Neural Computing and Applications
https://doi.org/10.1007/500521-023-08719-2

ORIGINAL ARTICLE q

Check for
updates

An advanced spatio-temporal convolutional recurrent neural network
for storm surge predictions

Ehsan Adeli' - Luning Sun” - Jianxun Wang? - Alexandros A. Taflanidis’

Received: 28 December 2022/ Accepted: 31 May 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract

In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm
track/size/intensity history, leveraging a database of synthetic storm simulations. Traditionally, computational fluid
dynamics (CFD) solvers are employed to numerically solve the storm surge governing equations that correspond to
expensive to evaluate partial differential equations (PDE). This study presents a neural network model that can predict
storm surge, informed by a database of synthetic storm simulations. This model can serve as a fast and affordable emulator
for the expensive CFD solvers creating the original database. The neural network model is trained with the storm track
parameters used to drive the CFD solvers, and the output of the model is the time-series evolution of the predicted storm
surge across multiple nodes within the spatial domain of interest. Once the model is trained, it can be deployed for further
predictions based on new storm track inputs. The developed neural network model is a time-series model, composed of a
long short-term memory (LSTM), a variation of recurrent neural network (RNN), further enriched with convolutional
neural networks (CNNs). The convolutional neural network is employed to capture the correlation of data spatially (across
the aforementioned nodes). Therefore, the temporal and spatial correlations of data are captured by the combination of the
mentioned models, representing the ConvLSTM model. As the problem is a sequence to sequence time-series problem, an
encoder—decoder ConvLSTM model is designed. Furthermore, the performance of the developed convolutional recurrent
neural network model is improved by residual connection networks. Additional techniques are employed in the process of
model training to enrich the model performance that the model can learn from the data in a more effective way. The
performance of the developed model is compared with the results provided by a Gaussian process (GP) implementation,
representing a state-of-the-art alternative for establishing time-series emulation of storm surge predictions. The results
show that the proposed convolutional recurrent neural network outperforms the GP implementation for the examined
synthetic storm database.

Keywords Advanced neural networks - Storm surge prediction - Recurrent neural networks - Convolutional neural
networks

1 Introduction

Predicting future storm surge-related impact is receiving
growing attention within the global scientific community,
recognizing the widespread socio-economic implications of
D< Ehsan Adeli this natural hazard that need to be addressed within diverse

cadeli@nd.cdu prevention, mitigation, and post-disaster settings [1].
Efforts to provide enhanced decision support against these

Department of Civil & Environmental Engineering & Earth

Sciences, University of Notre Dame, Notre Dame, IN 46556, imminent dangers over the past couple of decades have
USA focused, among other topics, on numerical advances for
2 Computational Mechanics & Scientific Al Lab, Department storm surge predictions, producing high-fidelity simulation
of Aerospace and Mechanical Engineering, University of models that permit a detailed representation of

Notre Dame, Notre Dame, IN 46556, USA

Published online: 15 June 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08719-2&domain=pdf
https://doi.org/10.1007/s00521-023-08719-2

Neural Computing and Applications

hydrodynamic processes and therefore support high-accu-
racy forecasting. One such computational fluid dynamics
(CFD) solver, utilized later in this paper, is ADCIRC [2],
which is widely used [3] to simulate with high accuracy
tidal circulation and storm surge propagation over large
computational domains, and is, furthermore, typically
coupled with appropriate models like SWAN [4] or
STWAVE [5] to additionally incorporate wave action
within the predictions. Unfortunately, the computational
burden of such numerical models is large, requiring thou-
sands of CPU hours for each simulation, something that
limits their applicability for real-time surge forecasting
(during landfalling events) or regional probabilistic flood
studies. Due to this computational complexity, such models
can be utilized to provide only a small number of high-
fidelity, deterministic predictions, but cannot -easily
accommodate thousand-run storm ensembles, for example
for examining the impact of forecast errors [6] in the pre-
dicted track during landfalling events. This dramatically
limits their utility for decision makers either in emergency
response management (during landfalling events) or
regional planning (long-term projection of storm impact)
settings.

To address these computational challenges associated
with high-fidelity solvers, and offer an alternative approach
for probabilistic storm forecasting and risk assessment
applications, machine learning tools and surrogate models
have attracted significant attention [7—15] for storm surge
emulation. Based on databases of synthetic storm simula-
tions, these approaches can provide fast-to-compute, data-
driven approximations for the expected storm surge. They
are capable of replacing, with a high level of accuracy, the
high-fidelity numerical model used that created the original
database, maintaining the detailed underlying representa-
tion of hydrodynamic processes [16], while offering sub-
stantial computational efficiency. The latter efficiency
makes them highly appropriate for supporting probabilistic
surge forecasting and coastal hazard estimation applica-
tions. As such, they can be leveraged to offer enhanced
decision support for emergency response managers and
regional planners [17, 18].

Among the different machine learning techniques that
could be considered for this application, artificial neural
networks has shown great promise [9, 11, 20-23]. This
study extends past efforts in this domain by considering a
neural network implementation for predicting the entire
time-series evolution of the storm surge using as input the
time-series evolution of the storm track (latitude and lon-
gitude of eye of storm), intensity (pressure at center of
storm) and size (radius of maximum winds). Past studies
have focused on prediction of peak surge only (as opposed

@ Springer

to the time evolution of the surge) and/or used instanta-
neous characteristics of the storm features as inputs for
establishing the machine learning predictions. Should be
pointed out that focus on prediction of peak surge is
common in most studies that have examined storm surge
emulations, with very few establishing predictions for the
entire evolution of the storm surge. This study considers
simultaneously time-series properties for both the surge
predictions as well as the storm feature evolution,
addressing, additionally, the spatial character of the pre-
dictions. To accommodate this substantial extension, a
time-series recurrent neural network model (RNN) is
developed to predict the storm’s behavior. The spatial
correlation of data, i.e., the fact that the storm surge is
estimated across multiple locations within the geographic
domain of storm impact, is additionally considered by
applying convolutional neural networks (CNNs). Ulti-
mately, this allows both spatial and temporal correlations
of data to be comprehensively captured by using a con-
volutional recurrent neural network model. The model
input parameters to predict the storm surge are time series
for the storm track, size and intensity, while the model
output is the time series of the storm surge level for
specified locations along the coast.

Mathematically speaking, the typical neural network
model maps the input parameters (layer) zop € R™ (the
aforementioned four input parameters for our application)
to the output z; € R™ (surge values across different nodes
in the domain in our application). The layers between the
input and output layers are the hidden layers z;, where
I =1,...,L. Two adjacent layers are connected through the
formulation below.

2 =F(Wlz_ +b) (1)

In Eq. 1, W and b represents the model parameters, weight
matrix and bias vector, respectively, and F denotes the
activation function. After the model is trained, the model
parameters are determined, and the output surge prediction
can be rapidly computed from the given input parameters.
This forward computation that involves only matrix mul-
tiplications has negligible computational burden compared
to the original high-fidelity, CFD simulation. The model’s
performance is improved through developing the applied
neural network models. Additionally, various other tech-
niques to improve the model’s efficiency are considered in
the training process. The results are compared to the results
computed by a Gaussian process implementation [10],
which represents a state-of-the art alternative emulation
technique for predicting the time-series evolution of the
storm surge.

Neural Computing and Applications

The main novelty of this manuscript from the storm
surge application perspective is that it establishes neural
network-based spatio-temporal predictions across a large
geographic domain. Previous studies, as presented earlier,
have either focused on peak surge predictions (not
addressing time evolution of the surge), or have considered
time-series surge predictions for a moderate only number
of spatial nodes. For artificial neural network applications,
this has allowed these past previous studies to consider
independent formulations across the different nodes, with
no requirement on the trained network to describe addi-
tionally the spatial variability of the surge. Additional
novelties from the NN perspective include the development
and training a time-series neural network model which
considers the spatial and temporal correlation of the data
established through a unique combination of different
models, cells, and layers to address unique challenges
(detailed in Sect. 3) of the spatio-temporal storm surge
emulation problem.

In Sect. 2, we discuss the problem formulation and the
synthetic simulation data for training and testing of the
machine learning models. Section 3 describes the machine
learning methods and how the models are trained with the
provided data. Then, results and comparison discussions
are provided in Sect. 4. Finally, the conclusions are given
in Sect. 5.

2 Storm surge prediction problem
characteristics

The devastating flooding effects of numerous storms in the
past two decades, such as hurricane Katrina and superstorm
Sandy, have incentivized researchers to establish high-ac-
curacy models to predict storm surge impact on coastal
regions. These efforts have produced numerous advanced
numerical CFD solvers [2, 3, 16, 24] used by various actors
for emergency response management or regional planning.
These solvers simulate the storm surge by solving the
shallow water wave equations given the initial and
boundary conditions. The simulation is driven by the
atmospheric pressure and wind velocity that describes the
time evolution of the hurricane vortex. This wind and
velocity input can be derived through information for the
storm track (location of center of rotation and forward
speed of the vortex), size and intensity [25, 26], with
intensity described by the wind speed or the pressure loss
between the center and the far-away ambient conditions,
and size described by the distance between the center and
the location of maximum wind speeds. Interested readers
can found additional information for hurricane physics and

modeling in [27]. These numerical tools can be ultimately
used to accommodate deterministic and probabilistic
approaches for establishing storm surge predictions
[6, 28-32].

As discussed in the introduction, the aforementioned
models provide high-accuracy estimates (empowered by
high-resolution spatial grids), but entail a very large com-
putational cost that posed a great challenge for their
widespread use, especially in the context of probabilistic
assessments for real-time forecasting applications. To
overcome this challenge, machine learning techniques can
be developed that leverage precomputed datasets of syn-
thetic hurricane simulations, providing information for
storm parameters, paths and surge responses. Within this
setting, the unknown functional relationship between
inputs (hurricane parameters) and responses (storm surge)
can be approximated by some type of regression, response
surface or non-parametric emulation model. Specifically,
this study focuses on artificial neural network (ANNS)
implementation. Substantial research efforts have already
been made to consider ANN applications within storm
surge emulation setting.

Lee et al. [33-35] conducted research on shallow net-
works with a limited number of neurons to predict the
storm surge for a few typhoons impacting Taiwan. A
similar study with almost a similar size of networks has
been carried out by De Oliveira et al. [36] for the southeast
coastal region of Brazil. Another study to reduce the
uncertainty of storm surge prediction for Venice, Italy, is
conducted by Bajo et al. [37], again using shallow neural
networks. It should be pointed out that in the mentioned
studies, the neural network models are trained with very
few storms, limiting predictive potential of the network and
ability to establish in-depth learning from the data. To
improve the model’s performance, Kim et al. [9] has used a
bigger set of data established by using the ADCIRC model
for the New Orleans region, and trained a shallow network
which is tested on the historical hurricane Katrina. Note
that the model they applied was not a time-series neural
network model, and therefore, the temporal correlation of
data was not properly leveraged within the model devel-
opment. Several other similar studies have been carried out
by Hashemi et al. [38], Kim et al. [39], Chao et al. [40] and
Das et al. [41] for other geographical regions, using larger
training datasets (with larger number of storms) to train
neural network models. However, these efforts did not,
once again, consider the temporal correlation of the storm
data.

More recently, a number of studies have employed time-
series models to predict storm surge based on the time
evolution of the storm input parameters, in all cases

@ Springer

Neural Computing and Applications

utilizing a small number of storm simulations. Alemany
et al. [42] has employed a recurrent neural network (RNN)
to predict the storm surge when it gets close to the beach
based on the very initial part of the surge. Igarashi et al.
[43] has also employed a standard recurrent neural network
by utilizing a database of about 150 storms to estimate the
surge for future storm events. Furthermore, Chen et al. [44]
have applied a standard modification of the time-series
model called long short-term memory (LSTM) model and
trained it with a database of twelve storms.

In most of the aforementioned studies, the models are
trained with a limited number of storm observations. Also
in all these studies, the number of grid points for which the
surge is predicted is relatively small. This is accomplished
either by examining a small geographic region only, or by
establishing some type of clustering approach, to reduce
the original grid to a smaller number of representative
points. Moreover, the standard sequence neural network
models are mostly used as a black box in these studies, and
no development and further investigation is applied to the
standard time-series models, to accommodate some of the
unique features of the storm surge emulation problem.

This study, extends these past efforts and considers a
neural network implementation for predicting the time-
series evolution of the storm surge across a geographic
domain including a large number of save points (SPs),
utilizing a database with a large number of storm surge
simulations. The database is part of the Army Corps of
Engineers Coastal Hazard System [18] and corresponds to
synthetic storms simulations for the greater Coastal Texas
region with a total of 4800 SPs, also shown in Fig. 1. The
database was developed for a regional flood study and
consists of storms selected based on a variation of the joint-
probability-method optimal sampling (JPM-OS), to popu-
late the input domain of plausible future storms. JPM-OS
[REF] resembles a Bayesian quadrature numerical
scheme for selecting storm samples, and, therefore, yields
datasets that deviate from traditional space-filling sampling

Fig. 1 Grid of save points within the region of study

@ Springer

schemes (prioritize coverage of probability space). The
high-fidelity numerical model utilized for predicting storm
surge for creating the database was ADCIRC [19]. Five
hundred storms will be used for calibration of the neural
network emulator, and an additional eight storms will be
used as test sample for its validation. The input for the
synthetic storm simulations corresponds to: the latitude and
longitude of the storm center (storm track parameters), the
central pressure deficit (storm intensity parameter) and the
radius of max winds (storm size parameter). The time
evolution for all these four parameters is utilized as input to
the neural network. Note that some recent studies have
considered some additional, derived parameters for
describing the neural network input, namely the forward
speed and the track heading [20], but these correspond to
redundant storm characteristics if time evolution of the
storm features is examined (instead of instantaneous fea-
tures) and contribute to an over-parameterization of the
database. As such, the input is represented by only four
storm parameters. The predicted output corresponds to the
storm surge across the 4800 SPs. This creates a sequence-
to-sequence prediction problem, with both the input and the
output of the neural network corresponding to sequences.
Such sequence prediction problems are widely acknowl-
edged to be exceptionally challenging.

For both the input and the output, 125 time steps are
utilized, extending from the time each storm is a couple
thousands of kilometers before making landfall, to a few
hundred kilometers after making landfall. This range is
chosen to encompass the time instances the maximum
surge manifests across the entire geographic domain of
interest. Note that the selection of range and time-stepping
based on distance to landfall has been shown very recently
to provide benefits for surge emulation applications [46].
Synchronization of the time series is established with
respect to the landfall for each storm, as done in past
studies [9]. This landfall corresponds roughly to step 90.
Figures 2 and 3 show variation of the four input parameters
for a typical storm and the variation of the surge for dif-
ferent nodes for the same storm, respectively. It is evident
from this figure that the size and intensity of the synthetic
storms remain practically unchanged before the storm
makes landfall. This is common characteristic of many
synthetic storm databases and creates some challenges for
the neural network application as will be detailed later.

3 Neural network methods
3.1 Convolutional long short-term memory

Long short-term memory (LSTM) [47] is a class of
recurrent neural networks (RNNs) [48], capable of

Neural Computing and Applications

m
o
1000 1 | ",
/ 5, 24.4 /\s.s
o} q) .'.
980 - s B 549 7 "
e F-4 e rd *
T 960 o 3 Vi R
_g . C 24.01 5 L)
= N o] s “,
o 9401 s o rd ",
£ 5 £ 238 Vi 3
= a = & %,
2 9201 ; 2 £ *,
o . 2 236 ™,
& 9001 Vi o Ay
[}
23.4 1 .,
880 - F g = W
/ 2 \
860 g 23:2] .
T T T T T T T) T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time step Time step
v =
o € ~
;5; -87.51 X 501 $
z 3 5
— —90.01 € 451 R
% 3 .
o -92.5- € 401 .
(] = |
E _950] E 35 1 .
o b .
% £
ug —-97.5 1 = 30 1
S -100.01 525 f
= -g)/’
g’ -102.51 & 20
= 0 20 40 60 8 100 120 0 20 40 60 80 100 120
Time step Time step

Fig. 2 Input parameters for a typical database storm

2.5 1

2.0 1

1.51

1.0

Surge

051,
0.0

—0.51

0 20 40 60 80 100 120

Time step

Fig. 3 Surge output for different SPs for a typical database storm

addressing the gradient vanishing problem for long-term
temporal dependencies encountered in RNNs. LSTMs have
a memory cell that can maintain information in memory for
a long period of time, and also gates that allow for better
control over the gradient flow by forgetting, updating, and
outputting part of the needed information. These gates

represent the essential component for enabling better
preservation of long-term time dependencies. To consider a
simultaneous spatial and temporal learning framework, an
extension of LSTMs named ConvLSTMs [49] is employed,
representing a convolutional neural networks (CNNs)
extension of LSTMs. Specifically convolutional layers are
employed instead of the fully connected NNs (dense lay-
ers) in gated operations because of their better represen-
tational capability of spatial connections. Thus, the applied
ConvLSTM extended form of the long short-term memory
(LSTM) represents a spatio-temporal formulation, specifi-
cally developed for the purpose of sequence-to-sequence
learnings. Figure 4 demonstrates a typical graphic of
ConvLSTMs.

In Fig. 4, X, stands for the input tensor. The hidden state
and cell state are indicated by h; and C;, respectively, and
are updated at each time t. The ConvLSTM cell consists of
four gate variables facilitating input-to-state transition and
state-to-state transition. The forget gate and input gate are
indicated with {f,} and {i;}, respectively, at time ¢. The
other two gates, an internal cell and an output gate, are also

denoted with {C} and {0}, respectively.

@ Springer

Neural Computing and Applications

Fig. 4 Single ConvLSTM cell
at time t

Ci

(%) | Itz\nh(x)l |(T(*

hi

The sigmoid activation function o(-) is used for the
gates, leading to the mapping of the outputs to values
between 0 and 1. Therefore, the forget gate layer adaptively
clears the memory information in the cell state {C,_; }. The
memory stored in the cell state originates from the coop-
eration between the input gate layer and the internal cell
state, where the internal cell state is a new cell candidate
created from the hyperbolic tangent activation layer (i.e.,
tanh(-)), and the input gate layer decides the information
propagating into the cell state. Lastly, the output gate layer
filters and regulates the cell state for the final output vari-
able/hidden state. The updating ConvLSTM is governed by
the mathematical formulations which are described in
Eq. 2.

i = G(Wi * [Xt,h[,l] =+ bl)
fi=0(Wex [Xy, 1] + by)
C_i = tanh(W, = [X, h_,] + b.)

2a
2b
2c

Cii :ft OC1 +i ® ét—l 2d

(2a)
(2b)
(2¢)
(2d)
00 = a(Wo % [Xe, hi_1] + bo) (2e)

In Eq. 2, * indicates the convolutional operation and ©
denotes the Hadamard product. Also, {W;, W, W, W,}
are the weight parameters of the model for the corre-
sponding filters where {b;,bs,b.,b,} represent bias
vectors.

3.2 Additional techniques
The input and label data for a typical storm are shown

earlier in Sect. 2 in Figs. 2 and 3. As discussed earlier,
Fig. 2 clearly shows that some of the key input data (size

@ Springer

ll(

and intensity of storm) do not vary substantially before the
storms makes landfall, creating significant challenges for
effective training. A standard ConvLSTM model is not able
to learn from such data as it needs to establish a one-to-one
learning [45]. Initial attempts to train such a standard
ConvLSTM model to predict the upcoming storm surge
based on the desired inputs were unsuccessful. Therefore, a
few techniques were developed, discussed below, to adapt
the model to the specifics of the provides datasets.

To accommodate the need to establish a sequence-to-
sequence prediction model [45], an encoder—decoder, a
popular approach of organizing recurrent neural networks
for sequence-to-sequence prediction applications, is used.
Encoder—decoder models are very capable with the
sequential data [45, 50]. With a finely tuned LSTM layer,
we can make a whole network perform appropriately with
the sequential information of the data by making the net-
work memorize the sequence. The encoder—decoder mod-
eling involves two recurrent neural networks: one for
reading the input sequence, called the encoder and a second
to decode the encoded source sequence into the target
sequence, decoding the fixed-length vector and outputting
the predicted sequence, called the decoder. Here, our
original model is combined with the encoder—decoder
network model to build a high-performance model for the
desired sequential data. The encoder—decoder structure is
an end-to-end training; therefore, we do not need to
explicitly train a latent representation model. This repre-
sents a key component of the proposed solution to the
modeling process, because it is a dimension reduction
technique [51] and therefore can capture the feature of
latent space very well. Furthermore, it is very convenient
and has already demonstrated effectiveness in many con-
volutional neural network-based models [52-54].

Neural Computing and Applications

Inspired by the forward Euler scheme, a global residual
connection is also designed. The residual connection is
between the input state variable u; and the output variable
u; . The learning process at time instant t; is formulated as
ui 1 = u; + 6t- NN[u; 0], where NN denotes the trained
network operator and t is the time interval. Based on this
formulation, the output state variable u;, at time instant t;
switches into the input variable at #;;;. These residual
connection networks represent the second technique
employed to improve the performance of the developed
model.

The other technique we leverage is pixel shuffle [55],
which is an upsampling strategy. Pixel shuffle maintains
satisfactory reconstruction accuracy in image and video
super-resolution tasks without high computational and
memory costs [55]. In comparison with deconvolution [56],
which always needs more layers to reach the expected
resolution, pixel shuffle has lower computational com-
plexity. Beyond that, another advantage of pixel shuffle is
that it introduces fewer checkerboard artifacts compared
with deconvolution [57]. The final developed model
structure, incorporating all aforementioned advances, is
shown in Fig. 5 where PS stands for pixel shuffle.

As shown in Fig. 5, the initial state variable indicated
with u is provided to the encoder block with three con-
volutional layers indicated by light yellow color. The
ConvLSTM cell is then fed with the encoder data output.
Also, the hidden state and cell state, indicated with k&, and
C,, respectively, are provided to the ConvLSTM cell of the
next state. The output of the ConvLSTM is deconvoluted
through the Pixel Shuffle layer and finally the data are
passed through a dense layer in the decoder block. The
output of the encoder, ConvLSTM cell, and the decoder,
which is our trained network operator A’ for this certain
state, is finally multiplied by a constant, ot, and is summed

up with the initial state u(and labeled as the next state
variable, u;. This process continues for all the states from
the first time state to the final time state ut at t denoted in
Fig. 5. The outcome of our neural network model is then
compared with the true values and a minimization problem
is solved in each epoch, before a same process is applied in
the next epoch.

3.3 Training process

Considering the special shape of inputs shown for one
storm in Fig. 2, i.e., the fact that, as stressed earlier, certain
inputs are not changing very much over time, special
attention needs to be given to data standardization. We first
standardize these four inputs separately, one by one, using
x' = *£ where y and ¢ are the mean and standard devia-
tion, respectively. The label data (the outputs), shown in
Fig. 3, are also normalized in a way that they centralized
around zero by means of the hyperbolic function. The
model experiences a faster convergence for such normal-
ized data.

Before discovering the data through the ConvLSTM
cell, we pass the input data through the encoder to study the
entire sequence of the data. The encoder contains three
convolutional layers where the ReLU activation function is
employed for these layers. The kernel size, padding size,
and stride size for these three layers are 4 x 4, 1 x 1, and
2 x 2, respectively. These three layers’ input and output
channels are receptively 2 and 16, 16 and 32, and 32 and
64. Right before the encoder with these three convolutional
layers, three linear layers are designed, fed with four
inputs, and outputted the same dimension of label data,
4800 elements. For these linear layers, the hyperbolic
activation function, tanh, is used. Once the data are pro-
vided in the latent space, a ConvLSTM cell is employed

Fig. 5 Developed convolutional
recurrent neural network
(CRNN) structure

CRNN Decoder

Encoder

@ Springer

Neural Computing and Applications

Table 1 Convolutional

recurrent neural network model Cell Layer Filter/Upscale factor Output
architecture Input [100, 1, 4]
Dense [100, 1, 40]
Dense [100, 1, 400]
Dense [100, 1, 4800]
Reshape [100, 1, 120, 40]
Encoder Convolutional [4, 4, 16] [100, 16, 60, 20]
Convolutional [4, 4, 32] [100, 32, 30, 10]
Convolutional 4, 4, 64] [100, 64, 15, 5]
ConvLSTM ConvLSTM [5, 5, 64] [100, 64, 15, 5]
Decoder Pixel Shuffle [8] [100, 1, 120, 40]
Reshape [100, 1, 4800]
Dense [100, 1, 4800]
Output [100, 1, 4800]

where the kernel size, padding size, and stride size are
5x5,2x2,and 1 x 1, respectively. The input and output
channels for the ConvLSTM cell are both 64. Note that
model training in the latent space, where the ConvLSTM
layer is the optimal space to train the model. The only two
layers in the decoder are upsampling through pixel shuffle
explained in Sect. 3.2 and a final linear layer that outputs
the same shape of data as label data. It should be pointed
out that the pixel shuffling decreases the channel size from
64 to 1, as a pixel shuffle layer with an upscale factor 8 is
applied. It also increases the height and width of data by 8.
Table 1 summarizes all the employed layers, filter sizes,
and outputs of each layer separately. The training is carried
out with a batch size of 100. Therefore, each batch contains
100 storm data, and the steps above are repeated for all 125
time steps.

The model is trained with 35,000 epochs, and the
learning rate is selected as le —4. The L, norm loss

0.071

—— Training loss

0.06 1

© o
o o
5 G

o
o
w

Training loss

0.02 1

0.01

0.00

0 5000 1000015000 2000025000 3000035000
Epoch

Fig. 6 Loss function over epochs

@ Springer

function is minimized over the epochs by the mini-batch
gradient descent method as follows:

‘C(W’b) = HC(I,X,H) _ZL<t>x>0§ W7b)HL2(Q) (33)

W*.b* = argmin L(W,b) (3b)
Wb

In Eq. 3, £(-) stands for the loss function and the L,
norm is indicated with || - || ,) The CFD solution (storm

surge database predictions) is denoted with C(z,x,6) and
W* b* represent the (sub)optimal neural network parame-
ters, the weights and biases obtained from the optimization
problem.

The hyper-parameters are set initially randomly. Many
models with different sets of hyper-parameters are run in
parallel to find the models whose loss values converge over
epochs. Once the trainable models with specified hyper-
parameters are determined, the hyper-parameters are
evaluated in random search [58] to find the optimal set of
hyper-parameters. The loss function over epoch numbers
for the optimal model trained on the studied storm datasets
is shown in Fig. 6.

As Fig. 6 shows, the loss error decreases continuously
over epochs from about 7e — 2 to 3e — 4, which shows a
significant reduction. Once the model is trained, it is ready
to predict the storm surges for new storms with the pro-
vided input values. The next section assesses the train
model evaluation and the predicted storm surge’s accuracy.

Before concluding this section, we would like to point
out that the proposed neural network model was derived
after examining different alternative ones. These are
reviewed in Table 2. Effort initiated by examining simpler
models and as such models were not able to learn from the
data and their trends, more complicated models were
investigated leading eventually to the proposed model,
which was demonstrated to that it could accurately learn

Neural Computing and Applications

Table 2 Comparison of the

Temporal correlation

Spatial correlation

Training result

applied neural network model Model Layer

structures MLP Dense
MLP Dense/CNN
MLP/LSTM Dense
MLP/LSTM Dense/CNN
MLP/ConvLSTM Dense/CNN
CRNN Dense/CNN

No No Failed
No Yes Failed
Yes No Failed
Yes Yes Failed
Yes Yes Failed
Yes Yes Succeed

from the data. Improvements across the models were
established by considering greater sophistication in the way
correlation of data spatially and temporally is treated.
Therefore, we tried different model types and layer types,
and finally, the encoder—decoder modeling was the key
solution of our modeling process. This led eventually to the
developed convolutional recurrent neural network (CRNN)
structure which is a combination of multilayer perceptron
(MLP), ConvLSTM, residual connections, and encoder—
decoder neural network modeling. Note that in Table 2, the
models that are not able to train from the data, and their
insight are indicated with “Failed,” while the only model
which was able to learn well from the provided data and
captured their correlation both spatially and temporally is
denoted with “Succeed.”

Once we reached to our final developed convolutional
recurrent neural network model (CRNN) structure, the
hyperparameter tuning was carried out. The average
RMSEs and MAEs were compared and the best model was
chosen for further investigation. The hyperparameter tun-
ing summary is shown in Table 3.

In Table 3, n, m, and q are set of numbers {2,3,4} and
the developed models are numbered from one to four based
on their layers’ activation functions as different types of
activation functions and are used for our four sub-layers
including: (a) pre-encoder layers, (b) encoder layers,
(c) main-cell layer (ConvLSTM), and (d) decoder layers.
Many models and sub-models are trained based on the
introduced four models with defined activation layers and
different hyperparameters, as shown in Table 3. For each
main model, the smallest relative error to the other models
is reported and compared. The best hyperparameter setting
which was a sub-model of CRNN 1 with the layers’
structures and hyperparameters mentioned in Table 3 and
with other hyperparameters described in detail in the
beginning of Sect. 3.3 is chosen based on the reported
error.

4 Model evaluation

Eight synthetic storms within the original database, not
utilized in the training phase, are now used to validate the
performance of the developed convolutional recurrent
neural network model. The predicted surges are compared
to the label test data, corresponding to the simulated surge
for the same SPs and time steps utilized in the model
development. An alternative surrogate model implemen-
tation is also considered in this section, a Gaussian process
emulator. Approach utilizes a simplified parameterization
of the storm input, using instantaneous storm features close
to landfall to characterize each storm and considers inde-
pendent predictions for the surge for each SP or time step,
using principal component analysis to incorporate spatio-
temporal correlation features in the surge output predic-
tions. Further details for this formulation are discussed in
[10]. The root-mean-square errors (RMSE), defined in
Eq. 4, and mean absolute error, defined in Eq. 5, of the test
set are reported in Tables 4 and 5, respectively, separately
for each of the eight storms. Note that the L; norm in Eq. 5
is indicated with || - || (q)-

RMSE = ||C(t,x,0) — z,(t,x, O)HLZ(Q) (4)
MAE = ||C(t,x,0) — z.(t,x, 0)||L,(Q) (5)

The comparisons in Tables 4 and 5 across the RMSE
and MAE of the predictions by the developed neural net-
work model, and the Gaussian process show that the neural
network model offers greater accuracy storm surge pre-
dictions than the Gaussian process for all of the storm
datasets. The average RMSE and MAE of the predictions
for these eight test samples is 5.312e — 2 and 3.812¢ — 2,
respectively, and for Gaussian process is 8.793e — 2 and
5.946e — 2, respectively, which shows improvement by
about %50.

@ Springer

Neural Computing and Applications

@ Springer

Table 3 Hyperparameter tuning

Best relative error

Epoch

Residual connection constant

Filter size

Batch size

Learning rate

Activation function

Layers

Model

1.00
1.67
1.38
1.26

20/35/50k
20/35/50k
20/35/50k
20/35/50k

0.01/0.001

3*3, 4*4, 5*5 0.01/0.001

3%#3, 4*%4, 5*5

50/100/250
50/100/250
50/100/250
50/100/250

0.01/0.001

n*FC/p*CNN/ConvLSTM/PC-g*FC ReLu/ReLu/ReLu/Tanh 0.01/0.001

n*FC/p*CNN/ConvLSTM/PC-q*FC Tanh/ReLu/ReLu/Tanh

CRNN 1

CRNN 2

3*3, 4*4, 5*5 0.01/0.001

0.01/0.001
0.01/0.001

n*FC/p*CNN/ConvLSTM/PC-q*FC ~ Tanh/Tanh/ReLu/Tanh

CRNN 3

0.01/0.001

3%3, 4%4, 5*5

n*FC/p*CNN/ConvLSTM/PC-q*FC ReLu/Tanh/ReLu/Tanh

CRNN 4

Furthermore, the RMSE and MAE for the times corre-
sponding to the ten percent highest storm surge, H(1/10),
are calculated and presented in Tables 6 and 7, respec-
tively. These metrics examine accuracy over the larger
surge values for each time series and therefore provide key
validation information for assessing emulator accuracy,
emphasizing the performance close to the peak surge,
whose prediction is highly relevant in surge forecasting.

As it is shown in Tables 6 and 7 by comparing the
RMSE and MAE of the predictions by the developed
neural network model and the Gaussian Process for every
single storm, it can be inferred that the neural network
model offers greater accuracy storm surge predictions than
the Gaussian process for all of the storm datasets. The
average RMSE and MAE of the predictions for these eight
tests is 7.884e — 2 and 7.385e — 2, respectively, and for
Gaussian process is 1.534e — 1 and 1.426e — 1, respec-
tively, which shows at least a two-times less error in total.

The training parameters, the computational time needed,
and the computational complexity of these two approaches
are also compared and summarized in Table 8.

As shown in Table 8, substantially larger number of
parameter are used in our developed neural network com-
pared to the GP, something that explains the differences in
computational complexity in training (calibration) and
testing (predictions) for the neural network, as well as the
higher predictive accuracy it enjoys. The training time is
not a significant concern for us, as we have ample resources
and time to train our model. However, test time is of utmost
importance since we are constrained to predicting storm
surges within a few hours after the storm information is
reported until it reaches the coast. With a test time of only
318 s by our developed model, which is considerably short
compared to the time permitted, there was no cause for
concern in this aspect. Moreover, the accuracy that we
obtained from the developed model is of greater impor-
tance to us.

For one of the test datasets, we further look at true
values and predictions provided by the developed neural
network model and the Gaussian process method in Fig. 7.
In this figure, the line x =y is also plotted, reflecting
perfect correlation between the predicted and true values.

It is evident from Fig. 7 that the neural network model
enjoys substantial higher correlation between predictions
and true responses, offering additional validation of the
high accuracy trends reported earlier in Tables 6 and 7.

Moreover, to further confirm our observations, we
compare the predictions by the developed neural network
model and the Gaussian Process to the true storm surges for
the eight test datasets for a specific sample location (point)

Neural Computing and Applications

Table 4 RMSE of test datasets

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
CRNN 1.089%¢ — 2 2.799¢ — 2 6.914e — 2 2.749¢ — 2 4.35le —2 6.677e — 2 4.946e — 2 1.302¢ — 1
GP 2.111e — 2 8.912¢ — 2 1.339¢ — 1 1.523e — 1 5.178¢ — 2 9.386e — 2 4.663¢ — 2 1.148¢ — 1
Table 5 MAE of test datasets

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
CRNN 8.700e — 3 1.930e — 2 5.540e — 2 2.170e — 2 2.840e — 2 4.750e — 2 3.410e — 2 8.990e — 2
GP 1.730e — 2 7.030e — 2 6.240e — 2 1.115¢ —2 5.020e — 2 5.480e — 2 3.120e — 2 7.800e — 2
Table 6 RMSE of H(1/10) test datasets

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
CRNN 1.250e — 2 4.430e — 2 7.495e — 2 3.070e — 2 8.070e — 2 1.091e — 1 4.060e — 2 2.379¢ — 1
GP 2.300e — 2 2.966e — 1 1.834e — 1 2.847¢ — 1 9.590e — 2 1.295¢ — 1 5.000e — 2 1.643¢ — 1
Table 7 MAE of H(1/10) test datasets

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
CRNN 1.150e — 2 4.060e — 2 6.910e — 2 2.840e — 2 7.780e — 2 1.018¢ — 1 3.700e — 2 2.246e — 1
GP 2.040e — 2 2.875e — 1 1.636e — 1 2.730e — 1 9.220e — 2 1.169¢ — 1 3.980e — 2 1.473¢ — 1

Table 8 Developed
convolutional recurrent neural

Training parameters

Training time (s)

Test time (s) Time complexity

network vs Gaussian process

274683
1800

899,853
154

318 O(n)
1 On)

CRNN
GP
Fig. 7 Storm surge prediction
vs. true test data provided by
CRNN and GP 1.04
0.8 1
s
S o6
el
o
o
0.4 1
0.2

CRNN_Test dataset 1

0.2 0.4 0.6

True values

0.8 1.0

Prediction

|
o

o
©

o
o

o
rS

o
N

GP_Test dataset 1

0.2 0.4 0.6

True values

0.8 1.0

@ Springer

Neural Computing and Applications

Test dataset 1

0.5001 _o— Truth
—e— Predict_CRNN
04757\ Predict_GP
0.450
o 0-4251
24
3 0.400
0.3751
0.350 1
0.325
0 20 40 60 80 100 120
Time
Test dataset 3
1.6
—e— Truth
—e— Predict CRNN
lay Predict_GP
1.2
5 1.0
3
(73]
0.8 1
0.6 1
0.4
0 20 40 60 80 100 120
Time
Test dataset 5
—e— Truth
—e— Predict CRNN
0.55 —e— Predict GP
0.50
Q
2
A
0.45
0.40
0.351- . . . - - r
0 20 40 60 80 100 120
Time
Test dataset 7
—e— Truth
0.61 —— Predict_CRNN
—e— Predict_GP
0.4 :
0.2
&
5 0.01
(2]
—0.2 1
-0.4
-0.6
0 20 40 60 80 100 120
Time

0.9

0.81

Surge

0.5

0.41

1.2

Test dataset 2

0.7 1

0.6

—e— Truth
1 —e— Predict_CRNN
—e— Predict_ GP
0 20 40 60 80 100 120
Time
Test dataset 4
—e— Truth

—e— Predict CRNN
—e— Predict_GP

0 20 40 60 80 100 120
Time
Test dataset 6
—e— Truth

—e— Predict_CRNN
—e— Predict_GP

1 —=— Predict_GP

0 20 40 60 80 100 120
Time
Test dataset 8
| —e— Truth

—e— Predict_CRNN

0 20 40 60

Time

80 100 120

Fig. 8 Storm surge predictions for one grid SP in different test storms for a grid point in the coast middle layers

@ Springer

Neural Computing and Applications

in the coast in Fig. 8. The specific location corresponds to a
middle layer in the ordered response for the grid points.

As shown in Fig. 8, the storm surge predictions com-
puted by the developed convolutional recurrent neural
network in all the studied tests are very close to the true
values for the entire time interval. The Gaussian process
provides less accurate storm surge predictions as the pre-
dictions are generally further away from the true surge
values. However, the Gaussian process has partially
learned the data trend, and its surge predictions can
somewhat mimic the surge true values’ trend. Two more
SPs from very early layers and end layers of the response
grid are chosen, and the predictions provided by the two
approaches are compared with the true values in Appendix
1. The results reported in the Appendix follow the same
trends discussed above allowing a generalization of the
observations.

5 Conclusions

This study examined the development of a neural network
for emulating time-series surge predictions using a data-
base of synthetic storm simulations. The developed con-
volutional recurrent neural network model is enriched by
an encoder—decoder model, so that the developed model
takes the entire sequence of the data into account. There-
fore, the entire storm surge can be predicted based on the
storm-driven parameters’ complete history. The encoder—
decoder add-on ultimately makes the developed neural
network model a sequence-to-sequence (seq2seq) storm
surge forecast model. Also, the model’s performance is
improved by incorporating a residual connection network.
Several additional techniques are applied in the training
process to further improve predictive accuracy. Overall, the
spatial and temporal correlations of the data are captured
by employing convolutional neural network layers and the
recurrent neural network, respectively, through a
ConvLSTM cell. The ConvLSTM cell is trained on the
data provided in the latent space right between encoder and
decoder cells, accommodating better learning for the

ConvLSTM cell. In contrast to previous storm surge pre-
diction studies, where machine learning methods were
predominantly used as black boxes and surge for a few
representative stations was only predicted, the aforemen-
tioned formulation allows us to predict surge for all the
save points within the domain of interest by establishing
problem-specific advances for the neural network imple-
mentation. Furthermore, through these formulations, the
correlations of data both spatially and temporally are
learned by the model to enhance prediction accuracy,
something that further improves upon past efforts. The
main novelty of this manuscript from the storm surge
application perspective is that it establishes spatio-temporal
predictions across a large geographic domain. Previous
studies, as presented earlier, have either focused on peak
surge predictions (not addressing the time evolution of the
surge) or have considered time-series surge predictions for
a moderate only number of spatial nodes. For artificial
neural network applications, this has allowed previous
studies to consider independent formulations across the
different nodes, with no requirement on the trained network
to describe the spatial variability of the surge additionally.
The evaluation of the trained model on test datasets show
that the model can accurately predict the storm surge. The
develop model can, ultimately, accommodate fast predic-
tions for the time-series surge evolution, driven by track/-
size/intensity storm input features, and can be used to
support efficient risk assessment and emergency response
management operations.

Appendix: Test grids

In this section, the comparison of the prediction by the
developed convolutional recurrent neural network and
Gaussian process is shown in Figs. 9 and 10. Figure 9
shows the comparison for a grid from the early layers of the
coast, and Fig. 10 shows a grid from the last layer of grids
in the coast. As it is mentioned in Sect. 4, the results by
convolutional recurrent neural network model are much
better and more accurate than the Gaussian process.

@ Springer

Neural Computing and Applications

Surge

Surge

Surge

Test dataset 1

0.475
—e— Truth
0.450{ —=— Predict_CRNN
—e— Predict_GP
0.4254
0.400
0.375
0.350
0.325
0.300
0 20 40 60 80 100 120
Time
Test dataset 3
—e— Truth
1.04{ — Predict_CRNN
—e— Predict_GP
0.8 1
0.6
0.4 1
0 20 40 60 80 100 120
Time
Test dataset 5
0.60{ — Truth
—e— Predict_ CRNN
—e— Predict_GP
0.55
0.50
0.45
0.40
0.35

0 20 40 60 80
Time

100 120

Test dataset 7

1.004{ —— Truth
—e— Predict_CRNN
0.751 —e— Predict_GP

0.501

0.25

0.00+

—0.251

—0.501

—0.751

0 20 40 60 80
Time

100 120

Test dataset 2

1 —s— Truth

{ —e— Predict GP

—e— Predict_CRNN

0.75
0.70
0.65
2 0.60
3 0.55
0.50
0.45
0.40

0 20 40 60 80
Time

100 120

Test dataset 4

—e— Truth
—e— Predict_ CRNN
—e— Predict_GP

0 20 40 60 80 100 120

Time

Test dataset 6

1.2

0.4

—e— Truth
—e— Predict CRNN
—e— Predict_GP

0 20 40 60 80 100 120

Time

Test dataset 8

1 —e— Truth

{ —e— Predict_GP

—e— Predict_CRNN

0 20 40 60 80 100 120

Time

Fig. 9 Storm surge predictions for one grid SP in different test storms for a grid point in the coast front layers

@ Springer

Neural Computing and Applications

Test dataset 1

0.461 o Tryth
—e— Predict_CRNN
0.4471 o predict_GP
0.42
o 0.40
2
® 0.38
0.36
0.34
0.32
0 20 40 60 80 100 120
Time
Test dataset 3
—e— Truth
1.2 { —*— Predict CRNN
—s— Predict_GP
1.0
&
508
(1)
0.6 1
0.4
0 20 40 60 80 100 120
Time
Test dataset 5
0.500{ —* Truth
—e— Predict CRNN
0.4754|— Predict_GP
0.4501
()]
©0.425 1
= |
wn
0.4004
0.3751
0.3501
0 20 40 60 80 100 120
Time
Test dataset 7
—e— Truth
L —e— Predict_CRNN
051 —e— Predict_GP
0.4
&
503
wn
0.2
0.1
0.0

0 20

40 60 80 100 120
Time

0.8 1

1.2

Test dataset 2

—e— Truth

1 —— Predict_CRNN

—e— Predict GP

0 20 40 60 80 100 120
Time

Test dataset 4

—e— Truth
—e— Predict CRNN
—e— Predict_GP

0 20 40 60 80 100 120
Time

Test dataset 6

—e— Truth
—e— Predict_CRNN
—e— Predict_GP

0 20 40 60 80 100 120
Time

Test dataset 8

—e— Truth
—e— Predict CRNN

1 —=— Predict_GP

0 20 40 60 80 100 120
Time

Fig. 10 Storm surge predictions for one grid SP in different test storms for a grid point in the coast back layers

@ Springer

Neural Computing and Applications

Acknowledgements Authors would like to thank the Army Corp of
Engineers, Coastal Hydraulics Laboratory of the Engineering
Research and Development Center for providing access to the storm
surge data used in the illustrative case study, through the coastal
hazards system (https://chs.erdc.dren.mil/).

References

10.

11.

12.

13.

14.

. Hallegatte S, Patmore N, Mestre O, Dumas P, Corfee-Morlot J,

Herweijer C, Muir-Wood R (2008) Assessing climate change
impacts, sea level rise and storm surge risk in port cities: a case
study on Copenhagen. OECD Environment Working Papers(3),
0_1,

. Luettich RA, Westerink JJ, Scheffner NW (1992) ADCIRC: An

advanced three-dimensional circulation model for shelves, coasts,
and estuaries. Report 1. Theory and methodology of ADCIRC-
2DDI and ADCIRC-3DL. Dredging Research Program Technical
Report DRP-92-6, U.S Army Engineers Waterways Experiment
Station, Vicksburg, MS,

. Westerink J, Luettich R, Feyen J, Atkinson J, Dawson C, Roberts

H, Powell M, Dunion J, Kubatko E, Pourtaheri H (2008) A basin-
to channel-scale unstructured grid hurricane storm surge model
applied to Southern Louisiana. Mon Weather Rev 136:833-864

. Booij N, Holthuijsen LH, Ris RC (1996) The SWAN wave model

for shallow water. 25th International Conference on Coastal
Engineering, Orlando, FL, 668-676,

. Smith J. M, Sherlock AR, Resio DT (2001) STWAVE: Steady-

state spectral wave model user’s manual for STWAVE, Version
3.0. DTIC Document,

. Kyprioti AP, Adeli E, Taflanidis AA, Westerink JJ, Tolman HL

(2021) Probabilistic storm surge estimation for landfalling hur-
ricanes: advancements in computational efficiency using quasi-
Monte Carlo techniques. J Marine Sci Eng 9(12):1322. https://
doi.org/10.3390/jmse9121322

. Irish JL, Resio DT, Cialone MA (2009) A surge response func-

tion approach to coastal hazard assessment. Part 2: Quantification
of spatial attributes of response functions. Natural hazards
51(1):183-205

. Jia G, Taflanidis A (2013) Kriging metamodeling for approxi-

mation of high-dimensional wave and surge responses in real-
time storm/hurricane risk assessment. Comput Methods Appl
Mech Eng 261:24-38

. Kim S, Melby J, Nadal-Caraballo NC, Ratcli J (2015) A time-

dependent surrogate model for storm surge prediction based on an
artificial neural network using high-fidelity synthetic hurricane
modeling. Nat Hazards 76(1):565-585

Jia G, Taflanidis A, Nadal-Caraballo N, Melby J, Kennedy A,
Smith J (2016) Surrogate modeling for peak or time-dependent
storm surge prediction over an extended coastal region using an
existing database of synthetic storms. Nat Hazards 81:909-938
Al Kajbaf A, Bensi M (2020) Application of surrogate models in
estimation of storm surge: A comparative assessment. Applied
Soft Computing, 106184,

Contento A, Xu H, Gardoni P (2020) Probabilistic formulation
for storm surge predictions. Struct Infrastruct Eng 16(4):547-566
Traffic Flow Prediction for Urban Road Sections Based on Time
Series Analysis and LSTM-BILSTM Method. IEEE Transactions
on Intelligent Transportation Systems. Volume 23(6), 5615-5624,
2022

Chen X et al (2020) Sensing Data Supported Traffic Flow Pre-
diction via Denoising Schemes and ANN: a comparison. IEEE
Sens J 20(23):14317-14328

@ Springer

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Xiao G et al. Exploring influence mechanism of bikesharing on
the use of public transportation - a case of Shanghai. https://doi.
org/10.1080/19427867.2022.209328

Resio D, Westerink J (2008) Modeling the physics of storm
surges. Physics Today,

Kijewski-Correa T, Taflanidis A, Vardeman C, Sweet J, Zhang J,
Snaiki R, Wu T, Silver Z, Kennedy A (2020) Geospatial envi-
ronments for hurricane risk assessment: applications to situational
awareness and resilience planning in New Jersey. Front Built
Environ 6:549106

Nadal-Caraballo NC, Campbell MO, Gonzalez VM, Torres MJ,
Melby MIJ, Taflanidis AA (2020) Coastal hazards system: a
probabilistic coastal hazard analysis framework. J Coastal Res
95(sp1):1211-1216

Toro G, Resio D, Divoky D, Niedoroda A, Reed C (2010) Effi-
cient joint-probability methods for hurricane surge frequency
analysis. Ocean Eng 37(1):125-134

Lee J-W, Irish JL, Bensi MT, Marcy DC (2021) Rapid prediction
of peak storm surge from tropical cyclone track time series using
machine learning. Coast Eng 170:104024

RamosValle AN, Curchitser EN, Bruyere CL, McOwen S (2021)
Implementation of an Artificial Neural Network for Storm Surge
Forecasting. Journal of Geophysical Research: Atmospheres
126(13):

Kim R, So C, Jeong M, Lee S, Kim J, Kang J (2019) HATS: A
Hierarchical Graph Attention Network for Stock Movement
Prediction. arXiv preprint arXiv:1908.07999,

Namdari A, Durrani T (2021) HATS: A Multilayer Feedforward
Perception Model in Neural Networks for Predicting Stock
Market Short-term Trends. Operations Research Forum volume
2, Article number: 38,

Jelesnianski C. P, Chen J, Shaffer W. A (1992) SLOSH: Sea,
lake, and overland surges from hurricanes. NOAA Technical
Report, NWS 48. US Department of Commerce, National
Oceanic and Atmospheric Administration,

Holland GJ (2008) A revised hurricane pressure-wind model.
Mon Weather Rev 136(9):3432-3445

Holland GJ, Belanger JI, Fritz A (2010) A revised model for
radial profiles of hurricane winds. Mon Weather Rev
138(12):4393-4401

Marks FD (2003) Hurricanes. Handbook of Weather, Climate,
and Water: Dynamics, Climate, Physical Meteorology, Weather
Systems, and Measurements 641-675

Di Liberto T, Colle BA, Georgas N, Blumberg AF, Taylor AA
(2011) Verification of a multimodel storm surge ensemble around
New York City and Long Island for the cool season. Weather
Forecast 26(6):922-939

Dresback K, Fleming J, Blanton B, Kaiser C, Gourley J, Tromble
E, Kolar R, Hong Y, Cooten S, Vergara H, Flamig Z, Lander H,
Kelleher K, Nemunaitis-Monroe K (2013) Skill assessment of a
real-time forecast system utilizing a coupled hydrologic and
coastal hydrodynamic model during Hurricane Irene. Cont Shelf
Res 71:78-94

Davis JR, Paramygin VA, Forrest D, Sheng YP (2010) Toward
the probabilistic simulation of storm surge and inundation in a
limited-resource environment. Mon Wea Rev 138(7):

Bernier NB, Thompson KR (2015) Deterministic and ensemble
storm surge prediction for Atlantic Canada with lead times of
hours to ten days. Ocean Model 86:114-127

Taylor AA, Glahn B(2008) Probabilistic guidance for hurricane
storm surge. 19th Conference on probability and statistics, ,
Lee T (2006) Neural network prediction of a storm surge. Ocean
Eng 33:483-494

Lee T (2008) Back-propagation neural network for the prediction
of the short-term storm surge in Taichung harbor, Taiwan. Eng
Appl Artif Intell 21:63-72

https://chs.erdc.dren.mil/
https://doi.org/10.3390/jmse9121322
https://doi.org/10.3390/jmse9121322
https://doi.org/10.1080/19427867.2022.209328
https://doi.org/10.1080/19427867.2022.209328
http://arxiv.org/abs/1908.07999

Neural Computing and Applications

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Lee T (2009) Predictions of typhoon storm surge in Taiwan using
artificial neural networks. Adv Eng Softw 40:1200-1206

De Oliveira M, Ebecken F, De Oliveira F, de Azevedo Santos I
(2009) Neural network model to predict a storm surge. J Appl
Meteorol Climatol 48 (1), 143-155,

Bajo M, Umgiesser G (2010) Storm surge forecast through a
combination of dynamic and neural network models. Ocean
Model 33(1):1-9

Hashemi M, Spaulding M, Shaw A, Farhadi H, Lewis M (2016)
An efficient artificial intelligence model for prediction of tropical
storm surge. Nat Hazards 82(1):471-491

Kim S, Pan S, Mase H (2019) Artificial neural network-based
storm surge forecast model: Practical application to Sakai Minato
Japan. Appl Ocean Res 91:101871

Chao W, Young C, Hsu T, Liu W, Liu C (2020) Long-lead-time
prediction of storm surge using artificial neural networks and
effective typhoon parameters: revisit and deeper insight. Water
2020 12(9):239%4

Das H, Jung H, Ebersole B, Wamsley T, Whalin R (2011) An
efficient storm surge forecasting tool for coastal Mississippi.
Coastal Eng Proceed 1(32):21

Alemany S, Beltran J, Perez A, Ganzfried S Predicting Hurricane
Trajectories using a Recurrent Neural Network. arXiv:1802.
02548v3

Chen K, Kuang C, Wang L, Chen K, Han X, Fan J (2022) Storm
surge prediction based on long short-term memory neural net-
work in the east china sea. Appl. Sci. 2022, 12(1):181

Igarashi Y, Tajima Y (2021) Application of recurrent neural
network for prediction of the time-varying storm surge. Coast
Eng J 63(1):68-82

Sutskever I, Vinyals O, Le Q (2014) Sequence to sequence
learning with neural networks, arXiv preprint arXiv:1409.3215,

Kyprioti A, Irwin C, Taflanidis A, Nadal-Caraballo N, Yawn M,
Aucoin L (2023) Spatio-temporal storm surge emulation using
Gaussian Process techniques. Coast Eng 180:104231

Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735-1780

Dupond S (2019) A thorough review on the current advance of
neural network structures. Annu Rev Control 14:200-230

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C
(2015) Convolutional Istm network: a machine learning approach
for precipitation nowcasting. Adv Neural Inf Process Syst
28:802-810

Graves A (2013) Generating sequences with recurrent neural
networks, arXiv preprint arXiv:1308.0850,

van der Maaten L, Postma E, van den Herik H (2009) Dimen-
sionality reduction: a comparative review. Tilburg University,
Tech. rep.

Bengio Y (2009) Learning Deep Architectures for Al. Found
Trends Mach Learn 2(1):1-127. https://doi.org/10.1561/
2200000006

Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classifi-
cation with deep convolutional neural networks, in: Advances in
neural information processing systems,pages 1097-1105,

Han G, Sun L, Wang J (2021) PhyGeoNet: Physics-informed
geometry-adaptive convolutional neural networks for solving
parameterized steady-state PDEs on irregular domain. J Comput
Phys 428,

Shi W, Caballero J, Huszar F, Totz J, Aitken A. P, Bishop R,
Rueckert D, Wang Z (2016) Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural
network, In: Proceedings of the IEEE conference on computer
vision and pattern recognition, 1874-1883,

Shan Q, Li Z, Jia J, Tang C (2008) Fast image/video upsampling.
ACM Trans Graph (TOG) 27(5):1-7

Odena A, Dumoulin V, Olah C (2016) Deconvolution and
checkerboard artifacts. Distill 1(10):e3

Bergstra J, Bengio Y (2012) Random search for hyper-parameter
optimization. J Mach Learn Res 13:281-305

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g., a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

@ Springer

http://arxiv.org/abs/1802.02548v3
http://arxiv.org/abs/1802.02548v3
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1308.0850
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006

	An advanced spatio-temporal convolutional recurrent neural network for storm surge predictions
	Abstract
	Introduction
	Storm surge prediction problem characteristics
	Neural network methods
	Convolutional long short-term memory
	Additional techniques
	Training process

	Model evaluation
	Conclusions
	Appendix: Test grids
	Acknowledgements
	References

