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Abstract This collection of case studies presents a brief
introduction of fundamental concepts for four SMA-based
applications in the aerospace, energy, and medical fields
designed by students and facilitated by professionals. The
Consortium for the Advancement of Shape Memory Alloy
Research and Technology (CASMART) Student Design
Challenge is used as an outreach strategy to promote the
implementation of state-of-the-art designs with SMA
technology and is meant to inspire the next generation of
SMA research. Student design challenge teams address
real-world problems facing the SMA community and
receive guidance and feedback from CASMART members.
Student teams’ hardware and materials deliverables had to
meet basic function requirements specific to the applica-
tion. Key results from seven teams (four hardware designs
and three materials designs) highlight the design priorities,
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processes, and challenges raised during development. The
hardware designs used NiTi wires shape set and imple-
mented by the students into prototypes for deployment and
reorientation mechanisms in small satellites, linear gener-
ators to save energy, and a self-apply tourniquet design.
Materials development explored the processability and
material properties of CuAl-based and NiTi-based alloys
for passive actuators in a deployment and reorientation
mechanism for a small satellite, energy recovery from
waste heat, and a pseudoelastic spinal curvature correction
device.

Keywords CASMART - Shape memory alloy - Smart
materials - Adaptive structures - Actuator design

Introduction

Since the 1960s, shape memory alloy (SMA) research and
implementation has greatly contributed to transformative
technologies in aerospace, biomedical, and automotive
industries [1-11]. More recently, SMAs have been applied
to solid-state refrigeration, passive seismic energy dissi-
pation in structures, morphing aircraft wings, and pseu-
doelastic tires [12-16]. The thermomechanical and
pseudoelastic properties of SMAs make powerful applica-
tions possible. The ability of SMAs to recover from large
strains of 5 to 8% with little to no plastic deformation and
to thermally actuate when under large stresses [17] makes
them ideal for many varying applications. Their intrinsic
multifunctional properties and high energy density enable
the development of compact devices that can significantly
reduce weight and size when compared with conventional
systems. NiTi-based systems have produced energy density
upwards of 10 MJ/m’, twice the value of hydraulics and
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10 x to 100 x more than pneumatic and piezoceramic
systems, respectively [2, 18]. Their advantages offer a
paradigm shift in methods to generate renewable energy
and geometric approaches.

Complexities stemming from the martensitic transfor-
mation and the coupled thermomechanical behavior pose
significant challenges when integrating SMA systems into
structural applications. Such complexities begin with fab-
rication methods due to material’s sensitivity to composi-
tional changes and the characteristics of
inevitable impurities. The iterative process of shape
forming, shape setting, heat treating, and training changes
the transformation temperatures, amount of recoverable
strain, hysteretic width, among many other material prop-
erties. Each step influences microstructural features, thus
effecting the thermal stability and fatigue life of SMAs
[19-21]. The design process must address materials influ-
ence, in addition to system-level challenges, by adapting
the composition and microstructure of the SMA to ensure
the application’s critical temperature and functional fatigue
requirements are met. When integrating an SMA, the
actuation strain and stress constraints are often considered
to be analogous to displacement and force in conventional
actuators. Directly employing unconventional actuators
such as SMAs into conventional actuator applications will
exhibit limitations to density and stroke length [22, 23].
These challenges motivated the creation of a collaborative
space where discoveries could be made, information could
be shared, resources could be combined to form standards
for material preparation and testing, and to launch the field
of SMAs forward.

In 2007, the Consortium for the Advancement of Shape
Memory Alloy Research and Technology (CASMART)
was formed to encourage collaboration and growth of SMA
actuation technologies.' Currently, CASMART consists of
26 member organizations, including partners in academia,
industry, and government agencies, who work to promote
the growth and adaptation of actuation technologies by
achieving new understanding of the materials through
experimentation and simulations to optimize designs and
facilitate new applications. To achieve these goals and
inspire the next generation of SMA researchers, CAS-
MART hosts a biennial student design competition in
which students can tackle real-world problems facing the
SMA community while receiving guidance and feedback
from CASMART members.

This manuscript is a compilation of designs from the
third CASMART Student Design Challenge, held in 2019.
It is meant to serve as a reference for SMA material cre-
ation and implementation by showcasing the work of

! For more information about CASMART, please visit www.
CASMART.org.

participating student teams and by documenting the diffi-
culties they faced when designing SMA materials and
systems. The CASMART Student Design Challenges have
been used as an outreach strategy to promote the imple-
mentation of state-of-the-art designs with SMA actuators.
The first competition, held in 2015, laid the foundations by
establishing concepts fundamental to the process and
parameters for designing structural and mechanical sys-
tems [24]. The second competition, held in 2017, built on
the previous experience by introducing the concept of
designing the material and designing with the material. The
2017 competition included seven teams from three differ-
ent universities [25]. By 2019, student involvement had
more than doubled, with a total of 14 teams and 49 indi-
viduals participating in the third design challenge. The
premise of each design challenge was driven by real-world
needs expressed by companies in the respective industries.
The case studies were constructed to include two design
perspective options: to design with the material or to design
the material. Student teams’ hardware and material deliv-
erables had to meet basic function requirements specific to
the application.

As a prelude to more detailed discussion of four design
challenge case studies, this paper presents a brief intro-
duction to the underlying concepts pertaining to these
SMA-based applications, beginning with an overview of
SMA technology. Four case studies are included:

1. Deployment and orientation mechanism for solar
panels on SmallSats

2. Energy recovery from waste heat

Tourniquet

4. Spinal curvature correction device

(O8]

The Hardware Designs and Material Designs sections
are divided into subsections for each respective application,
providing objectives, constraints, and student teams’ key
findings. Commercially available SMAs were provided by
manufacture/supplier sponsors to the hardware teams and
fabrication methods and raw materials were made available
to the materials teams upon request. Results are presented
from seven of the 14 participating teams (four hardware
designs and three materials designs) and highlight the
design priorities, processes, and challenges raised during
development.

Shape Memory Alloy Background

SMAs are unique for their ability to respond to change in
structure and properties as a response to external stimuli.
“Shape memory” refers to the ability of a material to return
to a set shape, initiated by a phase transformation that is
activated by elevating the material’s temperature. This
shape memory is the result of a solid-state phase change
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from martensite to austenite. As an SMA is heated, it
transforms from martensite to austenite through a rever-
sible, diffusion-less, solid—solid phase transformation. This
capability produces three useful phenomena unique to
SMAs: the shape memory effect, pseudoelasticity, and
solid-state actuation.

The pseudoelastic effect describes the behavior of aus-
tenitic SMA under a load at a constant temperature above
austenite finish temperature (A¢), a condition that induces a
phase change from austenite to detwinned martensite, as
shown in Fig. 1a). A complete phase reversal and strain
recovery will occur upon unloading, thus resembling
elasticity [26, 27]. A load may be applied to twinned
martensite at a temperature below austenite start tempera-
ture (A;) to create detwinned martensite. Upon release, the
structure will remain detwinned and large strains can be
observed (up to 10%). Heating the material above Ay will
result in a transformation to the austenite phase and com-
plete strain recovery, whereas cooling the material below
martensite finish temperature (My) completes the cycle by
returning to twinned martensite.

The solid-state actuation effect is when the material
undergoes stress-induced phase transformation and then is
thermally stimulated to produce actuation energy density
(i.e., work output per unit volume). Thermal cycle, i.e.,
load-bias, tests are performed to determine the strain-
temperature characteristics as shown in Fig. 1b. The
resulting characteristics are used for actuation specific
properties such as transformation strain, work output,
residual strain, and hysteresis. An applied load deforms the
variants just enough to reorient and align them; however,
the magnitude is much lower than the yield stress. The
critical magnitude of stress is referred to as stress start (o)
and stress finish (g¢) to complete the detwinning process.
The reorientation is initiated at o and requires the maxi-
mum oy to ensure all variants have adjusted to accommo-
date the load [28]. When additional stress is applied,
dislocations (misalignments of atoms) form, increasing
work hardening consequently to localized strain. The

introduction of dislocations promotes a shift in transfor-
mation temperatures, providing an opportunity for thermal
attunement. The tradeoff is the volume of the residual
phase and stress increases. Work output is a product of the
force applied and the change in strain between Af and Aj.

SMA Applications

Deployment and Orientation Mechanism for Solar Panels
on SmallSats

Hardware Study 1 and 1I; Materials Study I One
promising application for SMAs within the aerospace
industry is utilization of the shape memory effect and solid-
state actuation phenomena to create efficient actuation
devices for small satellites, aptly termed “SmallSats.” Two
ways SMA actuators could be implemented in SmallSats
are (1) as an active system (feedback controlled) in the
deployment mechanism to deploy the solar panels and (2)
as a passive system in the orientation mechanism to posi-
tion the panels for maximum power collection [24]. Thus,
the objective for this challenge was to design and build a
deployment and orientation mechanism(s) with the use of
SMAss that conforms to a 3U CubeSat weight and footprint.

A 3U CubeSat has dimensions of 10 x 10 x 30 cm®
[29] at a cost which is two to three orders of magnitude
cheaper than a full-scale platform, when including inte-
gration with the launch vehicle, launch, and ground oper-
ations [30]. CubeSats advantages of low cost, high
functional density, short development cycle, and fast orbit
entry, and allowing SmallSats to be widely used in research
and education at universities [31]. The development of the
CubeSat specification has provided a cost-effective plat-
form on which to perform a variety of functions, including
biological experiments in microgravity, communications
network improvement, and advanced missions using con-
stellations of many CubeSats working in conjunction [32].
Small satellite usage is not limited to government-spon-
sored research, however, and in recent years industrial
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Fig. 1 Schematic of a hysteresis under the a pseudoelastic effect and b solid-state actuation
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applications have created the need for government agen-
cies, industrial leaders, and higher education establish-
ments to work in tandem to achieve more complex goals.
CubeSat designs help make that possible by allowing for
standard commercial products within specific design and
testing standards [29].

The challenge with utilizing these satellites is optimiz-
ing energy efficiency while minimizing cost. Therefore, the
goal of this project was to improve the reorientation
function of a microsatellite solar array to maximize
absorption efficiency while using minimum power without
adding additional weight. By using SMAs as a fully passive
actuation system in the panels, the overall weight of the
CubeSat can be reduced, and new systems could use one
lightweight component to perform the actuation task when
exposed to solar radiation. In view of the expense of every
ounce of material sent into space, this reduction of weight
could significantly reduce the cost of the satellite while
maintaining the operational capabilities [30]. In terms of
energy, the passive SMA actuator could replace actuators
that must be powered internally rather than externally, thus
reducing the mechanism’s impact on the total energy
budget of the craft. This development could result in an
optimized power system in experimental spacecraft,
opening the door to further research in weather patterns,
communication capability, space exploration, and more
[30]. Lower launching costs may create opportunities for
smaller groups and private companies to begin novel
research projects and bring lower cost products (such as
communication devices) to market.

Energy Recovery from Waste Heat

Hardware Study IlI; Materials Study II Materials with
high work energy density open the possibility of utilizing
wasted heat by transforming it into other usable forms of
energy. SMAs offer a unique solution when considering
how the materials respond in a hot media flow between a
hot and cold reservoir. These properties allow flexibility in
the design and geometry of a waste heat recovery system,
where thermal energy is converted directly to work output.
The objective for this challenge was to design a cost-ef-
fective actuator system using an SMA material to capture
thermal energy as the fluid media. The SMA would be
affixed with an apparatus allowing the transfer of signifi-
cant forces to mechanical power by utilizing wasted ther-
mal energy.

A device designed to convert waste heat to useful power
requires a combination of fluidic, mechanical, and electri-
cal engineering designs and implementations. The fluids
cycle through the hot reservoir as quickly as possible, with
little fluid and thermal waste. The application of hot and
cold fluids streams to the NiTi elements maximizes the

energy conversion efficiency. When the material responds
by twisting or contracting, mechanical engineering is
needed to convert the oscillatory motion into a rotary
motion for an alternator, which is how the waste heat
energy is converted to electrical energy. Utilizing waste
heat sources is useful in engine exhaust and ambient air,
thermal reservoirs, industrial heat exchangers, and
geothermal applications. Each of these applications can be
broken down to two scenarios: energy-harvesting gas or
energy-harvesting water. There are three major challenges
when designing a waste heat device: (1) implementing an
SMA element while optimizing heat transfer between
media (gas or water), (2) although a gas system is usually
simple and inexpensive, exhaust gases have poor thermal
transfer, and (3) wastewater transfers heat faster, but the
designs are more complex.

Based on literature, forms that have been investigated
with potential use in energy recovery devices are open-
celled metallic foams, tubes, plates [33], or wire assemblies
[34, 35]. Wire assemblies made with SMAs can be a
beneficial approached to the heat exchange design by
allowing a mixture of wires with different transformation
temperatures, increasing the Carnot efficiency. The mate-
rial response is affected by a combination of heat transfer
coefficients, surface-area-to-volume ratio, and flow rates to
optimize heat transfer. To date, low cycle time has been a
limiting factor in SMA devices because of the longer
timescale associated with convective heating kinetics as
compared with the preferred method of joule heating [36].
Convective heat transfer is the primary method considered
in this work, as directed by requirements from CASMART
[37]. With either form of heat transfer media, the cost must
be proportional to the application for the sake of the con-
sumer. Hot exhaust systems for automotive applications
tend to be simple and inexpensive, whereas consumers
needing remote power systems will invest more for avail-
able power.

Tourniquet

Hardware Study IV The goal of this element of the design
challenge was to develop a tourniquet system utilizing
SMAs to supply compressive forces for stopping arterial
bleeding in an emergency trauma situation. Mechanical
designs focused on improving single-handed operation as
compared with other state-of-the-art devices and on
applying the correct compressive forces. To be competitive
and accessible for emergency situations, the devices had to
be compact, lightweight, rugged, and durable.
Tourniquets are life-saving devices used in surgical or
field environments to provide time to treat life-threatening
traumas, especially when the patient is in transport. Indi-
viduals often struggle to self-apply this medical device due
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to trauma and operational difficulties. Exsanguination is the
leading cause of death in active military zones and disaster
areas, so the tourniquet needs to be reliable and function
with simplicity. Traditional designs are painful to apply
and challenging to operate single-handedly; another person
is often needed to successfully apply the device to the
patient. Simplifying the tourniquet-tightening mechanism
could improve the speed of deployment and improve the
success rate of self-application. Typical tourniquet-tight-
ening mechanisms include windlass, ratchet, and bladder
designs, but these are complex, bulky, and heavy. Many
situations where a tourniquet would be needed, including
the combat theater, require a compact design for light-
weight travel. SMA devices provide a relatively light-
weight method of actuation that could be used to occlude
blood flow and simplify the process of tourniquet
application.

Student teams were tasked with developing either a
suitable material for use in an SMA tourniquet or a func-
tional design for this application. The material’s transfor-
mation temperatures had to be sufficiently low to prevent
burn injuries to the user, and the device design was
required to utilize the properties of SMAs to occlude blood
flow in a designated limb. All the teams chose to focus on
occluding the brachial artery in the arm. It was critical that
the device be adaptable for various limb sizes and capable
of being deployed using a single arm.

Spinal Curvature Correction Device

Materials Study 11l The goal of this challenge was to use
an SMA in the design of an externally worn pseudoelastic
brace that is more effective and comfortable than con-
ventionally worn devices and offers an alternative to
invasive spinal correction surgery [38, 39]. The SMA brace
would provide effective therapy and maintain tension over
time as compared with polymer-based designs.

Spinal orthoses (braces) can be designed based on the
construction, rigidity, symmetry, openings, and principle of
correction [40]. Rigid braces are considered more effective
for curve correction than soft braces [41, 42]; however,
both types have advantages and shortcomings. Rigid braces
have a static nature, limiting motion and breathing, and
weakening the muscles around the spine causing muscle
atrophy. Materials commonly used to fabricate rigid braces
are polyethylene, polycarbonate, and stainless steel to
support and stabilize the patient’s spine [38, 39]. Soft
braces are typically made of textile fabrics and elastic
bands to improve comfort and overall quality of life for the
user [39]. The stiffness of the bands can be adjusted based
on the severity of the needed treatment, allowing more
relaxed bands to be used for preventing curve progression
or for stabilization after surgery. Although the lower
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rigidity may prolong treatment time, soft braces promote
muscle activity by strengthening the muscles around the
spine [43].

The benefit of SMAs in this application is material
longevity, as elastic wears out quickly and would require
the brace to be refitted often. The pseudoelastic effect,
activated by a patient’s body temperature, can be used in
orthopedic treatment to provide continuous and control-
lable corrective forces [39, 44]. Utilizing SMAs is an
attractive option to produce a flexible device while main-
taining the corrective benefits of a rigid brace. It is
important, however, that the wires are not exposed to
cooler temperatures, as this will deactivate the pseudoe-
lasticity effect.

Hardware Designs

Deployment and Orientation Mechanism for Solar
Panels on SmallSats

The objective for this challenge was to design a deploy-
ment and orientation mechanism for one or more solar
panels with the use of SMAs.

The SmallSat hardware was required to comply with 3U
CubeSat specifications in size, weight, and rigidity,
Table 1. When stowed, the CubeSat was required to be
100.0 & 0.1 mm? wide x 340.5 & 0.3 mm tall. Foldable
panels were allowed, but all designs were required to be
deployed on demand and to stow back to initial position.
The usable footprint (payload) could not exceed 0.5U and
was required to be less than 20% of the gross 3U CubeSat
weight. Rigidity refers to maintaining the designed shape
while handling the launch loads [45], thermal environment,
pressure changes, and gravitational loading. When operat-
ing, the orientation mechanism was to operate fully pas-
sive, with actuation time within 30 s and power level not
exceeding 40 W. The deployment angle was to be equal to
or greater than 90° from the stowed position. Lastly, no
pyrotechnics were allowed, and no debris could be formed
at any point in the mission. The reference NASA-STD-
5017A was suggested as a guide to design the mechanism
[46].

Hardware Study 1

Team Sat’UNT: Kelsa Adams, Michael Ayers, Jordan
Barnes, Robert Boone, David Evers, and Brittany Thur-
stin  Team Sat’UNT from the University of North Texas
determined the three mechanisms that would be employed
in the design: retention, orientation, and deployment
mechanisms. The retention and orientation mechanisms
rely on steady-state actuation driven by thermally activated
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Table 1 3U CubeSat hardware design requirements presented by CASMART challenge guidelines

Hardware requirement Description

Functional requirement Description

Dimensions (when stowed)
Mechanism space/weight
Rigidity

Not to exceed 0.5U, < 100 g

100.0 & 0.1 mm? x 340.5 + 0.3 mm

Conform to GSFC-STD-7000A

Cycles 20 cycles/mission
Actuation time 30s

Power <40W
Deployment angle > 90°

NiTi springs, and the deployment mechanism utilizes
pseudoelastic springs to dampen the release of the panels to
minimize residual accelerations. The retention mechanism
uses a biasing spring to maintain the stowed position of the
solar panels. Once the CubeSat reaches the desired altitude,
the power supply sends a small amount of current to pro-
vide resistive heating to the SMA actuator, which allows
the solar panels to move toward their active positions. The
orientation mechanism incorporates two opposing SMAs to
assist the solar panels in tracking the sun for maximum
efficiency. The two opposing SMAs are connected to a
single axis, which controls the rotation of the main solar
panel. Like the first steady-state actuation application, the
orientation mechanism is controlled by resistive heating.
The deployment mechanism uses pseudoelastic springs to
dampen deployment of the solar panels once they are

Rotating Inner Panel

45° Wire Connector

Wia, A O

Fig. 2 A constructed prototype CubeSat utilizing nickel-titanium
based shape memory alloy torsion and extension springs to articulate
solar panels. a SolidWorks displacement results for the highly

Steel Torsion Spring

. NiTi #6 1.0 mm Torsion Spring

released from the retention mechanism. Figure 2 shows
(a) the SolidWorks displacement results for the highly
damped model, (b-c) the retention mechanism, (d) the
orientation mechanism, (e) the deployment mechanism,
and (f) the final prototype design.

The CASMART spring design tool was used to deter-
mine the appropriate spring geometries capable of lifting
the panels based on the projected mass. Fort Wayne Metals
provided NiTi #6 wires, and students chose diameters of
1.0 and 0.25 mm for shape setting. The springs were shape
set using a custom aluminum jig at 500 °C for 10 min. The
retention mechanism was made from 6061 aluminum bar
stock and measured 86 x 86 mm? with a weight of 55 g. It
used a single solid-state SMA extension spring requiring
less than 10 W in 10 s under a load of 4 N and 5 mm
stroke. Stainless steel bias springs, made by Classic Steel

damped model, b, ¢ retention mechanism, d orientation mechanism,
e deployment mechanism, and f final CubeSat
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LLC, were used in the frame of the retention mechanism to
provide return forces upon cooling of the NiTi wires. The
orientation mechanism was set with the 0.25 mm diameter
wire with three active coils of 3.2 mm diameter. One
actuation stroke required less than 1 W under 5s to
achieve 45 rotations based on the CASMART spring
design tool parameters of 1 N and 12 mm displacement.
The final design used a torsional steel spring opposed by an
SMA torsional spring.

Challenges were encountered in the manufacturing
phase of the design process, as integrating the SMA com-
ponents results in design complexity that can be remedied
either through incorporation of more parts or through more
intricate geometries. For this reason, polymer-based poly-
lactic acid (PLA) additive manufacturing was used to
construct the panel components. To summarize several of
the key results and takeaways from this work:

e Determined optimal activation temperature range from
40 to 80 °C for the prototype demonstration using
resistive heating with NiTi #6 wire shape set at 500 °C
for 10 min.

e Designed and fabricated custom housings for the NiTi
deployment, orientation, and retention mechanisms
utilizing  additive manufacturing for complex
geometries.

e Implemented a passive-NiTi-driven orientation mech-
anism improving the CubeSat power collection effi-
ciency by nearly 25% through use of (corresponding
to ~ 1 W power gain) as compared with having no
orientation mechanism.

Hardware Study I1

Team PaST-Array: Will Machemer, Benjamin Pemble,
Carlita Gorham, Forrest Denham, and Bryce Ray-
mond Team PaST-Array from the Colorado School of
Mines designed and tested a working prototype CubeSat
capable of deploying solar panels and passive solar track-
ing enabling maximum collecting efficiency. The system
accomplished this using a novel system of thermally acti-
vated NiTi springs oriented in a specific way to allow
activation from solar radiation, which rotates the system,
resulting in a panel orientation normal to the sun. The
entire assembled system is shown in Fig. 3a. Three sepa-
rate subsystems were designed to accomplish the deploy-
ment, upper rotation, and separate panel rotation: (1) latch
mechanism, (2) rotation mechanism, and (3) wing actua-
tion mechanism.

The latch mechanism was 3D printed using Onyx, a
nylon mixed with chopped carbon fiber, although for the
final design a high-grade machined aluminum may be more
desirable. The latch mechanism can be released simply by
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rotating the inner housing, as shown in Fig. 3b. An SMA
spring affixed to the inner housing, along with a bias
spring, will allow rotation upon thermal activation of the
SMA spring, which will release the latch. When cooled, the
locking mechanism returns to its original position with
assistance from the bias spring. To relatch the system, the
pin must simply be pushed into the latch slot (with assis-
tance from the wing actuation mechanism), which will
induce rotation and lock the housing around the latch.

The rotation mechanism (Fig. 3c¢) is also 3D printed
using Onyx. The rotation mechanism takes up 0.5U of
space and operates using 4 SMA springs and one bias
spring. The design of the rotation mechanism allows for the
sun to hit specific springs, while shading the others. When
one of the springs is exposed to the sun, it will heat up from
the solar radiation and induce rotation of the head. Using
Fig. 3c as an example, when the sun hits SMA spring 1, it
will actuate, causing a counterclockwise rotation. When the
spring is no longer exposed to the sun, the bias spring
assists in returning the mechanism to its original location.
If multiple springs are exposed to the sun when only one
spring should be exposed for proper actuation, polarized
glass panels may be used next to the springs to allow solar
radiation at only the desired angles (shown in light blue in
the Fig. 3c.

The final mechanism for this system is the wing actua-
tion mechanism, shown in Fig. 3d. This system is also
designed to passively track the sun through the heating of
SMA springs from solar radiation. The wing actuation
mechanism uses two SMA actuation springs and two steel
bias springs. Solar shades are built into the design so only
one of the SMA springs at a time is exposed to solar
radiation. When exposed, the SMA spring actuates, and the
panel either lifts or lowers over the course of about 50 s.
When the SMA spring is no longer exposed, the steel bias
springs return the panel to a neutral position.

The latch, rotation, and actuation mechanisms were used
to construct a successful prototype that was presented
during the 2019 CASMART Student Design Challenge. To
summarize a few key results from the work:

e Stock I mm diameter NiTi wire was shape set at
550 °C and used in the latch and hinge mechanism, and
0.038 mm NiTi wire was used for the head rotation
mechanism. The design provided 3 degrees of freedom
for solar panel articulation driven entirely by the 1 mm
wire NiTi torsion springs.

e Onyx, a nylon, and carbon fiber material, was 3D
printed to construct the complex geometries of the
rotating head, hinges, and latch mechanism.

e The prototype was successfully tested with joule
heating, but using convective heating (e.g., a heat
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Fig. 3 a CAD render of the prototype design for a CubeSat structure
with articulating solar panel shades and a rotating ‘head’ driven by
thermally activated NiTi torsion spring and latching mechanism,

Lalch

gun) resulted in melting of polymer (PLA) structural
components during demonstration.

Sensitive features that need to be re-evaluated or mon-
itored when implementing SMA wire in this design were
(1) the fragile connections between the SMA wire to fix-
tures and (2) the risk of overheating the wire.

Energy Recovery from Waste Heat

The objective of this challenge was to design a cost-ef-
fective actuator system using an SMA material to capture
thermal energy as the fluid media.

Minimal hardware design constraints are listed in
Table 2 and were given for this challenge to be relatively
open-ended. Teams had the opportunity to select either air
or water thermal fluid sources, where the customer varied
in each case. For liquid (water) based thermal fluid sources
where the application would be industrial or geothermal
processes, the value of power was typically priced at $1/W
with a maximum fluid temperature of 95 °C. Conversely,
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for air-based thermal sources (e.g., remote-power or air-
craft applications), the value of power was much higher
generally but depended on the specific use case. Addi-
tionally, the maximum fluid temperature was estimated to
be 250 °C, with ambient air or water conditions used to
model the cooling media (depending on the operating
environment). Generally, the constraints in both cases
amounted to providing quantifiable value exceeding the
cost of implementation.

Hardware Study II1

Team HERO: Heat Energy Recovery On-Demand John
Fuller, Ben English, Chris Beebe, and Miller Ket-
tle Project HERO from the Colorado School of Mines
demonstrated comprehensive design and multi-physics
analysis for a passive linear generator driven by thermally
activated NiTi springs. The generator uses electromagnetic
induction produced via three neodymium magnets moving
through wound copper coils. The system is designed to

Table 2 Energy recovery hardware design requirements presented by CASMART challenge guidelines

Requirements Description

Thermal fluid source Air or water

Value of power
250 °C
Room temperature

Maximum operating temperature

Minimum operating temperature

Marketable value for thermal fluid source (e.g., water source values $1/W at max. temperature of 95 °C)
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oscillate using four high carbon steel bias springs and four
SMA springs. The final design can be grouped into two
main subsystems: (1) the passive inlet valve and (2) the
electromagnetic driving piston, both shown in Fig. 4a
below. This concept is designed to be mounted underneath
an airplane wing by the engine (such as a Boeing 787) and
use the waste heat from the engine to actuate and create
energy.

The passive inlet valve (Fig. 4a) consists of an oscil-
lating system designed to allow cold air, followed by hot
air, into the chamber while only allowing one or the other
at a single time. When hot air is flowing into the chamber
(shown on the right in Fig. 4c) this heats up the SMA
spring, causing it to actuate to the closed position, thus
closing off the hot inlet and opening the cold inlet.

The cold air can then enter the system, cooling the SMA
spring. The steel bias spring aids in returning the SMA
spring to its original position, thus again opening the hot
inlet and closing the cold inlet, wherein the cycle repeats.
The hot and cold air is also used to heat and cool the
actuation system for the electromagnetic driving piston to
create energy.

The electromagnetic driving piston system consists of
three neodymium magnets passing through a PVC shaft
12.7 cm long wrapped in 5000 turns of 30 gauge insulated
copper wire, as shown in Fig. 4b. The system works much
the same way as the passive inlet valve. Hot air from the
passive inlet valve heats up the four SMA springs attached
to the piston which is also attached to the neodymium
magnets. The heat causes the SMA springs to close, pulling
the magnets through the copper coils generating a current.
When cold air enters the system, it causes the SMA springs

(a) (c)
Linear
Stage

Bias Spring

SMA Spring

Diffusion Inlet Housing

Nylon/Kevlar
Linear Rails

to cool, and the four steel bias springs (shown in Fig. 4c)
aid in returning the SMA springs to their original position,
again pulling the magnets through the copper coils.

The goal of this design was to convert waste heat from
jet aircraft to electrical power; however, the low duty cycle
capabilities of the material combined with manufacturing
challenges resulted in a mostly non-functional prototype.
To summarize several of the results from this work:

e Established design metrics from a 2018 SBIR solicita-
tion, with a power density of 50 W/kg and a 50%
Carnot efficiency [47].

e Designed an innovative linear generator and conducted
thermal, electromagnetic, and structural analysis prior
to prototype construction to validate design metrics.

e Early prototype design/application was reliant on high
cycle time to produce power, creating challenges given
that SMAs are known for their low cycle high-force
performance in actuation applications [48].

Tourniquet

The objective was to improve the tourniquet system by
incorporating an innate locking mechanism of SMAs when
biased against a linear spring.

Teams were challenged to design a tourniquet with a
minimum 20-mm-wide contact area for peripheral appli-
cations and the length to meet 99th percentile leg size at the
maximum circumference. The design had to be capable of
being placed and activated with single-handed operation to
either an arm or a leg, with placement 25 to 50 mm above
the wound site, or directly on the wound site for junction
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Fig. 4 Linear generator design consisting of a the passive inlet valve actuation system and b the electromagnetic driving piston system. The

entire assembled system is shown in ¢
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Table 3 Tourniquet hardware design requirements presented by CASMART challenge guidelines

Requirements Description Requirements  Description
Dimension Minimum 20-mm-wide contact area 99th percentile leg size Operation Single hand use to arms or legs
Self-regulating for correct and constant
pressure
Pressure Circumferential applications: 30 to 60 kPa Placement 25 to 50 mm above wound site
Direct applications: 150 N Directly on wound for junction applications
Activated Passively or actively with possible manual backup Actuation time < 1 min

applications. Pressure was required to be 30 to 60 kPa for
circumferential applications and 150 N for direct applica-
tions, and self-regulating to ensure correct and constant
pressure. Designs could be passively or actively actuated,
with the possibility of a manual backup in case of device
failure. Overall application and activation time was to be
less than 1 min. Tourniquet hardware requirements are
summarized in Table 3.

Hardware Study IV

Team TAMU Tourniquet: Brady Allen, Parker Reaume,
and Cody Shelton The team from Texas A&M University
had the goal of demonstrating the feasibility of designing
an innate locking mechanism by incorporating SMAs
biased against a linear spring. By characterizing the SMA
springs, the ideal spring to bias it against was determined
and created by changing the material and geometry of the
fabric. This concept allows the tourniquet to lock at a
specified force within the hysteresis curve and eliminates
the need for extended power application or excessive heat
and does not require an external locking mechanism. The
tourniquet’s design simulation involved creating models of
fluid structure interaction of the arm artery system. These
models were made in MATLAB and Abaqus and

Fig. 5 a Abaqus model of
human arm under compressive
loads due to tourniquet shown
with b iso-force thermal cycles
of SMA springs performed at
22 and 4 N

incorporated blood flow through a stenosed artery and
tourniquet arm interaction. The design goal was to target
the artery specifically and reduce the total pressure applied
to the arm, which minimizes the risk of future tissue
damage and the pain experienced. The Abaqus arm model
utilized for tourniquet design choices is shown in Fig. 5a).
To summarize several of the results from this work:

e Force—displacement testing was done on linear models
of the 1/4 in. threaded bolt NiTi #8 and the tightly
packed NiTi #8. The data from these tests supported the
conclusion that the tightly packed springs are the most
efficient for this tourniquet design, as they can apply
greater forces and distributing those forces over a small
area.

Tensile characterization results are shown in Fig. 5b on
the rod-geometry spring via constant-load thermal
cycling at 22 N and 4 N. Under 4 N of load, the
extension of the spring was likely greater before
thermal cycling, resulting in less extension due to
transformation.

The tourniquet contracted maintaining closure and
occluding blood flow if the power source supplied the
necessary current to heat the wire above Ay.
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Materials Designs

SMAs can be found in various compositions; the three
most common SMAs are NiTi-based, Cu-based, and Fe-
based alloys [26, 27]. Binary NiTi alloys are the widely
used SMAs currently available; however, their transfor-
mation temperatures are limited to about 115 °C, and
ternary additions are in development [24]. Cu-based alloys
can exhibit high transformation temperatures but suffer
from low fatigue life due to microstructural challenges
[49]. Fe-based SMAs have sufficiently high transformation
temperatures and exhibit magnetic characteristics, adding
an unnecessary property to the presented case studies.

Niti-Based Alloys

NiTi-based alloys have led the way since the early 1960s in
technological innovations for SMA materials as active,
adaptive smart systems. The U.S. Naval Ordnance Labo-
ratory developed and commercialized NiTi alloys in the
1960s under the trademark Nitinol. The medical field
commonly utilizes the pseudoelastic effect when designing
SMAs for medical stents, eyeglasses, and orthodontia, as
NiTi is known to be biocompatible [50-52]. The
microstructure associated with phase transformation in
NiTi-based alloys typically involves two phases: a highly
symmetrical cubic B2 structure austenite phase and a low-
symmetry monoclinic B19’ structure martensite phase.
Martensite exhibits other crystal structures such as a
rhombohedral or orthorhombic structure from processing,
compositional changes such as ternary additions, or a
combination of the two. The addition of ternary elements
such as Hf, Zr, Pd, and Pt is of high interest in aerospace
applications for their ability to increase transformation
temperatures and facilitate thermal hysteresis attunement.
Most industries cannot justify the cost to commercialize
ternary alloys with Au, Pd, or Pt, consequently limiting
uses to niche applications.

CuAl-Based Alloys

Polycrystalline Cu-based high-temperature SMAs are
chosen for some projects because they have significantly
lower densities than their NiTi-based and Fe-based coun-
terparts [53-55] and exhibit a higher elastic modulus
[56, 57]. Generally, the NiTi martensite elastic modulus
has been reported in the range of 20 to 70 GPa and CuAl
alloys range from 60 to 170 GPa [58-61]. The primary
challenges with polycrystalline binary CuAl are poor cold
workability and poor martensitic stability [55, 62]. Ternary
CuAlINi alloys with less than 27.1 at.% Al were found to
have a smooth hysteresis with high thermoelastic behavior
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and good control of grain growth [63]. Furthermore, good
mechanical properties and workability were found between
22.5 and 29.3 at.% Al and Ni-content between 2.7 and 4.7
at.% [26, 54]. Yang et al. [64] found that Mn was beneficial
as a micro-addition to CuAlNi alloys because it increases
ductility while also minimally impacting the transforma-
tion temperature [55, 62]. Intercrystalline fracture is known
to occur at grain boundary triple junctions and are not ideal
for deformation recovery through pseudoelasticity and
shape memory strain [62, 65, 66].

Two major approaches to increasing ductility in Cu-
based SMAs are: (1) grain refinement [67-70] and (2)
utilization of single-crystal materials [64, 66, 71]. In some
cases, single crystal Cu-based SMAs have demonstrated
extraordinary pseudoelasticity strain upwards of 40% [72].
However, the production expense of single-crystal and the
brittleness of polycrystalline SMAs hinder the usefulness
of these materials. A potential solution was found in a
novel microstructure termed “oligocrystalline.” Bamboo-
structured SMAs are a subset of oligocrystalline materials
in which the grains are layered lengthwise (like bamboo)
and the cross-sectional grain size is equivalent to the cross
section of the wire [66]. This bamboo structure produces
pseudoelastic strains up to 4 times larger than bulk poly-
crystalline and is effective at suppressing intergranular
fracture, common in bulk polycrystalline materials. This is
due in part to a lack of triple junctions, a high specific area,
and small-diameter grains [65, 66, 73].

Deployment and Orientation Mechanism
for Smallsats

The objective of the project was to design an SMA that
conforms to the design constraints for application in a 3U
CubeSat as an actuation device.

The materials design teams were challenged with sev-
eral functional requirements and processing constraints that
the material chosen (i.e., SMA) should meet to be viable in
passive actuation systems. Constraints are summarized in
Table 4 and were prioritized as primary or secondary to
simplify the selection process. Primary constraints included
(1) austenite finish temperature range at 120 & 10 °C, and
(2) alloying elements (no use of precious metals, Hf, or Zr).
Secondary constraints included (1) recoverable actuation
strains greater than 3.5% and (2) processability by con-
ventional means, defined by the team as hot rolling and
cold drawing.

Materials Study 1
Team Metallurgica: Faith Gantz, Mora Issa, Skye Segovia,

and Xiaowei Wang The team from the University of
North Texas prioritized the material design using
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Table 4 3U CubeSat materials design requirements presented by CASMART challenge guidelines

Requirements Description Requirements Description
Transformation Af =120 £ 10 °C at zero external  Cost No precious metals (e.g., Au, Pt, Pd) or Hf, Zr
temperature stress

Actuation strain 3.5% recoverable strain

Property attunement

Control properties through processing methods

methods

Slope (Af—Ay) Minimize variance and define

Production method

Conventional methods

method
Actuation cycle > 20 cycles Melt purity C < 0.03 wt%, O < 0.08 wt%
Actuation time <30s Form Processable into useable form (e.g., wire, rod, and

plate)

fundamental concepts to choosing a composition suit-
able for processing using conventional methods (e.g.,
rolling) into wire. Potential alloying elements were selec-
ted and compiled in a Darken—Gurry map, which uses
Pauling rules to determine the solubility of selected ele-
ments with a less than 7% (inner ring) and 15% (outer ring)
difference as compared with Cu (Fig. 6). Based on a lit-
erature review [54, 63, 64], alloying additions of Ni, Mn,
and Al to the Cu-based SMA were chosen to pursue the
formation of a bamboo structure and to fulfill the design
requirements [63]. A linear interpolation sensitivity anal-
ysis was used to determine the specific compositions
[27, 54, 74]. CuAINiMn alloys were homogenized at
850 °C for 1 h and quenched in H,O to achieve a
martensitic structure. Samples were preheated at 700 °C
for 30 min and hot rolled into plates at 25, 50, and 75%
reduction with 5 min intermediate annealing between
passes, respectively. The plates were cut into strips in
preparation to hot rolling the wire using wire rolling die
and the same anneal-roll procedures as the plates. For an
initial observation of the effect of grain growth in the
material, wires were heat-treated at 850 and 950 °C in air
for 30 and 90 min each [54].

115 120 125 130 135

Radius

140 145 150

Fig. 6 Darken—Gurry solubility map of copper

To summarize several of the key results and takeaways
from this work:

e  Cuyp3Alx3Niz 7 Mng; at.% with A of 124 °C in the
homogenized state met the project transformation
temperature requirement. The transformation tempera-
tures increased to 159 °C in the 25% reduction
condition and 139 °C in the 50% reduction, all while
maintaining a sharp enthalpy peak.

e Wire of 1 mm diameter (75 to 89% thickness reduc-
tion) was achieved using the rolling parameters of
700 °C with a 30-min preheat and 5-min intermediate
heating between passes.

e Hot rolling the material promotes preferred grain
orientation beneficial to sequential heat treatments;
however, work hardening leads to an increase in
dislocation density/plasticity, which counteracts subse-
quent grain growth. Further investigation with a finer
diameter wire is required to determine the optimal heat
treatments to promote rapid grain growth.

Energy Recovery from Waste Heat

The objective was to design an SMA material for an
actuator system that captures and releases thermal energy
to optimize mechanical power.

Wastewater is a much denser media than gas, allowing
for much faster heat transfer. The most important charac-
teristics for the design were the alterations of transforma-
tion temperatures and hysteresis size and the impact of
each addition on these temperatures: a small hysteresis
(< 25 °C) along with temperature transformation of Ay
=90 °C and M;=25°C due to the wastewater and
ambient air temperature, respectively. Maximum stress had
to support a large work output and maintain a stable value
of actuation strain for extended periods of time to ensure
the domestic conversion application was priced at $1/W.
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Table 5 Energy recovery

. . . Requirements Description Requirements Description (°C)
material design requirements
presented by.CA.SMART Thermal fluid source Water Hysteresis <25
challenge guidelines
Value of power $1/W at max. temperature of 95 °C A 90
Mf 25

Design requirements for the energy recovery material
challenge is summarized in Table 5.

Materials Study I1

Team Power Rangers: Sharon Pearlnath, Bianca Avila,
John Broucek, and Ben Rudzinski Research from Texas
A&M University team details the analysis of four different
element additions to NiTiCu-based SMA systems [75]. The
goal of maximizing work output while maintaining the
fatigue life of samples was considered a priority. Nigss.
Ti50CU5C01.5, Ni44Ti49CU6Hf1, Ni42.3T129,7Cu5Hf20Fe3, and
Niyg4Tis6.5Cug sZr; were melted with vacuum arc melting
with near-100% pure elements cut with electrical discharge
machining (EDM), quartz encapsulated under argon, trea-
ted with a solution heat treatment (SHT) of 950 °C for
12 h, quenched, hot-rolled (by 20% reduction in thickness)
at 850 °C, and age-treated at either 350 or 550 °C for 12 h.
Transformation temperatures were tested with DSC. Based
on the results, Niyz 5Tis5oCusCo; s was further tested with
isobaric loading ranging between 0 and 500 MPa. The
transformation temperature results and the loading path
under 150 MPa can be found in Table 6 and Fig. 7,
respectively.

To summarize several of the key results and takeaways
from this work:

e The material Niy35TisoCusCo; 5 Af was within 10 °C
and the AT was within 6 °C of the material requirement
while thermally cycling under 150 MPa of stress. An
acceptable 4% actuation strain recovered during the
thermal cycle, as featured in Fig. 7. No cracking was
observed in the sample under any tested stresses;
however, irrecoverable strain increased considerably
with stress levels 300 to 500 MPa (&, = 1.7 to 4.5%).

Table 6 Transformation temperatures of Niyz sTisoCusCo; s after
solution treatment 950 °C for 12 h and hot-rolled at 850 °C under
150 MPa load

Transformation temperatures (°C)

My 65
M, 68
A, 90
A 99
ATy = (As — M) 31
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Fig. 7 Temperature vs. strain plot of NiyzsTisoCusCo;s under
150 MPa tension load

e The calculated work output using stress of 150 MPa
and actuation strain of 3.69% produces a final work
output result of 0.927 J/g. This value is incredibly high,
especially when compared with the benchmarks for
work output established in other literature [19, 76, 77].

e Niy, 3Tisg ,CusHfgFe; was found to be challenging to
process, and SHT suppressed the martensitic transfor-
mation of the material. NigyTizoCugHf; performance
was dominated by precipitate generation, leading to an
undesirable widened hysteresis and reduced ductility.

e NigyTige sCug sZr; similarly experienced precipitate
formation. While aging treatments reduced the size of
the precipitates and improved ductility, such treatments
increased transformation temperatures above the
desired level.

Spinal Curvature Correction Device

The objective was to design an externally worn pseudoe-
lastic brace that works similarly to orthodontic hardware
but maintains tension longer.

Desired transformation temperatures for the alloy used
in the correction device were M; slightly above 0 °C and Ay
between 20 and 30 °C. This would allow a constant
wearable stress throughout a range of strains because of the
material’s pseudoelasticity. The temperatures of these
materials could be reduced using an ice pack to drive the
alloy into the martensitic phase and reduce the amount of
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Table 7 Spinal curvature correction materials design requirements
presented by CASMART challenge guidelines

Requirement Description

Temperatures M slightly < 0 °C
Ar=20°Cto30°C
138 MPa/20 ksi
110.3 kPa/16 psi

912

Austenite plateau stress
Applied pressure
Cycles

stress required to unload the brace, leading to easier
removal. The alloy design had to consider beneficial
properties such as corrosion resistance, biocompatibility,
and light weight. The desired stresses for the alloy’s
austenite plateau were 20 to 30 ksi to maintain enough
force for the spine correction without causing the patient
discomfort or injury [78]. Ideally a patient would remove
the brace once a day, with a maximum wearable life of
2.5 years, which equates to a maximum of 912 cycles.
Design requirements for the Spinal curvature correction
material challenge is summarized in Table 7.

Materials Study II1

Team Immacule: Myly Fabre, Brandon King, Matthew
LeBeau, and Sydney Nelson The team from Colorado
School of Mines began by determining the optimal trans-
formation temperatures for this application to enable full
transformation at body temperature (Af= 20 to 30 °C,
M; =0 °C) with 20 to 30 ksi. The stress would be con-
trolled through stress-induced martensitic transformation or
with an ice pack by temperature-induced transformation to

avoid discomfort for the user. Other material characteris-
tics, such as biocompatibility, weight, cost, and fatigue life,
were considered in the selection of the two alloy systems.
The alloy systems NiTiHf and CuAINi were chosen to
develop for the application. The team constructed a heat
treatment matrix to evaluate several conditions, using heat
treatment procedures from recent literature to tailor trans-
formation temperatures of Ni-rich NiTiHf alloy systems
utilizing H-phase precipitation [79]. For CuAINi, standard
and cyclic heat treatments were evaluated based on grain
growth effects to minimize the stress hysteresis. Pseudoe-
lasticity and stress to failure were tested under the fol-
lowing conditions: the Nis;Tizq sHf5 5 alloy was solution
treated at 1050 °C for 24 h and aged in air at 550 °C for
3.5h and air cooled, and the Cugg74Aly75Niy 1 was
annealed at 900 °C for 20 min, furnace cooled at a rate of
3.3 °C/min to 500 °C for 10 min followed by a 10 °C/min
temperature increase to 900 °C for 60 min, then water
quenched. Both alloy systems demonstrated pseudoelas-
ticity at 25 °C as shown in Fig. 8a and b, respectively. The
stress to failure results for Nis;Tize sHf 5 5 alloy to exhibit
compression strength to be nearly 1900 MPa while the
Cu6g.74A127,15Ni4.11 alloy exhibited 620 MPa. The Clau-
sius—Clapeyron relation was used to determine the loading
stress at body temperature 37 °C.

To summarize several of the key results and takeaways
from this work:

e Nis Tize sHf 25 showed no transformation via DSC
within the range of — 150 °C to 150 °C; however, the
alloy demonstrated pseudoelasticity behavior with a
martensitic starting stress (d¥) = 26.99 MPa and a
stress hysteresis of 6.82 MPa. The loading stress at
37 °C was predicted to be 97.2 MPa using the Clau-
sius—Clapeyron relation.
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Fig. 8 a Compression test response for NiTiHf at 25 °C showing pseudoelastic response after heat treatment. b Compression test response for

CuAlINi at 25 °C showing pseudoelastic response after heat treatment
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e  Cugg74Al>715Nig 11, which exhibited transformation
temperatures closest to body temperature, was validated
via compression testing with a ¢¥ = 26.68 MPa and
hysteresis = 7.62 MPa. The loading stress at 37 °C was
predicted to be 62.68 MPa using the Clausius—Clapey-
ron relation. Microscopy images of the CuAlNi alloy
systems showed columnar grains in the range of 800 to
900 nm. A stress relief heat treatment is recommended
to be performed in further development due to brittle
alloys breaking prematurely. It is also recommended
that different geometries be evaluated to determine the
effects of grain structure on performance.

e Overall, each material met the desired design require-
ments and should help in the development of new
scoliosis braces. The NiTiHf alloy would be a better
option for higher strength, but the CuAINi alloy would
be a cost-effective alternative.

Conclusion

This paper presented research from a biennial student
design competition hosted by Consortium for the
Advancement of Shape Memory Alloy Research and
Technology (CASMART) in which teams address real-
world problems facing the shape memory alloy (SMA)
community and receive guidance and feedback from
CASMART members. The CASMART Student Design
Challenge is meant to inspire the next generation of SMA
research and is used as an outreach strategy to promote the
implementation of state-of-the-art designs with SMA
technology. Results from 7 of the 14 teams competing in
the CASMART 3rd Student Design Challenge were pre-
sented in this paper. Each of the case studies presented
adopted one of two design perspectives: to design the
material or to design with the material. The general out-
comes of the CASMART 3rd Student Design Challenge
may be summarized as follows:

e More complex designs presented more challenges.
Several cases began with interesting but complex
designs. Complex design can refer to the number of
mechanical components and geometries, or for mate-
rials, examining a combination of compositions, pro-
cessing methods, and thermo-mechanical response. As
an initial assessment, it is recommended to start with
designing the degree of freedom to isolate the
complexity.

e Time and budget constraints limited redesign and
refabrication of the necessary components to support
a new linear motion system, so results were evaluated
on a component level by testing subsystems
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individually and comparing results to initial analysis.
Timeframe and budgetary restrictions on the project
limited the number of parts that could be redesigned,
and further thermal analysis and material selection to
accommodate expected temperatures will need to be
incorporated in future work.

e Designing with SMAs can be circular (material prop-
erties can vary widely across alloy systems and
manufacturing and are hard to choose to meet a design
specifications/requirements.

e Characterizing high-cycle fatigue, load-bias testing
should be performed utilizing the same heat treatment
cycles, in which SMA samples are loaded to the
predicted electromagnetic reactive loading conditions
expected in the device’s operation and then thermally
cycled using a programmable power supply and a joule
heating circuit or similar mechanism for cycling.

e Alloy composition design and processing parameters
require a systematic approach to isolate effects caused
by solutionizing, aging, and other processing methods.
Experimental variables such as elemental additions,
time, and temperature will affect a variety of material
characteristics, such as the type, the size, and the
distribution of precipitate or the ductility while being
mechanically worked.
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