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ABSTRACT1

Zoonotic pathogens pose a significant risk to human health, with spillover into human populations contributing to chronic2

disease, sporadic epidemics, and occasional pandemics. Despite the widely recognized burden of zoonotic spillover, our3

ability to identify which animal populations serve as primary reservoirs for these pathogens remains incomplete. This4

challenge is compounded when prevalence reaches detectable levels only at specific times of year. In these cases, sta-5

tistical models designed to predict the timing of peak prevalence could guide field sampling for active infections. Here6

we develop a general model that leverages routinely collected serosurveillance data to optimize sampling for elusive7

pathogens. Using simulated data sets we show that our methodology reliably identifies times when pathogen preva-8

lence is expected to peak. We then apply our method to two putative Ebolavirus reservoirs, straw-colored fruit bats (Ei-9

dolon helvum) and hammer-headed bats (Hypsignathus monstrosus) to predict when these species should be sampled10

to maximize the probability of detecting active infections. In addition to guiding future sampling of these species, our11

method yields predictions for the times of year that are most likely to produce future spillover events. The generality12

and simplicity of our methodology make it broadly applicable to a wide range of putative reservoir species where sea-13

sonal patterns of birth lead to predictable, but potentially short-lived, pulses of pathogen prevalence.14

AUTHOR SUMMARY15

Many deadly pathogens, such as Ebola, Lassa, and Nipah viruses, originate in wildlife and jump to human populations.16

When this occurs, human health is at risk. At the extreme, this can lead to pandemics such as the West African Ebola17

epidemic and the COVID-19 pandemic. Despite the widely recognized risk wildlife pathogens pose to humans, identi-18

fying host species that serve as primary reservoirs for many pathogens remains challenging. Ebola is a notable exam-19

ple of a pathogen with an unconfirmed wildlife reservoir. A key obstacle to confirming reservoir hosts is sampling ani-20

mals with active infections. Often, disease prevalence fluctuates seasonally in wildlife populations and only reaches de-21

tectable levels at certain times of year. In these cases, statistical models designed to predict the timing of peak preva-22

lence could guide efficient field sampling for active infections. Therefore, we have developed a general model that uses23

serological data to predict times of year when pathogen prevalence is likely to peak. We demonstrate with simulated24

data that our method produces reliable predictions, and then apply our method to two hypothesized reservoirs for Ebola25

virus, straw-colored fruit bats and hammer-headed bats. Our method can be broadly applied to a range of potential reser-26

voir species where seasonal patterns of birth can lead to predictable pulses of peak pathogen prevalence. Overall, our27

method can guide future sampling of reservoir populations and can also be used to make predictions for times of year28

that future outbreaks in human populations are most likely to occur.29

INTRODUCTION30

Spillover of zoonotic pathogens is a pervasive challenge [1], imposing a persistent burden on human health and creating con-31

ditions ripe for the emergence of novel infectious disease [2]. One avenue to controlling the health impacts of spillover is to in-32

crease surveillance within the human population, treating disease as it occurs and using public health measures to keep initial33

events from expanding into epidemics or pandemics [3–5]. However, when surveillance and intervention systems fail, the results34

can be catastrophic (e.g., West African Ebola epidemic; COVID-19 pandemic).35
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An alternative approach to managing the risk of spillover is preemptive, and focuses on stopping spillover before it occurs. For36

instance, the risk of spillover could be managed by altering habitat availability for reservoir species [6, 7], changing human be-37

havior to reduce contact with hosts [8, 9], or vaccinating reservoir species [10, 11]. For these preemptive approaches to work,38

we must know which animal species serve as important reservoirs for a pathogen of interest. Recent progress in this direction39

has been made by capitalizing on advances in machine learning that allow models to learn which suites of traits are associated40

with suitability as a reservoir [2, 12]. For instance, Schmidt et al. [13] used boosted regression trees to predict which species are41

most likely to serve as reservoirs for ebola viruses. Similar efforts have been used to predict reservoirs of SARS-CoV-2 [14], or-42

thopoxviruses [15], betacoronaviruses [12], Nipah virus [16], and filoviruses outside of equatorial Africa [17]. Thus, we now have43

tools in place to generate hypotheses for which species are likely to be reservoirs of any particular pathogen species.44

Even with hypotheses for which species are likely to serve as a reservoirs in hand, testing and confirming that any individual45

species serves as an important reservoir remains a significant challenge [12, 18–20]. Beyond the obvious complexities and lo-46

gistical challenges associated with sampling wild animals in remote locations, verifying that an animal is a reservoir requires47

capturing an animal with a detectable active infection [1]. Prevalence of some zoonotic pathogens is sufficiently high that screen-48

ing reservoir animals for active shedding is straightforward (e.g., Lassa virus in Mastomys natalensis [21]), but more often it is ex-49

tremely challenging for pathogens that generate short-lived acute infections concentrated at only certain times of the year [see50

22–26]. In these cases, achieving even a modest chance of capturing an animal with a detectable active infection requires in-51

tensive and temporally focused sampling during periods of peak prevalence [18]. To address different aspects of this problem,52

several Bayesian approaches have been developed using serosurveillance data to predict incidence and prevalence in reservoir53

populations. For example, Borremans et al. [27] used information about multiple antibodies over time, pathogen presence, and54

demographic information to back-calculate the time since infection for individuals to estimate incidence of Morogoro virus in-55

fection in multimammate mice (M. natalensis). Using a different approach, Pleydell et al. [28] fit an age-structured epidemio-56

logical model specific to Ebola virus in straw-colored fruit bats (Eidolon helvum) to estimate the timing of peak prevalence in57

the adult population. Although these methods are robust, adapting them quickly to other systems would be laborious and not58

always feasible depending on data availability. Thus, a flexible method more easily tailored to different species that requires min-59

imal data would aid empiricists developing surveillance sampling designs to target zoonotic pathogens.60

Here we develop a general methodology that can be used to focus reservoir surveillance on periods of time that are most likely61

to coincide with peak prevalence of a zoonotic pathogen (most often viral pathogens). Our method requires routine serosurveil-62

lance data, knowledge of the rate at which detectable antibodies wane, and the rate at which individuals recover from infec-63

tion. We test the accuracy and utility of our methodology using simulated data and then apply it to systems with real-world im-64

portance, Ebola virus (EBOV; Zaire ebolavirus) in straw-colored fruit bats (Eidolon helvum) and hammer-headed bats (Hypsig-65

nathus monstrosus) using previously published data. We believe this method is simple enough for wide-reaching application to66

many field studies. Therefore our method provides a useful tool to guide the planning of field sampling and to study epidemio-67

logical dynamics in reservoir populations when data on active infections are rare or absent.68

METHODS69

Mathematical foundation70

Our approach to optimizing surveillance for zoonotic pathogens from serological surveillance data builds from a mathematical71

model describing the ecology of the reservoir animal and the epidemiology of the pathogen. We illustrate our approach using72

a model of a reservoir animal that reproduces seasonally and experiences both density independent and density dependent73

mortality. We assume the pathogen can be adequately described by a modified SIR framework that takes into account both74

short-term antibody mediated immunity and long-term immunity mediated by a T-cell response. This distinction is important75

because we assume only the short-term antibody based response is detected by serology [29]. If we further assume individuals76

encounter one another at random, the ecology and epidemiology of the system can be described using the following system of77
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differential equations:78

Ṡ = b(t)N − βSI − S
(
µ+ kN

)
+ ωTRT (1a)

İ = βSI − γI − I
(
µ+ kN

)
(1b)

ṘA = γI −RA

(
µ+ kN + ωA

)
(1c)

ṘT = ωARA −RT

(
µ+ kN + ωT

)
, (1d)

where S is the number of susceptible individuals, I is the number of pathogen infected individuals, RA is the number of indi-79

viduals with antibodies detectable through serology, RT is the number of individuals that are immune to pathogen but lack80

detectable antibodies, and N = S + I + RA + RT is the total population size of the reservoir. All model parameters and their81

biological interpretations are described in table (1).82

Table 1: Model parameters and their biological interpretations. All rates are in days unless specified otherwise.

Parameter Biological interpretation

b(t) Seasonally fluctuating birth rate

µ Density independent death rate

k Density dependent death rate

β Transmission rate

γ Rate of recovery from infection

ωA Rate at which antibodies decay

ωT Rate at which T-cell immunity decays

If data on the abundance of each class are available, we could proceed directly from model (1). Unfortunately, this will not gen-83

erally be the case, and data will more frequently come from serological testing of a random sample of n reservoir animals at var-84

ious points in time. To calculate the probability that x animals will be seropositive within each sample of size n requires that we85

make a change of variables (supplemental material, appendix 1) to express model (1) in terms of proportions:86

ṡ = b(t)− s
(
b(t)− ιβN

)
+ ωT rT (2a)

ι̇ = ι
(
sβN − b(t)− γ

)
(2b)

ṙA = γι− rA
(
ωA + b(t)

)
(2c)

ṙT = rAωA − rT
(
ωT + b(t)

)
, (2d)

where s, ι, rA , and rT are the proportion of reservoir animals in each class and N is the total population size of the reservoir an-87

imal. With the model now written in terms of proportions, we can proceed to solve for the proportion of animals in the actively88

infectious class, ι, as a function of the proportion of animals that carry antibodies, rA(t), using equation (2c):89

ι̂(t) =
ṙA(t) + rA(t)

(
ωA + b(t)

)
γ

, (3)

where ι̂(t) is the predicted proportion of the population that is actively infected at time t.90

Equation (3) demonstrates that we can predict the proportion of the population that is actively infected at any point in time if91
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we can estimate four quantities: 1) the rate at which antibodies are produced following infection, γ; 2) the rate at which antibod-92

ies wane over time, ωA ; 3) a function describing the reservoir birth rate over time, b(t); and 4) a function describing seropreva-93

lence over time, rA(t). We assume that the temporally constant parameters γ and ωA are known or can be estimated using ex-94

perimental infections in the lab. In contrast, the seasonal pattern of birth b(t) will generally not be known and may need to be95

estimated in some cases (supplemental material, appendix 2). If, however, animals live much longer than the lifespan of anti-96

bodies such that b(t) << ωA , birth can be safely ignored to a good approximation (figure S1). Finally, we assume that the sea-97

sonal pattern of seroprevalence, rA(t), will generally be unknown and will need to be estimated from serosurveys. In the next98

section, we outline how this can be accomplished using routinely collected serological data. All mathematical analyses were99

performed in Wolfram Mathematica 13.1 [30].100

Fitting the mathematical model to data101

Estimating a function that describes seasonal patterns of seroprevalence, r̂A(t), is central to our approach and leverages data102

that is routinely collected across a wide range of systems. In general, we assume a sample of reservoir animals is captured at103

multiple times each year and tested for the presence of antibodies for a target pathogen to give the number of seropositive an-104

imals in a sample. Thus, data will consist of a sampling date (t), a sample size (n), and the number of animals within the sample105

that are seropositive (x). We take two approaches to fitting r̂A(t), with the best approach largely dependent on the temporal res-106

olution of the data.107

Interpolation of temporally rich seroprevalence data108

If high-resolution seroprevalence data (e.g., weekly or monthly sampling) are available for a potential reservoir species, inter-109

polation provides an efficient method for fitting the function rA(t) to the data. We illustrate this approach by applying a kernel110

smoother to estimate the function, r̂A(t). Specifically, we use the NadarayaWatson kernel regression estimate available in R [31]111

with a normal density as the smoothing kernel and a bandwidth of 90. The bandwidth must be increased in cases when data is112

sparse, thus we used the lowest value possible that accommodated our all of our simulations (see simulated surveillance data113

section below). We then calculate the derivative of the interpolated function, ṙA(t), by differencing the fitted values for r̂A(t) per114

unit time (e.g. days, weeks, months etc.). As long as parameters γ and ωA have been estimated independently, and b(t) is neg-115

ligible (or estimated), this provides the information required for the frequency of infected individuals over time, ι̂(t) to be pre-116

dicted using equation (3). Although computationally efficient and conceptually straightforward, we anticipate that this method117

will not perform well when data are sparse or highly clustered (i.e., when sampling effort is concentrated at specific times of year).118

Model fitting for sparse seroprevalence data119

In cases when sampling is sporadic and seroprevalence data are sparse, interpolation may not be feasible and an approach based120

on model-fitting may perform better. This approach uses an understanding of system specific biology to define a mathematical121

function describing how seroprevalence is expected to change over time. The limited seroprevalence data is then used to esti-122

mate the parameters that fine-tune the function r̂A(t) (e.g., the timing of peaks). Here, we illustrate this approach for systems123

where seasonal birth pulses are thought to cause fluctuations in the prevalence of infection and concomitant fluctuations in124

seroprevalence.125

In systems where seasonal birth pulses occur, we expect, in general, a subsequent increase in infected individuals followed by126

a downstream increase in individuals that have seroconverted. Qualitatively, this expectation can be modeled using a modified127

periodic Gaussian function e.g.,[32]:128

r∗A(t) = C2 − C1 · e−a cos2(πft−ϕ). (4)

Here r∗A(t) is a function specifying the predicted proportion of seropositive animals at time t, C2 adjusts the average value of129
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seroprevalence over time, C1 sets the amplitude of seasonal fluctuations in seroprevalence, a controls the shape of seasonal fluc-130

tuations, ϕ defines the phase shift, and f specifies the frequency. We assume f is determined by the natural history of the reser-131

voir species and is known. For example, a reservoir species that reproduces either once or twice per year in a regular pattern132

would have values of f = 1/365 and f = 2/365, respectively, if the time units are given in days. In contrast, we expect C1 , C2 , a,133

and ϕ to be unknown and require estimation.134

We used Bayesian inference to estimate the unknown parameters in equation (4) and estimate the uncertainty in our estimates135

for ι̂peak using 95% credible intervals (CI). Specifically, the likelihood of observing a temporal sequence of seroprevalence values136

is:137

L(θ) =
τ∏

i=1

(ni

xi

)
r∗A(ti)

xi
(
1− r∗A(ti)

)ni−xi , (5)

where the product is carried over τ total sampling time points and θ = {C1, C2, a, ϕ}′ . For each time point i, ni defines the num-138

ber of animals sampled at time point i, xi defines the number of sampled animals found to be seropositive at time point i, and139

ti defines the time at which sample i was collected. Prior distributions for model parameters and details of the Bayesian estima-140

tion procedure are given in supplemental material, appendix 3. Bayesian estimation was performed using rstan [33].141

Simulating surveillance data142

To determine if our methods accurately predict the true peak prevalence of infection, ιpeak , we applied each method to simu-143

lated data sets. Specifically, we simulated a pathogen circulating in a wild animal population using model (1) with semi-annual144

birth pulses using equation (S6). In general, this leads to two peaks in prevalence and seroprevalence each year, a pattern ob-145

served in many bat species [e.g., 34–36]. Simulations focused on three different scenarios: low, medium, or high amplitude cy-146

cles in seroprevalence, rA(t), and prevalence, ι(t), with the specific parameter values used provided in table (S2). We generated147

100 replicate stochastic simulations for each scenario using the Gillespie algorithm with a tau leaping approximation [37]. Sim-148

ulations were initiated at the endemic disease equilibrium (supplemental material, appendix 1) and run for 10 years. We used149

the last 394 days for analyses to include peaks occurring at the end of year 9 to beginning of year 10, and all days in year 10.150

The two predicted peaks within the final 394 days, ι̂peak , were determined for each simulated data set by finding the time point151

associated with the maximum value between days [0,170] and the time point associated with the maximum value between152

days [170,360].153

We applied our methodology to the simulated data for a range of possible field sampling designs. First, we analyzed the sim-154

ulated data sets assuming field sampling was performed at evenly spaced time intervals (daily, weekly, bi-weekly, monthly, bi-155

monthly) over the 394 day study period. Second, we analyzed the simulated data sets assuming the number of sampling days156

was fixed at 42 days, but the distribution of these days over the year differed (evenly spaced days, random days, 3-day clusters,157

7-day clusters). Each of the nine sampling designs was applied to the low, medium, and high amplitude seroprevalence cycle158

scenarios to yield 27 different combinations of epidemiological dynamics and sampling schemes (table S3). For each day of159

sampling, we assumed n = 20 animals were captured at random and tested for antibodies to the focal pathogen to yield an160

estimate for seroprevalence.161

To evaluate the performance of our method, we compared the probability of detecting an actively infected animal (e.g., through162

PCR, culture, or sequencing) when sampling was timed using our method with two benchmarks: 1) the best case scenario where163

sampling was performed at the true peak and 2) the null solution where sampling was performed on a random day. In each164

case, a sample of 20 animals was drawn at random and the number that were actively infected was recorded. Sampling was165

repeated ten times for each case and the probability of detecting an actively infected animal calculated as the number of trials166

in which at least one infected animal was found. Details on all simulations are given in supplemental material, appendix 4. All167

simulations were performed in R [31].168
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Study Populations and Surveillance Sampling169

African fruit bats are likely candidate reservoir hosts for Ebolaviruses evidenced by the presence of antibodies in many species170

and viral RNA sequenced from several species, yet no replicating viral strain has been isolated from a wild bat population de-171

spite extensive field sampling [see 22–25]. Many bat species have highly synchronous birth cycles [34] that can translate into172

cycles of infection prevalence [32]. In addition, Ebolaviruses are cleared by their hosts and therefore viral shedding may only be173

detected during a brief window [38]. Thus, predicting transmission cycles of Ebolaviruses in putative reservoir hosts would help174

to optimize surveillance sampling and to understand spillover and the origins of Ebola virus disease in humans.175

Two examples of frugivorious bat species with medium to high seroprevalence and the hypothesized potential to cause Ebolavirus176

spillover events are straw-colored fruit bats (Eidolon helvum) and hammer-headed bats (Hypsignathus monstrosus) [38–40]. E.177

helvum are commmon fruit bats that form large seasonal aggregations [38] and reproduce annually [41]. H. monstrosus form178

large breeding aggregations [42], but unlike E. helvum, reproduce semi-annually [41]. Djomsi et al. [38] captured free-ranging179

bats from a roosting site in Yaounde, Cameroon, and at a feeding site 40 km away near Obala, Cameroon. Samples were col-180

lected at approximately monthly intervals between December 2018 and November 2019, with the largest inter-sampling in-181

terval spanning two months. Whole blood samples and rectal and oral swabs preserved in RNA-later were collected from indi-182

vidual bats. Bat species, E. helvum and H. monstrosus, were identified by molecular testing. Djomsi et al. [38] screened E. helvum183

and H. monstrosus samples for antibodies to three Ebolavirus species using a Luminex-based serological assay previously adapted184

for bats [see 38]. They also tested for active infections in E. helvum using a semi-nested PCR assay specific to Ebola virus (EBOV;185

Zaire ebolavirus) targeting a 184 bp fragment on the VP35 gene [see 38]. For analyses in this study, we used the results from186

the Res1GP.ZEBVkiss antigenic test, a test for on the glycoprotein of EBOV, following [28]. Specific details of all methods and187

data are publicly available from [38] and [28].188

To parameterize our models for E. helvum and H. monstrosus, we used values previously estimated values for the recovery rate189

and rate of waning antibodies. Pleydell et al. [28] estimated the recovery rate (γ = 1/1.5 weeks) and rate of waning antibodies190

(ωA = 1/75 weeks) for the E. helvum population in Cameroon, but did not estimate these value for H. monstrosus. For H. mon-191

strosus, we used measurements from experimental studies in Egyptian fruit bats (Rousettus aegyptiacus) with Marburg virus192

(MARV; Marburg marburgvirus) to approximate parameter values for the recovery rate (γ = 1/1.43 weeks) [43] and the rate of193

waning antibodies (ωA = 1/12.9 weeks) [44].194

RESULTS195

Optimizing surveillance on simulated data196

Interpolation of temporally rich seroprevalence data197

We begin our analyses by testing our methods on simulated surveillance data. Figure 1 shows an example of the true popula-198

tion curves for rA(t) and ι(t) and the estimated curves, r̂A(t) and ι̂(t), that were fitted to simulated serological data using inter-199

polation. We find that we can successfully estimate r̂A(t) and predict prevalence pulses in populations with different epidemi-200

ological dynamics (e.g., low, medium, and high amplitude dynamics in figure 1) using interpolation. When surveillance sam-201

pling occurs at sufficient frequency and at even intervals across time, interpolation provides a good approximation to the true202

epidemiological dynamics such that surveillance sampling can be optimized to detect active infections (figures 2 and 3a). The203

accuracy of the predictions for the timing of peak prevalence in the population from interpolation for all sampling schemes are204

given in table (S4). When the data requirements are met, this method can also be used retrospectively to understand epidemi-205

ological dynamics when episodic shedding occurs randomly, for example, not necessarily coinciding with seasonal birth pulses206

(figure S7). However, interpolation methods do not accurately predict the peak timing if serology data is sparse or sampling is207

highly clustered in time (see figures 2 and 3a). In these cases, model fitting is a better option.208
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Figure 1: Results from interpolating serological data sampled daily for (a) low, (b) medium, and (c) high amplitude epidemic curves. Grey
points represent the raw simulated data.

Figure 2: Proportion successful sampling bouts that occurred when the simulated population was sampled during the true peaks, ιpeak ,
the interpolation prediction of peaks, ι̂peak , and a random time point. The proportion of successful sampling bouts are shown for three
different types of disease dynamics, where the amplitude of the cycles is low, medium, and high, and for five different sampling schemes,
when sampling occurs daily, weekly, bi-weekly, monthly, and bi-monthly over 394 days.
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(b) Model Fitting

Figure 3: Proportion successful sampling bouts that occurred when the simulated population was sampled during the true peaks, ιpeak ,
the predicted peaks, ι̂peak , and a random time point when the predictions for r̂A(t) were made by (a) interpolation or (b) model fitting. The
proportion of successful sampling bouts are shown for three different types of disease dynamics, where the amplitude of the cycles is low,
medium, and high, and for four different 42-day sampling schemes, when sampling occurs at even intervals, random days, 3-day clusters,
and week clusters.

Model fitting for sparse seroprevalence data209

Although estimating the function r̂A(t) using model fitting is more computationally intensive than interpolation, our results210

show that this approach can accurately predict the timing of peak prevalence when interpolation would fail (figure 3a). Specif-211

ically, as seroprevalence data becomes less evenly distributed, we find that the model fitting approach continues to provide ac-212

curate guidance for sampling whereas the guidance provided by the interpolation approach degrades (figure 3b and 4). The213

accuracy of the predictions for the timing of peak viral shedding in the population from r∗A(t), the size of the 95% CI estimated214

via Bayesian inference, and the proportion of times the true population peak falls within the CIs are summarized in table (S5).215
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(b) Medium Amplitude 42−Day Week Cluster Sample
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(c) High Amplitude 42−Day Week Cluster Sample
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Figure 4: Results from model fitting with 42-day weekly clustered simulated serosurveillance data from (a) low, (b) medium, and (c) high
amplitude epidemic curves. The blue and yellow lines represent the distribution of curves falling within the 95% CIs after Bayesian
parameter estimation of r∗A(t) and predicting ι̂(t), respectively. The black lines represent the true population simulated dynamics.

Application to putative Ebolavirus reservoirs216

In Cameroon, the fruit bat species E. helvum and H. monstrosus were shown to carry antibodies against EBOV but no active in-217

fections were detected in E. helvum [38]. Djomsi et al. [38] did not test the H. monstrosus population for active infections, how-218

ever, H. monstrosus is one of three bat species for which EBOV has been detected by real-time PCR and partially sequenced219

[45].220

We used publicly available data from [28] to predict the peak period of active infection, ι̂peak , using our methodology. This data221

set includes seroprevalence and the proportion of animals lactating for each species. First, we tested the assumption that E.222

helvum reproduces annually and H. monstrosus reproduces semi-annually. Figures (S3) and (S5) demonstrate one annual birth223

pulse for E. helvum and two annual birth pulses for H. monstrosus, respectively. Next, we used results from serosurveys to pre-224

dict annual viral pulses, ι̂peaks , in E. helvum by fitting the data to r∗A(t) for EBOV (figure 5). Figure (S4) shows the estimated sero-225

dynamics and predicted infection prevalence for this population. These results suggest this population has a high amplitude226

cycle relative to our simulated data, with an average amplitude of 0.56 an 95% CI equal to [0.51, 0.62], meaning that sampling227

this population at peak prevalence greatly optimizes sampling for active infections. The distribution of the timing of predicted228

peaks is given in figure (5) with the mode occurring at week 32 and 95% CI spanning weeks [31,33]. No samples contained in229

this dataset were collected during this predicted window of peak prevalence [28].230

We used the same methodology to predict the period of peak prevalence for H. monstrosus. The estimated temporal patterns of231

seroprevalence and prevalence for this population are shown in figure (S6). These results suggest that this population has a low232

amplitude cycle, with an average amplitude of 0.053 and a 95% CI equal to [0.00, 0.14]. The estimates and 95% CIs for the two233

peaks are the first mode occurring on week 27 within the interval [20.00, 32.00] and the second mode occurring on week 1234

within the interval [46.00, 6.00] (weeks within a year are counted from from 0 to 51) (figure 6). Djomsi et al. [38] collected sam-235

ples for this species during the predicted peak intervals, but the samples were not tested for active infections of EBOV.236
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Figure 5: Distribution of weeks where the annual peak viral pulse was predicted for E. helvum. The vertical dashed line represents the mode
and the green shaded area represents the 95% CI.
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Figure 6: Distribution of weeks where the semi-annual peak viral pulses were predicted for H. monstrosus. The vertical dashed lines
represent the modes and the pink shaded areas represent the 95% CIs for each pulse. Note the timescale on the x-axis begins at week 16 to
accommodate the second peak that occurs at the end/beginning of each year.

DISCUSSION237

We have developed a general methodology for predicting the timing of peak pathogen prevalence in seasonally fluctuating238

wildlife populations using temporally structured serological data. Our approach is motivated by the possibility that success-239

ful sampling of actively infected reservoir animals has been impeded by seasonal fluctuations in pathogen prevalence driven240

by seasonal birth cycles. By focusing the search for active infections on specific periods of time where infections are most likely241

to be discovered, our method may facilitate confirmation of long-suspected reservoir hosts. Thus, our method leverages rou-242

tinely collected serosurveillance data to extract information about the temporal pattern of active infection. When serosurveil-243

lance data is sufficiently rich for the temporal pattern of seroprevalence to be interpolated, our method is particularly straight-244

forward, computationally inexpensive, and accurate. Even when serosurveillance data is temporally sparse, our method can be245
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used to generate accurate predictions by first fitting a mathematical model to the serological data. This latter approach, how-246

ever, is more computationally intensive and requires an additional assumption about the timing of the birth cycle.247

Applying our methodology to two bat species in Cameroon, E. helvum and H. monstrosus [38], long hypothesized to harbor248

EBOV, demonstrates its utility. Our results suggest the population of E. helvum has one prevalence peak occurring between249

weeks 31-33 each year. The population of H. monstrosus has much wider semi-annual peak intervals spanning weeks 20 to 32250

and 46 to 6 in the following year. If accurate, these interval estimates can be used to plan future surveillance surveys or predict251

periods when a high proportion of infected animals may pose an increased threat of zoonotic spillover. Unfortunately, validating252

our predictions will only be possible when animals with active infections have been captured from these populations. Nonethe-253

less, evidence exists to support our interval estimates for each species. Our peak interval for E. helvum corresponds to the inter-254

val (weeks 30-31) predicted by Pleydell et al. [28], who estimated an age-structured model to obtain the highest probability255

predicted annual peak in the density of infectious adults. The semi-annual H. monstrosus intervals overlap the weeks in 2003256

(week 5 and 22) in which Leroy et al. [45] captured bats PCR-positive for EBOV on the border between Gabon and the Republic257

of the Congo.258

Although the results from our simulated data are robust and empirical data are encouraging, limitations of our model may still259

exist. First, the simulation testing assumed the mathematical model underlying our method accurately reflects the true biolog-260

ical processes. If the assumptions of our relatively simple compartment model are violated in the wild, our testing may overes-261

timate the performance of our method. For instance, the model we have studied here ignores age structure which may have262

a significant impact on the relationship between seroprevalence and prevalence if sampling is not random with respect to age263

class [e.g., 28, 34]. The method we present here also assumes seasonality is driven by fluctuations in birth rate rather than sea-264

sonal changes in animal behavior that may influence contact rates and transmission [e.g., 42]. Even though we did not study265

these alternative scenarios directly, instead choosing to focus on a simple but general scenario, it will often be possible to inte-266

grate alternative biological assumptions by simply exchanging the underlying mechanistic model.267

Next, a potential limitation specific to our model fitting method is that we assume the epidemiological cycles occur consistently268

over time and the frequency can be specified using the number of birth pulses that occur annually for a particular species. In269

reality, prevalence pulses can occur stochastically [e.g., 46, 47], annual patterns in some population include skip years [e.g., 28,270

48] or episodic shedding can be hard to distinguish from transient epidemics [49]. If epidemiological cycles cannot be approx-271

imated by a regular pattern, our model fitting method would not be appropriate. Our method also requires the rate of wan-272

ing antibodies to either be known or estimated independently. Thus, our predicted peak intervals from model fitting are con-273

ditioned on specific values for rate of waning antibodies. If including uncertainty for these estimates is desired, our likelihood274

framework used in model fitting would easily accommodate a distribution for the rate of waning antibodies.275

Last, our general method requires binary data describing whether an animal is seropositive or seronegative. Serological data276

is prone to cross-reactivity [50] resulting in low specificity and variable sensitivity dependent on the immune dynamics of the277

target species and pathogen, secondary antibody selection [51], and method of pathogen inactivation [52]. We assume reliable278

thresholds will be used to determine seropositivity, but we do not provide a method to include the uncertainty from serological279

data in our model.280

Even in the face of these challenges, pathogen surveillance in wild animal populations is essential for identifying reservoir species,281

collecting pathogen samples for genetic characterization, and predicting when spillover is most likely to occur. By leveraging282

routinely collected serosurveys to optimize pathogen surveillance, the methodology we develop here has the potential to re-283

duce the cost and labor associated with pathogen surveillance and increase our ability to successfully sample pathogens that284

reach appreciable prevalence at only specific times of year. More broadly, this methodology can be used to identify times of year285

when pathogen prevalence should peak, providing guidance for interventions aimed at reducing spillover risk.286
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