
HSCONN: Hardware-Software Co-Optimization of Self-Attention
Neural Networks for Large Language Models

Siqin Liu
ls847719@ohio.edu
Ohio University

Athens, Ohio, USA

Prakash Chand Kuve
prakashchand.kuve@microchip.com
Microchip Technology Corporation

India

Avinash Karanth
ls847719@ohio.edu
Ohio University

Athens, Ohio, USA

ABSTRACT
Self-attention models excel in natural language processing and com-
puter vision by capturing contextual information but encounter
several challenges such as efficient data movement, quadratic com-
putational complexity, and excessive memory accesses. Sparse at-
tention techniques emerge as a solution, however, their irregular
or regular patterns, coupled with costly data pre-processing, dimin-
ish their hardware efficiency. This paper introduces HSCONN, an
energy-efficient hardware accelerator for self-attention, mitigating
computational and memory overheads. HSCONN employs dynamic
voltage and frequency scaling (DVFS) along with exploiting dy-
namic sparsity in matrix multiplication, thereby optimizing energy
efficiency. The approach includes a row-wise pruning algorithm
and independent voltage/frequency islands for processing elements,
exploiting additional sparsity to reduce memory access and overall
energy consumption. Experiments in natural language processing
showcase HSCONN’s remarkable speedups (1952×, 615×) and en-
ergy reductions (up to 820×, 113×) over CPU and GPU architectures.
Compared to A3, SpAtten, and Sanger, HSCONN demonstrates su-
perior speedup (1.71×, 1.25×, 1.47×) and higher energy efficiency
(1.5×, 1.7×, 1.4×).

CCS CONCEPTS
• Computer systems organization→ Systolic arrays; • Hard-
ware→ Hardware accelerators.

KEYWORDS
Large Language Models, Hardware and Software Codesign, Domain
Specific Accelerator

ACM Reference Format:
Siqin Liu, Prakash Chand Kuve, and Avinash Karanth. 2024. HSCONN:
Hardware-Software Co-Optimization of Self-Attention Neural Networks for
Large Language Models. In Great Lakes Symposium on VLSI 2024 (GLSVLSI
’24), June 12–14, 2024, Clearwater, FL, USA.ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3649476.3658709

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0605-9/24/06
https://doi.org/10.1145/3649476.3658709

1 INTRODUCTION
Transformer models have significantly improved the performance
of Natural Language Processing (NLP) applications and have shown
encouraging results in the field of Computer Vision (CV). The trans-
former model is distinct in its design as it relies solely on attention
mechanisms as its fundamental building blocks, rather than the
traditional models that employ recurrence or convolution. This
revolutionary design has enabled the transformer and its variations
to outperform traditional models in different NLP tasks such as
machine translation, text classification, and text generation [3, 13].

Even though transformers have proven to be effective models for
various NLP tasks, deploying them on devices with limited hard-
ware resources continues to remain a challenge. This is because
attention operations within the transformer model demand higher
computation and significant memory accesses. In contrast to convo-
lutional and recurrent neural networks that aggregate information
locally, vanilla self-attention models calculate attention for every
combination of queries and keys. While this approach provides a
larger accessible context, it comes at a significant computational
cost, which increases quadratically with the sequence length. For
a single input containing 16K tokens, the computation of one self-
attention module for the BERT-based model reaches 861.9 × 109
floating point operations per second (FLOPs).

Prior work has proposed to co-design attention algorithms and
accelerator architectures to mitigate the attention overhead. For
instance, A3 [4] leverages several approximation strategies to avoid
computing near-zero scores to reduce the computational overhead.
SpAtten [15] proposes a cascaded token pruning mechanism that
progressively prunes unimportant tokens to reduce the overall
complexity. However, these two solutions still have some draw-
backs. Specifically, A3 needs to load all the data on-chip to per-
form approximate computation which does not reduce the off-chip
DRAM accesses. The cascaded token pruning used in SpAtten suc-
cessfully reduces both computation and DRAM access, but it is a
coarse-grained strategy that does not support dynamic pruning for
different attention heads.

Dynamic Voltage and Frequency Scaling, which is based on scal-
ing the frequency and voltage, is a well-known energy management
technique that trades off the processing speed with energy savings
[8, 9]. Prior works have applied DVFS to all levels of the comput-
ing system - cores, caches, network, and memory - to maximize
energy efficiency. Instead of explicitly addressing each zero-valued
operation as in conventional ML accelerators, the DVFS technique
inherently eliminates workload imbalance by adjusting the V/F of
the processing elements (PEs) on a longer time scale to save energy.
In extremely sparse workloads, the PEs can be power-gated i.e.

736

https://orcid.org/0000-0002-0565-5845
https://orcid.org/0000-0001-6827-3169
https://orcid.org/0000-0002-9472-4637
https://doi.org/10.1145/3649476.3658709
https://doi.org/10.1145/3649476.3658709
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649476.3658709&domain=pdf&date_stamp=2024-06-12


GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Liu et al.

the power is completely cut off to reduce both dynamic and static
power.

In this paper, we propose HSCONN, a dynamic-voltage-and-
frequency-scaling enabled hardware accelerator that simultane-
ously exploits sparse scores in attention models and explores the
optimal dataflow for reduced data movement. In HSCONN, we dy-
namically sparsify the matrix multiplication in attention models
based on a quantized approximation of the score matrix. The DVFS
subsystem uses the score matrix as the workload estimation to
adjust the voltage and frequency of the PEs to maximize energy
efficiency. To bolster the performance of DVFS, we propose a row-
wise pruning algorithm to further sparsify the entire row of the
score matrix to reduce memory access and computation. In hard-
ware, we arrange several PEs as an island with independent voltage
and frequency domains to exploit this additional row-wise pruning
proposed in HSCONN. The major contributions of this work are as
follows:

(1) Apply DVFS to HSCONN with Pruning Algorithm: We
propose a DVFS scheme for HSCONN by applying power-
gating to PEs during periods of low computation to save
static power and dynamically scaling voltage and frequency
(V/F) during periods of medium to high computation to re-
duce dynamic energy consumption. We further develop a
hardware and software co-design by customizing the algo-
rithm with row-wise pruning, which favors the proposed
DVFS-based hardware implementation without losing infer-
ence accuracy.

(2) DataflowOptimization:Wepropose a customized dataflow
wherein we unify the sparse dense matrix multiplication
(SDMM) and sparse matrix multiplication (SpMM) in atten-
tionmodels under different computation stages. The dataflow
eliminates sparsity decoding and memory transfer overhead
by exploiting row-wise sparsity and maximizing the atten-
tion mask for the entire computation chain.

(3) RTLEvaluation andComparison:WeevaluateHSCONNon
both NLP and ImageNet attention models over real-world
datasets. We show that HSCONN achieves multiple orders of
magnitude improvement in speedup and energy reduction
over commodity CPUs/GPUs. HSCONN also outperforms
state-of-the-art attention accelerators such as SpAtten, A3,
and Sanger. We also evaluate different DVFS settings and
granularities to explore the optimal hardware configuration.

To the best of our knowledge, this is one of the first attempts
to implement DVFS in attention-based models by evaluating score
sparsity for arbitrary dataflow patterns for both NLP and ImageNet
applications to reduce both computational complexity and memory
accesses.

2 BACKGROUND
2.1 Attention basics
Transformers have demonstrated leading-edge performance on a
variety of NLP tasks [3, 6]. For a block of a transformer model, the
input is a sequence of 𝑛 vectors (tokens). Three linear projection
weights project the input to Query, Key, and Value. Attention is then
performed on these features to capture long-term dependencies of
the input sequence. The ℎ−th head computes the outputs as follows:

Figure 1: (a) Attention probability matrix. (b)The probabil-
ity distribution is dominated by the query-key pair (my-
favorite); (c) Top-k pruning zeros out elements that are valued
below the threshold; (d) Row-wise pruning further trims the
score matrix by eliminating entire rows.

𝑄ℎ, 𝐾ℎ,𝑉ℎ = 𝑋 ·𝑊𝑄 , 𝑋 ·𝑊𝐾 , 𝑋 ·𝑊𝑉

Attention(𝑄ℎ, 𝐾ℎ,𝑉ℎ ) = 𝑉ℎ · Softmax
(
𝑄ℎ𝐾

𝑇
ℎ√︁

𝑑ℎ

)
(1)

2.2 Motivation of DVFS dependent sparsity
Fig.1(a,b) depicts a probability matrix and essential indices derived
from training the BERT-large model on the SQuAD-v1 dataset. We
observe that a limited set of elements exhibits significant probabili-
ties. Notably, in the annotated row, the distribution is overwhelm-
ingly influenced by the probability of the pair <my, favorite>. By
focusing solely on these pivotal query-key pairs during attention
calculations and disregarding others, substantial computational
resources can be conserved. Additionally, limiting the loading of
selected keys and values onto the on-chip memory can effectively
minimize total memory access requirements. Therefore, we can
adopt the Top-K pruning algorithm [11] (as shown in Fig.1(c) to
dynamically determine the sparsity pattern by analyzing the in-
puts. However, such irregular and dynamic sparsity deters efficient
hardware implementations due to low computational intensity and
hardware utilization. Fortunately, the DVFS technique effectively
improves hardware energy efficiency by scaling down the supply
voltage and corresponding frequency for sparse workloads and
scaling up the voltage and frequency for dense workloads. This fea-
ture inherently addresses the workload imbalance problem without
incurring complex reconfigurable hardware and datapath control.
In HSCONN , we implement the DVFS scheme by grouping the
PE array into PE islands with independent voltage and frequency
supplies and feeding each PE islandwith a chunk of the sparse work-
loads. As a codesign of hardware and algorithm, HSCONN further
improves the pruning algorithm (Fig.1(d) based on Top K pruning
(Fig.1(c)) to better accommodate the DVFS-based architecture.

3 PROPOSED ARCHITECTURE
This section introduces the HSCONN architecture to support the
proposed DVFS scheme. Our HSCONN mainly targets two design
goals: (1) HSCONN supports arbitrary sparsity patterns with low
control overhead while achieving high throughput. We achieve this

737



HSCONN: Hardware-Software Co-Optimization of Self-Attention Neural Networks for Large Language Models GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

goal by designing low-bit quantization of score estimation and im-
plementing DVFS at PE-level granularity. (2) HSCONN is designed
to be both computation and memory-efficient. Since data reuse
and reduced memory accesses are essential to the accelerator effi-
ciency, we integrate a customized dataflow that tightly fits within
the DVFS design to minimize the data access from the on-chip
buffer and maximize the data reuse in the PE array.

3.1 Microarchitecture
The proposed architecture overview of HSCONN is illustrated in
Fig.2(a). HSCONN is composed of four functional units: score ap-
proximation, DVFS module, systolic PE array, and memory hier-
archy. The score approximation (colored in grey) is designed for
calculating the approximated score with the truncated bit width of
two input operands (querries and keys). DVFS modules (colored in
red) detect the runtime sparsity of the data stream and accordingly
scale the frequencies and voltages of the PE array. PE array is con-
structed as a 16×16 systolic architecture and is mainly responsible
for the multiplications and accumulations (MACs) of the attention
algorithm. The softmax activation function is also implemented
inside the PE for post-processing. Detailed design is elaborated in
the PE microarchitecture as shown in Fig.2(b). We design a hier-
archical memory design to (1) constrain the ASIC footprint with
limited on-chip buffer size; and (2) maximize the data reuse in the
PE array and the least expensive memory hierarchy (scratchpad) to
reduce off-chip memory accesses.

3.2 Dataflow Exploration
The actual non-zero distribution can be arbitrary, leading to irregu-
lar data access of SDMMand SpMMoperations. Besides, the sparsity
occurs in the score matrix, which is both the output of SDMM op-
eration and the input of SpMM operation, making it challenging
to decode the sparsity to cooperate with dense queries, keys, and
values. Our hardware design uses a unified dataflow, which takes
the sparse score mask that indicates the sparsity pattern as input.
This dataflow unifies the SDMM and SpMM operations by treat-
ing them as a chunk of unbalanced vector-vector multiplication
(VVM). We distribute these workloads to the PE islands according
to the row index. Then, the DVFS subsystem controls the voltage
and frequency (V/F) supplies of each PE island based on the sparse
information from the mask.

As shown in Fig.3, the complete dataflow is divided into three
stages, where Stage 1 implements SDMM of 𝐼 ×𝑊𝐾 ,𝑊𝑄 , and𝑊𝑉 ;
Stage 2 implements the SpMM of 𝐾 ×𝑄 ; Stage 3 is responsible for
the SpMM of 𝑆 ×𝑉 . In Stage 1, the query, key, and value matrices
are computed by multiplying the input matrix with the pre-trained
weights. In this step, each row of the input matrix is horizontally
mapped to one PE island, while the column of the weight matrix
is vertically delivered. The computation of the first step is com-
pletely dense and all PE islands are configured with the highest V/F
to achieve the highest throughput. PEs within an island compute
different attention heads in parallel. In Stage 2, the key and query
matrices generated from the last stage are quantized by 4 bits and
are multiplied to obtain the approximate score matrix, which is
further used to develop the attention mask by the sparsity detector
module. As shown in the middle part of Fig.3, the masked SpMM of

key and query matrices are mapped onto the PE islands with only
one line VVM is completely avoided. Therefore, the correspond-
ing PE island 2 is power-gated to save power and the remaining
islands share the same DVFS setting. In Stage 3, the score matrix
is multiplied by the value matrix, of which the SpMM is the most
complex compared to the previous two stages. We demonstrate
three scenarios in this example: (1) The computation of completely
zero-valued rows of 𝑆 (row 2) is blocked and the corresponding
PE islands are power gated as in Stage 2. (2) Row 1 of 𝑆 remains
dense and is mapped to PE island 1, which is supplied with the
highest V/F. (3) For the rest rows, depending on the sparsity ratio,
the PE islands are scaled accordingly with different V/F. PE islands
may work asynchronously with different V/F settings in this stage,
which incurs extra synchronization costs. However, the DVFS con-
trol logic alleviates this problem to some extent that higher sparse
workloads with fewer computations are always configured to lower
V/F islands, making limited buffer sizes sufficient to accommodate
these asynchronous outputs in PEs. What’s more, the final output
is sent directly back to the global buffer to avoid synchronization.

3.3 DVFS Design
The sparsity of attention occurs in the intermediate matrix (scores)
while the input matrices are still dense (queries, keys, values). The
irregular sparsity makes it hard to leverage the parallelism of the
systolic array, as systolic arrays exhibit highly structured data ac-
cess. To effectively exploit the sparsity, we propose a DVFS scheme
to exploit the sparsity without specifying fixed sparsity patterns
and inherently eliminate workload imbalance.

Each DVFS model consists of one inactive state (power-gated)
and four active states. In an inactive state, the voltage supply to
the specific PE and its outgoing interconnection is reduced to 0 V
with no clock applied to the PE. V/F pair for one PE may switch
for each epoch. After testing several epoch sizes, we set 50 cycles
for a relatively balanced design point [5, 18]. PE in an active state
can operate in any one of the four available voltage levels. These
voltage and frequency pairs are commonly configured in DVFS-
supported processors or accelerators [16]. Due to the highly sparse
nature of attention, we introduce a baseline mode that is maintained
constantly at a high voltage level and update the threshold values
to fit in the attention workload distribution as shown in Table 1.

As shown in Table 1, the power-gating model maximizes static
power reduction by assigning more PEs to the power-gating mode.
The power-saving model maximizes dynamic power reduction and
assigns the highest portion of workloads (10-70%) to the lowest V/F
mode (0.8V/2.75ns). The booster model, on the contrary, operates
the PEs at the highest voltage whenever the workload percentage
is higher than 40% to enable the highest computation performance.
The Vanilla model is based on a moderate strategy that evenly
allocates the workloads to all V/F modes.

3.4 Row-wise pruning algorithm
Our HSCONN ’s row-wise pruning algorithm aims to not only
alleviate the costly quadratic computational complexity of the num-
ber of input tokens in self-attention blocks but also bolster the
hardware efficiency of computing the irregular sparse workloads.
Although our proposed DVFS-based hardware can flexibly process

738



GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Liu et al.

Figure 2: (a) An overview of HSCONNarchitecture consisting of off-chip HBM, low-bit score approximation, systolic PE array,
and DVFS controller and generator. (b) Microarchitecture of the PE.

Figure 3: A walkthrough example shows the workflow of HSCONN divided into three major steps, where the first step
implements SDMM of 𝐼 ×𝑊𝐾 ,𝑊𝑄 , and𝑊𝑉 ; stage 2 implements the SpMM of 𝐾 ×𝑄 ; the third step is responsible for the SpMM
of 𝑆 × 𝑉 . The exponential operation and softmax activation are implemented in place for each PE. DVFS is guided by the
approximated score attention mask and scales the voltage and frequency for each PE in stage 2, and scaled accordingly in other
stages.

Table 1: Workload Distribution Among Different Models and
DVFS modes.

DVFS Models power-gating 0.8V/ 1.0V/ 1.2V/
2.75ns 2.25ns 1.8ns

Baseline 0% / / >0%
Power-Saving <10% 10-85% 85-90% >90%

Vanilla <10% 10-30% 30-55% >55%
Booster <10% 10-45% 45-50% >50%

the imbalanced workloads by scaling the voltage and frequency,
fixed patterning of the sparsity still contributes to reduced runtime
controlling overheads. To generate the desired sparse mask patterns,

we first extract the attention mask by forwarding the pre-trained
models on all training samples, and then perform top-k pruning
according to a retrainable pruning threshold 𝜃 . Then, we select
only the score matrix of high value by pruning the remaining entire
rows of the matrix if the total number of non-zero-valued elements
is less than the threshold 𝛼 . Such pruning will generate a binary
mask (as shown in Fig.1(d)), where a number of sparse rows become
completely zero and the remaining rows become moderately denser
after retraining to maintain accuracy.

The runtime DVFS controlling with row-wise pruning prepro-
cessing is described in Algorithm 1. For a given averaged and nor-
malized attention map A extracted from a pre-trained attention

739



HSCONN: Hardware-Software Co-Optimization of Self-Attention Neural Networks for Large Language Models GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

Algorithm 1 Implementation of DVFS with row-wise pruning.
Input:

Key, Query, Value tensors 𝐾,𝑄,𝑉 ∈ R𝑛𝑚
pruning threshold 𝜃 , row-wise augmentation threshold 𝛼
Current DVFS island index ℎ

Output:
Voltage and Frequency state for each PE island.

1: Initialize start voltage 1.2V and frequency state
Quantized approximation of the score matrix 𝑆 ′

2: 𝑆 ′ = softmax(SDMM(𝑞𝑢𝑎𝑛𝑡4𝑏𝑖𝑡 (𝐾 ), 𝑞𝑢𝑎𝑛𝑡4𝑏𝑖𝑡 (𝑄 )))
Attention mask𝐴𝑀 ∈ R𝑛𝑚 with thresholding

3: 𝐴𝑀𝑖 𝑗 = 0 𝑖 𝑓 𝑆 ′𝑖 𝑗 < 𝜃 𝑒𝑙𝑠𝑒 1
Row-wise pruning augmentation

4: 𝐴𝑀𝑖 = 0 𝑖 𝑓
∑
𝑗 𝐴𝑀𝑖 𝑗 < 𝛼 𝑒𝑙𝑠𝑒 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Attention computation with DVFS control
5: for 𝑖𝑠𝑙𝑎𝑛𝑑𝑠_𝑖𝑛𝑑𝑒𝑥 ℎ do
6: 𝑉ℎ = 1.2𝑉 for all islands

set up highest voltage mode in stage 1
7: 𝐾,𝑄,𝑉 = 𝑆𝐷𝑀𝑀 (𝐼 , (𝑊𝐾 ,𝑊𝑄 ,𝑊𝑆 )
8: if 𝐴𝑀𝑖 𝑗 = 0 for all j then
9: power-gate current PE island
10: else
11: 𝑉ℎ = 1.0𝑉
12: end if
13: 𝑆 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆𝑝𝑀𝑀 (𝐾,𝑄 ) ) using mask𝐴𝑀

set up moderate voltage mode in stage 2
14: 𝑂 = 𝑆𝑝𝑀𝑀 (𝑆,𝑉 ) ) using mask𝐴𝑀
15: if 𝐴𝑀𝑖 𝑗 = 0 for all j then
16: power-gate current PE island
17: end if
18: end for

model on all training samples, we prune and reorder it into row-
dense, row-sparse, or row-empty patterns. In the inference phase,
the sparse mask is generated at runtime by approximating the score
matrix values and used by the DVFS subsystem to allocate work-
loads, power gate idle islands, and scale the voltage and frequency.
Specifically, we first generate the attention mask 𝐴𝑀 ∈ R𝑛𝑚 based
on the quantized matrix multiplication of 𝐾 and𝑄 (Line 1-3), where
the pruning threshold is obtained through pre-training and remains
constant in this phase (Line 3). After the irregular sparse pattern
has been identified, we regularize it by zeroing out the entire row
if the total number of non-zero valued elements in the approxi-
mated score matrix is less than the pre-trained row-wise pruning
threshold 𝛼 (Line 4). Guided by the augmented attention mask, the
DVFS subsystem scales the voltage and frequency of each PE island,
breaking it down into three stages (Lines 5-18).

4 SIMULATION AND PERFORMANCE
4.1 Simulation Setup
Benchmarks: We evaluate our method on BERT [3], GPT-3 [2],
and large language model LLamA [12]. For NLP models, we select
tasks Stanford Question Answering Dataset SQuAD [10], GLUE
[14], MNLI [17], and commonsense reasoning benchmarks PISCO
[1], BoolQ, and SIQA. All the models are trained on the publicly
released pre-train weights with default training parameters. We
then modify the code to support the proposed dynamic sparse
pattern.
Platforms for comparison: We compare our framework with
modern hardware accelerators, including cloud GPU (NVIDIA Tesla
V100), and commodity CPU (Intel Xeon I7 4770). We measure the
performance of GPUs using PyTorch with cuBLAS, and CPUs us-
ing PyTorch MKL. To ensure a fair comparison, we evaluated our

Figure 4: The normalized inference speedups (w.r.t. CPU)
achieved by our HSCONN framework over three SOTA trans-
formed accelerators.

Figure 5: The normalized energy efficiency improvement
(w.r.t. CPU) achieved by our HSCONN framework over three
SOTA transformed accelerators.

approach against the state-of-the-art sparse attention accelerators,
such as A3 [4], SpAtten [15], and Sanger [7], by scaling their number
of multipliers to a 64x64 processing element array at a 1 GHz fre-
quency. We considered both pruning techniques and architectural
design in our comparison.

4.2 Simulation Results
Comparison with CPUs and GPUs. Fig.4 shows the speedup
of HSCONN over Intel Xeon CPU and V100 GPU on 5 language
processing tasks, e.g. MNLI, QNLI, RTE, SQuAD, CLOTH. For
BERT, GPT-3, and LLamA models, on average, HSCONN achieves
685×, 614.75×, 520× speedup over GPU, and 2055×, 2459×, 1560×
speedup over Intel Xeon CPU. For energy efficiency shown in Fig.5,
HSCONN is 11.3×, and 113× better compared to GPU andXeonCPU.
The higher speedup comes from the reduced computation, memory
accesses, and the optimized DVFS of HSCONN that can effectively
leverage the sparsity with arbitrary patterns. HSCONN processes
64 queries and 64 keys in parallel, which implies that the computing
resources are fully utilized in these tasks.
Comparison with Other Accelerators: We evaluate the sparsity
design of HSCONNwith four state-of-the-art sparse attention accel-
erators as configured in Table 2. The simulation results of the perfor-
mance comparisons are included in Fig.4 and Fig.5. HSCONN shows
the highest computation saving at the sparsity level thanks to our
fine-grained DVFS technique and the corresponding architecture.
In comparison, A3 introduces a pre-processing step and uses a
rough sparsity prediction technique which hurts model accuracy
under aggressive pruning. SpAtten uses a coarse-grained approach

740



GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Liu et al.

Table 2: Comparison with sparse attention accelerators.

Acc. A3 SpAtten Sanger HSCONN
Sparsity
Design

candidate
approxmation

Top-K
pruning

block
pruning

row wise
pruning

Comp.
Engine 16x16 dot 16x32

matrices mul.
64x16

systolic array
64x64

DVFS array
Tech. 40nm 55nm 55nm 40nm

Memory 64 KB 2 MB 512 KB 512 KB
Area 2.08mm2 1.55mm2 16.9 mm2 12.53 mm2
Power 0.115W 3.82W 2.76W 1.08W

Throughput 221 GOP/s 360 GOP/s 529 GOP/S 613 GOP/S

Figure 6: Accuracy before and after pruning-aware fine-
tuning (left). Runtime pruning rate with top-k pruning and
row-wise enhancement (right).

for attention pruning where it prunes entire columns and rows
progressively. Such structural constraint limits the level of sparsity
it can exploit in a similar way to traditional weight pruning.

As shown is Fig.4, HSCONN outperforms A3, SpAtten, and
Sanger with 1.71×, 1.25, and 1.47× speedup respectively. SpAtten
and Sanger apply fixed computing modules, limiting the pattern
of sparsity strictly. While HSCONN is composed of a DVFS-based
systolic array with more flexibility in supporting sparsity, allowing
higher effective throughput. The SpAtten attention model employs
a cascaded token-pruning technique to eliminate tokens that are
considered unimportant, based on accumulated attention proba-
bilities among layers. However, this method of pruning can lead
to significant accuracy loss without retraining, due to its coarse-
grained approach.
Accuracy and Pruning Ratio Exploration: We first evaluate the
performance (accuracy) of the proposed row-wise turning algorithm
by exploring different parameters of the pruning ratio up to 16×.
We estimate the pruning ratio and accuracy of each configuration.
Since this exploration only involves inference on test sets, it takes
several minutes to hours to finish.We plot all the exploration results
in Fig.6. The optimal configuration should have both a high pruning
ratio and accuracy. We chose the configuration with the highest
pruning ratio and negligible accuracy loss (within 0.5%) as our best
configuration for each task.

5 CONCLUSIONS
In this paper, we propose an energy-efficient and high throughput
accelerator HSCONN, that leverages the DVFS-based PE islands
hardware design to support dynamic sparsity and improve energy
efficiency for the attention mechanism. We further sparsify the at-
tention by the proposed row-wise pruning algorithm and then the
dynamic voltage and frequency scaling subsystem use the sparse
mask to save power consumption. Extensive experiments on both

NLP and CV benchmarks demonstrate that HSCONN achieves dis-
tinct speedups and energy reduction over state-of-the-art attention
accelerators.

ACKNOWLEDGMENTS
This research was partially supported by NSF grants CCF-1703013,
CCF-1901192, CCF-1936794, CCF-2324645, and CCF-2311544. We
sincerely thank the anonymous reviewers for their excellent feed-
back.

REFERENCES
[1] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. 2020. Piqa: Reasoning

about physical commonsense in natural language. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 34. 7432–7439.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[4] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh, Yeonhong Park,
Yoonho Song, Jung-Hun Park, Sanghee Lee, Kyoung Park, Jae W Lee, et al. 2020.
A3 : Accelerating attention mechanisms in neural networks with approximation.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 328–341.

[5] Weixiong Jiang, Heng Yu, Jiale Zhang, Jiaxuan Wu, Shaobo Luo, and Yajun Ha.
2020. Optimizing energy efficiency of CNN-based object detection with dynamic
voltage and frequency scaling. Journal of Semiconductors 41, 2 (2020), 022406.

[6] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning
of language representations. arXiv preprint arXiv:1909.11942 (2019).

[7] Liqiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun
Liang. 2021. Sanger: A co-design framework for enabling sparse attention using
reconfigurable architecture. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture. 977–991.

[8] Seyed Morteza Nabavinejad, Hassan Hafez-Kolahi, and Sherief Reda. 2019. Coor-
dinated DVFS and Precision Control for Deep Neural Networks. IEEE Computer
Architecture Letters 18, 2 (2019), 136–140.

[9] Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi. 2022. Co-
ordinated Batching and DVFS for DNN Inference on GPU Accelerators. IEEE
Transactions on Parallel and Distributed Systems 33, 10 (2022), 2496–2508. https:
//doi.org/10.1109/TPDS.2022.3144614

[10] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[11] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. 2021. Effi-
cient content-based sparse attention with routing transformers. Transactions of
the Association for Computational Linguistics 9 (2021), 53–68.

[12] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[14] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018).

[15] Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spatten: Efficient sparse atten-
tion architecture with cascade token and head pruning. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 97–110.

[16] Qiang Wang and Xiaowen Chu. 2020. GPGPU performance estimation with core
and memory frequency scaling. IEEE Transactions on Parallel and Distributed
Systems 31, 12 (2020), 2865–2881.

[17] Qizhe Xie, Guokun Lai, Zihang Dai, and Eduard Hovy. 2017. Large-scale cloze
test dataset created by teachers. arXiv preprint arXiv:1711.03225 (2017).

[18] Zheqi Yu, Pedro Machado, Adnan Zahid, Amir M Abdulghani, Kia Dashtipour,
Hadi Heidari, Muhammad A Imran, and Qammer H Abbasi. 2020. Energy and per-
formance trade-off optimization in heterogeneous computing via reinforcement
learning. Electronics 9, 11 (2020), 1812.

741

https://doi.org/10.1109/TPDS.2022.3144614
https://doi.org/10.1109/TPDS.2022.3144614

	Abstract
	1 Introduction
	2 Background
	2.1 Attention basics
	2.2 Motivation of DVFS dependent sparsity 

	3 Proposed Architecture
	3.1 Microarchitecture
	3.2 Dataflow Exploration
	3.3 DVFS Design
	3.4 Row-wise pruning algorithm

	4 Simulation and Performance
	4.1 Simulation Setup
	4.2 Simulation Results

	5 Conclusions
	Acknowledgments
	References

