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Yujun Tao,† Timothy J. Giese,† Şölen Ekesan,† Jinzhe Zeng,† Bálint Aradi,‡ Ben

Hourahine,¶ Hasan Metin Aktulga,§ Andreas Götz,∥ Kenneth M. Merz, Jr.,§ and

Darrin M. York∗,†

Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine

and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ

08854, USA, Bremen Center for Comp. Mater. Sci., University of Bremen, D-28334

Bremen, Germany, SUPA, Department of Physics, University of Strathclyde, Glasgow G4

0NG, United Kingdom, Department of Chemistry, Michigan State University, East

Lansing, MI 48824, USA, and San Diego Supercomputer Center, University of California

San Diego, La Jolla, CA 92093, USA

E-mail: Darrin.York@rutgers.edu

∗To whom correspondence should be addressed
†Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Depart-

ment of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
‡Bremen Center for Comp. Mater. Sci., University of Bremen, D-28334 Bremen, Germany
¶SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
§Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
∥San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA

1

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
11

27
6



ABSTRACT: We report the development and testing of new integrated cyberinfrastructure

for performing free energy simulations with generalized hybrid quantum mechanical/molecular

mechanical (QM/MM) and machine learning potentials (MLPs) in Amber. The Sander

molecular dynamics program has been extended to leverage fast, density-functional tight-

binding models implemented in the DFTB+ and xTB packages, and an interface to the

DeePMD-kit software enables use of machine-learning potentials (MLPs). The software is

integrated through application program interfaces that circumvent the need to perform “sys-

tem calls” and enables the incorporation of long-range Ewald electrostatics into the external

software’s self-consistent field procedure. The infrastructure provides access to QM/MM

models that may serve as the foundation for QM/MM–∆MLP potentials which supplement

the semiempirical QM/MM model with a MLP correction trained to reproduce ab initio

QM/MM energies and forces. Efficient optimization of minimum free energy pathways is

enabled through a new surface-accelerated finite-temperature string method implemented

in the FE-ToolKit package. Furthermore, we interfaced Sander with the i-PI software by

implementing the socket communication protocol used in the i-PI client–server model. The

new interface with i-PI allows for the treatment of nuclear quantum effects with semiem-

pirical QM/MM–∆MLP models. The modular interoperable software is demonstrated on

proton transfer reactions in guanine-thymine mispairs in DNA. The current work represents

a considerable advance in the development of modular software for performing free energy

simulations of chemical reactions that are important in a wide range of applications.
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Introduction

Free energy simulations are used to study a wide range of reactive chemical processes in

the condensed phase.1,2 Calculation of multi-dimensional free energy surfaces3,4 (FES) and

minimum free energy paths5–9 (MFEP) can be used to predict mechanism. The insight

gained by these predictions can aid in the interpretation of experimental data, guide new

experiments, and ultimately inform the design of new technology. Ab initio quantum me-

chanical models can provide high accuracy in these simulations; however, their computational

cost can severely limit the size of the quantum system and/or the degree of sampling that

can be realized. This limitation is further amplified if path integral molecular dynamics

(PIMD)10–15 is required to introduce nuclear quantum effects, as these simulations are even

more computationally intensive.

An attractive alternative to ab initio QM/MM simulation is the design quantum mechan-

ical force fields2,16,17 and machine learning models.18–23 Of particular relevance to the current

work is the development of QM/MM–∆MLP models, whereby the energies and forces of a

fast, approximate QM model are corrected with a machine-learning potential.20,24–30 These

models have the potential to offer the computational efficiency needed to address complex

chemical mechanisms that require sampling of high-dimensional free energy surfaces, while

providing accuracy comparable to high level QM methods. A barrier to progress in the de-

velopment and validation of such methods is their availability in flexible software packages

that enable a wide range of applications in the condensed phase.

The purpose of the present work is to report the development and testing of interopera-

ble simulation software in Amber for performing free energy simulations (including PIMD)

with QM/MM–∆MLP models. A list of software components is itemized in Table 1 and

Figure 1 illustrates their interoperation. Specifically, we have extended the QM/MM capa-

bilities of the Sander molecular dynamics program by introducing interfaces to the DFTB+42

and xTB38–41 semiempirical QM packages. This enables access to a wide range of powerful

new density-functional tight-binding models with enabled dispersion and hydrogen bond-
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Figure 1: Interoperable software in Amber for conducting free energy simulations in the
condensed phase with QM/MM–∆MLP models. Amber-colored rectangle indicates Sander
program with general internal components encircled by blue. Arrows indicate calling se-
quence. Green ovals are external software packages not distributed with Amber/AmberTools,
whereas blue ovals indicate new cyberinfrastructure distributed with Amber. The program
names and functionality are described in Table 1.
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Table 1: Summary of program acronyms and functionality.

Program Function
Sander A molecular dynamics program with support for QM/MM potentials.31

QUICK A GPU-accelerated ab initio QM program.32–36

HFDF An ab initio QM program optimized for large memory CPU machines.37

xTB A semiempirical tight-binding program that implements the GFN1-xTB
and GFN2-xTB models.38–41

DFTB+ A self-consistent charge density functional tight binding program that
implements the DFTB2 and DFTB3 methods and various dispersion
models.42

DeePMD-kit A machine learning library for performing deep potential training and
inference based on the TensorFlow platform.43–45

i-PI A program for performing path integral molecular dynamics.46

PLUMED A library that implements enhanced-sampling algorithms, collective
variable definitions, and biasing potentials to calculate free energy
surfaces.47,48

WESTPA An interoperable, scalable software package for
weighted ensemble simulation and analysis.49,50

FE-ToolKit A collection of programs used to analyze alchemical free energy
simulations and umbrella window sampling.51

ing corrections for use in condensed phase QM/MM simulations with rigorous long-ranged

electrostatics under periodic boundary conditions.37,52–54Furthermore, we incorporated the

DeePMD-kit software43–45 into Sander31 to evaluate new machine-learning potentials. Path

integral molecular dynamics (PIMD) have been enabled through a new interface with the

i-PI software.46 Finally, a recently developed surface-accelerated finite-temperature string

method9 has been incorporated into the FE-ToolKit software51 (distributed within Amber-

Tools31) to locate minimum free energy paths.

The Methods section describes the interfaces between Sander, the DFTB+ and xTB

semiempirical packages, the DeePMD-kit software, and i-PI. The nature of the QM/MM

interactions and the incorporation of Ewald electrostatics within the self-consistent field

(SCF) procedures are discussed. We demonstrate the features of the software framework

through an example application that examines guanine-thymine mispair tautomerization re-

actions in B-DNA. These mispairs are enabled by formation of rare tautomer forms, and have

been implicated in the formation of mutations in DNA replication and translation.55,56 The
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Results and Discussion section begins with a validation of the implementation by demon-

strating QM/MM and QM/MM–∆MLP energy conservation in simulations performed in the

microcanonical ensemble. We then compare free energy profiles generated from ab initio,

semiempirical, and ∆MLP-corrected semiempirical methods obtained from QM/MM um-

brella sampling. Finally, we perform QM/MM umbrella sampling with PIMD to explore

how nuclear quantum effects alter the profiles.

Methods

The QM/MM–∆MLP force fields are supplement the QM/MM energy with a nonelectrostatic

correction, EML({r}), where {r} is the 3N array of atomic positions.

EQM/MM–∆MLP = EMM({r}) + EQM({r};P) + EQM/MM({r};P) + EML({r}) (1)

EMM and EQM are the MM and QM contributions to the energy, and EQM/MM is their inter-

action. EML is the machine learning correction (referred to as a machine learning potential

correction, ∆MLP). EQM and EQM/MM depend on the single particle density matrix, P. In

the present work, we incorporated the DFTB+ and xTB packages into Sander for calcu-

lating EQM, and the interface to DeePMD-kit is used to evaluate EML. The details of the

implementation, and a description of the QM/MM interactions are discussed below.

Sander interface with DFTB+ and xTB

The DFTB+ and xTB source codes57,58 are not distributed with AmberTools, but they can

be downloaded and compiled as standalone applications and/or software libraries to be used

in other applications. In our implementation, we directly link the DFTB+ and xTB libraries

with the Sander executable during compilation. Unlike many of the other QM/MM interfaces

supported by Sander, this strategy circumvents the cost associated with writing an input

file for the external QM program, executing the external program via a system call, and
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reading the external program’s output file at each molecular dynamics step. Instead, Sander

directly interacts with DFTB+ and xTB via function calls. Furthermore, this allows us

to incorporate variational long-range Ewald electrostatics into their SCF procedures.37,52–54

Detailed instructions for configuring Sander with DFTB+ and xTB support are provided in

the AmberTools 2024 user manual.

The QM/MM interaction is performed with electrostatic embedding.

EQM/MM =EQM/MM,LJ +
∑

′

b∈MM

∫ ∫

qQM(r′)qb(r− rb)

|r− r′|
d3rd3r′

+
∑

a∈QM

qa

(

∆φMM(ra) +
1

2
∆φQM(ra)

) (2)

EQM/MM,LJ is the Lennard-Jones interaction between the QM and MM atoms. The second

term is the electrostatic interaction between the QM charge density (determined from the

density matrix), qQM(r), and the field of nearby MM charges qb(r− rb). The primed summa-

tion denotes that only those MM atoms within a cutoff of the QM region are included. The

last term accounts for the long-range electrostatic interactions. The QM charge density is

modeled by Mulliken charges, qa, ∆φMM(ra) is the electrostatic potential caused by all MM

atoms outside of the cutoff, and ∆φQM(ra) the interaction between the QM region and its

periodic images.

∆φMM(ra) =Re
∑

k ̸=0

4π

k2V
e
ikT ·ra−

k2

4β2

∑

b∈MM

qbe
−ikT ·rb

−
∑

′

b∈MM

qb erf(βrab)
rab

−
πQMM

β2V

(3)

∆φQM(ra) =Re
∑

k ̸=0

4π

k2V
e
ikT ·ra−

k2

4β2

∑

b∈QM

qbe
−ikT ·rb

−
∑

b∈QM

qb erf(βrab)
rab

−
πQQM

β2V

(4)
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The first term in eqs. 3 and 4 is the reciprocal space potential of the MM and QM charge

densities, respectively. V is the volume of the unit cell, β is the Ewald coefficient, k is the

angular wave number of the plane wave, and QMM and QQM are the net charge of the MM

and QM regions. The second term in eqs. 3 and 4 is a real-space correction that removes

the potential caused by the nearby Ewald Gaussian functions. The third term in eqs. 3 and

4 is a neutralizing uniform background correction for charged systems. The MM energy,

EMM({r}) contains an analogous background correction −πQ2
MM/(2β2V ), such that the net

correction for the entire system is −π(QMM +QQM)2/(2β2V ).

The Sander program is responsible for calculating EMM, EMM,LJ, ∆φMM, and ∆φQM. The

DFTB+ and xTB libraries are responsible for calculating EQM, qa, and the second term in

eq. 2. A similar separation of responsibilities occurs when calculating atomic forces. At each

step of dynamics, Sander evaluates ∆φMM with the particle mesh Ewald (PME) method,59,60

and it precomputes the exponentials appearing in eq. 4. The MM atoms are imaged around

the QM region, and a list of MM atoms within a cutoff of any QM atom is generated. A

SCF calculation is requested by providing the current set of QM atomic coordinates, and

the locations, charges, and “hardness” values of the nearby MM atoms. The xTB software

uses the hardness values to represent the nearby embedding charges as diffuse monopoles.

For example, in GFN2-xTB, the second term in eq. 2 is given by eq. 5, where s indexes the

atomic orbital shells, and qs is a shell-resolved partial charge.

∑

′

b∈MM

∫ ∫

qQM(r′)qb(r− rb)

|r− r′|
d3rd3r′ ≈

∑

′

b∈MM

∑

a∈QM

∑

s∈a

qsqb
√

r2ab +
[

ηs+ηb
2

]−2
(5)

In the present work, we assign all MM atoms the hardness of hydrogen. The Sander inter-

face with DFTB+ currently treats the MM atoms as point charges; however, this can be

generalized in a similar fashion in the future.

The interfaces to both QM packages take advantage of object oriented features of the

Fortran 2008 programming language to communicate the variational contribution of the
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long-range electrostatics within the SCF procedure. The DFTB+ interface with Sander

is contained in the file dftbplus_module.F90 located in the Sander source directory

of the AmberTools 2024 package. The interface creates a child class that inherits from the

TQDepExtPotGen data structure provided by the DFTB+ software.57 This class was specif-

ically designed by the DFTB+ developers to include charge-dependent external potential cor-

rections. The xTB interface with Sander is similarly contained in the file xtb_module.F90

within the Sander source directory. The xTB interface inherits from the TSolvation struc-

ture defined within the xTB software.58 xTB normally uses this class to interact the QM

region with an implicit solvent model. In both interfaces, the child class redefines the par-

ent class methods to evaluate the last term in eq. 2 and the “shift” in the atom potentials:

∆φMM(ra) +∆φQM(ra).

One enables QM/MM calculations by setting ifqnt=1 in the Sander input file, which

will cause the options in the &qmmm Fortran namelist to be read. Setting the option

qm_theory=’DFTBPLUS’ or qm_theory=’XTB’ will read the interface-specific options

in the &dftbplus or &xtb namelists, respectively. Additional details are described in the

upcoming AmberTools 2024 documentation, due to be released in the spring of 2024.

Sander interface with DeePMD-kit

The design of the DeePMD-kit interface43–45 with the Sander program31 is heavily influ-

enced by the development of QM/MM–∆MLP potentials.20,21,61–64 In the Sander input file,

the user makes a selection of atoms to be corrected with a MLP. In the context of evaluating

a QM/MM–∆MLP, the MLP selection is the set of atoms in the QM region. One must

also provide the name of the file containing the DeePMD-kit neural network definition and

parameters. The Deep-Potential Range-Corrected model (DPRc)20 corrects the interactions

between the QM atoms and the interactions between the QM and nearby MM atoms in a

manner that conserves energy. That is to say, the MLP correction to the QM/MM interac-

tions smoothly approaches zero as the MM atom reaches a specified cutoff distance. When
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using a DPRc model, the Sander input file must also specify the MLP cutoff for the QM/MM

interactions. Previous parametrizations of DPRc-based MLP models have used a 6 Å cutoff,

which is also used in the present work. At each step of dynamics, Sander will request the

MLP energy and forces from DeePMD-kit by providing the position and “type” of each QM

and (optionally) nearby MM atoms. A QM atom type is its 2-character element symbol,

whereas the MM atom type – from the perspective of DeePMD-kit – is the element symbol

prefixed with the letter “m”. This strategy allows the neural network to correct a QM/QM

interaction differently than a QM/MM interaction.

The DPRc energy is the sum of atomic contributions, Ei,

EDPRc =
N
∑

i=1

Ei(ri, {rj}j∈n(i)) (6)

where N is the number of atoms, ri is the location of atom i, and n(i) denotes the set

of neighboring atoms (i.e., atoms within the DPRc cutoff radius). The expressions for the

Ei values from the neural network can be found elsewhere.20,21 The atomic decomposition

of DPRc model is readily amenable to parallel calculation. The DPRc contribution to the

energy is activated by setting the idprc=1 option within the Sander input &dprc Fortran

namelist.

As written, the DPRc application programming interface is specific to DeePMD-kit be-

cause it instantiates software objects defined within the DeePMD-kit library. Many emerging

MLPs, such as allegro65 and mace,66 are based on the PyTorch framework.67 We are cur-

rently developing a generic Sander/PyTorch QM/MM–∆MLP interface to evaluate these

models.

Sander interface with i-PI

The i-PI software46 is a standalone molecular dynamics program that supports state-of-the-

art path integral sampling,68 including the PIGLET thermostat, which has been shown to
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dramatically reduce the expense of computing the quantum kinetic energy.69,70 The path in-

tegral dynamics is performed with a ring polymer Hamiltonian, consisting of several replicas

(beads) that are harmonically restrained in series. At each time step, the potential energy

of each bead must be computed; however, these calculations are independent and can be

performed in parallel. The i-PI software defines a client-server communication protocol to

evaluate the potential energy with external driver programs. We have implemented the “in-

ternet socket” variation of the protocol, where multiple instances of Sander can be launched

on different computers. When launching a Sander instance, one must provide the hostname

(internet protocol address) and port number used for interprocess communication. These

quantities are specified as command-line arguments -host and -port, respectively. Fur-

thermore, the Sander input file must set the option imin=7, which causes the program to

wait for communication from the server process.

Free energy profiles of tautomer reactions from classical molecular

dynamics

We prepared a B-form DNA system (PDB ID: 113D)71 to demonstrate the functionality of

the new software infrastructure. The B-DNA crystal structure71 has drawn interest due to

the presence of two G-T wobble pair mismatches55,72,73 which could give rise to errors in

replication74,75 and translation.76 This subsequently led to computational investigation of

G-T tautomerization reactions with QM/MM.56

In the present work, we explore tautomerization reactions involving residues G4 and T21.

The B-DNA system consists of 762 solute atoms solvated by 5151 waters in a truncated

octahedron with 59.3 Å real-space lattice vectors lengths. A total of 13 Cl− and 35 Na+

ions were added to neutralize the charge and achieve a 0.14 M ion concentration. The

system was prepared using an elaborate 15-step procedure described in Ref. 77 using a

MM potential. The preparation procedure involves geometry optimization, heating, solvent

annealing, and equilibration of the system density while restraining solute heavy atoms.
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Over the course of the equilibration procedure, the solute restraints are gradually reduced.

In total, this procedure involved 6.2 ns and 2.6 ns of simulation in the NV T and NPT

ensembles, respectively, using a 1 fs time step. The system was then equilibrated for an

additional 100 ns in the NPT ensemble. The temperature was maintained at 298 K with a

Langevin thermostat78 (5.0 ps−1 collision frequency) and the density was equilibrated at 1

atm using the Berendsen isotropic barostat. The MM potential modeled the DNA with the

OL15 force field,79 and the solvent environment was modeled with SPC/Fw waters80 and

the Li et al. ion parameters.81 Electrostatics were calculated with the particle mesh Ewald

method59,60 using 10 Å real-space cutoffs, a 1 Å reciprocal space grid spacing, and tinfoil

boundary conditions.

Free energy profiles of the tautomeric reactions depicted in Figure 3 were calculated

from QM/MM umbrella sampling using a variety of ab initio and semiempirical methods.

The reactions are decomposed into 3 steps connecting 3 tautomeric forms. The “wGT”

state corresponds to the G-T wobble base pair in which the T21:N3 position is proto-

nated. The “GT*” state is a tautomer in which the T21:H3 proton is covalent bonded

to the T21:O4 position. Similarly, the “G*T” state is a tautomer in which the H3 pro-

ton is bound to the G4:O6. The 3 steps involve the proton displacement between these

states: wGT→GT*, GT*→G*T, G*T→wGT. The QM/MM methods compared in this

work are: PBE0/6-31G*, GFN2-xTB,41 DFTB3-D3 DFTB3-D4(2b), DFTB3-D4(3b), and

AM1/d.82–84 The DFTB3-D3 model applies Grimme’s D3 dispersion correction85,86 to the

DFTB3/3ob Hamiltonian.87,88 Similarly, the DFTB3-D4(2b) and DFTB3-D4(3b) models

supplement the DFTB/3ob method with the D4 dispersion model.89 The DFTB3-D4(3b)

method includes a 3-body contribution to the dispersion, whereas DFTB3-D4(2b) is limited

to 2-body contributions. Furthermore, we parametrized a reaction-specific DPRc correction

for the AM1/d model (described in the next section), which will be denoted AM1/d+ML.

The QM region consists of 51 atoms (the nucleobase and sugar of G4 and T21), and it has a

net neutral charge. The minimum free energy path of each step was independently optimized
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for every QM/MM model. The optimizations were performed with the surface-accelerated

finite temperature string method9 in the space of 5 reaction coordinates. The reaction coor-

dinates are distance differences meant to represent the transfer of H3 proton and the relative

displacement of the hydrogen bond pattern: ξ1 = RN3−H3 −RO6−H3, ξ2 = RO6−H3 −RO4−H3,

ξ3 = RN1−H1−RN3−H1, ξ4 = RN1−O2−RN2−O2, ξ5 = RN2−O2−RN1−N3. All umbrella sampling

described in this work used 200 kcal mol−1 Å−2 force constants for each reaction coordinate.

The string method began from an initial guess that linearly interpolated the reaction coor-

dinates between the step’s reactant and product states. Each string was sampled with 32

umbrella windows. The initial configurations of each window were sequentially prepared,

starting from the reactant state. The QM/MM structure of each window was optimized

for 1000 steps of conjugate gradient minimization. The temperature was gradually raised

from 0 K to 298 K over the course of 40 ps, and an additional 10 ps of QM/MM umbrella

sampling was performed in the NV T ensemble. 50 iterations of the string method were per-

formed with 4 ps/window/iteration of sampling and a 1 fs time step. Production sampling

of the final path was performed for 25 ps, and each production simulation was repeated 4

times with different thermostat random number seeds. The reaction coordinate values were

recorded every 10 fs, and the aggregate sampling from all 3 reaction steps were analyzed

with the multistate Bennett’s acceptance ratio (MBAR) method90 implemented in the ndfes

software4,51 to produce 5-dimensional free energy surfaces. The profiles presented in the

manuscript are the free energies along the minimum free energy path. The PBE0/6-31G*

simulations is very expensive in relation to the other models. In this case, only 10 iterations

of the string method were performed, starting from the optimized AM1/d path. Each string

was sampled for 2 ps/window/iteration, and 4 sets of production simulations were run for 10

ps/window/trial with a 1 fs time step. The ab initio QM/MM electrostatics were calculated

with the ambient-potential composite Ewald method37 using a 10 Å real-space cutoff, 1 Å

reciprocal space grid spacing, and tinfoil boundary conditions.
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Free energy profiles of tautomer reactions from path integral molec-

ular dynamics

We recalculated the free energy profiles from path integral molecular dynamics (PIMD)

umbrella sampling performed with the new interface to the i-PI software.68 The profiles

generated from classical and path integral dynamics are compared to explore how nuclear

quantum effects change the free energy predictions. The PIMD dynamical motion was prop-

agated with 6 beads (replicas) at a 0.25 fs timestep at 298 K using the PIGLET quantum

thermostat;69,91 therefore, up to 6 Sander instances can be launched. The parameters for

the PIGLET thermostat were taken from the GLE4MD website.92,93 The parameters were

chosen to reproduce the quantum fluctuations at 298 K and span a range of frequencies up

to 4142 cm−1. Each step’s path was sampled with 32 umbrella windows using 200 kcal mol−1

Å−2 force constants. The PIMD restraint potentials were applied to the centroid positions

(the bead-averaged positions) by making use of the i-PI interface to PLUMED.47,48 PIMD

umbrella sampling was performed at 32 windows positioned along the path previously op-

timized from the classical sampling. Each window was sampled for 2.5 ps, and repeated

4 times with different thermostat random number seeds. The reaction coordinate values

were calculated from the centroid positions, and the free energy surface was generated from

MBAR analysis of the aggregate sampling obtained from the 3 reaction steps.

QM/MM–∆MLP model training

We demonstrate the new interface between Sander and DeePMD-kit by parametrizing a

DPRc correction for the AM1/d-PhoT Hamiltonian. The architecture of the DPRc neu-

ral network was previously described in Ref. 94, and we have summarized the model in

the Supporting Information for completeness. The AM1/d+ML neural network parameters

were optimized with the DP-GEN software95 to reproduce PBE0/6-31G* QM/MM energies

and forces in the B-DNA system. The DPRc MLP corrects the interactions between the
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QM atoms, and the QM/MM interactions within a 6 Å cutoff. Four sets of neural network

parameters were trained against 93617 samples extracted from the AM1/d-PhoT string cal-

culations using the Adam stochastic optimizer with different random number seeds.96 The

parameter sets were then updated through 7 iterations of active learning. An active learn-

ing iteration consists of 3 steps: exploration, labeling, and retraining. The exploration step

uses the current set of neural network parameters to perform QM/MM+∆MLP umbrella

sampling. For each saved sample, the energy and forces produced by the 4 parameter sets

are compared; if the models disagree, then the sample is categorized as a “candidate”. The

“labeled” samples are a random selection of (up to) 2000 samples drawn from the pool of

candidates. The energy and forces of labeled samples are recalculated with PBE0/6-31G*

QM/MM and included as additional reference data within the next round of training. The

active learning procedure terminates when 10 % (or fewer) of the samples are selected for

labeling.

Each active learning iteration sampled 1920 umbrella windows for 2 ps and saved 50

samples/simulation. These simulations correspond to the first 20 and 40 iterations of the

finite temperature string method applied to the wGT→GT* and GT*→G*T reaction steps,

respectively. A sample was made a candidate if the standard deviation in the MLP energy

corrections was larger than 10−4 eV/atom or the standard deviation in the force correction

exceeds 0.08 eV/Å for any atom. The active learning procedure terminated after 7 iterations,

requiring a total of 9293 ab initio QM/MM evaluations. Neural network parameters were

produced from 4 million steps of Adam stochastic optimization with a learning rate that

exponentially decays from 10−3 to 5× 10−8.96 As previously described, production sampling

of the B-DNA tautomeric reactions were simulated 4 times with different random number

seeds. The AM1/d+ML production sampling was repeated with each of the 4 neural network

parameter sets (1 trial/parameter set), and the results were averaged.
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Results and Discussion

Validation tests: Force evaluation and energy conservation in NVE

simulations

Figure 2: QM/MM energy conservation of B-DNA in the microcanonical ensemble. (a)
DFTB3-D3 performed with Sander/DFTB+. (b) GFN2-xTB performed with Sander/xTB.
All methods compute the MM/MM electrostatics with particle mesh Ewald. The QM/MM
Ewald method similarly models the QM/QM and QM/MM electrostatics with Ewald. The
QM/MM Cutoff 14 Å method truncates the QM/MM interactions beyond 14 Å, and long-
range QM/QM interactions are ignored. The QM/MM Cutoff 14 Å simulations were repeated
at different starting configurations taken from the QM/MM Ewald trajectory. The “m” values
are the slope of the energy obtained from linear regression.

In this section, we validate the Sander interface with DFTB+ and xTB software by

performing DFTB3-D3 and GFN2-xTB QM/MM simulations of the B-DNA system in the

microcanonical ensemble and monitor the total energy. Energy conservation is achieved when

the potential energy is smooth and the analytic atomic forces are numerically consistent with

the potential energy gradients.

Figure 2 plots the total energy of the B-DNA reactant state as a function of time. The

lines labeled “QM/MM Ewald” were simulated with Ewald electrostatics using 10 Å real-
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space cutoffs, whereas “QM/MM Cutoff 14 Å” truncates the QM/MM electrostatics at 14 Å

(and it does not model the long-range QM/MM electrostatics). We ran the simulations with

truncated electrostatics twice, starting from the GFN2-xTB (Ewald) or DFTB3-D3 (Ewald)

configurations at times 0 ps and 5 ps. The “m” values are slopes of the energy from linear

regression. Each simulation was performed for 20 ps using a 1 fs time step.

The QM/MM Ewald interface described in the methods section assumes that the short-

range QM/MM electrostatic interactions (the second term in eq. 2) behave like point monopoles

at the real-space cutoff; the Ewald correction models the electrostatics outside of the cutoff

from a point charge approximation. The short-range electrostatics (eq. 5) adopt the Mataga–

Nihshimoto–Ohno–Klopman97–99 damped Coulomb interaction model. This model mimics a

point charge interaction at large distances.

Figure 2 suggests that the slight discrepancy between eq. 5 and point charge electrostatics

is negligible when using a 10 Å real-space cutoff for both GFN2-xTB and DFTB3-D3. The

energy conservation of GFN2-xTB is almost identical to DFTB3-D3 in DFBT+. Both models

exhibit negligible energy drift over 20 ps (slopes 0.01 kcal/mol/ps). However, when the

GFN2-xTB and DFTB3-D3 QM/MM electrostatics are truncated at 14 Å, large deviations in

the total energy are encountered, and the self-consistent field procedure often fails to converge

within a few picoseconds of simulation. Similar behavior has been illustrated elsewhere in

validation tests that compare the stability of QM/MM simulations with and without long-

ranged electrostatic interactions.37

Free energy surfaces for guanine-thymine mispair tautomerization

reactions

In this section, we examine free energy profiles of guanine-thymine mispair tautomerization

reactions using a wide range of ab initio and semiempirical/DFTB QM/MM and QM/MM-

∆MLP models. Free energy surfaces (FESs) and minimum free energy paths (MFEPs) were
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Figure 3: Helmholtz free energy profiles for guanine-thymine mispair tautomerization reac-
tions using different ab initio and semiempirical/DFTB QM/MM and QM/MM-∆MLP mod-
els performed in the canonical ensemble. (a) wGT→GT*; (b) GT*→G*T; (c) G*T→wGT.
“wGT” indicates a G-T wobble pair, and G* and T* are non-standard tautomer states of G
and T, respectively, as indicated in the figure and described in the text.
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determined using the surface-accelerated string method9 with 5 different reaction coordinates

as described in the Methods section. Figure 3 compares the 1D free energy profiles for the

MFEPs for the following QM/MM models: PBE0/6-31G*, AM1/d, GFN2-xTB, DFTB3-D3,

DFTB3-D4(2b), and DFTB3-D4(3b). PBE0/6-31G* is an ab initio QM/MM model, and it

is approximately 500 times slower than the other semiempirical/DFTB QM/MM models for

these systems. Several QM/MM models based on DFTB3 are available through the interface

with DFTB+, and in particular the use of different dispersion models are examined. The

notation “D3” and “D4” refers to the dispersion correction, (2b) and (3b) mean 2-body and

3-body interaction, respectively, as described in the Methods section. In addition, the GFN2-

xTB model is examined through an interface with the xTB package. The AM1/d model is

an NDDO-based semiempirical Hamiltonian available within the SQM module of Sander.

AM1/d also serves as the base QM model upon which the QM/MM-∆MLP was developed

(AM1/d+ML) through an interface with DeePMD-kit.43–45 Neural network parameters were

trained to reproduce PBE0/6-31G* QM/MM energies and forces. In this way, functionality

for a wide range of QM/MM models is demonstrated, and their results compared.

The reaction itself is decomposed and presented in three steps that form a closed ther-

modynamic cycle as illustrated at the top of Figure 3. In the first step a G-T wobble pair

(wGT) undergoes a coupled proton transfer/hydrogen bond register shift to a G-T* basepair

where T* represents the thymine enol tautomer. In the second step of the reaction, the GT*

undergoes a second proton transfer/hydrogen bond register shift to form a (G*)-T basepair

where G* is the guanine enol tautomer. The third step of the reaction involves a coupled

proton transfer/hydrogen bond register shift to return to the original GT wobble basepair.

It is immediately evident from Figure 3 that there are large variations in the free energy

profiles for the various QM/MM models. Most notably, none of the semiempirical/DFTB-

based QM/MM models closely reproduce the ab initio PBE0/6-31G* profile. The AM1/d

model systematically overestimates the profile with respect to the wGT state, whereas the

DFTB models underestimate the profiles with respect to the wGT state. The GFN2-xTB
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model, in this example, further predicts that the tautomer basepairs (GT* and G*T) are

more favorable than the GT wobble (wGT) where the nucleobases are in their most stable

tautomer keto forms.

Table 2 (top) lists values of key stationary points along the free energy profiles calculated

with classical molecular dynamics shown in Figure 3 and compares them to experimentally-

derived reference values. Overall, the ab initio PBE0/6-31G* QM/MM model does the

best job at reproducing the experimentally derived values. The differences in ∆A are less

than 1 kcal/mol, and the differences in ∆A‡ are less than 3.5 kcal/mol. It should be noted

that the comparison with experiment here is only approximate in the sense that the ∆A‡ is

only crudely approximated from the experimental rates using transition state theory with

unit transmission coefficient. Taking the PBE0/6-31G* values as a high-level theoretical

reference, it is clear that the other QM/MM models differ considerably. For example, the

difference between PBE0/6-31G* and semiempirical/DFTB model wGT→GT* ∆A‡ val-

ues range from -6.4 to 5.6 kcal/mol. Only the machine-learning potential corrected model

AM1/d+ML gives results that are close to the ab initio values. The ∆A and ∆A‡ values

agree with PBE0/6-31G* to within 0.5 and 0.8 kcal/mol, respectively. The AM1/d+ML

QM/MM model is thus by far the closest agreement with the ab initio QM/MM model,

despite the uncorrected AM1/d model having very large differences (maximum differences

for ∆A and ∆A‡ of 5.6 and 3.5 kcal/mol for ∆A and ∆A‡, respectively).

The main point of this section is to demonstrate that: 1. ab initio QM/MM simula-

tions provide reasonable agreement with experimental results such that they can provide,

at very high computational cost, a valuable molecular-level interpretation and can poten-

tially be used for prediction; 2. existing semiempirical/DFTB models may not be able to

accurately describe a chemical process that was outside the scope of their development; and

3. machine-learning potential corrections can provide an avenue toward improving efficient

semiempirical/DFTB QM/MM models for specific applications. The software infrastructure

reported here enables new types of QM/MM-∆MLP models to be developed and applied in

20

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
11

27
6



Amber to efficiently compute free energy surfaces and minimum free energy paths.

Nuclear quantum effects on guanine-thymine mispair tautomeriza-

tion reactions

Table 2: Tautomer free energies and forward reaction barriers (kcal/mol) determined from
classical and path integral molecular dynamics umbrella sampling.a

wGT→GT* GT*→G*T G*T→wGT
Method ∆A ∆A‡ ∆A ∆A‡ ∆A ∆A‡

Expt. 4.43 16.88 -0.62 9.21 -3.82 · · ·

Classical MD
PBE0/6-31G* 3.97(0.04) 20.41(0.05) -0.91(0.03) 6.72(0.05) -3.06(0.04) 17.02(0.05)
AM1/d 9.54(0.04) 23.51(0.06) -1.36(0.03) 10.26(0.03) -8.16(0.04) 15.36(0.04)
AM1/d+ML 3.67(0.07) 21.01(0.07) -0.43(0.07) 7.06(0.07) -3.24(0.07) 17.78(0.07)
GFN2-xTB -2.44(0.06) 12.09(0.05) 1.94(0.08) 4.68(0.06) 0.50(0.06) 12.59(0.07)
DFTB3-D3 3.27(0.07) 10.91(0.08) 4.58(0.08) 10.41(0.08) -7.85(0.09) 5.83(0.09)
DFTB3-D4(3b) 2.01(0.10) 10.81(0.09) 5.13(0.12) 10.75(0.09) -7.14(0.12) 5.59(0.11)
DFTB3-D4(2b) 2.63(0.07) 10.75(0.07) 5.46(0.07) 10.91(0.06) -8.09(0.07) 5.43(0.06)

PIMD
AM1/d 7.98(0.07) 21.87(0.08) -1.46(0.08) 6.90(0.06) -6.51(0.09) 15.41(0.08)
AM1/d+ML 3.48(0.03) 20.65(0.04) 0.26(0.03) 4.21(0.08) -3.75(0.04) 16.88(0.04)
GFN2-xTB -3.10(0.06) 10.93(0.06) 1.70(0.05) 2.47(0.06) 1.34(0.06) 12.26(0.05)
DFTB3-D3 1.68(0.09) 10.59(0.08) 4.41(0.09) 7.96(0.08) -6.03(0.09) 4.57(0.08)
DFTB3-D4(3b) -0.57(0.08) 9.99(0.10) 5.12(0.07) 8.12(0.07) -4.55(0.07) 5.44(0.09)
DFTB3-D4(2b) 2.17(0.07) 9.78(0.08) 4.20(0.08) 7.04(0.07) -6.37(0.08) 3.40(0.08)

a Each free energy profile was computed 4 times from independent sets of simulations. The tabulated
values are the mean of the 4 trials. The numbers in parenthesis are the standard error of the mean.
Experimental reference values were derived from rates measured in ref. 55, and free energy values
approximated from transition state theory assuming a unit transmission coefficient.

In this section, we demonstrate the new interface with the i-PI software by calculating

free energy profiles from PIMD simulation, as described in the Methods section. These

calculations are considerably more computationally intensive (by roughly an order of magni-

tude, or more depending on the number of replicas used in the ring polymer Hamiltonian).

Nonetheless, inclusion of nuclear quantum effects is important, especially for modeling chem-

ical reactions that involve proton transfer events such as those presented here. Other recent
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Figure 4: Classical and path-integral molecular dynamics free energy profiles for guanine-
thymine mispair tautomerization reactions using different semiempirical/DFTB QM/MM
and QM/MM-∆MLP models described in the text: (a) wGT→GT* (a,d,g,j,m,p); (b)
GT*→G*T (b,e,h,k,n,q); (c) G*T→wGT (c,f,i,l,o,r). Here “wGT” indicates a G-T wob-
ble pair, and G* and T* are non-standard tautomer states of G and T, respectively. Profiles
from classical and PIMD are shown as solid and dashed lines, respectively. Color schemes
for different models are the same as for those shown in Figure 3.
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works have addressed the issue of computational cost in PIMD simulations using fast density-

functional tight-binding models100 or machine learning potentials10 optimized to high-level

reference data.

Figure 4 compares the classical (solid lines) and path-integral molecular dynamics (dashed

lines) free energy profiles for different semiempirical/DFTB QM/MM and QM/MM-∆MLP

models. Table 2 (bottom) lists values of key stationary points along the free energy profiles

calculated with PIMD shown in Figure 4 and compares them to corresponding classical and

experimentally-derived reference values. Table S2 summarizes differences between classical

and PIMD free energy values. Overall, the inclusion of nuclear quantum effects generally

lowers the free energy barrier (∆A‡) for proton transfer steps, in some cases exceeding 3

kcal/mol, whereas the effect on ∆A is variable (ranging up to roughly ±2.5 kcal/mol). The

PIMD free energy profiles were calculated from the ring polymer centroid positions. These

profiles generally have lower barriers than those produced from classical molecular dynamics.

The apparent smoothing of the profile is due to the delocalization of the nuclear wave packet,

which can partially be attributed to tunneling effects.101–103 The current demonstration

examines differences between independently-calculated free energy profiles; however, other

applications of i-PI can directly evaluate equilibrium and kinetic isotope effects from umbrella

sampling using thermodynamic perturbation and frequency factors.21,104

The main point of this section is to demonstrate that inclusion of nuclear quantum effects

can have important quantitative effects on the free energy profiles and ∆A‡ values for the

tautomerization reactions considered here. These calculations are made practical in Amber

with fast semiempirical/DFTB QM/MM and QM/MM-∆MLP models, and enabled by the

interface with i-PI.46

Performance

We measured the performance of the B-DNA microcanonical QM/MM simulations shown in

Fig. 2 on a single Intel Xeon E5-2630 v3 CPU core clocked at 2.40 GHz. Table 3 expresses
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the performance as the number of classical molecular dynamics time steps per day. For

example, 1,000 steps/day would correspond to 1 ps/day of sampling using a 1 fs time step.

More efficient sampling with a longer integration time step may be obtained by using the

“middle” thermostat scheme described in Refs. 105 and 106 in conjunction with hydrogen

mass repartitioning.107 The “QM/MM Ewald” timings use 10 Å real-space cutoffs, whereas

the “QM/MM Cutoff” timings truncate the QM/MM interactions at 14 Å. The subheadings

“Linked” and “File-based” refer to the communication between Sander and the QM program:

Linked means there is direct communication via function calls, whereas File-based relies on

disk input/output and system calls.

Table 3: Classical molecular dynamics performance using Sander with several QM/MM
potentials. The values are time steps/day.

Potential QM/MM Ewald QM/MM Cutoff QM/MM Cutoff
Linked Linked File-based

DFTB3-D3 163,000 99,000 80,000
GFN2-xTB 133,000 88,000 80,000
AM1/d 133,000 86,000 · · ·
AM1/d+ML 66,000 51,000 · · ·
PBE0/6-31G* 200 · · · · · ·

Table 3 suggests that linking the semiempirical programs into the Sander executable

increases the performance by 10%-to-20% over file-based communication. Direct linkage

further improves the performance by enabling the use of the QM/MM Ewald method, which

achieves stable dynamics with smaller real-space cutoffs. The single core performance of

AM1/d, GFN2-xTB, and DFTB3-D3 are very similar. The inclusion of the DPRc ∆MLP

halves the AM1/d performance; however, previous examination of DPRc timings found that

it decreases the performance by only 10% when the ∆MLP is evaluated on an Nvidia V100

GPU. The AM1/d+ML performance on a single CPU core is 300 times faster than PBE0/6-

31G* QM/MM evaluation using the HFDF ab initio program.

The high cost of ab initio QM/MM evaluation often prevents its use within PIMD sim-

ulations. To illustrate the cost of PIMD simulations, we measured the performance of the
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Table 4: AM1/d QM/MM path integral molecular dynamics performance using i-PI and
multiple Sander instances. N is the number of Sander instances. The path integral dynamics
is propagated with 6 beads.

N steps/day
1 17,000
2 27,000
3 37,000
4 37,000
5 37,000
6 60,000

wGT reactant state discussed in the previous section. The PIMD simulations were run with

6 beads; therefore, a pool of up to 6 Sander instances can be launched. Table 4 reports

the simulation performance as the number of PIMD time steps evaluated per day. The total

number of CPU cores is N+1, where N is the number of Sander instances; the additional core

is reserved for the i-PI dynamics program. At each time step, 6 potential energy evaluations

are required for the corresponding set of 6 beads; therefore, running 4 or 5 Sander instances

does not improve the 3-instance performance because they are not divisors of the number of

beads. When 6 instances are used, the performance is about half of what is obtained during

classical dynamics due to the communication between i-PI and the Sander instances.

Conclusion

We reported new integrated software infrastructure for conducting free energy simulations in

the condensed phase under periodic boundary conditions with long-ranged PME/Ewald elec-

trostatics using a wide range of fast QM/MM potentials made available through interfaces

with DFTB+ and xTB. Further, integration with DeePMD-kit enables new QM/MM-∆MLP

models to be developed and efficiently applied. Nuclear quantum effects (beyond the har-

monic approximation) can be treated using free energy surface sampling with path integral

molecular dynamics. The software infrastructure reported here extends the capabilities of

Amber for developing new QM/MM-∆MLP models and using them to compute free en-
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ergy surfaces and related properties for a wide range of applications. Near-future directions

for development will involve expanding the scope of interoperability to include interfaces

with enhanced sampling software, and in particular with WESTPA,49,50 a scalable software

package for high-performance weighted ensemble simulation and analysis.

Supporting Information

A description of the DPRc neural network and tables of tautomeric reaction free energy

differences.
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