
; i), the corrected mean is derived as

É�correct✓< (�
i
; i) =

1

↵
ii*1

�
i
*

�
2

ii*1
↵
ii*1�i

✏correct✓< (�
i
; i). (15)

From Eqs. (12) and (15), we introduce a mapping, Suc : (�
i
, ✏) ≠ �

i*1

�
i*1 = É�correct✓< (�

i
; i) + É�

i
✏ (16)

where ✏ represent standard multivariate Gaussian noise. Iteratively applying Eq. (16), we can sample a new �0 starting from �
Nnoise

.
To set the stage for the discussion on conditional generation in Section 2.3, we can reinterpret Eq. (13) through the lens of the
score-based generative modeling framework [39],

É�✓< (�i
; i) =

1

↵
ii*1

�
i
+

�
2

ii*1
↵
ii*1

s✓< (�i
; i), (17)

where

s✓< (�i
; i) := (�i

log p(�
i
) =

↵
i
Ç�✓< (�i

; i) *�
i

�
2

i

(18)

is the score model that approximates the fastest increasing direction of the probability density within the state space, as known
as stein score [36,39]. The recursive unconditional sampling outlined in this section illustrates the progression from a point of
low-probability-density, �

Nnoise
, towards the region of high probability density, �0.

2.3. Generation of spatiotemporal turbulent flow sequences with conditions

The capability to generate turbulent flows becomes substantially more significant when tailored to specific parameters, prior
knowledge or certain constraints. This conditional generation method enables the synthesis of turbulent flows for specified
conditions or scenarios, augmenting its intrinsic value. For example, it will be very useful if we can use the data from efficient
low-fidelity (LF) Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations as the condition to generate corresponding
eddy-resolved instantaneous spatiotemporal turbulence solutions, which typically requires high-fidelity simulations, such as Large
Eddy Simulations (LES) or Direct Numerical Simulations (DNS) that are computationally demanding. Moreover, when faced with
low-resolution turbulence datasets – either due to storage constraints or measurement limitations – conditional sampling will super-
resolved generation of high-resolution data, recovering back high-frequency, high-wavenumber details of the flow. Another practical
applications of the conditional generation is for data assimilation. Namely, it is advantageous for the generator to yield flow
realizations in alignment with available measurement data, which are often sparse or indirect in nature. Building on the foundational
methodology introduced in Section 2.2, this subsection delves into the conditional turbulence generation.

Mathematically, any set of conditions can be parameterized as a vector,  À RN , referred as to the condition vector in this
work. Examples of the condition vector  include the URANS solution vector, instantaneous flow measurements, flow configuration
parameters, low-resolution snapshots, among others. In the context of probabilistic generation modeling, taking into account these
additional conditions in the generation process is mathematically equivalent to obtaining the conditional probability p(�0 ) of
the state �0 given the condition vector  . Similar to the unconditional generation discussed above, our objective here is to build
a learning model p✓(�0 ) to approximate the true conditional probability distribution p(�0 ). From Bayes’s rule, the learned
conditional density can be expressed as,

p✓(�0 ) ◊ p✓( �0)p✓(�0). (19)

In this context, we classify conditioning into two categories (a) scenarios in which p✓( �0) is explicitly differentiable; (b) scenarios
in which the relationship between generated state � and condition vector  is not differentiable and thus p✓( �0) cannot be
explicitly obtained. Namely, for category (a), there exists a clear functional relationship between �0 and  , whereas for category
(b), such a relationship is absent. To address these two situations, we propose two different conditioning methods, (a) gradient-based
conditional sampling without retraining and (b) conditional generation necessitating retraining, as described in the subsequent
sections.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

8

H. Gao et al.

2.3.1. Gradient-based conditional generation without retraining
In the first scenario, the turbulent state variable is directly correlated with the condition vector through the relation  =F (�0)+✏c , where F : RNlengthùNdof ô RN is a functional mapping from spatiotemporal turbulent field �0 to its associated condition

vector  (e.g., partial observation derived from �0); ✏c represents zero-mean Gaussian noises with variance �
2

c
. By leveraging the

Bayes’ theorem, all the latent states conditioned on the vector  can be expressed as,

p(�
i
 ) =

p( �
i
)p(�

i
)

p( )
, (20)

where p( ) is a normalizing constant that is intractable to compute in general. However, when using the score functions in terms
conditional probability, the troublesome denominator is eliminated. Namely, we have,

(�i
log p(�

i
 ) = (�i

log p( �
i
) + (�i

log p(�
i
), (21)

where the second term (�i
log p(�

i
) can be obtained by the pre-trained score function s✓< (�i

; i) given by Eq. (18). However, as
there is not explicit dependency between  and �

i
, the first term (�i

log p( �
i
) (gradient of log-likelihood term) needs to be

approximated based on the relationship between  and �0. To this end, we factorize p( �
i
) as follows,

p( �
i
) =  p( ,�0�i

)d�0 =   p( �0,�i
)p(�0�i

)d�0

=  p( �0)p(�0�i
)d�0 = E�0Ìp(�0�i)

⌅
p( �0)

⇧
,

(22)

which can be approximated as [48],

E�0Ìp(�0�i)

⌧
p( �0)

�
˘ p

⇠
 E�0Ìp(�0�i)

[�0]

⇡
. (23)

The approximation error is theoretically bounded based on Jensen’s inequality, known as the Jensen gap [49]. Now the conditional
density p( �

i
) can be approximated by p( E�0Ìp(�0�i)

[�0]), where E�0Ìp(�0�i)
[�0] is the pretrained diffusion model Ç�✓< (�i

; i)

with optimized parameter ✓< (see Eq. (9)). Accordingly, the gradient of the log likelihood in Eq. (21) can be approximated as,

(�i
log p( �

i
) ˘ (�i

log p(  Ç�✓< (�i
; i)), (24)

Based on the direct relationship between  and �0 as previously outlined, the conditional probability can be represented as

p( �0) ˘ p(  Ç�✓< (�i
; i)) Ì N⇠F�

Ç�<

✓(�i
; i)

�
, �

2

c
I
⇡

(25)

By differentiating log p( �
i
) with respect to �

i
using the approximation in Eq. (24), we have

(�i
log p( �

i
) ˘ *

1

�2
c

)ÒF ( Ç�✓< (�i
; i)) *  Ò2

L2

)�
i

, (26)

which can be obtained using the automatic differentiation capability of the neural networks. Namely,

)F ( Ç�✓< (�i
; i))

)�
i

=
)F ( Ç�✓< (�i

; i))

) Ç�✓< (�i
; i)

) Ç�✓< (�i
; i)

)�
i

. (27)

As such, Eq. (21) can be computed as,

(�i
log p(�

i
 ) ˘ (�i

log p✓< ( �
i
) + (�i

log p✓< (�i
)

= *
1

�2
c

(�i

ÙÙÙF ( Ç�✓< (�i
; i)) *  ÙÙÙ

2

L2
+ s✓< (�i

; i),
(28)

For conditional generation, the recursive unconditional sampling process as defined by Eq. (17) is guided by the gradient of the log
likelihood term (�i

log p✓< ( �
i
), which can be modified as,

É�guide✓< (�
i
; , i) =

1

↵
ii*1

�
i
+

�
2

ii*1
↵
ii*1

⇠
s✓< (�i

; i) * !
1

�2
c

(�i

ÙÙÙF ( Ç�✓< (�i
; i)) *  ÙÙÙ

2

L2

⇡
, (29)

where ! represent a weighting parameter to balance the contributions from both gradient direction as we found that naively adding
up both terms may cause low-quality generation with instability. In our implementation, we first compute the unit vector of the
conditional sampling direction,

nguide✓< (�
i
; , i) :=

(�i
log p✓< ( �

i
)

Ò(�i
log p✓< ( �

i
)Ò

L2

, (30)

and then the conditional sampling in terms of score functions is given as,

É�guide✓< (�
i
; i * 1, i) =�✓< (�i

; i * 1, i)+

�
guide

i
max

⇠
Ò
�
2

ii*1
↵
ii*1

s✓< (�i
; i)Ò2, (�guidei

)
2

⇡
nguide✓<

⇠
�

i
; , i

⇡
,

(31)



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

9

H. Gao et al.

Table 1
A comparison between the training of unconditional and conditional diffusion models.

Training optimization

Unconditional ✓< = argmin
✓

≥
�

0
ÀA

train

E✏ÌN (0,I),iÌU (1,N
noise

)

⌅
C
i
Ò Ç�✓(�i

; i) *�
0
Ò2
L2

⇧

Conditional ✓˝ = argmin
✓

≥
�

0
ÀA

train

E✏ÌN (0,I),iÌU (1,N
noise

)

⌅
C
i
Ò Ç�✓(�i

; i, ) *�
0
Ò2
L2

⇧

Table 2
A comparison between the sampling of unconditional and conditional diffusion models.

Generated state Mean of reverse kernel Noise Score function

Unconditional Ç�✓< (�i
; i) É�✓< (�i

; i * 1, i) ✏✓< (�i
; i) s✓< (�i

; i)

Conditional Ç�✓˝ (�i
; i, ) É�✓˝ (�i

; i * 1, i, ) ✏✓˝ (�i
; i, ) s✓˝ (�i

; i, )

where �
guide

i
and �

guide

i
are hyper-parameters, whose magnitudes should be kept relatively small based our empirical observations.

To further enhance the results, we can iterate the conditional gradient updating in the last denoising step for Nref ine times.

Remark 1. Gradient-based conditional sampling does not need to retrain the diffusion model. Namely, the diffusion model can be
trained unconditionally. Once trained, it enables the generation of new turbulent flows under various conditions, as indicated by
Eq. (31).

Remark 2. Maintaining a balance between the two directional terms in Eq. (28) is important. An excessively large gradient of
the conditional probability density may result in samples that meet specific conditions but situated in low-density regions of the
unconditional distribution, yielding suboptimal samples. Our objective is to generate samples that not only reside within the dense
regions of the unconditional distribution but also align with the set conditions. Considering the challenges associated with direct
density evaluation in the diffusion model, it is advisable to accentuate the leading gradient of the unconditional density, while
leverage the gradient of the conditional density to guide the sampling with a relatively smaller weight.

2.3.2. Concatenation-based conditional generation through retraining
In this subsection, we address the second conditioning scenario, where there is not a clear analytical or differentiable relationship

between the condition vectors  and the turbulent flow solutions �0. Take, for instance, the generation of eddy-resolved LES
turbulence conditioned on its counterpart URANS simulation results. When training the diffusion model on LES datasets, the
relationship between URANS and LES outcomes hinges on shared geometry, Reynolds number, and the fact that both models arise
from identical governing equations, albeit with varying modeling assumptions. However, the direct mapping function F :  ô �0

and its associated gradients, which would establish a tangible link between RANS and LES results, are elusive, given the high-
dimensional intricacies (space–time degrees of freedom), solver inconsistencies (as they may originate from distinct solvers), and
the considerable computational demands. Such complexities make the gradient-based conditional generation technique inapplicable
in this context.

As a viable alternative strategy, conditions can be incorporated into the neural networks’ input, necessitating a retraining process
with conditioned samples to implicitly approximate the true conditional distribution. More specifically, the U-Net’s input is modified
by concatenating the condition vector  with the perturbed hidden state �

i
. The training procedure remains the same as that for

the unconditional diffusion model as discussed in Section 2.1, where the Gaussian transition kernel is unaltered. In this way, the
conditional mapping F :  ô �0 is implicitly learned by the neural networks, and thereby directing the flow generation conditioned
on  . Tables 1 and 2 provide a comparison between the training and sampling processes of the unconditional and conditional
diffusion models, respectively.

2.4. Generating long-span spatiotemporal turbulence

The proposed diffusion model is adept at generating spatiotemporal turbulence fields�0 À RNlengthùNdof , consisting of a fixed set of
Nlength temporal snapshots. Due to the intrinsic limitations imposed by memory footprints,Nlength cannot be substantially large during
the training phase. Nonetheless, for enhanced applicability in real-world scenarios, there is an imperative need to extrapolate the
capabilities of the trained diffusion model to enable the synthesis of turbulent sequences that span duration considerably exceeding
the default length Nlength. To this end, we propose an autoregressive conditioning sampling strategy, which allows us to robustly
generate long-span turbulent flows with arbitrary temporal length. Specifically, the spatiotemporal turbulent state �0 of default
length is decomposed into two non-overlapping subsequences:

�0 = [�a

0
,�b

0
], (32)

where �a

0
À RNpreviousùNdof represents the preceding subsequence, whereas �b

0
À R(Nlength*Nprevious)ùNdof denotes the subsequent flow

subsequence. Now the autoregressive conditional generation is formulated as follows: given an preceding flow sequence �a

0
, the



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

10

H. Gao et al.

goal is to generate a subsequent flow sequence �b

0
based on the conditional probability density p(�b

0
�a

0
). Once the diffusion model

is trained with optimal parameters ✓<, the subsequent flow sequence can be obtained via conditional sampling,

�b

0
Ì p✓< (�b

0
�a

0
), (33)

By repetitively sampling from these conditional probability distributions in an autoregressive manner, our approach holds the
capability to synthesize turbulent sequences with a arbitrary length. Significantly, this can be achieved
without the need of retraining the model.

2.4.1. Gradient-based autoregressive conditioning method
The gradient-based conditional generation method, introduced in Section 2.3.1, can be used to achieve this goal. In this context,

the conditional vector is the preceding subsequence,  := �a

0
. Within the gradient-based conditional generation framework, the

gradient of log likelihood associated with the preceding subsequence is used to guide the generation of the subsequent sequence
�b

0
. Specifically, we autoregressively sample the conditional distribution p(�0�a

0
) of the turbulence sequence �0 with the default

length Nlength given the condition vector, i.e., �a

0
. The state-to-condition mapping F is defined as,

F : RNlengthùNdof ô R
1

2
<NlengthùNdof , (34)

which selected out the first 1

2
< Nlength snapshots of the generated flow sequence Ç�✓< , i.e.,

F ( Ç�✓< ) = Ç�a

✓< , (35)

where Ç�a

✓< is the first half portion of the full sequence Ç�✓< . The key for conditional sampling is to approximate the gradient of log
likelihood of condition vector (�i

log p( �
i
), which involve the derivative computation as follows,

)ÒF ( Ç�✓< (�i
; i)) *  Ò2

L2

)�
i

=

)Ò Ç�a

✓< (�i
; i) *�a

0
Ò2
2

)�
i

. (36)

Then, the subsequent operations are detailed in Section 2.3.1. By adopting this autoregressive approach, the model can successively
generate segments of the flow sequence. Each subsequent segment is influenced by the preceding segment, ensuring smooth and
coherent transitions in the turbulent dynamics. This iterative procedure, when executed repeatedly, facilitates the generation of
flow sequences of any desired length. This methodology offers a potent and versatile solution for extending the capabilities of
our trained diffusion model beyond its inherent limitations, fulfilling the demand for long-duration turbulent sequences in various
practical applications.

2.4.2. Replacement-based autoregressive method
An alternative autoregressive method has been discussed by Ho et al. [43], targeting the generation of extended videos. While

the foundational approach remains rooted in unconditional sampling, the strategy involves modifying partial hidden states to enable
autoregressive generation. Specifically, the (hidden) state �

i
is partitioned as �

i
= [�a

i
,�b

i
]. We aim to compute the expectation of

�b

0
over the conditioned probability p

<

✓
(�b

0
�a

0
,�

i
) = p

<

✓
(�b

0
�a

0
, [�a

i
,�b

i
]) as,

E�b

0
Ìp✓< (�b

0
�i)

⌧
�b

0

�
=   p✓< (�b

0
�a

0
, [�a

i
,�b

i
])�b

0
d�b

0

=  
p✓< (�b

0
�a

0
, [�a

i
,�b

i
])p✓< (�b

0
[�a

0
,�b

i
])

p✓< (�b

0
[�a

0
,�b

i
])

�b

0
d�b

= E�b

0
Ìp✓< (�b

0
[�a

0
,�b

i
])

L
�b

0

p✓< (�b

0
�a

0
, [�a

i
,�b

i
])

p✓< (�b

0
[�a

0
,�b

i
])

M
.

(37)

By assuming p✓< (�b

0
�a

0
, [�a

i
,�b

i
]) ˘ p✓< (�b

0
[�a

0
,�b

i
]) as iterative denoised �a

i
converges to �a

0
, we have

E�b

0
Ìp✓< (�b

0
[�a

0
,�b

i
)]

L
�b

0

p✓< (�b

0
�a

0
, [�a

i
,�b

i
])

p✓< (�b

0
[�a

0
,�b

i
])

M
˘ E�b

0
Ìp✓< (�b

0
[�a

0
,�b

i
])

⌧
�b

0

�

= Ç�b

✓< ([�
a

0
,�b

i
]; i)

(38)

where Ç�b

✓< ([�
a

0
;�b

i
]; i) is from the partition of,

Ç�✓< ([�a

0
;�b

i
]; i) =

⌅
Ç�a

✓< ([�
a

0
;�b

i
]; i); Ç�b

✓< ([�
a

0
;�b

i
]; i)

⇧
. (39)

Namely, the core of the replacement method is to replace the first half of the hidden vector �a

i
with the given �a

0
during

unconditional sampling process.

Remark 3. The formulation in (38) operates under the assumption p✓< (�b

0
�a

0
, [�a

i
,�b

i
]) ˘ p✓< (�b

0
[�a

0
,�b

i
]). The validity of

this assumption in the context of estimating the density value ratio (which corresponds to the importance sampling weight in
(37)) remains unclear, even with an adequately trained model, i.e., i ô 0. Since p✓< (�b

0
�a

0
, [�a

i
,�b

i
]) is always greater than

p✓< (�b

0
[�a

0
,�b

i
]) due to more information in the conditioning, the density ratio is always greater then one. The replacement method’s

disregard for the importance weights exceeding unity might lead to underestimated values. As sequences are progressively generated,
this diminishing effect could compound, aligning with our observations in the experimental study presented in Section 3.1.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

11

H. Gao et al.

3. Numerical results and discussions

To showcase the robust and versatile turbulence generation capabilities of the proposed conditional diffusion model, we
conducted on a series of numerical experiments, exploring various generation scenarios on three distinct turbulent flow cases:

1. 2D unsteady flows over a backward-facing step: In this case, we highlight the model’s capability in generating LES-like
instantaneous eddy-resolved turbulent flows when provided with URANS simulated flow solutions.

2. 3D turbulent channel flows: Here, the diffusion model is trained to adeptly generate instantaneous spatiotemporal sequences
of turbulent channel flow, given specified initial conditions, statistics, or entirely from scratch.

3. 3D compressible supersonic turbulent boundary layers: This case underscores the model’s super-resolution generation
capabilities—where the high-resolution DNS high-speed turbulent boundary layers are generated conditioned on low-
resolution input measurements.

3.1. RANS-conditioned generation of eddy-resolved turbulence over backward-facing step

In this section, we showcase the capabilities of our proposed method in generating LES-like spatiotemporal flow realizations,
predicted upon a URANS-simulated flow. We further compare the performance of different variants of our proposed method. Consider
a 2D channel featuring a backward-facing step; the specific configuration of this flow case is depicted in Fig. A.15. Our focus
revolves around the unsteady velocity, as a spatiotemporal vector field u(x, y, t) = [u1(x, y, t), u2(x, y, t)]

T
: ⌦ ù Rg0 ô R2, where

⌦ represents the computational domain. A key area of our interest is the flow separation zone after the step, indicated as the
shaded area in Fig. A.15. In LES simulations, introducing random perturbations to the inlet yields multiple realizations of unsteady
flow sequences even at the same Reynolds number. In contrast, the URANS simulation inherently averages out these stochastic
fluctuations. Consequently, for a specified Reynolds number, every distinct LES realization of instantaneous flow sequence can be
associated with a single URANS simulated flow sequence. Essentially, these LES flow realizations can be interpreted as samples
drawn independently from a stochastic distribution conditioned on the URANS result for a given Reynolds number. The LES and
URANS simulation details are provided in Table A.3.

3.1.1. Data preparation and model training
The diffusion model is developed to generate eddy-resolved instantaneous flow sequences given different Reynolds number. To

produce the flow dataset, we consider a parameter set D consisting of 11 Reynolds numbers (Re) evenly distributed between 5000

to 14000,

D = {Re
i
= 5000 + (i * 1) ù 900i = 1,… , 11}. (40)

At each Reynolds number (Re
i
), we perform one URANS simulation and the simulated unsteady flow sequence ( ) contains 240

snapshots

 Rei = [ Rei

1
,… Rei

240
], i = 1,… , 11, (41)

and LES simulations with five realizations of random inlet perturbations (�)

�Rei

k
= [�Rei

k,1
,…�Rei

k,240
], i = 1,… , 11, k = 1,… , 5. (42)

Subsequently, we partition the parameter set into two subsets:, the testing set (Dtest) and the training set (Dtrain),

Dtest = {5900, 13100}, Dtrain = D ‰Dtest . (43)

Considering memory constraints and the need for data augmentation, the complete flow sequence of 240 snapshots is divided into
200 shorter subsequences, each containing 40 snapshots, for training purposes. In testing phase, long flow sequence can be generated
using auto-regressive conditional sampling as discussed above. Specifically, the training sets for condition vectors and corresponding
flow solutions are given as,

V =
�
{ Rei

j
,… Rei

j+40
}
ÛÛÛRei À Dtrain, j = 1,… , 200

�
,

W =
�
{�Rei

k,j
,…�Rei

k,j+40
}
ÛÛÛRei À Dtrain, j = 1,… , 200, k = 1,… , 5

�
.

(44)

Remark 4. We consistently adopt the data augmentation strategy outlined in (44) to address the challenges posed by limited
training data. This approach offers an advantage in generating a greater number of sequences compared to simply dividing the
lengthy sequence into discrete non-overlapping segments.Although having overlapping sequences might seem redundant, it is
essential for ensuring comprehensive learning by the model. This method is a commonly used data augmentation technique for
learning sequential data, enabling the model to capture transitional dynamics more accurately, thus enhancing predictive accuracy.
It is important to note that this overlapping-based data augmentation serves to enrich the training dataset and improve training
efficiency. Once trained, the model can efficiently generate non-overlapping sequences of up to 40 steps in length.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

12

H. Gao et al.

Fig. 3. (a) Velocity magnitude of one generated samples, LES and URANS at Re = 5900 at developing and fully developed stages. (b) the energy spectra for
multiple generated samples ( ), compared with LES ( ) and URANS ( ) at x = 4, y = 1.

3.1.2. URANS-conditioned generation of LES flow sequences on testing Re
Given a testing Reynolds number (e.g., Re = 5900), URANS is conducted to serve as the conditioning for the LES-like generation.

As shown in Fig. 3, a long LES-like turbulent flow over a backward-facing step is generated by the gradient-based autoregressive
method. We first focus on the flow development phase (first 40 steps), specifically observing the formation and growth of the
recirculation bubble as the flow progresses past the step. For one realization of the generated flow sequence (see contours in Fig. 3),
it is noticeable that the generated sequence retains similarities with the URANS simulated one up to approximately the 15th timestep,
with significant divergences emerging after the 20th timestep. Post the 40th timestep, although the URANS-simulated conditions tend
to stabilize, the generated samples retain their turbulent nature, marked by the dynamically changed vortex structures, unaffected
by the nearly-steady URANS conditioning. This observation suggests that our model actually generates new flow features, advancing
beyond mere replication or upscaling of URANS data, which is fundamentally different from previous SR works [34]. By comparing
the contours of one realization of generated flow sequences with one LES sequence, we found the unsteady flow patterns, vortex
structures and level of details are very similar. It is important to note that the instantaneous flow fields between the generated and
actual LES samples inherently differ, as they are independent random realizations and lack any direct comparison.

To further compare our generative model with LES statistically, we generate multiple realizations based on the same URANS
simulation. The energy spectra of the realizations from both LES and diffusion models behind the step (x = 4, y = 1) are plotted
in Fig. 3, where the URANS result is also shown for comparison. As observed in Fig. 3, the URANS simulation’s energy spectrum
decays rapidly at high frequencies and notably lacks the pronounced peak at f = 10. This absence of a peak in the URANS spectrum
is indicative of the model’s limited capacity to resolve the eddies and capture the recirculation region in the wake after the step. In
contrast, all realizations from our diffusion model effectively generate these eddies and the recirculation regions and their alignment
with the LES results is evident, as their energy spectra show a consistent peak value and statistical characteristics. Additionally, the
energy spectra for different realizations exhibit slight differences, indicating the generation process in our model is non-deterministic.
Similar conclusions are drawn for a higher testing Reynolds number (Re = 13100), as evidenced in Fig. A.17. This demonstrates the
capability of our Bayesian-based diffusion model to produce diverse LES-like instantaneous eddy-resolved turbulent flows when
provided with URANS-simulated flow solutions for a specified Re. It is also worth noting the model’s strong performance in
generating accurate results for Reynolds numbers beyond those it was trained on, underscoring its ability to generalize to interpolated
Reynolds numbers.

We also examine the mean velocities and their fluctuations at various locations in the wake region to spatially assess the statistics
of our generated samples. Fig. 4 shows a comparison between the diffusion-generated results and the LES/URANS simulations for
Re = 5900 across nine representative locations, including recirculation, reattachment, and recovery areas. The profiles of the first
and second moments of the generated samples agree with those of LES simulated results very well in both developing and fully
developed stages. While URANS simulations reasonably capture the mean velocities and their fluctuations during the developing
stage, they significantly underperform for the fully developed flows. Notably, URANS simulations substantially underestimate
velocity fluctuations when the flow become fully developed, primarily due to their inability to accurately capture the recirculation
region in the wake. This leads to notable discrepancies in mean velocities, especially in the region defined by x = [0, 6] and y < 1.
Beyond the recirculation region, particularly in the area of x = [7, 9] and y < 1, URANS simulations align more closely with LES



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

13

H. Gao et al.

Fig. 4. Mean of streamwise velocity (first row), variance of streamwise velocity (second row) and variance of wall-normal velocity (third row) at Re = 5900

for developing stage (left column) and fully developed stage (right column) from LES ( ), URANS ( ) and diffusion model ( ) evaluated at different streawise
locations x. The x-axis labels on the subplots in the second and third rows are designed to represent the normalized velocity fluctuations along the spatial
coordinates.

results. However, URANS tends to overestimate mean velocities in regions where y > 1. Conversely, our diffusion model results can
generate intricate vortices and flow patterns which align well with LES results, as evident by their agreements in velocity mean and
fluctuation profiles across all of these wake regions. The same observation and conclusion can be obtained for the case of Re = 13100,
as shown in Fig. A.18.

In addition to evaluating turbulence statistics, we have utilized the Continuous Ranked Probability Score (CRPS) to quantify
the agreement between our model-generated samples and simulation samples. We calculated the CRPS for our model’s generated
turbulent flow samples using a reference set of LES/DNS samples. Moreover, we also computed the CRPS between two distinct sets
of LES/DNS simulated samples to establish a baseline for comparison. The CRPS values obtained by the Diff-gradient method for
Re = 13100 are detailed in Table D.6. This analysis shows that the CRPS values of samples generated by our model are comparable
to those derived from more computationally-intensive LES/DNS simulations.

3.1.3. Comparison of different autoregressive sampling methods
We previously introduced gradient-based (Section 2.3.1, referred to as Diff-Gradient) and replacement-based (Section 2.3.2,

referred to as Diff-Replace) autoregressive sampling method in details. This section aims to evaluate these two auto-regressive
conditional sampling schemes for generating extended spatiotemporal flow sequences, where each newly generated flow sub-
sequence is conditioned on the previously generated ones autoregressively. Serving as our baseline, ‘‘Diff-Vanilla’’ refers to the
direct application of VideoDiffusion [43] to produce a series of sub-sequences without autoregressive conditioning, thereby lacking
temporal coherence between sub-sequences. We conducted a comparative analysis of sample statistics at nine locations (x = [1, 9])
for Re = 13100 from the testing set. As shown in Fig. 5, all three methods are capable of generating samples conditioned on
URANS, effectively capturing the mean velocity within the recirculation region and far wakes. However, the replacement-based
method slightly underestimates the mean velocity, particularly in the far wake region. Regarding long-span generation, the direct
generation method is impractical due to memory constraints. Although both autoregressive generation methods can produce
arbitrarily long sequences, the replacement-based method tends to exhibit a continuous decrease in velocity magnitude over time.
This trend is attributed to noticeable energy dissipation during self-conditioning rollouts, as discussed in Section 2.4.2. Our proposed
gradient-based autoregressive generation method demonstrates robust capability in generating LES-like turbulence over extended
durations.

We also evaluated the computational cost of three sampling methods using the diffusion model, as shown in Fig. A.16. Since the
URANS computation is performed only once and serves as a condition, its cost is not included in the evaluation for the generation of
multiple realizations. In contexts requiring numerous short and coherent sequences, such as those focusing exclusively on developed
flows, the vanilla method (Section 2.2) is the most efficient, offering significant speed improvements. Conversely, for generating



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

14

H. Gao et al.

Fig. 5. Mean of streamwise velocity at Re = 13100 in the fully-developed phase: LES ( ), URANS ( ), Diff-Gradient ( ), Diff-Replace ( ) and Diff-Vanilla ( ). The
figures, arranged from left to right and top to bottom, correspond to locations at x = [1, 9].

long and coherent sequences, the gradient-based autoregressive method is preferable due to its superior performance and faster
operation compared to the replacement-based autoregressive method. It is important to note that this initial example primarily
demonstrates the model’s ability to parametrically convert dynamics characterized by large-scale features into those exhibiting
small-scale and chaotic features, while the speedup observed in this case due to the computational efficiency of the small-scale
2D LES simulation. Although the training cost for this case on the same hardware is about 24 h, it is anticipated that the benefits
in terms of computational efficiency for the diffusion model will be more significant in scenarios involving large-scale and more
intricate 3D turbulence simulations, which will be further studied in the subsequent sections.

3.2. Generation of instantaneous turbulent channel flows under various conditions

We now demonstrate the efficacy of our proposed method in generating instantaneous DNS velocity fields of a 3D turbulent
channel flow form scratch or from specified conditions such as initial flow snapshot, RMS profiles of velocity fluctuations, and
Reynolds stress. For the fully developed turbulent channel flow at Re

⌧
= 180, governed by the unsteady incompressible Navier–

Stokes equations [50], the flow exhibits homogeneity in the streamwise and spanwise directions. In this scenario, the turbulence
are statistically homogeneous except in the wall-normal direction (y+) [51]. This one-dimensional characteristic facilitates the
synthesis of independent two-dimensional samples from uncorrelated sections perpendicular to the streamwise direction [19,50–
52]. This one-dimensional characteristics allows us to synthesize independent two-dimensional instantaneous flow sequences from
uncorrelated sections perpendicular to the streamwise directions [19,50–52]. Our focus is on generating the 3D velocity fields
(u(y, z, t) = [u1(y, z, t), u2(y, z, t), u3(y, z, t)]

T
: ⌦ ù Rg0 ô R2) at the channel cross-section. We will explore in detail the application of

the gradient-based autoregressive conditional diffusion method for generating long-span, spatiotemporal dynamics of the 3D channel
flows.

3.2.1. Data preparation and model training
The diffusion model is built to produce the cross-sectional velocity field of a 3D channel of dimensions L

x
ù ä

y
ùLz = 2⇡ ù 2 ù ⇡

at Re
⌧
= 180, with an emphasis on generating extended sequences under various conditions. The dataset is obtained through fully-

resolved DNS runs, where the cross section is discretized by N
y
ùN

z
= 256 ù 128. The instantaneous velocity fields of a total of 14

uncorrelated cross-sections along the streamwise direction, spanning 4 flow-through times, are collected to create our dataset. Each
flow-through time includes 300 time steps, resulting in a total of 16,800 snapshots. Of these, 86% are utilized for training, and the
remaining 14% serve as test set for turbulence statistics comparison.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

15

H. Gao et al.

Fig. 6. Spatiotemporal sequences of instantaneous streamwise velocity fields generated from our diffusion model and DNS.

3.2.2. Direct generation of long sequential turbulence from scratch
We initially generated the flow field entirely from scratch using the trained diffusion model, without imposing any specific

conditions. For this purpose, we employed the gradient-based autoregressive method to produce long-span turbulence sequences
spanning 300 time steps (equivalent to one flow-through time, as detailed in Table B.4). This approach was chosen as the velocity
tends to dampen in the replacement-based method during self-rollout, as previously mentioned. Figs. 6, B.24, and B.25 display the
generated instantaneous velocity fields alongside those simulated via DNS for comparison. Three randomly generated realizations
of the spatiotemporal flow sequences are plotted, which all visually resample the DNS reference, showcasing our model’s ability to
produce diverse and realistic instantaneous velocity fields. This is fundamentally distinct from the approach using sequence neural
networks (e.g., ConvLSTM or Transformer), which yields a single deterministic trajectory with a given initial condition. The CRPS
values, as shown in Table D.6, closely match those of DNS samples,indicating the similarity of the generated samples to DNS data. To
further evaluate the generative performance, we compared the statistics of eight generated flow samples, each with 300 steps, against
DNS data as shown in Fig. 7. Remarkably, the mean streamwise velocity profile of the generated data mirrors that of the DNS across
various flow regions, including the linear viscous sublayer, buffer layer, and logarithmic region. Furthermore, the root-mean-square
(RMS) profiles of velocity fluctuations generated by our model demonstrate an high agreement with those obtained from DNS. This
level of accuracy in capturing the essential turbulent characteristics underscores the robustness and versatility of our diffusion-based
approach in simulating complex turbulent flows. More statistics, including the spanwise energy spectra and two-point correlations
of the velocity components at different wall distances, are provided in Appendix (see Figs. B.21 and B.22). Overall, they are all
reasonably in good agreement with those obtained from the DNS, especially in logarithmic region (e.g. y+ = 180). Although slight
difference in low-wave-number regions can be observed when probing the viscous sublayer and buffer layer, the anisotropic features
along the wall direction are well captured. Moreover, the two-point correlations of alll the generated flow samples agree with the
DNS reference reasonable well, falling off to almost zero within a half width of the computational domain for both the streamwise
and spanwise directions [53]. There are small but noticeable bumps in the streamwise and spanwise two-point correction of our
generated results in the near-wall regions, which is possibly due to large-scale isotropic structures generated around the channel
center, which can be removed by introducing additional information using conditional sampling.

3.2.3. Conditioned generation given prior sequence
In this section, we demonstrate the model’s proficiency in generating conditioned sequences, a process where the model generates

a sequence of flow based on a given set of prior flow sequence of varying lengths. To demonstrate this, we utilize an unseen sequence
(spanning from t = 1 ô t = 20) from the DNS database. The length of the prior sequence that the diffusion model is conditioned on
can be varied from 1 to 19. Namely, the diffusion model generates the remaining portion of the sequence up to t = 20 by sampling
the trained model. Notably, the generation step is amplified a hundred times relative to the numerical step, resulting in a total
sequence length of 2000 numerical steps. Fig. 8 presents the final snapshots of these generated sequences, compared against the last
snapshot from the DNS simulations. The results show an expected trend: fewer prior snapshots lead to greater randomness in the final
generated snapshot, while a higher number of prior snapshots results in a closer resemblance to the DNS counterpart. This trend of
decreasing error, as illustrated in Fig. B.23, effectively demonstrates the model’s adeptness in incorporating conditional information
and updating the posterior distribution accordingly. Moreover, it is crucial to highlight that these conditioned generations do not
necessitate any retraining of the model. The diffusion model, once trained in an unconditional manner, can be directly employed
for sampling with conditioning.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

16

H. Gao et al.

Fig. 7. The mean streamwise velocity profile (left) from DNS ( ) and diffusion model ( ); The RMS profiles (right) of streamwise velocity fluctuation
from DNS ( ), diffusion model ( ), of wall-normal velocity fluctuation from DNS ( ), diffusion model ( ), and of spanwise velocity fluctuation
from DNS ( ), diffusion model ( ).

Fig. 8. The contours of streamwise (u
1
), wall-normal (u

2
), spanwise (u

3
) velocity at t = 20 generated by diffusion model and DNS. In the context of t, the presence

of red signifies conditioning, while black represents generation. Each row use a same colorbar to highlight features in the corresponding velocity component.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.2.4. Conditioned generation with desired statistics
Our model has remarkable flexibility in conditioned generation, capable of producing flow with desired flow features. To

demonstrate this capability, we consider generating instantaneous flow sequence given specified mean flow profiles or Reynolds
stress fields. Unlike the previous conditional generation methods that rely on adding extra loss terms during the training phase [19],
our framework allows for incorporating these additional criteria directly into the inference (sampling) phase, eliminating the need
for retraining. This approach is feasible because the specified statistics are differentiable relative to the generated states. Such an
approach not only saves the effort of repeated training but also adeptly addresses potential discrepancies between training and
testing data, thereby validating the use of online conditioning over offline training.

Conditioned on 1D mean flow profiles: As a proof of concept, we conditioned the model on the RMS profiles of wall-normal velocity
fluctuation obtained from an unseen DNS sequence. As shown in Fig. 9, while our model generates distinct realizations, the RMS
time-averaged fluctuation profile of the generated instantaneous flow agree well with that of the DNS data, suggesting that the
condition is successfully imposed during the sampling process. Our model not only generates samples that visually similar to the
DNS data but also can enforce the specified flow conditions without requiring retraining for any new mean flow profile requirements.
We further tested our model by generating an additional six sequences using the same trained unconditional diffusion model, each
conditioned on different RMS mean fluctuation profiles, and observed similarly robust performance (as shown in the lower part of
Fig. 9).

Conditioned on the 2D Reynolds stress field: We next explored generating flow sequences with specified Reynolds stress fields using
the same trained model. In contrast to the 1D RMS mean flow profiles, the Reynolds stress field contains more flow information
but also requires a higher-dimensional representation. For this task, we first obtained the Reynolds stress from an unseen DNS flow
sequence and then utilized the gradient-based conditional sampling method to generate a sequence of instantaneous flows that



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

17

H. Gao et al.

Fig. 9. Conditional generation given specified RMS profiles of wall normal velocity fluctuation: The RMS profiles of wall-normal velocity fluctuation from the
DNS ( ), and recalculated from the generated samples ( ). Note that the sequences used to calculate RMS profiles are not in a statistically steady state,
resulting in varying profiles across different sequences.

Fig. 10. The contours of streamwise (u
1
), wall-normal (u

2
), spanwise (u

3
) velocity at the first, fifth, ninth, thirteenth, seventeenth, twentieth steps generated by

diffusion model and DNS. Two models use a same colorbar for the same scalar field to highlight similarity in Reynolds stress and difference in flow fields. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

could lead to the same Reynolds stress field. As shown in Figs. 10 and 11, although the generated instantaneous velocity fields
are significantly distinct from those in the DNS data, the six Reynolds stress tensor components computed from the generated flow
are almost identical to those in the DNS data. This demonstrates the model’s remarkable ability to synthesize instantaneous flow,
while simultaneously ensuring the desired complex flow characteristics, such as Reynolds stresses. This capability underscores the
potential of our model in simulating intricate turbulent dynamics, where adherence to certain statistical properties is crucial, yet a
degree of unpredictability in the flow structures is maintained.

Moreover, it is acknowledged that the performance of generative models diminishes in small data regimes. This limitation
can be mitigated by integrating additional prior information through our proposed Bayesian conditional sampling framework. To
empirically demonstrate the model’s efficacy in addressing limited data scenarios, we conducted an experiment using a training



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

18

H. Gao et al.

Fig. 11. Re-evaluated and conditioned Reynolds stress between diffusion model and DNS. Two models use a same colorbar for the same scalar field to highlight
similarity in Reynolds stress and difference in flow fields. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

dataset that is less than 10% of its original volume. Initially, the model encountered challenges in accurately capturing turbulence
characteristics without the integration of prior knowledge. This issue was particularly apparent in the Root-Mean-Square (RMS) of
velocity fluctuations, as depicted in Fig. B.27, which exhibited notable discrepancies compared to DNS results. Incorporating prior
on the velocity fluctuation RMS through the Bayesian conditional sampling framework significantly enhanced the model’s ability to
generate spatiotemporal turbulence whose statistics closely align with those from the full dataset. This improvement underscores
the value of incorporating prior knowledge as conditions within the Bayesian framework, particularly in limited data scenarios.

Finally, we briefly discuss the computational cost of different methods, emphasizing the efficiency of our approach. The diffusion
model, serving as a surrogate sampler, distinct from traditional numerical simulations by directly generating instantaneous flow
within a Bayesian sampling framework. This method not only achieves a remarkably good statistical match and facilitates flexible
conditioning but also offers significant speed advantages over conventional simulation methods. Regardless of the training cost,
which is around 48 h for this case, we evaluate the inference cost. As shown in Fig. B.26, in this channel flow case, the diffusion
model running on a single GPU demonstrates a substantial speedup, being approximately 490 times faster than DNS executed using
OpenFOAM [54] on CPUs. Even when compared to DNS conducted using our latest JAX-based, fully vectorized, GPU-enabled CFD
solver [6] on the same GPU, the diffusion model maintains a notable speedup, being around 16 times faster.

3.3. Super-resolved generation of supersonic turbulent boundary layer

The diffusion model, as a probabilistic modeling technique, offers flexibility in updating the distribution of high-resolution
(HR) data based on low-resolution (LR) inputs to yield HR information. Traditional super-resolution (SR) techniques typically
learn a deterministic mapping from a fixed input resolution. However, these techniques are not robust or would fail when the
resolution of the inputs in inference phase is different from those in the training phase. Moreover, they struggle with extremely
LR inputs, as the mapping may become ill-conditioned, leading to ambiguities with multiple possible outputs for a single input.
In this section, we explore the efficacy of the proposed diffusion model in generating flow fields from LR data for compressible,
supersonic turbulent boundary layer (TBL) flow. Our SR process aims to generate the HR spatiotemporal flow field u(x, y, t) =

[u(x, y, t), v(x, y, t),w(x, y, t), T (x, y, t)]
T
: ⌦ ù Rg0 ô R2, conditioned on LR flow data, where u, v,w, T are velocity components and

temperature. Specifically, our focus is on examining the enhancement of flow patterns, statistical characteristics, and energy spectra
with respect to the different resolution levels of the input LR data.

3.3.1. Data preparation and model training
We extract the 2D data (streamwise wall-normal plane) from a DNS of turbulent boundary layer flows at hypersonic speeds (Mach

number Ma = 5.86) over a flat plate [55,56]. The computation domain spans L
x
ùL

y
ùL

z
= 58.7�ù15.7�ù39.7�, where � represents

the inflow boundary layer thickness (� = 13.8 mm). The original DNS resolution in streamwise wall-normal plane is 1600 ù 500. For
this study, we collect data from 25 distinct, non-overlapping streamwise sections, with each trajectory containing 160 time steps. To
facilitate more efficient processing while retaining critical flow features, we downsampled the spatial resolution to 256 ù 256 pixels.
Our training dataset comprised 2400 snapshots, covering a broad range of flow features. The model training was conducted once
(lasting approximately 90 h), and various SR tasks can be performed by using the gradient-based sampling conditioned on various
LR inputs (refer to Section 2.3.1). Note that we did not focus on generating long sequences in this experiment, as this capability
has already been demonstrated in Section 3.2.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

19

H. Gao et al.

Fig. 12. Instantaneous flow fields (streamwise velocity and temperature) of LR input, SR results, DNS and LR downsampled from SR results. The resolution of
the LR input varies from 2 ù 2, 4 ù 4, 8 ù 8, 16 ù 16, 32 ù 32, 64 ù 64 and 128 ù 128. The resolution of both SR results and DNS reference is 256 ù 256.

3.3.2. SR generated fields given different low-resolution inputs
Figs. 12 and C.28 present the SR generated fields of streamwise, spanwise, wall-normal velocities, and temperature, conditioned

on the LR inputs at different resolutions. From the visual comparison, it is apparent that the SR diffusion model is capable of
enhancing the quality of the input data to produce HR snapshots that resemble the DNS reference to a remarkable degree, even
when starting from LR inputs as coarse as 2 ù 2. This suggests that our model possesses an advanced capability to generate the
fine details necessary for an HR representation of the flow fields, which is particularly impressive at the lower resolutions. As we
progress from the top row (lowest resolution of 2 ù 2) to the bottom row (highest resolution of 128 ù 128), there is a notable trend
in the SR fields. At the lowest resolutions, the generated HR flow details of the SR output appear more randomized and are different
from the DNS reference. As the resolution of the LR input increases, the SR-generated fields exhibit more of the fine structures and
variations that are similar to those of the HR DNS reference. The last row (128 ù 128) showcases SR output that closely resembles
the DNS reference, indicating that our SR diffusion model can generate that particular realization of the DNS instantaneous flow
when it is conditioned on higher-resolution input data.

Moreover, we have conducted a comprehensive analysis of flow statistics and energy spectra, as depicted in Figs. 13 and 14
(results for other resolutions of LR inputs are shown in Figs. C.29, C.30, C.31, C.32, and C.33). Remarkably, even from very low-
resolution inputs, the model successfully reconstructs the mean velocity and temperature profiles, which were initially indiscernible.
The super-resolution process significantly enhances the fluctuating velocity and temperature profiles, especially in the near-wall
regions. A critical metric of evaluation is the energy spectrum, which reflects the resolved turbulence scales. For comparative
analysis, we upscaled the LR inputs to HR using trilinear interpolation before computing the energy spectrum. Although inputs
at a very fine resolution of 128 ù 128, the energy spectrum of trilinear-SR results agree with DNS results well, the discrepancy at



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

20

H. Gao et al.

Fig. 13. Fluctuation of streamwise, span-wise, wall-normal velocity and temperature, mean profile of streamwise velocity and temperature, energy spectrum
(inside boundary layer h

H
=

4

256
) of streamwise, span-wise, wall-normal velocity (from left to right, top to bottom) from DNS (256 ù 256, ), Diffusion-SR

(256 ù 256, ) and Trilinear-SR (2 ù 2, ).

Fig. 14. Fluctuation of streamwise, span-wise, wall-normal velocity and temperature, mean profile of streamwise velocity and temperature, energy spectrum
(inside boundary layer h

H
=

4

256
) of streamwise, span-wise, wall-normal velocity (from left to right, top to bottom) from DNS (256 ù 256, ), Diffusion-SR

output (256 ù 256, ) and Trilinear-SR (128 ù 128, ).

high wave numbers are still notable. The proposed model adeptly bridges these gaps, facilitating precise and accurate recovery of the
missing energy and turbulence scales. The energy spectra of the diffusion-SR results are almost identical to those of DNS reference,
regardless of the input resolutions. This analysis reveals that our model effectively recovers this spectrum from LR inputs, indicating
its efficiency in reproducing small-scale turbulence. Notably, the CRPS values presented in Table D.6 highlight that, in SR scenarios
where our model is conditioned on low-resolution (LR) data, it is capable of generating samples that align more closely with the HR
truth than those produced by eddy-resolving simulations without LR information. It is important to note that our diffusion model is
trained given DNS data once and then can be used for SR generation given different LR input resolutions without retraining. This is



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

21

H. Gao et al.

Fig. A.15. Geometry, domain of interest, and boundary conditions for the case of backward-facing step. Boundary conditions: inlet ( ), outlet ( ) and
no-slip wall ( ). Shadow region is the domain of interest for generative modeling.

in stark contrast to previous SR works, which are highly reliant on the resolution used in training. Our model is much more robust
and generalizable to LR input with different resolutions and qualities.

4. Conclusion

This study has introduced a novel Bayesian conditional diffusion model for generating spatiotemporal turbulent flows. Our
proposed model unifies unconditional and conditional sampling strategies, offering a versatile solution across a spectrum of
scenarios. We have systematically presented conditional sampling approaches that employs a gradient-based method for scenarios
with a directly differentiable relationship between conditions and outcomes, and a replacement-based method for cases without such
explicit relationship. Another novel aspect of our framework is its capability in effectively generating arbitrarily long sequences of
turbulence flow through autoregressive gradient-based conditional sampling, negating the need for iterative retraining. Our empirical
investigations underscore the model’s adeptness in tackling a variety of turbulence generation tasks. The model exhibits prowess
in synthesizing LES-like eddy-resolved turbulence from URANS inputs, producing turbulent channel flow sequences conditioned
on desired flow statistics, and performing super-resolution generation on supersonic turbulent boundary layer flows from low-
resolution input data with different resolutions and qualities. These capabilities not only demonstrate the model’s versatility but
also its potential to revolutionize the field of turbulence modeling and simulation.

Looking forward, we identify several promising trajectories for advancing this research. In scenarios involving differentiable
conditions, enhancing estimation accuracy through refined sampling methodologies, such as importance sampling and particle
filtering, remains a key area of interest. For non-differentiable conditions, exploring innovative strategies like reinforcement learning
and ensemble Kalman filtering could yield significant advancements. Moreover, adapting our model to accommodate large-scale,
graph-based data opens up new possibilities for tackling the complexities associated with general unstructured mesh data. Pursuing
these avenues promises to yield substantial contributions to the domain of computational fluid dynamics and beyond.

CRediT authorship contribution statement

Han Gao: Investigation, Conceptualization, Formal analysis, Methodology, Software, Visualization, Writing – original draft.
Xu Han: Software, Methodology, Conceptualization, Investigation. Xiantao Fan: Writing – review & editing, Visualization,
Validation, Software, Investigation, Formal analysis, Data curation. Luning Sun: Software, Investigation. Li-Ping Liu: Supervision,
Methodology. Lian Duan:Writing – review & editing, Investigation, Data curation. Jian-Xun Wang: Supervision, Resources, Project
administration, Methodology, Funding acquisition, Conceptualization, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors would like to acknowledge the funds from Office of Naval Research, USA under award numbers N00014-23-1-2071
and National Science Foundation, USA under award numbers OAC-2047127. XF would also like to acknowledge the fellowship
provided by the Environmental Change Initiative and Center for Sustainable Energy at University of Notre Dame. The content of
this publication does not necessarily reflect the position or policy of any of these supporters, and no official endorsement should be
inferred.

Appendix A. Supplementary results of flow over backward-facing step

See Figs. A.15–A.20 and Table A.3.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

22

H. Gao et al.

Fig. A.16. The wall-clock time for sampling a sequence of 240 time steps using variants of diffusion method ( ) and LES. The URANS (not as a sample
method) here is provided for the reference.

Table A.3
The OpenFOAM is performed on AMD-Ryzen-9-7950, and diffusion model is evaluated on NVIDIA-GeForce-RTX-4090. In this
case, we reduce the dimension of hyper-parameters by setting �

guide

N
noise

= 5 = �
guide

2
= �

guide
(1), �guide

1
= �

guide
(2), �guide

N
noise

= 5 = �
guide

2
=

�
guide

(1), �guide
1

= �
guide

(2).

Trubulence modeling Height Width # step Inlet perturbation Solver

URANS kEpsilon [57] 64 256 240 No OpenFOAM [54]
LES dynamicK [58] 64 256 240 Yes OpenFOAM [54]

Diff N
noise

N
inpaint

�
guide

�
guide

N
previous

N
length

device

Vanilla 20 None None None 0 40 NVIDIA
Gradient 20 N

inpaint
(100, 100) (0.02, 0.02) 20 40 NVIDIA

Replace 20 5 None None 20 40 NVIDIA

Fig. A.17. Velocity magnitude of generated samples (from first to fifth row) and URANS (last row) at Re = 13100 from developing to fully-developed stage (from
left to right).

Appendix B. Supplementary results of 3D turbulent channel flow

See Figs. B.21–B.27 and Table B.4.

Appendix C. Supplementary results of supersonic turbulent boundary layers

See Figs. C.28–C.33 and Table C.5.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

23

H. Gao et al.

Fig. A.18. Mean of streamwise velocity, variance of streamwise velocity and variance of wall-normal velocity at Re = 13100 from LES ( ), URANS ( ) and
diffusion model ( ).

Fig. A.19. Variance of streamwise velocity at Re = 13100 in the fully-developed phase: LES ( ), URANS ( ), Diff-Gradient ( ), Diff-Replace ( ) and Diff-Vanilla
( ). The figures, arranged from left to right and top to bottom, correspond to locations at x = [1, 9].

Appendix D. Continuous ranked probability score

See Table D.6.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

24

H. Gao et al.

Fig. A.20. Variance of wall-normal velocity at Re = 13100 in the fully-developed phase: LES ( ), URANS ( ), Diff-Gradient ( ), Diff-Replace ( ) and Diff-Vanilla
( ). The figures, arranged from left to right and top to bottom, correspond to locations at x = [1, 9].

Fig. B.21. Energy spectra of the streamwise velocity from DNS ( ), diffusion model ( ), of the wall-normal velocity from DNS ( ), diffusion model
( ), of the spanwise velocity from DNS ( ) and diffusion model ( ) at y+ = 5 (left), y+ = 20 (middle) and y

+
= 180 (right).

Fig. B.22. Spatial-correlations of the streamwise velocity from DNS ( ), diffusion model ( ), of the wall-normal velocity from DNS ( ), diffusion
model ( ), of the spanwise velocity from DNS ( ) and diffusion model ( ) at y+ = 5 (left), y+ = 20 (middle) and y

+
= 180 (right).

Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2024.117023.

https://doi.org/10.1016/j.cma.2024.117023


Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

25

H. Gao et al.

Fig. B.23. The error of streamwise (left), wall-normal (middle), spanwise (right) velocity at the twenty step generated by diffusion model given the first, the
first five, the first ten, the first fifteen and the first nineteen steps.

Fig. B.24. Continuous instantaneous wall-normal velocity fields of samples from diffusion model and DNS.

Fig. B.25. Continuous instantaneous spanwise velocity fields of samples from diffusion model and DNS.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

26

H. Gao et al.

Table B.4
In this case, we reduce the dimension of hyper-parameters by setting �

guide

N
noise

= 5 = �
guide

2
= �

guide
(1), �

guide

1
= �

guide
(2),

�
guide

N
noise

= 5 = �
guide

2
= �

guide
(1), �guide

1
= �

guide
(2).

Solver Height Width

OpenFOAM [54] 256 128
FanCFD [6] 256 128

Sampling N
noise

N
inpaint

�
guide

�
guide

N
previous

N
length

Unconditional 20 None (100,100) (0.018,0.018) 10 20
Condition on initial condition 20 5 None None 1 * 19 20
Condition on rms 20 None (100,100) (0.015,0.015) None 20
Condition on Reynolds stress 20 None (100,100) (0.013,0.013) None 20

Fig. B.26. The wall-clock time for sampling a flowthrough (a sequence of 300 time steps) using the gradient-diffusion method and DNS methods. Specifically,
OpenFOAM [54] is performed on CPU ( , Intel Xeon(R) Gold 6138) with 16 cores in parallel; FANCFD [6] and diffusion are performed on single GPU card
( , NVIDIA-GeForce-RTX-4090).

Fig. B.27. The RMS of velocity fluctuations for small dataset (10% of the original dataset) with and without prior knowledge. From left to right, they are
streamwise velocity u, wall normal velocity v and spanwise velocity w, respectively.

Table C.5
In this case, we reduce the dimension of hyper-parameters by setting �

guide

N
noise

= 5 = �
guide

2
= �

guide
(1), �

guide

1
= �

guide
(2),

�
guide

N
noise

= 5 = �
guide

2
= �

guide
(1), �guide

1
= �

guide
(2).

Solver Height Width

DuanCFD [55] 256 256

Input resolution N
noise

N
inpaint

�
guide

�
guide

N
ref ine

N
length

2 ù 2 10 None (100,100) (0.015,0.001) 10 10
4 ù 4 10 None (100,100) (0.015,0.001) 10 10
8 ù 8 10 None (100,100) (0.01,0.001) 10 10
16 ù 16 10 None (100,100) (0.02,0.02) 1 10
32 ù 32 10 None (100,100) (0.05,0.02) 1 10
64 ù 64 10 None (100,100) (0.06,0.02) 1 10
128 ù 128 10 None (100,100) (0.08,0.0035) 120 10



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

27

H. Gao et al.

Fig. C.28. Instantaneous flow fields (span-wise and wall-normal velocity) of LR input, SR results, DNS and LR downsampled from SR results. The resolution of
the LR input varies from 2 ù 2, 4 ù 4, 8 ù 8, 16 ù 16, 32 ù 32, 64 ù 64 and 128 ù 128. The resolution of both SR results and DNS reference is 256 ù 256.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

28

H. Gao et al.

Fig. C.29. Fluctuation of streamwise, span-wise, wall-normal velocity and temperature, mean profile of streamwise velocity and temperature, energy spectrum
(inside boundary layer h

H
=

4

256
) of streamwise, span-wise, wall-normal velocity (from left to right, top to bottom) from DNS (256 ù 256, ), SR result

(256 ù 256, ) and LR input (4 ù 4, ).

Fig. C.30. Fluctuation of streamwise, span-wise, wall-normal velocity and temperature, mean profile of streamwise velocity and temperature, energy spectrum
(inside boundary layer h

H
=

4

256
) of streamwise, span-wise, wall-normal velocity (from left to right, top to bottom) from DNS (256 ù 256, ), SR result

(256 ù 256, ) and LR input (8 ù 8, ).



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

29

H. Gao et al.

Fig. C.31. Fluctuation of streamwise, span-wise, wall-normal velocity and temperature, mean profile of streamwise velocity and temperature, energy spectrum
(inside boundary layer h

H
=

4

256
) of streamwise, span-wise, wall-normal velocity (from left to right, top to bottom) from DNS (256 ù 256, ), SR result

(256 ù 256, ) and LR input (16 ù 16, ).

Fig. C.32. Fluctuation of streamwise, span-wise, wall-normal velocity and temperature, mean profile of streamwise velocity and temperature, energy spectrum
(inside boundary layer h

H
=

4

256
) of streamwise, span-wise, wall-normal velocity (from left to right, top to bottom) from DNS (256 ù 256, ), SR output

(256 ù 256, ) and LR input (32 ù 32, ).



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

30

H. Gao et al.

Fig. C.33. Fluctuation of streamwise, span-wise, wall-normal velocity and temperature, mean profile of streamwise velocity and temperature, energy spectrum
(inside boundary layer h

H
=

4

256
) of streamwise, span-wise, wall-normal velocity (from left to right, top to bottom) from DNS (256 ù 256, ), SR output

(256 ù 256, ) and LR input (64 ù 64, ).

Table D.6
Continuous Ranked Probability Score (CRPS) for all three cases. We calculate the CRPS by contrasting distributions between two
distinct sets of simulated samples and those generated by our diffusion model alongside numerical simulations. This meticulous
comparison between independent simulation groups and model-generated samples enables us to rigorously evaluate how well
the diffusion model replicates the statistical nuances of the simulated data.
Case Generated samples Simulation samples

LES-like generation based on URANS 0.114 0.119

Generation of instantaneous turbulent channel flow 0.0261 0.0313

SR of supersonic turbulent boundary layer 0.0461 0.064

References

[1] Steven L. Brunton, Bernd R. Noack, Petros Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev. Fluid Mech. 52 (2020) 477–508.
[2] Ricardo Vinuesa, Steven L. Brunton, Enhancing computational fluid dynamics with machine learning, Nat. Comput. Sci. 2 (6) (2022) 358–366.
[3] Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, Michael P Brenner, Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad.

Sci. 116 (31) (2019) 15344–15349.
[4] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, Stephan Hoyer, Machine learning–accelerated computational fluid dynamics,

Proc. Natl. Acad. Sci. 118 (21) (2021) e2101784118.
[5] Xin-yang Liu, Min Zhu, Lu Lu, Hao Sun, Jian-Xun Wang, Multi-resolution partial differential equations preserved learning framework for spatiotemporal

dynamics, Commun. Phys. 7 (1) (2024) 31.
[6] Xiantao Fan, Jian xun Wang, Differentiable hybrid neural modeling for fluid-structure interaction, J. Comput. Phys. (2023) 112584.
[7] Jian-Xun Wang, Jin-Long Wu, Heng Xiao, Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based

on DNS data, Phys. Rev. Fluids 2 (3) (2017) 034603.
[8] Romit Maulik, Omer San, Adil Rasheed, Prakash Vedula, Subgrid modelling for two-dimensional turbulence using neural networks, J. Fluid Mech. 858

(2019) 122–144.
[9] Romit Maulik, Himanshu Sharma, Saumil Patel, Bethany Lusch, Elise Jennings, A turbulent eddy-viscosity surrogate modeling framework for

Reynolds-averaged Navier-Stokes simulations, Comput. & Fluids 227 (2021) 104777.
[10] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, Ken Perlin, Accelerating eulerian fluid simulation with convolutional networks, in: International

Conference on Machine Learning, PMLR, 2017, pp. 3424–3433.
[11] Maziar Raissi, Hessam Babaee, Peyman Givi, Deep learning of turbulent scalar mixing, Phys. Rev. Fluids 4 (12) (2019) 124501.
[12] David M. Blei, Andrew Y. Ng, Michael I. Jordan, Latent Dirichlet allocation, J. Mach. Learn. Res. 3 (Jan) (2003) 993–1022.
[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative adversarial

nets, in: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K.Q. Weinberger (Eds.), in: Advances in Neural Information Processing Systems, vol. 27,
Curran Associates, Inc, 2014.

[14] Ivan Kobyzev, Simon J.D. Prince, Marcus A. Brubaker, Normalizing flows: An introduction and review of current methods, IEEE Trans. Pattern Anal. Mach.
Intell. 43 (11) (2020) 3964–3979.

[15] Lucas Theis, Aäron van den Oord, Matthias Bethge, A note on the evaluation of generative models, 2015, arXiv preprint arXiv:1511.01844.
[16] Kai Fukami, Yusuke Nabae, Ken Kawai, Koji Fukagata, Synthetic turbulent inflow generator using machine learning, Phys. Rev. Fluids 4 (6) (2019) 064603.

http://refhub.elsevier.com/S0045-7825(24)00279-2/sb1
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb2
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb3
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb3
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb3
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb4
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb4
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb4
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb5
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb5
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb5
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb6
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb7
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb7
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb7
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb8
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb8
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb8
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb9
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb9
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb9
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb10
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb10
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb10
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb11
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb12
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb13
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb13
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb13
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb13
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb13
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb14
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb14
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb14
http://arxiv.org/abs/1511.01844
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb16


Computer Methods in Applied Mechanics and Engineering 427 (2024) 117023

31

H. Gao et al.

[17] Kai Fukami, Koji Fukagata, Kunihiko Taira, Super-resolution reconstruction of turbulent flows with machine learning, J. Fluid Mech. 870 (2019) 106–120.
[18] Kai Fukami, Koji Fukagata, Kunihiko Taira, Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows, J. Fluid Mech. 909

(2021) A9.
[19] Mustafa Z. Yousif, Linqi Yu, HeeChang Lim, Physics-guided deep learning for generating turbulent inflow conditions, J. Fluid Mech. 936 (2022) A21.
[20] Mustafa Z Yousif, Meng Zhang, Linqi Yu, Ricardo Vinuesa, HeeChang Lim, A transformer-based synthetic-inflow generator for spatially developing turbulent

boundary layers, J. Fluid Mech. 957 (2023) A6.
[21] Romit Maulik, Kai Fukami, Nesar Ramachandra, Koji Fukagata, Kunihiko Taira, Probabilistic neural networks for fluid flow surrogate modeling and data

recovery, Phys. Rev. Fluids 5 (10) (2020) 104401.
[22] Masaki Morimoto, Kai Fukami, Romit Maulik, Ricardo Vinuesa, Koji Fukagata, Assessments of epistemic uncertainty using Gaussian stochastic weight

averaging for fluid-flow regression, Physica D 440 (2022) 133454.
[23] Karen Stengel, Andrew Glaws, Dylan Hettinger, Ryan N King, Adversarial super-resolution of climatological wind and solar data, Proc. Natl. Acad. Sci.

117 (29) (2020) 16805–16815.
[24] Claudia Drygala, Benjamin Winhart, Francesca di Mare, Hanno Gottschalk, Generative modeling of turbulence, Phys. Fluids 34 (3) (2022).
[25] Zhiwen Deng, Chuangxin He, Yingzheng Liu, Kyung Chun Kim, Super-resolution reconstruction of turbulent velocity fields using a generative adversarial

network-based artificial intelligence framework, Phys. Fluids 31 (12) (2019).
[26] Hyojin Kim, Junhyuk Kim, Sungjin Won, Changhoon Lee, Unsupervised deep learning for super-resolution reconstruction of turbulence, J. Fluid Mech.

910 (2021) A29.
[27] Alejandro Güemes, Stefano Discetti, Andrea Ianiro, Beril Sirmacek, Hossein Azizpour, Ricardo Vinuesa, From coarse wall measurements to turbulent velocity

fields through deep learning, Phys. Fluids 33 (7) (2021) 075121.
[28] Linqi Yu, Mustafa Z Yousif, Meng Zhang, Sergio Hoyas, Ricardo Vinuesa, Hee-Chang Lim, Three-dimensional ESRGAN for super-resolution reconstruction

of turbulent flows with tricubic interpolation-based transfer learning, Phys. Fluids 34 (12) (2022).
[29] Michele Buzzicotti, Fabio Bonaccorso, P Clark Di Leoni, Luca Biferale, Reconstruction of turbulent data with deep generative models for semantic inpainting

from TURB-rot database, Phys. Rev. Fluids 6 (5) (2021) 050503.
[30] You Xie, Erik Franz, Mengyu Chu, Nils Thuerey, tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow, ACM Trans. Graph.

37 (4) (2018) 1–15.
[31] Junhyuk Kim, Changhoon Lee, Deep unsupervised learning of turbulence for inflow generation at various Reynolds numbers, J. Comput. Phys. 406 (2020)

109216.
[32] Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, Jieping Ye, A review on generative adversarial networks: Algorithms, theory, and applications, IEEE

Trans. Knowl. Data Eng. 35 (4) (2021) 3313–3332.
[33] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou, Antonio Torralba, Seeing what a gan cannot generate, in: Proceedings

of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 4502–4511.
[34] Nicholas Geneva, Nicholas Zabaras, Multi-fidelity generative deep learning turbulent flows, 2020, arXiv preprint arXiv:2006.04731.
[35] Luning Sun, Xu Han, Han Gao, Jian-Xun Wang, Liping Liu, Unifying predictions of deterministic and stochastic physics in mesh-reduced space with

sequential flow generative model, in: NeurIPS, PMLR, 2023.
[36] Yang Song, Stefano Ermon, Generative modeling by estimating gradients of the data distribution, in: Advances in Neural Information Processing Systems,

vol. 32, 2019.
[37] Jonathan Ho, Ajay Jain, Pieter Abbeel, Denoising diffusion probabilistic models, in: Advances in Neural Information Processing Systems, vol. 33, 2020,

pp. 6840–6851.
[38] Prafulla Dhariwal, Alexander Nichol, Diffusion models beat gans on image synthesis, in: Advances in Neural Information Processing Systems, vol. 34, 2021,

pp. 8780–8794.
[39] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole, Score-based generative modeling through stochastic

differential equations, 2020, arXiv preprint arXiv:2011.13456.
[40] Dule Shu, Zijie Li, Amir Barati Farimani, A physics-informed diffusion model for high-fidelity flow field reconstruction, J. Comput. Phys. 478 (2023)

111972.
[41] Rucha Apte, Sheel Nidhan, Rishikesh Ranade, Jay Pathak, Diffusion model based data generation for partial differential equations, 2023, arXiv preprint

arXiv:2306.11075.
[42] Zhong Yi Wan, Ricardo Baptista, Yi-fan Chen, John Anderson, Anudhyan Boral, Fei Sha, Leonardo Zepeda-Núñez, Debias coarsely, sample conditionally:

Statistical downscaling through optimal transport and probabilistic diffusion models, 2023, arXiv preprint arXiv:2305.15618.
[43] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, David J Fleet, Video diffusion models, 2022, arXiv:2204.03458.
[44] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, Ming-Hsuan Yang, Diffusion models: A comprehensive

survey of methods and applications, ACM Comput. Surv. (2022).
[45] Diederik Kingma, Tim Salimans, Ben Poole, Jonathan Ho, Variational diffusion models, in: Advances in Neural Information Processing Systems, vol. 34,

2021, pp. 21696–21707.
[46] Calvin Luo, Understanding diffusion models: A unified perspective, 2022, arXiv preprint arXiv:2208.11970.
[47] Jiaming Song, Chenlin Meng, Stefano Ermon, Denoising diffusion implicit models, 2020, arXiv preprint arXiv:2010.02502.
[48] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, Jong Chul Ye, Diffusion posterior sampling for general noisy inverse problems, 2022,

arXiv preprint arXiv:2209.14687.
[49] Xiang Gao, Meera Sitharam, Adrian E. Roitberg, Bounds on the Jensen gap, and implications for mean-concentrated distributions, 2017, arXiv preprint

arXiv:1712.05267.
[50] John Kim, Parviz Moin, Robert Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech. 177 (1987) 133–166.
[51] Stephen B. Pope, Stephen B. Pope, Turbulent Flows, Cambridge University Press, 2000.
[52] Robert D. Moser, John Kim, Nagi N. Mansour, Direct numerical simulation of turbulent channel flow up to re ⌧= 590, Physics of fluids 11 (4) (1999)

943–945.
[53] Hiroyuki Abe, Hiroshi Kawamura, Yuichi Matsuo, Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds

number dependence, J. Fluids Eng. 123 (2) (2001) 382–393.
[54] Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al., OpenFOAM: A C++ library for complex physics simulations, in: International Workshop on

Coupled Methods in Numerical Dynamics, vol. 1000, 2007, pp. 1–20.
[55] Chao Zhang, Lian Duan, Meelan M. Choudhari, Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers, AIAA J.

56 (11) (2018) 4297–4311.
[56] Lian Duan, Meelan M. Choudhari, Chao Zhang, Pressure fluctuations induced by a hypersonic turbulent boundary layer, J. Fluid Mech. 804 (2016) 578–607.
[57] Brian Edward Launder, Dudley Brian Spalding, The numerical computation of turbulent flows, in: Numerical Prediction of Flow, Heat Transfer, Turbulence

and Combustion, Elsevier, 1983, pp. 96–116.
[58] Won-Wook Kim, Suresh Menon, A new dynamic one-equation subgrid-scale model for large eddy simulations, in: 33rd Aerospace Sciences Meeting and

Exhibit, 1995, p. 356.

http://refhub.elsevier.com/S0045-7825(24)00279-2/sb17
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb18
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb18
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb18
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb19
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb20
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb20
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb20
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb21
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb21
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb21
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb22
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb22
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb22
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb23
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb23
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb23
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb24
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb25
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb25
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb25
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb26
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb26
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb26
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb27
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb27
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb27
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb28
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb28
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb28
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb29
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb29
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb29
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb30
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb30
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb30
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb31
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb31
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb31
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb32
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb32
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb32
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb33
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb33
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb33
http://arxiv.org/abs/2006.04731
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb35
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb35
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb35
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb36
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb36
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb36
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb37
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb37
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb37
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb38
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb38
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb38
http://arxiv.org/abs/2011.13456
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb40
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb40
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb40
http://arxiv.org/abs/2306.11075
http://arxiv.org/abs/2305.15618
http://arxiv.org/abs/2204.03458
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb44
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb44
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb44
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb45
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb45
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb45
http://arxiv.org/abs/2208.11970
http://arxiv.org/abs/2010.02502
http://arxiv.org/abs/2209.14687
http://arxiv.org/abs/1712.05267
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb50
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb51
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb52
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb52
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb52
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb53
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb53
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb53
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb54
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb54
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb54
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb55
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb55
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb55
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb56
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb57
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb57
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb57
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb58
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb58
http://refhub.elsevier.com/S0045-7825(24)00279-2/sb58

	Bayesian conditional diffusion models for versatile spatiotemporal turbulence generation
	Introduction
	Methodology
	Learning probability distribution of spatiotemporal turbulence via variational diffusion models
	Unconditional generation of spatiotemporal turbulent flow sequences
	Generation of spatiotemporal turbulent flow sequences with conditions
	Gradient-based conditional generation without retraining
	Concatenation-based conditional generation through retraining

	Generating long-span spatiotemporal turbulence
	Gradient-based autoregressive conditioning method
	Replacement-based autoregressive method


	Numerical results and discussions
	RANS-conditioned generation of eddy-resolved turbulence over backward-facing step
	Data preparation and model training
	URANS-conditioned generation of LES flow sequences on testing Re
	Comparison of different autoregressive sampling methods

	Generation of instantaneous turbulent channel flows under various conditions
	Data preparation and model training
	Direct generation of long sequential turbulence from scratch
	Conditioned generation given prior sequence
	Conditioned generation with desired statistics

	Super-resolved generation of supersonic turbulent boundary layer
	Data preparation and model training
	SR generated fields given different low-resolution inputs


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary results of flow over backward-facing step
	Appendix B. Supplementary results of 3D turbulent channel flow
	Appendix C. Supplementary results of supersonic turbulent boundary layers
	Appendix D. Continuous Ranked Probability Score
	Appendix E. Supplementary data
	References


