Check for
Updates

ScaleFlow: Efficient Deep Vision Pipeline with Closed-Loop
Scale-Adaptive Inference

Yuyang Leng
George Mason University
Fairfax, VA, United States

yleng2@gmu.edu

Songqing Chen
George Mason University
Fairfax, VA, United States

sqchen@gmu.edu

ABSTRACT

Deep visual data processing is underpinning many life-changing
applications, such as auto-driving and smart cities. Improving the
accuracy while minimizing their inference time under constrained
resources has been the primary pursuit for their practical adop-
tions. Existing research thus has been devoted to either narrowing
down the area of interest for the detection or miniaturizing the
deep learning model for faster inference time. However, the former
may risk missing/delaying small but important object detection,
potentially leading to disastrous consequences (e.g., car accidents),
while the latter often compromises the accuracy without fully utiliz-
ing intrinsic semantic information. To overcome these limitations,
in this work, we propose ScaleFlow, a closed-loop scale-adaptive
inference that can reduce model inference time by progressively
processing vision data with increasing resolution but decreasing
spatial size, achieving speedup without compromising accuracy.
For this purpose, ScaleFlow refactors existing neural networks to
be scale-equivariant on multiresolution data with the assistance of
wavelet theory, providing predictable feature patterns on different
data resolutions. Comprehensive experiments have been conducted
to evaluate ScaleFlow. The results show that ScaleFlow can support
anytime inference, consistently provide 1.5X to 2.2X speed up, and
save around 25% ~ 45% energy consumption with < 1% accuracy
loss on four embedded and edge platforms.

CCS CONCEPTS

« Computer systems organization — Embedded and cyber-
physical systems; « Computing methodologies — Computer
vision.

KEYWORDS

Scale-adaptive Inference, Object Detection, Scale-equivariant,
Wavelet Transform, Edge Computing, Anytime Inference

MM °23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0108-5/23/10.
https://doi.org/10.1145/3581783.3612412

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Renyuan Liu
George Mason University
Fairfax, VA, United States

rliu23@gmu.edu

1698

Hongpeng Guo
University of Illinois
Urbana-Champaign

Champaign, IL, United States
hg5@illinois.edu

Shuochao Yao
George Mason University
Fairfax, VA, United States

shuochao@gmu.edu

ACM Reference Format:

Yuyang Leng, Renyuan Liu, Hongpeng Guo, Songging Chen, and Shuochao
Yao. 2023. ScaleFlow: Efficient Deep Vision Pipeline with Closed-Loop Scale-
Adaptive Inference. In Proceedings of the 31st ACM International Conference
on Multimedia (MM °23), October 29-November 3, 2023, Ottawa, ON, Canada.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3581783.3612412

1 INTRODUCTION

With the continuous advancement of machine/deep learning tech-
niques and widely deployed mobile and ubiquitous cameras, visual
data processing has become an essential building block for many of
today’s applications, such as self-driving cars, extended reality, and
smart cities. Such applications all require complex semantic under-
standing and localization of visual input, for which deep learning is
now the predominant solution [4, 6, 21]. As the core of such visual
data processing, deep neural networks, however, are notorious for
consuming excessive runtime resources, posing significant chal-
lenges in speeding up deep vision pipelines on embedded, mobile,
and edge systems.

Many efforts have been made to improve the runtime efficiency
of deep neural networks by leveraging the temporal correlations
or the historical spatial distributions of objects to filter out frames
or spatial areas with a low probability of containing objects of in-
terest [8, 17, 19, 21]. However, besides being application-specific
and relying on assumptions such as stationary cameras with fixed
angles and locations or requiring extensive offline profiling and
tuning before each deployment, these solutions often risk missing
(or delaying) timely detection of small but important objects and
potentially leading to disastrous consequences (e.g., car accidents).
On the other hand, plenty of efforts have also been made to harness
the parameter redundancy of deep learning models by reducing the
model complexity, which includes model compression [13, 14, 41],
weight quantization [7, 9, 28], efficient neural network design and
search [16, 22, 35, 36]. Although these techniques can simplify con-
structing a miniature model, they often trade accuracy for reduced
inference time and fail to exploit intrinsic semantic information to
allocate computation at runtime for inputs of varying complexity.

To address the limitations of existing research, we propose Scale-
Flow, a closed-loop scale-adaptive inference pipeline that can be
integrated into any existing deep vision system. Unlike prior efforts
that are mostly based on feedforward open-loop optimization, Scale-
Flow dynamically allocates computing resources using inference

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3581783.3612412
https://doi.org/10.1145/3581783.3612412
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581783.3612412&domain=pdf&date_stamp=2023-10-27

MM °23, October 29-November 3, 2023, Ottawa, ON, Canada

results as feedback to deliver progressively better outcomes. Scale-
Flow refactors the inference pipeline in the scale domain such that
the inference result of lower-resolution data can identify regions of
high uncertainty (e.g., areas with overlapping items, small objects,
or complex scenes) for further processing with higher-resolution
input in a closed-loop manner.

The design of ScaleFlow, however, must address the following
two key challenges. First, the closed-loop inference over the scale
domain necessitates the deep vision model to have predictable
behavior over the scale space. Just as time-invariant makes time-
based closed-loop systems more robust and stable, we want to make
deep vision models in closed-loop scale-adaptive inference scale-
equivariant so that all objects detected using high-resolution input
can also be identified using the corresponding lower-resolution in-
put (with higher uncertainties). While many architectures have at-
tempted to train on different scales [11, 31], they are all data-driven
and fail to provide the necessary guarantees. Therefore, ScaleFlow
requires deep neural networks to be scale equivariance so that high-
complexity regions are not overlooked during the processing of
low-resolution inputs. Unfortunately, all existing scale-equivariant
designs do not take model efficiency into account [34, 38, 40]. We
must either re-upscale the "down-scaled" data towards the max-
imum feasible resolution, incurring even more inference time or
suffer significant performance degradation due to the discretization.
In ScaleFlow, we leverage multiresolution wavelet analysis [3] to
construct closed-form scale-equivariant mappings, which strictly
preserve the scale-equivariant property while incurring almost
no additional overhead when processing downscaled inputs. Ad-
ditionally, our approach for achieving scale-equivariant mapping
using wavelets is designed to be highly versatile and can be easily
integrated into a wide range of convolutional networks through
the replacement of their convolutional layers. This plug-and-play
method streamlines implementation by minimizing the need for
significant architectural modifications to the underlying network.

The second challenge in designing ScaleFlow is to produce re-
gions of uncertainty in an effective and efficient way for further
processing at a higher resolution. On the one hand, existing deep
vision models, such as object detection networks, estimate objects’
semantic classes and locations. However, they only provide a way
of quantifying class uncertainty, not location uncertainty [11, 29-
31, 42, 44]. On the other hand, recent works on location uncertainty
leverage sampling-based Bayesian inference [20, 25], incurring sig-
nificant runtime overhead in practice. We propose an efficient way
of estimating classification and localization uncertainty by exploit-
ing the model’s existing "redundant” computation. Most object de-
tection neural networks produce considerably more bounding box
candidates than their final output before the final layer. Rather than
following the convention of treating most candidates as "false posi-
tives" and pruning them using techniques such as Non-Maximum
Suppression (NMS), we reuse them to estimate output uncertainties.
As a result, we can quantify both classification and localization
uncertainty with almost no extra expense at runtime.

To evaluate the performance of ScaleFlow, we implement we-
bcam object detection applications with ScaleFlow on four dis-
tinct platforms, including an embedded GPU platform (NVIDIA
Xavier) [2], a low-power Al accelerator (Intel NCS2) [1], a tiny
embedded device (Raspberry Pi 4B), and an edge GPU server (with

1699

Yuyang Leng, Renyuan Liu, Hongpeng Guo, Songging Chen, and Shuochao Yao

NVIDIA 3080). We select several representative object detection neu-
ral network models, YOLOv3 [31], CenterNet [44], RetinaNet [23],
and FCOS [37] to evaluate our ScaleFlow as an object-detection ser-
vice with both live streaming from a webcam and pseudo streaming
from the COCO dataset [24]. Compared to other state-of-the-art
baselines, ScaleFlow allows anytime inference and can provide at

least 1.5X ~ 2.2x end-to-end speed-up and save around 25% ~ 45%

energy consumption with less than 1% accuracy loss on four IoT

computation platforms.
The highlights of our contributions include:

o We design a closed-loop scale-adaptive pipeline that can support
anytime inference and adaptively allocate computing resources
based on the complexity of inference tasks.

e We propose closed-form scale-equivariant mappings for neural
network operations based on wavelet analysis concerning both
runtime efficiency and scale equivariance.

e We devise an efficient uncertainty estimation technique by
reusing the existing computation in object detection models.

e We implement ScaleFlow on four diverse platforms, achieving
at least 1.5X ~ 2.2X end-to-end speed-up and saving around
25% ~ 45% energy consumption with less than 1% accuracy loss
compared to other SOTA techniques.

2 A MOTIVATIONAL STUDY

In this section, we explore opportunities for improving neural
network speed through scale-adaptive designs, using a motivational
study with YOLOvV3 [31] object detection on COCO dataset [24].
Our scale-adaptive inference operates on two image resolutions:
full (640 x 640) and downscaled (320 X 320). It involves: i) processing
the downscaled image; ii) cropping and merging areas of uncer-
tainty; and iii) processing the cropped full-resolution image. The
uncertainty metrics include objectness score, class and location
uncertainty. The employed neural networks can be identical, sepa-
rately trained, or coupled by specific rules such as scale-equivariant
mapping.

Two commonly used options are training two independent mod-
els with two different resolutions ! and training a single model
with two resolutions as data augmentation 2. We denote these
two scale-adaptive baselines as "ScaleFlow-IND" and "ScaleFlow-
DataAug". Assume we have a satisfactory method for identifying
uncertainty regions at this moment. As illustrated in Figure 2a,
when achieving comparable mean average precision (mAP) to the
YOLOv3 model with full-resolution inputs, both ScaleFlow-IND
and ScaleFlow-DataAug take more time for inference.

To understand the underlying cause, in Figures 1a and 1c, we plot
feature maps of YOLOv3 with full-resolution input and ScaleFlow-
IND with downscaled input (the feature map of ScaleFlow-DataAug
has a similar pattern and is omitted). We can see several cars on
the top of the input image (Figure 1a), marked by a red rectangle.
YOLOVS3 can detect these vehicles with full-resolution input, as indi-
cated by its feature map’s high-intensity response (Figure 1a). The
corresponding region in ScaleFlow-IND’s feature map shows a low-
intensity response, similar to other background regions (Figure 1c).
As a result, ScaleFlow-IND might have difficulty distinguishing
between the marked region containing cars and other background
regions. So it has to crop a large area for further processing at full
resolution. To validate this hypothesis, we measure the minimum

Lhttps://pjreddie.com/darknet/yolo/
Zhttps://github.com/ultralytics/yolov3/releases/download/v9.0/yolov3.pt

ScaleFlow

(a) YOLOv3 Train: full resolution; Test: full

resolution scaled input

Scale -equivariant

VOL0v3

(b) Scale—equivariant YOLOvV3 Test: down-

MM 23, October 29-November 3, 2023, Ottawa, ON, Canada

‘ YOLOv3

(c) YOLOv3 Train: downscaled input; Test:
downscaled input

Figure 1: Feature maps (red: high-intensity & blue: low-intensity) from different YOLOv3 models. (a) A YOLOv3 model is trained
and tested with full-resolution images; (b) A scale-equivariant YOLOv3 model is trained with full-resolution images but tested
with downscaled images; (c) A YOLOv3 model is trained and tested with downscaled-resolution images.

(a) Mean average precision (b) The min cropped area (%) to

(mAP) and time tradeoff. achieve full-resolution mAP.
Figure 2: System performance of scale-adaptive inferences.
percentage of cropped area that each model needs to attain com-
parable performance to the original YOLOV3 at full resolution. As
shown in Figure 2b, even with the best uncertainty estimation tech-
nique (as discussed later), ScaleFlow-IND and ScaleFlow-DataAug
need more than 80% cropped area to achieve comparable mAP.

Since models at two resolutions are trained independently or
with data-driven strategies like data augmentation, downscaled
models do not get enough input details to make good decisions.
They tend to underestimate blurry, unclear, and tiny objects to
decrease false positives and increase detection rates. This underes-
timate is bad for scale-adaptive inference since the model cannot
distinguish between background and uncertain areas.

Moreover, existing scale-equivariant models do not fit the scale-
adaptive inference due to runtime efficiency (i.e., processing down-
scaled input at full resolution) or performance degradation arising
from discretization or dilation [34, 38, 40]. We thus implement a
traditional scale-equivariant model using strided convolution at full
resolution (i.e., an option provided in [38]) and call it "PConv". As
shown in Figure 2, PConv cannot achieve the same mAP as YOLOv3
due to the limitation of network capacity at full resolution. There-
fore, one essential challenge for ScaleFlow is to develop efficient and
effective scale-equivariant mappings for neural network operations.
As illustrated in Figures 1a and 1b, with scale-equivariant mappings,
ScaleFlow obtains well-calibrated information from low-resolution
input and significantly reduces the workload at full resolution.

Another essential part is the uncertainty measure used to detect
and crop areas of uncertainty for further processing with a neural
network at full resolution. As shown in Figure 2b, the choice of
uncertainty measure is not a critical issue with baselines (ScaleFlow-
IND and ScaleFlow-DataAug) since their downscaled neural net-
works do not provide well-calibrated predictions. For ScaleFlow,
however, we need a better uncertainty quantification design to pre-
cisely identify the areas of uncertainty for better run-time efficiency.
The objectness score and entropy of class scores are widely used

1700

uncertainty metrics [10, 25]. Unfortunately, the objectness score
cannot distinguish between confident and uncertain outputs, while
the class score does not include localization uncertainty. ScaleFlow,
therefore, requires an efficient uncertainty estimation component
that accounts for both class and localization uncertainties.

3 SCALEFLOW DESIGN

This section presents the detail of ScaleFlow design, containing
scale-equivariant mapping and uncertainty estimation. Figure 3
sketches a single feedback loop unrolling of scale-adaptive infer-
ence: (1) execute the neural network with the downscaled input,
(2) cluster output bounding boxes and estimate their uncertainty
as feedback, (3) pick high-uncertainty areas and merge them at a
higher resolution, (4) execute the neural network with the merged
high-resolution input, and (5) cluster all output bounding boxes.

3.1 Scale-Equivariant Mapping

In this section, we present scale-equivariant mappings for neural
network operations and thus enable a scale-equivariant network
that can directly process downscaled inputs.

3.1.1 Preliminary: Wavelet Transform. It is known that we can
decompose the signal into a linear combination of the orthogonal
basis. Wavelet transform leverages scaled and shifted versions of
the bandpass mother wavelet function (n) and lowpass scaling
function ¢(n) as the basis. Scaled and shifted forms are denoted as

Viklnl =272y ((n=10/2), - i) = 277 12((n = k) /2,
where n,k,j € Z. k and j control the shifting and scaling of

a function. With a larger scaling index j, the function’s support
expands, concentrating more on lower frequency components.

Downscaled Resolution

Not Activated for
Model Inference

i

Mapplng

Confident Area
B pciected Object

[l Area of Uncertainty

Full Resolution Full Frequency Band

Figure 3: The overview of scale-adaptive inference.

Thanks to the wavelet’s recursive equivalence property, the dis-
crete wavelet transform and its reconstruction can be computed
using a fast recursive algorithm. We can compute the (j + 1)-th level

MM °23, October 29-November 3, 2023, Ottawa, ON, Canada

coeflicients of {41k, #j+1,k} based on the j-th level coefficients
of {¢; x} and vice versa by defining two analysis filters:

helnl =) duolklgoolk—2n], hulnl = Yiolklgoolk—2n]. (1)

For orthoglz)nal wavelet, hy [n] and hy [n] s];tisfy a quadrature mir-
ror filter relationship [3]. The frequency magnitude responses of
two analysis filters are symmetric around /2. For Haar wavelet,
hi[n] = [1/v2,1/¥2] and hy[n] = [1/V2,-1/V2].

Then, we denote xﬁ_l [k] and x]P.f_l [k] as the wavelet decomposi-

tion coefficients of ¢; ;. and y/; r, respectively (x{)“ [k] represents the
original discrete signal). We can therefore formulate wavelet trans-
form, including decomposition and reconstruction, as cascading
filter bank using recursive equations.
Wavelet filter bank decomposition L (x):
Ly (xb) ok, (K] = Z h[nlxk[n+2k],

n
Ly (xF) <Pk =)" h[nlxk [n+ 2k].
These operations (2) can also be inferpreted as the stride-2 convolu-
tion with kernels hy [n] and hy[n] (denoted as Ly, () and Ly, (+))
in the deep-learning dialect for efficient implementation using ten-
sor programming libraries such as TensorFlow and PyTorch.
Wavelet filter bank reconstruction:

bkl = > holk = 2nlxk, [n] + > hlk - 2n]xf, [n]
n n
:~ ;;_1 ® };L +~xﬁ1 ® ilH
where we call hy [n] and hg [n] synthesis filters. Since the analysis
filters are quadrature mirror filters, hy [n] = hr[n] and sz[n] =
hgr[n]. Similarly, given synthesis filters with length 2 (such as Haar),
operation (3) can be viewed as the addition of two Kronecker product
(denoted as ®) for efficient implementation.

According to equation (2), the wavelet coefficients are computed
by recursively computing the coefficients at each scale, with x{)‘ [k]
initialized as the discrete signal x. At each step, the signal is de-
composed into low-frequency and high-frequency coefficients by
(stride-2) convolving the low-frequency coefficients obtained from
the previous step with the low-pass and high-pass analysis filters
(i.e., hy and hp described by equation (1)). The wavelet transform
thus effectively partitions the signal into perfectly reconstructable
frequency bands defined by the wavelet functions.

@

®)

3.1.2 Scale-Equivariant Convolution. Without loss of generality,
we denote the 2X2 wavelet analysis filters (2) and synthesis filters (3)
as H = {hrr, hpg, hyr, hggg - We use Haar wavelet for practical
deployments in the paper to validate our designs. However, the
scale-equivariant mappings proposed in the following sections are
not limited to a specific wavelet type.

We start by building the scale-equivariant convolution, the most
widely used operation in computer vision tasks. Convolution can be
formulated as Y[i, j,¢'] = ¥ nc Wlm, n,c,c’] - X[i+m, j+n,c] +
b[c’], where X, Y, W, and b denotes the input tensor, the output
tensor, the convolution kernel, and the bias vector respectively. We
assume spatial resolutions are both even.

We extend wavelet bank decomposition Lj(-) defined by (2) to
3D input and output tensors by performing 2D wavelet decomposi-
tion on each channel individually, £y, (X) : Ly (X)[::c] = Lp(X[:
,5,¢]). To simplify the analysis, we omit other settings, such as
padding (zero padding), dilation rate (= 1), and stride (= 1) at first,
and then revisit these factors later. Since the wavelet transform

1701

Yuyang Leng, Renyuan Liu, Hongpeng Guo, Songging Chen, and Shuochao Yao

halves the data resolution at each decomposition level, we have

a tensor input with the full resolution, X, and downscaled input,

Xrr = Ly, (X), obtained by wavelet decomposition.

The objectives of scale-equivariant convolution are twofold:
(1) To create an efficient equivariant operation that can operate

directly on downscaled resolution while producing the same
results as original convolution at full resolution followed by
wavelet decomposition.

(2) To make the convolution that operates on the full resolution
semipermeable in wavelet frequency bands to support the scale-
equivariant mapping.

To fulfill the first objective, we want to derive the kernel W
and the bias by, for convolution on the downscaled resolution, so
that for all Xy 1 = Ly, (X), there exists

Wi «Xrr +bp = LhLL(w* (XLL®hLL)+b), (4)
where X1 ® hy; means that we reconstruct/approximate the
input X at its full resolution only with its 2D low-pass wavelet
frequency band X; ;. We can reformulate the equation (4) as:
Z Wi[m',n',c,c’] - Xpp[i+m', j+n',c] +br[c’]

:ZhLL[pqu(
P9

(XLL ®hLL)[2i+p+m,2j+q+n,c] +b[C’])

Z W(m,n,c,c’]

m,n,c

We begin by determining the bias vector by for downscaled
computation. Since the bias term is a scalar added to each channel,
it is straightforward to derive the following equation:

by = ZhLL[P>q] -b
q
To derive a convolution kernel for downscaled resolution, we

interpret a stride-1 convolution with a K x K kernel W as four
stride-2 convolutions with K x K kernels, where K = 2 - [(K +
1)/2], by padding W with zeros on the {right-and-bottom, left-
and-bottom, right-and-top, left-and-top} border, denoted as ‘W =
{Wo,0, W10, Wo 1, Wy,1}. Thus, for p € {0,1} and q € {0, 1},

Y[2i+p,2j+q] = ZW[m,n]X[2i+p+m,2j+q+n]

m,n
= Z Wy glm',n'1X[2i +m’,2j +n']

m’,n

©)

™

We can represent W), ; with wavelet transform as filter bank

Wl(,hq) ,and

XIEIL() [i, j] as Xpp [i:i+K, j:j+K, :]. According to the mixed-product
property [33], we can reformulate equations (5) and (7) as

ZhLL[P’q] Z (Z W;),fq)
ra

mn fe(]{
=Y helpal Y, Y (WHa o X0 j1) ® (hy © hur)
pq
= Y xEPljle

m.n feH
(ZhLL[P’q] Z qu) Z hro hLL)
n’,m’ P9 feH ra
where © denotes the Kronecker product (i.e., the element-wise
multiplication), and H = {hrr, hr g, hgr, b}
Therefore, we can derive the convolution kernel for downscaled
computation as follows: 0
W= hiilp.gl Y, W) > (hp o hp)lp'q']
g feH g

reconstruction (3). Moreover, we denote L, (Wp) as

®hf) o (X i 1@ hur)

ScaleFlow

When we have orthonormal wavelet analysis filters, such as
Haar wavelet, we can further simplify the expression of Wy as

Wi = Ln;, (Z hrrlp.ql- Wp,q)
X

®

Based on equations (6) and (8), we can develop a scale-
equivariant convolution operation that computes directly on the
downscaled resolution for efficient processing. However, the scale
equivariance is established based on the assumption that the input
tensor X contains information only from the low-pass wavelet fre-
quency band Xy 1. Thus, we must determine whether, except for the
low-pass band, other wavelet frequency bands in the input tensor
can influence the low-pass band in the output tensor (i.e., checking
whether the convolution operation is semipermeable in wavelet
frequency bands). Without loss of generality, assume that wavelet
analysis filters are orthonormal, for k € {LH, HL, HH}, we have

L1y (W K@) = L[Y bualpa] - Wpg) X 0
pq

We can derive the above equation by adopting a similar pro-
cedure as (4)-(8). Therefore, unless the convolution kernel W has
special structures (as we will discuss later), the convolution is not
semipermeable in wavelet frequency bands.

Then, we need to design a convolution operation at full resolu-
tion that is semipermeable in wavelet frequency bands. The idea is
simple: we will replace the low-pass band in the convolution output
with the result of the downscaled convolution operation (4). Similar
to (7), our semipermeable convolution consists of four stride-2 con-
volutions with kernels ‘W = {VT/O,O,VT/LO,VT/OJ,\X/M}. Thus, for
p €{0,1} and q € {0, 1}, we have

Y[2i+p,2j+q] = Z W qlm',n'|X[2i+m’,2j +n'] +b

m’,n’

st. Wpg = (Wp,q - Z hirlp’,q'] - Wy g + (WL ® hLL))
r.q

where {Wp q} is the zero-padded kernel set ‘W defined in (7)
and W is the downscaled convolution kernel defined in (8). The
kernels {Wp,q} can be precomputed offline after training, which
does not incur additional inference overhead.

To this end, we can derive a scale-equivariant mapping for con-
volution operationat the original full resolution and the halved
downscaled resolution in two steps:

(10)

(1) For the downscaled resolution, we formulate the convolution
with kernel and bias according to equations (8) and (6).
(2) For the original full resolution, we formulate the convolution

according to equation (10).
The scale-equivariant mapping for convolution does not create

additional learnable parameters and depends only on W and b, so
it has no impact on the standard training/tuning procedure.

In addition, to simplify the analysis, the previous formulation
assumes a convolution with zero padding, a dilation rate of one,
and a stride of one. Now, we revisit these configurations. Assume
that we have a convolution with dilation rate d, padding around
the input tensor with p pixels, and stride s.

Dilation: we can treat a k X k dilated convolution with a dilation
rate d as anormal (k+(k—1)(d-1))x(k+(k—1)(d—1)) convolution
by inserting holes (i.e., 0) between the k X k kernel elements. Then,
using the same steps, we can create a scale-equivariant mapping
for dilated convolution. Moreover, suppose the dilation rate d is an

1702

MM 23, October 29-November 3, 2023, Ottawa, ON, Canada

even integer. In that case, the dilated convolution is semipermeable
in Haar wavelet frequency bands (i.e., equation (9) equals zero for
any input using the Haar wavelet). As a result, we can use the
original dilated convolution at its full resolution.

Padding: we pad the input with p pixels around. If p is an even
integer, we generate the scale-equivariant mapping in the same
way. If p is an odd integer, we set padding to p + 1 and extend the
k x k kernel into (k + 1) x (k + 1) by padding 0 around since the
input at full and downscaled resolutions must be aligned.

Stride: when stride= s, as in equation (7), we interpret a stride-s
convolution with a k X k convolution as four stride-2s convolutions
with k x k, where k = 2 - [(k +s)/2], by padding the kernel with
zeros on the right-and-bottom, left-and-bottom, right-and-top, left-
and-top border. Then, we can follow the same steps to build the
scale-equivariant mapping.

3.1.3 Scale-Equivariant Activation Function. The majority of activa-
tion functions, f(-), are element-wise nonlinear functions, making
it difficult to discover a scale-equivariant equivalent, f(-), that
operates at the downscaled resolution. It is thus necessary to re-
formulate the activation function to support the scale-equivariant
mapping. However, changing the frequency response of the ac-
tivation function output has a significant influence on its local
element-wise spatial response. This is also why, to the best of our
knowledge, most existing frequency-domain convolutional neural
networks use activation functions in the spatial domain [12, 32, 39].

Fortunately, most widely adopted activation functions, such
as ReLU, leaky-ReLU, GELU [15], and Swish [27], can be inter-
preted as modulating the amplitude of a signal by gating functions:
f(x) = g(x) - x. The gating function g(x) is a sign function in
ReLU, a shifted-and-scaled sign function in leaky-ReLU, a stan-
dard Gaussian cumulative distribution function in GELU, and a
sigmoid function in Swish. Therefore, our scale-equivariant acti-
vation function replaces the trigger of the gating function with
low-pass wavelet band coefficients: f(X) := (9(Xr.) ® 1;) ©X and
fo(Xrr) == g(Xrr) ©Xrr, where 15 denotes a 2 X 2 matrix of ones,
f(+) denotes the activation function at the full resolution, and f7 (-)
denotes the activation function at the downscaled resolution.

3.2 Uncertainty Estimation

ScaleFlow exploits a new opportunity by treating the existing
unwanted or redundant outputs as extra information to estimate
predictive (i.e., classification and localization) uncertainty. Most ob-
ject detection neural networks output considerably more bounding
boxes than the ground-truth objects in the image.

On the one hand, Non-Maximum Suppression (NMS) [5, 18] is
intrinsically a clustering algorithm as it picks out "cluster heads"
and prunes other bounding boxes.

ScaleFlow substitutes the pruning operation with the grouping
operation, making NMS a clustering algorithm. With little overhead,
we can merge the clustering computation into the existing NMS
computation in the object detection pipeline.

On the other hand, given the clustering assignment, a "sampled”
bounding box j in cluster i contains a prediction vector, including
location coordinates L; = [xj,yj, wj, hj], objectness score [o;],
and class scores C;. Since class information is represented as dis-
crete probability, we can evaluate classification uncertainty as the
expectation of class entropy approximated by samples:

Ugs(cluster;) = Zj 0j -H(Cj) (11)

MM °23, October 29-November 3, 2023, Ottawa, ON, Canada

where U, (+) denotes the classification uncertainty, and H(-) de-
notes the entropy. Since the objectness score (0~1) captures the
quality of bounding box estimations, we quantify classification
uncertainty as a weighted sum of entropy. . For localization uncer-
tainty, ScaleFlow defines "mean" as the cluster head’s bounding
box. Since Intersection over Union (IoU) is a term widely adopted
to describe the overlap between two boxes (ranged from 0~1), we
use 1 —IoU to define the "deviation" of a bounding box from its
cluster head.

Upoe (cluster;) = 3505 - (1- IoU(Lj,Lheadi)) (12)
where Uj,.(-) denotes the localization uncertainty, head; denotes
the head of cluster i, and IoU(-, -) denotes the IoU measurement.

Algorithm 1 illustrates the entire non-maximum clustering
(NMC) procedure, including the phases of bounding box cluster-
ing (lines 2-12) and uncertainty quantification (lines 13-15). More-
over, like NMS, the NMC algorithm was designed as a sequential
algorithm. We build on previous work, cluster-NMS [43], which
formulates NMS as a matrix operation and benefits from parallel
acceleration such as GPU. Since parallel NMC is not the major
contribution of our work, we omit it here for simplicity.

Algorithm 1: Non-Maximum Clustering + Uncertainty (8)

C « []; sort B in descending order of objectness score 0; ;
while len(8) > 0 do
curCluster = [B.pop(0)] ;
for B in 8 do
iou = IoU(B, curCluster[0]);
if iou > iou_threshold then
curCluster.append(B) ;
B.remove(B) ;

/* cluster head */

/* cluster member */

R - Y N L

end
end
C.append(curCluster);

end
for cluster in C do
14 \ Ugis (cluster) and Ujoc (cluster) according to (11) (12);

15 end

During the closed-loop scale-adaptive inference, we feed the
output of the downscaled neural network into the NMC algorithm.
It generates bounding box cluster heads with associated classifi-
cation and localization uncertainties (U, and Uj,.). We have two
thresholds: A.;s and A;,.. f U, > Ags Or Uppe > Ajpe, we mark the
corresponding bounding box cluster head as the area of uncertainty
and send its full-resolution cropped image into the scale-equivariant
full-resolution neural network for further processing.

The question that remains is how to determine uncertainty
thresholds, 1 = [Aetss Atoc]- It turns out to be a relatively sim-
ple task because our uncertainty estimation algorithm manifests
nearly perfect bimodal properties across different detection models
and sub-datasets. All output uncertainties naturally separated into
two distinct peaks: one with low uncertainty, containing the back-
ground or well-detected objects; the other with high uncertainty,
containing the objects that require a second detection pass with a
high-resolution network. In practice, we choose a random subset of
500 images to approximate the 2D histogram of classification and
localization uncertainty. The heuristic for threshold selection is to
place the threshold at the upper boundary of the low-uncertainty
peak so that the portion left only contains high-uncertainty areas.
To estimate the upper boundary, we follow these three steps: 1)
Separate two peaks with histogram bimodal method [26]; 2) extract

1703

Yuyang Leng, Renyuan Liu, Hongpeng Guo, Songging Chen, and Shuochao Yao

the center of low-uncertainty peak /i and its standard deviation o;
3) we set the threshold as T= i+ a -0, where @ = 2 by default. In
practice, when we set a between 2 and 5, mAP drops only 1%, and
execution time increases at most by 2%.

4 EVALUATION

We evaluate the performance of ScaleFlow using five sets of exper-
iments: accuracy-speed tradeoff, end-to-end system performance,
inference time & overhead analysis, ablation studies of technical
components, and anytime inference.

4.1 System Setup

4.1.1 Hardware & Implementation. We implement ScaleFlow and
other baselines on four hardware platforms with different compu-
tation capabilities, and a webcam is connected to each device.
NVIDIA Jetson AGX Xavier (Xavier) is an embedded GPU plat-
form equipped with a 512-core Volta GPU and an 8-core ARM
64-bit CPU. Xavier uses the JetPack 5.0 development environ-
ment, including CUDA 11.4 and cuDNN 8.3.

Edge Server with NVIDIA GeForce RTX 3080 (RTX 3080), CUDA
11.0, and cuDNN 8.0.

Raspberry Pi 4 Model B (Raspberry Pi or RPi 4) is an embedded
platform equipped with a quad-core Cortex-A72 64-bit SoC.
Intel Neural Compute Stick 2 (NCS2) is a plug-and-play Al infer-
ence unit equipped with a Myriad Vision Processing Unit (VPU).
All neural networks will be first exported into ONNX and then
optimized by the OpenVINO Toolkit.

NexiGo N660P 1080P 60FPS webcam. The highest resolution

could be 1920 x 1080, and the default is 640 x 480.
4.1.2 Dataset. We use MS COCO (Microsoft Common Objects in

Context) dataset training and testing [24]. By default, we will re-
scale each image with its longer dimension equals 640, and its

height/width ratio is unchanged.
4.1.3 Baselines. We compare the proposed scale-equivariant scale-

adaptive inference (ScaleFlow) with four baselines.
YOLOv3/CenterNet-Resolution is a set of models trained at differ-
ent resolutions.

YOLOv3/CenterNet-Compress is a set of models with different
backbone complexities (# layers or # channels) obtained by model
compression or architecture search. .

ScaleFlow-IND is a scale-adaptive baseline by taking two neural
networks trained individually at different resolutions.
ScaleFlow-DataAug is also a scale-adaptive baseline. It takes a
single neural network trained with data at different resolutions.
PConv is another scale-adaptive baseline using pyramid-
convolution [38] to ensure scale-equivariant.
RetinaNet/FCOS/EfficientDet-320/640: These models have an input
resolution of either 320 or 640 pixels.

We choose five neural network architectures designed for ob-
ject detection, YOLOvV3 [31], CenterNet [44], RetinaNet [23], and
FCOS [37], EfficientDet [36]. Due to space constraints, some exper-
iments only use YOLOv3 and CenterNet as representative anchor-
based and anchor-free models.

4.2 ScaleFlow Accuracy-Speed Tradeoff

This section evaluates the tradeoff between mean inference time
and mAP score (i.e., the accuracy metric) of two object detection
neural networks on different platforms. We generate pseudo stream-
ing using the COCO dataset to fairly compare the accuracy differ-
ences between the ScaleFlow and baseline models.

ScaleFlow

Time(ms)

(a) NVIDIA Xavier

(b) NVIDIA RTX 3080

MM 23, October 29-November 3, 2023, Ottawa, ON, Canada

Time(s)

(d) Raspberry Pi 4

W
Time(s)

(c) Intel NCS2

Figure 4: YOLOv3: Tradeoff between inference time and mAP on different platforms.

mAP

g rsss

EIES [T T 7 o

« T
Time(ms)

(a) NVIDIA Xavier (b) NVIDIA RTX 3080

mAP

crsss

-
-

Jap
-+
-

D R T R TR T3

Timels)

(c) Intel NCS2

T 5 L
Time(s)

(d) Raspberry Pi 4

Figure 5: CenterNet: Tradeoff between inference time and mAP on different platforms.

Model mAP50 Time ‘ Model mAP50 Time
RetinaNet ‘ YOLOV3
640 51.2 10.9ms 640 57.9 11.6ms
320 44.5 4.5ms 320 53.5 3.4ms
PConv 48.1 7.4ms PConv 56.1 10.5ms
ScaleFlow 50.8 6.8ms ScaleFlow 57.4 7.9ms
FCOS | CenterNet

640 52.2 9.8ms 640 49.5 9.4ms
320 42.1 4.1ms 320 44.5 3.1ms
PConv 45.6 6.9ms PConv 46.5 9.0ms
ScaleFlow 51.6 6.3ms ScaleFlow 49.2 6.0ms

Table 1: ScaleFlow on diverse object detection models.

As shown in Table 1, ScaleFlow consistently achieves good
speedup with little mAP degradation. More detailed tradeoffs are
shown in Figure 4 and 5, where ScaleFlow consistently outperforms
others. If we focus on the best-mAP points (less than one mAP differ-
ence) for all models, ScaleFlow attains 1.5X ~ 1.9% and 1.6X ~ 2X
speed-up compared to the second-best algorithm for YOLOv3
and CenterNet, respectively. YOLOv3/CenterNet-Resolution is the
second-best model, implying that tuning input resolution might be
a good way to find an efficient model. The variant of PConv can
also improve the inference speed to a certain extent. However, the
pyramid convolution with strides limits the model complexity at
higher resolution, which inevitably degrades the accuracy.

4.3 End-to-End System Performance

We evaluate the execution time and energy consumption of object
detection applications on four different platforms. Object detection
pipelines continually process video streaming generated by a con-
nected camera. Every system has a small buffer that can hold two
frames. When the buffer is full, the incoming frame will be dropped.
We operate each object detection pipeline in its best-performance
mode (in terms of mAP in Section 4.2). We run each pipeline for 3
minutes on every system five times, measuring per-frame process-
ing time and estimating per-frame energy consumption.

As shown in Table 2, ScaleFlow achieves the best performance
with an average of 1.6X, 1.7X, 2.1X, and 2.2X speed-up on RTX
3080, Raspberry Pi, NVIDIA Xavier, and NCS2, respectively. Scale-
Flow also consistently achieves the best performance in energy
consumption across all platforms, with around 25% - 45% per-frame
saving. We also observed that the PConv model had power con-
sumption and inference speed similar to the ScaleFlow model on
several devices. Note that the accuracy (i.e., mAP) of the PConv

1704

== Downscale _Net _
== NMC Seesenacoons
23 Crop & Merge
EER Fullscale_Net

L =1 pownscale_Net
== NMC

Necs2 Nes2
= crop & Merge
| &= Fullscale N

RPi4 RPi4

Xavier Xavier

RTX 3080 RTX 3080

20 100 20 100

‘flme‘oper(ensloage("'/oa)n 'rlme‘:en:enlage(%x)n

(a) YOLOv3 (b) CenterNet
Figure 6: Inference time analysis of ScaleFlow pipeline when
achieving the best mAP.

model is substantially lower, because PConv employs convolution
with strides at higher resolution, the capabilities of object detection
models are naturally limited.

4.4 Inference Time Analysis

This section provides an inference time analysis of the ScaleFlow
pipeline when achieving its best mAP performance. As shown in
Figure 6, ScaleFlow follows five steps: (1) execute the neural net-
work with the downscaled input (denoted as Downscale_Net), (2)
Use NMC (Algorithm 1) to cluster output bounding boxes and esti-
mate their uncertainty (denoted as NMC), (3) pick high-uncertainty
areas and merge them at full resolution (denoted as Crop & Merge),
(4) execute the neural network with the merged full-resolution
input (denoted as FullScale_Net), and (5) use NMC to cluster all
output bounding boxes. We clock each of the five stages and provide
the percentage of time each step takes from end-to-end latency.
To begin with, the computational overhead for Crop&Merge is ac-
ceptable (at most 3.3% ~ 3.7% on Xavier platform). NMC is a time-
consuming component of the YOLOv3 architecture on GPU devices.
On the RTX 3080 and NVIDIA Xavier, two NMC operations use
19.5% and 15.6% of the inference time, respectively. However, we do
not deduct the time consumed by the existing NMS (non-maximal
suppression) from NMC. NMS is a well-known time-consuming
procedure in anchor-based neural networks like YOLOv3. The NMS
in YOLOv3 with a full-resolution input takes 1.3 ms on RTX 3080,
while the NMC in ScaleFlow takes 1.6 ms on RTX 3080. Therefore,
the extra functions (i.e., clustering and uncertainty quantification)
introduced in NMC only consume 0.3 ms and account for about
3.7% of the total inference time. On the other hand, NMC takes
much less time (< 3%) in CenterNet architecture because anchor-
free design produces orders of magnitude fewer bounding boxes,
reducing the complexity of NMS/NMC.

MM °23, October 29-November 3, 2023, Ottawa, ON, Canada

Yuyang Leng, Renyuan Liu, Hongpeng Guo, Songging Chen, and Shuochao Yao

NVIDIA Xavier NVIDIA RTX 3080 Rasperry Pi NCS2

YOLOv3 107 + 9ms 4.2+0.5] 11.6 + 2ms 8.0+0.8] 7520 + 250ms 35.4+3.5] 1650 + 312ms 2.15+0.32]
IND 120 £ 9.5ms 4.8+0.65] 15.04 £ 3.5ms 8.9+£0.92] 8125 +1650ms 42.5+5.1] 1740 + 325ms 2.40 +£0.41]
DataAug 124 £ 9.52ms 4.9+0.67] 15.22 + 3.5ms 9.3+0.93] 8220 + 1658ms 45.0 £5.5] 1750 + 350ms 2.42+0.42]
PConv 86 +7.4ms 3.5+0.51] 9.88 + 2ms 7.46 +0.66] 6552 + 125ms 29.2+4.8] 1502 + 215ms 2.35+0.35]
ScaleFlow 51+ 5ms 2.5+0.42] 7.21%2ms 6.33£0.54] 4466 +120ms 23.5+3.1] 745 +200ms 1.24+0.21]
CenterNet 135.15+ 10.2ms 5.8 +0.7] 10.42 + 2.3ms 7.95+0.58] 9252 + 184ms 44.25+4.1] 10524 +£210ms 1.92+0.28]
IND 145.25+ 11.4ms 6.15+£0.8] 12.22 +3.51ms 8.24+£0.75] 10122 +192ms 46.12+£5.2] 1131 + 252ms 2.12+0.3]

DataAug 148.12 + 11.6ms 6.32 £ 0.82] 12.56 +3.84ms 8.55+0.81] 10240 + 201ms 46.55+5.7] 1159 + 280ms 2.15+0.33]
PConv 106.51 + 8.5ms 5.12+0.7] 7.25 + 2.56ms 7.03+0.5] 7685 + 140ms 41.2+4.2] 720 = 172ms 1.48 +£0.22]
ScaleFlow 71.84 +5.5ms 3.39+£0.51] 5.85+1.5ms 5.92+0.35] 5095*122ms 27.51%3.6] 580+ 167ms 1.05+0.19]

Table 2: End-to-end per-frame power consumption and execution time on object detection systems. Bold numbers represent
the best results. The upper part is for YOLOv3, and the lower is for CenterNet.

TP Rate(%)
TP Rate(%)

— atadug
= YOLOV3-PCony

taAug
= YOLOV3-PConv

TP Rate(%)
TP Rate(%)

ScaleFlow-Uncertainty === ScaleFlow-Uncertainty
=== Class-Score

Objectness-Score

= Class-Score
Objectness-Score

80 80

40 60 40 60
Crop Rate(%) Crop Rate(%)

(a) YOLOv3: scale-equivariant

mapping mapping

(b) CenterNet: scale-equivariant

(

tion

0 10 2 30 40

Crop Rate(%)

50 60 0 2 30 4 S0

Crop Rate(%)

0 70 8

c) YOLOv3: uncertainty estima- (d) CenterNet: uncertainty esti-

mation

Figure 7: The lowest percentage of cropped area (after performing the crop & merge) combined with the confident detection
from the downscaled output for achieving y percent of the true-positive rate.

4.5 Ablation Study

In this section, we validate the efficacy of our proposed technical
components in Section 3.1 and 3.2 with ablation studies. There are
two groups of experiments, and their simplified versions can be
found in Section 2. In the first group, we substitute scale-equivariant
mapping with alternative methods of training object detection
neural networks at two resolutions while maintaining ScaleFlow-
Uncertainty as our uncertainty component. In the second group, we
substitute ScaleFlow-Uncertainty with other traditional uncertainty
estimating techniques, but we keep scale-equivariant mapping for
neural networks at two resolutions. In all these experiments, we
use a development set to tune the thresholds. We track the lowest
percentage of cropped area (after performing crop & merge) from
the downscaled output that can include y percent of ground-truth
objects detectable at full resolution (i.e., true-positive rate).

The ablation studies with scale-equivariant mapping are illus-
trated in Figures 7a and 7b. ScaleFlow with scale-equivariant map-
ping outperforms the other baselines by a large margin. The abla-
tion studies with ScaleFlow-uncertainty are illustrated in Figures 7c
and 7d. Our ScaleFlow-Uncertainty can give both classification and
localization uncertainty estimations, saving roughly 30% of cropped
area compared to the Class-Score baseline.

4.6 Anytime Inference

Anytime inference requires a model to make a progression of predic-
tions that might be halted at any time. Our proposed scale-adaptive
pipeline progressively processes vision data with increasing resolu-
tion but decreasing spatial size, which supports anytime inference
by nature. Since the performance of anytime inference is consistent
across platforms, we chose the RTX 3080 as our reference hardware.

We test all scale-adaptive variants, including ScaleFlow,
ScaleFlow-IND, ScaleFlow-DataAug, and PConv, since they nat-
urally support anytime inference. We also include the original
YOLOv3/CenterNet model with full-resolution input. As shown
in Figure 8, all models, including YOLOv3/CenterNet, offer a cer-
tain level of adaptation. Static models (YOLOv3/CenterNet) may

1705

1o 7] i &

0 T
Time Budget(ms)

(b) CenterNet

© Time Budgetims)
(a) YOLOv3
Figure 8: Anytime inference on RTX 3080 with the tradeoff
between mAP and time budgets.

"adapt” to varied time budgets due to how we preprocess image
data in COCO. We re-scale each image during data preprocessing
such that its longer dimension equals 640, and its height/width ratio
remains intact. As a result, even with a static model, each input
image has a varied size, which results in varying inference times.

ScaleFlow outperforms all other baselines by a large margin.
Thanks to scale-adaptive inference, ScaleFlow is prepared to provide
inference results after completing the downscaled part. Another
finding is that the downscaled neural network in our ScaleFlow
model beats the downscaled neural networks in the other three
baselines. It indicates that scale-equivariant mapping also acts as a
valuable regularization approach for neural networks.

5 CONCLUSION

In this paper, we presented ScaleFlow, which supports anytime in-
ference and dynamically allocates computing resources in a closed-
loop scale-adaptive manner. ScaleFlow proposes an efficient scale-
equivalent mapping based on wavelet analysis to support robust
closed-loop adaptation in scale space. Furthermore, we reinter-
preted the object detection output as a Bayesian sampling procedure
to enable efficient uncertainty estimation. With comprehensive eval-
uations, ScaleFlow consistently provides 1.5x to 2.2X speedup and
saves around 25% ~ 45% energy consumption with < 1% accuracy
loss, with diverse hardware platforms and network architectures.

ACKNOWLEDGEMENTS

This work is in part supported by the National Science Foundation
grants IIS-2107200, CNS-2038658, and CNS-2007153.

ScaleFlow

REFERENCES

(1]
(3]
(4]

8

=

[9

=

[10]

[11]

[12

[13]

[14]

[15

[16]

[17]

(18

=
o

[20]

[21

2022. Intel Neural Compute Stick 2. https://rb.gy/nv8h4m.

2022. Nvidia Jetson AGX Xavier. https://rb.gy/samxtg.

Ali N Akansu, Richard A Haddad, and Paul A Haddad. 2001. Multiresolution
signal decomposition: transforms, subbands, and wavelets. Academic press.
Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V Krishnamurthy, and
Amit K Roy-Chowdhury. 2019. Frugal following: Power thrifty object detection
and tracking for mobile augmented reality. In Proceedings of the 17th Conference
on Embedded Networked Sensor Systems. 96—109.

Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. 2017. Soft-
NMS-improving object detection with one line of code. In Proceedings of the IEEE
international conference on computer vision. 5561-5569.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. 2017. Deep learning
with low precision by half-wave gaussian quantization. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 5918-5926.

Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. 155-168.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830
(2016).

Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng Zhang,
Henry Hoffmann, and Junchen Jiang. 2020. Server-driven video streaming for
deep learning inference. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 557-570.

Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi
Tian. 2019. Centernet: Keypoint triplets for object detection. In Proceedings of
the IEEE/CVF international conference on computer vision. 6569-6578.

Adam Dziedzic, John Paparrizos, Sanjay Krishnan, Aaron Elmore, and Michael
Franklin. 2019. Band-limited training and inference for convolutional neural
networks. In International Conference on Machine Learning. PMLR, 1745-1754.
Petko Georgiev, Sourav Bhattacharya, Nicholas D Lane, and Cecilia Mascolo.
2017. Low-resource multi-task audio sensing for mobile and embedded devices
via shared deep neural network representations. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 1-19.

Song Han, Huizi Mao, and William] Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B Gibbons, and Onur Mutlu. 2018. Focus:
Querying large video datasets with low latency and low cost. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 269-286.
Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yuning Jiang. 2018. Ac-
quisition of localization confidence for accurate object detection. In Proceedings
of the European conference on computer vision (ECCV). 784-799.

Shigi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and Yunxin Liu. 2021. Flex-
ible high-resolution object detection on edge devices with tunable latency. In
Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking. 559-572.

Florian Kraus and Klaus Dietmayer. 2019. Uncertainty estimation in one-stage
object detection. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC).
IEEE, 53-60.

Yuangqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry
Xu, and Ravi Netravali. 2020. Reducto: On-camera filtering for resource-efficient
real-time video analytics. In Proceedings of the Annual conference of the ACM

MM 23, October 29-November 3, 2023, Ottawa, ON, Canada

Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 359-376.

Edgar Liberis and Nicholas D Lane. 2023. Differentiable Neural Network Pruning
to Enable Smart Applications on Microcontrollers. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 4 (2023), 1-19.
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international

conference on computer vision. 2980-2988.
Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollar, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740-755.
Dimity Miller, Lachlan Nicholson, Feras Dayoub, and Niko Stinderhauf. 2018.
Dropout sampling for robust object detection in open-set conditions. In 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 3243-3249.

P Daniel Ratna Raju and G Neelima. 2012. Image segmentation by using his-
togram thresholding. International Journal of Computer Science Engineering and
Technology 2, 1 (2012), 776-779.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. 2017. Searching for activation
functions. arXiv preprint arXiv:1710.05941 (2017).

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European conference on computer vision. Springer, 525-542.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779-788.

Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
7263-7271.

Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

Oren Rippel, Jasper Snoek, and Ryan P Adams. 2015. Spectral representations
for convolutional neural networks. Advances in neural information processing
systems 28 (2015).

Kathrin Schacke. 2004. On the kronecker product. Master’s thesis, University of
Waterloo (2004).

Ivan Sosnovik, Michal Szmaja, and Arnold Smeulders. 2020. Scale-Equivariant
Steerable Networks. In International Conference on Learning Representations.
Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105-6114.

Mingxing Tan, Ruoming Pang, and Quoc V Le. 2020. Efficientdet: Scalable and
efficient object detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 10781-10790.

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. 2020. Fcos: A simple and
strong anchor-free object detector. IEEE Transactions on Pattern Analysis and
Machine Intelligence 44, 4 (2020), 1922-1933.

Xinjiang Wang, Shilong Zhang, Zhuoran Yu, Litong Feng, and Wayne Zhang.
2020. Scale-Equalizing Pyramid Convolution for Object Detection. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, and Chao Xu. 2016. Cnnpack:
Packing convolutional neural networks in the frequency domain. Advances in
neural information processing systems 29 (2016).

Daniel Worrall and Max Welling. 2019. Deep scale-spaces: Equivariance over
scale. Advances in Neural Information Processing Systems 32 (2019).

Shuochao Yao, Yiran Zhao, Huajie Shao, ShengZhong Liu, Dongxin Liu, Lu Su,
and Tarek Abdelzaher. 2018. Fastdeepiot: Towards understanding and optimizing
neural network execution time on mobile and embedded devices. In Proceedings
of the 16th ACM Conference on Embedded Networked Sensor Systems. 278-291.
Shuochao Yao, Yiran Zhao, Huajie Shao, Aston Zhang, Chao Zhang, Shen Li, and
Tarek Abdelzaher. 2018. Rdeepsense: Reliable deep mobile computing models
with uncertainty estimations. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 1, 4 (2018), 1-26.

Zhaohui Zheng, Ping Wang, Dongwei Ren, Wei Liu, Rongguang Ye, Qinghua Hu,
and Wangmeng Zuo. 2021. Enhancing geometric factors in model learning and
inference for object detection and instance segmentation. IEEE Transactions on
Cybernetics (2021).

Xingyi Zhou, Dequan Wang, and Philipp Krihenbiihl. 2019. Objects as points.
arXiv preprint arXiv:1904.07850 (2019).

https://rb.gy/nv8h4m
https://rb.gy/samxtg

	Abstract
	1 Introduction
	2 A Motivational Study
	3 ScaleFlow Design
	3.1 Scale-Equivariant Mapping
	3.2 Uncertainty Estimation

	4 Evaluation
	4.1 System Setup
	4.2 ScaleFlow Accuracy-Speed Tradeoff
	4.3 End-to-End System Performance
	4.4 Inference Time Analysis
	4.5 Ablation Study
	4.6 Anytime Inference

	5 Conclusion
	References

