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Solving complex fluid-structure interaction (FSI) problems, which are described by nonlinear 
partial differential equations, is crucial in various scientific and engineering applications. 
Traditional computational fluid dynamics based solvers are inadequate to handle the increasing 
demand for large-scale and long-period simulations. The ever-increasing availability of data 
and rapid advancement in deep learning (DL) have opened new avenues to tackle these 
challenges through data-enabled modeling. The seamless integration of DL and classic numerical 
techniques through the differentiable programming framework can significantly improve data-
driven modeling performance. In this study, we propose a differentiable hybrid neural modeling 
framework for efficient simulation of FSI problems, where the numerically discretized FSI physics 
based on the immersed boundary method is seamlessly integrated with sequential neural networks 
using differentiable programming. All modules are programmed in JAX, where automatic 
differentiation enables gradient back-propagation over the entire model rollout trajectory, 
allowing the hybrid neural FSI model to be trained as a whole in an end-to-end, sequence-to-
sequence manner. Through several FSI benchmark cases, we demonstrate the merit and capability 
of the proposed method in modeling FSI dynamics for both rigid and flexible bodies. The proposed 
model has also demonstrated its superiority over baseline purely data-driven neural models, 
weakly-coupled hybrid neural models, and purely numerical FSI solvers in terms of accuracy, 
robustness, and generalizability.

1. Introduction

Fluid-structure interaction (FSI) is ubiquitous in various scientific and engineering applications, spanning from small-scale bio-
logical systems to large-scale industrial structures in civil or hydraulic engineering. Two-way coupled FSI is a complex, multiphysics 
problem due to inherent structural and fluid nonlinearities, as well as a wide range of spatiotemporal scales involved in the struc-
ture, fluid, and their interactions [1,2]. Computational modeling is important for predicting and controlling complex FSI dynamics. 
However, traditional computational models based on classic numerical techniques face great challenges in efficiently simulating 
FSI problems with sufficient accuracy and low computational cost. Although many computational fluid dynamics (CFD) techniques, 
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such as the arbitrary Lagrangian-Eulerian [3,4], level-set [5], and immersed boundary method [6–8], have been developed to model 
interactions between fluid and solid dynamics and provide many physical insights, solving a series of FSI governing ordinary/partial 
differential equations (ODEs/PDEs) remains very expensive, making it infeasible to deal with real-time predictions or many-query 
applications, e.g., design optimization, inference, and uncertainty quantification.

Rapid advancements in machine learning and ever-increased data availability have provided new opportunities to tackle these 
challenges. The use of deep neural networks (DNNs) for modeling complex nonlinear dynamics of fluid or FSI systems has been ac-
tively explored in recent years. By directly learning the input-output relationships in either high-dimensional or reduced-order space 
using data-driven techniques such as proper orthogonal decomposition (POD) and convolutional autoencoder methods, mapping 
functions have been identified for various scenarios, including flow past cylinders [9,10], airfoil aerodynamics [11,12], biological 
flows [13,14], and RANS/LES closure problems [15–18], among others. To handle irregular domains with unstructured data, fully-
connected neural networks (FCNN) [19] and graph neural networks (GNNs) [20,21] have been used to build fast neural simulators 
for fluid and FSI dynamics. For example, a combination of GNNs and POD was used to learn the fluid and solid dynamics of a 
benchmark FSI case, vortex-induced vibration of an elastically-supported cylinder [22].

While data-driven models have shown promising results in modeling FSI systems, they have limitations, including the high cost 
of data acquisition and the potential lack of generalizability or robustness. Therefore, it is important to strike a balance between 
the use of data-driven models and physics prior to create hybrid models that take advantage of the strengths of both approaches. 
A hybrid deep learning model that combines data-driven techniques with prior knowledge of physics, such as governing equations 
and constraints, can be highly effective in improving sample efficiency and generalizability, particularly when dealing with small 
or sparse data. For FSI modeling, this hybridization can be achieved through two different ways: (1) the integration of DNNs with 
projection-based model reduction and constraints of fluid-structure coupling, and (2) the incorporation of governing equations into 
DNN’s loss functions or neural architectures. This latter is also referred to as physics-informed machine learning [23].

Most existing data-driven models for FSI problems belong to the first category. Typically, the high-dimensional fluid and struc-
ture dynamics are reduced into low-dimensional latent spaces using techniques like POD or convolutional auto-encoders, and the 
latent fluid and structure dynamics are learned by separate DNNs [24]. Physical interface constraints, such as moving interfaces 
(solid-to-fluid coupling) and fluid forces (fluid-to-solid coupling), are often used to couple the fluid and structure DNNs, which 
can be represented using methods like level-set functions [24–26], immersed boundary method (IBM) masks [27], or direct forcing 
terms [28]. By doing so, both the structural responses and the fluid dynamics can be learned in a consistent manner. In some cases, 
if only the structural responses are of interest, a more accurate numerical solver can be used to solve the solid dynamics, while the 
flow field or only fluid forces are learned by DNNs [29]. Although this approach might seem similar to the hybrid neural models 
belonging to the second category that will be introduced shortly, the training of DNNs here is often conducted offline, decoupled 
from the numerical solver and physical constraints. These loosely-coupled hybrid methods often face significant stability issues [30], 
especially for predicting long-span spatiotemporal dynamics [31].

The second category of hybrid data-driven approaches considered here is referred to as physics-informed machine learning 
(PIML). A key contribution to this category is physics-informed neural networks (PINNs), which incorporate physical prior, such as 
governing equations, conservation laws, and boundary conditions, as parts of the standard loss function to regularize neural network 
training [32]. PINNs have demonstrated their capabilities in various problems, including forward and inverse modeling of fluid flow 
[33,34], solid mechanics [35,36], and FSI problems [37,38]. However, PINNs impose the physics constraints softly by reconstructing 
PDE residuals using either automatic differentiation (AD) or numerical discretization, making the loss landscape very difficult to 
optimize [39]. The success and failure modes heavily rely on the setting of hyperparameters that weigh each loss terms.

Recently, a new direction in PIML is to incorporate known physics into neural architecture [40]. This is inspired by the rela-
tionship between DNN architecture and differential equations [41,42]. Liu et al. [40] proposed a PDE-preserved neural network 
(PPNN) that integrates discretized PDE operators from partially known governing physics into the DNN architecture through convo-
lutional residual connection network (ConvResNet) blocks in a multi-resolution setting. Compared to purely black-kbox ConResNet 
and other state-of-the-art (SOTA) neural operators, PPNN has been demonstrated to have much better performance in terms of 
accuracy, speed, and generalizability for predicting various spatiotemporal physics. From the numerical modeling perspective, the 
PDE-preserving portion in PPNN can be interpreted as numerical differentiation and time stepping implemented as convolutional 
residual network blocks, which can be seamlessly integrated with any black-box neural network structures to form a hybrid neural 
solver. Thanks to differentiable programming [43], the gradient can be back-propagated through the entire neural solver, allowing ef-
ficient end-to-end, sequence-to-sequence training of the entire model as a whole. Lately, leveraging physics in their discretized forms 
based on classical numerical techniques, along the line of differentiable programming to construct a differentiable hybrid solver has 
been attracting increasing attention [31,44–47]. The differentiable programming framework has been recently applied in learning 
turbulence parametrization [45,48,49], where subgrid-scale closures or other correlations are learned based on a posteriori criteria. 
End-to-end differentiable learning has enabled significant improvement of a posteriori predictions compared to loosely-coupled hybrid 
DNN-closure that struggle with stability issues as mentioned above [30]. The integration of DNNs to construct hybrid neural solvers 
poses significant challenges for most traditional legacy solvers due to the lack of AD capability and GPU compatibility. To overcome 
this issue, there are growing efforts to develop differentiable CFD solvers such as PhiFlow [50], Jax-CFD [44], and Jax-Fluids [51]. 
Although the hybrid differentiable neural modeling paradigm has shown a great promise, this field is still in its early stages and 
requires further development, especially for modeling complex multi-physics problems such as two-way coupled FSI dynamics.

In this work, we present a differentiable hybrid neural model for predicting coupled fluid-structure dynamics, which integrate 
governing PDEs into deep learning architectures to accelerate FSI simulations while maintaining a balance between predictive accu-
racy and efficiency. The proposed hybrid neural model is constructed within the differentiable programming framework using JAX, 
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a Python library designed for high-performance ML research and differentiable modeling. Specifically, a hybrid recurrent network 
unit of fluid-structure coupling is built based on a differentiable incompressible Navier-Stokes solver on very coarse grids combined 
with trainable convResNet blocks to ensure accurate fluid predictions. Meanwhile, the solid dynamics is directly solved on a high-
resolution grid via superresolution operations, and coupled with fluid using IBM direct forcing to enforce two-way interference [52]. 
These hybrid FSI network units are combined to form a sequential recurrent network based on Long Short-Term Memory (LSTM), 
allowing sequence-to-sequence (Seq2Seq) training and prediction. The outstanding performance of the proposed hybrid neural FSI 
model is demonstrated through extensive experiments on two benchmark cases, where we compare its accuracy, robustness, gen-
eralizability, and efficiency with other SOTA baseline methods. To the best of the authors’ knowledge, this study represents the 
first attempt to integrate deep learning with numerical solvers for predictive FSI modeling within the differentiable programming 
paradigm. The paper is organized as follows: Section 2 outlines the overall methodology, including problem formulations and model 
designs. Section 3 presents the results of our neural FSI model for two different benchmark cases, along with comparisons to baseline
methods. We discuss the robustness, generalizability, and speedup of the proposed hybrid neural model in Section 4, and conclude 
the paper in Section 5.

2. Methodology

2.1. Problem formulation

FSI problems can be described by a series of coupled PDEs that exhibit spatial-temporal nonlinearity. In this work, we concentrate 
on the interactions between incompressible fluid and solid dynamics to demonstrate the fundamental concepts of the proposed differ-
entiable neural FSI simulation method. Specifically, the fluid dynamics is governed by the incompressible Navier-Stokes equations,

∇ ⋅ 𝐮 = 0, 𝐱, 𝑡 ∈Ω𝑓 × [0,𝑇 ]
𝜕𝐮
𝜕𝑡

= −(𝐮 ⋅∇)𝐮+ 𝜈∇2𝐮− 1
𝜌
∇𝑝+ 𝐟 , 𝐱, 𝑡 ∈Ω𝑓 × [0,𝑇 ]

(1)

where 𝑡 and 𝐱 are time and Eulerian space coordinates, respectively; fluid velocity 𝐮(𝑡, 𝐱) and pressure 𝑝(𝑡, 𝐱) are both spatiotemporal 
functions defined in Ω𝑓 ⊂ ℝ2; 𝜌 and 𝜈 represent fluid density and kinematic viscosity of the fluid, respectively; The solutions for 
velocity and pressure are uniquely determined by given initial and boundary conditions (IC/BCs).

The interaction between fluid dynamics and deformable structures is described by immersed boundary method (IBM), wherein 
the effect of solid dynamics is imposed on fluid using direct forcing term 𝐟 [6], satisfying the non-slip wall conditions along the 
interface Γ ∈Ω𝑓 ∩Ω𝑠. The structure dynamics can be described by the following equation in Lagrangian coordinates,

𝜇𝑠
𝜕2𝐰
𝜕𝑡2

+𝐸𝐼 𝜕
4𝐰

𝜕𝐗4 = 𝐪, 𝐰, 𝑡 ∈Ω𝑠 × [0,𝑇 ] (2)

where 𝐗 is Lagrangian space coordinates; 𝐰(𝑡, 𝐗) represents the dynamic response of structure, defined in Ω𝑠 ⊂ ℝ2; 𝜇𝑠 is mass per 
unit length; 𝐸𝐼 is flexibility; 𝐪(𝑡, 𝐗) represents forces induced by the flow. In general, structures can generally be classified into two 
types, rigid bodies and flexible bodies. For two dimensional problems considered here, a flexible body can be viewed as an assembly 
of rigid beam elements based on Euler-Bernoulli beam theory [53]. The transformation between the Eulerian (fluid) and Lagrangian 
(structure) variables can be realized by the Dirac delta function [7,54],

𝜙(𝐱, 𝑡) = ∫
𝛾𝐗

𝚽(𝐗, 𝑡)𝛿(𝐱 −𝐗)𝑑𝛾𝐗, 𝛾𝐗 ∈ Γ

𝚽(𝐗, 𝑡) = ∫
𝛾𝐱

𝜙(𝐱, 𝑡)𝛿(𝐱 −𝐗)𝑑𝛾𝐱 , 𝛾𝐱 ∈ Γ
(3)

where 𝚽 and 𝜙 represent variables in Lagrangian and Eulerian coordinates, respectively; 𝛿 denotes Dirac delta interpolation function; 
𝛾𝐱 and 𝛾𝐗 correspond to the set of Eulerian grids and Lagrangian grids in the immersed interface boundary Γ, respectively.

Traditionally, finite difference (FDM) or finite volume method (FVM) are commonly used to solve Eq. (1), while finite element 
method (FEM) is used to solve Eq. (2). However, the computational cost of traditional FSI solvers can be very high, promoting 
the development of a differentiable hybrid neural solver. By integrating discretized FSI physics (Eqs. (1)-(2)) into deep neural 
architectures, this approach aims to achieve efficient and reliable FSI simulations.

2.2. Differentiable hybrid neural FSI modeling

Our proposed differentiable hybrid neural FSI model is fundamentally anchored in the profound relationship between neural 
network architectural elements (e.g., convolution layers, residual connections) and the numerical representations of PDEs, which has 
been recently explored in the literature [41,42,55–57]. Notably, residual connection layers in ResNet can be interpreted as Euler 
discretized ODEs [42]; standard convolutional operators can be linked to discretized spatial PDE operators on uniform grids [41], 
extendable to irregular domains or non-Euclidean spaces using graph kernels [56]. Drawing upon these connections, conventional 
numerical solvers can be interpreted as specific neural network instances, where the convolutional kernels, recurrent structures, and 
residual connections are predefined completely by the known physics and associated numerical schemes, rather than being learned 



Journal of Computational Physics 496 (2024) 112584

4

X. Fan and J.-X. Wang

Fig. 1. (a) Overview of the differentiable hybrid neural architecture for FSI simulation, where ‘Fluid’ and ‘solid’ denote the governing PDEs of fluid and solid dynamics, 
respectively; ‘NN’ represents trainable neural structures; The overall hybrid neural model is formulated as a LSTM sequence network based on FSI physics-integrated 
recurrent units. (b) The detailed schematic of the FSI-physics-integrated recurrent unit. The trainable modules are blocked by dash lines (CNN1 and CNN2), while the 
remaining modules correspond to nontrainable physics. Note that the inputs are marked as black, the intermediate outputs are marked as blue and the final outputs 
are marked as red for clarification. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

from data. Our proposed approach marries these perspectives – seamlessly integrating trainable neural networks and numerical PDEs 
via differentiable programming, paving the way for the discovery of unresolved or unknown physics, as well as learning advanced 
numerical methods that can significantly enhance the simulation efficiency. In essence, the known physics, represented by PDE 
operators, is woven into the neural architecture, guided by these profound links between numerical PDEs and neural components. 
In alignment with this vision, the proposed hybrid neural architecture is designed as a LSTM sequence net consisting of a series of 
recurrent unit that integrate FSI physics, as depicted in Fig. 1. As detailed in Fig. 1(b), the physics-integrated recurrent unit encodes 
the FSI physics, i.e., governing PDEs in discretized form, as a non-trainable part of the neural architecture, seamlessly combined with 
trainable portion to form the entire LSTM sequence net. All modules are programmed in JAX, where the automatic differentiation 
(AD) enables the gradient back-propagation over the entire program, allowing the entire hybrid model to be trained in a Seq2Seq 
manner similar to classic sequence neural networks.

Specifically, for each recurrent unit of the current step 𝑡, the 5 inputs are the predicted velocity (𝐮𝑡 = [𝐮𝑥𝑡 , 𝐮
𝑦
𝑡 ]𝑇 ), pressure (𝑝𝑡), 

structure response (𝐰𝑡) and structural stiffness parameter (𝜆) from the previous learning step. The inputs initially pass through the 
physics-encoded portion with non-trainable spatial convolutions determined by the PDE operators from the governing FSI equa-
tions, which can be viewed as classic numerical time stepping (forward Euler time stepping) implemented as convolution layers on 
low-resolution grids. The information then proceeds through additional trainable convolution layers, formulated as ConvLSTM with 
residual connections. In the physics-encoded portion, the intermediate velocity ̃𝐮𝑡+1 is corrected by the pressure, following the frac-
tional step procedure [58] to enforce divergence-free conditions. Here, the computationally-expensive Poisson equation for solving 
pressure is entirely replaced by trainable convolutions to avoid costly self-iterations. It is worth mentioning that learning step (Δ𝑡) 
can be much greater than numerical time step determined by Courant–Friedrichs–Lewy (CFL) condition, enabling fast simulation 
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speeds. The governing equations for solid motions are directly solved due to their low degrees of freedom. Fluid and solid interac-
tions occur through super-resolution operations, indicating that the mask function 𝜙 and direct forcing 𝐟 of the IBM are executed in 
an super-resolved high-resolution grid (see Fig. 1(b)).

2.2.1. Encoding fluid physics in discretized form
The fluid physics, i.e., Navier-Stokes equations, is encoded in its FVM-based discretized form using fractional step method. 

Specifically, with a forward Euler time advancement, the intermediate velocity 𝐮∗ is estimated based on the discretized momentum 
equations,

𝐮∗ = 𝐮𝑡 +Δ𝑡
[
−∇ ⋅ (𝐮𝑡 ⊗ 𝐮𝑡) + 𝜈∇2𝐮t + 𝐟 𝑡

]
, (4)

where Δ𝑡 is the time step, ⊗ denotes the tensor product operation, and the direct IBM forcing term can be computed as follows,

𝐟 𝑡 = 𝜀𝑡(𝐱)
[
∇ ⋅ (𝐮t ⊗ 𝐮t)− 𝜈∇2𝐮t +

𝐮𝑡𝑠 − 𝐮𝑡

Δ𝑡

]
, (5)

where 𝐮t
s is the target velocity of the immersed interaction boundary, which is interpolated by the Dirac delta function from structure 

velocity (Eq. (3)); 𝜀𝑡(⋅) represents the volume-of-solid function, with 𝜀𝑡(𝐱𝑠) = 1 for solid cells 𝐱𝑠 ∈ Ω𝑠 and 𝜀𝑡(𝐱𝑓 ) = 0 for fluid cells 
𝐱𝑓 ∈Ω𝑓 . After that, the pressure term should be obtained by solving the Possion equation,

∇2𝑝𝑡+1 = 𝜌∇ ⋅ [𝐮∗ − 𝐮𝑡+1]
Δ𝑡 (6)

Incompressible condition ∇ ⋅ 𝐮𝑡+1 = 0 is valid in the fluid domain Ω𝑓 but does not hold in the solid domain Ω𝑠 as the flow solution 
inside Ω𝑠 is not physical. Therefore, the incompressible condition should be corrected for the solid domain,

∇ ⋅ 𝐮𝑡+1 =∇ ⋅
[
𝜀𝑡(𝐱)(𝐮𝑡+1𝑠 − 𝐮𝑡+1𝑐 )

]
≈∇ ⋅

[
𝜀𝑡(𝐱)(𝐮∗ − 𝐮𝑡𝑐 )

] (7)
where 𝐮t

c is the exact velocity of the immersed solid. Consequently, the modified Poisson equation for the fluid-structure interface 
region is given as,

∇2𝑝𝑡+1 =
𝜌∇ ⋅

[
(1− 𝜀𝑡)𝐮∗ + 𝜀𝑡𝐮𝑡𝑐

]

Δ𝑡 , (8)
Note that when 𝜀 = 0, the above equation reduces to the standard Possion pressure equation for pure fluid. However, instead of 
solving the Poisson equation, which is often computational intensive, trainable neural networks are employed to accelerate the 
process. In particular, trainable ConvLSTM layers are used to learn the Poisson operator, adhering to the same physical formulation 
as Eq. (8),

𝑝𝑡+1 =ℱ𝑐𝑜𝑛𝑣1 [(1− 𝜀𝑡)𝐮∗ + 𝜀𝑡𝐮𝑡𝑐 , 𝐬
𝑡
𝑐𝑜𝑛𝑣1

,𝝀;𝜽1] + 𝑝𝑡, (9)
where ℱ𝑐𝑜𝑛𝑣1 [⋅] represents ConvLSTM neural function with hidden state 𝐬𝑡𝑐𝑜𝑛𝑣1 at time 𝑡 and trainable parameters 𝜽1; 𝝀 represent 
physical parameters, e.g., material properties of the structure. Hereinafter, the output hidden state 𝐬𝑡+1𝑐𝑜𝑛𝑣1

is omitted for simplicity. 
The intermediate next step fluid velocity output from the physics-encoded part is obtained as follows,

𝐮̃𝑡+1 = 𝐮∗ − Δ𝑡
𝜌
∇𝑝𝑡+1 (10)

The intermediate output ̃𝐮𝑡+1 passes through another trainable ConvLSTM block with residual connections to obtain the final velocity 
output 𝐮𝑡+1,

𝐮𝑡+1 =ℱ𝑐𝑜𝑛𝑣2 (𝐮̃
𝑡+1,𝐮𝑡,𝜀𝑡+1,𝜀𝑡, 𝐬𝑡𝑐𝑜𝑛𝑣2 ,𝝀;𝜽2) + 𝐮̃𝑡+1, (11)

where the volume-of-solid function 𝜀 is used as a mask to provide the location information of the solid boundary; the ConvLSTM 
neural function ℱ𝑐𝑜𝑛𝑣2 parameterized with trainable parameters 𝜽2 takes the fluid and solid information from the PDE-encoded 
portion, as well as the hidden state 𝐬𝑡𝑐𝑜𝑛𝑣2 from previous steps, to predict the next-step velocity.

2.2.2. Encoding solid dynamics in discretized form
The solid dynamics is directly encoded in the hybrid neural model using classic numerical techniques. Using the standard Galerkin 

method [59], the solid deformation equation (Eq. (2)) can be discretized as ordinary differential equations,

𝐌 𝜕2𝐰
𝜕𝑡2

+𝐂 𝜕𝐰
𝜕𝑡

+𝐊𝐰 =𝐐 (12)

where 𝐰 = [𝐰1, 𝐰2, ⋯ , 𝐰𝑛]𝑇 represents the dynamic response vector for 𝑛 structural nodes, with each node’s response comprised of 
its x- and y-displacement components 𝑤𝑥 and 𝑤𝑦, i.e., 𝐰𝑖 = [𝑤𝑖𝑥, 𝑤𝑖𝑦]𝑇 . The global mass, damping, and stiffness matrices are denoted 
by 𝐌, 𝐂, and 𝐊, respectively. Lastly, 𝐐 = [𝐪1, 𝐪2, ⋯ , 𝐪𝑛]𝑇 represents the vector of fluid forces. The fluid forces 𝐪𝑖 = [𝑞𝐷𝑖 , 𝑞𝐿𝑖 ]𝑇 at 𝑖th
Lagrangian node can be computed by integrating the direct forcing 𝐟 along the neighboring Eulerian nodes,
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𝑞𝐷𝑖 = −∫
𝛾𝐱

𝑓𝑥𝛿(𝐱 −𝐗)𝑑𝛾𝐱 ≅ −
∑
𝐱𝑖∈𝛾𝐱

𝑓𝑥(𝐱𝑖)Δ𝑥Δ𝑦 (13)

𝑞𝐿𝑖 = −∫
𝛾𝐱

𝑓𝑦𝛿(𝐱 −𝐗)𝑑𝛾𝐱 ≅ −
∑
𝐱𝑖∈𝛾𝐱

𝑓𝑦(𝐱𝑖)Δ𝑥Δ𝑦 (14)

where 𝑞𝐷𝑖 and 𝑞𝐿𝑖 represents the drag force and lift on the 𝑖th node in the 𝑥 and 𝑦 direction, respectively. The terms 𝑓𝑥 = 𝐟 ⋅ 𝐧𝑥 and 
𝑓𝑦 = 𝐟 ⋅ 𝐧𝑦 represent the 𝑥 and 𝑦 components of the Eulerian forcing term, with unit directional vector 𝐧𝑥 and 𝐧𝑥 along the 𝑥 and 𝑦
axes, respectively; □̂ indicates the spreading of force from the Eulerian to the Lagrangian grid based on Eq. (3). The time schemes 
used for solving Eq. (12) are the fourth-order Runge-Kutta method for rigid bodies [60] and the Newmark-beta method for flexible 
bodies [61], respectively. In the current work, weak coupling between the fluid and structure is employed. The detailed forms of 
Eq. (12)-(14) for rigid and flexible bodies can be found in Appendix A.

2.3. Differentiable programming enabled Seq2Seq training

The entire differentiable hybrid neural model can be trained in a Seq2Seq manner as a whole similar to classic sequence networks, 
e.g., recurrent neural networks or transformer, since all the components are constructed using differentiable programming. For 
Seq2Seq learning, the loss function accounting for both fluid and solid dynamics is defined as follows,

(𝜽1,𝜽2) = 𝛼
[𝑝(𝜽𝟏) +𝑣(𝜽𝟐)

]
+ 𝛽𝑠(𝜽𝟏,𝜽𝟐) (15)

where 𝜽𝟏 and 𝜽2 are trainable parameters of ConvLSTM layers; 𝑝, 𝑣, and 𝑠 represent the loss components associated with fluid 
pressure, velocity, and solid response, respectively. The detailed expression of each loss component is given as follows,

𝑝(𝜽1) =
1
𝑁

𝑁−1∑
𝑡=0

‖𝑝𝑡 +ℱ𝑐𝑜𝑛𝑣1 [(1− 𝜀𝑡)𝐮∗ + 𝜀𝑡𝐮𝑡𝑐 , 𝐬
𝑡
𝑐𝑜𝑛𝑣1

,𝝀;𝜽1]− 𝐩𝑡+1𝑑 ‖2𝐿2
(16)

𝑣(𝜽2) =
1
𝑁

𝑁−1∑
𝑡=0

‖𝐮̃𝑡+1 +ℱ𝑐𝑜𝑛𝑣2 (𝐮̃
𝑡+1,𝐮𝑡,𝜀𝑡, 𝐬𝑡𝑐𝑜𝑛𝑣2 ,𝝀;𝜽2)− 𝐮𝑡+1𝑑 ‖2𝐿2

(17)

𝑠(𝜽1,𝜽2) =
1
𝑁

𝑁−1∑
𝑡=0

‖𝐰𝑡+1 −𝐰𝑡+1
𝑑 ‖2𝐿2

(18)

where ‖⋅‖𝐿2 represents the L2 norm, 𝑁 denotes the total number of rollout time steps, and the subscript □𝑑 indicates the labeled 
data. 𝛼 and 𝛽 are the weighting parameters of the fluid and solid loss portions, respectively. The weights of these two losses chosen 
to be comparable in magnitude with each other to balance the contributions of the fluid and solid dynamics. The entire differentiable 
neural model is trained by optimizing the total loss over a long rollout trajectory using stochastic gradient descent,

𝜽∗1 ,𝜽
∗
2 = argmin

𝜽1 ,𝜽2

[
𝛼
(𝑝(𝜽𝟏) +𝑣(𝜽𝟐)

)
+ 𝛽𝑠(𝜽𝟏,𝜽𝟐)

]
(19)

The neural model unrolling over multiple time steps during training can significantly enhance inference performance over long 
trajectories, in terms of both accuracy and stability [31,44]. The multi-step rollout in the training process is enabled by differentiable 
programming, which allows the gradient to be backpropagated over the entire rollout trajectory. However, naively applying Seq2Seq 
training of a hybrid neural model via differentiable programming may introduce some challenges: (1) the hybrid neural solver is 
susceptible to instability, particularly at the beginning of the training phase, due to nonphysical initialization of trainable parameters, 
which makes the discretized physics numerically unstable; (2) training over a long trajectory at once demands substantial GPU 
memory, as the gradients of the nested functions, resulting from a large number of model rollout steps, need to be stored. To address 
these issues, the entire training trajectory is divided into several subchains, which are connected head-to-tail. As demonstrated in 
Appendix B.1, the gradients of each subchain can be combined to obtain the final gradients for updating trainable parameters using 
the chain rule. The hidden states of ConvLSTM are preserved and transferred between subchains, ensuring continuity and maintaining 
model coherence during training. The two neural networks introduced here for velocity correction and pressure prediction have the 
same architectures and hyperparameters, which can be found in Appendix B.3 for details. The entire algorithm for the proposed 
hybrid neural FSI model is outlined in Algorithm 1 within Appendix B.1.

3. Numerical results

3.1. Case settings

In this study, we demonstrate the performance of the proposed differentiable hybrid neural FSI solver using two representative 
FSI benchmark cases: vortex-induced vibration (VIV) of a rigid body and flow-induced deformation (FID) of a flexible body. Firstly, 
the model equations described in Sec. 2.1 are directly solved by classic numerical FSI solver on a sufficiently high spatio-temporal 
resolution without incorporating any deep learning modules. This process aims to generate high-fidelity data for both training and 
validation of the proposed neural FSI model, which will be downsampled to create our label dataset (as illustrated in Fig. B.1). 
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Fig. 2. (a) Vortex-induced vibration of a rigid cylinder; (b) Flow-induced deformation of a flexible plate.

Table 1
Summarize of case parameters for data generation.
Parameter mass ratio (𝑚∗) natural frequency (𝑓𝑛) damping (𝑐) - Re
Rigid body 2 0.1-0.3 0 - 150
Parameter mass ratio (𝑚∗) Young’s modulus (𝐸/Pa) damping ratio Poisson’s ratio Re
Flexible body 2.75 1 × 108 0 0.3 150

For the VIV of a rigid body, as shown in Fig. 2(a), the problem can be simplified as a typical spring-damping (𝑘 − 𝑐) system, as 
described in [60]. On the other hand, the flexible body in Fig. 2(b) can be modeled as a beam, with its deformation solved using the 
Euler-Bernoulli beam theory [53]. The parameters used in both cases for data generation are summarized in Table 1, where most 
parameters are non-dimensional. For example, the non-dimensional system mass is defined as mass ratio 𝑚∗ ,

𝑚∗ = 4𝑚
𝜋𝜌𝑠𝐵2 , (20)

where 𝑚 represents the mass, 𝐵 is the characteristic length with 𝐵 =𝐷 for the cylinder and 𝐵 = 𝐿 for the flexible beam, 𝜌𝑠 denotes 
material density. The natural frequency 𝑓𝑛 is defined as,

𝑓𝑛 =
√

𝑘
𝑚
, (21)

where 𝑘 is spring stiffness. The Reynolds number is defined as 𝑅𝑒 = 𝑉 𝐵∕𝜈, where 𝑉 is the uniform free-stream velocity magnitude. To 
facilitate comparison with previous simulation and experimental results, the free-stream velocity is often normalized by characteristic 
length and natural frequency, which is known as reduced velocity 𝑈𝑟,

𝑈𝑟 =
𝑉
𝐵𝑓𝑛

(22)

The numerical results of the VIV of a rigid body and the PID of a flexible body are demonstrated in Figs. 3 and 4, respectively. 
As shown in Fig. 3, our simulated results of the VIV response over various reduced velocities agree well with the previous numerical 
results obtained by Bao et al. [62]. The typical “8”-shaped trajectory and “lock-in” phenomenon are accurately captured in our 
present simulation. Fig. 4 displays the simulated results of the deformations of a vertical flexible plate. The oscillation shape in 
Fig. 4(a) transitions from the first mode to the third mode, indicating that the elasticity of the flexible structure has been captured 
in our simulation. From the temporal deformations of the free end of the plate shown in Fig. 4(a), we can observe that the vertical 
cantilever plate within the uniform flow initially experiences stable deformation in the streamwise direction, and then begins to 
oscillate due to vortex shedding in the wake, as reported in [63,64]. The numerical results obtained from the two distinct cases 
demonstrate that our differentiable numerical solver is capable of accurately simulating FSI physics with a sufficiently high spatio-
temporal resolution. The high-resolution numerical simulations will be utilized for data generation and validation studies, supporting 
training and evaluation of the proposed hybrid neural model in a wide range of FSI scenarios.

3.2. Baseline models for comparison

To demonstrate the advantages of our proposed differentiable hybrid neural model for FSI simulations, we compare it with two 
baseline learning models: a purely data-driven neural network model and a weakly-coupled hybrid neural model, as illustrated in 
Fig. C.1. Additionally, we include a comparison with a purely numerical FSI solver that uses the same spatio-temporal resolution as 
the learning models.

The purely data-driven model, shown in Fig. C.1(a), is a black-box sequence-to-sequence neural network that does not incorpo-
rate any physics prior knowledge. The fluid and solid dynamics are modeled by two separate recurrent neural networks: 𝑁𝑁1, a 
ConvLSTM with the same trainable neural architecture and parameters as the proposed hybrid neural model, and 𝑁𝑁2, a multi-layer 
perceptron (MLP)-based LSTM network. Notably, the fluid network 𝑁𝑁1 and solid network 𝑁𝑁2 are coupled based on IBM, where 
the IBM mask information is provided by the solid net 𝑁𝑁2 to the fluid net 𝑁𝑁1 to enforce fluid-structure interactions.

The weakly coupled hybrid neural model has the same neural architecture and trainable parameters as the proposed differentiable 
model. As depicted in Fig. C.1(b), it also retains the physics of fluid and solid dynamics, discretized in the same way as described 



Journal of Computational Physics 496 (2024) 112584

8

X. Fan and J.-X. Wang

Fig. 3. Numerical results of the vortex-induced vibration (VIV) responses of a rigid cylinder: vibration amplitudes (𝐴𝑥 , 𝐴𝑦) in (a) transverse direction and (b) 
streamwise direction; (c) root-mean-square lift force 𝐶𝐿𝑟𝑚𝑠 ; (d) average drag force 𝐶𝐷 . The reference data is from [62]. The typical “8”-shaped trajectory and “lock-in” 
phenomenon are accurately simulated.

Fig. 4. Numerical results of the flow-induced deformation (FID) responses of a vertical flexible plate: (a) vibration shapes of the plate, shifting from the first mode 
(blue line) to the third mode (red line); (b) temporal deformations of the free-end of plate.

in Sec. 2.2.1 and Sec. 2.2.2. However, the key difference between this baseline with the proposed model is that the physics-encoded 
portions are not differentiable. Consequently, the gradients are halted in each trainable network component and cannot be back-
propagated through the entire model rollout trajectory, making the model equivalent to an offline hybrid net trained in a teacher-
forcing manner. Namely, this model is also informed by the governing PDEs of FSI dynamics, but in a weakly coupled manner. This 
baseline model falls into the first category of hybrid models as discussed in Sec. 1, representing the hybridization of a numerical 
solver with an offline trained neural network correction from solver point of view.

Henceforth, the two baseline learning models are referred to as “purely data-driven” and “weakly coupled,” respectively. The 
model that only preserves the discretized physics portion without any trainable components is equivalent to a traditional explicit 
IBM-based FSI solver and is subsequently denoted as the “pure solver.”
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Fig. 5. Comparison of spatio-temporal vorticity predictions by different neural models when spring stiffness and reduced velocity is set as 𝑘 = 0.16,𝑈𝑟 = 6.25.

Fig. 6. Comparison of structural responses predicted by different models (𝑘 = 0.16, 𝑈𝑟 = 6.25): (a) displacement in streamwise direction; (b) displacement in transverse 
direction; (c) the spectra of transverse displacement with respect to non-dimensional vortex shedding frequency 𝑓𝑣. The weakly coupled model results are not 
presented as the simulation diverges.

3.3. Vortex-induced vibration (VIV) of a rigid body

To evaluate the time-forecasting capabilities of the neural models, they are trained within the time window 𝑡𝑉 ∕𝐷 = [0, 40]. The 
performance of these trained models is then assessed by providing the initial conditions and generating predictions by a model 
rollout from 𝑡𝑉 ∕𝐷 = 0 to 𝑡𝑉 ∕𝐷 = 90. Specifically, the model rollout within the window 𝑡𝑉 ∕𝐷 = [0, 40] represents inference in the 
training region, while the rollout within the window 𝑡𝑉 ∕𝐷 = [40, 90] corresponds to time-forecasting. A comparison of the results 
between our proposed hybrid neural solver with the baseline models is presented in Fig. 5 and Fig. 6. The results demonstrate that 
the proposed hybrid neural solver accurately forecasts the structural responses and vortex modes in a long time span using limited 
amount of training data. The vortex modes transition from a developing state to a steady ‘2S’ mode, which is precisely captured 
by our hybrid neural model (2rd column of Fig. 5). These results are consistent with the ground-truth (1st column of Fig. 5) and 
published findings [65]. In contrast, a pure numerical FSI solver with the same spatio-temporal resolution struggles to capture the 
true vortex dynamics, as demonstrated in the 4th column of Fig. 5. In this case, most flow features are damped out by the large 
numerical dissipation, which is a consequence of the very low spatio-temporal resolution used in learning-based neural solvers. 
Similarly, the predictions of structure responses (i.e., streamwise and transverse displacement 𝑑𝑥, 𝑑𝑦) by the pure solver (green) also 
show significant deviations from the ground truth (red), as illustrated in Fig. 6, where the predictions of the proposed hybrid model 
(blue) almost overlap with the reference.
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Fig. 7. The time evolution of the relative prediction errors from different models, where the thick lines indicated the mean value and the shaded regions represents 
the error scattering.

Table 2
The average relative errors of predictions for different models.
𝜖 Diff-hybrid neural (Ours) Purely data-driven Pure solver Weakly coupled
Fluid 𝟎.𝟏𝟔 0.67 3.76 ∞
Structure 𝟎.𝟎𝟐 0.11 2.49 ∞

Note that the models here are tested on the same parameters (𝑘 = 0.16, 𝑈𝑟 = 6.25) as seen during training, with the aim of 
exploring their performance in temporal forecasting. For testing on “seen” parameters, the temporal forecasting performance of the 
purely data-driven model is also reasonably good. The good performance of the purely data-driven model also benefits from the 
repetitive nature of VIV flows. Both the accuracy of its predicted flow fields and structural responses are much better than those of 
the pure numerical solver. However, compared to the proposed differentiable hybrid neural model, the purely data-driven model 
is less accurate. First, the vortex patterns in the far-wake region predicted by the purely data-driven model are not smooth and 
contain notable noises, as shown the 3rd column of Fig. 5. Moreover, the streamwise displacements are underestimated and high-
frequency features of transverse displacements are missed, as shown in Fig. 6. In particular, from the spectral analysis of displacement 
predictions (Fig. 6a), a notable discrepancy can be seen between the purely data-driven results and the ground true, while our hybrid 
neural model prediction is almost identical to the ground truth.

The proposed hybrid neural model outperforms both the purely data-driven model and the pure numerical FSI solver in time-
forecasting capabilities, thanks to the integration of discretized physics of FSI dynamics within a differentiable programming 
framework. Although the weakly coupled model also incorporates discretized governing PDEs and significantly reduces training 
loss (see Fig. C.2), it experiences instability and rapid divergence during testing, as seen in the last column of Fig. 5. This highlights 
the severe instability issue of NN-embedded solvers, trained offline using a priori loss criteria, emphasizing the advantages of the 
proposed differentiable hybrid neural model, which is trained end-to-end to meet a posteriori criteria with gradients back-propagated 
over the entire solution trajectory.

To further examine the error propagation in time for all models, the relative error 𝜖𝑡 of model prediction at each time step 𝑡 is 
computed as follows,

𝜖𝑡 = 1
𝑁𝜆

𝑁𝜆∑
𝑖=0

(‖𝑓 (𝐮̃𝑡,𝜆𝑖;𝜽∗)− 𝐮𝑡𝑑‖2
‖𝐮𝑡𝑑 (𝜆𝑖)‖2

+
‖𝐰𝑡 −𝐰𝑡

𝑑‖2
‖𝐰𝑡

𝑑 (𝜆𝑖)‖2

)
(23)

where 𝑁𝜆 is the size of parameter ensemble; 𝑓 represents the trained neural FSI solver with the optimized parameters 𝜽∗; 𝐰 is the 
structural responses calculated by the neural model; 𝐮𝑡𝑑 and 𝐰𝑡

𝑑 are the ground-truth data. As illustrated in Fig. 7, the relative error of the pure solver (yellow) remains orders of magnitude higher from the very beginning due to the low spatio-temporal resolution. 
The rollout error of the weakly coupled neural solver (red) rapidly grows even in the training range and quickly blows up at 𝑡 = 28 s. 
For the purely data-driven solver (green), the rollout error is initially low within the training range (0 < 𝑡 < 40 s) but quickly grows 
by an order of magnitude in the forecasting range (𝑡 > 40 s) due to error accumulation, which is well-known for most data-driven 
time-forecasting models. In contrast, our proposed differentiable hybrid neural model (blue) maintains an impressively low error, 
even when extrapolating twice the length of the training range. Moreover, the error scattering is significantly reduced compared to 
the purely data-driven baseline, indicating the great robustness of the proposed model. Finally, the averaged relative errors over the 
entire rollout trajectory are presented in Table 2, demonstrating the notable superiority of the proposed model over other baselines.

3.4. Flow-induced deformation (FID) of flexible structure

To thoroughly showcase the exceptional performance of the proposed hybrid neural FSI solver across various FSI scenarios, we 
model the FID of a flexible plate as depicted in Fig. 1. In contrast to the first case, this case exhibits less periodic flow patterns and 
structural responses due to the added structural flexibility. We employ a ConvLSTM with identical architecture and hyperparameters 
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Fig. 8. Structural responses of different models in time sequence: (a) the temporal streamwise displacements of the free-end of the flexible plate; (b) the vibration 
modes of the plate at 𝑡𝑉 ∕𝐿 = 15.

as used in the first case to build this hybrid neural model. As discussed in Sec. 3.1, the vertical flexible plate primarily experiences 
streamwise deformations with the first three vibration modes. For this demonstration, we select the most complex periods, during 
which the plate vibrates in the third mode, to highlight the advantages of our approach. The model undergoes training within the time 
window 𝑡𝑉 ∕𝐿 = [0, 10], and its performance is evaluated afterwards by supplying the initial conditions and generating predictions 
through the model rollout spanning from 𝑡𝑉 ∕𝐷 = 0 to 𝑡𝑉 ∕𝐷 = 30. Namely, the model rollout within the window 𝑡𝑉 ∕𝐷 = [0, 10]
represents inference in the training range, while the rollout within the window 𝑡𝑉 ∕𝐷 = [10, 30] corresponds to time-forecasting.

The results are presented in Fig. 8 and Fig. 9, excluding the analysis for the weakly coupled model, as it again quickly diverges 
during testing. Taking the displacements at the free end of the flexible plate as an example, it is evident that the proposed differen-
tiable hybrid neural model accurately predicts time history of free-tip displacements, which agree well with the ground truth (see 
Fig. 8(a)). Similar to the first case, the pure coarse FSI solver struggle to capture the structural responses, as it significantly overesti-
mates the free-end displacement. Although the purely data-driven model appears to provide reasonable displacement predictions in 
magnitude, the vibration modes shown in Fig. 8(b) reveal that the results are completely nonphysical, suggesting that the black-box 
model without any physics components performs worse in more complex FSI scenarios with flexible bodies. In contrast, the proposed 
hybrid neural FSI model solves the structural response based on physics-based governing equations, ensuring that the results are not 
only accurate but also physically consistent. In this case, both the hybrid neural model and purely data-driven model are capable of 
capturing the non-periodic flow patterns, as shown in Fig. 9.

4. Discussion

4.1. Generalizability over unseen material parameters

This subsection aims to assess the generalizability of the proposed model by evaluating its prediction performance across various 
testing points in the parameter space. In particular, we investigate the model’s ability to make accurate predictions for unseen 
material parameters in VIV, such as spring stiffness, that were not included in the training dataset. To this end, we feed the trained 
neural FSI model with initial conditions for different values of spring stiffness, i.e., 𝑘 = 0.18 and 𝑘 = 0.14, and then roll out the model 
to predict the system behavior for a long time horizon.

We consider an extrapolated stiffness parameter 𝑘 = 0.18 as an example. The predicted flow fields at different time snapshots are 
presented in Fig. 10, and the corresponding temporal displacement history of the cylinder from 𝑡𝑉 ∕𝐷 = 0 to 𝑡𝑉 ∕𝐷 = 60 is plotted 
in Fig. 11. The neural FSI solver successfully captures the development of vortex modes from 𝑡𝑉 ∕𝐷 = 0 − 20 to 𝑡𝑉 ∕𝐷 = 40 − 60, 
aligning well with the ground truth. This accuracy extends to the simulation of structural responses, covering both the transition and 
stable cyclic phases. These results indicate that the trained hybrid neural model exhibits excellent predictive capability, even when 
material parameters fall outside the training set. However, the pure solver, as expected, completely fails to capture the accurate FSI 
dynamics. When faced with scenarios involving new material parameters outside the training set, the other data-driven baseline 
models encounter greater difficulties. As shown in Fig. 10, the weakly coupled neural model rapidly diverges even in the first a 
few rollout steps. The purely data-driven model, though had reasonable predictions within the training time range as shown in the 
previous case, has a hard time to accurately capture both the fluid dynamics and structural responses from the first a few rollout 
steps, given new stiffness parameters. The predicted vortex mode is inaccurate in near wake region and largely damped out in the 
far wake region (see the 3rd column of Fig. 10). The inaccurate vortex shedding frequency also leads to large discrepancy between 
the structural response predictions by the purely data-driven model and the ground truth, as depicted in Figs. 10 and C.3.

The time evolutions of relative prediction errors from various models are compared in Fig. 12, and the average error values over 
the entire rollout trajectory are summarized in Table 3. It is evident that the prediction errors of our proposed model are significantly 
lower than those of other baseline models or the pure numerical solver with the same spatio-temporal resolution. Notably, there 
is virtually no error accumulation in the proposed hybrid neural model, in stark contrast to the purely data-driven model, whose 
prediction error continuously grows since in beginning of the model rollout.



Journal of Computational Physics 496 (2024) 112584

12

X. Fan and J.-X. Wang

Fig. 9. Comparison of the vorticity and displacements of different models for flexible structure, where the flexible structure vibrating in the third mode is represented 
by red line.

Fig. 10. Comparison the vorticity of different models in time sequence for unseen testing parameter 𝑘 = 0.18 (𝑈𝑟 = 5.56).

Table 3
The averaged relative errors of predictions for different models (unseen stiffness).
𝜖 Diff-hybrid neural (Ours) Purely data-driven Pure solver Weakly coupled
Fluid 𝟎.𝟐𝟏 1.01 4.00 ∞
Structure 𝟎.𝟎𝟓 0.64 2.44 ∞
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Fig. 11. The time-series structural responses for unseen parameter 𝑘 = 0.18 (𝑈𝑟 = 5.56): (a) the displacement in streamwise direction; (b) the displacement in transverse 
direction; (c) the spectra of transverse displacement. The results of weakly physics-informed model are not included here due to the entire solver directly blows up 
for unseen parameters.

Fig. 12. The time evolution of the relative prediction errors from different models, where the thick lines indicated the mean value and the shaded regions represents 
the error scattering across all testing parameters.

The statistical quantities of model predictions for two training parameters and two unseen parameters (𝑘 or 𝑈𝑟) are summarized 
in Fig. 13. The proposed neural solver accurately predicts the streamwise displacements, including both fluctuating and mean compo-
nents for both interpolated (𝑘 = 0.14, 𝑈𝑟 = 7.14) and extrapolated (𝑘 = 0.18, 𝑈𝑟 = 5.56) parameters, as shown in Figs. 13(a) and 13(c). 
The transverse vibration amplitudes are perfectly predicted for the parameter interpolated between the training parameters; however, 
they are slightly underestimated for the extrapolated parameters.

Based on the aforementioned analysis, the proposed hybrid neural solver demonstrates the ability to accurately predict FSI 
dynamics for unseen parameters, exhibiting good robustness and generalizability. It surpasses existing data-driven [22] and hybrid 
models [24,25] for FSI, which are limited to forecasting responses in time sequences for trained parameters only. Furthermore, 
this analysis reveals that the sequential learning strategy enabled by differentiable programming surpasses the next-step net in 
learning complex spatio-temporal FSI dynamics. In addition to employing the sequential net (ConvLSTM), the discretized physics 
in the current neural model are formulated in a recurrent form, which can be interpreted as a sequence-net with non-trainable 
parameters predefined by classic numerical methods. Consequently, the proposed neural FSI model is capable of predicting the 
temporal coherence of two-way fluid-structure interactions in long-term rollouts.
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Fig. 13. Comparison of the prediction results in the parameter space: (a) the root-mean-square (RMS) of fluctuated displacement in streamwise direction; (b) the RMS 
of displacement in transverse direction; (c) the mean displacement in streamwise direction; and (d) the normalized vortex-shedding frequency.

Fig. 14. Relative wall time among different models to evaluate the acceleration of neural FSI solver. The ground truth data is computed on 512 × 256 grids. The 
Neural models are operated on 64 × 32 grids, which is 8× coarsen in each dimension. The learning step of the neural solver is twice as numerical time step fine-grid, 
high-fidelity FSI simulation.

4.2. Offline training cost and online inference speedup

As shown in Fig. 14, we assess the running time of various models during the online prediction phase, also known as inference. 
The inference cost of our trained hybrid neural FSI model for a single learning step is a mere 20% of that of a numerical FSI solver 
on fine grids for one numerical time step. Considering that each learning step typically covers multiple numerical time steps, the 
proposed neural model offers notable speedup for long time-span predictions. For example, as demonstrated by the orange bars in 
Fig. 14 showing the relative cost for 2D VIV cases, the hybrid neural model can accelerate computation by 8.3 times when simulating 
the same physical time length. This acceleration is attributed to the use of spatially coarser grids and a larger time stepping interval, 
which is twice the numerical time step. In certain situations, a strong FSI coupling scheme and small numerical steps are required due 
to the numerical instability caused by the structure’s flexibility. The strong coupling scheme also necessitates sub-iterations to solve 
structural responses in each time step. This implies that the computation cost of high-resolution simulations will be further increased 
considerably, especially for multi-degree-of-freedom structures. However, once trained on limited amount of high-resolution data, 
the optimized hybrid neural model can maintain a simple weak coupling scheme and rollout with a larger learning step. As a result, 
the speedup provided by the hybrid neural model can become even more significant.
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The cost of training neural models (using an RTX A6000 GPU) is comparable to conducting a single high-fidelity FSI simulation 
(on 8 CPUs) in terms of wall time. However, the training represents a one-time offline expense, and the marginal cost for online 
evaluation of the trained model is very low. This makes it an ideal solution for scenarios that require long-term forecasting and 
numerous model queries within the parameter space.

For example, nonlinear FSI cases often necessitate simulations across extended trajectories to obtain reliable statistics. In such 
cases, the trained neural model can be employed to forecast long-term dynamics, provided that accurate initial conditions can 
be determined through short-term numerical simulations. In this context, the costs associated with training and inference will 
be significantly lower than those of performing high-fidelity simulations directly. Moreover, hybrid neural modeling can greatly 
enhance design optimization and uncertainty quantification within the parameter space, as the trained model can be generalized to 
new parameters without necessitating re-training.

We must acknowledge that the current training cost of the neural FSI solver is higher than that of a purely data-driven model. For 
Seq2Seq training with 300 rollout steps, the training cost of the neural solver is 7.7 times that of the purely data-driven model (as 
measured by wall time). This increased cost is due to the memory-intensive and time-consuming back-propagation process, which 
traces gradients through all the differentiable modules. However, this training overhead can be offset by the significantly enhanced 
inference performance and generalizability, as demonstrated in Sec. 4.1.
5. Conclusion

In this paper, we presented a differentiable hybrid neural model for efficiently simulating FSI problems. By integrating the 
numerically discretized FSI physics using FVM and IBM with deep sequential neural networks using differentiable programming, we 
enabled end-to-end, sequence-to-sequence training of the entire hybrid model for long-term model rollouts.

The merits and effectiveness of the neural FSI solver have been demonstrated through two typical FSI benchmarks, involving the 
dynamics of a rigid and flexible body, respectively. The flow patterns, fluid forces, and structural responses can be accurately modeled 
over long time steps with limited training datasets. In comparison to black-box neural network models, the proposed hybrid neural 
solver exhibits significant superiority in terms of generalizability, robustness, and prediction speed. It also overcomes numerical 
instability issues encountered by the weakly coupled hybrid model, as the fully differentiable architecture enables Seq2Seq training 
based on the a posteriori criteria. The discretized governing PDEs are integrated as a part of a LSTM-based sequence net, which 
significantly mitigated the error accumulation issue, that is very common in most data-driven forecasting models.

Although the offline training process is somewhat time-consuming, which is just one time effort. Once the model is trained, 
the online inference speed of is considerably faster than that of classical numerical methods to achieve the similar accuracy. The 
speedup can be further improved by 8.3 times for long-term forecasting. This suggests that the proposed neural solver is well-suited 
for many FSI applications requiring long-span simulation or repeated model queries, such as design optimization and uncertainty 
quantification.

In conclusion, the seamless integration of deep learning and classical numerical techniques through the differentiable program-
ming framework has successfully leveraged the advantages of both methods, resulting in a powerful approach for modeling complex 
FSI dynamics. This innovative method shows great promise in the development of next-generation data-enabled neural solvers that 
achieve a balance between accuracy and computational efficiency, making it an ideal tool for addressing the challenges posed by 
large-scale and long-duration FSI simulations.
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Appendix A. Governing equations for two-type solids

The specific form of the governing equations for structure dynamics (Eq. (12)) varies between rigid and flexible bodies. For 
rigid solids, where deformations are neglected, the equations can be simplified to mass-damper-spring systems, which correspond 
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to vortex-induced vibration (VIV) phenomena. In this case, the matrices 𝐌, 𝐊, and 𝐂 in Eq. (12) are reduced to scalar values. The 
two-degree-of-freedom equation at time step 𝑡 can be rewritten as:

𝑚

[
𝑤̈𝑡

𝑥
𝑤̈𝑡

𝑦

]
+ 𝑘

[
𝑤𝑡

𝑥
𝑤𝑡

𝑦

]
+ 𝑐

[
𝑤̇𝑡

𝑥
𝑤̇𝑡

𝑦

]
=
[
𝐹 𝑡
𝐷

𝐹 𝑡
𝐿

]
, (A.1)

where 𝑚 is the mass; 𝑘 = 2𝑚 ⋅ (2𝜋𝑓𝑛)2, and 𝑓𝑛 is natural frequency; 𝑐 = 2𝑚 ⋅2𝜋𝑓𝑛 ⋅ 𝜉𝑠, where 𝜉𝑠 is structural damping ratio; 𝐹 𝑡
𝐷 =∑𝑛

𝑖=1 𝑞
𝐷
𝑖

and 𝐹 𝑡
𝐿 =∑𝑛

𝑖=1 𝑞
𝐿
𝑖 are drag and lift force, and 𝑛 is the total number of Lagrangian nodes. For general flexible solids, the structure is 

modeled by assembling beam elements. Considering only the bending of beam elements in a two-dimensional domain, the consistent 
mass matrix 𝐌 and stiffness matrix 𝐊 for flexible solids are constructed. Since each single beam element consists of the 𝑖𝑡ℎ and 
(𝑖 + 1)𝑡ℎ nodes, we can derive the local stiffness and mass matrix for an individual element:

𝐊𝑒 = 𝐸𝐼
𝐿3
𝑒

⎡
⎢
⎢
⎢
⎢⎣

12 6𝐿𝑒 −12 6𝐿𝑒
6𝐿𝑒 4𝐿2

𝑒 −6𝐿𝑒 2𝐿2
𝑒

−12 −6𝐿𝑒 12 −6𝐿𝑒
6𝐿𝑒 2𝐿2

𝑒 −6𝐿𝑒 4𝐿2
𝑒

⎤
⎥
⎥
⎥
⎥⎦

, (A.2)

𝐌𝑒 =
𝜇𝑠𝐿𝑒
420

⎡
⎢
⎢
⎢
⎢⎣

156 22𝐿𝑒 54 −13𝐿𝑒
22𝐿𝑒 4𝐿2

𝑒 13𝐿𝑒 −3𝐿2
𝑒

54 13𝐿𝑒 156 −22𝐿𝑒
−13𝐿𝑒 −3𝐿2

𝑒 −22𝐿𝑒 4𝐿2
𝑒

⎤
⎥
⎥
⎥
⎥⎦

, (A.3)

where 𝐿𝑒 = 𝑦𝑖+1 − 𝑦𝑖. Here, the damping matrix is constructed based on Rayleigh damping [66]:

𝐂 = 𝛼𝐌+ 𝛽𝐊, (A.4)

where the coefficients 𝛼 = 2𝜉𝑠
𝜔𝑖 ⋅𝜔𝑗

𝜔𝑖 +𝜔𝑗
, 𝛽 =

2𝜉𝑠
𝜔𝑖 +𝜔𝑗

. 𝜔𝑖 is the 𝑖𝑡ℎ natural circular frequency solved by:

(𝐊−𝜔2𝐌)𝚽 = 0, (A.5)
where 𝜔 = 𝑑𝑖𝑎𝑔[𝜔1⋯ 𝜔𝑖⋯ 𝜔𝑗 ⋯ 𝜔𝑛] is the eigenvalue, and 𝚽 is the eigenvector.

Appendix B. Implementation and training details of hybrid neural model

B.1. Partitioned long-trajectory training

The sequence-to-sequence training process is memory-intensive, especially when combined with differentiable physics compo-
nents. To circumvent memory constraints, the entire trajectory in the current training is divided into multiple subchains. The mean 
squared error (MSE) loss for the complete trajectory is calculated as follows,

(𝜽) = 1
𝑁

𝑁∑
𝑡=0

(𝑓 (𝐮̃𝑡;𝜽)− 𝐮𝑑𝑡 )
2, (B.1)

where 𝑓 (𝐮̃𝑡; 𝜽) is the output of the hybrid neural FSI model; 𝐮𝑑𝑡 is the label data; and 𝑁 is the number of time steps. If the entire 
trajectory is divided into 𝑛 equal-time-span sub-trajectories, and each sub-trajectory includes 𝑁𝑠𝑢𝑏 time steps. The loss  in Eq. (B.1)
can be calculated by:

(𝜽) = 1
𝑁

𝑛∑
𝑖=0

𝑁𝑠𝑢𝑏∑
𝑡=0

(𝑓 (𝐮̃𝑡,𝑖;𝜽)− 𝐮𝑑𝑡,𝑖)
2

=
𝑁𝑠𝑢𝑏
𝑁

𝑛∑
𝑖=0

1
𝑁𝑠𝑢𝑏

𝑁𝑠𝑢𝑏∑
𝑡=0

(𝑓 (𝐮̃𝑡,𝑖;𝜽)− 𝐮𝑑𝑡,𝑖)
2

=
𝑁𝑠𝑢𝑏
𝑁

𝑛∑
𝑖=0

1
𝑁𝑠𝑢𝑏

‖𝑓 (𝐮̃𝑡,𝑖,𝜽)− 𝐮𝑑𝑡,𝑖‖22

=
𝑁𝑠𝑢𝑏
𝑁

𝑛∑
𝑖=0

𝑖

Accordingly, the total gradients can be obtained written as,

𝜕
𝜕𝜽 =

𝑁𝑠𝑢𝑏
𝑁

𝑛∑
𝑖=0

𝜕𝑖
𝜕𝜽 , (B.2)
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where 𝑁𝑠𝑢𝑏 is the number of time steps in each sub-trajectory; and 𝑛 is the number of sub-trajectory. It is important to note that 
the final outputs and hidden states must be transferred to the subsequent sub-trajectory during training. The training and testing 
algorithm for the proposed hybrid neural FSI model is presented in Algorithm 1.

Algorithm 1 Differentiable hybrid neural FSI modeling.
Set: Set initial conditions, boundary conditions, time steps 𝑁𝑠𝑢𝑏 and additional parameters
𝑡 ← 0
if Training then

Initialize: Initialize neural networks (𝜽1 , 𝜽2) and hidden state 𝐬0Data: Load label fluid/structure data
while 𝑒𝑝𝑜𝑐ℎ ⩽𝑁 do

for 𝑡 ∈ [1, 𝑁𝑠𝑢𝑏] doSolve the intermediate velocity 𝐮∗ :

𝐮∗ = 𝐮𝑡−1 +Δ𝑡
[
−∇ ⋅ (𝐮𝑡−1 ⊗ 𝐮𝑡−1) + 𝜈∇2𝐮𝑡−1 + 𝐟 𝑡−1

]

Predict pressure by CNN1 : ⊳ Residual connection

𝑝𝑡 =ℱ𝑐𝑜𝑛𝑣1 [(1− 𝜀𝑡−1)𝐮∗ + 𝜀𝑡−1𝐮𝑡−1𝑐 , 𝐬𝑡−1𝑐𝑜𝑛𝑣1
,𝝀;𝜽1] + 𝑝𝑡−1

Get low-resolution velocity ̃𝐮𝑡 by pressure projection:

𝐮̃𝑡 = 𝐮∗ − ∇𝐩𝑡Δ𝑡
𝜌

Calculate the fluid force:

𝐪𝑡𝑖 ≅ −
∑

𝐱𝑖∈𝛾𝐱
𝐟 𝑡−1(𝐱𝑖)Δ𝑥Δ𝑦

Directly solve structural responses:

𝐌 𝜕2𝐰𝑡

𝜕𝑡2
+𝐂 𝜕𝐰𝑡

𝜕𝑡
+𝐊𝐰𝑡 =𝐐𝑡

Update volume-of-solid function 𝜀𝑡 based on solved structural responses
Predict velocity by CNN2 : ⊳ Residual connection

𝐮𝑡 =ℱ𝑐𝑜𝑛𝑣2 (𝐮̃
𝑡 ,𝐮𝑡−1 ,𝜀𝑡 ,𝜀𝑡−1 , 𝐬𝑡−1𝑐𝑜𝑛𝑣2

,𝝀;𝜽2) + 𝐮̃𝑡

Update the direct forcing 𝐟 𝑡 :

𝐟 𝑡 = 𝜀𝑡(𝐱)
[
∇ ⋅ (𝐮t ⊗ 𝐮t)− 𝜈∇2𝐮t +

𝐮𝑡𝑠 − 𝐮𝑡

Δ𝑡

]

end
 ← ‖predict − label‖2𝐿2 ⊳ Calculate loss based on the Sequence
𝜽1 ← 𝜽1 − 𝑙 𝜕

𝜕𝜽1
⊳ Update CNN1 parameters

𝜽2 ← 𝜽2 − 𝑙 𝜕
𝜕𝜽2

⊳ Update CNN2 parameters
end

else if Testing then
Initialize: Load trained neural networks (𝜽1 , 𝜽2) with hidden state
Follow the algorithm inside the above For-loop to predict fluid field and structural responses

B.2. Downsampling of high resolution ground-truth data (Fig. B.1)

Fig. B.1. Scheme of downsampling staggered variables to a 2x coarser grid. Velocity components on the fine-mesh located on faces of a coarse-mesh unit-cell (as 
indicated by shaded regions) are averaged to compute the velocities on the coarse-grid. The pressures located in the fine-mesh unit-cell center are averaged to compute 
the pressure of a coarse mesh. Velocity components in the interior of the unit-cell are discarded.
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B.3. Hyperparameters of the trainable ConvLSTM block

In the hybrid neural FSI model, all ConvLSTM blocks are identical consists of five layers, with channels configurations of 
[32, 64, 64, 64, 32, 1] and a trainable 3 × 3 convolutional kernel. The activation function is a rectified linear unit (ReLU), with the 
exception of the last layer, which does not have an activation function. The optimization settings are listed as below,

• Initial learning rate = 10−4
• Optimizer = Adam
• Scheduler = CosineDecaySchedule (alpha=10−9)

The weighting parameters of the fluid and solid loss terms 𝛼 and 𝛽 are set as one.

Appendix C. Baseline data-driven neural models (Figs. C.1–C.3)

Fig. C.1. (a) Purely data-driven model, where the known physics are completely removed and the dynamics of fluid and solid between two time steps are respectively 
mapped by LSTM neural networks. The fluid and solid nets are connected by IBM masks. (b) The weakly coupled model, where the discretized physics are preserved 
but the gradients cannot be back-propagated through them, equivalent to an offline network trained in teacher forcing manner. The trainable neural architecture 
remains the same as the proposed neural model.
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Fig. C.2. The training loss for weakly coupled hybrid neural model.

Fig. C.3. The diverged structural responses predicted by purely data-driven model for 𝑘 = 0.14, 𝑈𝑟 = 7.14: (a) displacement in streamwise direction; (b) displacement 
in transverse direction.
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