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ABSTRACT
AI recommendations in�uence our daily decisions. The convenience
of navigating personalized content goes hand-in-hand with the no-
torious �lter bubble e�ect, which may decrease people’s exposure
to diverse options and opinions. Children are especially vulnerable
to this due to their limited AI literacy and critical thinking skills. In
this study, we propose a novel Augmented Reality (AR) application
BeeTrap. It aims to not only raise children’s awareness of �lter bub-
bles but also empower them to mitigate this ethical issue through
sense-making of AI recommendation systems’ inner workings. By
having children experience and break �lter bubbles in a �ower rec-
ommendation system, BeeTrap utilizes embodied metaphors (e.g.,
NEAR-FAR, ITERATION) and analogies (bee pollination) to bridge
abstract AI concepts with sensory-motor experiences in familiar
STEM contexts. To evaluate our design’s e�ectiveness and acces-
sibility for a broad range of children, we introduced BeeTrap in a
four-day summer camp for middle-school students from underrep-
resented backgrounds in STEM. Results from pre- and post-tests
and interviews show that BeeTrap developed students’ technical
understanding of AI recommendations, empowered them to break
�lter bubbles, and helped them foster new personal and societal
perspectives around AI technologies.
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1 INTRODUCTION
Personalized recommendations shape people’s daily information
consumption and decision-making by reducing information over-
load and decision fatigue. The convenience comes at a profound
cost, especially to the young generation. According to a recent
report from the Center for Countering Digital Hate [19], within
2.6 minutes after a teenager’s account was created, TikTok started
recommending suicide information, and within eight minutes, con-
tents related to eating disorders were presented. This extreme case
highlights the negative impact of personalized recommendation—
the so-called �lter bubble e�ect that isolates people from a diverse
range of contents and viewpoints [35, 86]. Filter bubbles appear
when algorithms narrow recommendations to solely match the
interests and opinions of individuals and their social circles [33].
This self-reinforcing loop may lead to critical societal e�ects such
as echo chambers [22] and opinion polarization [48].

Filter bubbles could be detrimental to developing curiosity, cre-
ativity, and critical thinking since the children are deprived of being
exposed to diverse or di�erent information and opinions [15, 86].
Furthermore, �lter bubbles could intensify gender and racial biases,
leading to unfair or unequal information exposure for people from
minority groups and underrepresented communities [15, 17, 33].
Children are particularly susceptible to the impact of �lter bubbles
due to their underdeveloped critical thinking abilities and impulse
behavior [91]. Research e�orts have explored engaging youth to
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re�ect on AI’s ethical implications through informal art exhibitions
[68] and design workshops [4, 28, 120].

With some early-stage investigations instilling critical think-
ing around AI in children [4, 39, 67, 92], a research gap exists in
empowering children to break �lter bubbles by understanding rec-
ommendation system mechanisms [6]. Prior research emphasizes
algorithmic transparency and user control in promoting children’s
digital autonomy [119, 120] and reducing the so-called algorith-
mic anxiety [55]. Both studies identi�ed a lack of understanding
among children regarding recommendation systems’ inner work-
ings, including inferences of user preferences [119, 120] and ranking
mechanisms [55]. Understanding the actual technological mech-
anisms plays a fundamental role in promoting students’ critical
inquiry into how algorithms may cause ethical issues in diversity
and equity [57, 116].

Existing K-12 AI learning experiences often apply the “low �oor”
principle for CS education [94]. This approach aims to engage
novice learners in understanding AI concepts (e.g., data training
and evaluation) while keeping the underlying algorithms as black-
boxes to prevent overwhelming the students [49, 121, 127]. How-
ever, studies have shown that students often hold misconceptions
about AI’s inner workings [49, 59, 64]. To address this, we must
thoughtfully introduce AI building blocks [49, 68, 99], ensuring
accuracy and preventing the persistence of misconceptions [50].

Understanding the inner workings and mitigation of �lter bub-
bles could be challenging for childrenwith limited computational lit-
eracy (i.e., the ability to use computers for communication, problem-
solving, and creation [30]), especially those from underrepresented
backgrounds in STEM [32, 58]. First, students lacking math literacy
require signi�cant cognitive e�ort [21, 117] to grasp abstract AI
concepts and the intricate context involved [120]. For example, com-
prehending how AI makes data-driven inferences and deciding user
actions can be di�cult for children [119, 120]; multidimensional
data—a fundamental AI concept—requires advanced data literacy
[21]. Second, students’ experiences with AI technologies vary based
on factors like access to household digital devices and socioeco-
nomic & cultural backgrounds. The �lter bubble e�ect may remain
abstract [68, 81] and inconspicuous [37] for students who rarely
use online services. Lastly, students with limited prior knowledge
often exhibit reduced interest and motivation when confronted
with cognitive challenges during the learning process [9, 104].

Our research explores the design of an Augmented Reality (AR)
application that introduces AI concepts to students through embod-
ied and analogical learning theories. First, embodied learning, which
involves tangible manipulation, spatial interaction, and expressive
representation [51], aids in simplifying complex computational
concepts for children [77, 113, 125], enhancing their engagement
and motivation [98]. In AI education, embodied learning supports
multidimensional data analysis [13, 21, 34], learning AI training
steps [18, 59, 127], and debugging algorithms [72]. Second, ana-
logical learning could bridge abstract AI concepts with learners’
concrete prior knowledge [23, 44]. The deep relational structure
shared between the source and the target domain can represent
inter-relations between key AI components, and thus sca�old sense-
making [24, 42, 45]. Moreover, embodied metaphors and analogies
in K-12 science contexts can o�er a common ground that is acces-
sible and inviting for children with diverse AI experiences [25],

enhancing learning by resonating with how novice users perceive
AI technologies [6, 64].

Through iterative design and evaluation with K-12 science teach-
ers and students, we developed a novel AR education application
called BeeTrap. First, we use the image schema NEAR-FAR [52]
to embody the data similarity. We map BIG-SMALL [53] with the
range for similarity-based ranking. These image schemas are cho-
sen as major embodied metaphors because physical distance and
walking steps can enhance children’s mathematical thinking [110].
Second, we design analogies of bee pollination, a common K-12
STEM learning topic involving science modeling [106], and has
been e�ectively supported through embodied learning and roleplay
in existing design [26, 88, 112]. In BeeTrap, the �ower-pollination
process is an analogy for recommendation algorithmic steps. Kids
can roleplay either a bee—a recommendation system user, or an
environmental scientist—an AI engineer who breaks �lter bubbles.
The concepts around biodiversity evoke students’ re�ections on
how the loss of �ower diversity impacts bees, and in turn a crit-
ical view of the �lter bubble e�ect. We evaluated BeeTrap with
nine middle-school students from underrepresented backgrounds
in STEM. To investigate how BeeTrap supports students to un-
derstand �lter bubbles, AI recommendation’s inner workings, and
mitigation strategy, our research questions include

RQ1 Can BeeTrap support students in learning the target AI
concepts (RQ1.1) and motivating conceptual and potential
behavioral changes regarding �lter bubbles (RQ1.2)?

RQ2 To what extent can image schemas embodying AI con-
cepts support students’ learning?

RQ3 To what extent can analogies support AI learning in K-12
science contexts?

This work’s major contributions are three-fold: (1) an AR learn-
ing application that teaches students about �lter bubbles, AI rec-
ommendations’ inner workings, and a diversi�cation algorithm;
(2) implications for designing interaction supported by embodied
metaphors for children to learn abstract AI concepts; (3) a list of
design heuristics of how analogies can integrate AI learning expe-
rience into K-12 science contexts.

2 RELATEDWORK
2.1 Teaching Children about AI

Recommendation Systems
A few research projects investigate how to teach children about
AI recommendation systems. To explore how informal learning
can support learners’ critical thinking over ethical aspects of AI,
researchers designed art exhibitions to provide youth with artistic
�rst-person experiences of positive and negative impacts related to
AI recommendations [68]. Workshops are also developed for chil-
dren to redesign YouTube’s recommendation system by identifying
di�erent stakeholders [4, 29], for teenage girls to consider how
existing and future AI recommendations can impact challenges in
their lives [103], and for children to learn about online data�cation
and coping mechanisms. Researchers have also created structured
classroom curricula to deliver AI-related ethical knowledge [40].
Existing research recommends teaching kids about AI by (1) guid-
ing them to re�ect upon real-world ethical dilemmas between the



“Bee and I Need Diversity!” Break Filter Bubbles in Recommendation Systems through Embodied AI Learning IDC ’24, June 17–20, 2024, Del�, Netherlands

convenient personalized experience and the loss of control and di-
versity in AI recommendation systems and (2) empowering them to
take action to tackle �lter bubbles [99]. To �ll the gap in unveiling
the black-box underlying �lter bubbles, we aim to design an edu-
cational application to teach children about AI concepts centered
around �lter bubbles, AI recommendation systems’ inner workings,
and diversi�cation as a mitigation strategy.

2.2 Embodied Learning for AI Education
Empirical evidence suggests that, by incorporating gestures or
movements, embodied learning develops a deeper comprehension
of the material [76] by promoting cognitive functions such as atten-
tion, memory, and problem-solving [61, 101]. Existing embodied
learning research investigated supporting high-dimensional data
analytical processes by inviting students to position in a physical
space representing a 2D projection [13, 21] and by distributing
the demanding cognitive load in 3D spatial environments for non-
data experts to make sense of complex data more intuitively [34].
Researchers also explored concrete 3D models to reify multidi-
mensional data [62] and body gestures to support learning the AI
training pipeline [18, 59, 73, 127]. Tangible interfaces and spatial
metaphors are designed to embody neural networks [27], seman-
tic networks, feature-based machine learning algorithms [74], and
debugging algorithms [72]. Empirical results show that embodied
interaction and tangible representations help students perceive
AI concepts more e�ectively compared with graphical user inter-
faces [27]. Combining co-located spaces and embodied interactions
with roleplay, participatory simulation can support children in
understanding dynamic systems, social interactions, and complex
decision-making processes [20].

We aim to design an AR technology to apply image schemas—
the recurrent patterns in bodily experiences [10, 52, 56]—to create
embodied metaphors for abstract concepts centered around the
impact, inner workings, and mitigation strategy of �lter bubbles.
Image schemas related to optical phenomena have been applied for
children to manipulate and understand the dot product operation
in AI education [125]. Existing research in math education shows
that physical distance and walking steps can enhance children’s
mathematical thinking [110], which is one of the major learning
barriers for children to develop AI literacy [32, 58, 124]. Novice
learners �nd it intuitive to perceive the experience of being trapped
by similar data and require designs for recommendation systems to
demonstrate how they are built over iterations [6]. Therefore, we
choose image schemas NEAR-FAR, BIG-SMALL, and ITERATION
as the major embodied metaphors underlying the interface design.

2.3 Analogical Learning for AI Education
Analogical learning is a cognitive process in which people connect
concepts in a familiar source domain and concepts in an unfamiliar
target domain for learning [23, 44]. An existing work used water
�ow as an analogy for electricity to create a more accessible exper-
iment space with electricity building blocks augmented by virtual
water �ow [65]. Analogies have been commonly used to facilitate
students’ conceptual transformation and may increase student en-
gagement and motivation in activities through students’ closeness

with source domains [98, 109]. Furthermore, analogies can be en-
hanced through embodied interaction with the physical world and
concrete representations [25] in an AR learning environment.

More research e�orts are needed to investigate analogies to
forge children’s understanding of abstract AI concepts. Existing
work proposed using human intelligence as an analogy for machine
intelligence to teach AI through roleplay and embodied cognition
[25, 32, 124]. However, con�ating human thinking with computer
processing has been identi�ed as one of the major barriers faced
by students [107]. Therefore, we explore how analogies in K-12
science domains can support AI learning. K-12 science topics can
be a common ground for analogical learning to support diverse
learners [11, 68, 78]. Students have the instinct to create analogies
or metaphors in scienti�c discourse [60]. We choose bee pollination,
a common K-12 science curriculum topic [106], as the base domain
for creating analogies in the BeeTrap activities.

3 THE DESIGN OF BEETRAP
3.1 Target Learning Objectives
Our educational application targets three key learning objectives
(Fig. 1): (1) understanding the �lter bubble e�ect, (2) grasping the
inner workings causing �lter bubbles in AI recommendations, and
(3) applying a diversi�cation algorithm to break �lter bubbles. The
content is centered around content-based recommendation sys-
tems, which recommend items that have features aligned with user
pro�les [2, 87, 95].

First, the �lter bubble, a key ethical issue, is a scenario in which
users receive content increasingly similar to their past choices [37].
This leads to reducing content diversity and user selection options
in recommendation systems.

Second, the steps of how content-based recommendation sys-
tems form �lter bubbles [3, 54, 75, 87] are introduced, including
recording user choices, comparing user pro�les with available items,
ranking items based on their similarity to the user pro�le, and rec-
ommending the top-ranked items.

Third, a diversi�cation algorithm breaks �lter bubbles [66, 126]
by enlarging the item list for ranking and re-ranking items by
diversity, calculated as the mean distance between item pairs [89],
thereby producing a more varied set of recommendations.

3.2 Iterative Design Process
Our design methodology adheres to design thinking principles
[69], emphasizing iterative development and assessment. The ini-
tial phase involved collaboratively brainstorming with Human-
Computer Interaction (HCI) researchers and AI experts, leading to
the conceptualization of BeeTrap v1. This version features analogies
of a garden, �owers, bees, and an environmental scientist, alongside
the NEAR-FAR [52] embodied metaphor.

After a proof-of-concept evaluation of BeeTrap v1 with middle-
school students, we co-designed with K-12 science educators and
students. This phase commenced with participants interacting with
BeeTrap v1 to grasp analogies and metaphors. The co-design pro-
cess was facilitated using methods including storyboarding [111],
layered elaboration [118], and comicboarding [79]. Insights gained
from this stage directed enhancements in BeeTrap v2, notably the
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Figure 1: AI concepts related to (1) the �lter bubble, (2) inner workings of AI recommendation systems, (3) diversi�cation.

Figure 2: How di�erent image schemas and analogies are designed in three BeeTrap activities: (1) experience �lter bubbles; (2)
inner workings of a content-based recommendation system; (3) diversi�cation to break �lter bubbles.

integration of additional analogies such as a beehive, �ower buds,
and pollen, as well as image schemas BIG-SMALL and ITERATION.

3.3 Final Design of BeeTrap Activities
BeeTrap contains three activities for three learning objectives (Fig. 2).
First, students roleplay as bees, learning about �lter bubbles by ob-
serving how their choices of �owers a�ect the �ower growing and
withering in the garden (Fig. 2.1). In the BeeTrap garden, the dis-
tance between �owers embodies the similarity between data that
describes the �owers (Fig. 2.A). After the bee pollinates a �ower,
similar �owers grow and dissimilar �owers farthest away wither

(Fig. 2.D). Eventually, the bee can only interact with similar �owers
clustered in small areas in the garden, indicating the �lter bubble ef-
fect (Fig. 2.E). This immersive �rst-person experience demonstrates
the entrapment of a user within �lter bubbles. The inner workings
of the recommendation system are visible in this activity, which
aims to keep the visual representations in the BeeTrap garden con-
sistent across di�erent activities but risks overwhelming learners
with too many visual elements.

Second, to delve into a content-based recommendation system’s
inner workings (Fig. 2.2), students follow a series of embodied and
analogical events re�ecting the algorithmic steps:
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Figure 3: BeeTrap interfaces demonstrating the diversi�cation algorithm: (1) the pollen circle with a normal size contains four
to �ve �ower buds (in circles); (2) enlarging pollen circle to contain more than 20 buds; buds less close to the beehive (i.e., less
similar to the user pro�le) (in circles) are included for future ranking; (3) a basic content-based recommendation system assign
higher rankings to the buds closer to the beehive (in circles); (4) applying a diversi�cation algorithm on the content-based
recommendation system to assign higher rankings to the buds farther away from the beehive (in circles).

(1) a beehive moving towards the pollinated �ower and collects
pollen from the pollinated �owers (Fig. 2.B), which repre-
sents the update of the user pro�le by aggregating items
accepted by the user;

(2) six �ower buds appearing on the ground as available items
for recommendation and a pollen circle containing three
buds closest to the beehive (Fig. 2.C), which represent item
ranking based on proximity to the user pro�le;

(3) the three top-ranked buds growing into new �owers (Fig. 2.D).

This process of pollination and observation unfolds over four rounds,
enhancing students’ understanding of the system’s dynamics.

Third, students roleplay an environmental scientist to increase
the �ower diversity in the garden by acting out a two-step diversi-
�cation algorithm (Fig. 2.3). To adjust the size of the ranked item
list, students manipulate the pollen circle size and observe di�er-
ent numbers of buds contained by the pollen circle (Fig. 2.C1). By
altering similarity-based and diversity-based ranking, students de-
cide which buds to grow for the bee (Fig. 2.C2). This hands-on
process actively engages students to see the real-time impact of
their attempts to counteract the homogenizing e�ects of a basic
recommendation algorithm.

3.3.1 Embodied metaphors in BeeTrap.

NEAR-FAR for data similarity/diversity. The NEAR-FAR image
schema describes the spatiotemporal relationship between two
points in space [12, 108]. Research shows that novice learners e�ec-
tively grasp multidimensional data and complex analytical methods
by positioning themselves in a physical space to represent a 2D
projection of multidimensional data points [13, 21]. Moreover, walk-
ing steps enhance children’s reasoning with math concepts and
methods [110]. In BeeTrap, we use the pairwise NEAR-FAR (NEAR-
FAR (P)) as an embodied metaphor, representing the Euclidean
distance between two multidimensional data points (Fig. 2.A). The
groupwise distance encompassing �owers, buds, and the beehive
(NEAR-FAR (G)) symbolizes the data diversity. Thismethod, which
promotes high bodily engagement includingmovement and locomo-
tion [102], helps students better understand pairwise data similarity
and groupwise data diversity.

BIG-SMALL for the range for similarity-based ranking. It facil-
itates tangible interaction through objects of varying sizes [12].
In the BeeTrap garden, the dynamic BIG-SMALL attribute of the
pollen circle embodies the range of �ower buds ranked based on
their similarity to the beehive. During the diversi�cation activity,
students adjust the pollen circle size (Fig. 3.1). Enlarging it widens
the range of items for ranking, leading to more diverse �ower bud
recommendations (Fig. 2.C1 & Fig. 2.C2). This interactive manipu-
lation transforms the pollen circle into a digital manipulative [93],
supporting children in exploring abstract computational concepts
[85, 94] through expressive activities with concrete operations [14].

ITERATION for the formation of �lter bubbles. Research suggests
that users want AI recommendation systems to demonstrate how
they evolve [6]. We use ITERATION, an image schema for the
repeated cycle of events [41], to embody the progressive formation
and mitigation of �lter bubbles in a content-based recommendation
system (i.e., garden) (Fig. 2.1 & Fig. 2.2). Each repetition of the
system’s steps results in new recommendations based on the user’s
choices. With time-travel buttons, students can navigate between
di�erent temporal states of the garden. This way, they can easily see
and compare how the recommendations change over time (Fig. 4).

3.3.2 Analogy and roleplay in BeeTrap. To lower the entry barrier
for children in learning AI, we designed analogy-based learning
[43] to map AI terminologies to bee pollination context, a K-12
science learning topic that students are more familiar with [106].
Technology-enhanced play environments have been designed for
students to roleplay as bees to learn about scienti�c phenomena
and modeling [88, 112]. Furthermore, research shows that the inter-
�oral distance is a contributing factor to a bee’s �ower preference;
this forms a feedback loop in which a bee pollinates a speci�c
kind of �ower causing the �owers to grow denser, which further
encourages the bee to only pollinate that kind of �ower [46]. This
means that the bee pollination context aligns with the embodied
learning experience of (1) NEAR-FAR that similar kinds of �owers
grow closer, and (2) ITERATION of the �lter bubble formation.

Garden as a content-based recommendation system, bee pollination
as user selection. In Beetrap, the garden represents a content-based
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Figure 4: After being trapped in �lter bubbles, students compare gardens in di�erent iterations and re�ect on the formation
process of �lter bubbles by using time-travel buttons: (1) students use the time-travel button (in the circle) to revisit the initial
garden; (2) in the �rst iteration, a red rose is pollinated; three most distant (i.e., most dissimilar) �owers die (in rectangles);
three closest �owers grow up (in circles); (3) in the last iteration, students roleplaying the bee are trapped in a cluster of similar
�owers (in the circle); the �lter bubble is formed.

Figure 5: BeeTrap interfaces demonstrating AI recommendation inner workings: (A) bee pollinates a �ower; (B) beehive moves
towards the pollinated �ower (in rectangles); (C) pollen (in circles) from two pollinated �owers (in rectangles) go into the
beehive; (D) �ower buds appear on the ground; pollen circle contains three buds inside (in circles) and some buds outside
(in rectangles); buds closer to the beehive get higher rankings (in circles); (E) similar �owers with highest rankings grow (in
circles); dissimilar �owers farther away die (in rectangles).

recommendation system. The bee serves as an analogy for the sys-
tem’s user, and the act of bee pollination mirrors a user selecting a
recommended item (Fig. 2.A & Fig. 5.A). New �ower growing rep-
resents newly recommended items, while the withering of �owers
indicates removing items from the recommendation list (Fig. 2.D).
Through roleplaying in a co-located space with �owers, students
get to ‘be’ the bee, experiencing the �rst-person view of how user
choices lead to the formation of �lter bubbles (Fig. 2.E & Fig. 4).
Such biodiversity concepts may shift students’ perspectives from
passive users bene�ting from AI recommendations’ convenience to
critical thinkers who consider biodiversity loss’ negative impacts.

Beehive as the user pro�le. A recommendation system creates a
user pro�le as a structured data representation capturing a user’s
preferences [95]. BeeTrap employs a beehive as an analogy for

the user pro�le (Fig. 2.B). A basic approach to representing user
preferences is through an aggregated data representation, essen-
tially a weighted average of previously selected items by the user.
Therefore, the user pro�le update is visually demonstrated by the
beehive moving to a location close to pollinated �owers, which
re�ects the weighted average of items as user preference (Fig. 5.B).
Pollen from pollinated �owers going into the beehive embodies the
data collection in recommendation systems.

Flower buds as available items for recommendation, environmental
scientist as an AI engineer. In BeeTrap, �ower buds on the ground
are available items for ranking and recommendation (Fig. 2.C). The
highest-ranking buds within the pollen circle grow into new �owers
and �owers farthest away die (Fig. 5.D). During diversi�cation,
students roleplay as an environmental scientist whose goal is to
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Table 1: Basic demographic information of students who
participated in the evaluation study

PID Gender Grade Race
P1 Female 8th Black or African American
P2 Male 7th Black or African American
P3 Male 7th Black or African American
P4 Female 8th Black or African American
P5 Female 8th White+Black
P6 Female 6th Asian+Black
P7 Male 8th White+Black
P8 Male 10th Black or African American
P9 Male 10th Black or African American

save �ower diversity. This aims to motivate students to break �lter
bubbles as an AI engineer developing a diversi�cation algorithm
for a content-based recommendation system.

3.4 Implementation
3.4.1 Dataset construction for generating flowers. Our dataset com-
prises 210 �owers, each characterized by �ve attributes: petal color
(six categories: white, yellow, orange, red, purple, blue, coded as
integers 1–6), petal shape (three types: rose, sun�ower, daisy, coded
as 1, 2, 3), petal size, leaf size, and height. The latter three features
are quanti�ed with numerical values ranging from 1 to 6.

3.4.2 System development. We created 3D �ower models based on
feature values in Blender and developed BeeTrap in Unity, used a
Classical Metric Multidimensional Scaling algorithm [96] to calcu-
late 2D coordinates for �owers, used ARFoundation library [115] for
plane detection and 3D virtual objects manipulation. Three BeeTrap
activities are deployed to Samsung Tablet S8 devices (Fig. 4, 5, 3).

4 EVALUATIONWITH STUDENTS FROM
UNDERREPRESENTED BACKGROUNDS

4.1 Participant
Participants consisted of nine students from a summer camp in an
ethnically and economically diverse urban school district in North-
ern New York (Table 1). Most participants identi�ed as Black or
African American, and some reported being of biracial background.
Gender representation was almost equally distributed.

4.2 Study Procedure
The study was conducted on-site during a summer camp. Three re-
searchers resided in two rooms throughout the entire study session
to assist students with the study procedure when requested. For
each BeeTrap activity, two students collaborated, or one student
completed it independently if no other students were available for
pairing (Fig. 6). The entire user study lasted 2 to 2.5 hours per stu-
dent and was carried out on four consecutive days. The groupings
of students were decided based on each day’s attendance. In the
end, all students �nished the three BeeTrap activities using the
same procedure (Table 2).

Table 2: The overview of the study procedure.

Session Activities
Pre-survey (1) demographic information; (2) pre-test on AI

recommendation systems.
Warm-up Introduction to (1) AI and its everyday applica-

tion; (2) bees and pollination.
1st session (1) Filter bubble experience; (2) post-test; (3)

post-activity interview.
2nd session (1) Recommendation system mechanism; (2)

post-test; (3) post-activity interview.
3rd session (1) Diversi�cation; (2) post-test; (3) post-

activity and post-study interviews.

4.3 Data Collection
4.3.1 Pre- and post-tests. Before and after each experiment session,
participants were administered the pre- and post-test, with six
questions assessing AI knowledge (Table 3 “Assessment Question”).
The questions were adapted from previous literature [1–3, 38, 66, 82,
89] and evaluated by two AI experts to ensure their measurement
validity. Each pair of pre- and post-tests is aligned with the target
learning objectives of the corresponding BeeTrap activity (Table 3
“Target concept”).

4.3.2 Interviews. After each activity, participants engaged in semi-
structured interviews. This helped researchers gain a deeper un-
derstanding of participants’ perceptions of individual embodied
metaphors, analogies, and the AI concepts underlying BeeTrap. For
example, we explored their comprehension of user pro�le updates:
“What does the beehive represent in the �ower recommendation
system?”, “Did you notice the beehive moving in the garden?”,
“How did the beehive move?” In the end, we conducted a post-
study interview to inquire about students’ overall experiences, their
perceptions of recommendation systems, and their future use of
AI. Questions are mainly adapted from existing studies in trans-
formative informal science learning [71, 90]. All interviews were
audio-recorded under consent.

4.3.3 Log data. Three types of log data were collected. First, the
movement log records the 3D position of the device whenever the
user interacts with the game. Second, the interaction log records
(1) learner behaviors of selecting a �ower to pollinate, manipulating
the pollen circle size, and switching the ranking mechanism; (2)
�owers pollinated, buds, newly-grown �owers, and dead �owers
by their ID; (3) the user pro�le vector; (4) �ower diversity at each
time point; and (4) time stamps for each in-app interaction.

Third, we collected in-app assessment logs in the recommen-
dation system mechanism activity. To evaluate if the BeeTrap analo-
gies can be quickly connected with the underlying AI concepts by
children during the activity, �ve in-app multiple-choice questions
were inserted into the last two iterations. In the �rst two iterations,
students are guided to observe and vocalize their understanding
of various design metaphors. In the last two iterations, students
answered �ve multiple-choice questions that probed their under-
standing of the recommendation mechanism: (1) What goes into
the beehive (user pro�le)? (2) What do �ower buds on the ground
represent? (3) What do numbers above the �ower buds represent?
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Figure 6: Students engaged in BeeTrap activities with researchers’ facilitation when needed.

(4) What does the pollen circle represent? (5) How are �owers lo-
cated in the garden? The questions are designed to appear twice,
encouraging students’ re�ection.

In-app questions contribute to forming a just-in-time telling ex-
perience [84, 100], where students �rst explore the BeeTrap garden
as bees to develop prior knowledge and then go through just-in-
time telling to confront the key AI concepts.

4.4 Measures and Data Analysis
RQ1. Can BeeTrap support students in (RQ1.1) learning the target AI
concepts and (RQ1.2) motivating conceptual and potential behavioral
changes regarding filter bubbles? We measured students’ learning
gains with pre- and post-tests and identi�ed students’ conceptual
and behavioral changes from post-study interviews.

RQ1.1: Learning gains in AI literacy. The accuracy of twomultiple-
choice questions can be analyzed quantitatively directly. For open-
ended questions, two researchers separately graded students’ re-
sponses. The process’s reliability was a�rmed with Cohen’s kappa
scores of 0.78 and 0.71, indicating substantial agreement [36].

RQ1.2: Self-reported conceptual and potential behavioral change.
Integrating ethics into AI education equips students to critically
engage with and address ethical dilemmas in AI, both as informed
users and potential creators [123]. One of our primary goals is
to prepare students to be aware of �lter bubbles’ impact on their
daily lives. Therefore, we explored their conceptual and prospective
behavioral change as consumers of AI recommendations as an exit
ticket concluding the BeeTrap learning experience.

With the constructivist approach adopted in BeeTrap, conceptual
change is identi�ed if learners develop new perspectives regarding
AI recommendation systems [31]. We measured students’ potential
future actions grounded in the essence of ethics, which examines
moral principles guiding individual behavior.

Conceptual and potential behavioral changes are measured from
the post-study interviews. The �rst author transcribed all audio
recordings through Rev 1 and manually corrected the transcripts.
Three researchers initiated an inductive open coding process [105].
Through line-by-line coding, changes were identi�ed in students’
perceptions and potential future actions regarding �lter bubbles
and AI recommendations. Any surprising aspects were highlighted.
Through regular meetings between three researchers, the codes
1https://www.rev.com/

accumulated, and categories emerged. Then an axial coding process
was employed to uncover the relationships between these categories
and group them into cohesive themes [97]. These themes revolved
around learning outcomes, how design elements supported learning,
and learners’ misconceptions. Quotes were taken to illustrate and
support the major themes.

RQ2. To what extent can image schemas embodying AI concepts
support students’ learning? To measure the learning e�ects of image
schemas NEAR-FAR, BIG-SMALL, and ITERATION in embodying
speci�c AI concepts for children, we analyzed a combination of
interaction and movement logs for embodied learning behaviors,
post-activity interviews for self-reported re�ection, and pre- and
post-tests for learning gains.

To understand embodied learning behaviors through NEAR-FAR,
we plotted students’ walking paths and areas to illustrate their body
movements, distances between pollinated �owers, and the �ower-
growing areas for each round of bee pollination. For ITERATION,
we conducted a descriptive analysis of the frequency and time
to observe gardens at di�erent time points. For BIG-SMALL, we
analyzed students’ interaction with pollen circle size and bud re-
ranking, along with �ower diversity changes.

With post-activity interviews, we identi�ed themes around learn-
ing content and embodied metaphors through the same analysis
procedures as in Section 4.4.

RQ3. To what extent can analogies support AI learning in K-12 science
contexts? We �rst analyzed in-app assessment logs to measure
analogies’ e�ectiveness for students to map science concepts with
AI concepts. Then we analyzed post-activity interviews to obtain
the learning e�ects of individual analogies and their inter-relations
for students to understand speci�c AI concepts.

5 RESULTS
5.1 RQ1. Can BeeTrap support students in

learning the target AI concepts and
motivating conceptual and potential
behavioral changes regarding �lter bubbles?

5.1.1 RQ1.1: Learning gains from pre- and post-test. The data was
not normally distributed based on the Shapiro-Wilk test. Thus, we
adopted a non-parametric test, the Wilcoxon signed-rank test on
the pre- and post-test scores for each question. We calculated the

https://www.rev.com/
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rank-biserial correlation as the e�ect size, which indicates a large
e�ect with a value higher than 0.7 for all the questions.

Results of the pre-post test (Table. 3) indicate that the BeeTrap
system supported statistically signi�cant increases (p < 0.05) in par-
ticipants’ conceptual understanding of all the target key concepts
about AI recommendation systems, except the basic algorithmic
steps for diversi�cation. By looking into individuals’ learning gains
between pre- and post-tests, we can tell that P3, P4, P7, and P9 have
the highest learning performance among all the students, while P6
and P8 have the lowest performance.

5.1.2 RQ1.2: Students are empowered to develop new personal and
societal perspectives around filter bubbles. We found that di�erent
students developed di�erent perspectives around �lter bubbles.
First, seven students began to acknowledge the potential of rec-
ommendation systems contributing to the �lter bubble formation.
Previously, their exposure to AI concepts was limited, but after Bee-
Trap learning activities, they recognized that �lter bubbles could
constrain them from accessing diverse information, which poten-
tially limited their exposure to varied perspectives: “I need diverse
information.”, “(Filter bubble) limits my imagination.” Furthermore,
eight students were able to connect these concepts to real-world
situations. One student related this to their personal experience,
noting, “I don’t want to be a basketball player, but the social media
keeps recommending me basketball content.” This connection high-
lights that they could see the tangible e�ects of recommendation
systems and �lter bubbles in shaping their interests and choices.

Second, BeeTrap empowers all students to take action to break
�lter bubbles in their real lives for personal and societal changes.
One participant mentioned he would want to explain the �lter
bubble e�ect to his three-year-old cousin. It would be challenging
to explain this abstract phenomenon to youngsters, but he said he
would use his cousin’s favorite video “Cocomelon” to explain that:

“That’s challenging to explain to a three-year-old. But
I am thinking I am going to tell him that YouTube
knows that you like Coco Melon and then it gives
you a lot of Coco Melon. And you might not see other
videos very often.”

The other participant thought �lter bubbles might impact people’s
judgment and mislead decision-making. She thought it’s impor-
tant to have independent thought and be mindful of what AI rec-
ommends to us. She mentioned she would use purchasing from
Amazon as an example to teach her parents:

“When you shop on Amazon, before you decide to buy,
especially what it tries to get you to buy, you gotta
check the rating and read the comments to �gure if
it’s actually good enough.”

Another participant mentioned that not everyone in the community
knows about �lter bubbles, how the recommendation systemworks,
how to break �lter bubbles, and how to approach recommendations
more critically. She wanted to make a slide show to explain these
to community members:

“People might say: ‘I will just take whatever my Insta-
gram shows me, or I would just watch whatever my
YouTube gave to me.’ I will tell them that AI would rec-
ommend the stu� that you would usually watch. You

should try something new, so you won’t be watching
the same thing over and over. It will be more diverse.
And you will hear more diverse opinions.”

These students are motivated to take action, make changes, and
deliver impact.

Third, we also observed two students (P1, P7) still need more
support in developing more accurate and critical perspectives on
the impact of �lter bubbles. One student expressed their knowledge
of what the �lter bubble is, but they don’t think it’s a bad idea to stay
in �lter bubbles as the �owers inside of �lter bubbles are exactly
what they like. Another student mentioned that �lter bubbles could
be good as they �lter out the things that children shouldn’t watch.

5.2 RQ2. To what extent can image schemas
embodying AI concepts support students’
learning?

5.2.1 Understanding the definition, formation, and impact of filter
bubbles. In this section, we report how image schemas NEAR-FAR
(P) and (G) and ITERATION support students’ understanding of
�lter bubbles (Fig. 1.1).

Unexpected body movements while experiencing �lter bubbles.
Four groups of students (P1, P3&P4, P5&P6, P7&P9) decreased
the �ower diversity (NEAR-FAR (G)) to the target value with six
rounds of �ower pollination; however, P2 and P8 took 12 rounds
and the diversity increased at one point (Fig. 7.a). Walking paths
overlaid on �ower areas show that P2 and P8 explored pollinating
�owers from the edge of where �owers exist (i.e., themost dissimilar
�owers from the beehive in the current garden) (Fig. 7.c2), which
caused the slow formation of �lter bubbles.

The distances between pollinated �owers (Fig. 7.b) de�ed our
expectation of students pollinating �owers in progressively closer
proximity. We observed that some groups (P1, P3&P4, P7&P9) were
less physically active initially and started with a very short distance
between the second pollinated �owers and the �rst. This suggests a
further design for students to explore the garden more extensively
at the beginning. We did observe a trend of decreasing walking
areas of four groups (P2&P8, P3&P4, P5&P6, P7&P9) (Fig. 7.d), which
indicates their experience of being trapped by the �lter bubble in
the garden. However, most groups (P2&P8, P3&P4, P5&P6, P7&P9)
still walked a lot in some lower-diversity rounds, because students
got distracted by the withered �owers far away (Fig. 7.c).

NEAR-FAR helps students recognize and re�ect on �lter bubbles.
First, groupwise NEAR-FAR (G) makes the concept of groupwise
data similarity/diversity visible and comparable to children. All
students described that similar �owers being clustered together
made it visually striking for them to connect with the diversity loss
and stimulated their re�ection on why �lter bubbles were formed
and why diversity is needed. For example, P1: “Like it’s just weird
for them to like, to grow together. So it’s like (growing in) one
section”; P3 described their negative experience of walking in a
space with fewer and fewer areas with �owers: “In the beginning,
it was like spaced out. . . You had to walk more to see. You have
more space to explore... Cause if a bee just likes one �ower, it’d be
all clustered up. You’re not gonna go to like all �owers clustered
up. (It’s) weird... don’t stay on one thing for too long.”
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Table 3: Assessment questions and mean (SD) of pre-, post-tests, and learning gains on AI concepts.

Target concept Assessment Question (Scores range 0-3) Mean_Pre (SD) Mean_Post (SD) Mean_Di� (SD) P value
Recognizing AI recommen-
dation systems

What AI-based recommendation systems have you used? 0.44 (0.88) 2.78 (0.44) 2.33 (1.12) 0.008

De�nition and impact of �l-
ter bubbles

What’s the �lter bubble? What could be the negative impact of
�lter bubbles?

0.00 (0.00) 2 (0.87) 2 (0.87) 0.008

User pro�le In a recommendation system, what could the user pro�le use
to describe a user?

0 (0) 2.11 (0.96) 2.11 (0.96) 0.004

Pairwise data similarity
computation

Which multidimensional data object below is more similar to
the target data object (2,4,2,4,2)? Option 1: (2,2,4,2,2); Option 2:
(4,4,2,4,4.)

0.78 (1.30) 2.33 (1.32) 1.56 (1.51) 0.033

Basic algorithmic steps in an
AI recommendation system

Think of a recommendation system that you have used. How
does it decide what to recommend to you? Order the major
steps: (A) Update the user pro�le with the selected item. (B)
User selects an item (C) Recommend the most similar items. (D)
Rank all available items based on their distance from the user
pro�le.

0.22 (0.67) 2.44 (0.73) 2.22 (1.09) 0.009

Basic algorithmic steps for
diversi�cation

As an AI engineer, which option below can you use to make the
recommendations more diverse?

1 (0.87) 1.89 (1.36) 0.89 (1.69) 0.114

Average 0.41 (0.43) 2.26 (0.34) 1.85 (0.59) < 0.001

Figure 7: Students’ interaction with the image schema NEAR-FAR in the �lter bubble experience.

Second, NEAR-FAR (G) inspires students to re�ect on �lter bub-
bles further in real-life scenarios. P2 and P8 transferred the con-
nection between NEAR-FAR (G) and diversity-similarity into their
daily experience: “It’s gonna decrease our chances of getting new
content to see (in YouTube)”; P8 shared their in-depth re�ection

about the walking experience in �lter bubbles: “I am watching what
I want to do. I am imagining what I want to do. Like some kids
wanna be a football or basketball player. But it limits my thinking,
and my imagination. Maybe I want to do other things.” Furthermore,
groupwise NEAR-FAR empowers children to break �lter bubbles
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from the perspective of a recommendation consumer: “I should
pollinate more diverse �owers to make the �lter bubble bigger.”

ITERATION helps students compare and understand the process
of �lter bubble formation. After the formation of �lter bubbles, dif-
ferent groups utilized the time travel buttons in distinct manners,
facilitating their exploration of gardens at various iterations of the
�ower pollination (Fig. 8). First, two groups (P3&P4, P7&P9) used
time travel buttons to jump back and forth among all the time
points multiple times and spent most time observing the gardens
in the later iterations. Second, one group (P2&P8) jumped between
di�erent gardens repetitively and spent most time observing the
gardens in the early iterations. Third, two groups (P1, P5&P6) trav-
eled through all the time points in the temporal order for one round.

Regarding pre- and post-test outcomes, students with higher
learning performance (P3, P4, P7, P9) actively engaged with the
image schema ITERATION by exploring all iterations of gardens
multiple times with a focus on the later iterations. In contrast,
students with lower levels of conceptual understanding typically
revisited the iterations only once (P1, P5, P6) or concentrated on
the earlier iterations (P2&P8). This suggests the learning bene�t for
students to intensively analyze and re�ect on the various iterations,
especially the later ones, as these stages more clearly and strikingly
showcase the impact of the �lter bubble.

Students reported that time travel with the image schema ITER-
ATION supports them in understanding the changes in the garden
during the formation process of �lter bubbles. For instance, P3
shared: “(Filter bubble made) you see the same thing over and over
again, you get bored”; P2: “Here, (this iteration has) more dying
�owers. And here, (this iteration has) less di�erent and diverse
�owers”; P5: “From the �rst garden, there’s more like more alive
�owers and more diversity. And by the end, it’s less diversity and
more dead �owers.”

5.2.2 Learning AI recommendations’ inner workings. In this section,
we report how the image schemas NEAR-FAR (P) and (G) and IT-
ERATION support students in learning about the inner workings
of a content-based recommendation system, including user pro-
�le, item-item similarity computation, user pro�le-item similarity
computation, and top-N recommendation (Fig. 1.2).

NEAR-FAR (P) between �owers helps students understand item-
item similarity. All groups mentioned that the physical distance
supports their reasoning with data similarity between �owers, con-
necting the distance with the data similarities between �owers. For
instance, P2 and P8 demonstrated that “I think that the more similar
they are, the closer they are... But the more di�erent they are, the
farther they are”; P1: “And the distance they like bit farther apart
is because like they’re, di�erent type of �owers. they’re separated
from each other.” Eight students understood that the data similarity
is determined by all the features in the data vector with NEAR-FAR
(G). For example, P5 and P6 explained: “Numbers represent like
their size, the petal size, their height and the type of details about
the �ower that basically, giving us the rankings of the distance.”

NEAR-FAR (G) is less e�ective for learning how user pro�le is up-
dated. Without an overhead view of objects’ locations (e.g., �owers,
the beehive, buds), it could be challenging for students to observe
the beehive moving towards the pollinated �ower(s) (NEAR-FAR

(G)). Only three students (P2, P7, P9) noticed that the beehive moved
towards the �ower(s) they pollinated. For instance, P2: “I noticed
that (the beehive moved based on the pollinated �owers) because
it’s choosing the content that like.” Three students (P1, P5, P6) only
noticed the beehive moved, without reasoning how it moved. Three
students (P8, P3, P4) didn’t notice the beehive movement.

As a comparison, the image schemas CONTAINER or IN-OUT
could be more helpful embodied metaphors for the user pro�le
collecting data from user-selected items. Six out of nine students
mentioned the e�ectiveness of observing pollen �ying from all
pollinated �owers into the beehive (Fig. 5.3). For instance, P3 and
P4 explained: “(beehive) is the data that he gathered; the pollen
being transferred into like beehive.”

5.2.3 Empower students to break filter bubbles. In this section, we
report how the image schemas BIG-SMALL, NEAR-FAR, and ITER-
ATION together empower students to break �lter bubbles by a di-
versi�cation algorithm. Target AI concepts include groupwise data
similarity/diversity, enlarging the range for similarity-based rank-
ing, diversity-based ranking, and diversi�cation outcome (Fig. 1.3).

BIG-SMALL of pollen circle, NEAR-FAR (G), and ITERATION sup-
port students to break �lter bubbles through exploratory trial & error.
In the diversi�cation activity, all groups successfully increased the
�ower diversity of the garden to the target value (Fig. 9.a). Students
demonstrated four di�erent types of exploration behaviors with
pollen circle size (BIG-SMALL) and diversity-based ranking of buds
(NEAR-FAR (G)) through ITERATION (Fig. 9.b). First, four groups
(P1, P2, P3, P7) kept making small changes in pollen circle size for
experimentation. All of them �nished individual iterations more
quickly than the other groups. Second, two groups (P9, P5&P6)
initially made only mild and slow enlargements to the pollen cir-
cle, which resulted in a minor decrease in �ower diversity. Upon
observing these changes in BeeTrap, these groups adapted their
approach, opting for enlarging the pollen circle more substantially,
but this action alone didn’t yield a signi�cant increase in diversity.
Students recognized the need to re-rank the buds based on diversity.
They iteratively adjusted the pollen circle size with deliberate pre-
cision, successfully achieving their diversi�cation goal. Third, one
group (P4&P8) started by signi�cantly enlarging the pollen circle
but failed to increase the diversity. During the second iteration, they
experimented with both decreasing and increasing the pollen circle,
through which they discerned the necessity of re-ranking based
on diversity, and succeeded in the third iteration. Furthermore, we
observed that �ve groups (P2, P4&P8, P5&P6, P7, P9) didn’t initially
know to re-rank buds based on diversity. They �gured it out after
two to eight iterations of trial and error.

With pre- and post-test outcomes, we found that students with
higher learning gains (P3, P9, P7, P4, P8) experimented with both
decreasing and increasing the pollen circle size (BIG-SMALL).

In post-activity interviews, BIG-SMALL (i.e., directly manipulat-
ing the pollen circle size) supported seven students (P1, P2, P3, P5,
P6, P7, P9) in accurately verbalizing the detailed algorithmic steps
for diversi�cation. For example, P2 described: “I used the tool by
expanding the circle. Enlarge the (range of) options to recommend
and then recommend the most diverse to one bee”; P7 and P9 said:
“It enlarges the group... it makes the garden bigger for the bees to
control and eat things they like.”
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Figure 8: The sequence and time duration of using time travel buttons to jump to di�erent gardens at di�erent time points
in the �lter bubble experience; graph (b), (c), and (e): students compare all the iterations back and forth for multiple rounds;
graph (a) and (d): students only compare all the iterations for one round with little back and forth.

Figure 9: (a) The change in �ower diversity in each iteration, (b) sizes of the pollen circle.

As for the distances among �ower buds (NEAR-FAR (G)), all stu-
dents except P2 understood how growing �owers far apart impacts
�ower diversity, compared to growing �owers clustered together.
For instance, P1 mentioned: “cause when I, when I change it to a
sparse (group of buds), my score increased”; P7 and P9 explained:
“With clustered �owers, (diversity) just goes down.” However, P2
didn’t notice that the rankings changed after re-ranking by diver-
sity, because it was more challenging to locate all the ranked buds
that were farther apart (Fig. 3.2).

NEAR-FAR (G) is less e�ective in developing students’ mathemati-
cal understanding of data diversity. Although students grasped the
knowledge of how to break �lter bubbles with a diversi�cation algo-
rithm, they still missed the mathematical de�nition of diversity (i.e.,
the average dissimilarity between all pairs of items in the result set
[66]). With NEAR-FAR (G) among existing �owers representing the
�ower diversity, only one student (P2) understood that the diversity
is calculated by the distances between �owers: “the �ower diver-
sity means the di�erences between the �owers”; �ve students (P5,
P6, P7, P9, P3) developed an embodied understanding that �owers
located dispersedly in a larger area represent more diverse data; P5
and P6 mentioned: “Increase (pollen circle), so there can be more
diverse options”; three students (P1, P4, P8) misunderstood �ower
diversity as the number of �owers.

5.3 RQ3. To what extent can analogies support
AI learning in K-12 science contexts?

5.3.1 Students’ in-app understanding of the mapping between analo-
gies and AI concepts. Within the two iterations of the in-app assess-
ments, all groups correctly identi�ed AI concepts behind the bee
pollination analogies, including a beehive, �ower buds, bud rank-
ings, pollen circle, �owers, and a garden. This shows that the major
BeeTrap analogies are intuitive and e�ective enough for students
to connect with the underlying AI concepts by interacting with
BeeTrap shortly.

5.3.2 Biodiversity as an accessible analogy for students with diverse
backgrounds to understand information diversity and filter bubbles.
We found that familiar ethical issues in STEM �elds, such as bee
pollination and biodiversity, may o�er a unique opportunity to
foster children’s understanding of AI ethical issues.

Bee pollination analogies, familiar to K-12 students, can serve as
common ground. This makes the experience and implication of
�lter bubbles accessible for students with di�erent levels of digital
literacy. For instance, P9 rarely engages with social media or other
AI-based recommendation systems. It’s challenging for them to
imagine how the items recommended to them may impact their
life. Through roleplaying a bee consuming �owers, P9 associated
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with their prior knowledge of bees: “Bees are keeping �owers and
plants grow if we need to plant vegetables... and fruit to cook and
to provide for our family... so I feel like bees are impacting this
world very well. Bees are important to us. (We) need to eat food.”
Then they understood the negative impact of �lter bubbles: “It’s
useless to other plants if they don’t get enough ‘energy’ to grow. I
feel like it’s not fair. Because certain bees can only pick �owers that
have the most ‘energy’. But if the �owers have the least ‘energy’,
the bee most likely not gonna pick the �ower. But if the �ower has
(‘energy’), it grows every time.”

The �rst-person view of roleplay creates an immersive experience
in the biodiversity context, which is hard to form and observe in real
life. Eight students (P1, P3, P5, P6, P7, P9, P2, P8) reported that
they learned about the negative impact of both the thriving �owers
close together and the dead �owers farther around: “Wow, these
�owers died!” Such familiar phenomena immediately invited them
to connect the loss of biodiversity in �owers with bees’ health. For
example, P5 and P6: “At the beginning, (there is a) more live garden.
The bee will then get ill with the dying �owers”; P1: “Oh, um, it
needs more diverse �owers because it can’t live o� just one speci�c
type of �ower. It needs a variety”; P9: “When the bee only had a few
selections of �owers, it started to become unhealthy, cause it needs
multiple di�erent sets of �owers, not only two...” Such narrative
supported them to connect the necessity of biodiversity back to the
need for diverse content and opinions in real life. For instance, P3:
“Because you’re not trying to see the same one thing over and over
again. You get bored.”

5.3.3 Analogies and their inter-relations support students in explain-
ing complex algorithms through intuitive and imaginative storytelling.

Analogies and their inter-relations support illustrating the algo-
rithmic steps. With the concepts from a familiar domain and the
structural relationships among them, it’s easier for students to recall
the detailed algorithmic steps for content-based recommendations
and diversi�cation. Eight students were able to illustrate how the
content-based recommendation works in the context of bee pol-
lination. For example, P2 and P8: “Because when you choose the
�owers, that beehive chooses (that �ower), that beehive decides
to make that that speci�c �ower grow more. So you can pollinate
speci�cally that type of �owers”; P2: “I roleplayed as a bee. I know I
probably pollinated more diverse �owers. the more di�erent �owers
I pollinated, the bigger the �lter bubble got.” Six students (P1, P2,
P3, P4, P7, P9) demonstrated algorithmic steps for diversi�cation.
For example, P3: “You enlarge it, give it more space, then you give
more pollen into di�erent plants.”

Furthermore, three students (P2, P7, P9) understood the division
of labor between AI technology, user, and AI engineer by connect-
ing them with a garden, a bee, and an environmental scientist. For
example, P2 explained how to break �lter bubbles as a user: “I know
I should pollinate more diverse �owers. The more di�erent �owers I
pollinated, the bigger the �lter bubble got”; P7 and P9 explained the
di�erence between the AI engineer and the user: “A little bit di�er-
ent because we’re both trying to build a garden, but he is a human,
so he has to use the tools to use the setting. And I just pollinated for
him to use his tools for it to grow.” However, from the interview and
post-test, we noticed a challenge in transferring speci�c knowledge

of analogies in the garden scenario to the target AI terminologies.
Seven students described AI phenomena with their own language
without referring to the AI terminologies. Two students were also
confused by too many analogies presented together and got lost.

Student-created imaginary analogies to �ll in the design gaps. We
observed that students get inspired by existing analogies and create
their own imaginary analogy bridging the gaps in a more detailed
breakdown of AI concepts without any BeeTrap analogy connected.
Such creation further develops students’ AI literacy. For example,
with no analogy for ranking numbers placed above the buds, P7 and
P9 created a new analogy “energy”, aligned with the garden context,
to concretize bud rankings: “The �owers close to the beehive are
fully grown and there were a couple of other �owers that were like
just dead. Cause the bees, we weren’t giving them enough energy.”
This demonstrates their further understanding of the complex algo-
rithmic step that ranks items based on user pro�le-item similarity.
They then utilized “energy” they derived from content-based rec-
ommendation systems’ inner workings to e�ectively understand
the diversi�cation algorithm: “After enlarging the pollen circle size,
bees can get more energy to more diverse �owers far away.”

5.3.4 Beehive as a less intuitive analogy for user profile. Based on
the post-interviews, six out of nine students learned the de�nition
of a user pro�le by observing the beehive. P3 and P4 explained in
both the bee pollination context and the real-life recommendation
system context: “It’s the home of the bee and the data that he
gathered, the information The thing that we like to pollinate. It’s
like selecting the things that you like (in YouTube)”; P5 and P6
achieved comparable understanding: “It represents (what) we select
in a recommendation system. It depends on what you watched.”

However, after the learning activity, three students (P1, P2, P8)
were not able to transfer their experience with the beehive to AI
recommendation systems. This is not aligned with students’ high
in-app performance in that they correctly understand a user pro�le
collects data on user-selected items. This indicates the challenges
for students to memorize the connection between the beehive (i.e.,
source knowledge) and the user pro�le (i.e., target knowledge), even
when they understand the target knowledge during the analogical
learning experience. This may be due to the gap between a beehive
moving to pollinated �owers and the real science context.

6 DISCUSSION
6.1 Embodied Metaphors for AI Concepts
We found NEAR-FAR e�ective in supporting students to explore
and re�ect on �lter bubbles, although students didn’t demonstrate
all expected body movements in the �lter bubble activity. Combined
with ITERATION, students were able to take a closer look at the
gradual formation of �lter bubbles, compare the new and with-
ered �owers between iterations, and reason about �lter bubbles’
negative impact and inner workings. Findings indicate bene�ts for
students to fully explore all the iterations back and forth, spend
more time observing more prominent �lter bubbles, and walk inside
and outside of the pollen circle to observe the garden from di�er-
ent perspectives (CONTAINER). This is aligned with the design
guideline for tangible learning interfaces that spatial, physical, and
temporal properties can trigger learners’ re�ection [8].
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For learning the inner workings, some students failed to notice
(1) the beehive moving toward the pollinated �owers (NEAR-FAR
(G)), and (2) ranking based on the bud-beehive distance (NEAR-
FAR (P)). One potential reason is that these spatial relationships
are less visually accessible in a �rst-person view of roleplaying
the bee. Thus, a global overhead view could be provided for a
more comprehensive and accurate understanding of the spatial
organization of data [21].

For diversi�cation, �ndings show that BIG-SMALL and NEAR-
FAR (G) support direct manipulation and trial & error with pollen
circle and bud re-ranking. Over time, such hands-on experience
with immediate visual feedback helps students develop metaphor-
ical connections between image schemas and AI concepts [7, 70,
114, 122]. However, students didn’t demonstrate signi�cant im-
provement in their conceptual understanding of the diversi�cation
algorithm from pre- to post-tests. Post-interviews indicate that, al-
though image schemas make the system intuitive and engaging for
students to interact with, some students didn’t fully transfer their
in-app understanding into post-tests. This aligned with �ndings
from a tangible interface teaching machine learning [59].

Furthermore, students didn’t develop a deeper understanding of
data diversity’s mathematical de�nition with NEAR-FAR (G)—the
average of distances between all pairs of data objects. Therefore,
NEAR-FAR (G) can serve as an entry point using students’ real-
world spatial awareness capabilities [21, 63] to interpret relation-
ships among data; meanwhile, more visual and tangible sca�olding
is needed. For example, in the garden context, a spider web can be
created to connect all pairs of �owers and the total length of the
thread embodies the calculation of data diversity.

6.2 Analogies for Learning AI Literacy in
Science Contexts

K-12 science topics as e�ective analogies for AI concepts. As an
extension of prior work [43, 83], we found that BeeTrap analogies
have notably enabled students to connect complex concepts of a
recommendation system to examples in their real lives. For example,
a majority of students were able to use the beehive analogy to
describe the nature of the user pro�le. One participant demonstrated
his understanding: “It’s the home of the bee and the data that it
gathered; it’s similar to selecting things you prefer, as you would
do on YouTube.” The process of reasoning aligns with the stages in
analogical learning in which the learner recalls the familiar example,
identi�es the parallels between the known and the unknown, and
evaluates the analogy to see if it holds [44].

Familiar ethical concepts in K-12 STEM subjects could be a com-
mon ground for students who have limited access to AI technologies
to understand AI ethical issues. For example, biodiversity, empha-
sizing the necessity for bees to have diverse �owers for maintaining
their health overall, served as a powerful analogy to illustrate the
importance of diversi�cation in recommendation systems. This con-
cept fostered students’ critical thinking that, much like a bee’s need
for diverse �owers, we as consumers of recommendation systems
also need diverse content. More K-12 topics could be identi�ed as
e�ective common ground, such as nutrition science (the analogy
between information diversity and nutrition diversity).

Powerful analogy-supported narrative with challenges in trans-
fer learning. We found that students recalled the detailed steps of
content-based recommendations and diversi�cation better when
these concepts were anchored to familiar scienti�c context and
their structural relationships, providing an intuitive narrative for
recalling the complex knowledge. Students successfully illustrated
the workings of content-based recommendation systems using the
analogy of bee pollination, thereby highlighting an understanding
of diversi�cation in scienti�c discourse. Analogies’ learning e�ects
align with existing theory that emphasizes that schema abstraction
and generalization from one’s prior knowledge foster the forma-
tion of abstract rules in new learning scenarios [44], especially for
perceiving algorithms [6, 16].

However, we observed a signi�cant challenge in transferring
speci�c concepts from garden analogies to the targeted AI termi-
nologies, though all the groups were able to correctly recognize
the AI concepts behind the major analogies while using BeeTrap.
From the post-interviews, students could describe certain AI phe-
nomena in their own words but struggled to use the correct AI
terms, and the introduction of too many analogies at once tended
to confuse them, detracting from the intended learning outcome.
This is a known challenge in analogical learning [47] due to its
context sensitivity and student expertise gap.

Metaphoric representations bridge the gaps in analogies. The analo-
gies will eventually get disrupted because the source and target
domains are essentially di�erent. In BeeTrap, gaps exist between de-
tails in bee pollination and the underlying mechanism of a content-
based recommendation, including the beehive moving based on
the pollinated �owers, and arti�cial rankings of buds based on the
physical distance. These imaginative narrations break scienti�c
knowledge and may confuse students. However, on the other side,
such metaphoric representations enabled by these arti�cial objects
(e.g., moving beehive, pollen circle, bud rankings) are also inviting
and inspiring for students to come up with new analogies for fur-
ther learning. For example, one group interpreted pollen circle with
their self-created concept of “energy”, which supports buds closer
to the beehive to grow, can be collected by the bee from �owers,
and requires the bee to consume more diverse �owers. Students
accurately explained the full algorithmic steps behind AI recom-
mendation and diversi�cation by using their design of “energy”.
This extends the �nding from existing research that novice adults
can intuitively understand recommendation algorithms through
metaphoric representations [6]. Extensive research supports the
learning bene�ts of storytelling [5], where connecting with prior
experience and knowledge e�ectively enhances learning [80].

Furthermore, using a beehive to represent the user pro�le is
designed by teachers during the iterative design process. The lower
e�ectiveness of the beehive indicates a steep learning curve for
novices to create e�ective ideas for learning AI concepts. Such
a challenge may request new codesign methods for novices to
contribute to embodied and analogical AI learning activities.

7 LIMITATIONS AND FUTUREWORK
There are a few major limitations of this work, including the anal-
ogy design in BeeTrap, the limited number of participants, and the
unexpected study setup changes caused by the summer camp’s
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nature of �exibility. First, as discussed in Section 6.2, gaps exist
between real-world bee pollination and AI recommendations. To
bridge the gap, our design involves a few arti�cial objects (e.g., the
beehive that moves to the pollinated �owers) which break the sci-
enti�c knowledge. Although these analogies have been con�rmed
or designed by a few in-service K-12 science teachers, and �ndings
don’t indicate their harm to learning, we still consider them as a
limitation in our design and plan to improve them in future design
iterations. Second, with nine students from a summer camp vol-
untarily signed up to participate in the study, our sample size is
too limited to conduct more statistical analysis and restricts the
generalizability of the �ndings. Increasing the sample size to in-
clude more participants with diverse levels of prior knowledge and
backgrounds could enhance the results’ robustness. Third, student
attendance of summer camps is relatively less controllable. Thus,
we have to adjust the grouping for three activities based on who
showed up on the day, and this is why the grouping for the diversi-
�cation activity is di�erent from the �rst two activities. Moreover,
an unexpected occupation of the study site made P1 wait for a long
time before she could play with the diversi�cation. Although a
researcher kept her accompany, such unavoidable disruption and
waiting, however, may in�uence P1’s interest and engagement with
the learning experience.

Beyond our current scope, we haven’t explored the unique learn-
ing bene�ts of di�erent design dimensions: (1) AR versus non-
AR, (2) embodied versus non-embodied, and (3) analogical versus
non-analogical approaches. In the future, we could investigate the
long-term e�ects of embodied metaphors on students’ retention
and transfer learning of AI concepts. Additionally, we can explore
better interaction designs using existing image schemas and new
embodied metaphors for more advanced AI concepts, including
the mathematical de�nition of data diversity. Codesigning with AI
experts, K-12 teachers, and children would allow us to re�ne and
validate new designs.

8 SELECTION AND PARTICIPATION OF
CHILDREN

We recruited middle school students from an ethnically and eco-
nomically diverse urban school district during a summer camp.
Before enrollment, we provided comprehensive information about
the study to parents and youths through consent forms. We clari-
�ed these details in person and addressed any questions. Written
consent for participation and video recording was obtained from
the youths. We selected all youths who volunteered to participate,
following protocols approved by our Institutional Review Board.
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