

News & Views

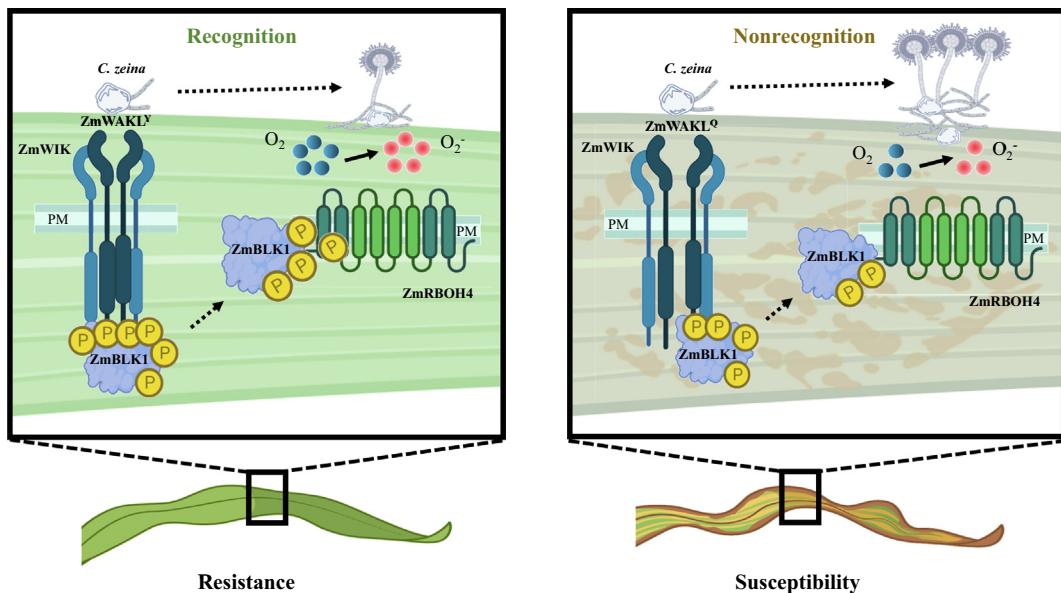
A novel recognition-transmission-execution module in maize immunity

Xiuyu Wang^a, Ashline Matthew^b, Daowen Wang^a, Hongyuan Zheng^{a,*}, Zhengqing Fu^{b,*}^a State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China^b Department of Biological Sciences, University of South Carolina, Columbia SC 29208, USA

Maize (*Zea mays* L.) stands as one of the most extensively cultivated crops worldwide [1]. With its widespread cultivation comes a plethora of challenges, including diseases caused by a wide range of pathogens [2]. Gray leaf spot (GLS) is a foliar disease that drastically reduces worldwide maize production. Since it was first identified in the US in the 1920s, the disease has spread around the globe, severely affecting corn production. GLS is predominantly instigated from infection by *Cercospora zeae-maydis* and *Cercospora zeina* [3]. In many parts of China, GLS is an important disease [4]. In severe cases, GLS can lead to a reduction of yield by up to 40%. Hence, it is urgent to control the spread of this disease [3]. Developing and utilizing pathogen-resistant crop cultivars is the most economical and environment-friendly measure for controlling plant diseases. Scientists have dedicated significant efforts to characterize GLS resistance genes in maize. To date, *ZmCCoAOMT2* (caffeooyl-CoA O-methyltransferase 2) and *ZmMM1* (Mexicana lesion mimic 1) are the only two genes that have been shown to confer resistance to GLS [5,6]. However, to facilitate the development of resistant cultivars, there is an urgent need for additional genes that are effective against GLS and a clearer understanding of the molecular mechanisms underlying the regulation of host plant resistance to GLS.

It is now well-accepted that the plant immune system consists of two layers: pattern-induced immunity (PTI) and effector-triggered immunity (ETI). PTI relies on cell surface-located pattern recognition receptors (PRRs) to sense pathogen invasion and initiate immune responses. On the other hand, ETI is an enhanced form of defense that occurs after the detection of avirulent pathogen effectors by host intracellular nucleotide-binding domain leucine-rich repeat (NLR) proteins, which often exhibit high race specificity [7,8]. Mounting evidence indicates that ETI and PTI reinforce each other to bolster robust defense responses [9]. Over recent years, wall-associated receptor kinase (WAK) and WAK-like kinases (WAKLs) have emerged as two new categories of PRRs that confer resistance to pathogens in plants [10,11]. For instance, WAK22 and ZmWAK-RLK1 have been identified as key players in providing resistance to *Fusarium* races in *Arabidopsis* and northern corn leaf blight caused by *Exserohilum turcicum*, respectively [12,13]. However, the specific molecular mechanism by which

plants recognize pathogens, transmit immune signals, and execute defense responses remains largely unknown. Recently, an exciting study by Zhong et al. has shed new light on these mysteries [14].


By performing Quantitative trait loci (QTL) analysis using a genetic population derived from the inbred lines Y32 and Q11 that were resistant and susceptible to GLS, respectively, Zhong and colleagues mapped *qRgls1*, a major quantitative resistance site that enhanced GLS resistance by 19.70% to 61.28% [14]. Through fine mapping and transgene complementation verification, the investigators found a functional gene locus *ZmWAKL* encoding a WAK-like kinase. The Y32 and Q11 alleles of *ZmWAKL* (*ZmWAKLY* and *ZmWAKLQ*, respectively) differed primarily in the extracellular domains of their deduced proteins, exhibiting a sequence identity of only 62.8%. A chimera gene was engineered by substituting the extracellular domain of a disease-resistant gene with that of a susceptible gene, which demonstrated the pivotal role of extracellular domain in controlling maize resistance to GLS [14].

Given that PRRs have been demonstrated to engage with a coreceptor for substrate recognition and signal transduction [15], the researchers conducted immunoprecipitation assays utilizing extracts from transgenic plants overexpressing *ZmWAKLY-GFP*, followed by mass spectrometry analysis [14]. A plasma membrane-localized leucine-rich repeat receptor-like serine/threonine protein kinase, *ZmWIK*, was found to interact with *ZmWAKL*. Two distinct maize transgenic lines engineered to overexpress *ZmWIK* exhibited significantly reduced symptoms of GLS compared to the wild type (WT) inbred line B73. Conversely, *ZmWIK* null mutant plants, generated using ethyl methanesulfonate (EMS), showed increased susceptibility to GLS in field trials when compared to WT plants. Furthermore, the *ZmWAKLY* protein encoded by a disease-resistant allele had the ability to form dimers and interacted with its coreceptor *ZmWIK* located on the plasma membrane, thereby forming the *ZmWAKLY/ZmWIK* immune complex. This complex enhanced the phosphorylation levels of both proteins. Given the capacity of *ZmWAKLY* to recognize GLS pathogens, the phosphorylation levels of this complex likely play a role in regulating kinase-mediated resistance in maize (Fig. 1).

To date, two prominent receptor-like cytoplasmic kinases (RLCKs), *Botrytis*-induced kinase 1 (BIK1) and PBL1 (*avrPphB* susceptible 1-like 1), have been identified as key components downstream of PRRs, responsible for transmitting defense signaling in plants [16]. During the investigation into whether a similar RLCK could contribute to *ZmWAKL*-mediated immunity, a cytoplasmic

* Corresponding authors.

E-mail addresses: zhenghongyuan@henau.edu (H. Zheng), zfu@mailbox.sc.edu (Z. Fu).

Fig. 1. A proposed model illustrating the functioning of the ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 module in maize defense against gray leaf spot disease. (a) ZmWAKL^Y forms homodimers and interacts with the coreceptor ZmWIK at the plasma membrane. Upon recognition of the maize gray leaf spot pathogens, the ZmWAKL^Y/ZmWIK complex rapidly increases its phosphorylation activity, transmitting immune signals to ZmBLK1 and enhancing its phosphorylation. Eventually, ZmBLK1 interacts with and phosphorylates ZmRBOH4, triggering ROS burst to defend against the pathogens. (b) In contrast, ZmWAKL^Q is unable to form homodimers and exhibits weak interaction with ZmWIK. Consequently, upon pathogenic challenge, there is insufficient enhancement in phosphorylation activity, leading to an inadequate defense response against the pathogens. PM denotes the plasma membrane. The figure was created with the software BioRender ([BioRender.com](https://biorender.com)).

receptor-like kinase, ZmBLK1, was discovered to interact with the ZmWAKL^Y/ZmWIK complex. This interaction may result in the formation of an immune signaling complex at the plasma membrane. Moreover, it was observed that ZmBLK1 was phosphorylated directly by ZmWIK within the ZmWAKL/ZmWIK/ZmBLK1 complex, with ZmWAKL^Y enhancing the phosphorylation process. Conversely, ZmWAKL^Q did not exhibit this enhancing effect on phosphorylation (Fig. 1). These findings provide evidence for a molecular mechanism by which the ZmWAKL^Y/ZmWIK complex activates downstream defense signaling pathways through the phosphorylation of ZmBLK1.

In *Arabidopsis*, BIK1 plays a crucial role in enhancing immunity through the generation of a reactive oxygen species (ROS) burst, achieved by its direct binding to and phosphorylation of the NADPH oxidase RBOHD [17]. Does the execution of the defense response downstream of ZmBLK1 involve ROS burst? Zhong et al. [14] investigated this question and discovered that ZmBLK1 interacted with and phosphorylated the maize NADPH oxidase ZmRBOH4 on the plasma membrane. Knockout mutant plants of ZmRBOH4 generated using CRISPR/Cas9 exhibited significantly increased susceptibility to GLS compared with WT plants. By integrating the different datasets generated, a recognition-transmission-execution module acting in maize resistance against GLS is proposed (Fig. 1). In essence, when ZmWAKL^Y detects a pathogenic invasion, its phosphorylation activity rapidly increases, initiating an immune signaling cascade from ZmWAKL^Y to ZmWIK, then to ZmBLK1, and ultimately to ZmRBOH4. This cascade leads to enhanced generation of ROS, culminating in a strong resistance against GLS (Fig. 1).

For the first time, Zhong et al. [14] showcased the characterization of the ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 module in maize resistance against GLS. This breakthrough represents a significant stride in deciphering the intricate, yet finely tuned immunity mechanisms that dictate a plant's susceptibility or resistance to fungal pathogens. While this study sheds light on the role of ROS burst in this resistance, it remains to be explored whether other key defense processes, such as calcium influx, may be activated during the signaling mediated by ZmWAKL-ZmWIK-ZmBLK1.

Another important issue is the specificity of ZmWAKL-ZmWIK-ZmBLK1. May it be broadly effective against multiple pathogens? Moreover, do other plant species have immune signaling modules similar to ZmWAKL-ZmWIK-ZmBLK1? Furthermore, previous studies have identified two genes that are effective against GLS. *ZmCCoAOMT2* regulates metabolite levels in the phenylpropanoid and lipoxygenase pathways, as well as the regulation of programmed cell death [5]. Additionally, the teosinte allele of *ZmMM1* enhances maize resistance to GLS without incurring plant growth or yield penalties [6]. Notably, both of these genes, along with this newly identified module, play crucial roles in regulating cell death during GLS defense. Therefore, it is imperative to explore the effects of different gene combinations in maize GLS resistance breeding, and to develop effective and targeted strategies for maintaining the delicate balance between plant disease resistance and growth. Further studies of these questions will not only deepen the understanding of plant immunity to pathogens but also pave the way for engineering innovative and effective resistance against the diverse diseases that frequently erupt and ruin precious agricultural crops.

CRediT authorship contribution statement

Xiuyu Wang: Writing – original draft. **Ashline Matthew:** Writing – review & editing. **Daowen Wang:** Writing – review & editing. **Hongyuan Zheng:** Conceptualization, Writing – original draft. **Zhengqing Fu:** Conceptualization, Funding Acquisition, Writing – original draft.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the National Science Foundation (IOS-2207677).

References

- [1] Yan J, Warburton M, Crouch J. Association mapping for enhancing maize (*Zea mays* L.) genetic improvement. *Crop Sci* 2011;51:433–49.
- [2] Yang Q, Balint-Kurti P, Xu M. Quantitative disease resistance: Dissection and adoption in maize. *Mol Plant* 2017;10:402–13.
- [3] Kuki MC, Scapim CA, Rossi ES, et al. Genome wide association study for gray leaf spot resistance in tropical maize core. *PLoS One* 2018;13:e0199539.
- [4] Liu KJ, Xu XD. First report of gray leaf spot of maize caused by *cercospora zeina* in China. *Plant Dis* 2013;97:1656.
- [5] Yang Q, He Y, Kabahuma M, et al. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. *Nat Genet* 2017;49:1364–72.
- [6] Wang H, Hou J, Ye P, et al. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize. *Mol Plant* 2021;14:1846–63.
- [7] Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). *Mol Plant* 2015;8:521–39.
- [8] Cui H, Tsuda K, Parker JE. Effector-triggered immunity: From pathogen perception to robust defense. *Annu Rev Plant Biol* 2015;66:487–511.
- [9] Chang M, Chen H, Liu F, et al. PTI and ETI: Convergent pathways with diverse elicitors. *Trends Plant Sci* 2022;27:113–5.
- [10] Deltiel A, Gobbato E, Cayrol B, et al. Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. *BMC Plant Biol* 2016;16:17.
- [11] Stephens C, Hammond-Kosack KE, Kanyuka K. WAKsing plant immunity, waning diseases. *J Exp Bot* 2022;73:22–37.
- [12] Diener AC, Ausubel FM. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant *Arabidopsis* disease-resistance gene, is not race specific. *Genetics* 2005;171:305–21.
- [13] Hurni S, Scheuermann D, Krattinger SG, et al. The maize disease resistance gene *Htn1* against northern corn leaf blight encodes a wall-associated receptor-like kinase. *Proc Natl Acad Sci USA* 2015;112:8780–5.
- [14] Zhong T, Zhu M, Zhang Q, et al. The ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 module provides quantitative resistance to gray leaf spot in maize. *Nat Genet* 2024;56:315–26.
- [15] Sun Y, Li L, Macho AP, et al. Structural basis for flg22-induced activation of the *Arabidopsis* FLS2-BAK1 immune complex. *Science* 2013;342:624–8.
- [16] Tang D, Wang G, Zhou J. Receptor kinases in plant-pathogen interactions: More than pattern recognition. *Plant Cell* 2017;29:618–37.
- [17] Kadota Y, Sklenar J, Derbyshire P, et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. *Mol Cell* 2014;54:43–55.

Hongyuan Zheng is an associate professor at the College of Agronomy, Henan Agricultural University. His research interest is centered on investigating the mechanisms governing plant growth and responses to environmental stresses via the exploration of ethylene biosynthesis and signaling pathways. The overarching objective is to utilize this comprehension to bolster wheat agronomic traits through the strategic application of this knowledge.

Zheng qing Fu is a professor at the University of South Carolina, Columbia. The research projects in his lab focus on type III effectors from Gram-negative plant bacterial pathogens and salicylic acid-mediated plant defense against pathogens.

Xiuyu Wang is currently pursuing a Master degree at Henan Agricultural University. Her research direction is dedicated to studying and improving wheat resistance to biotic stresses using molecular and genomic methodologies.