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Abstract. We prove a scalar curvature rigidity theorem for convex
polytopes. The proof uses the Fredholm theory for Dirac operators on
manifolds with boundary. A variant of a theorem of Fefferman and
Phong plays a central role in our analysis.

1. Introduction

Let n ≥ 3 be an integer, and let Ω be a compact, convex polytope in Rn

with non-empty interior. We may write Ω =
⋂

i∈I{ui ≤ 0}, where ui, i ∈ I,
is a finite collection of non-constant linear functions defined on Rn. For each
i ∈ I, we denote by Ni ∈ Sn−1 the outward-pointing unit normal vector to
the halfspace {ui ≤ 0} with respect to the Euclidean metric.

Let g be a Riemannian metric which is defined on an open set containing
Ω. For each i ∈ I, we denote by νi the outward-pointing unit normal vector
to the halfspace {ui ≤ 0} with respect to the metric g. We will assume the
following:

Matching Angle Hypothesis. If x is point in ∂Ω and i1, i2 ∈ I satisfy
ui1(x) = ui2(x) = 0, then 〈νi1 , νi2〉 = 〈Ni1 , Ni2〉 at the point x. Here, the
inner product 〈νi1 , νi2〉 is computed with respect to the metric g, and the
inner product 〈Ni1 , Ni2〉 is the standard inner product in Rn.

Theorem 1.1. Suppose that n ≥ 3 is an integer, and Ω is a compact, convex
polytope in Rn with non-empty interior. Let g be a Riemannian metric which
is defined on an open set containing Ω and has nonnegative scalar curvature
at each point in Ω. For each i ∈ I, we assume that the mean curvature of
the hypersurface {ui = 0} with respect to g is nonnegative at each point in
Ω ∩ {ui = 0}. Moreover, we assume that the Matching Angle Hypothesis is
satisfied. Then the Riemann curvature tensor of g vanishes at each point in
Ω. Moreover, the second fundamental form of the boundary faces of Ω with
respect to g vanishes.

Scalar curvature comparison theorems for polytopes were first studied in
seminal work of Gromov [6],[7],[8]. In particular, Gromov addressed the
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case when the dihedral angles are at most π
2 (see [7], Section 3.18). Li [14]

has used minimal surface techniques to prove a scalar curvature comparison
theorem for prisms in dimension 3. In [15], Li generalized this approach up
to dimension 7. Wang, Xie, and Yu [20] have proposed a different approach
to this problem which is based on the study of Dirac operators on manifolds
with corners.

In this paper, we describe another approach to this problem. As in [20], we
employ a spinor approach. In contrast to [20], we work with boundary value
problems for Dirac operators on smooth domains. These types of boundary
value problems are well understood thanks to the work of Hörmander [12]
and Bär and Ballmann [1],[2].

Spinor techniques have long been used in the study of scalar curvature,
see e.g. [4], [9], [10], [16], [17], [18], [21]. We refer to the text by Law-
son and Michelsohn [13] for an excellent introduction to spinors and their
applications in geometry.

In the following, we outline the main steps involved in the proof of The-
orem 1.1. We approximate a given convex polytope Ω by a one-parameter
family of smooth convex domains Ωλ, where λ is assumed to be sufficiently
large. The domains Ωλ form an increasing family of sets, and their union
equals the interior of Ω. We consider a sequence λl → ∞. Let m = 2[

n
2
]

denote the dimension of the space of spinors on flat Rn. For each l, we

construct a non-trivial m-tuple of harmonic spinors s(l) = (s
(l)
1 , . . . , s

(l)
m )

on the domain Ωλl
which satisfies a suitable local boundary condition of

Lopatinsky-Shapiro-type. To prove the existence of an m-tuple of spinors
with these properties, we use the Fredholm theory from [12] together with

the deformation invariance of the Fredholm index. We normalize s(l) so that
∫

U

∑m
α=1 |s

(l)
α |2 dvolg = m volg(U), where U is some fixed Euclidean ball with

the property that the closure of U is contained in the interior of Ω. We then
apply the Weitzenböck formula to s(l), and integrate over the domain Ωλl

.
The resulting integral formula contains a term involving the scalar curvature,
as well as a boundary term. Unfortunately, it is not clear if the boundary
term has a favorable sign. We are able to control the boundary integral by
adapting a deep theorem due to Fefferman and Phong [5]. As a result, we

are able to show that
∫

Ωλl

∑m
α=1 |∇s

(l)
α |2 dvolg → 0 as l → ∞ (see Proposi-

tion 4.4 below). By passing to the limit as l → ∞, we obtain an m-tuple
of parallel spinors s = (s1, . . . , sm) which is defined in the interior of Ω. In
particular, 〈sα, sβ〉 = zαβ for some fixed matrix z ∈ End(Cm). Finally, by
exploiting the boundary condition, we show that z is the identity. In other
words, s1, . . . , sm are orthonormal at each point in the interior of Ω. As a
consequence, the Riemann curvature tensor of g vanishes identically.
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2. A boundary value problem for the Dirac operator on an

odd-dimensional domain with smooth boundary

Throughout this section, we assume that n ≥ 3 is an odd integer. Let
{E1, . . . , En} denote the standard basis of Rn. Let Cl(n,C) denote the
Clifford algebra. The spin representation gives a surjective algebra homo-
morphism ρ̂ : Cl(n,C) → End(∆n), where ∆n is a complex vector space of

dimension m = 2[
n
2
] equipped with a Hermitian inner product. For each

a = 1, . . . , n, the map ρ̂(Ea) ∈ End(∆n) is skew-adjoint. Moreover, the
Clifford relations

(1) ρ̂(Ea)ρ̂(Eb) + ρ̂(Eb)ρ̂(Ea) = −2δab id

hold for all a, b = 1, . . . , n. Since n is odd, the product E1 · · ·En ∈ Cl(n,C)
commutes with every element of Cl(n,C). Since ρ̂ is surjective, it follows
that ρ̂(E1) · · · ρ̂(En) ∈ End(∆n) commutes with every element of End(∆n).
Therefore, ρ̂(E1) · · · ρ̂(En) ∈ End(∆n) is a scalar multiple of the identity. It
is straightforward to see that

(2) i
n+1
2 ρ̂(E1) · · · ρ̂(En) = ±id.

The sign in (2) depends on the choice of ρ̂ (see [13], Proposition 5.9). In the

following, we assume that ρ̂ is chosen so that i
n+1
2 ρ̂(E1) · · · ρ̂(En) = id.

Let us fix an orthonormal basis {ŝ1, . . . , ŝm} of ∆n. We define

(3) ωaαβ = 〈ρ̂(Ea) ŝα, ŝβ〉

for a = 1, . . . , n and α, β = 1, . . . ,m. The matrices ω1, . . . , ωn ∈ End(Cm)
are skew-Hermitian and satisfy ωaωb+ωbωa = −2δab id for all a, b = 1, . . . , n.

Moreover, i
n+1
2 ω1 · · ·ωn = id by our choice of ρ̂. Finally,

(4) End(Cm) = span{ωa1 · · ·ωar : 1 ≤ a1 < . . . < ar ≤ n}

since ρ̂ is surjective.

Lemma 2.1. Assume that n ≥ 3 is an odd integer. If z ∈ End(Cm) anti-
commutes with ωa ∈ End(Cm) for each a = 1, . . . , n, then z = 0.

Proof. Suppose that z ∈ End(Cm) anti-commutes with ωa ∈ End(Cm)
for each a = 1, . . . , n. Since n is odd, it follows that z anti-commutes with
the product ω1 · · ·ωn ∈ End(Cm). Since ω1 · · ·ωn is a non-zero multiple of
the identity, we conclude that z = 0. This completes the proof of Lemma 2.1.

In the remainder of this section, we assume that Ω is a compact domain
in Rn with smooth boundary ∂Ω = Σ. Let g be a Riemannian metric
which is defined on an open set containing Ω. We denote by ν the outward-
pointing unit normal vector field with respect to the metric g. We denote
by H the mean curvature of Σ with respect to g, defined as the trace of
the fundamental form of Σ. Under our sign convention for H, the mean
curvature vector of Σ is given by −Hν.
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Let S denote the spinor bundle over Ω with respect to the metric g. Note
that S is a complex vector bundle of rank m equipped with a Hermitian
inner product. As a bundle, we may identify S with the trivial bundle
Ω × ∆n → Ω. Each tangent vector ξ ∈ TxΩ induces a skew-adjoint map
ρ(ξ) ∈ End(Sx). If {e1, . . . , en} is an orthonormal frame with respect to the
metric g, then

ρ(ek)ρ(el) + ρ(ek)ρ(el) = −2δkl id

for k, l = 1, . . . , n. Moreover, if {e1, . . . , en} is a positively oriented orthonor-

mal frame with respect to the metric g, then i
n+1
2 ρ(e1) · · · ρ(en) = id. For

abbreviation, we write ξ · s instead of ρ(ξ) s. This is referred to as Clifford
multiplication.

We next consider the spin connection with respect to the metric g. The
spin connection is a connection ∇ on S which is compatible with Clifford
multiplication and which is compatible with the Hermitian inner product on
S. The Dirac operator is defined by

Ds =
n∑

k=1

ek · ∇eks,

where s denotes a section of S and {e1, . . . , en} is a local orthonormal frame
on Ω. The boundary Dirac operator DΣ is given by

DΣs =

n−1∑

k=1

ν · ek · ∇eks+
1

2
H s,

where s denotes a section of S|Σ and {e1, . . . , en−1} is a local orthonormal
frame on Σ. Note that DΣ is formally self-adjoint.

In the following, we will consider the Dirac operator acting on m-tuples
of spinors. To fix notation, we define a complex vector bundle E over Ω by

E = S ⊕ . . .⊕ S
︸ ︷︷ ︸

m times

.

Note that E has rankm2. A section of E can be identified with anm-tuple of
spinors s = (s1, . . . , sm) defined on Ω. We may view D as an operator acting
on sections of E , and we may view DΣ as an operator acting on sections of
E|Σ.

In the next step, we introduce a local boundary condition of Lopatinsky-
Shapiro-type. To formulate the boundary condition, we assume that a
smooth map N : Σ → Sn−1 is given.

Definition 2.2. We define a bundle map χ : E|Σ → E|Σ by

(χs)α = −
n∑

a=1

m∑

β=1

〈N,Ea〉ωaαβ ν · sβ
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for α = 1, . . . ,m. Moreover, we define a bundle map B : E|Σ → E|Σ by

(Bs)α =
n−1∑

k=1

n∑

a=1

m∑

β=1

〈dN(ek), Ea〉ωaαβ ek · sβ

for α = 1, . . . ,m. Here, {e1, . . . , en−1} is a local orthonormal frame on Σ.

Lemma 2.3. The map χ is self-adjoint. Moreover, χ2 = id.

Proof. Suppose that s = (s1, . . . , sm) and t = (t1, . . . , tm) are two m-
tuples of spinors. We compute

m∑

α=1

〈(χs)α, tα〉 = −
n∑

a=1

m∑

α,β=1

〈N,Ea〉ωaαβ 〈ν · sβ , tα〉

= −
n∑

a=1

m∑

α,β=1

〈N,Ea〉ωaβα 〈sβ , ν · tα〉

=

m∑

β=1

〈sβ , (χt)β〉.

Moreover,

(χ2s)α = −
n∑

a,b=1

m∑

β,γ=1

〈N,Ea〉 〈N,Eb〉ωaαβ ωbβγ sγ = sα

for α = 1, . . . ,m. This completes the proof of Lemma 2.3.

Lemma 2.4. The map B is self-adjoint. Moreover, χ and B commute.

Proof. Suppose that s = (s1, . . . , sm) and t = (t1, . . . , tm) are two m-
tuples of spinors. Let {e1, . . . , en−1} be a local orthonormal frame on Σ.
Then

m∑

α=1

〈(Bs)α, tα〉 =
n−1∑

k=1

n∑

a=1

m∑

α,β=1

〈dN(ek), Ea〉ωaαβ 〈ek · sβ , tα〉

=
n−1∑

k=1

n∑

a=1

m∑

α,β=1

〈dN(ek), Ea〉ωaβα 〈sβ , ek · tα〉

=
m∑

β=1

〈sβ , (Bt)β〉.
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This shows that B is self-adjoint. Moreover,

(χBs)α − (Bχs)α

= −
n−1∑

k=1

n∑

a,b=1

m∑

β,γ=1

〈N,Ea〉 〈dN(ek), Eb〉ωaαβ ωbβγ ν · ek · sγ

+
n−1∑

k=1

n∑

a,b=1

m∑

β,γ=1

〈dN(ek), Ea〉 〈N,Eb〉ωaαβ ωbβγ ek · ν · sγ

= −
n−1∑

k=1

n∑

a,b=1

m∑

β,γ=1

〈N,Ea〉 〈dN(ek), Eb〉 (ωaαβ ωbβγ + ωbαβ ωaβγ) ν · ek · sγ

= 2
n−1∑

k=1

〈N, dN(ek)〉 ν · ek · sα

= 0

for α = 1, . . . ,m. Thus, χ and B commute. This completes the proof of
Lemma 2.4.

Proposition 2.5. Suppose that s = (s1, . . . , sm) is an m-tuple of spinors.
Then

χDΣs+DΣχs = −Bs.

Proof. Let {e1, . . . , en−1} denote a local orthonormal frame on Σ. We
compute

(χDΣs)α = −
n∑

a=1

m∑

β=1

〈N,Ea〉ωaαβ ν · (D
Σsβ)

=
n−1∑

k=1

n∑

a=1

m∑

β=1

〈N,Ea〉ωaαβ ek · ∇eksβ +
1

2
H (χs)α

and

(DΣχs)α =
n−1∑

k=1

ν · ek · ∇ek(χs)α +
1

2
H (χs)α

= −
n−1∑

k=1

ek · ∇ek(ν · χs)α −
1

2
H (χs)α

= −
n−1∑

k=1

n∑

a=1

m∑

β=1

〈dN(ek), Ea〉ωaαβ ek · sβ

−
n−1∑

k=1

n∑

a=1

m∑

β=1

〈N,Ea〉ωaαβ ek · ∇eksβ −
1

2
H (χs)α
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for α = 1, . . . ,m. Putting these facts together, the assertion follows. This
completes the proof of Proposition 2.5.

Corollary 2.6. Let A = DΣ+ 1
2χB. Then A is formally self-adjoint. More-

over, A anti-commutes with χ.

Proof. It follows from Lemma 2.3 and Lemma 2.4 that χB is self-adjoint.
Since DΣ is formally self-adjoint, we conclude that A is formally self-adjoint.
This proves the first statement. To prove the second statement, suppose that
s = (s1, . . . , sm) is an m-tuple of spinors. Using Lemma 2.3, Lemma 2.4,
and Proposition 2.5, we obtain

χAs+Aχs = χDΣs+DΣχs+
1

2
χχBs+

1

2
χBχs

= χDΣs+DΣχs+ Bs

= 0.

This completes the proof of Corollary 2.6.

At this point, we recall a definition from linear algebra (see e.g. [22],
p. 92).

Definition 2.7. Let V and W be finite-dimensional real vector spaces of
the same dimension, each of them equipped with an inner product. Let
L : V → W be a linear map. The trace norm of L is defined by ‖L‖tr =
supQ tr(QL), where the supremum is taken over all linear isometries Q :
W → V . Equivalently, ‖L‖tr can be characterized as the sum of the singular
values of L.

It is easy to see from the definition that the trace norm satisfies the tri-
angle inequality.

Lemma 2.8. Suppose that s = (s1, . . . , sm) is an m-tuple of spinors. Then

∣
∣
∣
∣

m∑

α=1

〈(Bs)α, sα〉

∣
∣
∣
∣
≤ ‖dN‖tr

( m∑

α=1

|sα|
2

)

at each point x ∈ Σ. Here, ‖dN‖tr denotes the trace norm of the differential
dN : TxΣ → TN(x)S

n−1. The tangent space TxΣ is equipped with the restric-

tion of the inner product g, and the tangent space TN(x)S
n−1 is equipped

with the restriction of the standard inner product on Rn.

Proof. Fix a point x ∈ Σ. Let λ1, . . . , λn−1 ≥ 0 denote the singular values
of the differential dN : TxΣ → TN(x)S

n−1. We can find an orthonormal basis

{e1, . . . , en−1} of TxΣ and an orthonormal basis {Ê1, . . . , Ên−1} of TN(x)S
n−1



8 SIMON BRENDLE

such that dN(ek) = λk Êk for each k = 1, . . . , n− 1. Then

m∑

α=1

∣
∣
∣
∣

n∑

a=1

m∑

β=1

〈Êk, Ea〉ωaαβ ek · sβ

∣
∣
∣
∣

2

= −
n∑

a,b=1

m∑

α,β,γ=1

〈Êk, Ea〉 〈Êk, Eb〉ωaαβ ωbγα 〈sβ , sγ〉

= −
1

2

n∑

a,b=1

m∑

α,β,γ=1

〈Êk, Ea〉 〈Êk, Eb〉 (ωaγα ωbαβ + ωbγα ωaαβ) 〈sβ , sγ〉

=

m∑

α=1

|sα|
2

for each k = 1, . . . , n− 1. Using the Cauchy-Schwarz inequality, we obtain
∣
∣
∣
∣

n∑

a=1

m∑

α,β=1

〈Êk, Ea〉ωaαβ 〈ek · sβ , sα〉

∣
∣
∣
∣

≤

( m∑

α=1

∣
∣
∣
∣

n∑

a=1

m∑

β=1

〈Êk, Ea〉ωaαβ ek · sβ

∣
∣
∣
∣

2) 1
2
( m∑

α=1

|sα|
2

) 1
2

=
m∑

α=1

|sα|
2

for each k = 1, . . . , n− 1. Summation over k = 1, . . . , n− 1 gives

∣
∣
∣
∣

m∑

α=1

〈(Bs)α, sα〉

∣
∣
∣
∣
=

∣
∣
∣
∣

n−1∑

k=1

n∑

a=1

m∑

α,β=1

〈dN(ek), Ea〉ωaαβ 〈ek · sβ , sα〉

∣
∣
∣
∣

=

∣
∣
∣
∣

n−1∑

k=1

λk

( n∑

a=1

m∑

α,β=1

〈Êk, Ea〉ωaαβ 〈ek · sβ , sα〉

)∣
∣
∣
∣

≤

( n−1∑

k=1

λk

)( m∑

α=1

|sα|
2

)

.

This completes the proof of Lemma 2.8.

Proposition 2.9. Suppose that s = (s1, . . . , sm) is an m-tuple of spinors.
Then

−

∫

Ω

m∑

α=1

|Dsα|
2 dvolg +

∫

Ω

m∑

α=1

|∇sα|
2 dvolg +

1

4

∫

Ω

m∑

α=1

R |sα|
2 dvolg

≤
1

2

∫

Σ

m∑

α=1

〈DΣsα, sα − (χs)α〉 dσg +
1

2

∫

Σ

m∑

α=1

〈sα − (χs)α,D
Σsα〉 dσg

−
1

2

∫

Σ
(H − ‖dN‖tr)

( m∑

α=1

|sα|
2

)

dσg.
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Proof. By the Weitzenböck formula, D2sα = −∆sα + 1
4 Rsα, where ∆

denotes the connection Laplacian on the spinor bundle. Using the divergence
theorem, we obtain

−

∫

Ω

m∑

α=1

|Dsα|
2 dvolg +

∫

Ω

m∑

α=1

|∇sα|
2 dvolg +

1

4

∫

Ω

m∑

α=1

R |sα|
2 dvolg

=

∫

Σ

m∑

α=1

〈ν · Dsα, sα〉 dσg +

∫

Σ

m∑

α=1

〈∇νsα, sα〉 dσg.

Note that ν ·Dsα+∇νsα = DΣsα−
1
2 H sα at each point on Σ. This implies

−

∫

Ω

m∑

α=1

|Dsα|
2 dvolg +

∫

Ω

m∑

α=1

|∇sα|
2 dvolg +

1

4

∫

Ω

m∑

α=1

R |sα|
2 dvolg

=

∫

Σ
〈DΣsα, sα〉 dσg −

1

2

∫

Σ

m∑

α=1

H |sα|
2 dσg.

On the other hand, using the fact that χ is self-adjoint and DΣ is formally
self-adjoint, we obtain

∫

Σ

m∑

α=1

〈DΣsα, (χs)α〉 dσg +

∫

Σ

m∑

α=1

〈(χs)α,D
Σsα〉 dσg

=

∫

Σ

m∑

α=1

〈(χDΣs)α, sα〉 dσg +

∫

Σ

m∑

α=1

〈(DΣχs)α, sα〉 dσg

= −

∫

Σ

m∑

α=1

〈(Bs)α, sα〉 dσg.

In the last step, we have used Proposition 2.5. Putting these facts together,
we conclude that

−

∫

Ω

m∑

α=1

|Dsα|
2 dvolg +

∫

Ω

m∑

α=1

|∇sα|
2 dvolg +

1

4

∫

Ω

m∑

α=1

R |sα|
2 dvolg

=
1

2

∫

Σ

m∑

α=1

〈DΣsα, sα〉 dσg +
1

2

∫

Σ

m∑

α=1

〈sα,D
Σsα〉 dσg −

1

2

∫

Σ

m∑

α=1

H |sα|
2 dσg

=
1

2

∫

Σ

m∑

α=1

〈DΣsα, sα − (χs)α〉 dσg +
1

2

∫

Σ

m∑

α=1

〈sα − (χs)α,D
Σsα〉 dσg

−
1

2

∫

Σ

m∑

α=1

〈(Bs)α, sα〉 dσg −
1

2

∫

Σ

m∑

α=1

H |sα|
2 dσg.

Hence, the assertion follows from Lemma 2.8.

Corollary 2.10. Assume that R ≥ 0 at each point in Ω and H ≥ ‖dN‖tr at
each point on Σ. Suppose that s = (s1, . . . , sm) is an m-tuple of harmonic
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spinors on Ω which satisfies the boundary condition χs = s at each point on
Σ. Then s is parallel.

Replacing N by −N , we can draw the following conclusion:

Corollary 2.11. Assume that R ≥ 0 at each point in Ω and H ≥ ‖dN‖tr at
each point on Σ. Suppose that s = (s1, . . . , sm) is an m-tuple of harmonic
spinors on Ω which satisfies the boundary condition χs = −s at each point
on Σ. Then s is parallel.

Lemma 2.12. Assume that x ∈ Σ and ξ ∈ TxΣ. Then the linear map
(s1, . . . , sm) 7→ (i ν ·ξ ·s1, . . . , i ν ·ξ ·sm) anti-commutes with χ. In particular,
dimker(id− χ) = dimker(id + χ).

Proof. This follows immediately from the definition of χ.

Definition 2.13. We denote by F = E|Σ the restriction of E to Σ. Moreover,
we write F = F+ ⊕F−, where F+ = ker(id− χ) and F− = ker(id + χ).

Note that F is a complex vector bundle over Σ of rank m2. It follows
from Lemma 2.12 that F+ and F− are complex subbundles of F of rank
m2

2 .

Proposition 2.14. Suppose that Ω is a compact domain in Rn with smooth
boundary ∂Ω = Σ. Let g be a Riemannian metric which is defined on an
open set containing Ω, and let N : Σ → Sn−1 be a smooth map. Then the
operator

H1(Ω, E) → L2(Ω, E)⊕H
1
2 (Σ,F−), s 7→ (Ds, s− χs)

is a Fredholm operator. The kernel of this operator is a finite-dimensional
subspace of C∞(Ω, E). The range of this operator is defined by finitely many
C∞ relations.

Proof. We will show that the boundary value problem is elliptic in the
sense of Definition 20.1.1 in Hörmander’s book [12]. To that end, we fix a
point x ∈ Σ. Moreover, we consider a vector ξ ∈ TxΩ with the property
that ξ is not a scalar multiple of ν. Following Hörmander [12], we denote
by M+

x,ξ the set of all functions u : R → Fx which solve the linear ODE

i ξ · u(t)− ν ·
d

dt
u(t) = 0

and which are bounded on the interval [0,∞). (Note that Dt = −i d
dt

in
Hörmander’s notation; see [11], p. 160.) If we fix a real number a, then
the function t 7→ u(t) belongs to the space M+

x,ξ if and only if the function

t 7→ eiat u(t) belongs to the space M+
x,ξ+aν .

We claim that the linear map

M+
x,ξ → F−

x , u 7→ u(0)− χu(0)
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is bijective. If the claim is true for some vector ξ ∈ TxΩ, then the claim is
also true for ξ + aν, where a is an arbitrary real number. Hence, it suffices
to verify the claim in the special case when ξ ∈ TxΣ and ξ 6= 0.

In the following, we assume that ξ ∈ TxΣ and ξ 6= 0. We define a linear
map L : Fx → Fx by Ls = i ν · ξ · s. Note that L is self-adjoint and
L2 = |ξ|2 id. Therefore,

Fx = ker(|ξ| id− L)⊕ ker(|ξ| id + L).

The space M+
x,ξ consists of all functions of the form t 7→ e−t|ξ| u0, where

u0 ∈ ker(|ξ| id− L).
By Lemma 2.12, L anti-commutes with χ. This implies

(5) dimker(|ξ| id− L) = dimker(|ξ| id + L)

and

(6) ker(|ξ| id− L) ∩ ker(id− χ) = {0}.

Using (5) and Lemma 2.12, we obtain

dimM+
x,ξ = dimker(|ξ| id− L) =

m2

2
= dimF−

x .

Moreover, it follows from (6) that the linear map

M+
x,ξ → F−

x , u 7→ u(0)− χu(0)

has trivial kernel. Therefore, the latter map is bijective, as claimed.
To summarize, we have shown that the boundary value problem is ellip-

tic in the sense of Definition 20.1.1 in [12]. The assertion now follows from
Theorem 20.1.2 and Theorem 20.1.8 in [12]. Note that the function spaces
appearing in (20.1.2) in [12] are the usual Sobolev spaces; see Definition 7.9.1
in [11] and Section B.2 in [12] for the relevant definitions. This completes
the proof of Proposition 2.14.

Proposition 2.15. Assume that n ≥ 3 is an odd integer. Suppose that Ω
is a compact, convex domain in Rn with smooth boundary ∂Ω = Σ. Let g be
a Riemannian metric which is defined on an open set containing Ω, and let
N : Σ → Sn−1 be a smooth map which is homotopic to the Euclidean Gauss
map of Σ. Then the operator

H1(Ω, E) → L2(Ω, E)⊕H
1
2 (Σ,F−), s 7→ (Ds, s− χs)

has Fredholm index at least 1.

Proof. We first consider the special case when g is the Euclidean metric
and N is the Euclidean Gauss map of Σ. In this case, a spinor can be viewed
as a smooth function taking values in ∆n. We claim that the kernel of the
operator

H1(Ω, E) → L2(Ω, E)⊕H
1
2 (Σ,F−), s 7→ (Ds, s− χs)
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has dimension at least 1. To see this, recall that {ŝ1, . . . , ŝm} is an or-
thonormal basis of ∆n, and ρ̂(Ea) ŝα =

∑m
β=1 ωaαβ ŝβ for a = 1, . . . , n. Con-

sequently, ŝ = (ŝ1, . . . , ŝm) is an m-tuple of harmonic spinors on Ω which
satisfies the boundary condition χŝ = ŝ. Thus, the kernel has dimension at
least 1.

We claim that the cokernel of the operator

H1(Ω, E) → L2(Ω, E)⊕H
1
2 (Σ,F−), s 7→ (Ds, s− χs)

has dimension 0. Suppose that this is false. In view of Proposition 2.14, we
can find a non-zero pair (s, t) such that s ∈ C∞(Ω, E), t ∈ C∞(Σ,F−), and

∫

Ω
〈s,Du〉+

∫

Σ
〈t, u− χu〉 = 0

for all u ∈ C∞(Ω, E). Integration by parts gives

∫

Ω
〈Ds, u〉 −

∫

Σ
〈ν · s, u〉+

∫

Σ
〈t, u− χu〉 = 0

for all u ∈ C∞(Ω, E). From this, we deduce that Ds = 0 at each point in Ω
and ν ·s = 2t at each point on Σ. Since t takes values in F−, we conclude that
the restriction s|Σ takes values in F−. In other words, χs = −s at each point
on Σ. Since g is the Euclidean metric and N is the Euclidean Gauss map of
Σ, we have H = ‖dN‖tr at each point on Σ. Hence, Corollary 2.11 implies
that s = (s1, . . . , sm) is parallel. Let us write sα =

∑m
β=1 zαβ ŝβ , where

z ∈ End(Cm) is a constant matrix. Since χs = −s at each point on Σ, the
matrix z ∈ End(Cm) anti-commutes with the matrix

∑n
a=1〈N(x), Ea〉ωa ∈

End(Cm) for each x ∈ Σ. Since the Gauss map N : Σ → Sn−1 is surjective,
the matrix z ∈ End(Cm) anti-commutes with ωa ∈ End(Cm) for each a =
1, . . . , n. Since n is odd, Lemma 2.1 implies that z = 0. Thus, we conclude
that s = 0 at each point in Ω. Since ν · s = 2t at each point on Σ, it follows
that t = 0 at each point on Σ. This is a contradiction. Thus, the cokernel
has dimension 0.

To summarize, if g is the Euclidean metric and N is the Euclidean Gauss
map of Σ, then the index is at least 1.

We now turn to the general case. Let g be an arbitrary Riemannian met-
ric which is defined on an open set containing Ω, and let N : Σ → Sn−1 be
a smooth map which is homotopic to the Euclidean Gauss map of Σ. Using
the deformation invariance of the Fredholm index (cf. [12], Theorem 20.1.8),
we conclude that the index is at least 1. Note that in Hörmander’s setting,
the vector bundles are fixed, whereas in our setting the vector bundle F−

depends on g and N . To apply Hörmander’s results, we construct a bundle
isomorphism from F− to some fixed bundle. This completes the proof of
Proposition 2.15.



SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 13

Remark 2.16. Under the assumptions of Proposition 2.15, we can show
that the Fredholm index is equal to 1. We will not need this stronger
statement here.

3. Approximating a compact, convex polytope by smooth

domains

Throughout this section, we assume that n ≥ 3 is an integer and Ω
is a compact, convex polytope in Rn with non-empty interior. We write
Ω =

⋂

i∈I{ui ≤ 0}, where ui, i ∈ I, is a finite collection of non-constant
linear functions defined on Rn. After eliminating redundant inequalities, we
may assume that the following condition is satisfied.

Assumption 3.1. For each i0 ∈ I, the set

{ui0 > 0} ∩
⋂

i∈I\{i0}

{ui ≤ 0}

is non-empty.

Lemma 3.2. For each i0 ∈ I, the set

{ui0 = 0} ∩
⋂

i∈I\{i0}

{ui < 0}

is non-empty. Moreover, this set is a dense subset of Ω ∩ {ui0 = 0}.

Proof. In view of Assumption 3.1, we can find a point z0 ∈ Rn such that
ui0(z0) > 0 and ui(z0) ≤ 0 for all i ∈ I \ {i0}. Moreover, since Ω has non-
empty interior, we can find a point z1 ∈ Rn such that ui(z1) < 0 for all i ∈ I.
We can find a real number τ ∈ (0, 1) such that (1−τ)ui0(z0)+τ ui0(z1) = 0.
Let y := (1− τ)z0 + τz1. Then

y ∈ {ui0 = 0} ∩
⋂

i∈I\{i0}

{ui < 0}.

This proves the first statement. To prove the second statement, we consider
an arbitrary point x ∈ Ω ∩ {ui0 = 0}. Then

(1− t)x+ ty ∈ {ui0 = 0} ∩
⋂

i∈I\{i0}

{ui < 0}

for each t ∈ (0, 1]. This completes the proof of Lemma 3.2.

For each i ∈ I, we denote by Ni ∈ Sn−1 the outward-pointing unit normal
vector to the halfspace {ui ≤ 0} with respect to the Euclidean metric.

Lemma 3.3. We have Rn = span{Ni : i ∈ I}.

Proof. Suppose that the assertion is false. Then we can find a non-zero
vector in Rn which is orthogonal to Ni for all i ∈ I. This implies that Ω
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is invariant under translations along that vector. This contradicts our as-
sumption that Ω is compact. This completes the proof of Lemma 3.3.

Since Ω has non-empty interior, we can find a real number λ0 > 0 such
that ⋂

i∈I

{ui ≤ −λ−1
0 log |I|} 6= ∅.

For each λ > λ0, we define

Ωλ =

{
∑

i∈I

eλui ≤ 1

}

.

Clearly,
⋂

i∈I

{ui ≤ −λ−1 log |I|} ⊂ Ωλ ⊂
⋂

i∈I

{ui < 0}

for each λ > λ0. In particular,
⋃

λ>λ0

Ωλ =
⋂

i∈I

{ui < 0} = Ω \ ∂Ω.

Lemma 3.4. For each λ > λ0, Ωλ is a compact, convex domain in Rn with
smooth boundary Σλ = ∂Ωλ.

Proof. Let us fix a real number λ > λ0. It follows from Lemma 3.3 that
the function

∑

i∈I e
λui is strictly convex with respect to the Euclidean met-

ric. Moreover, inf∂Ω
∑

i∈I e
λui > 1. On the other hand, infΩ

∑

i∈I e
λui < 1

since λ > λ0. Consequently, we can find a point in the interior of Ω where
the function

∑

i∈I e
λui attains its global minimum. From this, the assertion

follows easily. This completes the proof of Lemma 3.4.

Let g be a Riemannian metric which is defined on an open set containing
Ω. For each i ∈ I, ∇ui will denote the gradient of ui with respect to the
metric g; D2ui will denote the Hessian of ui with respect to the metric g;
|∇ui| will denote the norm of the gradient of ui with respect to the metric

g; and νi =
∇ui

|∇ui|
will denote the unit normal vector field, with respect to

the metric g, to the level sets of ui.

Lemma 3.5. If λ is sufficiently large, then infΣλ

∣
∣
∑

i∈I e
λui dui

∣
∣ ≥ C−1 for

some large constant C which is independent of λ.

Proof. We argue by contradiction. Suppose that the assertion is false.
Then there exists a sequence of positive real numbers λl → ∞ and a sequence
of points xl ∈ Σλl

such that
∣
∣
∑

i∈I e
λlui dui

∣
∣ ≤ l−1 at the point xl. After

passing to a subsequence, we may assume that the sequence xl converges to
a point x0 ∈ Ω. Moreover, we may assume that, for each i ∈ I, the sequence
eλlui(xl) converges to a nonnegative real number zi. Since

∑

i∈I e
λlui(xl) = 1

for each l, we know that
∑

i∈I zi = 1. Let I0 := {i ∈ I : zi > 0}. Clearly,
I0 is non-empty, and ui(x0) = 0 for all i ∈ I0. Moreover,

∑

i∈I0
zi dui = 0
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at the point x0. On the other hand, since Ω is a convex set with non-empty
interior, we can find a tangent vector ξ ∈ Tx0Ω such that dui(ξ) > 0 for all
i ∈ I0. This is a contradiction. This completes the proof of Lemma 3.5.

Lemma 3.6. If λ is sufficiently large, then infΣλ

∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣ ≥ C−1

for some large constant C which is independent of λ.

Proof. We argue by contradiction. Suppose that the assertion is false.
Then there exists a sequence of positive real numbers λl → ∞ and a se-
quence of points xl ∈ Σλl

such that
∣
∣
∑

i∈I e
λlui |∇ui|Ni

∣
∣ ≤ l−1 at the point

xl. After passing to a subsequence, we may assume that the sequence xl
converges to a point x0 ∈ Ω. Moreover, we may assume that, for each
i ∈ I, the sequence eλlui(xl) |∇ui(xl)| converges to a nonnegative real num-

ber zi. Since
∑

i∈I e
λlui(xl) = 1 for each l, we know that

∑

i∈I zi > 0. Let
I0 := {i ∈ I : zi > 0}. Clearly, I0 is non-empty, and ui(x0) = 0 for all i ∈ I0.
Moreover,

∑

i∈I0
ziNi = 0 at the point x0. On the other hand, since Ω is a

convex set with non-empty interior, we can find a vector ξ ∈ Rn such that
〈Ni, ξ〉 > 0 for all i ∈ I0. This is a contradiction. This completes the proof
of Lemma 3.6.

In the following, we assume that λ is chosen sufficiently large so that the
conclusions of Lemma 3.5 and Lemma 3.6 hold. The outward-pointing unit
normal vector to the domain Ωλ with respect to the metric g is given by

ν =

∑

i∈I e
λui ∇ui

∣
∣
∑

i∈I e
λui ∇ui

∣
∣
=

∑

i∈I e
λui |∇ui| νi

∣
∣
∑

i∈I e
λui |∇ui| νi

∣
∣
.

This motivates the following definition:

Definition 3.7. We define a map N : Σλ → Sn−1 by

N =

∑

i∈I e
λui |∇ui|Ni

∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣
.

Recall that |∇ui| is computed with respect to the metric g. In particular,
the map N depends on the choice of the metric g.

Lemma 3.8. The map N : Σλ → Sn−1 is homotopic to the Euclidean Gauss
map of Σλ.

Proof. In the special case when g is the Euclidean metric, the map
N : Σλ → Sn−1 coincides with the Gauss map of Σλ, and the assertion is
trivial. To prove the assertion in general, we deform the metric g to the
Euclidean metric.

Proposition 3.9. Consider a point x ∈ Σλ. Let π : TxΩ → TxΩ denote
the orthogonal projection to the orthogonal complement of ν with respect to
g, and let P : Rn → Rn denote the orthogonal projection to the orthogonal
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complement of N with respect to the Euclidean metric. Then H −‖dN‖tr ≥
Vλ, where H denotes the mean curvature of Σλ with respect to the metric g
and the function Vλ : Σλ → R is defined by

Vλ = λ

∑

i∈I e
λui |∇ui|

2 |π(νi)|
2

∣
∣
∑

i∈I e
λui |∇ui| νi

∣
∣

− λ

∑

i∈I e
λui |∇ui|

2 |π(νi)| |P (Ni)|
∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣

+

∑

i∈I e
λui (∆ui − (D2ui)(ν, ν))
∣
∣
∑

i∈I e
λui |∇ui| νi

∣
∣

−

∑

i∈I e
λui |∇(|∇ui|)| |P (Ni)|

∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣

.

Proof. Let {e1, . . . , en−1} denote a local orthonormal frame on Σλ with
respect to the metric g. The mean curvature of Σλ with respect to g is given
by

H = λ

∑n−1
k=1

∑

i∈I e
λui 〈∇ui, ek〉

2

∣
∣
∑

i∈I e
λui ∇ui

∣
∣

+

∑n−1
k=1

∑

i∈I e
λui (D2ui)(ek, ek)

∣
∣
∑

i∈I e
λui ∇ui

∣
∣

= λ

∑

i∈I e
λui |π(∇ui)|

2

∣
∣
∑

i∈I e
λui ∇ui

∣
∣

+

∑

i∈I e
λui (∆ui − (D2ui)(ν, ν))
∣
∣
∑

i∈I e
λui ∇ui

∣
∣

= λ

∑

i∈I e
λui |∇ui|

2 |π(νi)|
2

∣
∣
∑

i∈I e
λui |∇ui| νi

∣
∣

+

∑

i∈I e
λui (∆ui − (D2ui)(ν, ν))
∣
∣
∑

i∈I e
λui |∇ui| νi

∣
∣

.

If ξ is a tangent vector to Σλ, then

dN(ξ)

= λ

∑

i∈I e
λui |∇ui| 〈∇ui, ξ〉P (Ni)

∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣

+

∑

i∈I e
λui 〈∇(|∇ui|), ξ〉P (Ni)

∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣

= λ

∑

i∈I e
λui |∇ui|

2 〈π(νi), ξ〉P (Ni)
∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣

+

∑

i∈I e
λui 〈∇(|∇ui|), ξ〉P (Ni)

∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣

.

The trace norm of a linear map of the form ξ 7→ 〈X, ξ〉Y is given by |X| |Y |.
Since the trace norm satisfies the triangle inequality, it follows that

‖dN‖tr

≤ λ

∑

i∈I e
λui |∇ui|

2 |π(νi)| |P (Ni)|
∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣

+

∑

i∈I e
λui |∇(|∇ui|)| |P (Ni)|

∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣

.

Putting these facts together, the assertion follows.

Proposition 3.10. Suppose that the Matching Angle Hypothesis is satisfied.
Then supΣλ

max{−Vλ, 0} ≤ o(λ) as λ→ ∞.

Proof. We argue by contradiction. Suppose that the assertion is false.
Then there exists a sequence of positive real numbers λl → ∞ and a se-
quence of points xl ∈ Σλl

such that lim supl→∞ λ−1
l Vλl

(xl) < 0. After
passing to a subsequence, we may assume that the sequence xl converges
to a point x0 ∈ Ω. Moreover, we may assume that, for each i ∈ I, the
sequence eλlui(xl) |∇ui(xl)| converges to a nonnegative real number zi. Since
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∑

i∈I e
λlui(xl) = 1 for each l, we know that

∑

i∈I zi > 0. Let I0 := {i ∈ I :
zi > 0}. Clearly, I0 is non-empty, and ui(x0) = 0 for all i ∈ I0. It follows
from Lemma 3.5 and Lemma 3.6 that

∣
∣
∑

i∈I0
ziνi

∣
∣ > 0 and

∣
∣
∑

i∈I0
ziNi

∣
∣ > 0

at the point x0.
We now invoke the Matching Angle Hypothesis. Hence, for all i1, i2 ∈ I0,

we have 〈νi1 , νi2〉 = 〈Ni1 , Ni2〉 at the point x0. Let π : Tx0Ω → Tx0Ω de-
note the orthogonal projection to the orthogonal complement of

∑

i∈I0
ziνi,

and let P : Rn → Rn denote the orthogonal projection to the orthogonal
complement of

∑

i∈I0
ziNi. For each j ∈ I0, we have

∣
∣
∣

∑

i∈I0

ziNi

∣
∣
∣

2
|P (Nj)|

2 =
∣
∣
∣

∑

i∈I0

ziNi

∣
∣
∣

2
−
〈∑

i∈I0

ziNi, Nj

〉2

=
∣
∣
∣

∑

i∈I0

ziνi

∣
∣
∣

2
−

〈∑

i∈I0

ziνi, νj

〉2

=
∣
∣
∣

∑

i∈I0

ziνi

∣
∣
∣

2
|π(νj)|

2

at the point x0. Moreover,
∣
∣
∣

∑

i∈I0

ziNi

∣
∣
∣

2
=

∣
∣
∣

∑

i∈I0

ziνi

∣
∣
∣

2
.

at the point x0. Consequently, for each j ∈ I0, we obtain

|π(νj)| |P (Nj)|
∣
∣
∑

i∈I0
ziNi

∣
∣

=
|π(νj)|

2

∣
∣
∑

i∈I0
ziνi

∣
∣

at the point x0. This implies
∑

i∈I0
zi |∇ui| |π(νi)| |P (Ni)|
∣
∣
∑

i∈I0
ziNi

∣
∣

=

∑

i∈I0
zi |∇ui| |π(νi)|

2

∣
∣
∑

i∈I0
ziνi

∣
∣

at the point x0. Using Proposition 3.9, we conclude that λ−1
l Vλl

(xl) → 0 as
l → ∞. This is a contradiction.

In the remainder of this section, we estimate the Lσ-norm of max{−Vλ, 0}
on Σλ ∩ Br(p), where σ ∈ [1, 32) is a fixed exponent and Br(p) denotes a
Euclidean ball of radius r centered at a point p ∈ Rn. We first recall a basic
fact about the area of convex hypersurfaces in Rn.

Lemma 3.11. Let Br(p) denote a Euclidean ball of radius r. Then the
intersection Σλ ∩ Br(p) has area at most Crn−1, where C depends only on
n.

Proof. The hypersurface Σλ bounds a convex domain in Euclidean space.
This implies that Σλ is outward-minimizing with respect to the Euclidean
metric. From this, the assertion follows.
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Definition 3.12. Consider three pairwise distinct elements i1, i2, i3 ∈ I.

We denote by G
(i1,i2,i3)
λ the set of all points x ∈ Σλ with the property that

ui1(x) ≥ ui2(x) ≥ ui3(x) and ui3(x) ≥ ui(x) for each i ∈ I \ {i1, i2, i3}.

Clearly, Σλ =
⋃

i1,i2,i3
G

(i1,i2,i3)
λ , where the union is taken over all triplets

(i1, i2, i3) ∈ I × I × I such that i1, i2, i3 are pairwise distinct. Given three
pairwise distinct elements i1, i2, i3 ∈ I, we shall estimate the Lσ-norm of

max{−Vλ, 0} on the set G
(i1,i2,i3)
λ ∩ Br(p). To that end, we decompose the

set G
(i1,i2,i3)
λ into three subsets. Roughly speaking, the first subset consists

of points that are close to one of the (n − 1)-dimensional boundary faces
of Ω, but stay away from the (n − 2)-dimensional edges of Ω. The second
subset consists of points that are close to one of the (n − 2)-dimensional
edges of Ω, but stay away from the (n − 3)-dimensional corners of Ω. The
third set consists of points that are close to one of the (n − 3)-dimensional
corners of Ω.

Lemma 3.13. For each i ∈ I, we assume that the mean curvature of the
hypersurface {ui = 0} with respect to g is nonnegative at each point in
Ω ∩ {ui = 0}. Let us fix an exponent σ ∈ [1, 32), and let Br(p) denote a
Euclidean ball of radius 0 < r ≤ 1. If λr is sufficiently large, then

(

rσ+1−n

∫

G
(i1,i2,i3)
λ

∩{ui2
≤−λ−

7
8 r

1
8 }∩Br(p)

(max{−Vλ, 0})
σ

) 1
σ

≤ Cλr e−(λr)
1
8

for all pairwise distinct elements i1, i2, i3 ∈ I. The constant C may depend
on Ω and g, but not on λ.

Proof. Let us consider an arbitrary point x ∈ G
(i1,i2,i3)
λ with ui2(x) ≤

−λ−
7
8 r

1
8 . By definition of G

(i1,i2,i3)
λ , it follows that ui(x) ≤ −λ−

7
8 r

1
8 for

all i ∈ I \ {i1}. Using the identity
∑

i∈I e
λui(x) = 1, we obtain eλui1

(x) ≥

1−C e−(λr)
1
8 , hence ui1(x) ≥ −Cλ−1 e−(λr)

1
8 . Moreover, |ν−νi1 | ≤ C e−(λr)

1
8

and |N − Ni1 | ≤ C e−(λr)
1
8 at the point x. From this, we deduce that

|π(νi1)| = |π(νi1 − ν)| ≤ C e−(λr)
1
8 and |P (Ni1)| = |P (Ni1 −N)| ≤ C e−(λr)

1
8

at the point x. This gives

(7)
∑

i∈I

eλui |∇ui|
2 |π(νi)| |P (Ni)| ≤ C e−(λr)

1
8

and

(8)
∑

i∈I

eλui |∇(|∇ui|)| |P (Ni)| ≤ C e−(λr)
1
8
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at the point x. Moreover,
∑

i∈I

eλui (∆ui − (D2ui)(ν, ν))

≥ eλui1 (∆ui1 − (D2ui1)(νi1 , νi1))− C e−(λr)
1
8(9)

at the point x. Since ui1(x) ≥ −Cλ−1 e−(λr)
1
8 , we can find a point y ∈ Rn

such that ui1(y) = 0 and deucl(x, y) ≤ Cλ−1 e−(λr)
1
8 . This implies ui(y) ≤

ui(x) + Cλ−1 e−(λr)
1
8 ≤ −λ−

7
8 r

1
8 + Cλ−1 e−(λr)

1
8 for all i ∈ I \ {i1}. In

particular, if λr is sufficiently large, then ui(y) ≤ 0 for all i ∈ I \{i1}. Thus,
y ∈ Ω ∩ {ui1 = 0}. By assumption, the mean curvature of the hypersurface
{ui1 = 0} at the point y is nonnegative. This implies

∆ui1 − (D2ui1)(νi1 , νi1) ≥ 0

at the point y. Consequently,

(10) ∆ui1 − (D2ui1)(νi1 , νi1) ≥ −Cλ−1 e−(λr)
1
8

at the point x. Combining (9) and (10), we obtain

(11)
∑

i∈I

eλui (∆ui − (D2ui)(ν, ν)) ≥ −C e−(λr)
1
8 .

Using (7), (8), and (11), we conclude that

Vλ(x) ≥ −Cλe−(λr)
1
8

for each point x ∈ G
(i1,i2,i3)
λ ∩ {ui2 ≤ −λ−

7
8 r

1
8 }. By Lemma 3.11, the inter-

section Σλ ∩Br(p) has area at most Crn−1. Consequently,

(

rσ+1−n

∫

G
(i1,i2,i3)
λ

∩{ui2
≤−λ−

7
8 r

1
8 }∩Br(p)

(max{−Vλ, 0})
σ

) 1
σ

≤ Cλr e−(λr)
1
8 .

This completes the proof of Lemma 3.13.

Lemma 3.14. Assume that the Matching Angle Hypothesis holds. Let us
fix an exponent σ ∈ [1, 32), and let Br(p) denote a Euclidean ball of radius
0 < r ≤ 1. If λr is sufficiently large, then

(

rσ+1−n

∫

G
(i1,i2,i3)
λ

∩{ui2
≥−λ−

7
8 r

1
8 }∩{ui3

≤−λ−

3
4 r

1
4 }∩Br(p)

(max{−Vλ, 0})
σ

) 1
σ

≤ C (λr)
1
8
− 7

8σ

for all pairwise distinct elements i1, i2, i3 ∈ I. The constant C may depend
on Ω and g, but not on λ.
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Proof. We distinguish two cases:
Case 1: Suppose that Ω ∩ {ui1 = 0} ∩ {ui2 = 0} = ∅. We can find a

positive real number δ such that Ω ∩ {ui1 ≥ −δ} ∩ {ui2 ≥ −δ} = ∅. If λr is

sufficiently large, then λ−
7
8 r

1
8 ≤ (λr)−

7
8 ≤ δ. This implies

G
(i1,i2,i3)
λ ∩ {ui2 ≥ −λ−

7
8 r

1
8 }

⊂ Σλ ∩ {ui1 ≥ −δ} ∩ {ui2 ≥ −δ} = ∅.

Hence, the assertion is trivially true in this case.
Case 2: Suppose that Ω ∩ {ui1 = 0} ∩ {ui2 = 0} 6= ∅. It follows from

Assumption 3.1 that the hypersurfaces {ui1 = 0} and {ui2 = 0} intersect
transversally.

Let us consider an arbitrary point x ∈ G
(i1,i2,i3)
λ with ui2(x) ≥ −λ−

7
8 r

1
8

and ui3(x) ≤ −λ−
3
4 r

1
4 . Clearly, ui1(x) ≥ −λ−

7
8 r

1
8 by definition of G

(i1,i2,i3)
λ .

By transversality, we can find a point y ∈ Rn such that ui1(y) = ui2(y) =

0 and deucl(x, y) ≤ Cλ−
7
8 r

1
8 . This implies ui(y) ≤ ui(x) + Cλ−

7
8 r

1
8 ≤

−λ−
3
4 r

1
4 + Cλ−

7
8 r

1
8 for all i ∈ I \ {i1, i2}. In particular, if λr is sufficiently

large, then ui(y) ≤ 0 for all i ∈ I \ {i1, i2}. Thus, y ∈ Ω∩{ui1 = 0}∩{ui2 =
0}. The Matching Angle Hypothesis implies that 〈νi1 , νi2〉 = 〈Ni1 , Ni2〉 at

the point y. Consequently, |〈νi1 , νi2〉− 〈Ni1 , Ni2〉| ≤ Cλ−
7
8 r

1
8 ≤ C (λr)−

7
8 at

the point x. For each j ∈ {i1, i2}, we have
∣
∣
∣

∑

i∈I

eλui |∇ui|Ni

∣
∣
∣

2
|P (Nj)|

2

=
∣
∣
∣

∑

i∈I

eλui |∇ui|Ni

∣
∣
∣

2
−

〈∑

i∈I

eλui |∇ui|Ni, Nj

〉2

≤
∣
∣
∣

∑

i∈I

eλui |∇ui| νi

∣
∣
∣

2
−
〈∑

i∈I

eλui |∇ui| νi, νj
〉2

+ C (λr)−
7
8

=
∣
∣
∣

∑

i∈I

eλui |∇ui| νi

∣
∣
∣

2
|π(νj)|

2 + C (λr)−
7
8

at the point x. Hence, for each j ∈ {i1, i2}, we obtain
∣
∣
∣

∑

i∈I

eλui |∇ui| νi

∣
∣
∣

∣
∣
∣

∑

i∈I

eλui |∇ui|Ni

∣
∣
∣ |π(νj)| |P (Nj)|

≤
1

2

∣
∣
∣

∑

i∈I

eλui |∇ui| νi

∣
∣
∣

2
|π(νj)|

2 +
1

2

∣
∣
∣

∑

i∈I

eλui |∇ui|Ni

∣
∣
∣

2
|P (Nj)|

2(12)

≤
∣
∣
∣

∑

i∈I

eλui |∇ui| νi

∣
∣
∣

2
|π(νj)|

2 + C (λr)−
7
8

at the point x. Moreover,

(13)
∣
∣
∣

∑

i∈I

eλui |∇ui|Ni

∣
∣
∣

2
≥

∣
∣
∣

∑

i∈I

eλui |∇ui| νi

∣
∣
∣

2
− C (λr)−

7
8
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at the point x. In the next step, we divide the inequality (12) by (13).
It follows from Lemma 3.5 that

∣
∣
∑

i∈I e
λui |∇ui| νi

∣
∣ ≥ C−1 at the point

x. Lemma 3.6 implies that
∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣ ≥ C−1 at the point x.

Consequently, for each j ∈ {i1, i2}, we have

|π(νj)| |P (Nj)|
∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣
≤

|π(νj)|
2

∣
∣
∑

i∈I e
λui |∇ui| νi

∣
∣
+ C (λr)−

7
8

at the point x. This implies
∑

i∈I e
λui |∇ui|

2 |π(νi)| |P (Ni)|
∣
∣
∑

i∈I e
λui |∇ui|Ni

∣
∣

≤

∑

i∈I e
λui |∇ui|

2 |π(νi)|
2

∣
∣
∑

i∈I e
λui |∇ui| νi

∣
∣

+ C (λr)−
7
8

at the point x. Thus, we conclude that

Vλ(x) ≥ −Cλ
1
8 r−

7
8

for each point x ∈ G
(i1,i2,i3)
λ ∩ {ui2 ≥ −λ−

7
8 r

1
8 } ∩ {ui3 ≤ −λ−

3
4 r

1
4 }. By

transversality, the set {0 ≥ ui1 ≥ −λ−
7
8 r

1
8 } ∩ {0 ≥ ui2 ≥ −λ−

7
8 r

1
8 } ∩ Br(p)

can be covered by C (λr)
7(n−2)

8 Euclidean balls of radius λ−
7
8 r

1
8 . By Lemma

3.11, the intersection of Σλ with each ball of radius λ−
7
8 r

1
8 has area at most

C (λr)−
7(n−1)

8 rn−1. This implies that the set Σλ ∩{ui1 ≥ −λ−
7
8 r

1
8 }∩{ui2 ≥

−λ−
7
8 r

1
8 } ∩Br(p) has area at most C (λr)−

7
8 rn−1. Since

G
(i1,i2,i3)
λ ∩ {ui2 ≥ −λ−

7
8 r

1
8 } ∩Br(p)

⊂ Σλ ∩ {ui1 ≥ −λ−
7
8 r

1
8 } ∩ {ui2 ≥ −λ−

7
8 r

1
8 } ∩Br(p),

it follows that
(

rσ+1−n

∫

G
(i1,i2,i3)
λ

∩{ui2
≥−λ−

7
8 r

1
8 }∩{ui3

≤−λ−

3
4 r

1
4 }∩Br(p)

(max{−Vλ, 0})
σ

) 1
σ

≤ C (λr)
1
8
− 7

8σ .

This completes the proof of Lemma 3.14.

Lemma 3.15. Let us fix an exponent σ ∈ [1, 32), and let Br(p) denote a
Euclidean ball of radius 0 < r ≤ 1. If λr is sufficiently large, then

(

rσ+1−n

∫

G
(i1,i2,i3)
λ

∩{ui3
≥−λ−

3
4 r

1
4 }∩Br(p)

(max{−Vλ, 0})
σ

) 1
σ

≤ C (λr)1−
3
2σ

for all pairwise distinct elements i1, i2, i3 ∈ I. The constant C may depend
on Ω and g, but not on λ.

Proof. We distinguish two cases:
Case 1: Suppose that Ω∩ {ui1 = 0} ∩ {ui2 = 0} ∩ {ui3 = 0} = ∅. We can

find a positive real number δ such that Ω∩{ui1 ≥ −δ}∩{ui2 ≥ −δ}∩{ui3 ≥
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−δ} = ∅. If λr is sufficiently large, then λ−
3
4 r

1
4 ≤ (λr)−

3
4 ≤ δ. This implies

G
(i1,i2,i3)
λ ∩ {ui3 ≥ −λ−

3
4 r

1
4 }

⊂ Σλ ∩ {ui1 ≥ −δ} ∩ {ui2 ≥ −δ} ∩ {ui3 ≥ −δ} = ∅.

Hence, the assertion is trivially true in this case.
Case 2: Suppose that Ω ∩ {ui1 = 0} ∩ {ui2 = 0} ∩ {ui3 = 0} 6= ∅. It

follows from Assumption 3.1 that the hypersurfaces {ui1 = 0}, {ui2 = 0},
and {ui3 = 0} intersect transversally.

Let us consider an arbitrary point x ∈ G
(i1,i2,i3)
λ with ui3(x) ≥ −λ−

3
4 r

1
4 .

Clearly,

Vλ(x) ≥ −Cλ

for all points x ∈ G
(i1,i2,i3)
λ ∩ {ui3 ≥ −λ−

3
4 r

1
4 }. By transversality, the set

{0 ≥ ui1 ≥ −λ−
3
4 r

1
4 } ∩ {0 ≥ ui2 ≥ −λ−

3
4 r

1
4 } ∩ {0 ≥ ui3 ≥ −λ−

3
4 r

1
4 } ∩Br(p)

can be covered by C (λr)
3(n−3)

4 Euclidean balls of radius λ−
3
4 r

1
4 . By Lemma

3.11, the intersection of Σλ with each ball of radius λ−
3
4 r

1
4 has area at most

C (λr)−
3(n−1)

4 rn−1. This implies that the set Σλ ∩{ui1 ≥ −λ−
3
4 r

1
4 }∩{ui2 ≥

−λ−
3
4 r

1
4 } ∩ {ui3 ≥ −λ−

3
4 r

1
4 } ∩Br(p) has area at most C (λr)−

3
2 rn−1. Since

G
(i1,i2,i3)
λ ∩ {ui3 ≥ −λ−

3
4 r

1
4 } ∩Br(p)

⊂ Σλ ∩ {ui1 ≥ −λ−
3
4 r

1
4 } ∩ {ui2 ≥ −λ−

3
4 r

1
4 } ∩ {ui3 ≥ −λ−

3
4 r

1
4 } ∩Br(p),

it follows that

(

rσ+1−n

∫

G
(i1,i2,i3)
λ

∩{ui3
≥−λ−

3
4 r

1
4 }∩Br(p)

(max{−Vλ, 0})
σ

) 1
σ

≤ C (λr)1−
3
2σ .

This completes the proof of Lemma 3.15.

Proposition 3.16. For each i ∈ I, we assume that the mean curvature of
the hypersurface {ui = 0} with respect to g is nonnegative at each point in
Ω ∩ {ui = 0}. Moreover, we assume that the Matching Angle Hypothesis is
satisfied. Let us fix an exponent σ ∈ [1, 32), and let Br(p) denote a Euclidean
ball of radius 0 < r ≤ 1. If λr is sufficiently large, then

(

rσ+1−n

∫

Σλ∩Br(p)
(max{−Vλ, 0})

σ

) 1
σ

≤ Cλr e−(λr)
1
8 + C (λr)

1
8
− 7

8σ + C (λr)1−
3
2σ .

The constant C may depend on Ω and g, but not on λ.
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Proof. Combining Lemma 3.13, Lemma 3.14, and Lemma 3.15, we con-
clude that

(

rσ+1−n

∫

G
(i1,i2,i3)
λ

∩Br(p)
(max{−Vλ, 0})

σ

) 1
σ

≤ Cλr e−(λr)
1
8 + C (λr)

1
8
− 7

8σ + C (λr)1−
3
2σ

for all pairwise distinct elements i1, i2, i3 ∈ I. On the other hand, Σλ =
⋃

i1,i2,i3
G

(i1,i2,i3)
λ , where the union is taken over all triplets (i1, i2, i3) ∈

I × I × I such that i1, i2, i3 are pairwise distinct. Hence, the assertion
follows by summation over i1, i2, i3. This completes the proof of Proposition
3.16.

Corollary 3.17. For each i ∈ I, we assume that the mean curvature of
the hypersurface {ui = 0} with respect to g is nonnegative at each point in
Ω ∩ {ui = 0}. Moreover, we assume that the Matching Angle Hypothesis is
satisfied. Let us fix an exponent σ ∈ [1, 32). Then

sup
p∈Rn

sup
0<r≤1

(

rσ+1−n

∫

Σλ∩Br(p)
(max{−Vλ, 0})

σ

) 1
σ

→ 0

as λ→ ∞.

Proof. Let us consider an arbitrary sequence λl → ∞. By Proposition
3.10, we can find a sequence of positive real numbers δl → 0 such that

(δlλl)
−1 sup

Σλl

max{−Vλl
, 0} → 0

as l → ∞. Using Lemma 3.11, we obtain

sup
p∈Rn

sup
0<r≤(δlλl)−1

(

rσ+1−n

∫

Σλl
∩Br(p)

(max{−Vλl
, 0})σ

) 1
σ

≤ C (δlλl)
−1 sup

Σλl

max{−Vλl
, 0} → 0

as l → ∞. On the other hand, it follows from Proposition 3.16 that

sup
p∈Rn

sup
(δlλl)−1≤r≤1

(

rσ+1−n

∫

Σλl
∩Br(p)

(max{−Vλl
, 0})σ

) 1
σ

→ 0

as l → ∞. Putting these facts together, the assertion follows.

4. Proof of the Theorem 1.1

It suffices to prove Theorem 1.1 in the odd-dimensional case. (The even-
dimensional case can be reduced to the odd-dimensional case by considering
the Cartesian product Ω × [−1, 1] ⊂ Rn+1.) Suppose that n ≥ 3 is an
odd integer, and Ω is a compact, convex polytope in Rn with non-empty
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interior. We write Ω =
⋂

i∈I{ui ≤ 0}, where ui, i ∈ I, is a finite collection of
non-constant linear functions defined on Rn. Let g be a Riemannian metric
which is defined on an open set containing Ω and has nonnegative scalar
curvature at each point in Ω. For each i ∈ I, we assume that the mean
curvature of the hypersurface {ui = 0} with respect to g is nonnegative at
each point in Ω ∩ {ui = 0}. Moreover, we assume that the Matching Angle
Hypothesis is satisfied.

Consider a sequence λl → ∞. For each l, we consider the domain Ωλl

defined in Section 3. Note that Ωλl
is a compact, convex domain in Rn with

smooth boundary ∂Ωλl
= Σλl

. For each l, we define a map N (l) : Σλl
→

Sn−1 as in Definition 3.7. Moreover, we define a function Vλl
: Σλl

→ R as
in Proposition 3.9.

Let us fix a Euclidean ball U such that the closure of U is contained in the
interior of Ω. Note that U ⊂ Ωλl

if l is sufficiently large. In the following,
we will always assume that l is chosen sufficiently large so that U ⊂ Ωλl

.

Proposition 4.1. There exists a uniform constant C (independent of l)
such that

∫

Ωλl

F 2 dσg ≤ C

∫

Ωλl

|∇F |2 dvolg + C

∫

U

F 2 dvolg

for every smooth function F : Ωλl
→ R.

Proof. Note that the hypersurface Σλl
= ∂Ωλl

can be written as a radial
graph with bounded slope. From this, it is easy to see that Ωλl

is bi-Lipschitz
equivalent to the Euclidean unit ball, with constants that are independent
of l. Hence, the assertion follows from the corresponding estimate on the
unit ball (which, in turn, is a consequence of the Poincaré inequality on the
unit ball).

Proposition 4.2. There exists a uniform constant C (independent of l)
such that

∫

Σλl

F 2 dσg ≤ C

∫

Ωλl

|∇F |2 dvolg + C

∫

Ωλl

F 2 dvolg

for every smooth function F : Ωλl
→ R.

Proof. Note that the hypersurface Σλl
= ∂Ωλl

can be written as a radial
graph with bounded slope. From this, it is easy to see that Ωλl

is bi-Lipschitz
equivalent to the Euclidean unit ball, with constants that are independent of
l. The assertion follows now from the Sobolev trace theorem on the unit ball.

Proposition 4.3. We have
∫

Σλl

max{−Vλl
, 0}F 2 dσg ≤ o(1)

∫

Ωλl

|∇F |2 dvolg + o(1)

∫

Σλl

F 2 dσg

for every smooth function F : Ωλl
→ R.
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Proof. Note that the hypersurface Σλl
= ∂Ωλl

can be written as a radial
graph with bounded slope. From this, it is easy to see that Ωλl

is bi-Lipschitz
equivalent to the Euclidean unit ball, with constants that are independent
of l. Hence, the assertion follows from the Fefferman-Phong estimate on the
unit ball (see Corollary A.7) together with Corollary 3.17. This completes
the proof of Proposition 4.3.

For each l, we may use the map N (l) : Σλl
→ Sn−1 to define a boundary

chirality χ(l) (see Definition 2.2). It follows from Lemma 3.8 that N (l) is
homotopic to the Euclidean Gauss map of Σλl

. By Proposition 2.15, we

can find an m-tuple of spinors s(l) = (s
(l)
1 , . . . , s

(l)
m ) defined on Ωλl

with the
following properties:

• s(l) is harmonic, i.e. Ds(l) = 0 at each point in Ωλl
.

• χ(l)s(l) = s(l) at each point on Σλl
.

• s(l) does not vanish identically.

Standard unique continuation arguments imply that
∫

U

∑m
α=1 |s

(l)
α |2 dvolg >

0 if l is sufficiently large. By scaling, we can arrange that
∫

U

∑m
α=1 |s

(l)
α |2 dvolg =

m volg(U) if l is sufficiently large.

Proposition 4.4. We have

∫

Ωλl

m∑

α=1

|∇s(l)α |2 dvolg → 0

as l → ∞.

Proof. Combining Proposition 4.1, Proposition 4.2, and Proposition 4.3,
we obtain

∫

Σλl

max{−Vλl
, 0}F 2 dσg ≤ o(1)

∫

Ωλl

|∇F |2 dvolg + o(1)

∫

U

F 2 dvolg

for every smooth function F : Ωλl
→ R. In the next step, we put F =

(
δ2 +

∑m
α=1 |s

(l)
α |2

) 1
2 , and send δ → 0. This gives

∫

Σλl

max{−Vλl
, 0}

( m∑

α=1

|s(l)α |2
)

dσg

≤ o(1)

∫

Ωλl

m∑

α=1

|∇s(l)α |2 dvolg + o(1)

∫

U

m∑

α=1

|s(l)α |2 dvolg.
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On the other hand, Proposition 2.9 implies
∫

Ωλl

m∑

α=1

|∇s(l)α |2 dvolg +
1

4

∫

Ωλl

m∑

α=1

R |s(l)α |2 dvolg

≤ −
1

2

∫

Σλl

(H − ‖dN (l)‖tr)

( m∑

α=1

|s(l)α |2
)

dσg

≤
1

2

∫

Σλl

max{−Vλl
, 0}

( m∑

α=1

|s(l)α |2
)

dσg.

Putting these facts together, we conclude that
∫

Ωλl

m∑

α=1

|∇s(l)α |2 dvolg +
1

4

∫

Ωλl

m∑

α=1

R |s(l)α |2 dvolg

≤ o(1)

∫

Ωλl

m∑

α=1

|∇s(l)α |2 dvolg + o(1)

∫

U

m∑

α=1

|s(l)α |2 dvolg.

By assumption, the scalar curvature of g is nonnegative. If l is sufficiently
large, then the first term on the right hand side can be absorbed into the
left hand side. This completes the proof of Proposition 4.4.

Corollary 4.5. We have
∫

Ωλl

m∑

α=1

|s(l)α |2 dvolg ≤ C,

where C is a constant that does not depend on l.

Proof. We apply Proposition 4.1 with F =
(
δ2 +

∑m
α=1 |s

(l)
α |2

) 1
2 , and

send δ → 0. This gives
∫

Ωλl

m∑

α=1

|s(l)α |2 dvolg ≤ C

∫

Ωλl

m∑

α=1

|∇s(l)α |2 dvolg + C

∫

U

m∑

α=1

|s(l)α |2 dvolg,

where C is independent of l. Hence, the assertion follows from Proposition
4.4. This completes the proof of Corollary 4.5.

Combining Corollary 4.5 with standard interior estimates for elliptic PDE,
we obtain smooth estimates for s(l) on compact subsets of Ω \ ∂Ω. After

passing to a subsequence if necessary, the sequence s(l) = (s
(l)
1 , . . . , s

(l)
m )

converges in C∞
loc(Ω \ ∂Ω) to an m-tuple of parallel spinors s = (s1, . . . , sm)

which is defined on Ω \ ∂Ω.

Lemma 4.6. We have
∫

Σλl

m∑

α=1

|s(l)α − sα|
2 → 0
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as l → ∞.

Proof. Combining Proposition 4.1 and Proposition 4.2, we obtain
∫

Σλl

F 2 dσg ≤ C

∫

Ωλl

|∇F |2 dvolg + C

∫

U

F 2 dvolg

for every smooth function F : Ωλl
→ R. In the next step, we put F =

(
δ2 +

∑m
α=1 |s

(l)
α − sα|

2
) 1

2 , and send δ → 0. This gives
∫

Σλl

m∑

α=1

|s(l)α − sα|
2 dσg

≤ C

∫

Ωλl

m∑

α=1

|∇(s(l)α − sα)|
2 dvolg + C

∫

U

m∑

α=1

|s(l)α − sα|
2 dvolg,

where C is independent of l. Recall that sα is parallel for each α = 1, . . . ,m.
Hence, Proposition 4.4 implies that

∫

Ωλl

m∑

α=1

|∇(s(l)α − sα)|
2 dvolg =

∫

Ωλl

m∑

α=1

|∇s(l)α |2 dvolg → 0

as l → ∞. Moreover, since s
(l)
α → sα in C∞

loc(Ω \ ∂Ω) for each α = 1, . . . ,m,
we know that

∫

U

m∑

α=1

|s(l)α − sα|
2 dvolg → 0

as l → ∞. This completes the proof of Lemma 4.6.

Lemma 4.7. We have
∫

Σλl

|s− χ(l)s|2 → 0

as l → ∞.

Proof. Recall that s(l) satisfies the boundary condition χ(l)s(l) = s(l) at
each point on Σλl

. This implies

|s− χ(l)s| = |(s− s(l))− χ(l)(s− s(l))| ≤ C |s− s(l)|

at each point on Σλl
. Hence, the assertion follows from Lemma 4.6.

We next analyze the behavior of the map N (l) : Σλl
→ Sn−1 near the

boundary faces of Ω.

Lemma 4.8. Let us fix an arbitrary element i0 ∈ I. Suppose that p ∈
{ui0 = 0} ∩

⋂

i∈I\{i0}
{ui < 0}. Then we can find a small positive real

number r (depending on p) such that

sup
Σλl

∩Br(p)
|N (l) −Ni0 | → 0
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as l → ∞.

Proof. This follows directly from the definition of the map N (l) : Σλl
→

Sn−1.

We now continue with the proof of Theorem 1.1. Since s1, . . . , sm are
parallel spinors, we can find a fixed matrix z ∈ End(Cm) such that zαβ =
〈sα, sβ〉 at each point in the interior of Ω.

Lemma 4.9. For each i ∈ I, the matrix z ∈ End(Cm) commutes with the
matrix

∑n
a=1〈Ni, Ea〉ωa ∈ End(Cm).

Proof. At each point on Σλl
, we have

n∑

a=1

m∑

β=1

〈N (l), Ea〉ωaαβ zβγ −
n∑

a=1

m∑

β=1

〈N (l), Ea〉ωaβγ zαβ

=

n∑

a=1

m∑

β=1

〈N (l), Ea〉ωaαβ 〈ν · sβ , ν · sγ〉+
n∑

a=1

m∑

β=1

〈N (l), Ea〉ωaγβ 〈ν · sα, ν · sβ〉

= −〈(χ(l)s)α, ν · sγ〉 − 〈ν · sα, (χ
(l)s)γ〉

= 〈sα − (χ(l)s)α, ν · sγ〉+ 〈ν · sα, sγ − (χ(l)s)γ〉

for all α, γ = 1, . . . ,m. This implies
∣
∣
∣
∣

( n∑

a=1

〈N (l), Ea〉ωa

)

z − z

( n∑

a=1

〈N (l), Ea〉ωa

)∣
∣
∣
∣
≤ C |s| |s− χ(l)s|

at each point on Σλl
. Using Lemma 4.7, we conclude that

∫

Σλl

∣
∣
∣
∣

( n∑

a=1

〈N (l), Ea〉ωa

)

z − z

( n∑

a=1

〈N (l), Ea〉ωa

)∣
∣
∣
∣
→ 0

as l → ∞. We now fix an arbitrary element i0 ∈ I. By Lemma 3.2, the set
{ui0 = 0} ∩

⋂

i∈I\{i0}
{ui < 0} is non-empty. Using Lemma 4.8, we deduce

that
( n∑

a=1

〈Ni0 , Ea〉ωa

)

z − z

( n∑

a=1

〈Ni0 , Ea〉ωa

)

= 0.

This completes the proof of Lemma 4.9.

Combining Lemma 4.9 and Lemma 3.3, we conclude that the matrix z ∈
End(Cm) commutes with the matrix ωa ∈ End(Cm) for each a = 1, . . . , n.
In view of (4), it follows that the matrix z commutes with every element of
End(Cm). This implies that z is a scalar multiple of the identity. Using the
normalization

∫

U

∑m
α=1 |sα|

2 dvolg = m volg(U), we conclude that z is the
identity.

To summarize, s = (s1, . . . , sm) is a collection of parallel spinors which
are defined at each point in the interior of Ω and are orthonormal at each
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point in the interior of Ω. Therefore, the spinor bundle is a flat bundle. This
implies that the Riemann curvature tensor of g vanishes identically.

It remains to show that the boundary faces of Ω are totally geodesic.
Recall that s = (s1, . . . , sm) is defined in the interior of Ω. Since s is parallel,
we may extend s continuously to Ω. Let us fix an arbitrary element i0 ∈ I.
By Lemma 3.2, the set {ui0 = 0} ∩

⋂

i∈I\{i0}
{ui < 0} is non-empty. Using

Lemma 4.7 and Lemma 4.8, we conclude that

νi0 · sα =

n∑

a=1

m∑

β=1

〈Ni0 , Ea〉ωaαβ sβ

at each point in {ui0 = 0} ∩
⋂

i∈I\{i0}
{ui < 0}. Hence, if X is an arbitrary

vector field on Ω, then we obtain

m 〈X, νi0〉 =
m∑

α=1

〈X, νi0〉 〈sα, sα〉

= −
1

2

m∑

α=1

〈X · νi0 · sα, sα〉+
1

2

m∑

α=1

〈X · sα, νi0 · sα〉

= −
1

2

n∑

a=1

m∑

α,β=1

〈Ni0 , Ea〉ωaαβ 〈X · sβ , sα〉

+
1

2

n∑

a=1

m∑

α,β=1

〈Ni0 , Ea〉ωaαβ 〈X · sα, sβ〉

= −
n∑

a=1

m∑

α,β=1

〈Ni0 , Ea〉ωaαβ 〈X · sβ , sα〉

at each point in {ui0 = 0} ∩
⋂

i∈I\{i0}
{ui < 0}. Since s = (s1, . . . , sm) is

parallel, it follows that νi0 is parallel along the hypersurface {ui0 = 0} ∩
⋂

i∈I\{i0}
{ui < 0}. Consequently, the second fundamental form of the hy-

persurface {ui0 = 0} vanishes at each point in {ui0 = 0}∩
⋂

i∈I\{i0}
{ui < 0}.

In view of Lemma 3.2, we conclude that the second fundamental form of the
hypersurface {ui0 = 0} vanishes at each point in Ω ∩ {ui0 = 0}.

Appendix A. A variant of a theorem of Fefferman and Phong

In this section, we describe a variant of an estimate due to Fefferman
and Phong [5], which plays a central role in our argument. Throughout
this section, we fix an integer n ≥ 3. We denote by Q the collection of all
(n− 1)-dimensional cubes of the form

[2mj1, 2
m(j1 + 1)]× . . .× [2mjn−1, 2

m(jn−1 + 1)]× {0},

where m ∈ Z and j1, . . . , jn−1 ∈ Z. For abbreviation, we put

Γ =
⋃

Q∈Q

∂Q.
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If Q1, Q2 ∈ Q satisfy Q1 ∩Q2 \ Γ 6= ∅, then Q1 ⊂ Q2 or Q2 ⊂ Q1.
For each (n− 1)-dimensional cube Q ∈ Q, we denote by |Q| the (n− 1)-

dimensional volume of Q.

Theorem A.1. Let us fix an integer n ≥ 3 and a real number σ ∈ (1, n −
1). Suppose that V is a nonnegative continuous function defined on the
hyperplane Rn−1 × {0} with the property that

(14)

(

|Q|−1

∫

Q

V σ

) 1
σ

≤ diam(Q)−1

for each (n−1)-dimensional cube Q ∈ Q. Let F be a smooth function defined
on the half-space Rn

+ = {x ∈ Rn : xn ≥ 0}, and let f denote the restriction
of F to the boundary ∂Rn

+ = Rn−1 × {0}. Then
∫

Q

V f2 ≤ C

∫

Q×[0,diam(Q)]
|∇F |2 + C diam(Q)−1

∫

Q

f2.

for each (n− 1)-dimensional cube Q ∈ Q. The constant C depends only on
n and σ.

The proof of Theorem A.1 is a straightforward adaptation of the argu-
ments of Fefferman and Phong [5]. Let us fix an exponent τ ∈ (1, σ). Let
V : Rn−1 × {0} → R be a nonnegative continuous function satisfying (14).
We define a measurable function W : Rn−1 × {0} → R by

W (x) = sup
Q∈Q,x∈Q

(

|Q|−1

∫

Q

V σ

) 1
σ

for each point x ∈ Rn−1 × {0}. It follows from (14) that W is locally
bounded. Moreover, V ≤W at each point in Rn−1 × {0}.

Let F be a smooth function defined on the half-space Rn
+ = {x ∈ Rn :

xn ≥ 0}, and let f denote the restriction of F to the boundary ∂Rn
+ =

Rn−1 × {0}. For each (n − 1)-dimensional cube Q ∈ Q, we denote by
fQ = |Q|−1

∫

Q
f the mean value of f over the cube Q.

Lemma A.2. For each (n− 1)-dimensional cube Q0 ∈ Q, we have

(

|Q0|
−1

∫

Q0

W τ

) 1
τ

≤ C sup
Q∈Q,Q0⊂Q

(

|Q|−1

∫

Q

V σ

) 1
σ

,

where C depends only on n, σ, and τ .

Proof. For abbreviation, let

Λ = sup
Q∈Q,Q0⊂Q

(

|Q|−1

∫

Q

V σ

) 1
σ

.
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It follows from (14) that Λ <∞. We define a bounded measurable function
W0 : Q0 → R by

W0(x) = sup
Q∈Q,x∈Q⊂Q0

(

|Q|−1

∫

Q

V σ

) 1
σ

for each point x ∈ Q0. Then

W (x) = max{Λ,W0(x)}

for each point x ∈ Q0 \ Γ. The function W σ
0 is bounded from above by

the maximal function associated with the function V σ 1Q0 . Hence, the weak
version of the Hardy-Littlewood maximal inequality (cf. [19], Proposition
2.9 (i)) implies

(15) |Q0|
−1 |{x ∈ Q0 :W0(x)

σ > α}| ≤ Cα−1 |Q0|
−1

∫

Q0

V σ ≤ Cα−1 Λσ

for all α > 0. We multiply both sides of (15) by τ
σ
α

τ
σ
−1 and integrate over

α ∈ (Λσ,∞). Using Fubini’s theorem, we obtain

|Q0|
−1

∫

Q0

max{W τ
0 − Λτ , 0}

= |Q0|
−1

∫ ∞

Λσ

τ

σ
α

τ
σ
−1 |{x ∈ Q0 :W0(x)

σ > α}| dα

≤ C

∫ ∞

Λσ

τ

σ
α

τ
σ
−2 Λσ dα

= C
τ

σ − τ
Λτ .

Putting these facts together, we conclude that

|Q0|
−1

∫

Q0

W τ ≤ C Λτ .

This completes the proof of Lemma A.2.

Lemma A.3. Given a real number ε > 0, we can find a real number δ > 0
(depending only on n, σ, and ε) with the property that

∫

A

W ≤ ε

∫

Q0

W.

for every (n−1)-dimensional cube Q0 ∈ Q and every measurable set A ⊂ Q0

satisfying |A| ≤ δ |Q0|.

Proof. Using Lemma A.2, we obtain

(

|Q0|
−1

∫

Q0

W τ

) 1
τ

≤ C sup
Q∈Q,Q0⊂Q

(

|Q|−1

∫

Q

V σ

) 1
σ

.
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Moreover,

sup
Q∈Q,Q0⊂Q

(

|Q|−1

∫

Q

V σ

) 1
σ

≤ inf
Q0

W ≤ |Q0|
−1

∫

Q0

W

by definition of W . Putting these facts together, we obtain

(

|Q0|
−1

∫

Q0

W τ

) 1
τ

≤ C |Q0|
−1

∫

Q0

W.

Hence, if A ⊂ Q0 is a measurable set with |A| ≤ δ |Q0|, then Hölder’s
inequality gives

∫

A

W ≤ |A|
τ−1
τ

(∫

Q0

W τ

) 1
τ

≤ δ
τ−1
τ |Q0|

τ−1
τ

(∫

Q0

W τ

) 1
τ

≤ Cδ
τ−1
τ

∫

Q0

W.

Hence, if we choose δ to be a small multiple of ε
τ

τ−1 , then δ has the required
property. This completes the proof of Lemma A.3.

Lemma A.4. For each (n− 1)-dimensional cube Q0 ∈ Q, we have

|Q0|
−1

∫

Q0

W ≤ C diam(Q0)
−1,

where C depends only on n and σ.

Proof. Using Lemma A.2 and Hölder’s inequality, we obtain

|Q0|
−1

∫

Q0

W ≤

(

|Q0|
−1

∫

Q0

W τ

) 1
τ

≤ C sup
Q∈Q,Q0⊂Q

(

|Q|−1

∫

Q

V σ

) 1
σ

.

Hence, the assertion follows from (14).

Lemma A.5. Let us fix an (n− 1)-dimensional cube Q0 ∈ Q. We define a
bounded measurable function g : Q0 → R by

g(x) = sup
Q∈Q,x∈Q⊂Q0

|Q|−1

∫

Q

|f − fQ|

for each point x ∈ Q0. Then
∫

Q0

V |f − fQ0 |
2 ≤ C

∫

Q0

Wg2,

where C depends only on n and σ.

Proof. We define a bounded measurable function h : Q0 → R by

h(x) = sup
Q∈Q,x∈Q⊂Q0

|Q|−1

∫

Q

|f − fQ0 |
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for each point x ∈ Q0. Note that V ≤W and |f − fQ0 | ≤ h at each point in
Q0. Hence, it suffices to prove that

(16)

∫

Q0

Wh2 ≤ C

∫

Q0

Wg2.

In order to prove the inequality (16), we define α0 = |Q0|
−1

∫

Q0
|f − fQ0 |.

For each α > α0, we denote by Qα the set of all (n− 1)-dimensional cubes
Q ∈ Q with the following properties:

• Q ⊂ Q0.
• |Q|−1

∫

Q
|f − fQ0 | > α.

• If Q̃ ∈ Q is an (n − 1)-dimensional cube with Q ( Q̃ and Q̃ ⊂ Q0,

then |Q̃|−1
∫

Q̃
|f − fQ0 | ≤ α.

It follows from the definition of α0 that Q0 /∈ Qα for each α > α0. It is easy
to see that

(17) α < |Q|−1

∫

Q

|f − fQ0 | ≤ 2n−1α

for each α > α0 and each Q ∈ Qα. Moreover,

(18) {h > α} =
⋃

Q∈Qα

Q

for each α > α0. Finally, given a real number α > α0 and a point x /∈ Γ,
there is at most one cube Q ∈ Qα that contains the point x.

We next apply Lemma A.3 with ε = 2−2n−1. Hence, we can find a real
number δ ∈ (0, 1) such that

(19)

∫

A

W ≤ 2−2n−1

∫

Q

W

for every (n− 1)-dimensional cube Q ∈ Q and every measurable set A ⊂ Q
satisfying |A| ≤ 21−n δ |Q|.

Let us consider a real number α > α0 and an (n − 1)-dimensional cube
Q ∈ Qα. The upper bound in (17) implies |fQ − fQ0 | ≤ 2n−1α. Using the
lower bound in (17), we obtain

2n−1α |Q̃| ≤

∫

Q̃

(|f − fQ0 | − 2n−1α) ≤

∫

Q̃

|f − fQ|

for all (n − 1)-dimensional cubes Q̃ ∈ Q2nα. In the next step, we take the

sum over all (n− 1)-dimensional cubes Q̃ ∈ Q2nα with Q̃ ⊂ Q. This gives

(20) 2n−1α
∑

Q̃∈Q2nα,Q̃⊂Q

|Q̃| ≤

∫

Q

|f − fQ|.

For each (n− 1)-dimensional cube Q ∈ Qα, we have the inclusion

(21) Q ∩ {h > 2nα} \ Γ ⊂
⋃

Q̃∈Q2nα,Q̃⊂Q

Q̃.
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Combining (20) and (21), we conclude that

(22) 2n−1α |Q ∩ {h > 2nα}| ≤

∫

Q

|f − fQ|

for every (n− 1)-dimensional cube Q ∈ Qα. In particular,

|Q ∩ {h > 2nα}| ≤ 21−n δ |Q|

for every (n−1)-dimensional cube Q ∈ Qα satisfying |Q|−1
∫

Q
|f−fQ| ≤ δα.

Applying (19) with A = Q ∩ {h > 2nα} gives

(23)

∫

Q∩{h>2nα}
W ≤ 2−2n−1

∫

Q

W

for every (n−1)-dimensional cube Q ∈ Qα satisfying |Q|−1
∫

Q
|f−fQ| ≤ δα.

On the other hand, if Q ∈ Qα is an (n − 1)-dimensional cube satisfying
|Q|−1

∫

Q
|f − fQ| > δα, then g > δα at each point in Q. Therefore,

(24)

∫

Q∩{h>2nα}
W ≤

∫

Q∩{g>δα}
W

for every (n−1)-dimensional cube Q ∈ Qα satisfying |Q|−1
∫

Q
|f−fQ| > δα.

Combining (23) and (24), we conclude that

(25)

∫

Q∩{h>2nα}
W ≤ 2−2n−1

∫

Q

W +

∫

Q∩{g>δα}
W

for every (n − 1)-dimensional cube Q ∈ Qα. Summation over all (n − 1)-
dimensional cubes Q ∈ Qα gives

(26)

∫

{h>2nα}
W ≤ 2−2n−1

∫

{h>α}
W +

∫

{g>δα}
W

for each α > α0.
We now multiply both sides of (26) by 2α and integrate over α ∈ (2α0,∞).

Using Fubini’s theorem, we obtain
∫

Q0

W max{2−2nh2 − 4α2
0, 0}

=

∫ ∞

2α0

2α

(∫

{h>2nα}
W

)

dα

≤

∫ ∞

2α0

2−2nα

(∫

{h>α}
W

)

dα+

∫ ∞

2α0

2α

(∫

{g>δα}
W

)

dα

≤ 2−2n−1

∫

Q0

Wh2 + δ−2

∫

Q0

Wg2.

Rearranging terms gives

(27) 2−2n−1

∫

Q0

Wh2 ≤ 4α2
0

∫

Q0

W + δ−2

∫

Q0

Wg2.
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On the other hand, g ≥ |Q0|
−1

∫

Q0
|f − fQ0 | = α0 at each point in Q0.

Consequently,

(28) 2−2n−1

∫

Q0

Wh2 ≤ (4 + δ−2)

∫

Q0

Wg2.

The inequality (16) follows immediately from (28). This completes the proof
of Lemma A.5.

Lemma A.6. Let us fix an (n− 1)-dimensional cube Q0 ∈ Q. We define a
bounded measurable function g : Q0 → R by

g(x) = sup
Q∈Q,x∈Q⊂Q0

|Q|−1

∫

Q

|f − fQ|

for each point x ∈ Q0. Then
∫

Q0

Wg2 ≤ C

∫

Q0×[0,diam(Q0)]
|∇F |2,

where C depends only on n and σ.

Proof. Let α0 = |Q0|
−1

∫

Q0
|f − fQ0 |. For each α > α0, we denote by Qα

the set of all (n−1)-dimensional cubes Q ∈ Q with the following properties:

• Q ⊂ Q0.
• |Q|−1

∫

Q
|f − fQ| > α.

• If Q̃ ∈ Q is an (n − 1)-dimensional cube with Q ( Q̃ and Q̃ ⊂ Q0,

then |Q̃|−1
∫

Q̃
|f − fQ̃| ≤ α.

It follows from the definition of α0 that Q0 /∈ Qα for each α > α0. It is easy
to see that

(29) α < |Q|−1

∫

Q

|f − fQ| ≤ 2nα

for each α > α0 and each Q ∈ Qα. Moreover,

(30) {g > α} =
⋃

Q∈Qα

Q

for each α > α0. Finally, given a real number α > α0 and a point x /∈ Γ,
there is at most one cube Q ∈ Qα that contains the point x.

Let us consider a real number α > α0 and an (n − 1)-dimensional cube
Q ∈ Qα. Using the lower bound in (29), we obtain

2n+2α |Q̃| ≤

∫

Q̃

|f − fQ̃| ≤ 2

∫

Q̃

|f − fQ|

for all (n− 1)-dimensional cubes Q̃ ∈ Q2n+2α. In the next step, we take the

sum over all (n− 1)-dimensional cubes Q̃ ∈ Q2n+2α with Q̃ ⊂ Q. Using the
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upper bound in (29), we obtain

(31) 2n+2α
∑

Q̃∈Q2n+2α,Q̃⊂Q

|Q̃| ≤ 2

∫

Q

|f − fQ| ≤ 2n+1α |Q|

for every (n − 1)-dimensional cube Q ∈ Qα. For each (n − 1)-dimensional
cube Q ∈ Qα, we have the inclusion

(32) Q ∩ {g > 2n+2α} \ Γ ⊂
⋃

Q̃∈Q2n+2α,Q̃⊂Q

Q̃.

Combining (31) and (32), we conclude that

2n+2α |Q ∩ {g > 2n+2α}| ≤ 2n+1α |Q|,

hence

(33) |Q ∩ {g ≤ 2n+2α}| ≥
1

2
|Q|

for every (n− 1)-dimensional cube Q ∈ Qα.
We define a nonnegative function ϕ : Rn−1 × {0} → R by

(34) ϕ(x1, . . . , xn−1, 0) =

(∫ diam(Q0)

0
|∇F (x1, . . . , xn−1, xn)|

2 dxn

) 1
2

.

Moreover, we define a nonnegative function ψ : Q0 → R by

(35) ψ(x) = sup
Q∈Q,x∈Q⊂Q0

|Q|−1

∫

Q

ϕ

for each point x ∈ Q0. Using the Sobolev trace theorem, we obtain

α ≤ |Q|−1

∫

Q

|f − fQ|

≤ 2 |Q|−1 inf
a∈R

∫

Q

|f − a|

≤ C |Q|−1 inf
a∈R

(∫

Q×[0,diam(Q)]
|∇(F − a)|(36)

+ diam(Q)−1

∫

Q×[0,diam(Q)]
|F − a|

)

for every (n − 1)-dimensional cube Q ∈ Qα. Using (36) and the Poincaré
inequality, we conclude that

(37) α ≤ C |Q|−1

∫

Q×[0,diam(Q)]
|∇F |

for every (n − 1)-dimensional cube Q ∈ Qα. Using Hölder’s inequality, we
deduce that

(38) α ≤ C diam(Q)
1
2 |Q|−1

∫

Q

ϕ ≤ C diam(Q)
1
2 inf

Q
ψ
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for every (n− 1)-dimensional cube Q ∈ Qα. Combining (33) and (38) gives

α2 diam(Q)−1 |Q| ≤ 2α2 diam(Q)−1 |Q ∩ {g ≤ 2n+2α}|

≤ C

∫

Q∩{g≤2n+2α}
ψ2(39)

for every (n − 1)-dimensional cube Q ∈ Qα. Combining the estimate (39)
with Lemma A.4, we obtain

(40) α2

∫

Q

W ≤ C

∫

Q∩{g≤2n+2α}
ψ2

for every (n − 1)-dimensional cube Q ∈ Qα. Summation over all (n − 1)-
dimensional cubes Q ∈ Qα gives

(41) α2

∫

{g>α}
W ≤ C

∫

{α<g≤2n+2α}
ψ2

for each α > α0.
We now multiply both sides of (41) by 2α−1 and integrate over α ∈

(2α0,∞). Using Fubini’s theorem, we obtain

∫

Q0

W max{g2 − 4α2
0, 0} =

∫ ∞

2α0

2α

(∫

{g>α}
W

)

dα

≤

∫ ∞

2α0

2Cα−1

(∫

{α<g≤2n+2α}
ψ2

)

dα(42)

≤ 2C log(2n+2)

∫

Q0

ψ2.

On the other hand, the function ψ is bounded from above by the maximal
function associated with the function ϕ 1Q0 . Hence, the strong version of the
Hardy-Littlewood maximal inequality (cf. [19], Proposition 2.9 (ii)) implies

(43)

∫

Q0

ψ2 ≤ C

∫

Q0

ϕ2 ≤ C

∫

Q0×[0,diam(Q0)]
|∇F |2.

Combining (42) and (43) gives

(44)

∫

Q0

W max{g2 − 4α2
0, 0} ≤ C

∫

Q0×[0,diam(Q0)]
|∇F |2.



38 SIMON BRENDLE

Finally, using the Sobolev trace theorem, we obtain

α0 = |Q0|
−1

∫

Q0

|f − fQ0 |

≤ 2 |Q0|
−1 inf

a∈R

∫

Q0

|f − a|

≤ C |Q0|
−1 inf

a∈R

(∫

Q0×[0,diam(Q0)]
|∇(F − a)|(45)

+ diam(Q0)
−1

∫

Q0×[0,diam(Q0)]
|F − a|

)

.

Using (45) and the Poincaré inequality, we conclude that

(46) α0 ≤ C |Q0|
−1

∫

Q0×[0,diam(Q0)]
|∇F |.

Using Hölder’s inequality, we deduce that

(47) α2
0 diam(Q0)

−1 |Q0| ≤ C

∫

Q0×[0,diam(Q0)]
|∇F |2.

Combing the estimate (47) with Lemma A.4 gives

(48) α2
0

∫

Q0

W ≤ C

∫

Q0×[0,diam(Q0)]
|∇F |2.

The assertion follows by combining (44) and (48). This completes the proof
of Lemma A.6.

After these preparations, we now complete the proof of Theorem A.1.
Combining Lemma A.5 and Lemma A.6, we conclude that

∫

Q0

V |f − fQ0 |
2 ≤ C

∫

Q0×[0,diam(Q0)]
|∇F |2

for every (n− 1)-dimensional cube Q0 ∈ Q. This implies
∫

Q0

V f2 ≤ C

∫

Q0×[0,diam(Q0)]
|∇F |2 + C |Q0|

−2

(∫

Q0

V

)(∫

Q0

|f |

)2

for each (n− 1)-dimensional cube Q0 ∈ Q. Moreover,

|Q0|
−1

∫

Q0

V ≤

(

|Q0|
−1

∫

Q0

V σ

) 1
σ

≤ diam(Q0)
−1

by (14). Thus, we conclude that
∫

Q0

V f2 ≤ C

∫

Q0×[0,diam(Q0)]
|∇F |2 + C diam(Q0)

−1 |Q0|
−1

(∫

Q0

|f |

)2

for each (n − 1)-dimensional cube Q0 ∈ Q. This completes the proof of
Theorem A.1.
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Corollary A.7. Let us fix an integer n ≥ 3 and a real number σ ∈ (1, n−1).
Suppose that V is a nonnegative continuous function defined on the unit
sphere Sn−1 ⊂ Rn with the property that

(49)

(

rσ+1−n

∫

Sn−1∩Br(p)
V σ

) 1
σ

≤ 1

for all points p ∈ Rn and all 0 < r ≤ 1. Let F be a smooth function defined
on the unit ball Bn = {x ∈ Rn : |x| ≤ 1}, and let f denote the restriction of
F to the boundary ∂Bn = Sn−1. Then

∫

Sn−1

V f2 ≤ C

∫

Bn

|∇F |2 + C

∫

Sn−1

f2.

The constant C depends only on n and σ.
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