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Abstract This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes)
assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability
over the period 1985-2018, using a combination of models and observation-based products. The mean sea-air
CO, flux from 1985 to 2018 is —1.6 & 0.2 PgC yr~! based on an ensemble of reconstructions of the history

of sea surface pCO, (pCO, products). Models indicate that the dominant component of this flux is the net
oceanic uptake of anthropogenic CO,, which is estimated at —2.1 + 0.3 PgC yr~! by an ensemble of ocean
biogeochemical models, and —2.4 + 0.1 PgC yr~! by two ocean circulation inverse models. The ocean also
degasses about 0.65 + 0.3 PgC yr~! of terrestrially derived CO,, but this process is not fully resolved by any of
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the models used here. From 2001 to 2018, the pCO, products reconstruct a trend in the ocean carbon sink of
—0.61 + 0.12 PgC yr~! decade™'!, while biogeochemical models and inverse models diagnose an anthropogenic
CO,-driven trend of —0.34 + 0.06 and —0.41 + 0.03 PgC yr~! decade !, respectively. This implies a
climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties

on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is
mainly driven by climate variability, with the climate-driven variability exceeding the CO,-forced variability by
2-3 times. These results suggest that anthropogenic CO, dominates the ocean CO, sink, while climate-driven
variability is potentially large but highly uncertain and not consistently captured across different methods.

Plain Language Summary The second REgional Carbon Cycle Assessment and Processes effort,
or RECCAP2, provides a comprehensive assessment of global and regional greenhouse gas budgets. This
paper focuses on the ocean carbon sink, and investigates the processes that control its magnitude, trends and
variability. Observation-based techniques estimate that the net transfer of CO, from the atmosphere to the
ocean, averaged over 1985-2018, is 1.6 billion tonnes of carbon per year, and that oceanic CO, uptake is
increasing by 0.61 billion tonnes of carbon per year each decade. Models say that most of this CO, entering the
ocean, and its increase over time, is driven by anthropogenic CO, emissions, which causes the ocean to take

up 2.1-2.4 billion tonnes of carbon per year. There are some hints that climate change might be accelerating
ocean carbon uptake, but the errors in our estimates are too large to know for sure right now. Our methods and
observations will have to be improved in order to better detect the impact of climate change on the ocean carbon
sink.

1. Introduction

In the last decade (2012-2021) human activities have added 10.8 + 0.8 Pg C yr~! to the atmosphere as CO,
(Friedlingstein et al., 2022), accounting for roughly half of the anthropogenic radiative forcing from well-mixed
greenhouse gases (Forster et al., 2021). The ocean plays a critical role in mitigating climate change by absorb-
ing much of these anthropogenic CO, emissions. The ocean's long-term capacity to take up anthropogenic CO,
is limited only by its size and the CO, buffering capacity of seawater (Broecker et al., 1979; DeVries, 2022b;
Revelle & Suess, 1957), and it is estimated that ultimately the ocean will absorb about 85% of anthropogenic CO,
emissions (Archer, 2005; Broecker et al., 1979). In the short term, however, the rate of oceanic anthropogenic
CO, uptake is limited by ocean circulation rates, in particular the ventilation rate of the ocean's intermediate and
deeper layers (Iudicone et al., 2016; Sarmiento et al., 1992; Siegenthaler & Sarmiento, 1993), such that current
rates of CO, uptake by the ocean average about 30% of anthropogenic carbon emissions (Crisp et al., 2022;
Friedlingstein et al., 2022; Gruber et al., 2019a, 2019b, 2023; Sabine et al., 2004). Additionally, the net flow of
CO, between the atmosphere and ocean is affected by perturbations to the natural carbon cycle due to climate
variability and anthropogenic climate change (Gruber et al., 2019b; Le Quéré et al., 2007a; McKinley et al., 2017;
Séférian et al., 2014), which can strengthen or weaken the global ocean carbon sink from year to year (Gruber
et al., 2023; Le Quéré et al., 2010), and on longer timescales (Bernardello et al., 2014; Joos et al., 1999; McNeil
& Matear, 2013).

Tracking the uptake of anthropogenic carbon by the ocean, and perturbations to the natural ocean carbon cycle,
has been a focus of ocean biogeochemistry and climate science for many decades. Early efforts toward quantifying
the oceanic sink for anthropogenic carbon relied on simple box or box-diffusion models with mixing rates cali-
brated using radioactive tracers (Bolin & Eriksson, 1959; Keeling, 1979; Oeschger et al., 1975). These simple box
models progressed over time to three dimensional global ocean circulation-biogeochemical models (GOBMs) that
could simulate the impacts of climate change on anthropogenic CO, uptake (Maier-Reimer & Hasselmann, 1987,
Orr et al., 2001; Sarmiento et al., 1992). Another class of approaches relied primarily on geochemical obser-
vations to track changes in the ocean carbon sink. Some studies utilized atmospheric observations, such as O,/
N, ratios (e.g., Keeling et al., 1996), or changes in the atmospheric and oceanic stable carbon isotope ratio
(e.g., Quay et al., 1992), to deduce the oceanic uptake of anthropogenic carbon. Other approaches applied ocean
biogeochemical and transient tracers to remove the signals of natural variability from oceanic dissolved inorganic
carbon (DIC) measurements in order to identify the anthropogenic perturbation (Brewer, 1978; Chen, 1982;
Gruber et al., 1996; Lo Monaco et al., 2005; Sabine et al., 2004; Vizquez-Rodriguez et al., 2009). Still others
used anthropogenic transient tracers such as chlorofluorocarbons (CFCs) to estimate ocean ventilation rates and
anthropogenic CO, uptake by convolving ocean mixing rates with time-evolving atmospheric CO, concentrations
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(Hall et al., 2002; Khatiwala et al., 2009; McNeil et al., 2003; Waugh et al., 2006). At the same time, a growing
database of surface ocean seawater pCO, led to the development of methods that could estimate the contemporary
ocean carbon sink at a global scale by scaling pCO, observations to a reference year and using a bulk formulation
for air-sea CO, exchange (Takahashi et al., 1997, 2002, 2009).

This early work formed the basis for the ocean contribution to the first REgional Carbon Cycle Assessment and
Processes (RECCAP), an international effort to quantify regional and global carbon fluxes and to better under-
stand the processes governing the global sinks for anthropogenic CO, (Canadell et al., 2011). The RECCAP
global ocean carbon sink assessment focused on the global ocean storage of anthropogenic carbon (Khatiwala
et al., 2013) (hereafter, K2013) and on the magnitude, variability, and trends of air-sea CO, fluxes in the global
ocean (Wanninkhof et al., 2013) (hereafter, W2013). The synthesis by K2013 focused on DIC inventory changes in
the ocean, and provided an estimate of the total ocean anthropogenic carbon uptake since the start of the industrial
revolution based on six observation-based approaches (including DIC-based approaches and tracer-constrained
ocean mixing models), four versions of the Community Climate System Model GOBM, and a tracer-constrained
global ocean data assimilation model (ECCO). W2013 focused on estimates of air-sea CO, fluxes derived from
nine GOBMs, an empirical pCO,-observation based approach (Park et al., 2010; Takahashi et al., 2009), an
atmospheric and an ocean inversion, and two estimates based on atmospheric O,/N, ratios.

Here, we provide an updated estimate of the global ocean carbon sink, its magnitude, trends, and variability over
the period 1985-2018 as part of the RECCAP?2 project. Our analysis takes advantage of improvements in meth-
odologies for quantifying the ocean carbon sink since the first RECCAP assessment, and provides an analysis of
the mechanisms driving changes in the ocean carbon sink over time. In addition to extending the analysis period to
2018, RECCAP2 uses a variety of models and observation-based products that were not available for RECCAP. As
opposed to using variants of a single GOBM, we use an ensemble of 12 different GOBMSs, which allows for
more robust results and improved uncertainty quantification. The ECCO assimilation model, which was used in
RECCAP, is also used here, but is improved by the assimilation of biogeochemical parameters. The empirical
pCO,-based approach of RECCAP that extended the Takahashi climatology is here replaced by an ensemble of 11
pCO,-based interpolation products, many of which use machine learning approaches that were not available for
RECCAP, allowing us to better capture temporal and spatial variability and to assess the robustness of the results.
The tracer-constrained mixing models utilized in RECCAP are here replaced by an ocean circulation inverse
model (OCIM) that estimates ocean mixing and ventilation by inverting distributions of six ocean circulation trac-
ers. The DIC-observation based approach used in RECCAP, which provided estimates for the period from ~1800
to 1994 based on the C* approach (Gruber et al., 1996; Sabine et al., 2004), is here replaced by the extended multi-
linear regression method applied to the C* tracer to determine the anthropogenic carbon increase over the period
1994-2007 (Gruber et al., 2019a, 2019b). These improved models and data products allow better quantification of
the global ocean carbon sink, and an in-depth analysis of the mechanisms contributing to its magnitude, variability
and trends. It should be noted that the RECCAP2 project is distinct from but complements the Global Carbon
Budget (GCB) project (Friedlingstein et al., 2022), which focuses only on the anthropogenically perturbed surface
CO, fluxes from a global budgeting perspective. Also of note is that some of the approaches that were included as
part of RECCAP are not considered for this RECCAP2 global assessment, such as estimates based on atmospheric
CO, inversions (e.g., Jacobson et al., 2007) and atmospheric O,/N, ratios (e.g., Manning & Keeling, 2006).

This paper is organized as follows. In Section 2, we provide background on the flux components of the ocean
carbon sink, details of the methods used by each of the RECCAP2 approaches for estimating the ocean carbon
sink, and information on the components that each approach captures. Section 3 discusses results of the RECCAP2
products' estimates of sea-air CO, fluxes (Section 3.1) and changes in ocean DIC concentrations (Section 3.2)
over the period 1985-2018. In Section 4 we compare RECCAP?2 results with those of the original RECCAP,
consider remaining uncertainties and biases in the RECCAP2 products, and provide a “best estimate” of the
contemporary global ocean CO, sink. Section 5 concludes with a summary of our main findings, and suggests
several focus areas for future research.

2. Materials and Methods
2.1. Overview

Several different products were used to assess the global ocean carbon sink for RECCAP2. These products gener-
ally fall under one of two broad categories: models and observation-based products. We use two categories of
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models, GOBMs and ocean data assimilation models. GOBMs are freely evolving dynamical ocean circulation
models with a biogeochemical module, and use atmospheric reanalysis data as a boundary condition to force the
ocean biogeochemical model. They have been used to assess the ocean carbon sink in the GCB (Friedlingstein
et al., 2022; Hauck et al., 2020), and they form the ocean carbon cycle component of Earth System Models (e.g.,
Canadell et al., 2021; Schwinger et al., 2014; Terhaar et al., 2022). In contrast, ocean data assimilation models
use observations of oceanic tracers to constrain the ocean circulation and/or biogeochemistry and have been used
to provide data-constrained assessments of the ocean anthropogenic CO, uptake (DeVries, 2014) and the interan-
nual variability of air-sea CO, fluxes (Carroll et al., 2022). Both categories of models provide estimates of air-sea
CO, fluxes and the resulting changes in ocean interior DIC inventories over time.

We also use two categories of observation-based products, those based on surface ocean pCO,, which determine
the air-sea CO, flux, and those based on ocean-interior DIC, which estimate the oceanic accumulation of anthro-
pogenic CO,. pCO,-observation products have been used in the GCB assessment (Friedlingstein et al., 2022)
and include a variety of statistical, regression, and machine learning algorithms that are used to interpolate and
extrapolate sparse observations of surface seawater pCO, to a regular grid with near-global coverage and monthly
resolution, from which air-sea CO, fluxes are derived (Rodenbeck et al., 2015). The DIC-observation product
used here is based on a multilinear regression model to estimate the change in anthropogenic DIC from 1994 to
2007 (Gruber et al., 2019a, 2019b) using observations gathered over the period from 1982 until 2013. A more
detailed description of the products used is provided in Section 2.3 below.

2.2. Processes Contributing to Air-Sea CO, Fluxes and DIC Inventory Changes

When comparing results across the different products introduced above, it is important to keep in mind that
different products resolve different aspects of the ocean carbon sink (i.e., the net uptake of CO, by the ocean), and
capture different processes that affect the magnitude and variability of this sink. Here, we present a framework
for analyzing changes in the ocean DIC inventory and air-sea CO, fluxes in terms of their driving processes, and
Section 2.3 discusses the individual processes that are captured by each model or observation-based product.

At the local scale, changes in ocean DIC concentrations are related to fluxes across the air-sea and land-sea
boundaries, and to the local physical and biological processes affecting DIC,

dDIC 1
—— = 75— Jland—sea — Jsea—air J, 1
dr Az (f1ana f ) + Joic €8

aair 18 the local net flux of CO, from the ocean to the atmosphere (mol m=2 yr~'; positive into the atmos-
phere), f,. . .. is the local net flux of DIC (mol m~2 yr~") from the land to the ocean (positive into the ocean), and
Az is the depth interval over which dDIC/dt is expressed. The land-sea fluxes include all exchanges of carbon
between oceanic DIC and solid terrestrial or sedimentary carbon reservoirs: for example, the input of DIC and

where f.

the remineralization of organic carbon from rivers and submarine groundwaters (Cole et al., 2007), and the loss
of DIC due to the burial of organic carbon and CaCO, in marine sediments (Burdige, 2007; Dunne et al., 2007).
Joic represents the convergence of DIC due to biological transformation or physical transport (mol m= yr='),
such as the formation and sinking of carbon bearing organic or inorganic particles, the transport of DIC by ocean
currents, or the concentration and dilution of DIC by evaporation and precipitation.

In the global integral, internal ocean transports of DIC, J;,,., are close to zero, so that the rate of change in the
ocean DIC inventory (Ij,; Pg C) is only related to the flux of CO, across the air-sea interface and at the land-sea
boundary,

dIDIC/dt = F‘landfsea - F‘seafair (2)

and F,

where F, land-sea

sea-air
At steady-state, as commonly assumed to be the case before human perturbations to the global carbon cycle,
dl,/dt = 0 and the net flux of DIC from the land to the ocean and into/out of the sediments is balanced by the

net flux of CO, from the ocean to the atmosphere, that is,

(Pg C yr7') is the global integral of f:

sea—air’

(Pg C yr~!) is the global integral of f,, ;_...-

Fsea—air,ss = Fland—sea,ss (3)

where the ss subscripts indicate a preindustrial steady-state.
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In the contemporary ocean, the globally integrated sea-air CO, flux can be considered a combination of “anthro-
pogenic” and “natural” components,

Fiea—air = Fant + Fa (4)

Anthropogenic (ant) sea-air CO, fluxes include a component that is due only to rising atmospheric CO, in the
absence of any climate variability, and a component that is due to the redistribution of anthropogenic DIC by
climate variability and change, that is,

Fone = Fanl,C02 + Fanl,clima[e %)

Natural (nat) sea-air CO, fluxes include a preindustrial component that is balanced by land-sea fluxes at
steady-state (see Equation 3), and a component due to the redistribution of natural (preindustrial) DIC driven by
climate variability and change, that is,

Fnal = Fland—sea,ss + Fnal,climale (6)

In this framework, any changes in air-sea CO, fluxes due to climate- or anthropogenic-driven land-sea DIC fluxes
(e.g., Regnier et al., 2013, 2022) will be incorporated in the F; ... term. Thus, the net effect of climate vari-
ability and change on global air-sea CO, fluxes is the sum of its effect on natural and anthropogenic CO, fluxes,

Fclimale = Ihatclimate + Fanl,climale (7)
and the global sea-air CO, flux is given by
Fseu—air = L'ant,CO, + Eand—sea,ss + Fclimate (8)

The same decomposition of sea-air CO, fluxes derived above for the globally integrated fluxes applies at the local
scale. At a preindustrial steady-state (dDIC/dt = 0) Equation 1 yields

fsea—uir,ss = fland—sea,ss + AZ . -]DIC,ss (9)

The contemporary net sea-air CO, flux is the sum of the steady-state fluxes (Equation 9) and the anthropogenic
CO,-driven fluxes and those fluxes driven by climate variability and change,

fsea—uir = funl,COz + fclimale + fland—sca,ss +Az- JDIC,ss (10)

where f, is composed of natural and anthropogenic components as in Equation 7 for the global integral.

limate

Analogously to the air-sea CO, fluxes, the transport of DIC can be decomposed into contributions from the prein-
dustrial steady-state transports, and the transports driven by rising atmospheric CO, and by climate variability,

Jpic = Jpicss + Jpicant.coz + JpIC climate 11

Analogous to the air-sea fluxes (Equation 7), Jp;cs cimae 12 both anthropogenic and natural components.

For discussions in this manuscript, we adopt the following lexicon for the terms defined above: £, .. is the “net
sea-air CO, flux,” f, , -, is the “anthropogenic CO,-driven flux,” f;; ... is the “climate-driven CO, flux,” f,
is the “climate-driven anthropogenic CO, flux,” f . imae 18 the “climate-driven natural CO, flux,” and £,
the “net land-sea carbon flux.” Analogous terminology applies to the globally integrated fluxes, as well as the
transports and DIC accumulation rates.

nt, climate

is

and-sea 1

2.3. Description of Models and Observation-Based Products
2.3.1. Global Ocean Biogeochemical Models (GOBMs)

Here we use results from 12 GOBMs many of which have previously been used to assess the global ocean CO,
uptake in the GCB (Friedlingstein et al., 2022). These models are forced with atmospheric CO, and reanalysis
wind stress and buoyancy fluxes. In contrast to fully coupled Earth system models that capture only externally
forced variability and trends (Taylor et al., 2012; Zelinka et al., 2020), the GOBMs can also provide hindcasts of
the variability and trends of the ocean carbon sink that are due to internal climate variability.
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Sim C

Sim D

pCO,-observation products

DIC-observation product (eMLR-C*)

20CIM-v2014 does not represent these terms. OCIM-v2021 represents the effects of variable sea surface temperatures and wind speeds, but does not represent any variability in ocean circulation or

biology like the GOBMs. See Section 2.3.2. ®’Some of the GOBMs partially represent land-sea carbon fluxes. See Table S1 in Supporting Information S1.

Many models first underwent a preindustrial spin-up using a constant atmospheric
pCO, and climatological or repeated year forcing. Then, all models performed a histor-
ical simulation from the end of the preindustrial spin-up or from observation-based
initial fields, which is forced by rising CO, and climatological or repeated year atmos-
pheric forcing. In the final transient simulation, which forms the basis for our analyses,
the model is run with evolving atmospheric pCO, and interannually varying climate
forcing from typically 1948 or 1958 (when interannual varying reanalysis fields are
available) until 2018. The length of the two spin-up phases and of the transient simu-
lation, the atmospheric pCO, time history, and the surface boundary conditions used
can all vary from one model to the next. Some, but not all, GOBMs represent the net
land-sea carbon fluxes (f},,4...,) With carbon input from rivers and burial of carbon in
marine sediments. For all simulations, model output is provided from 1980 to 2018 at
monthly resolution for surface data such as air-sea CO, fluxes, and at annual resolution
for interior data such as DIC concentrations, after re-gridding the model output to the
regular RECCAP2 grid (1° X 1° horizontal resolution and fixed depth levels). See Table
S1 in Supporting Information S1 for further details.

Each modeling group performed at least two and up to four model simulations over
the period 1980-2018, where the influence of surface forcing and atmospheric CO,
are analyzed either in isolation or combination. These simulations are labeled A-D
(Table 1). In Simulation A (performed by all models), both the atmospheric CO,
concentration and surface forcing are varied throughout the simulation period, provid-
ing an estimate of the oceanic CO, sink under time-evolving climatic conditions and

atmospheric CO,. These simulations capture the net sea-air CO, flux (f,, ;) and trans-

ea-air-
port components discussed in Section 2.2, although most models do not fully represent

the net land-sea carbon fluxes (Table 1).

In Simulation B (performed by all models), the atmospheric CO, concentration and
surface forcing are held to a constant climatological seasonal cycle throughout the simu-
lation period. If this simulation were fully spun up under preindustrial conditions, then
this simulation would capture only the steady-state preindustrial fluxes (f,., i) and
transports (Jpc ) as discussed in Section 2.2. However, the models are often incom-
pletely spun up, or they are spun up under a higher atmospheric pCO, than preindustrial
levels (Table S1 in Supporting Information S1), such that the sea-air CO, fluxes and
transports are not the same as they would be in a preindustrial steady-state. The differ-
ence between the carbon fluxes and transports in simulation B, and those that would
be simulated by the models in a preindustrial steady-state, are considered model biases
and drifts (Hauck et al., 2020), and denoted by fi., . air a0d Jpic piassarire TESPECtively
(Table 1). The bias is the component of the difference that is constant in time, while
the drift is the component that is changing in time (Hauck et al., 2020). These biases
and drifts are not “real” in the sense that they are not caused by a physical phenomenon
and would not exist if the model were in equilibrium with the climate forcing and pCO,
used to initialize the model (Séférian et al., 2016). The effect of model biases and drifts
on the modeled sea-air CO, fluxes and transports can be removed by subtracting the
results of Simulation B from the other model simulations (note that this also removes
the preindustrial steady-state fluxes and transports, which is important for local analy-
ses, but much less so for global integral analyses, since these preindustrial steady-state
fluxes and transports sum to near zero globally).

In Simulation C (performed by 11 out of 12 models) the atmospheric CO, concentra-
tion is varied following the observed time history throughout the simulation, while
the surface forcing is held to the same constant climatological seasonal cycle as in
Simulation B, providing an estimate of the oceanic CO, sink that is driven solely by
increasing atmospheric CO, concentrations without any climate-driven variability. This
simulation captures the anthropogenic CO,-driven fluxes and transports (f, o, and
Ibic.anicoz)» i addition to the components captured by Simulation B (Table 1).
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In Simulation D (performed by 11 out of 12 models), the atmospheric CO, concentration is held constant while
the surface forcing is varied over time using the same atmospheric forcing as in Simulation A, providing an
estimate of the variability in the oceanic CO, sink that is due to climate variability in the absence of any changes
in atmospheric CO,. This simulation captures the steady-state sea-air CO, fluxes and transports of DIC, and the
and J (Table 1).

climate-driven natural CO, fluxes and transports, f; DIC.nat.climate

at, climate

2.3.2. Data Assimilation Models

In addition to the 12 GOBMs, we also use three different data assimilation models. Here, we use the term
“data assimilation” to refer to models that assimilate oceanographic tracer observations in order to improve their
representation of ocean processes. In the “assimilation” phase, the circulation or biogeochemistry of these models
is adjusted in order to improve the fit of the model to the observations. Two of these data assimilation models are
different versions of the OCIM (DeVries, 2014, 2022). The OCIM assimilates observations of potential temper-
ature, salinity, radiocarbon, and CFCs, as well as estimates of sea-surface height and air-sea heat and freshwater
fluxes, into a steady-state ocean circulation model. This ocean circulation model is then used as the physical
transport model in an abiotic ocean carbon cycle model coupled with rising atmospheric CO, levels to estimate
air-sea CO, fluxes over the period 1780-2018. No data assimilation takes place during this phase. The two OCIM
versions, OCIMv2014 (DeVries, 2014) and OCIMv2021 (DeVries, 2022), differ in that OCIMv2021 has a higher
vertical resolution, a shallower surface mixed layer, includes a tidal mixing scheme, and assimilates 8>He obser-
vations in addition to the other tracers listed above (Holzer et al., 2021). OCIMv2014 performed simulations A
and B only and used an annual time-step for the carbon cycle model, while OCIMv2021 performed simulations
A, B, and C and used a monthly time-step for the carbon cycle model. Because of the constant circulation of
the OCIM models, their simulation A does not include a representation of the circulation-driven CO, fluxes and
transports that the GOBMs do. In the case of OCIM-v2021, simulation A includes variable sea surface tempera-
tures and gas transfer velocities, while in OCIM-v2014 these are held constant, making simulation A equivalent
to simulation C in that version. Because these simulations do not include biology, the model captures only abiotic
processes that affect the ocean carbon sink. Therefore, the regional distribution of air-sea CO, fluxes and carbon
transports in the OCIM differ from those in the GOBMs and ECCO-Darwin model (see below) that do resolve
biologically driven carbon fluxes. Because of these issues, the OCIM is primarily used to estimate the anthropo-
genic component of the air-sea CO, fluxes and DIC accumulation.

The other assimilation model used here is the ECCO-Darwin model (Carroll et al., 2020, 2022). This model
features an ocean biogeochemistry and ecology model (Darwin) (Dutkiewicz et al., 2015) coupled to the ECCO
data-assimilated physical circulation model (Forget et al., 2015; Zhang et al., 2018). The ECCO circulation is
time-varying and assimilates potential temperature, salinity, sea surface height, air-sea heat and freshwater fluxes
from 1992 to 2018. The biogeochemistry optimization adjusts initial conditions and several parameters of the
Darwin model to match time-varying observations of pCO,, DIC, alkalinity, nutrients and oxygen in the ocean
from 1992 to 2018. This assimilation period coincides with Simulation A in this model. Like the GOBMs, this
simulation A captures the effects of both climate-driven and CO,-driven fluxes, but unlike the GOBMs there
could additionally be drifts introduced by changes to the model's biogeochemical parameters during the assimi-
lation. Simulations B-D are not performed with this model. Because there is no simulation B, and because of the
incomplete spin-up and potential for model drifts in the first few years of the assimilation period, only the time
period from 2001 to 2018 is used in our analysis. Because simulations C and D are lacking, it is not possible to
separate the anthropogenic and natural carbon cycling in this model like it is with the GOBMs.

In the analysis that follows, results from the assimilation models are presented separately from those of the
GOBMs. Additionally, the OCIM results are presented separately from the ECCO-Darwin results due to the very
different nature of the two assimilation models.

2.3.3. Surface Ocean pCO,-Observation Products

We use a variety of products that estimate global air-sea CO, fluxes based on sea surface pCO, observations.
The bulk of the seawater pCO, observations used by these approaches are contained in the Surface Ocean CO,
Atlas (SOCAT) data product (Bakker et al., 2016). SOCAT compiles and quality-controls pCO, observations
from research cruises, ships of opportunity, moorings (e.g., Sutton et al., 2019), and autonomous platforms (e.g.,
Nickford et al., 2022). Various approaches have been devised to fill the gaps in this database to create near-global
and temporally complete maps of seawater pCO, for nearly the entire open ocean and, for RECCAP2, at monthly
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resolution from roughly the mid-1980s to 2018, although some recent approaches have extended these estimates
back to before 1960 (Bennington et al., 2022; Rodenbeck et al., 2022). These gap-filling (or interpolation) tech-
niques include statistical (Rodenbeck et al., 2013), multi-linear regression (lida et al., 2021), and various machine
learning algorithms (Chau et al., 2022; Denvil-Sommer et al., 2019; Gloege et al., 2022; Gregor et al., 2019;
Landschiitzer et al., 2014; Zeng et al., 2022). The interpolation step in these models is significant because on
average only 1%—2% of the 1° X 1° grid cells at any given month are occupied by actual seawater pCO, observa-
tions, and the remaining 98%-99% must be filled in by the algorithms (Fay et al., 2021; Rodenbeck et al., 2015).
In all, there are 11 different pCO,-observation products in RECCAP2 that use different approaches to fill gaps in
the observational record (Table S2 in Supporting Information S1).

After the reconstruction of surface seawater pCO,, each group uses a bulk formula to compute the net sea-air CO,
flux at a monthly resolution using

fsea*uir = Kw X (1 - fice) X KO X (pCOZ.sW - pCOZ,air) (12)

where K is the wind-speed dependent monthly averaged gas transfer velocity, (1 — f; .) is the percentage of open
water in the pixel (sea ice is assumed to be impervious to gas transfer), K is the CO, solubility in seawater, and
pCO,,,, and pCO,,, are the seawater and air pCO,, nominally at 5-m depth and 10-m height. Table S2 in Support-
ing Information S1 provides detailed information on the products used in the computation of the gas transfer
velocity, solubility, and atmospheric pCO, for each data product.

2air

We note that Equation 12 is also used in the GOBMs to compute the sea-air CO, flux, but using the seawater
pCO, simulated in the model in place of the seawater pCO, reconstructed from observations. When comparing the
results of the pCO, products to those of the GOBMs, it should be considered that the pCO, products resolve all of
the components of the net air-sea CO, flux discussed in Section 2.2 (Table 1). This is because the pCO, products
are derived from real-world observations and these observations implicitly capture all of the mechanisms that can
influence seawater pCO,. There are no equivalent biases or drifts in the sea-air CO, fluxes calculated by the pCO,
products in the sense that they are not affected by a “spin-up” period or by the need to be in equilibrium with a prein-
dustrial pCO,. However, there are structural biases in these products, just as there are in the GOBMs, that can affect
their ability to accurately reproduce the air-sea CO, fluxes. These structural biases are discussed in Section 4.2.

Two of the pCO, products differ fundamentally from the core products, and thus are reported separately in the
analysis below. One of these is the UOEX product (Watson et al., 2020), which deviates from the others when
computing F, ..
ocean, and adjusting for temperature biases between measurement temperature and sea-surface temperature.

by adjusting pCO, observations to account for the cooler skin temperatures of the surface

These adjustments lead to larger CO, fluxes into the ocean. The other is a climatology of sea-air CO, fluxes
constructed from pCO, observations corrected to the year 2010. This climatology follows the methodology used
by Takahashi et al. (2009) to normalize all seawater pCO, observations collected from 1985 to 2018 to the year
2010. We refer to this product as the “Takahashi update” and consider the fluxes to represent a quasi-decadal
average centered on the year 2010.

2.3.4. Interior DIC Products

An extended multiple linear regression approach applied to the C* tracer (eMLR-C*) estimates the increase in
anthropogenic DIC in the ocean from 1994 to 2007 (Clement & Gruber, 2018; Gruber et al., 2019a, 2019b).
This product uses a multiple linear regression approach with independent variables, such as temperature, salin-
ity, oxygen, and nutrients to capture the variability in C*, with the C* fields derived from global ocean interior
observations contained in GLODAPv2 (Olsen et al., 2016). The eMLR-C* estimates include the anthropogenic
CO,-driven as well as the climate-driven anthropogenic DIC accumulation (Gruber et al., 2019a, 2019b; Table 1).
This product provides near-global coverage, but is missing data in some marginal seas, and the analysis is cut off
below 3,000 m where the anthropogenic DIC signal-to-uncertainty ratio is low. A recent update of the eMLR(C*)
results by Miiller et al. (2023) resolves decadal trends in the anthropogenic carbon accumulation from 1994 to
2014, but was published after the completion of this study and could thus not be considered here.

2.4. Uncertainties

Unless otherwise stated, uncertainties are derived from the ensemble standard deviation for the GOBMs, pCO,
products, and OCIM. For most calculations, we use an ensemble of 12 different GOBMs (Table S1 in Supporting
Information S1) and nine different pCO, products (Table S2 in Supporting Information S1), excluding the UOEX
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and Takahashi update products, which are reported separately. For the OCIM, we have only two different versions
that are used to assess uncertainties. The ECCO-Darwin, UOEX, Takahashi update, and eMLR-C* are standalone
products for which there is no ensemble that can be used to assess uncertainties. For these, we use published
uncertainty estimates where available, although for some quantities there are no published uncertainty estimates.
For quantities derived by combining two or more different data classes (e.g., GOBMs and pCO, products) we
use all possible combinations to compute the standard deviation, and refer to the result as the cross-ensemble
standard deviation. While the ensemble standard deviation is one measure of variability within or across different
products, it does not adequately capture all of the uncertainty due to structural errors and biases in the models and
observation-based products. These structural biases, which are more difficult to assess but likely dominate the
total uncertainty, are discussed at more length in Section 4.2.

3. Results

This section shows results of the ocean carbon sink estimated by RECCAP2 products for sea-air CO, fluxes
(Section 3.1) and changes in ocean interior DIC (Section 3.2). Subsections provide discussion of these estimates
in light of previous estimates and current knowledge, as well as investigation of the processes responsible for
trends and variability of the ocean carbon sink.

3.1. Sea-Air CO, fluxes
3.1.1. Results From RECCAP2 Models and Observation-Based Products

Figure 1 illustrates the spatial distribution of sea-air CO, fluxes averaged over the RECCAP2 period (1985-2018)
from the ensemble of GOBMs and the core pCO, products. In both product classes, the strongest outgassing
of CO, occurs at the equator, especially in the Eastern Tropical Pacific, driven by a convergence of DIC due
to upwelling of waters that have accumulated large amounts of respired DIC, and by surface warming (Feely
et al., 2006). Outgassing of CO, also occurs in other upwelling regions such as the eastern boundary currents of
the North and South Pacific, the Mauritanian and Benguela upwelling off the coast of North and South Africa,
the seasonal upwelling zone of the Arabian Peninsula, and along the polar front in the Southern Ocean (~50°S).
Throughout most of the remaining mid- to high-latitude open ocean the average sea-air CO, flux is directed into
the ocean. This net uptake is due partly to the removal of DIC by biological uptake, and partly to the cooling of
water masses during poleward transport, particularly in the western boundary current regions. In all regions the
uptake of anthropogenic CO, modifies the fluxes by reducing outgassing in source regions and enhancing ingas-
sing in sink regions (see Section 3.1.2).

The mean area-normalized net sea-air CO, flux is —0.48 + 0.06 mol C m=2 yr~! in the GOBMs and
—0.41 + 0.07 mol C m~2 yr~! in the pCO, products (1985-2018). The bias and drift assessed by Simulation
B averages —0.02 + 0.06 mol C m~2 yr~!, which if corrected for would bring the mean sea-air CO, flux in the
GOBMs to —0.46 + 0.06 mol C m~2 yr~!. Thus, the global mean sea-air CO, fluxes in the GOBMs and pCO,
products agree within their ensemble standard deviations. This agreement is somewhat surprising given that most
GOBMs do not represent the outgassing of terrestrially derived CO,, which has been estimated at between 0.2 and
1.2 PgC/yr globally or 0.05-0.28 mol C m~2 yr~! (Jacobson et al., 2007; Kwon et al., 2021; Lacroix et al., 2020;
Resplandy et al., 2018), with a recent best estimate of 0.65 + 0.3 PgC/yr or 0.15 + 0.07 mol C m~2 yr~! (Regnier
et al., 2022).

Despite their broad similarities, the difference between the net sea-air CO, flux in the GOBMs and the pCO,
products is significant in some regions (Figure 1c). One prominent difference is enhanced equatorial outgassing
in the pCO, products relative to the GOBMs. The mean difference between the pCO, products and GOBMs in the
equatorial Pacific and Indian Oceans reaches up to 1 mol C m~2 yr~!. Other regions where the difference between
the GOBMs and pCO, products exceeds the cross-ensemble standard deviation include the western boundaries of
the North Atlantic and North Pacific and the extension systems of the western boundary currents, where the pCO,
products take up less CO, than the GOBMs (Figure 1c). This could be related to model biases, as the GOBMs
tend to underestimate wintertime pCO, in the western boundary currents, leading to too strong CO, uptake in
this region (Roobaert et al., 2022). In contrast, the pCO, products suggest stronger oceanic CO, uptake than the
GOBMs in the North Atlantic subtropical gyre, the central to eastern North Pacific, and the eastern South Pacific
near the coast of South America. In the Southern Ocean, the pCO, products have more outgassing of CO, south
of the polar front and stronger uptake of CO, to the north of the polar front relative to the GOBMs (Figure Ic).
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Figure 1. Global mean sea-air CO, flux for 1985-2018 for the (top panels) mean of the global ocean biogeochemical models
(GOBMs) (simulation A), and (middle panels) mean of the core pCO, products (excluding the UOEX and Takahashi update
products). The global average sea-air CO, flux is given in the title of each figure. Zonally integrated sea-air CO, fluxes are
shown in the right-hand panels in each figure, with shading representing the ensemble standard deviation. (bottom panels)
The difference between the sea-air CO, flux in the pCO, products and the GOBMs. Stippling indicates regions where the
mean sea-air CO, flux difference is greater than the cross-ensemble standard deviation. Zonally integrated differences in
sea-air CO, fluxes are shown in the right-hand panel, with shading representing the cross-ensemble standard deviation. See
Figure S1 in Supporting Information S1 for the sea-air CO, fluxes in these products over the 2005-2015 period, and Figure
S2 in Supporting Information S1 for 2005-2015 sea-air fluxes in the OCIM, ECCO-Darwin, and UOEX products.

Globally integrated net sea-air CO, fluxes (F, ;) for the period 1985-2018 are shown in Figure 2a for all
the models and pCO, products. For the models (except ECCO-Darwin), simulation A-B is shown in order to
remove model drifts and biases, which average —0.11 + 0.18 PgC yr~! in the GOBMs (Table S1 in Supporting
Information S1). This also removes the F| .., component of sea-air CO, flux that is due to the net land-sea
carbon fluxes that must be balanced by sea-air CO, fluxes at steady-state (Equation 4), although this is small in
most GOBMs (median value of 0 PgC/yr; Table S1 in Supporting Information S1). For ECCO-Darwin, simulation
B was not available, and the influence of model drifts is not known. However, it is known that the ECCO-Darwin
of —1.3 PgC/yr. Because
of this, the ECCO-Darwin sea-air fluxes are much lower (more negative) than they would be if F| 4 ..
zero, as it is in most of the GOBMs and OCIM. For these reasons, the ECCO-Darwin results cannot be directly
compared to the GOBM and OCIM results. For completeness we still show the ECCO-Darwin results in Figure 2,

but caution should be taken when interpreting their results.

model has a large unbalanced sink of carbon due to seafloor burial, resultingina F|_; .,

were
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Figure 2. Comparison of different estimates of the ocean CO, sink from 1985 to 2018. (a) Globally integrated sea-air CO,
fluxes from models (shades of green, with model drifts and land-sea fluxes removed, except for ECCO-Darwin) and pCO,
products (shades of blue). The updated Takahashi climatology is shown by the black diamond in 2010. (b) Summary statistics
for the models and pCO, products shown in panel (a). Bar heights represent the mean globally integrated sea-air CO, flux

for the period 1985-2018. Error bars indicate the ensemble standard deviation. Numbers above each graph represent the
trend over 1985-2018 (upward trending line, top), with superscripts and subscripts the trend for 2001-2018 and 1985-2000,
respectively; the magnitude of the interannual variability (IAV, squiggly line, middle) and the 5-years smoothed IAV (smooth
squiggle, bottom). Statistics for the ECCO-Darwin model are only given for the 2001-2018 period. The gray bar is an
estimate of the net land-sea carbon flux, F; for the contemporary ocean (Regnier et al., 2022).

land-sea’

All products show a net uptake of CO, by the ocean throughout the RECCAP2 period, with the uptake increas-
ing over time. For the GOBMs, the mean globally integrated sea-air CO, flux over the RECCAP2 period is
—2.0 + 0.3 PgC yr~! (Figure 2b) with a maximum of —1.5 and a minimum of —2.6 PgC yr~! over the ensemble
of GOBMs. The OCIM exhibits sea-air CO, fluxes on the lower (more uptake) end of this range, with an average
global sea-air flux of —2.4 + 0.2 PgC yr~! from 1985 to 2018. Sea-air CO, fluxes reconstructed by the pCO, prod-
ucts are generally less negative (less CO, uptake) than those predicted by the models. The mean sea-air CO, flux
from the core pCO, products (excluding UOEX and Takahashi update) is —1.6 + 0.2 PgC yr~! (min of —2.0 and
max of —1.3). The difference between the global sea-air CO, flux of the pCO, products and that of the GOBMs is
0.4 + 0.3 PgC yr~!, while the difference between the pCO, products and the OCIM is 0.7 + 0.3 PgC yr~.

Globally integrated sea-air CO, fluxes estimated by the pCO, products are systematically less negative than
those predicted by the GOBMs and OCIM. Several factors could help explain this. First, the global sea-air CO,
flux from the GOBMs and OCIM reported in Figure 2 do not include fluxes that result from the net land-sea
carbon flux (F),,.,)> thus the model results represent only F, o, and F; ... (see Equation 8). The current
best estimate of F, ., is 0.65 + 0.3 PgC yr~! (Regnier et al., 2022), as shown by the gray bar in Figure 2b. If

this flux were added to the GOBM and OCIM estimates of sea-air CO, flux, it would yield a net sea-air CO,
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flux of —1.4 + 0.4 PgC yr~! in the GOBMs, and —1.7 + 0.4 PgC yr~! in the OCIM. Second, some of the pCO,
products do not cover the entire ocean surface, but are missing data in polar regions and marginal seas (Table S2
in Supporting Information S1). If the mean sea-air CO, flux of —0.41 mol m~2 yr~! from the pCO, products is
scaled to the global ocean surface area of 3.6 x 10'* m?, this yields a slightly more negative sea-air CO, flux of
—1.8 + 0.3 PgC yr~'. This simple scaling yields results that are similar to those based on explicit reconstruction
of coastal sea-air CO, fluxes (Fay et al., 2021).

The models and pCO, products also differ in the temporal variability of the globally integrated sea-air CO, flux
(Figure 2b). The magnitude of interannual variability (IAV), which is here defined as the temporal standard devia-
tion of the linearly detrended annual globally integrated sea-air CO, fluxes (see DeVries, 2022 for details), ranges
from 0.10 PgC yr~! in the OCIM to 0.31 PgC yr~! in the UOEX pCO, product (Figure 2b). In general, the pCO,
products have a greater IAV (mean of 0.20 PgC yr~!) than the GOBMs (mean of 0.15 PgC yr~') (Figure 2b). The
dominant factor leading to year-to-year variability in sea-air CO, fluxes is ENSO (Rodenbeck et al., 2015), which
strengthens global ocean CO, uptake during El Nifio phases and weakens during La Nifia (Bacastow, 1976; Feely
et al., 1999; Ishii et al., 2014; Keeling & Revelle, 1985; Liao et al., 2020; McKinley et al., 2004). The influence
of short-term climate modes such as ENSO can be filtered out by taking the 5-years running average of the IAV,
which better captures the decadal timescales of variability. The 5-years smoothed variability of the pCO, products
is twice as large as that of the GOBMs, and three times as large as that in the OCIM (Figure 2b).

Large decadal variability in the pCO, products is partly driven by a strong shift of the trend in global sea-air
CO, flux around the year 2000. From 1985 to 2000, the global sea-air CO, flux in the pCO, products trended
nearly flat, at a rate of —0.04 + 0.29 PgC yr~! decade~! (Figure 2b). After 2000, the pCO, products trend toward
much stronger uptake, at a rate of —0.61 + 0.12 PgC yr~! decade™! from 2001 to 2018 (similar to the trend of
—0.68 PgC yr~! decade™! in the ECCO-Darwin model during that period). By contrast, the GOBMs show a weak
strengthening trend from 1985 to 2000 at a rate of —0.19 + 0.07 PgC yr~! decade™!, and a more muted transition
to stronger uptake after 2000, with a trend of —0.34 + 0.06 PgC yr~! decade™' from 2001 to 2018.

3.1.2. Mechanisms Contributing to Sea-Air CO, Fluxes in RECCAP2 Models

Model simulations for RECCAP2 were designed to isolate the mechanisms responsible for the magnitude and
variability of sea-air CO, fluxes (Table 1). Here we decompose the net sea-air CO, fluxes in models and pCO,
products into anthropogenic and natural components, and investigate the roles of climate variability and atmos-
pheric CO, in controlling the global sea-air CO, fluxes during the RECCAP2 period.

At a local scale, the net sea-air CO, flux (f,,, ,..s
fluxes (£ y.4irss)» anthropogenic CO,-driven uptake flux (f, co,)s and the climate-driven CO, flux (f;
Equations 9 and 10). These fluxes can be decomposed in the GOBMs to determine the processes responsible for
the spatial distribution of sea-air CO, fluxes averaged over 1985-2018 (Figure 3). Simulation B in the GOBMs
captures f ., i«
pattern of sea-air CO, flux in Simulation B (Figure 3a) bears a strong resemblance to the net air-sea CO, flux from

Figure 1) is composed of the preindustrial steady-state sea-air

]imate) (See

as well as biases and drifts that may be due to incomplete model spin-up (f,;,..4ir)- The spatial

Simulation A (Figure 1a), indicating that the natural steady-state sea-air CO, flux is the dominant component of
the local net sea-air flux. The global mean of these fluxes is a small net uptake of —0.02 + 0.06 molC m=2 yr~'.
This small negative flux is due to incomplete spinup of these models leading to model drift (Séférian et al., 2016),

and in the case of some models a negative net land-sea carbon flux (f, ) due to an excess of carbon burial over

and-sea

river inputs (Table S1 in Supporting Information S1).

The second most important component of £, .. 18 f, co, (Figure 3b). In the GOBMs and OCIM this component
is found by the difference between simulations C and B. The sign of f, -, is everywhere negative, indicating
CO, uptake by the ocean, with the highest uptake rates in the North Atlantic, Southern Ocean, western boundary
currents, and the equatorward flanks of the subtropical gyres (see also Mikaloff-Fletcher et al., 2006). These
regions experience the re-emergence of waters whose anthropogenic carbon content is not in equilibrium with the
atmosphere, and have strong surface winds that promote fast gas exchange rates (Caldeira & Duffy, 2000; Ishii

et al., 2020; Ridge & McKinley, 2020; Sarmiento et al., 1992; Toyama et al., 2017).

The climate-driven sea-air CO, flux can be further decomposed into the climate-driven natural flux, f;
(Figures 3c and 3d). f,
is found by the difference between the total anthro-

at, climate®

and the climate-driven anthropogenic flux, f, is found by the difference of

at, climate at, climate

sea-air fluxes in simulation D and simulation B, and f, | jimace

pogenic effect including climate variability (simulation A-D), and the CO,-only anthropogenic effect (simulation
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Figure 3. Spatial distribution of sea-air CO, flux components in the global ocean biogeochemical models (GOBMs) for

the period 1985-2018. Compare with the contemporary sea-air CO, flux in Figure 1a. (a) The mean sea-air CO, flux from
simulation B in the GOBMs, which represents the sum of the pre-industrial steady-state fluxes, f.., ,;. > and any model biases
and drifts during this period, f,;,. 4« (b) Anthropogenic sea-air CO, fluxes driven by atmospheric pCO, increase with a
constant climate. (c) Climate-driven changes in natural sea-air CO, fluxes. (d) Climate-driven changes in anthropogenic
sea-air CO, fluxes. Numbers in parentheses in the plot title indicate the global average sea-air CO, flux for each component.
Right-hand subplots show the zonal integral of the flux component in the map, with the solid line representing the ensemble
mean and the shading one standard deviation of the ensemble. For panel (b) the ocean circulation inverse model (OCIM)
results are additionally shown in the zonal integral. Figure S3 in Supporting Information S1 shows the OCIM sea-air
anthropogenic CO, fluxes for comparison with panel (b).

C-B) (Table 1). In terms of spatial variability, the natural component of f, is larger than the anthropogenic

limate

component (Figures 3c and 3d), with the standard deviation of f] at 0.31 mol C m~2 yr~! compared to
0.10 mol C m~2 yr~! for f,

climate variability has driven a weak net outgassing of natural CO, and an even weaker net ingassing of anthro-

at, climate

ot climate- Lh€ climate-driven CO, fluxes are strongest in the Southern Ocean, where

pogenic CO, (Figures 3c and 3d). The opposing effects of climate variability on natural and anthropogenic
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Figure 4. (a) Components of the contemporary net sea-air CO, flux in RECCAP2 global ocean biogeochemical models
(GOBMs), using simulations A-D to partition fluxes into the anthropogenic CO,-driven flux (F o,), the climate-driven
anthropogenic CO, flux (F,; jimae)> and the climate-driven natural CO, flux (F,; ijimae)- SOlid curve is the ensemble mean
and shading is the ensemble standard deviation. An estimate of F,, -, from the ocean circulation inverse model (OCIM) is
also given by the red dashed curve. (b) The climate-driven sea-air CO, flux (F;,...) in the GOBMs, compared with the sum
Of Fj;ac @nd the net land-sea carbon flux (F,, .., ) in the pCO, products. Dark curve is the multi-product mean and light
shading is the cross-ensemble standard deviation. (c) Summary statistics (as in Figure 2) for F -, from the GOBMs (dark
red) and the OCIM (light red), F from the GOBMs (light blue) and F + F from the pCO, products (dark

limate land-sea,ss
blue).

limate

air-sea CO, fluxes is consistent with previous modeling studies and due to the opposing gradients of natural
and anthropogenic DIC in the ocean (e.g., Bernardello et al., 2014; DeVries et al., 2017; Ito et al., 2015). The
climate-driven variability of the natural and anthropogenic CO, in the Southern Ocean over 1985-2018 is likely
due to increased Southern Hemisphere westerly winds, which drive an increase in upwelling along and to the
south of the polar front, driving both increased natural CO, outgassing and a slight increase in anthropogenic CO,
uptake (Canadell et al., 2021; Jones et al., 2016; Le Quéré et al., 2007b; Lovenduski et al., 2007). The globally
averaged climate-driven sea-air CO, fluxes over this period are small, averaging 0.03 mol C m=2 yr=" for f,. imae
and —0.01 mol C m~2 yr~! for f, (Figures 3c and 3d).

nt, climate
The same component separation done for the local sea-air CO, flux can be applied to globally integrated flux
(Figure 4). This separation reveals that F, , -, is by far the dominant component of the globally integrated sea-air
CO, flux over the RECCAP?2 period, while F; .. is near zero (Figures 4a and 4c). The mean of F, -, for the
RECCAP?2 period is —2.1 + 0.3 PgC yr~! in the GOBMs, and —2.4 + 0.1 PgC yr~! in the OCIM. The time evolu-
tion of F, oo, in the OCIM and GOBM: s is similar (Figure 4a), although the rate of increase in F, ¢, is slightly
more negative in the OCIM (—0.36 + 0.02 PgC yr~! decade™ over the full RECCAP2 period) compared to that
in the GOBMs (—0.30 + 0.04 PgC yr~! decade™!) (Figure 4c).
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While F, .o, dominates the magnitude of the globally integrated sea-air CO, flux, interannual to decadal vari-
ability is predominantly due to F; .. (Figures 4a and 4c). The interannual variability of F -, in both the
GOBMs and the OCIM is only 0.07 PgC yr~!, while the 5-years smoothed (decadal) variability is 0.05 PgC yr~!
(Figure 4c). A large part of the decadal variability in F, -, is related to low atmospheric CO, growth rates in the
late 1980s and early 1990s (e.g., McKinley et al., 2020), which caused the ocean anthropogenic CO, sink to stag-
nate or even slightly decline from 1988 to 1993 (Figure 4a). Interannual to decadal variability in F' is domi-

climate

(Figure 4a). In the GOBMs, the interannual variability of F, e 1S

is only 0.04 + 0.01 PgC yr~'. This difference
is due to the fact that there is a much larger concentration of natural DIC than anthropogenic DIC in the ocean, so

nated by the natural component, F, i

0.18 + 0.03 PgC yr~! over 1985-2018, while the IAV of F

ant, climate

that climate-driven changes in gas transfer velocity or solubility (e.g., Wanninkhof & Trifianes, 2017), as well as
ocean circulation changes (e.g., DeVries et al., 2017), mainly impact the natural air-sea CO, fluxes.

F i con estimated by the OCIM and GOBM s can also be removed from the net sea-air CO, fluxes calculated by

ani

the pCO, products. The difference represents the sum of F, (both natural and anthropogenic components) and

F,

land-sea,ss,

estimate of F; ..

limate
though with the important caveat that any bias in the F -, estimate is directly projected on the residual

and F 4 .. (Table 1). Since by definition | is constant, the temporal variability in the
resulting sea-air CO, flux is solely due to F;; . . (Figure 4b). The interannual variability of F, . in the pCO, prod-
ucts is 0.20 + 0.06 PgC yr~!, which is greater than the IAV of F;, . . estimated by the GOBMs (0.16 + 0.03 PgC yr™).
Likewise, the decadal variability of F,; .. in the pCO, products is 0.14 + 0.05 PgC yr~, which is about 50% greater
than that in the GOBMs (0.09 + 0.02 PgC yr~!) (Figure 4c). The interannual to decadal variability of F,; .. predicted
by both the GOBMs and the pCO, products is about 2-3 times greater than that of F, | ., (Figure 4c).

<limate OVET the period from 1985 to 2000
(Figure 4b), although the pCO, products estimate a larger positive trend of F .. (0.17 = 0.27 PgC yr~! decade™")
than the GOBMs (0.02 + 0.07 PgC y™! decade™!) over this period (Figure 4c). Climate-driven trends over this
time period have been ascribed to changes in upper-ocean overturning circulation (DeVries et al., 2017), particu-
larly in the Southern Ocean (Gruber et al., 2019b; Landschiitzer et al., 2015), and to changes in ocean tempera-
tures in response to the eruption of Mt. Pinatubo in the early 1990s (McKinley et al., 2020). The F, . trends in
the GOBMs and pCO, products diverge after 2001. The F .. diagnosed by the GOBMs shows some interannual
variability but little trend from 2001 to 2018 (—0.03 £ 0.05 PgC yr~! decade!). Contrastingly, F;, ... in the pCO,
products strengthens at a rate of —0.27 + 0.13 PgC yr~! decade™! from 2001 to 2018 (Figure 3¢). This difference
in strengthening trends is large enough that the difference between the GOBMs and pCO, products, which is

commonly attributed to F, (Friedlingstein et al., 2022), is erased by the year 2018.

and-sea,ss

The models and the pCO, products agree quite well in the evolution of F,

and-sea,ss
The mechanism responsible for the recent negative trend of F, . in the pCO, products is not clear, nor is it clear
why the strength of the trends differs between pCO, products and GOBMs. One possibility is that the pCO, prod-
ucts spuriously overestimate recent trends in the ocean CO, sink, due to artifacts of the interpolation algorithms
when applied to sparse and irregular pCO, observations (Denvil-Sommer et al., 2021; Gloege et al., 2021; Hauck
et al., 2023). Another possibility is that the pCO, products are capturing a real signal that is not present in
the models. The pCO, products and GOBMs represent climate variability in distinct ways: pCO, products tie
seawater pCO, variability to the observed variability of predictors such as sea surface temperature, mixed layer
depth, and chlorophyll concentration (e.g., Gloege et al., 2022), while GOBMs represent climate variability by
forcing the model with reanalysis wind stress and surface buoyancy fluxes. If the trends in the pCO, products
are not spurious, it can be inferred that seawater pCO, is increasing less rapidly in the ocean than is predicted
by the GOBMs. This could reflect a general tendency of the models to underestimate the climate sensitivity of
biogeochemical processes (Andrews et al., 2013; DeVries et al., 2019), or be caused by processes that are not
captured in the models, such as a slowdown of the overturning circulation leading to enhanced trapping of DIC in
the deep ocean (DeVries et al., 2017). It is also possible that some of the trends seen in the pCO, products reflect
variability in the input of carbon or alkalinity at the land-sea interface (Drake et al., 2018; Regnier et al., 2013).

3.2. Changes in Interior DIC Storage
3.2.1. Results From RECCAP2 Models and Observation-Based Products

Vertically integrated rates of DIC change are shown in Figure 5 for the RECCAP2 products that provide esti-
mates of interior ocean DIC changes. These include the GOBMs (Figure 5a), the two OCIMs (Figure 5b), the
ECCO-Darwin (Figure 5c), and the eMLR-C* product (Figure 5d). Although the different classes of products
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Figure 5. Rate of change in the vertical integral of dissolved inorganic carbon (DIC) storage for (a) the global ocean
biogeochemical models (GOBMs) from 1985 to 2018, (b) ocean circulation inverse model from 1985 to 2018, (c)
ECCO-Darwin from 2001 to 2018, and (d) eMLR-C* from 1994 to 2007. Simulation A is used for all models. Rates are
calculated by subtracting the vertically integrated DIC concentration in 1985 from the vertically integrated DIC concentration
in 2018, or the start and end years of each product, and dividing by the number of years elapsed. For GOBMs the mean of

11 models is shown, not including the CCSM. Numbers in parentheses in the title are the areal average rate of change in DIC
accumulation over the time period covered by each product. The zero contour is shown as a solid line in all plots. Figure S4 in
Supporting Information S1 shows accumulation rates in these products (except ECCO-Darwin) over the 1994-2007 period.

capture different mechanisms that drive variability in DIC concentrations over time (Table 1), here we directly
compare the results from each product before using them to separately diagnose the components of DIC vari-
ability over time (Section 3.2.2). Because some of the products do not cover the entire RECCAP2 period, we
normalize the change in DIC concentration in each product by the time period covered by each product, which
makes their magnitudes comparable.

The GOBMs displays an increase in DIC storage throughout most of the ocean over the period 1985-2018
(Figure 5a; Simulation A can be compared to air-sea fluxes reported in Figure 1a). The increase in DIC storage
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is most pronounced in the North Atlantic, where vertically integrated rates of DIC accumulation reach up to
2 mol m~2 yr~!. DIC accumulation rates of ~1 mol m~2 yr~! are found in the Southern Ocean and Southern
Hemisphere subtropics, largest in the Indian sector of the Southern Ocean. Weakest accumulation rates occur in
the eastern tropical Pacific, and parts of the North Pacific, where a small loss of DIC over the RECCAP2 period
is evident in some areas (Figure 5a). DIC accumulation rates in the OCIM are similar to those of the GOBMs at
the large scale, although the OCIM shows greater accumulation of DIC in the western North Atlantic than the
GOBMs, and less accumulation in the Antarctic sector of the Southern Ocean (Figure 5b). There are no regions
of negative DIC accumulation in the OCIM, because the OCIM primarily captures the accumulation of anthropo-
genic CO, (Table 1), which is positive over the RECCAP2 period due to rising atmospheric CO,.

The ECCO-Darwin DIC accumulation rates are very different from those in the GOBMs and OCIM (Figure 5c).
DIC accumulation is strongest in the Southern Ocean and the western North Pacific, while the subpolar North
Atlantic, equatorial West Pacific, and northeastern Pacific are all losing DIC. These large regions of DIC loss
are at least partially due to a negative F,_, .., of —1.3 PgC yr~! in the ECCO-Darwin model, which is due to
burial of carbon in seafloor sediments that is not balanced by riverine carbon inputs (Table S1 in Supporting
Information S1). As a result, the ocean loses DIC over time, counteracting some of the DIC gained by anthropo-
genic CO, uptake. Nonetheless, the ECCO-Darwin shows much greater spatial variability in DIC accumulation
rates than the OCIM and GOBMs, and this cannot be attributed to the carbon burial which is relatively constant
throughout the ECCO-Darwin simulation. The ECCO-Darwin model is the only model that assimilates ocean
DIC observations, and it is designed to provide maximal consistency with the DIC observations. As such, it is
possible that the large spatial variability seen in ECCO-Darwin reflects actual climate-driven variability in ocean
DIC accumulation. However, it is also possible that some of the patterns seen in ECCO-Darwin are artifacts of the
data assimilation process, since changes to biogeochemical model parameters during the assimilation may lead to
gradients in DIC that are advected by the mean ocean circulation. Until an in-depth analysis of the mechanisms
behind the ECCO-Darwin DIC accumulation patterns can be undertaken, it remains unclear if the patterns seen
in Figure 5c represent real variability or assimilation artifacts.

The eMLR-C* product represents the CO,-driven and climate-driven components of anthropogenic DIC accumu-
lation in the ocean from 1994 to 2007. In this regard the DIC accumulation rate in the eMLR-C* product is most
comparable to that in the OCIM, which captures mainly the anthropogenic CO,-driven change in DIC storage.
Like the OCIM, the DIC accumulation rate in the eMLR-C* product is highest in the North Atlantic and displays
preferential accumulation in the western North Atlantic, a feature which has been attributed to the flow of anthro-
pogenic CO, along the deep western boundary current (Lee et al., 2003; Steinfeldt et al., 2009). Anthropogenic
DIC accumulation rates in the Southern Hemisphere midlatitudes are generally larger in the eMLR-C* than those
in the OCIM, particularly in the South Atlantic (Figure 5).

The vertical distribution of DIC storage rates reveals further differences among the various RECCAP2 prod-
ucts (Figure 6). In the Atlantic Ocean at intermediate depths (1,000-3,000 m), DIC accumulation in the OCIM
exceeds 0.5 mmol m~3 yr~! in the subpolar North Atlantic, while the accumulation rate in the South Atlantic
is only 0.1 mmol m~—3 yr~! (Figure 6b), similar to the pattern seen in the GOBMs (Figure 6a). By contrast,
the DIC accumulation rate in the eMLR-C* product is roughly 0.2-0.3 mmol m~3 yr~! in both the northern
and southern hemispheres of the mid-depth Atlantic (Figure 6d). In the deep north Pacific Ocean (>1,000 m
depth), the OCIM and eMLR-C* products both estimate very small but positive DIC accumulation rates
(<0.1 mmol m=3 yr~!), while the GOBMs have slightly negative DIC accumulation rates in this region (Figure 6).
Globally, the eMLR-C* has the highest rates of DIC accumulation near the surface (347 Gmol m~! yr~! compared
to 317 £ 17 Gmol m~! yr=! in the GOBMs and 307 + 18 Gmol m~! yr~! in the OCIM) as well as the highest
accumulation rates at 3,000 m depth (14 Gmol m~! yr~! in the eMLR-C* compared to 6.9 = 1.1 Gmol m~! yr~!
in the OCIM and 3.2 + 11 Gmol m~! yr~! in the GOBMs). The eMLR-C* product does not resolve DIC storage
below 3,000 m, which averages around 2.5 + 0.5 Gmol m~! yr~! in the OCIM and 3.7 + 11.0 Gmol m~! yr~! in
the GOBMs. This deep ocean DIC accumulation equates to about 4% and 6% of the globally integrated air-sea
CO, flux in the OCIM and GOBMs, respectively.

The depth distribution of DIC accumulation in the ECCO-Darwin model is substantially different from all other
data sets. Storage rates are high near the surface, but drop to very low or negative values just below the surface
mixed layer in the main thermocline, with an average accumulation of —60 Gmol m~! yr~! at 400 m depth. A
secondary maximum of DIC accumulation is found at about 1,500 m depth (Figure 6¢). Another significant contrast
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Figure 6. Basin-averaged sections of trends in dissolved inorganic carbon (DIC) storage for (a) global ocean biogeochemical
models (GOBMs) over the period 1985-2018, (b) ocean circulation inverse model over the period 1985-2018, (c)
ECCO-Darwin over the period 2001-2018, and (d) eMLR-C* over the period 1994-2007. For the GOBMs we show the mean
of 11 models (excluding CCSM). Simulation A is used for all models. The inset plot in the bottom panel shows the areas used
in the basin average, with the direction of the arrows following the basin averaged plots from the North Atlantic to North
Pacific. The zero contour is shown as a solid line in all plots. The right hand plots in each panel show the globally integrated
rate of DIC accumulation with depth (shading indicating the ensemble standard deviation), such that the vertical integral

of the DIC accumulation rate with depth equals the globally integrated DIC accumulation rate. Figure S5 in Supporting
Information S1 shows accumulation rates in these products (except ECCO-Darwin) over the 1994-2007 period.
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between the ECCO-Darwin and other products is found in the deep Pacific Ocean where the ECCO-Darwin is
accumulating DIC, while the GOBMs are losing DIC and the anthropogenic estimates (OCIM and eMLR-C¥*)
show essentially zero to very little accumulation. The same caveats placed on ECCO-Darwin for Figure 5 apply
here—it is still unclear if these patterns represent real-world variability or assimilation artifacts in this model.

3.2.2. Mechanisms Contributing to Changes in DIC Storage in RECCAP2 Products

The differences in DIC storage rates among the RECCAP2 products can be attributed to the different compo-
nents of DIC storage that are captured by each method (Table 1), as well as structural biases of these products.
To more directly compare the products, and to examine the mechanisms driving the DIC accumulation rates, we
separated the vertically integrated DIC accumulation rates shown for the GOBMs in Figure 5 into anthropogenic
CO,-driven and climate-driven components of DIC accumulation, and compared these to the same components
diagnosed from the OCIM and eMLR-C* methods.

The results show that anthropogenic DIC accounts for the majority of DIC accumulation in the GOBMs (Figure 7a), and
the largest single driver of DIC accumulation in the GOBMs is the anthropogenic CO,-driven component (Figure 7c).
The total anthropogenic effect (the sum of the CO,-driven and climate-driven components) is directly comparable
to the eMLR-C* product (Figures 7a and 7b). These two independent estimates are qualitatively and quantitatively
similar, with highest anthropogenic DIC accumulation rates in the subpolar North Atlantic and subantarctic Southern
Ocean. The eMLR-C* product displays slightly larger anthropogenic DIC accumulation rates in the Southern Hemi-
sphere and subtropical North Atlantic than the GOBMs, while the GOBMs have slightly more anthropogenic DIC
accumulation in the Antarctic region of the Southern Ocean south of ~50°S (Figures 7a and 7b). The anthropogenic
CO,-driven DIC accumulation in the GOBM:s can be directly compared to that in the OCIM (Figures 7c and 7d),
revealing consistent patterns of anthropogenic DIC accumulation. The largest difference between these two products
is in the subtropical North Atlantic, where the OCIM predicts nearly twice as rapid DIC accumulation in the western
Atlantic, a region associated with the southward flow of anthropogenic DIC in the deep western boundary current.
The OCIM also has slightly larger anthropogenic CO,-driven DIC accumulation rates in the intermediate and mode
water formation regions of the subantarctic Southern Ocean and northwest Pacific than the GOBMs.

The climate-driven anthropogenic DIC accumulation can also be isolated in the GOBMs (Figure 7e). This
component is seen to be quite small, with the primary feature being a very slight enhancement of anthro-
pogenic DIC accumulation throughout much of the Southern Hemisphere, especially in the Pacific Ocean
(Figure 7e; this feature is also seen over the period 1994-2007 in Figure S6 of the Supporting Informa-
tion S1). These changes could be related to changes in the Southern Hemisphere mid-latitude westerly winds
(Swart & Fyfe, 2012; Waugh et al., 2013) which control anthropogenic DIC uptake in the Southern Ocean
by controlling the wind-driven Ekman transport and subduction of anthropogenic DIC in mode and interme-
diate waters, and the upwelling of anthropogenic DIC-free waters south of the polar front (Ito et al., 2010).
No other RECCAP2 product yields a direct estimate of the climate-driven anthropogenic DIC accumula-
tion for comparison to the GOBMs, but the eMLR-C* (Figure 7b) and OCIM (Figure 7d) estimates can be
subtracted to yield a rough approximation of this component (Figure 7f). This quantity is identical to the
so-called “anomalous change” in the anthropogenic carbon inventory derived by Gruber et al. (2019a, 2019b)
for the eMLR-C* product. This estimate produces more coherent spatial patterns than the GOBMs, with DIC
accumulation in the South Atlantic and most of the mid- to low-latitude oceans, along with DIC loss in the
subpolar North Atlantic and Pacific and Indian sectors of the Southern Ocean (Figure 7f). While it is tempting
to attribute these patterns to climate variability, the difference between the eMLR-C* and OCIM products is
similar in magnitude to the biases of the eMLR-C* method identified from testing the method with synthetic
data from a GOBM (Clement & Gruber, 2018). Combined with structural biases in the OCIM (such as neglect
of seasonality and small-scale circulation features), means that the uncertainty of the values in Figure 7f is
likely larger than their mean. Nevertheless, a recent update of the eMLR-C* estimates by Miiller et al. (2023)
also suggests substantial climate-driven variability in the oceanic storage of anthropogenic carbon similar to
that shown in Figure 7f.

Regardless of their different spatial patterns, both the GOBMs (Figure 7¢) and the eMLR-C*-OCIM differ-
ence (Figure 7f) suggest that the climate-driven anthropogenic DIC uptake is much smaller than the CO,-driven
anthropogenic DIC uptake. This is likely to hold true while atmospheric CO, concentrations continue to rise
exponentially, but the influence of climate change may become more influential once atmospheric CO, concen-
trations plateau and start to decline (Ridge & McKinley, 2021).
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Figure 7. Vertically integrated rate of dissolved inorganic carbon (DIC) storage broken down into components using
combinations of global ocean biogeochemical model (GOBM) simulations (left column) and from other models and products
(right column). The top row is the rate of total anthropogenic DIC accumulation from (a) GOBMs (simulations A-D) and
from (b) the eMLR-C* product. Note that the GOBM:s cover the entire RECCAP?2 period 1985-2018 while the eMLR-C*
product covers only 1994-2007. The second row is the rate of anthropogenic CO,-driven DIC accumulation from (c) the
GOBMs (simulations C-B) and (d) the ocean circulation inverse model (OCIM) (simulations C—B). The third row shows

the storage rate of the climate-driven anthropogenic DIC accumulation, determined from (e) the GOBMs using simulations
(A-D)—(C-B), and from (f) the difference between the eMLR-C* product and the OCIM anthropogenic CO,-driven
component. The bottom row shows (g) the effect of climate-driven variability on natural DIC accumulation, from simulations
D-B in the GOBMs. GOBM results are the average of all models that are available for that combination of simulations,
except for the CCSM (see Table S1 in Supporting Information S1). The zero contour is shown as a solid line in all plots.
Figure S6 in Supporting Information S1 shows a version of this figure over the period 1994-2007 for all products.

The GOBMs are the only RECCAP2 product which can directly diagnose the DIC accumulation due to the
effects of climate variability on natural DIC cycling (Figure 7g). This component is substantially larger than
the climate-driven anthropogenic DIC accumulation in the GOBMs, and shows more coherent spatial patterns,
with reductions in natural DIC in the western boundary current regions of the North Atlantic and North Pacific
during the RECCAP2 period. This explains in part why the GOBMs have smaller total DIC accumulation in
these regions compared to the OCIM (cf., Figure 5). The GOBM:s also lost substantial amounts of natural DIC
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Table 2 in the South Pacific and the Pacific sector of the Southern Ocean over the

Net Sea-Air CO, Flux and Its Components From RECCAP2 Products and
the First RECCAP Analysis

Globally integrated flux (Pg C yr~")

sea-air

GOBMs? -1.9+0.3

pCO, products (UOEX) —1.5 +0.2 (—1.9 for UOEX)

OCIM —-23+02

eMLR-C*? -2.6+03

RECCAP* -1.6 +0.5

Font Fanicor + Fant, climare)
GOBMs -2.0+0.2 (-2.0 £ 0.2-0.03 + 0.03)
OCIM —-23+0.1 (=23 +0.1 + ND)
eMLR-C* —2.6 + 0.3 (ND — 0.2°)
RECCAP* -2.0+0.6

1 P ¥ Py i
GOBMs 0.0 +£ 0.27 (=0.11 +£ 0.258 + 0.1 £ 0.1)
RECCAP* ND (0.45 + 0.2 + ND)

Note. Numbers are for the time period 1990-2009, except for the eMLR-
C* product which is for 1994-2007. ND indicates no data for that particular
product.

2GOBMs corrected for drift 4+ bias by subtracting simulation B from
simulation A. ®Change in ocean interior anthropogenic DIC for the period
1994-2007. “From Wanninkhof et al. (2013). 9Sum of components may
not add up to total due to rounding errors and/or model drifts. *Difference
between eMLR-C* F, and OCIM F,, ., ‘From Simulation D, also
includes model drifts and biases. ¢F,, , .. from GOBMs that resolve river
and/or burial fluxes only.

RECCAP2 period. In contrast, climate variability drove an accumulation of
DIC in the GOBMs in the eastern South Pacific near South America, and in
a zonal strip of the western tropical North Pacific near 15°N.

In all, the results in Figure 7 indicate good agreement on the magnitudes
and spatial patterns of anthropogenic DIC accumulation in the ocean from a
variety of methods, and that the majority of anthropogenic DIC accumula-
tion is from the atmospheric CO, increase, with small changes attributable
to climate change and/or variability. The dominance of the anthropogenic
component in DIC accumulation in the GOBMs stems from the dominance
of the anthropogenic component of the air-sea CO, fluxes in these models
(Figures 3 and 4). It should be noted, however, that this component is less
dominant in the observation-based estimates. For example, in the pCO, prod-
ucts the climate-driven natural component of air-sea CO, fluxes is much
more variable than in the GOBMs (Figure 4). The ECCO-Darwin model,
which is tuned to interior DIC observations, also exhibits much more vari-
ability than the GOBMs, both in terms of the temporal variability of the
air-sea CO, fluxes and in the spatial variability of DIC accumulation rates
(Figures 2 and 5). However, the ECCO-Darwin results are subject to the
caveats discussed above regarding the potential for assimilation-induced
model drifts to affect their results.

4. Discussion

4.1. Comparison of the Global Ocean CO, Sink in RECCAP2 Versus
RECCAP

Here, we assess differences between the results of RECCAP2 and the orig-
inal RECCAP for the common period 1990-2009 covered by each analysis.
Section 4.3 provides an updated “best estimate” of the ocean CO, sink for the
period 2001-2018 from RECCAP2. Table S3 in Supporting Information S1

also provides an analysis of fluxes across different time periods, as well as a comparison to regional sea-air CO,

fluxes.

For the nominal period 1990-2009, the globally integrated net sea-air CO, flux varies from —1.5 + 0.2 to
—2.6 + 0.3 PgC yr~! in different products considered for RECCAP2 (Table 2). This compares to the RECCAP

estimate of —1.6 + 0.5 PgC yr~! for F'

Much of the differences in F'

sea-air

among the RECCAP?2 products is

sea-air*

due to the fact that they resolve different components of the sea-air CO, flux. Table 2 presents these components

separately in order to better assess the level of agreement or disagreement among the RECCAP2 products and

the original RECCAP analysis.

Anthropogenic CO, fluxes from RECCAP2 products range from —2.0 + 0.2 PgC yr~! in the GOBMs to
—2.6 + 0.3 PgC yr~! in the eMLR-C* product, with a middle value of —2.3 + 0.1 PgC yr~! in the OCIM. These
estimates are larger, but not significantly so, than the original RECCAP study, which estimated an anthropo-
genic CO, flux of —2.0 + 0.6 PgC yr~! (W2013). The original RECCAP value was for the total anthropogenic
CO, flux, and did not separately report values for the CO,-driven and climate-driven anthropogenic CO, fluxes
components. For RECCAP2, the GOBMs and OCIM estimate that the CO,-driven anthropogenic flux (F, -,) is
—2.0+ 0.2 PgC yr~!and —2.3 + 0.1 PgC yr~!, respectively. The climate-driven anthropogenic flux is negligible
in the GOBMs at —0.03 + 0.03 PgC yr~!. If we interpret the difference between the eMLR-C* and the OCIM as
representing F o, (€.g., Gruber et al., 2019a, 2019b), then F,, o, is slightly larger at 0.2 PgC yr~! (Table 2),
but this estimate likely carries >100% uncertainty. '

Globally integrated natural sea-air CO, fluxes consist of the component that balances the net land-sea carbon

flux at steady-state (F

land-sea,ss:

these components were assessed in the GOBMs. F'

) and the climate-driven natural CO, flux (F

). For RECCAP2, both of
is small but positive in the GOBMs, at a value of

nat, climate

nat, climate

0.1 + 0.1 PgC yr~! over the 1990-2009 period (Table 2). The mechanisms responsible for this outgassing
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of natural CO, have not been assessed here, but likely include a combination of ocean warming and circulation
changes (DeVries, 2022; Le Quéré et al., 2010; Terhaar et al., 2022). RECCAP did not assess climate-driven
fluxes of natural CO,, so cannot provide a comparison to the RECCAP2 models. The RECCAP assessment did
report an estimate of F, ... of 0.45 PgC yr~!, which was adopted from a joint global ocean-atmosphere inver-
sion model (Jacobson et al., 2007). Several of the RECCAP2 GOBMs do not include a representation of land-sea
carbon fluxes, but those that do estimate a Fy 4 .., of —0.11 £ 0.25 PgC yr~! (Table 2). This is far less than the
RECCAP value and less than a recent global assessment of 0.65 + 0.3 PgC yr~! (Regnier et al., 2022), and is
likely due to the incomplete representation of riverine and coastal carbon fluxes in GOBMs, which is a known
shortcoming of these models (e.g., Hauck et al., 2020; Resplandy et al., 2023). Nonetheless, we report the F, , ..

values from the GOBMs to illustrate that our ability to represent this flux in models is still in the developmental
stage, and has not progressed much since the first RECCAP assessment.

4.2. Additional Uncertainties and Biases in Estimates of the Global Ocean CO, Sink

The uncertainties reported throughout this study are based on the spread of values in different product ensembles.
This ensemble spread does not always capture the full uncertainty associated with each product or method, since
ensemble members often share structural uncertainties due to common assumptions and biases. Before reporting
our updated best estimate of the contemporary oceanic CO, sink in Section 4.3, we will briefly consider some of
these additional uncertainties and attempt to estimate their magnitude for each class of products. We focus here
on uncertainties that affect the multi-decadal average air-sea fluxes derived from these products, and not their
interannual or decadal variability.

The pCO,-observation products suffer from structural uncertainties and biases due to sparse data coverage, as
well as their algorithms, parameterizations and input data. Data coverage for these products has significantly
improved since roughly the year 2000, and these products appear to reliably reconstruct the mean and seasonal
cycle of the open-ocean sea-air CO, fluxes at their relatively coarse spatial and temporal resolution (Gloege
et al., 2021). However, limitations of these products are evident in the coastal regions where spatial and temporal
variability of air-sea CO, fluxes is large (Sharp et al., 2022), as well as in the high latitudes such as the Southern
Ocean where seasonal biases in sampling are most pronounced (Gray et al., 2018). Although some products have
been developed to better resolve coastal air-sea CO, fluxes at appropriate resolution (e.g., Roobaert et al., 2019)
and to integrate new data streams at high latitudes (Bushinsky et al., 2019), integrating these regions into global
pCO, products is still in its beginning stages (Fay et al., 2021; Landschiitzer et al., 2020; Roobaert et al., 2023).

The parameterization of air-sea CO, fluxes in these products is another source of uncertainty and potential bias.
Almost all of the pCO, products use a quadratic relationship between wind speed and gas transfer velocity, which
is an empirical approximation of complex physics governing the interaction between winds, waves, currents, and
gas transfer (e.g., McGillis et al., 2001; Shin et al., 2022). This relationship is not appropriate under all conditions,
such as very low or very high wind speeds (Wanninkhof & McGillis, 1999; Wanninkhof et al., 2009). Moreover,
the air-sea CO, flux calculations from pCO, products ignore small-scale temporal variability (e.g., diurnal and
day-to-day variability) that could be an important contributor to CO, fluxes, especially given nonlinearities
between the wind speed and gas transfer velocity (Bates & Merlivat, 2001; Djeutchouang et al., 2022; Sutton
etal., 2021). Poor understanding of the impact of sea ice on air-sea CO, exchange contributes to large uncertainty
in the polar oceans (Watts et al., 2022). Furthermore, differences between the temperature and salinity of the
thin surface “skin” layer of the ocean and the bulk of the surface mixed layer could introduce significant biases
into sea-air CO, flux calculations at global scales (Watson et al., 2020). None of these uncertainties and biases
are captured by the ensemble uncertainty reported here. Studies suggest that these issues could lead to addi-
tional uncertainties on the order of 30% (Bushinsky et al., 2019; Landschiitzer et al., 2014; Roobaert et al., 2018;
Wanninkhof, 2007; Watson et al., 2020; Woolf et al., 2019), or around +0.6 PgC yr~! in the globally integrated
net air-sea CO, flux.

GOBMs also suffer from structural biases. For one, GOBMs are seldom spun up to equilibrium under prein-
dustrial atmospheric CO, concentrations, both because of computational constraints and because long spin-up
times tend to accentuate errors in modeled circulation and biogeochemistry (Séférian et al., 2016). This may lead
to biases in the ocean chemical buffering capacity and the rate of oceanic CO, uptake (Bronselaer et al., 2017;
Terhaar et al., 2022, 2023). Even seemingly small inconsistencies in how the models are initialized and spun
up can have relatively large impacts on air-sea CO, fluxes in these models (Séférian et al., 2016). GOBM:s also
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Table 3 have known biases in their representation of physical processes such as ocean

“Best Estimate” of Ocean Carbon Sink Components Averaged Over the

Time Period 2001-2018

Sea-air Additional
CO, flux Value Reported  uncertainty
component  (PgC yr™!) uncertainty (estimated) Source

easair -1.9 +0.2 +0.6 pCO, products
Foicon -2.7 +0.1 +0.3 OCIM
Flandseass +0.65 +0.3 - Regnier et al. (2022)
F, +0.1 +0.1 +0.3 GOBMs

climate

ventilation and overturning, due to their coarse resolution and parameteriza-
tion of unresolved processes such as mixing and eddies (Doney et al., 2004;
Gent, 2016; Large et al., 1994). As an example of the effects of such parame-
terizations, the rate of Atlantic Meridional Overturning Circulation (AMOC)
in the RECCCAP2 GOBMs ranges from 3 to 24 Sv for models that all use
similar surface forcing (Table S1 in Supporting Information S1), compared to
an observed AMOC of roughly 17-18 Sv (Frajka-Williams, 2015). Another
source of bias is that coarse-resolution GOBMs do not resolve coastal
processes, nor do they fully resolve the processes and fluxes of carbon from
terrestrial to marine environments, or at the sediment-water interface, which
we have here called the net land-sea carbon fluxes. Despite these issues,
GOBMs have great utility for understanding the processes that limit the rate

of oceanic anthropogenic CO, uptake (e.g., Sarmiento et al., 1992), and they remain one of the few tools for
understanding how climate change is influencing air-sea CO, fluxes, since they can be run both with and without
climate variability, as done here and in previous studies (e.g., DeVries et al., 2019; Le Quéré et al., 2010).

Data assimilation is a promising approach for constraining the global ocean carbon sink and its variability, but
the assimilation models used here come with caveats and biases that can limit their utility. The OCIM does not
resolve biological carbon cycling, nor does it resolve climate-driven variability in ocean circulation and biogeo-
chemistry. For these reasons its usefulness is primarily in constraining the CO,-driven anthropogenic DIC uptake
by the ocean, F ~,- However, the coarse spatial resolution and lack of seasonal variability and biological carbon
cycling in the OCIM could still bias its estimates of F, ,. Seasonality is known to influence rates of anthropo-
genic CO, uptake (Rodgers et al., 2008), and this variability will become more important as the ocean acidifies
and the Revelle buffer factor increases, enhancing the biologically and temperature-driven seasonal variations in
seawater chemistry (Fassbender et al., 2018, 2022; Hauck & Volker, 2015; Rodgers et al., 2023). The influence
of missing seasonality, small-scale circulation features, and biology on anthropogenic CO, uptake by the OCIM
has not been quantified, but here we adopt an ad hoc estimate of about 10%—15%, or an additional 0.3 PgC yr~!
uncertainty to the OCIM estimates of F, -,

The ECCO-Darwin assimilation model improves on the OCIM in some respects by running at a higher spatial
resolution (Table S1 in Supporting Information S1), including biological carbon cycling and ecology of lower
trophic levels, and resolving seasonal to interannual variability. However, it too suffers from some serious biases.
For one, the model is not fully spun up to equilibrium under preindustrial conditions before assimilation. The
biogeochemical assimilation period itself is short (starting in 1992) and therefore introduces drifts into the model
as the biogeochemical parameters adjust from their initial values. Furthermore, the model has an unrealistically
large sedimentary carbon burial flux (1.3 PgC yr~!) which is not balanced by river carbon inputs. This alone
could bias the ECCO-Darwin sea-air CO, fluxes by over 1 PgC yr~!.

The eMLR-C* product provides an estimate of the oceanic anthropogenic CO, sink that is unique from the other
RECCAP2 products in using interior DIC observations (Clement & Gruber, 2018). However, significant uncer-
tainties remain with this method as with others. Validation of the approach using output from a biogeochemical
model demonstrated that the eMLR-C* approach accurately reconstructed the anthropogenic DIC inventory
change within about 10% at a global scale (Clement & Gruber, 2018). Using actual ocean DIC observations that are
considerably noisier than model output, Gruber et al. (2019a, 2019b) estimated an uncertainty of +0.3 PgC yr~'.
Unaccounted-for uncertainties that could raise this estimate include the unassessed influence of anthropogenic
perturbations to the land-sea carbon fluxes (e.g., Regnier et al., 2013), and the growing influence of seasonal
variability in affecting anthropogenic carbon uptake at high CO, concentrations (e.g., Hauck & Volker, 2015).

4.3. A Best Estimate of the Ocean CO, Sink From 2001 to 2018

As was done for the original RECCAP, we offer here a “best estimate” of the oceanic CO, sink and its components
in the contemporary ocean (Table 3). We focus on the period 2001-2018, when there is improved data coverage
and forcing fields for pCO, products and GOBMs, and to update our estimates from the original RECCAP period
of 1990-2009. For the net sea-air CO, flux, F

«caair We adopt the estimate from the pCO,-observation products

of —1.9 PgC yr~'. The uncertainty on this flux derived from the pCO,-product ensemble is +0.2 PgC yr~!, but
this small uncertainty likely derives from the similarities in data processing and input data used for sea-air CO,
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flux algorithms that are common to all products (Table S2 in Supporting Information S1). As discussed above
(Section 4.2) we estimate an additional +0.6 PgC yr~! uncertainty on this flux to account for factors such as the
wind speed dependency of the gas transfer velocity, the unresolved influences of small-scale variability, and
sampling limitations in coastal and high-latitude regions.

For the anthropogenic CO,-driven component of the sea-air CO, flux, F,, o, We use the estimate from the
OCIM of —2.7 PgC yr~!. We use the OCIM, rather than the GOBMs for this component as the OCIM is a
data-assimilated model that accurately represents ocean ventilation and overturning circulation, which is the
leading order process for oceanic anthropogenic CO, uptake (Davila et al., 2022; Iudicone et al., 2016; Orr
et al., 2001; Sarmiento et al., 1992; Terhaar et al., 2021). Also, the OCIM is fully spun up to chemical equilibrium
under preindustrial conditions unlike the GOBMs. The OCIM estimate comes with a small ensemble uncertainty
of +£0.1 PgC yr~! from two different configurations of the OCIM. As discussed above (Section 4.2) we adopt an
ad hoc value of +0.3 PgC yr~! for additional uncertainties from the influence of unresolved processes such as
small-scale circulation features, seasonal variability, and biological processes.

The preindustrial net land-sea carbon fluxes lead to a net outgassing of CO, at steady, F, Despite the large

land-sea,ss*
magnitude of this flux it is not well represented in any of the RECCAP2 products, so here we adopt the recent
bottom-up estimate of 0.65 PgC yr~! from Regnier et al. (2022). This is larger than the RECCAP estimate of
0.45 PgC yr~! (W2013), but also comes with a substantial uncertainty of +0.3 PgC yr~'. This uncertainty is esti-
mated by propagating errors in different estimates of the carbon fluxes along the land-ocean-aquatic continuum
(Regnier et al., 2022), and is likely a lower-bound uncertainty estimate although we do not attempt to estimate

additional unresolved uncertainties here.

Finally, the smallest and relatively most uncertain component of the contemporary global sea-air CO, flux is that

driven by climate variability and change, F ;...

averaging 0.1 PgC yr~!. The ensemble uncertainty of this flux is +£0.1 PgC yr~!, but this is an underestimate of

The GOBMs provide the only direct estimate of this component,

the true uncertainty as it derives only from the GOBM ensemble standard deviation. How much additional uncer-
tainty there is can be roughly estimated by comparing the climate-driven trend in the GOBMs with that derived
by subtracting modeled anthropogenic trends from the pCO, products (see Section 3.1.2). The pCO, products
suggest a climate-driven trend of nearly —0.3 PgC yr~! decade™' from 2001 to 2018, compared to climate-driven
trend near 0 in the GOBMs (cf., Figure 4). We thus estimate an additional uncertainty of £0.3 PgCyr~'onF,, ..
due to the influence of climate variability and change on the global ocean carbon sink that may not be fully
resolved by the GOBMs. This is only an estimate, and must be caveated by the fact that the trends in the pCO,
products that are here attributed to climate variability may also be inaccurate (e.g., Gloege et al., 2021; Hauck

etal., 2023).

5. Conclusions

The RECCAP?2 analysis has provided a comprehensive view of the global ocean CO, sink for the period 1985-
2018 from a variety of model and observation-based products. Here, we summarize the main findings of the
RECCAP2 global ocean analysis and provide recommendations for future work to target the most critical uncer-
tainties in the global ocean carbon sink.

To summarize our findings for the mean, variability, and trends of the ocean CO, sink over the RECCAP?2 period:

e Mean: The mean ocean net sea-air CO, flux from 1985 to 2018 is —1.6 + 0.2 PgC yr~! as diagnosed by
pCO,-observation based air-sea CO, flux products. The dominant component of this flux is the oceanic
uptake of anthropogenic CO,, which is estimated at —2.1 + 0.3 PgC yr~! by the ensemble of GOBMs, and
—2.4 + 0.1 PgC yr~! by the data-assimilated OCIM. The second largest component of the global air-sea
CO, flux is the outgassing of terrestrially derived CO,, which is estimated at 0.65 + 0.3 PgC yr~! (Regnier
et al., 2022) but is not yet fully resolved by RECCAP2 models.

e Trends: The trend in the global air-sea CO, flux from 1985 to 2018 ranges from —0.26 + 0.04 PgC yr~! decade ™!
in the GOBMs to —0.38 + 0.24 PgC yr~! decade™! in the pCO, products. Over the 2001-2018 period, when
the pCO,-based estimates benefit from improved data coverage, they predict a strengthening trend in the
ocean carbon sink of —0.61 + 0.12 PgC yr~! decade ™. This is driven primarily by the trend in anthropogenic
carbon uptake of —0.41 + 0.03 PgC yr~! decade™! as diagnosed by the OCIM. The remaining trend is inferred
to be climate-forced. This putative climate-forced strengthening of the ocean carbon sink since 2001 in the
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pCO, products is not apparent in the GOBMs, and thus the robustness of and the reasons for this trend remain
unclear.

e Variability: In the GOBM simulations, the interannual to decadal variability of the global carbon sink is
mainly driven by climate variability, with the climate-driven variability exceeding the CO,-forced variability
by 2-3 times. GOBMs suggest that the climate-driven variability is about 4%-8% of the global mean carbon
sink, but the pCO, products exhibit larger variability that is about 9%—14% of the global mean flux.

It should be clear from this analysis that while we have in some respects a good understanding and quantification
of the global ocean CO, sink, there are other areas that are considerably less well understood. We suggest that
research in the next several years should focus on four critical areas:

1. The land-sea carbon flux, which represents the difference between the influx of terrestrial carbon to the
ocean and the burial of carbon in marine sediments, is the second largest component of the global air-sea CO,
flux, but is poorly represented in most models and is less well studied than the anthropogenic CO, fluxes.
There is a critical need to increase both direct and indirect observations of these fluxes, and to better integrate
these fluxes into carbon cycle models, so that more constraints can be brought to bear on the magnitude of
the land-sea carbon fluxes. For GOBMs, this will require better coupling between the terrestrial and oceanic
environments, and better representation of processes at the land-sea interface, such as terrestrial carbon
burial and transformation to CO, on continental shelves and in estuaries (Regnier et al., 2022). The pCO,
products need to represent unique dynamics of the sea-air CO, fluxes in different coastal regions, includ-
ing their high spatial and temporal variability (e.g., Sharp et al., 2022), and to merge these fluxes with the
open-ocean products in a consistent way. A lack of observations in some coastal regions, particularly in the
tropical oceans (Roobaert et al., 2023), could hinder these efforts and should be a target for new observational
programs.

2. The climate-driven sea-air CO, fluxes remain highly uncertain and inconsistently captured across different
products, making it difficult to ascertain the effect that climate change is having on the ocean carbon sink. The
pCO,-based products require further validation to assess if their algorithms are introducing biases that can
be incorrectly attributed to climate variability (e.g., Denvil-Sommer et al., 2021; Gloege et al., 2021; Hauck
et al., 2023), and if so, further refinement of these algorithms is needed. GOBMs require higher resolution to
ensure that they are correctly capturing all the relevant scales of climate-driven variability. Given the need to
also lengthen the spinup phase of these models to reach preindustrial equilibrium, achieving a higher resolu-
tion may require substantial technological or methodological innovations.

3. Data assimilation models provide a potential avenue for alleviating some of the structural errors and biases in
ocean biogeochemical models (e.g., Fennel et al., 2022). They also have the ability to integrate multiple data
sources, which together can provide stronger constraints on global carbon cycling than those derived from a
single data source such as the purely pCO,-based or DIC-based products. Future assimilation systems should
harness the complementary strengths of the assimilation models used here. Such a system needs to represent
the multi-scale variability of physical and biological processes like the ECCO-Darwin, while maintaining the
ability of the OCIM to accurately capture the oceanic mean state by incorporating information from multiple
circulation tracers and performing long-timescale (~1,000 years) assimilations. Incorporating new informa-
tion into these models from sources such as atmospheric oxygen (e.g., Manning & Keeling, 2006; Resplandy
etal., 2019) and stable carbon isotopes (Quay et al., 1992) could help further constrain sea-air CO, fluxes and
their anthropogenic- and climate-driven components.

4. Perhaps most critically, it is imperative to maintain and expand the ocean observing systems that form the
backbone of our assessments of the ocean carbon sink, including maintaining the network of surface ocean
pCO, measurements through programs such as SOCONET (Wanninkhof et al., 2019), and data assembly and
quality control programs such as SOCAT (Bakker et al., 2016). It is also critical to maintain regular sampling
of ocean carbonate system parameters and transient tracers by repeat hydrography programs such as GO-SHIP
(Talley et al., 2016). Finally, it is important to support emerging technologies, including autonomous plat-
forms such as biogeochemical Argo (Claustre et al., 2020) and uncrewed surface vehicles (Sutton et al., 2021),
that can fill observational gaps in hostile and remote environments.

Conflict of Interest

The authors declare no conflicts of interest relevant to this study.

DEVRIES ET AL.

25 of 32

QSUQOIT suowwoy) aAnear) aiqeaidde ay) £q pauroaoS aie sa[ore YO ‘asn Jo sa[ni 10y Areiqi auruQ A9[Ip\ UO (SUOIIPUOD-PUE-SULIDY/WO0d K3[Im ATeiqjaut[uo//:sd)y) suonipuo)) pue sud [, oy 23S [£70Z/11/L0] uo Areiqr autuQ LI ‘08LL009DETOT/6T01°01/10p/wod Kajim Aeiqiourjuo'sqndnSe//:sdny woly papeojumo( ‘01 ‘€707 ‘bTT6vr61



A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2023GB007780

Acknowledgments

TD acknowledges support from the US
National Science Foundation through
Grant OCE-1948955. RW and BR are
supported by funding from NOAA's
Global Ocean Monitoring and Observa-
tions (GOMO) Program. The CICOES
and PMEL contributions to this work are
numbers 2023-1260 and 5497, respec-
tively. JDM, LG, and NG acknowledge
support from the European Union's
Horizon 2020 research and innovation
programme under Grant agreement no.
821003 (project 4C) and no. 820989
(project COMFORT). JH acknowledges
funding from the Initiative and Network-
ing Fund of the Helmholtz Association
(Helmholtz Young Investigator Group
Marine Carbon and Ecosystem Feedbacks
in the Earth System (MarESys), Grant
VH-NG-1301) and from ERC-2022-STG
OceanPeak, Grant agreement 101077209.
DC acknowledges support from the NASA
Carbon Cycle and Ecosystems (CCE)
program under Grant 0NSSC22K0154.
SCD acknowledges support from the
NSF Center for Chemical Currencies of a
Microbial Planet (C-CoMP) (NSF Award
2019589). SAH was supported by a Euro-
pean Research Council Consolidator Grant
(GOCART, agreement number 724416).
PL was supported by Research Foundation
Flanders (FWO) contract I001821N. CN
acknowledges funding from the European
Union's Horizon 2020 research and inno-
vation programme under Grant agreement
No 820989 (project COMFORT). LP
acknowledges funding from the project
PA 3075/2-1 by the German Research
Foundation and the North German Super-
computing Alliance (HLRN) for providing
computing power for the experiments.
FFP was supported by the BOCATS2
project (PID2019-104279GB-C21) funded
by MCIN/AEI/10.13039/501100011033.
KBR was supported by the Institute for
Basic Sciences (IBS), Republic of Korea,
under IBS-R028-D1. JS acknowledges
funding from the Research Council of
Norway (Grant 270061) and compu-
tational/storage resources provided

by UNINET/sigma2 (nn/ns2980k).

JTH was funded by the Woods Hole
Oceanographic Institution Postdoctoral
Scholar Program, the European Union's
Horizon 2020 research and innovation
program under grant agreement 821003
(project 4C, Climate-Carbon Interactions
in the Current Century), and the Swiss
National Science Foundation under Grant
200020_200511. CLQ acknowledges
funding from the European Union project
4C (Grant 821003) and the Royal Society
(Grant RP\R1\191063), and support from
UEA’s High Performance Computing
services. TTTC and MG acknowledge
financial support by the European Coper-
nicus Marine Environment Monitoring
Service (CMEMS) MOB-TAC project for
the joint development with F. Chevallier
of the CMEMS-LSCE-FFNN model.

Data Availability Statement
The RECCAP2 ocean data collection can be found in Miiller (2023).

References

Andrews, O. D., Bindoff, N. L., Halloran, P. R., Ilyina, T., & Le Quéré, C. (2013). Detecting an external influence on recent changes in oceanic
oxygen using an optimal fingerprinting method. Biogeosciences, 10(3), 1799-1813. https://doi.org/10.5194/bg-10-1799-2013

Archer, D. (2005). Fate of fossil fuel CO, in geologic time. Journal of Geophysical Research, 110(C9), C09S05. https://doi.
0rg/10.1029/2004jc002625

Bacastow, R. B. (1976). Modulation of atmospheric carbon dioxide by the Southern Oscillation. Nature, 261(5556), 116-118. https://doi.
org/10.1038/261116a0

Bakker, D. C., Pfeil, B., Landa, C. S., Metzl, N., O'brien, K. M., Olsen, A., et al. (2016). A multi-decade record of high-quality fCO, data in
version 3 of the surface ocean CO, Atlas (SOCAT). Earth System Science Data, 8(2), 383—413.

Bates, N. R., & Merlivat, L. (2001). The influence of short-term wind variability on air-sea CO, exchange. Geophysical Research Letters, 28(17),
3281-3284. https://doi.org/10.1029/2001gl012897

Bennington, V., Gloege, L., & McKinley, G. A. (2022). Variability in the global ocean carbon sink from 1959 to 2020 by correcting models with
observations. Geophysical Research Letters, 49(14), €2022GL098632. https://doi.org/10.1029/2022g1098632

Bernardello, R., Marinov, L, Palter, J. B., Galbraith, E. D., & Sarmiento, J. L. (2014). Impact of Weddell Sea deep convection on natural and
anthropogenic carbon in a climate model. Geophysical Research Letters, 41(20), 7262-7269. https://doi.org/10.1002/2014g1061313

Bolin, B., & Eriksson, E. (1959). Changes in the carbon dioxide content of the atmosphere and sea due to fossil fuel combustion. The Atmosphere
and the Sea in Motion, 1,30-142.

Brewer, P. G. (1978). Direct observation of the oceanic CO, increase. Geophysical Research Letters, 5(12), 997-1000. https://doi.org/10.1029/
£10051012p00997

Broecker, W. S., Takahashi, T., Simpson, H. J., & Peng, T.-H. (1979). Fate of fossil fuel carbon dioxide and the global carbon budget. Science,
206(4417), 409-418. https://doi.org/10.1126/science.206.4417.409

Bronselaer, B., Winton, M., Russell, J., Sabine, C. L., & Khatiwala, S. (2017). Agreement of CMIPS5 simulated and observed ocean anthropogenic
CO, uptake. Geophysical Research Letters, 44(24), 212-298. https://doi.org/10.1002/2017gl074435

Burdige, D. J. (2007). Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon
budgets? Chemical Reviews, 107(2), 467-485. https://doi.org/10.1021/cr050347q

Bushinsky, S. M., Landschiitzer, P., Rodenbeck, C., Gray, A. R., Baker, D., Mazloff, M. R., et al. (2019). Reassessing Southern Ocean air-sea
CO, flux estimates with the addition of biogeochemical float observations. Global Biogeochemical Cycles, 33(11), 1370-1388. https://doi.
0rg/10.1029/2019gb006176

Caldeira, K., & Duffy, P. B. (2000). The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide. Science, 287(5453),
620-622. https://doi.org/10.1126/science.287.5453.620

Canadell, J. G., Ciais, P., Gurney, K., Le Quéré, C., Piao, S., Raupach, M. R., & Sabine, C. L. (2011). An international effort to quantify regional
carbon fluxes. Eos, Transactions American Geophysical Union, 92(10), 81-82. https://doi.org/10.1029/2011e0100001

Canadell, J. G., Monteiro, P. M., Costa, M. H., Da Cunha, L. C., Cox, P. M., Alexey, V., et al. (2021). Global carbon and other biogeochemical
cycles and feedbacks.

Carroll, D., Menemenlis, D., Adkins, J. F., Bowman, K. W., Brix, H., Dutkiewicz, S., et al. (2020). The ECCO-darwin data-assimilative global
ocean biogeochemistry model: Estimates of seasonal to multidecadal surface ocean pCO, and air-sea CO, flux. Journal of Advances in Mode-
ling Earth Systems, 12(10), e2019MS001888. https://doi.org/10.1029/2019ms001888

Carroll, D., Menemenlis, D., Dutkiewicz, S., Lauderdale, J. M., Adkins, J. F., Bowman, K. W., et al. (2022). Attribution of space-time variability
in global-ocean dissolved inorganic carbon. Global Biogeochemical Cycles, 36(3), €2021GB007162. https://doi.org/10.1029/2021gb007162

Chau, T. T. T., Gehlen, M., & Chevallier, F. (2022). A seamless ensemble-based reconstruction of surface ocean pCO, and air-sea CO, fluxes over
the global coastal and open oceans. Biogeosciences, 19(4), 1087-1109. https://doi.org/10.5194/bg-19-1087-2022

Chen, C. T. A. (1982). On the distribution of anthropogenic CO, in the Atlantic and Southern oceans. Deep-Sea Research, Part A: Oceanographic
Research Papers, 29(5), 563-580. https://doi.org/10.1016/0198-0149(82)90076-0

Claustre, H., Johnson, K. S., & Takeshita, Y. (2020). Observing the global ocean with biogeochemical-Argo. Annual Review of Marine Science,
12(1), 23-48. https://doi.org/10.1146/annurev-marine-010419-010956

Clement, D., & Gruber, N. (2018). The eMLR (C*) method to determine decadal changes in the global ocean storage of anthropogenic CO,.
Global Biogeochemical Cycles, 32(4), 654—679. https://doi.org/10.1002/2017gb005819

Cole, J.J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., et al. (2007). Plumbing the global carbon cycle: Integrating
inland waters into the terrestrial carbon budget. Ecosystems, 10(1), 172—185. https://doi.org/10.1007/s10021-006-9013-8

Crisp, D., Dolman, H., Tanhua, T., McKinley, G. A., Hauck, J., Bastos, A., et al. (2022). How well do we understand the land-ocean-atmosphere
carbon cycle? Reviews of Geophysics, 60(2), e2021RG000736. https://doi.org/10.1029/2021rg000736

Davila, X., Gebbie, G., Brakstad, A., Lauvset, S. K., McDonagh, E. L., Schwinger, J., & Olsen, A. (2022). How is the ocean anthropogenic carbon
reservoir filled? Global Biogeochemical Cycles, 36(5), €2021GB007055. https://doi.org/10.1029/2021gb007055

Denvil-Sommer, A., Gehlen, M., & Vrac, M. (2021). Observation system simulation experiments in the Atlantic Ocean for enhanced surface
ocean pCO, reconstructions. Ocean Science, 17(4), 1011-1030. https://doi.org/10.5194/0s-17-1011-2021

Denvil-Sommer, A., Gehlen, M., Vrac, M., & Mejia, C. (2019). LSCE-FFNN-v1: A two-step neural network model for the reconstruction of
surface ocean pCO, over the global ocean. Geoscientific Model Development, 12(5), 2091-2105. https://doi.org/10.5194/gmd-12-2091-2019

DeVries, T. (2014). The oceanic anthropogenic CO, sink: Storage, air-sea fluxes, and transports over the industrial era. Global Biogeochemical
Cycles, 28(7), 631-647. https://doi.org/10.1002/2013gb004739

DeVries, T. (2022b). The ocean carbon cycle. Annual Review of Environment and Resources, 47(1), 317-341. https://doi.org/10.1146/
annurev-environ-120920-111307

DeVries, T. (2022). Atmospheric CO, and sea surface temperature variability cannot explain recent decadal variability of the ocean CO, sink.
Geophysical Research Letters, 49(7), €2021GL096018. https://doi.org/10.1029/2021g1096018

DeVries, T., Holzer, M., & Primeau, F. (2017). Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature,
542(7640), 215-218. https://doi.org/10.1038/nature21068

DEVRIES ET AL.

26 of 32

QSUQOIT suowwoy) aAnear) ajqeaidde ay) £q pauroaos ale sa[one YO asn Jo sa[ni 10y A1e1qi aurjuQ A9[IA\ U0 (SUOIIPUOD-PUE-SULID)/W0d Ka[im Kreiqrjaul[uo//:sdny) suonipuo)) pue suud [, oyl 23S [€70¢/11/L0] uo Areiqr aurjuQ A3[IM ‘08LL009DET0T/6T01°01/10p/wod Kaim KreiqiaurjuosqndnSe//:sdyy woly papeojumo( ‘01 ‘€707 ‘vTT6vr61


https://doi.org/10.5194/bg-10-1799-2013
https://doi.org/10.1029/2004jc002625
https://doi.org/10.1029/2004jc002625
https://doi.org/10.1038/261116a0
https://doi.org/10.1038/261116a0
https://doi.org/10.1029/2001gl012897
https://doi.org/10.1029/2022gl098632
https://doi.org/10.1002/2014gl061313
https://doi.org/10.1029/gl005i012p00997
https://doi.org/10.1029/gl005i012p00997
https://doi.org/10.1126/science.206.4417.409
https://doi.org/10.1002/2017gl074435
https://doi.org/10.1021/cr050347q
https://doi.org/10.1029/2019gb006176
https://doi.org/10.1029/2019gb006176
https://doi.org/10.1126/science.287.5453.620
https://doi.org/10.1029/2011eo100001
https://doi.org/10.1029/2019ms001888
https://doi.org/10.1029/2021gb007162
https://doi.org/10.5194/bg-19-1087-2022
https://doi.org/10.1016/0198-0149(82)90076-0
https://doi.org/10.1146/annurev-marine-010419-010956
https://doi.org/10.1002/2017gb005819
https://doi.org/10.1007/s10021-006-9013-8
https://doi.org/10.1029/2021rg000736
https://doi.org/10.1029/2021gb007055
https://doi.org/10.5194/os-17-1011-2021
https://doi.org/10.5194/gmd-12-2091-2019
https://doi.org/10.1002/2013gb004739
https://doi.org/10.1146/annurev-environ-120920-111307
https://doi.org/10.1146/annurev-environ-120920-111307
https://doi.org/10.1029/2021gl096018
https://doi.org/10.1038/nature21068

A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2023GB007780

DeVries, T., Le Quéré, C., Andrews, O., Berthet, S., Hauck, J., Ilyina, T., et al. (2019). Decadal trends in the ocean carbon sink. Proceedings of
the National Academy of Sciences of the United States of America, 116(24), 11646-11651. https://doi.org/10.1073/pnas.1900371116

Djeutchouang, L. M., Chang, N., Gregor, L., Vichi, M., & Monteiro, P. (2022). The sensitivity of pCO, reconstructions to sampling scales
across a Southern Ocean sub-domain: A semi-idealized ocean sampling simulation approach. Biogeosciences, 19(17), 4171-4195. https://doi.
org/10.5194/bg-19-4171-2022

Doney, S. C., Lindsay, K., Caldeira, K., Campin, J. M., Drange, H., Dutay, J. C., et al. (2004). Evaluating global ocean carbon models: The impor-
tance of realistic physics. Global Biogeochemical Cycles, 18(3). https://doi.org/10.1029/2003gb002150

Drake, T. W., Tank, S. E., Zhulidov, A. V., Holmes, R. M., Gurtovaya, T., & Spencer, R. G. (2018). Increasing alkalinity export from large Russian
Arctic rivers. Environmental Science & Technology, 52(15), 8302—8308. https://doi.org/10.1021/acs.est.8b01051

Dunne, J. P., Sarmiento, J. L., & Gnanadesikan, A. (2007). A synthesis of global particle export from the surface ocean and cycling through the
ocean interior and on the seafloor. Global Biogeochemical Cycles, 21(4). https://doi.org/10.1029/2006gb002907

Dutkiewicz, S., Hickman, A. E., Jahn, O., Gregg, W. W., Mouw, C. B., & Follows, M. J. (2015). Capturing optically important constituents and
properties in a marine biogeochemical and ecosystem model. Biogeosciences, 12(14), 4447-4481. https://doi.org/10.5194/bg-12-4447-2015

Fassbender, A. J., Rodgers, K. B., Palevsky, H. I., & Sabine, C. L. (2018). Seasonal asymmetry in the evolution of surface ocean pCO,
and pH thermodynamic drivers and the influence on sea-air CO, flux. Global Biogeochemical Cycles, 32(10), 1476-1497. https://doi.
org/10.1029/2017gb005855

Fassbender, A. J., Schlunegger, S., Rodgers, K. B., & Dunne, J. P. (2022). Quantifying the role of seasonality in the marine carbon cycle feedback:
An ESM2M case study. Global Biogeochemical Cycles, 36(6), €2021GB007018. https://doi.org/10.1029/2021gb007018

Fay, A. R., Gregor, L., Landschiitzer, P., McKinley, G. A., Gruber, N., Gehlen, M., et al. (2021). SeaFlux: Harmonization of air-sea CO, fluxes
from surface pCO, data products using a standardized approach. Earth System Science Data, 13(10), 4693—-4710. https://doi.org/10.5194/
essd-13-4693-2021

Feely, R. A., Takahashi, T., Wanninkhof, R., McPhaden, M. J., Cosca, C. E., Sutherland, S. C., & Carr, M. E. (2006). Decadal variability of the
air-sea CO, fluxes in the equatorial Pacific Ocean. Journal of Geophysical Research, 111(C8), C08S90. https://doi.org/10.1029/2005jc003129

Feely, R. A., Wanninkhof, R., Takahashi, T., & Tans, P. (1999). Influence of El Nifio on the equatorial Pacific contribution to atmospheric CO,
accumulation. Nature, 398(6728), 597-601. https://doi.org/10.1038/19273

Fennel, K., Mattern, J. P., Doney, S. C., Bopp, L., Moore, A. M., Wang, B., & Yu, L. (2022). Ocean biogeochemical modelling. Nature Reviews
Methods Primers, 2(1), 76. https://doi.org/10.1038/s43586-022-00154-2

Forget, G. A. E. L., Campin, J. M., Heimbach, P., Hill, C. N., Ponte, R. M., & Wunsch, C. (2015). ECCO version 4: An integrated framework for
non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8(10), 3071-3104. https://doi.org/10.5194/
gmd-8-3071-2015

Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., et al. (2021). The Earth’s energy budget, climate feedbacks, and
climate sensitivity. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Eds.), Climate change 2021: The
physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
(pp. 923-1054). Cambridge University Press. https://doi.org/10.1017/9781009157896.009

Frajka-Williams, E. (2015). Estimating the Atlantic overturning at 26 N using satellite altimetry and cable measurements. Geophysical Research
Letters, 42(9), 3458-3464. https://doi.org/10.1002/2015g1063220

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., et al. (2022). Global carbon budget 2021. Earth
System Science Data, 14(4), 1917-2005. https://doi.org/10.5194/essd-14-1917-2022

Gent, P. R. (2016). Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Annual Review of
Marine Science, 8(1), 79-94. https://doi.org/10.1146/annurev-marine-122414-033929

Gloege, L., McKinley, G. A., Landschiitzer, P., Fay, A. R., Frolicher, T. L., Fyfe, J. C., et al. (2021). Quantifying errors in observationally based
estimates of ocean carbon sink variability. Global Biogeochemical Cycles, 35(4), €2020GB006788. https://doi.org/10.1029/2020gb006788

Gloege, L., Yan, M., Zheng, T., & McKinley, G. A. (2022). Improved quantification of ocean carbon uptake by using machine learning to merge
global models and pCO, data. Journal of Advances in Modeling Earth Systems, 14(2), ¢2021MS002620. https://doi.org/10.1029/2021ms002620

Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L., Talley, L. D., et al. (2018). Autonomous biogeochemical floats detect
significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophysical Research Letters, 45(17), 9049-9057. https://doi.
org/10.1029/2018g1078013

Gregor, L., Lebehot, A. D., Kok, S., & Scheel Monteiro, P. M. (2019). A comparative assessment of the uncertainties of global surface ocean CO,
estimates using a machine-learning ensemble (CSIR-ML6 version 2019a)-have we hit the wall? Geoscientific Model Development, 12(12),
5113-5136. https://doi.org/10.5194/gmd-12-5113-2019

Gruber, N., Bakker, D. C., DeVries, T., Gregor, L., Hauck, J., Landschiitzer, P., et al. (2023). Trends and variability in the ocean carbon sink.
Nature Reviews Earth & Environment, 4(2), 119-134. https://doi.org/10.1038/s43017-022-00381-x

Gruber, N., Clement, D., Carter, B. R., Feely, R. A., Van Heuven, S., Hoppema, M., et al. (2019a). The oceanic sink for anthropogenic CO, from
1994 to 2007. Science, 363(6432), 1193-1199. https://doi.org/10.1126/science.aau5153

Gruber, N., Landschiitzer, P., & Lovenduski, N. S. (2019b). The variable Southern Ocean carbon sink. Annual Review of Marine Science, 11(1),
159-186. https://doi.org/10.1146/annurev-marine-121916-063407

Gruber, N., Sarmiento, J. L., & Stocker, T. F. (1996). An improved method for detecting anthropogenic CO, in the oceans. Global Biogeochemical
Cycles, 10(4), 809-837. https://doi.org/10.1029/96gb01608

Hall, T. M., Haine, T. W., & Waugh, D. W. (2002). Inferring the concentration of anthropogenic carbon in the ocean from tracers. Global Bioge-
ochemical Cycles, 16(4), 78-1-78-15. https://doi.org/10.1029/2001gb001835

Hauck, J., Nissen, C., Landschiitzer, P., Rodenbeck, C., Bushinsky, S., & Olsen, A. (2023). Sparse observations induce large biases in estimates
of the global ocean CO, sink: An ocean model subsampling experiment. Philosophical Transactions of the Royal Society A, 381(2249),
20220063. https://doi.org/10.1098/rsta.2022.0063

Hauck, J., & Volker, C. (2015). Rising atmospheric CO, leads to large impact of biology on Southern Ocean CO, uptake via changes of the
Revelle factor. Geophysical Research Letters, 42(5), 1459-1464. https://doi.org/10.1002/2015g1063070

Hauck, J., Zeising, M., Le Quéré, C., Gruber, N., Bakker, D. C. E., Bopp, L., et al. (2020). Consistency and challenges in the ocean carbon sink
estimate for the global carbon budget. Frontiers in Marine Science, 7, 1-22. https://doi.org/10.3389/fmars.2020.571720

Holzer, M., DeVries, T., & de Lavergne, C. (2021). Diffusion controls the ventilation of a Pacific Shadow Zone above abyssal overturning. Nature
Communications, 12(1), 1-13.

Tida, Y., Kojima, A., Takatani, Y., & Ishii, M. (2021). Global trends of ocean CO, sink and ocean acidification: An observation-based recon-
struction of surface ocean inorganic carbon variables. Journal of Oceanography, 77(2), 323-358. https://doi.org/10.1007/s10872-020-00571-5

DEVRIES ET AL.

27 of 32

QSUQOIT suowwoy) aAnear) ajqeaidde ay) £q pauroaos ale sa[one YO asn Jo sa[ni 10y A1e1qi aurjuQ A9[IA\ U0 (SUOIIPUOD-PUE-SULID)/W0d Ka[im Kreiqrjaul[uo//:sdny) suonipuo)) pue suud [, oyl 23S [€70¢/11/L0] uo Areiqr aurjuQ A3[IM ‘08LL009DET0T/6T01°01/10p/wod Kaim KreiqiaurjuosqndnSe//:sdyy woly papeojumo( ‘01 ‘€707 ‘vTT6vr61


https://doi.org/10.1073/pnas.1900371116
https://doi.org/10.5194/bg-19-4171-2022
https://doi.org/10.5194/bg-19-4171-2022
https://doi.org/10.1029/2003gb002150
https://doi.org/10.1021/acs.est.8b01051
https://doi.org/10.1029/2006gb002907
https://doi.org/10.5194/bg-12-4447-2015
https://doi.org/10.1029/2017gb005855
https://doi.org/10.1029/2017gb005855
https://doi.org/10.1029/2021gb007018
https://doi.org/10.5194/essd-13-4693-2021
https://doi.org/10.5194/essd-13-4693-2021
https://doi.org/10.1029/2005jc003129
https://doi.org/10.1038/19273
https://doi.org/10.1038/s43586-022-00154-2
https://doi.org/10.5194/gmd-8-3071-2015
https://doi.org/10.5194/gmd-8-3071-2015
https://doi.org/10.1017/9781009157896.009
https://doi.org/10.1002/2015gl063220
https://doi.org/10.5194/essd-14-1917-2022
https://doi.org/10.1146/annurev-marine-122414-033929
https://doi.org/10.1029/2020gb006788
https://doi.org/10.1029/2021ms002620
https://doi.org/10.1029/2018gl078013
https://doi.org/10.1029/2018gl078013
https://doi.org/10.5194/gmd-12-5113-2019
https://doi.org/10.1038/s43017-022-00381-x
https://doi.org/10.1126/science.aau5153
https://doi.org/10.1146/annurev-marine-121916-063407
https://doi.org/10.1029/96gb01608
https://doi.org/10.1029/2001gb001835
https://doi.org/10.1098/rsta.2022.0063
https://doi.org/10.1002/2015gl063070
https://doi.org/10.3389/fmars.2020.571720
https://doi.org/10.1007/s10872-020-00571-5

A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2023GB007780

Ishii, M., Feely, R. A, Rodgers, K. B., Park, G. H., Wanninkhof, R., Sasano, D., et al. (2014). Air—sea CO, flux in the Pacific Ocean for the period
1990-2009. Biogeosciences, 11(3), 709-734. https://doi.org/10.5194/bg-11-709-2014

Ishii, M., Rodgers, K. B., Inoue, H. Y., Toyama, K., Sasano, D., Kosugi, N., et al. (2020). Ocean acidification from below in the tropical Pacific.
Global Biogeochemical Cycles, 34(8). https://doi.org/10.1029/2019gb006368

Ito, T., Bracco, A., Deutsch, C., Frenzel, H., Long, M., & Takano, Y. (2015). Sustained growth of the Southern Ocean carbon storage in a warming
climate. Geophysical Research Letters, 42(11), 4516-4522. https://doi.org/10.1002/2015g1064320

Ito, T., Woloszyn, M., & Mazloff, M. (2010). Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature,
463(7277), 80-83. https://doi.org/10.1038/nature08687

Tudicone, D., Rodgers, K. B., Plancherel, Y., Aumont, A., Ito, T., Key, R. M., et al. (2016). The formation of the ocean’s anthropogenic carbon
reservoir. Scientific Reports, 6(1), 35473. https://doi.org/10.1038/srep35473

Jacobson, A. R., Mikaloff Fletcher, S. E., Gruber, N., Sarmiento, J. L., & Gloor, M. (2007). A joint atmosphere-ocean inversion for surface fluxes
of carbon dioxide: 1. Methods and global-scale fluxes. Global Biogeochemical Cycles, 21(1). https://doi.org/10.1029/2005gb002556

Jones, J. M., Gille, S. T., Goosse, H., Abram, N. J., Canziani, P. O., Charman, D. J., et al. (2016). Assessing recent trends in high-latitude Southern
Hemisphere surface climate. Nature Climate Change, 6(10), 917-926. https://doi.org/10.1038/nclimate3103

Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O., & Schmittner, A. (1999). Global warming and marine carbon cycle feedbacks on future
atmospheric CO,. Science, 284(5413), 464-467. https://doi.org/10.1126/science.284.5413.464

Keeling, C. D. (1979). The Suess effect: 'Carbon-'*Carbon interrelations. Environment International, 2(4-6), 229-300. https:/doi.
org/10.1016/0160-4120(79)90005-9

Keeling, C. D., & Revelle, R. (1985). Effects of El Nifio/Southern Oscillation on the atmospheric content of carbon dioxide. Meteoritics, 20,
437-450.

Keeling, R. F., Piper, S. C., & Heimann, M. (1996). Global and hemispheric CO, sinks deduced from changes in atmospheric O, concentration.
Nature, 381(6579), 218-221. https://doi.org/10.1038/381218a0

Khatiwala, S., Primeau, F., & Hall, T. (2009). Reconstruction of the history of anthropogenic CO, concentrations in the ocean. Nature, 462(7271),
346-349. https://doi.org/10.1038/nature08526

Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Graven, H. D., et al. (2013). Global ocean storage of anthropogenic
carbon. Biogeosciences, 10(4), 2169-2191. https://doi.org/10.5194/bg-10-2169-2013

Kwon, E. Y., DeVries, T., Galbraith, E. D., Hwang, J., Kim, G., & Timmermann, A. (2021). Stable carbon isotopes suggest large terrestrial carbon
inputs to the global ocean. Global Biogeochemical Cycles, 35(4), €2020GB006684. https://doi.org/10.1029/2020gb006684

Lacroix, F., Ilyina, T., & Hartmann, J. (2020). Oceanic CO, outgassing and biological production hotspots induced by pre-industrial river loads of
nutrients and carbon in a global modeling approach. Biogeosciences, 17(1), 55-88. https://doi.org/10.5194/bg-17-55-2020

Landschiitzer, P., Gruber, N., Bakker, D. C., & Schuster, U. (2014). Recent variability of the global ocean carbon sink. Global Biogeochemical
Cycles, 28(9), 927-949. https://doi.org/10.1002/2014gb004853

Landschiitzer, P., Gruber, N., Haumann, F. A, Rodenbeck, C., Bakker, D. C., Van Heuven, S., et al. (2015). The reinvigoration of the Southern
Ocean carbon sink. Science, 349(6253), 1221-1224. https://doi.org/10.1126/science.aab2620

Landschiitzer, P., Laruelle, G. G., Roobaert, A., & Regnier, P. (2020). A uniform pCO, climatology combining open and coastal oceans. Earth
System Science Data, 12(4), 2537-2553. https://doi.org/10.5194/essd-12-2537-2020

Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer param-
eterization. Reviews of Geophysics, 32(4), 363—403. https://doi.org/10.1029/94rg01872

Lee, K., Choi, S. D., Park, G. H., Wanninkhof, R., Peng, T. H., Key, R. M., et al. (2003). An updated anthropogenic CO, inventory in the Atlantic
Ocean. Global Biogeochemical Cycles, 17(4). https://doi.org/10.1029/2003gb002067

Le Quéré, C., Orr, J. C., Monfray, P., Aumont, O., & Madec, G. (2007a). Interannual variability of the oceanic sink of CO, from 1979 through
1997. Global Biogeochemical Cycles, 14(4), 1247-1265. https://doi.org/10.1029/1999gb900049

Le Quéré, C., Rodenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A, et al. (2007b). Saturation of the Southern Ocean CO,
sink due to recent climate change. Science, 316(5832), 1735-1738. https://doi.org/10.1126/science.1136188

Le Quéré, C., Takahashi, T., Buitenhuis, E. T., Rodenbeck, C., & Sutherland, S. C. (2010). Impact of climate change and variability on the global
oceanic sink of CO,. Global Biogeochemical Cycles, 24(4). https://doi.org/10.1029/2009gb003599

Liao, E., Resplandy, L., Liu, J., & Bowman, K. W. (2020). Amplification of the ocean carbon sink during El Nifios: Role of poleward Ekman
transport and influence on atmospheric CO,. Global Biogeochemical Cycles, 34(9), €2020GB006574. https://doi.org/10.1029/2020gb006574

Lo Monaco, C., Goyet, C., Metzl, N., Poisson, A., & Touratier, F. (2005). Distribution and inventory of anthropogenic CO, in the Southern
Ocean: Comparison of three data-based methods. Journal of Geophysical Research, 110(C9), C09S02. https://doi.org/10.1029/2004jc002571

Lovenduski, N. S., Gruber, N., Doney, S. C., & Lima, I. D. (2007). Enhanced CO, outgassing in the Southern Ocean from a positive phase of the
Southern Annular Mode. Global Biogeochemical Cycles, 21(2), GB2026. https://doi.org/10.1029/2006GB002900

Maier-Reimer, E., & Hasselmann, K. (1987). Transport and storage of CO, in the ocean——An inorganic ocean-circulation carbon cycle model.
Climate Dynamics, 2(2), 63-90. https://doi.org/10.1007/bf01054491

Manning, A., & Keeling, R. F. (2006). Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network.
Tellus B: Chemical and Physical Meteorology, 58(2), 95-116. https://doi.org/10.1111/j.1600-0889.2006.00175.x

McGillis, W. R., Edson, J. B., Hare, J. E., & Fairall, C. W. (2001). Direct covariance air-sea CO, fluxes. Journal of Geophysical Research,
106(C8), 16729-16745. https://doi.org/10.1029/2000jc000506

McKinley, G. A., Fay, A. R., Eddebbar, Y. A., Gloege, L., & Lovenduski, N. S. (2020). External forcing explains recent decadal variability of the
ocean carbon sink. AGU Advances, 1(2), e2019AV000149. https://doi.org/10.1029/2019av000149

McKinley, G. A., Fay, A. R., Lovenduski, N. S., & Pilcher, D. J. (2017). Natural variability and anthropogenic trends in the ocean carbon sink.
Annual Review of Marine Science, 9(1), 125-150. https://doi.org/10.1146/annurev-marine-010816-060529

McKinley, G. A., Rodenbeck, C., Gloor, M., Houweling, S., & Heimann, M. (2004). Pacific dominance to global air-sea CO, flux variability: A
novel atmospheric inversion agrees with ocean models. Geophysical Research Letters, 31(22), L22308. https://doi.org/10.1029/2004g1021069

McNeil, B. 1., & Matear, R. J. (2013). The non-steady state oceanic CO, signal: Its importance, magnitude and a novel way to detect it. Biogeo-
sciences, 10(4), 2219-2228. https://doi.org/10.5194/bg-10-2219-2013

McNeil, B. 1., Matear, R. J., Key, R. M., Bullister, J. L., & Sarmiento, J. L. (2003). Anthropogenic CO, uptake by the ocean based on the global
chlorofluorocarbon data set. Science, 299(5604), 235-239. https://doi.org/10.1126/science.1077429

Mikaloff Fletcher, S. E., Gruber, N., Jacobson, A. R., Doney, S. C., Dutkiewicz, S., Gerber, M., et al. (2006). Inverse estimates of anthropogenic
CO, uptake, transport, and storage by the ocean. Global Biogeochemical Cycles, 20(2). https://doi.org/10.1029/2005gb002530

Miiller, J. D. (2023). RECCAP2-ocean data collection [Dataset]. Zenodo. https://doi.org/10.5281/zenod0.7990823

DEVRIES ET AL.

28 of 32

QSUQOIT suowwoy) aAnear) ajqeaidde ay) £q pauroaos ale sa[one YO asn Jo sa[ni 10y A1e1qi aurjuQ A9[IA\ U0 (SUOIIPUOD-PUE-SULID)/W0d Ka[im Kreiqrjaul[uo//:sdny) suonipuo)) pue suud [, oyl 23S [€70¢/11/L0] uo Areiqr aurjuQ A3[IM ‘08LL009DET0T/6T01°01/10p/wod Kaim KreiqiaurjuosqndnSe//:sdyy woly papeojumo( ‘01 ‘€707 ‘vTT6vr61


https://doi.org/10.5194/bg-11-709-2014
https://doi.org/10.1029/2019gb006368
https://doi.org/10.1002/2015gl064320
https://doi.org/10.1038/nature08687
https://doi.org/10.1038/srep35473
https://doi.org/10.1029/2005gb002556
https://doi.org/10.1038/nclimate3103
https://doi.org/10.1126/science.284.5413.464
https://doi.org/10.1016/0160-4120(79)90005-9
https://doi.org/10.1016/0160-4120(79)90005-9
https://doi.org/10.1038/381218a0
https://doi.org/10.1038/nature08526
https://doi.org/10.5194/bg-10-2169-2013
https://doi.org/10.1029/2020gb006684
https://doi.org/10.5194/bg-17-55-2020
https://doi.org/10.1002/2014gb004853
https://doi.org/10.1126/science.aab2620
https://doi.org/10.5194/essd-12-2537-2020
https://doi.org/10.1029/94rg01872
https://doi.org/10.1029/2003gb002067
https://doi.org/10.1029/1999gb900049
https://doi.org/10.1126/science.1136188
https://doi.org/10.1029/2009gb003599
https://doi.org/10.1029/2020gb006574
https://doi.org/10.1029/2004jc002571
https://doi.org/10.1029/2006GB002900
https://doi.org/10.1007/bf01054491
https://doi.org/10.1111/j.1600-0889.2006.00175.x
https://doi.org/10.1029/2000jc000506
https://doi.org/10.1029/2019av000149
https://doi.org/10.1146/annurev-marine-010816-060529
https://doi.org/10.1029/2004gl021069
https://doi.org/10.5194/bg-10-2219-2013
https://doi.org/10.1126/science.1077429
https://doi.org/10.1029/2005gb002530
https://doi.org/10.5281/zenodo.7990823

A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2023GB007780

Miiller, J. D., Gruber, N., Carter, B., Feely, R., Ishii, M., Lange, N., et al. (2023). Decadal trends in the oceanic storage of anthropogenic carbon
from 1994 to 2014. AGU Advances, 4(4), e2023AV000875. https://doi.org/10.1029/2023av000875

Nickford, S., Palter, J. B., Donohue, K., Fassbender, A. J., Gray, A. R., Long, J., et al. (2022). Autonomous wintertime observations of air-sea
exchange in the gulf stream reveal a perfect storm for ocean CO, uptake. Geophysical Research Letters, 49(5), €2021GL096805. https://doi.
0rg/10.1029/2021g1096805

Oeschger, H., Siegenthaler, U., Schotterer, U., & Gugelmann, A. (1975). A box diffusion model to study the carbon dioxide exchange in nature.
Tellus, 27(2), 168-192. https://doi.org/10.3402/tellusa.v27i2.9900

Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., et al. (2016). The Global Ocean Data Analysis Project version 2
(GLODAPvV2)—An internally consistent data product for the world ocean. Earth System Science Data, 8, 297-323. https://doi.org/10.5194/
essd-8-297-2016

Orr, J. C., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J. L., Toggweiler, J. R., et al. (2001). Estimates of anthropogenic carbon
uptake from four three-dimensional global ocean models. Global Biogeochemical Cycles, 15(1), 43-60. https://doi.org/10.1029/2000gb001273

Park, G. H., Wanninkhof, R. I. K., Doney, S., Takahashi, T., Lee, K., Feely, R., et al. (2010). Variability of global net sea—air CO, fluxes over
the last three decades using empirical relationships. Tellus B: Chemical and Physical Meteorology, 62(5), 352-368. https://doi.org/10.3402/
tellusb.v62i5.16580

Quay, P. D, Tilbrook, B., & Wong, C. S. (1992). Oceanic uptake of fossil fuel CO,: Carbon-13 evidence. Science, 256(5053), 74-79. https://doi.
org/10.1126/science.256.5053.74

Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., et al. (2013). Anthropogenic perturbation of the carbon
fluxes from land to ocean. Nature Geoscience, 6(8), 597-607. https://doi.org/10.1038/ngeo1830

Regnier, P., Resplandy, L., Najjar, R. G., & Ciais, P. (2022). The land-to-ocean loops of the global carbon cycle. Nature, 603(7901), 401-410.
https://doi.org/10.1038/s41586-021-04339-9

Resplandy, L., Hogikyan, A., Bange, H. W., Bianchi, D., Weber, T. S., Cai, W. I, et al. (2023). A synthesis of global coastal ocean greenhouse
gas fluxes. Authorea Preprints.

Resplandy, L., Keeling, R. F., Eddebbar, Y., Brooks, M., Wang, R., Bopp, L., et al. (2019). Quantification of ocean heat uptake from changes in
atmospheric O, and CO, composition. Scientific Reports, 9(1), 20244. https://doi.org/10.1038/541598-019-56490-z

Resplandy, L., Keeling, R. F., Rodenbeck, C., Stephens, B. B., Khatiwala, S., Rodgers, K. B, et al. (2018). Revision of global carbon fluxes based
on a reassessment of oceanic and riverine carbon transport. Nature Geoscience, 11(7), 504-509. https://doi.org/10.1038/s41561-018-0151-3

Revelle, R., & Suess, H. E. (1957). Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO,
during the past decades. Tellus, 9, 1-10. https://doi.org/10.3402/tellusa.v9i1.9075

Ridge, S. M., & McKinley, G. A. (2020). Advective controls on the North Atlantic anthropogenic carbon sink. Global Biogeochemical Cycles,
34(7), €2019GB006457. https://doi.org/10.1029/2019GB006457

Ridge, S. M., & McKinley, G. A. (2021). Ocean carbon uptake under aggressive emission mitigation. Biogeosciences, 18(8), 2711-2725. https://
doi.org/10.5194/bg-18-2711-2021

Rodenbeck, C., Bakker, D. C., Gruber, N, Iida, Y., Jacobson, A. R., Jones, S., et al. (2015). Data-based estimates of the ocean carbon sink
variability—first results of the surface ocean pCO, mapping intercomparison (SOCOM). Biogeosciences, 12(23), 7251-7278. https://doi.
org/10.5194/bg-12-7251-2015

Rodenbeck, C., DeVries, T., Hauck, J., Le Quéré, C., & Keeling, R. F. (2022). Data-based estimates of interannual sea—air CO, flux variations
1957-2020 and their relation to environmental drivers. Biogeosciences, 19(10), 2627-2652. https://doi.org/10.5194/bg-19-2627-2022

Rodenbeck, C., Keeling, R. F., Bakker, D. C., Metzl, N., Olsen, A., Sabine, C., & Heimann, M. (2013). Global surface-ocean pCO, and sea—air CO,
flux variability from an observation-driven ocean mixed-layer scheme. Ocean Science, 9(2), 193-216. https://doi.org/10.5194/0s-9-193-2013

Rodgers, K. B., Sarmiento, J. L., Aumont, O., Crevoisier, C., de Boyer Montégut, C., & Metzl, N. (2008). A wintertime uptake window for anthro-
pogenic CO, in the North Pacific. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2006gb002920

Rodgers, K. B., Schwinger, J., Fassbender, A. J., Landschiitzer, P., Yamaguchi, R., Frenzel, H., et al. (2023). Seasonal variability of the surface
ocean carbon cycle: A synthesis. Global Biogeochemical Cycles, 37, ¢2023GB007798. https://doi.org/10.1029/2023GB007798

Roobaert, A., Laruelle, G. G., Landschiitzer, P., Gruber, N., Chou, L., & Regnier, P. (2019). The spatiotemporal dynamics of the sources and sinks
of CO, in the global coastal ocean. Global Biogeochemical Cycles, 33(12), 1693—-1714. https://doi.org/10.1029/2019gb006239

Roobaert, A., Laruelle, G. G., Landschiitzer, P., & Regnier, P. (2018). Uncertainty in the global oceanic CO, uptake induced by wind forcing:
Quantification and spatial analysis. Biogeosciences, 15(6), 1701-1720. https://doi.org/10.5194/bg-15-1701-2018

Roobaert, A., Regnier, P., Landschiitzer, P., & Laruelle, G. G. (2023). A novel sea surface pCO,-product for the global coastal ocean resolving
trends over the 1982-2020 period. Earth System Science Data Discussions, 2023, 1-32.

Roobaert, A., Resplandy, L., Laruelle, G. G., Liao, E., & Regnier, P. (2022). A framework to evaluate and elucidate the driving mechanisms of
coastal sea surface pCO, seasonality using an ocean general circulation model (MOMG6-COBALT). Ocean Science, 18(1), 67-88. https://doi.
org/10.5194/0s-18-67-2022

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., et al. (2004). The oceanic sink for anthropogenic CO,. Science,
305(5682), 367-371. https://doi.org/10.1126/science.1097403

Sarmiento, J. L., Orr, J. C., & Siegenthaler, U. (1992). A perturbation simulation of CO, uptake in an ocean general circulation model. Journal of
Geophysical Research, 97(C3), 3621-3645. https://doi.org/10.1029/91jc02849

Schwinger, J., Tjiputra, J. F., Heinze, C., Bopp, L., Christian, J. R., Gehlen, M., et al. (2014). Nonlinearity of ocean carbon cycle feedbacks in
CMIPS5 earth system models. Journal of Climate, 27(11), 3869-3888. https://doi.org/10.1175/jcli-d-13-00452.1

Séférian, R., Gehlen, M., Bopp, L., Resplandy, L., Orr, J. C., Marti, O., et al. (2016). Inconsistent strategies to spin up models in CMIP5: Implica-
tions for ocean biogeochemical model performance assessment. Geoscientific Model Development, 9(5), 1827-1851. https://doi.org/10.5194/
gmd-9-1827-2016

Séférian, R., Ribes, A., & Bopp, L. (2014). Detecting the anthropogenic influences on recent changes in ocean carbon uptake. Geophysical
Research Letters, 41(16), 5968-5977. https://doi.org/10.1002/2014g1061223

Sharp, J. D., Fassbender, A. J., Carter, B. R., Lavin, P. D., & Sutton, A. J. (2022). A monthly surface pCO, product for the California Current Large
Marine Ecosystem. Earth System Science Data, 14(4), 2081-2108. https://doi.org/10.5194/essd-14-2081-2022

Shin, Y., Deike, L., & Romero, L. (2022). Modulation of bubble-mediated CO, gas transfer due to wave-current interactions. Geophysical
Research Letters, 49(22), €2022GL100017. https://doi.org/10.1029/2022g1100017

Siegenthaler, U., & Sarmiento, J. L. (1993). Atmospheric carbon dioxide and the ocean. Nature, 365(6442), 119-125. https://doi.
org/10.1038/365119a0

Steinfeldt, R., Rhein, M., Bullister, J. L., & Tanhua, T. (2009). Inventory changes in anthropogenic carbon from 1997-2003 in the Atlantic Ocean
between 20 S and 65 N. Global Biogeochemical Cycles, 23(3). https://doi.org/10.1029/2008gb003311

DEVRIES ET AL.

29 of 32

QSUQOIT suowwoy) aAnear) ajqeaidde ay) £q pauroaos ale sa[one YO asn Jo sa[ni 10y A1e1qi aurjuQ A9[IA\ U0 (SUOIIPUOD-PUE-SULID)/W0d Ka[im Kreiqrjaul[uo//:sdny) suonipuo)) pue suud [, oyl 23S [€70¢/11/L0] uo Areiqr aurjuQ A3[IM ‘08LL009DET0T/6T01°01/10p/wod Kaim KreiqiaurjuosqndnSe//:sdyy woly papeojumo( ‘01 ‘€707 ‘vTT6vr61


https://doi.org/10.1029/2023av000875
https://doi.org/10.1029/2021gl096805
https://doi.org/10.1029/2021gl096805
https://doi.org/10.3402/tellusa.v27i2.9900
https://doi.org/10.5194/essd-8-297-2016
https://doi.org/10.5194/essd-8-297-2016
https://doi.org/10.1029/2000gb001273
https://doi.org/10.3402/tellusb.v62i5.16580
https://doi.org/10.3402/tellusb.v62i5.16580
https://doi.org/10.1126/science.256.5053.74
https://doi.org/10.1126/science.256.5053.74
https://doi.org/10.1038/ngeo1830
https://doi.org/10.1038/s41586-021-04339-9
https://doi.org/10.1038/s41598-019-56490-z
https://doi.org/10.1038/s41561-018-0151-3
https://doi.org/10.3402/tellusa.v9i1.9075
https://doi.org/10.1029/2019GB006457
https://doi.org/10.5194/bg-18-2711-2021
https://doi.org/10.5194/bg-18-2711-2021
https://doi.org/10.5194/bg-12-7251-2015
https://doi.org/10.5194/bg-12-7251-2015
https://doi.org/10.5194/bg-19-2627-2022
https://doi.org/10.5194/os-9-193-2013
https://doi.org/10.1029/2006gb002920
https://doi.org/10.1029/2023GB007798
https://doi.org/10.1029/2019gb006239
https://doi.org/10.5194/bg-15-1701-2018
https://doi.org/10.5194/os-18-67-2022
https://doi.org/10.5194/os-18-67-2022
https://doi.org/10.1126/science.1097403
https://doi.org/10.1029/91jc02849
https://doi.org/10.1175/jcli-d-13-00452.1
https://doi.org/10.5194/gmd-9-1827-2016
https://doi.org/10.5194/gmd-9-1827-2016
https://doi.org/10.1002/2014gl061223
https://doi.org/10.5194/essd-14-2081-2022
https://doi.org/10.1029/2022gl100017
https://doi.org/10.1038/365119a0
https://doi.org/10.1038/365119a0
https://doi.org/10.1029/2008gb003311

A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2023GB007780

Sutton, A. J., Feely, R. A., Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., et al. (2019). Autonomous seawater pCO, and pH time
series from 40 surface buoys and the emergence of anthropogenic trends. Earth System Science Data, 11(1), 421-439. https://doi.org/10.5194/
essd-11-421-2019

Sutton, A. J., Williams, N. L., & Tilbrook, B. (2021). Constraining Southern Ocean CO, flux uncertainty using uncrewed surface vehicle obser-
vations. Geophysical Research Letters, 48(3), €2020GL091748. https://doi.org/10.1029/2020g1091748

Swart, N. C., & Fyfe, J. C. (2012). Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophysical
Research Letters, 39(16), L16711. https://doi.org/10.1029/2012g1052810

Takahashi, T., Feely, R. A., Weiss, R. F., Wanninkhof, R. H., Chipman, D. W., Sutherland, S. C., & Takahashi, T. T. (1997). Global air-sea flux
of CO,: An estimate based on measurements of sea—air pCO, difference. Proceedings of the National Academy of Sciences of the United States
of America, 94(16), 8292-8299. https://doi.org/10.1073/pnas.94.16.8292

Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., et al. (2002). Global sea—air CO, flux based on climatological
surface ocean pCO,, and seasonal biological and temperature effects. Deep Sea Research Part I1: Topical Studies in Oceanography, 49(9-10),
1601-1622. https://doi.org/10.1016/s0967-0645(02)00003-6

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., et al. (2009). Climatological mean and decadal
change in surface ocean pCO,, and net sea—air CO, flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography,
56(8-10), 554-577. https://doi.org/10.1016/j.dsr2.2008.12.009

Talley, L. D., Feely, R. A., Sloyan, B. M., Wanninkhof, R., Baringer, M. O., Bullister, J. L., et al. (2016). Changes in ocean heat, carbon content,
and ventilation: A review of the first decade of GO-SHIP global repeat hydrography. Annual Review of Marine Science, 8(1), 185-215. https://
doi.org/10.1146/annurev-marine-052915-100829

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological
Society, 93(4), 485-498. https://doi.org/10.1175/bams-d-11-00094.1

Terhaar, J., Frolicher, T. L., & Joos, F. (2021). Southern Ocean anthropogenic carbon sink constrained by sea surface salinity. Science Advances,
7(18), eabd5964. https://doi.org/10.1126/sciadv.abd5964

Terhaar, J., Frolicher, T. L., & Joos, F. (2022). Observation-constrained estimates of the global ocean carbon sink from Earth system models.
Biogeosciences, 19(18), 4431-4457. https://doi.org/10.5194/bg-19-4431-2022

Terhaar, J., Goris, N., Miiller, J. D., DeVries, T., Gruber, N., Hauck, J., et al. (2023). Assessment of global ocean biogeochemistry models for
ocean carbon sink estimates in RECCAP2 and recommendations for future studies.

Toyama, K., Rodgers, K. B., Blanke, B., Iudicone, D., Ishii, M., Aumont, O., & Sarmiento, J. L. (2017). Large reemergence of anthropogenic
carbon into the ocean’s surface mixed layer sustained by the ocean’s overturning circulation. Journal of Climate, 30(21), 8615-8631. https://
doi.org/10.1175/jcli-d-16-0725.1

Vazquez-Rodriguez, M., Touratier, F., lo Monaco, C., Waugh, D. W., Padin, X. A., Bellerby, R. G. J., et al. (2009). Anthropogenic carbon distri-
butions in the Atlantic Ocean: Data-based estimates from the Arctic to the Antarctic. Biogeosciences, 6(3), 439-451. https://doi.org/10.5194/
bg-6-439-2009

Wanninkhof, R. (2007). The impact of different gas exchange formulations and wind speed products on global air-sea CO, fluxes. In C. S. Garbe,
R. A. Handler, & B. Jachne (Eds.), Transport at the air sea interface, measurements, models and parametrizations (pp. 1-23). Springer.

Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. S., & McGillis, W. R. (2009). Advances in quantifying air-sea gas exchange and environ-
mental forcing. Annual Review of Marine Science, 1, 213-244. https://doi.org/10.1146/annurev.marine.010908.163742

Wanninkhof, R., & McGillis, W. R. (1999). A cubic relationship between air-sea CO, exchange and wind speed. Geophysical Research Letters,
26(13), 1889-1892. https://doi.org/10.1029/1999g1900363

Wanninkhof, R., Park, G. H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., et al. (2013). Global ocean carbon uptake: Magnitude, variability
and trends. Biogeosciences, 10(3), 1983-2000. https://doi.org/10.5194/bg-10-1983-2013

Wanninkhof, R., Pickers, P. A., Omar, A. M., Sutton, A., Murata, A., Olsen, A., et al. (2019). A surface ocean CO, reference network, SOCONET
and associated marine boundary layer CO, measurements. Frontiers in Marine Science, 6, 400. https://doi.org/10.3389/fmars.2019.00400

Wanninkhof, R., & Trifianes, J. (2017). The impact of changing wind speeds on gas transfer and its effect on global air-sea CO, fluxes. Global
Biogeochemical Cycles, 31(6), 961-974. https://doi.org/10.1002/2016gb005592

Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G., Landschiitzer, P., et al. (2020). Revised estimates of ocean-atmosphere CO,
flux are consistent with ocean carbon inventory. Nature Communications, 11(1), 1-6. https://doi.org/10.1038/s41467-020-18203-3

Watts, J., Bell, T. G., Anderson, K., Butterworth, B. J., Miller, S., Else, B., & Shutler, J. (2022). Impact of sea ice on air-sea CO, exchange-A
critical review of polar eddy covariance studies. Progress in Oceanography, 201, 102741. https://doi.org/10.1016/j.pocean.2022.102741

Waugh, D. W., Hall, T. M., McNeil, B. I, Key, R., & Matear, R. J. (2006). Anthropogenic CO, in the oceans estimated using transit time distribu-
tions. Tellus B: Chemical and Physical Meteorology, 58(5), 376-389. https://doi.org/10.3402/tellusb.v58i5.17030

Waugh, D. W., Primeau, F., DeVries, T., & Holzer, M. (2013). Recent changes in the ventilation of the southern oceans. Science, 339(6119),
568-570. https://doi.org/10.1126/science.1225411

Woolf, D. K., Shutler, J. D., Goddijn-Murphy, L., Watson, A. J., Chapron, B., Nightingale, P. D., et al. (2019). Key uncertainties in the recent
air-sea flux of CO,. Global Biogeochemical Cycles, 33(12), 1548-1563. https://doi.org/10.1029/2018gb00604 1

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., et al. (2020). Causes of higher climate sensitivity in
CMIP6 models. Geophysical Research Letters, 47(1), e2019GL085782. https://doi.org/10.1029/2019g1085782

Zeng, J., Tida, Y., Matsunaga, T., & Shirai, T. (2022). Surface ocean CO, concentration and air-sea flux estimate by machine learning with
modelled variable trends. Frontiers in Marine Science, 9, 0-14. https://doi.org/10.3389/fmars.2022.989233

Zhang, H., Menemenlis, D., & Fenty, I. (2018). ECCO LLC270 ocean-ice state estimate.

References From the Supporting Information

Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., & Gehlen, M. (2015). PISCES-v2: An ocean biogeochemical model for carbon and ecosystem
studies. Geoscientific Model Development, 8, 2465-2513. https://doi.org/10.5194/gmd-8-2465-2015

Ballantyne, A. A., Alden, C. A., Miller, J. A., Tans, P. A., & White, J. W. C. (2012). Increase in observed net carbon dioxide uptake by land and
oceans during the past 50 years. Nature, 488(7409), 70-72. https://doi.org/10.1038/nature11299

Berthet, S., Séférian, R., Bricaud, C., Chevallier, M., Voldoire, A., & Ethé, C. (2019). Evaluation of an online grid-coarsening algorithm in
a global eddy-admitting ocean-biogeochemical model. Journal of Advances in Modeling Earth Systems, 11(6), 1759-1783. https://doi.
0rg/10.1029/2019ms001644

DEVRIES ET AL.

30 of 32

QSUQOIT suowwoy) aAnear) ajqeaidde ay) £q pauroaos ale sa[one YO asn Jo sa[ni 10y A1e1qi aurjuQ A9[IA\ U0 (SUOIIPUOD-PUE-SULID)/W0d Ka[im Kreiqrjaul[uo//:sdny) suonipuo)) pue suud [, oyl 23S [€70¢/11/L0] uo Areiqr aurjuQ A3[IM ‘08LL009DET0T/6T01°01/10p/wod Kaim KreiqiaurjuosqndnSe//:sdyy woly papeojumo( ‘01 ‘€707 ‘vTT6vr61


https://doi.org/10.5194/essd-11-421-2019
https://doi.org/10.5194/essd-11-421-2019
https://doi.org/10.1029/2020gl091748
https://doi.org/10.1029/2012gl052810
https://doi.org/10.1073/pnas.94.16.8292
https://doi.org/10.1016/s0967-0645(02)00003-6
https://doi.org/10.1016/j.dsr2.2008.12.009
https://doi.org/10.1146/annurev-marine-052915-100829
https://doi.org/10.1146/annurev-marine-052915-100829
https://doi.org/10.1175/bams-d-11-00094.1
https://doi.org/10.1126/sciadv.abd5964
https://doi.org/10.5194/bg-19-4431-2022
https://doi.org/10.1175/jcli-d-16-0725.1
https://doi.org/10.1175/jcli-d-16-0725.1
https://doi.org/10.5194/bg-6-439-2009
https://doi.org/10.5194/bg-6-439-2009
https://doi.org/10.1146/annurev.marine.010908.163742
https://doi.org/10.1029/1999gl900363
https://doi.org/10.5194/bg-10-1983-2013
https://doi.org/10.3389/fmars.2019.00400
https://doi.org/10.1002/2016gb005592
https://doi.org/10.1038/s41467-020-18203-3
https://doi.org/10.1016/j.pocean.2022.102741
https://doi.org/10.3402/tellusb.v58i5.17030
https://doi.org/10.1126/science.1225411
https://doi.org/10.1029/2018gb006041
https://doi.org/10.1029/2019gl085782
https://doi.org/10.3389/fmars.2022.989233
https://doi.org/10.5194/gmd-8-2465-2015
https://doi.org/10.1038/nature11299
https://doi.org/10.1029/2019ms001644
https://doi.org/10.1029/2019ms001644

A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2023GB007780

Chien, C. T., Durgadoo, J., Ehlers, D., Keller, D., Koeve, W., Kriest, L., et al. (2022). FOCI-MOPS v1—Integration of marine biogeochemistry
within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model. Geoscientific Model Development, 15, 5987—
6024. https://doi.org/10.5194/gmd-15-5987-2022

Cooper, D. J., Watson, A. J., & Ling, R. D. (1998). Variation of pCO, along a North Atlantic shipping route (UK to the Caribbean): A year of
automated observations. Marine Chemistry, 60(1-2), 147-164. https://doi.org/10.1016/s0304-4203(97)00082-0

Dickson, A. G., Sabine, C. L., & Christian, J. R. (2007). Guide to best practices for ocean CO, measurements. North Pacific Marine Science
Organization.

Doney, S. C., Lima, L, Feely, R. A., Glover, D. M., Lindsay, K., Mahowald, N., et al. (2009). Mechanisms governing interannual variability in
upper-ocean inorganic carbon system and air-sea CO, fluxes: Physical climate and atmospheric dust. Deep Sea Research Part I1: Topical
Studies in Oceanography, 56(8-10), 640-655. https://doi.org/10.1016/j.dsr2.2008.12.006

Doscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., et al. (2022). The EC-Earth3 Earth system model for the coupled
model intercomparison project 6. Geoscientific Model Development, 15(7), 2973-3020. https://doi.org/10.5194/gmd-15-2973-2022

Goddijn-Murphy, L. M., Woolf, D. K., Land, P. E., Shutler, J. D., & Donlon, C. (2015). The OceanFlux Greenhouse Gases methodology for deriv-
ing a sea surface climatology of CO, fugacity in support of air-sea gas flux studies. Ocean Science, 11(4), 519-541. https://doi.org/10.5194/
0s-11-519-2015

Gregor, L., & Gruber, N. (2021). OceanSODA-ETHZ: A global gridded data set of the surface ocean carbonate system for seasonal to decadal
studies of ocean acidification. Earth System Science Data, 13(2), 777-808. https://doi.org/10.5194/essd-13-777-2021

Hauck, J., Gregor, L., Nissen, C., Patara, L., Hague, M., Mongwe, P., et al. (2023b). The Southern Ocean carbon cycle 1985-2018: Mean, seasonal
cycle, trends and storage. Authorea Preprints.

Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., & Nuiiez-Riboni, I. (2013). Global ocean biogeochemistry model HAMOCC:
Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. Journal of
Advances in Modeling Earth Systems, 5(2), 287-315. https://doi.org/10.1029/2012ms000178

Joos, F., & Spahni, R. (2008). Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proceedings of the
National Academy of Sciences of the United States of America, 105(5), 1425-1430. https://doi.org/10.1073/pnas.0707386105

Kriest, I., & Oschlies, A. (2015). MOPS-1.0: Towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical
processes. Geoscientific Model Development, 8(9), 2929-2957. https://doi.org/10.5194/gmd-8-2929-2015

Landschiitzer, P., Gruber, N., & Bakker, D. C. (2016). Decadal variations and trends of the global ocean carbon sink. Global Biogeochemical
Cycles, 30(10), 1396-1417. https://doi.org/10.1002/2015gb005359

Le Quéré, C., Buitenhuis, E. T., Moriarty, R., Alvain, S., Aumont, O., Bopp, L., et al. (2016). Role of zooplankton dynamics for Southern Ocean
phytoplankton biomass and global biogeochemical cycles. Biogeosciences, 13(14), 4111-4133. https://doi.org/10.5194/bg-13-4111-2016

Lindsay, K., Bonan, G. B., Doney, S. C., Hoffman, F. M., Lawrence, D. M., Long, M. C., et al. (2014). Preindustrial-control and twentieth-century
carbon cycle experiments with the Earth System Model CESM1(BGC). Journal of Climate, 27(24), 8981-9005. https://doi.org/10.1175/
jeli-d-12-00565.1

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., et al. (2019). Developments in the MPI-M Earth system model
version 1.2 (MPI-ESML. 2) and its response to increasing CO,. Journal of Advances in Modeling Earth Systems, 11(4), 998-1038. https://doi.
0rg/10.1029/2018ms001400

Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., et al. (2017). Historical greenhouse gas concen-
trations for climate modelling (CMIP6). Geoscientific Model Development, 10(5), 2057-2116. https://doi.org/10.5194/gmd-10-2057-2017

Nightingale, P. D., Malin, G., Law, C. S., Watson, A.J., Liss, P. S., Liddicoat, M. L., et al. (2000). In situ evaluation of air-sea gas exchange parameter-
izations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1), 373-387. https://doi.org/10.1029/1999gb900091

Pierrot, D., Neill, C., Sullivan, K., Castle, R., Wanninkhof, R., Liiger, H., et al. (2009). Recommendations for autonomous underway pCO,
measuring systems and data-reduction routines. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8-10), 512-522.
https://doi.org/10.1016/j.dsr2.2008.12.005

Sarma, V., Sridevi, B., Metzl, N., Patra, P. K., Lachkar, Z., Chakraborty, K., et al. (2023). Air-sea fluxes of CO, in the Indian Ocean between 1985
and 2018: A synthesis based on observation-based surface CO,, hindcast and atmospheric inversion models. Global Biogeochemical Cycles,
37(5), €2023GB007694. https://doi.org/10.1029/2023gb007694

Schwinger, J., Goris, N., Tjiputra, J. F., Kriest, I., Bentsen, M., Bethke, I, et al. (2016). Evaluation of NorESM-OC (versions 1 and 1.2), the
ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1). Geoscientific Model Development, 9(8),
2589-2622. https://doi.org/10.5194/gmd-9-2589-2016

Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L., Tagliabue, A., et al. (2020). Tracking improvement in simulated marine biogeochemistry
between CMIP5 and CMIP6. Current Climate Change Reports, 6(3), 95-119. https://doi.org/10.1007/s40641-020-00160-0

Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., et al. (2019). Evaluation of CNRM Earth-System model,
CNRM-ESM2-1: Role of Earth system processes in present-day and future climate. Journal of Advances in Modeling Earth Systems, 11(12),
4182-4227. https://doi.org/10.1029/2019ms001791

Sein, D. V., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Cabos, W., et al. (2018). The relative influence of atmospheric and oceanic
model resolution on the circulation of the North Atlantic Ocean in a coupled climate model. Journal of Advances in Modeling Earth Systems,
10(8), 2026-2041. https://doi.org/10.1029/2018ms001327

Stock, C. A., Dunne, J. P, Fan, S., Ginoux, P., John, J., Krasting, J. P., et al. (2020). Ocean biogeochemistry in GFDL’s Earth system model
4.1 and its response to increasing atmospheric CO,. Journal of Advances in Modeling Earth Systems, 12(10), e2019MS002043. https://doi.
0rg/10.1029/2019ms002043

Tsujino, H., Nakano, H., Sakamoto, K., Urakawa, S., Hirabara, M., Ishizaki, H., & Yamanaka, G. (2017). Reference manual for the meteorolog-
ical research institute community ocean model version 4 (MRI. COMv4) (Vol. 80, p. 306). Technical Reports of the Meteorological Research
Institute.

Urakawa, L. S., Tsujino, H., Nakano, H., Sakamoto, K., Yamanaka, G., & Toyoda, T. (2020). The sensitivity of a depth-coordinate model to
diapycnal mixing induced by practical implementations of the isopycnal tracer diffusion scheme. Ocean Modelling, 154, 101693. https://doi.
org/10.1016/j.0ocemod.2020.101693

Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5), 7373—
7382. https://doi.org/10.1029/92jc00188

Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods,
12(6), 351-362. https://doi.org/10.4319/1om.2014.12.351

Weiss, R. F., & Price, B. A. (1980). Nitrous oxide solubility in water and seawater. Marine Chemistry, 8(4), 347-359. https://doi.
org/10.1016/0304-4203(80)90024-9

DEVRIES ET AL.

31 of 32

QSUQOIT suowwoy) aAnear) ajqeaidde ay) £q pauroaos ale sa[one YO asn Jo sa[ni 10y A1e1qi aurjuQ A9[IA\ U0 (SUOIIPUOD-PUE-SULID)/W0d Ka[im Kreiqrjaul[uo//:sdny) suonipuo)) pue suud [, oyl 23S [€70¢/11/L0] uo Areiqr aurjuQ A3[IM ‘08LL009DET0T/6T01°01/10p/wod Kaim KreiqiaurjuosqndnSe//:sdyy woly papeojumo( ‘01 ‘€707 ‘vTT6vr61


https://doi.org/10.5194/gmd-15-5987-2022
https://doi.org/10.1016/s0304-4203(97)00082-0
https://doi.org/10.1016/j.dsr2.2008.12.006
https://doi.org/10.5194/gmd-15-2973-2022
https://doi.org/10.5194/os-11-519-2015
https://doi.org/10.5194/os-11-519-2015
https://doi.org/10.5194/essd-13-777-2021
https://doi.org/10.1029/2012ms000178
https://doi.org/10.1073/pnas.0707386105
https://doi.org/10.5194/gmd-8-2929-2015
https://doi.org/10.1002/2015gb005359
https://doi.org/10.5194/bg-13-4111-2016
https://doi.org/10.1175/jcli-d-12-00565.1
https://doi.org/10.1175/jcli-d-12-00565.1
https://doi.org/10.1029/2018ms001400
https://doi.org/10.1029/2018ms001400
https://doi.org/10.5194/gmd-10-2057-2017
https://doi.org/10.1029/1999gb900091
https://doi.org/10.1016/j.dsr2.2008.12.005
https://doi.org/10.1029/2023gb007694
https://doi.org/10.5194/gmd-9-2589-2016
https://doi.org/10.1007/s40641-020-00160-0
https://doi.org/10.1029/2019ms001791
https://doi.org/10.1029/2018ms001327
https://doi.org/10.1029/2019ms002043
https://doi.org/10.1029/2019ms002043
https://doi.org/10.1016/j.ocemod.2020.101693
https://doi.org/10.1016/j.ocemod.2020.101693
https://doi.org/10.1029/92jc00188
https://doi.org/10.4319/lom.2014.12.351
https://doi.org/10.1016/0304-4203(80)90024-9
https://doi.org/10.1016/0304-4203(80)90024-9

Aru g
AUV
ADVANCING EARTH

AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2023GB007780

Wright, R. M., Le Quéré, C., Buitenhuis, E., Pitois, S., & Gibbons, M. J. (2021). Role of jellyfish in the plankton ecosystem revealed using a
global ocean biogeochemical model. Biogeosciences, 18(4), 1291-1320. https://doi.org/10.5194/bg-18-1291-2021

Yang, S., & Gruber, N. (2016). The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks
and the 15N Haber-Bosch effect. Global Biogeochemical Cycles, 30(10), 1418-1440. https://doi.org/10.1002/2016gb005421

Yasunaka, S., Manizza, M., Terhaar, J., Olsen, A., Yamaguchi, R., Landschiitzer, P., et al. (2023). An assessment of CO, uptake in the Arctic Ocean
Sfrom 1985 to 2018. Authorea Preprints.

DEVRIES ET AL.

32 0f 32

QSUQOIT suowwoy) aAnear) ajqeaidde ay) £q pauroaos ale sa[one YO asn Jo sa[ni 10y A1e1qi aurjuQ A9[IA\ U0 (SUOIIPUOD-PUE-SULID)/W0d Ka[im Kreiqrjaul[uo//:sdny) suonipuo)) pue suud [, oyl 23S [€70¢/11/L0] uo Areiqr aurjuQ A3[IM ‘08LL009DET0T/6T01°01/10p/wod Kaim KreiqiaurjuosqndnSe//:sdyy woly papeojumo( ‘01 ‘€707 ‘vTT6vr61


https://doi.org/10.5194/bg-18-1291-2021
https://doi.org/10.1002/2016gb005421

	Magnitude, Trends, and Variability of the Global Ocean Carbon Sink From 1985 to 2018
	Abstract
	Plain Language Summary
	1. Introduction
	2. Materials and Methods
	2.1. Overview
	2.2. Processes Contributing to Air-Sea CO2 Fluxes and DIC Inventory Changes
	2.3. Description of Models and Observation-Based Products
	2.3.1. Global Ocean Biogeochemical Models (GOBMs)
	2.3.2. Data Assimilation Models
	2.3.3. Surface Ocean pCO2-Observation Products
	2.3.4. Interior DIC Products

	2.4. Uncertainties

	3. Results
	3.1. 
          Sea-Air CO2 fluxes
	3.1.1. Results From RECCAP2 Models and Observation-Based Products
	3.1.2. Mechanisms Contributing to Sea-Air CO2 Fluxes in RECCAP2 Models

	3.2. Changes in Interior DIC Storage
	3.2.1. Results From RECCAP2 Models and Observation-Based Products
	3.2.2. Mechanisms Contributing to Changes in DIC Storage in RECCAP2 Products


	4. Discussion
	4.1. Comparison of the Global Ocean CO2 Sink in RECCAP2 Versus RECCAP
	4.2. Additional Uncertainties and Biases in Estimates of the Global Ocean CO2 Sink
	4.3. A Best Estimate of the Ocean CO2 Sink From 2001 to 2018

	5. Conclusions
	Conflict of Interest
	Data Availability Statement
	References
	References From the Supporting Information


