SCALAR CURVATURE RIGIDITY OF CONVEX
POLYTOPES

SIMON BRENDLE

ABSTRACT. We prove a scalar curvature rigidity theorem for convex
polytopes. The proof uses the Fredholm theory for Dirac operators on
manifolds with boundary. A variant of a theorem of Fefferman and
Phong plays a central role in our analysis.

1. INTRODUCTION

Let n > 3 be an integer, and let €2 be a compact, convex polytope in R"
with non-empty interior. We may write Q = (), {u; < 0}, where u;, i € I,
is a finite collection of non-constant linear functions defined on R™. For each
i € I, we denote by N; € S*! the outward-pointing unit normal vector to
the halfspace {u; < 0} with respect to the Euclidean metric.

Let g be a Riemannian metric which is defined on an open set containing
Q. For each i € I, we denote by v; the outward-pointing unit normal vector
to the halfspace {u; < 0} with respect to the metric g. We will assume the
following;:

Matching Angle Hypothesis. If x is point in 02 and iy,is € I satisfy
uiy () = wiy(z) = 0, then (v4,,vi,) = (Ni,, Niy) at the point z. Here, the
inner product (v;,,v;,) is computed with respect to the metric g, and the
inner product (N;,, N;,) is the standard inner product in R™.

Theorem 1.1. Suppose thatn > 3 is an integer, and ) is a compact, convex
polytope in R™ with non-empty interitor. Let g be a Riemannian metric which
is defined on an open set containing ) and has nonnegative scalar curvature
at each point in Q2. For each i € I, we assume that the mean curvature of
the hypersurface {u; = 0} with respect to g is nonnegative at each point in
QN {u; = 0}. Moreover, we assume that the Matching Angle Hypothesis is
satisfied. Then the Riemann curvature tensor of g vanishes at each point in
Q. Moreover, the second fundamental form of the boundary faces of ) with
respect to g vanishes.

Scalar curvature comparison theorems for polytopes were first studied in
seminal work of Gromov [6],[7],[8]. In particular, Gromov addressed the
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case when the dihedral angles are at most % (see [7], Section 3.18). Li [14]
has used minimal surface techniques to prove a scalar curvature comparison
theorem for prisms in dimension 3. In [15], Li generalized this approach up
to dimension 7. Wang, Xie, and Yu [20] have proposed a different approach
to this problem which is based on the study of Dirac operators on manifolds
with corners.

In this paper, we describe another approach to this problem. As in [20], we
employ a spinor approach. In contrast to [20], we work with boundary value
problems for Dirac operators on smooth domains. These types of boundary
value problems are well understood thanks to the work of Hérmander [12]
and Bér and Ballmann [1],[2].

Spinor techniques have long been used in the study of scalar curvature,
see e.g. [4], [9], [10], [16], [17], [18], [21]. We refer to the text by Law-
son and Michelsohn [13] for an excellent introduction to spinors and their
applications in geometry.

In the following, we outline the main steps involved in the proof of The-
orem 1.1. We approximate a given convex polytope €2 by a one-parameter
family of smooth convex domains 2y, where A is assumed to be sufficiently
large. The domains 2y form an increasing family of sets, and their union
equals the interior of 2. We consider a sequence A\; — oco. Let m = olz]
denote the dimension of the space of spinors on flat R". For each I, we
construct a non-trivial m-tuple of harmonic spinors st) = (sgl), .. .,s%))
on the domain (1), which satisfies a suitable local boundary condition of
Lopatinsky-Shapiro-type. To prove the existence of an m-tuple of spinors
with these properties, we use the Fredholm theory from [12] together with
the deformation invariance of the Fredholm index. We normalize s so that
Jor 2oy |sg) |2 dvol, = mvol,(U), where U is some fixed Euclidean ball with
the property that the closure of U is contained in the interior of 2. We then
apply the Weitzenbock formula to s®. and integrate over the domain (2y,.
The resulting integral formula contains a term involving the scalar curvature,
as well as a boundary term. Unfortunately, it is not clear if the boundary
term has a favorable sign. We are able to control the boundary integral by
adapting a deep theorem due to Fefferman and Phong [5]. As a result, we

are able to show that m ng) 2 dvol, — 0 as | — oo (see Proposi-
Q)\ a=1 g
l

tion 4.4 below). By passing to the limit as | — oo, we obtain an m-tuple
of parallel spinors s = (s1,..., Sy ) which is defined in the interior of 2. In
particular, (sa,sg) = zqp for some fixed matrix z € End(C™). Finally, by
exploiting the boundary condition, we show that z is the identity. In other
words, 81, ..., Sy are orthonormal at each point in the interior of . As a
consequence, the Riemann curvature tensor of g vanishes identically.
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2. A BOUNDARY VALUE PROBLEM FOR THE DIRAC OPERATOR ON AN
ODD-DIMENSIONAL DOMAIN WITH SMOOTH BOUNDARY

Throughout this section, we assume that n > 3 is an odd integer. Let
{E1,...,E,} denote the standard basis of R". Let Cl(n,C) denote the
Clifford algebra. The spin representation gives a surjective algebra homo-
morphism p : Cl(n,C) — End(A,), where A, is a complex vector space of
dimension m = 2! equipped with a Hermitian inner product. For each
a =1,...,n, the map p(FE,) € End(4,) is skew-adjoint. Moreover, the
Clifford relations

(1) PE)H(Ey) + p(Ep)p(Ea) = —2001d

hold for all a,b=1,...,n. Since n is odd, the product E --- E,, € Cl(n,C)
commutes with every element of Cl(n,C). Since p is surjective, it follows
that p(E1) - -+ p(Ey) € End(A,,) commutes with every element of End(A,,).
Therefore, p(E1) - -- p(Ey) € End(A,,) is a scalar multiple of the identity. It
is straightforward to see that

(2) i"F () - p(Ey) = Fid.

The sign in (2) depends on the choice of p (see [13], Proposition 5.9). In the
following, we assume that p is chosen so that i p(EY) - p(Ey,) = id.

Let us fix an orthonormal basis {31, ..., 8} of A,. We define
(3) WaaB = <ﬁ(Ea) Sa, <§,8>
fora=1,...,nand o, = 1,...,m. The matrices wy,...,w, € End(C™)
are skew-Hermitian and satisfy wqwp+wpwe = —204id for all a, b =1,...,n.
.n+1

Moreover, i 2 wy - --wy = id by our choice of p. Finally,
(4) End(C™) = span{wg, - -wq, : 1 <a1 <...<a, <n}
since p is surjective.

Lemma 2.1. Assume that n > 3 is an odd integer. If z € End(C™) anti-
commutes with w, € End(C™) for each a =1,...,n, then z = 0.

Proof. Suppose that z € End(C™) anti-commutes with w, € End(C™)
for each a = 1,...,n. Since n is odd, it follows that z anti-commutes with
the product wy - - - w, € End(C™). Since wy - - - wy, is a non-zero multiple of
the identity, we conclude that z = 0. This completes the proof of Lemma 2.1.

In the remainder of this section, we assume that €2 is a compact domain
in R™ with smooth boundary 02 = X. Let g be a Riemannian metric
which is defined on an open set containing 2. We denote by v the outward-
pointing unit normal vector field with respect to the metric g. We denote
by H the mean curvature of ¥ with respect to g, defined as the trace of
the fundamental form of 3. Under our sign convention for H, the mean
curvature vector of X is given by —Hwv.



4 SIMON BRENDLE

Let S denote the spinor bundle over 2 with respect to the metric g. Note
that § is a complex vector bundle of rank m equipped with a Hermitian
inner product. As a bundle, we may identify S with the trivial bundle
Q x A, = Q. Each tangent vector £ € T, induces a skew-adjoint map
p(€) € End(S;). If {e1,..., ey} is an orthonormal frame with respect to the
metric g, then

plex)pler) + plex)pler) = =20k id
for k,l =1,...,n. Moreover, if {eq, ..., e,} is a positively oriented orthonor-
mal frame with respect to the metric g, then i pler)---p(en) = id. For
abbreviation, we write £ - s instead of p(&) s. This is referred to as Clifford
multiplication.
We next consider the spin connection with respect to the metric g. The
spin connection is a connection V on S which is compatible with Clifford

multiplication and which is compatible with the Hermitian inner product on
S. The Dirac operator is defined by

n
Ds = Zek Ve, 8,
k=1

where s denotes a section of S and {ey, ..., e} is a local orthonormal frame
on Q. The boundary Dirac operator D> is given by

n—1
1
by
D s:ZV'ek‘Veks—FiHs,
k=1
where s denotes a section of S|y, and {ey,...,e,—1} is a local orthonormal

frame on Y. Note that D is formally self-adjoint.
In the following, we will consider the Dirac operator acting on m-tuples
of spinors. To fix notation, we define a complex vector bundle £ over {2 by

E=S®...0S.
————

m times

Note that £ has rank m?2. A section of £ can be identified with an m-tuple of
spinors s = (81, ..., Sy) defined on 2. We may view D as an operator acting
on sections of £, and we may view D> as an operator acting on sections of
Els.

In the next step, we introduce a local boundary condition of Lopatinsky-
Shapiro-type. To formulate the boundary condition, we assume that a
smooth map N : ¥ — S"~! is given.

Definition 2.2. We define a bundle map x : €|z, — &|x by

(X8)a = — Z Z(N, Eq) WaapV - g

a=18=1
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for a =1,...,m. Moreover, we define a bundle map B : £|xy, — E|x by
n—1 n m
(Bs)a = Z Z Z(dN(ek),Ea> Waas €k - S8
k=1 a=1p=1
for « =1,...,m. Here, {e1,...,e,—1} is a local orthonormal frame on .

Lemma 2.3. The map x is self-adjoint. Moreover, x? = id.

Proof. Suppose that s = (s1,...,8,) and t = (t1,...,t,,) are two m-
tuples of spinors. We compute

m n
Z<(X5)avta> == Z Z (N, Ea) Waap (V- 58, ta)
a=1 a=1q,p=1
n m
==> > (N,Eq)@apa {35V ta)
a=1q,p=1
m
= (s, (xt)s)
=1
Moreover,
n m
(ng)oz == Z (N, Ea> <Na Eb> Waap WbBy Sy = Sa
a,b=1 B,y=1
for « = 1,...,m. This completes the proof of Lemma 2.3.

Lemma 2.4. The map B is self-adjoint. Moreover, x and B commute.

Proof. Suppose that s = (s1,...,8y,) and t = (t1,...,t,) are two m-
tuples of spinors. Let {e1,...,e,—1} be a local orthonormal frame on ¥.
Then

m n—1 n m

Z((Bs)aata> = Z <dN(€k)>Ea> WaapB <ek: : Sﬁata>

a=1 k=1a=1qa,f=1
n—1 n
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This shows that B is self-adjoint. Moreover,
(XBs)a — (Bx5)a

:—Z Z Z NE dN 6k) Eb>waa6wbﬂ'y’/ €k * Sy

k=1a,b=1p,y=1

n

+Z Z Z dN €k <N Eb) WaaB WbBy €k "V« Sy

k=1 a,b 18,y=1

n m

= _Z > )" (N,Ea) (AN (ex), Eb) (Waap Whsy + Whap Wapy) V - €k - 54
k=1 a,b=1 B,y=1

n—1
22 N,dN(ex))v-eg - Sa
k=1

=0
for « = 1,...,m. Thus, x and B commute. This completes the proof of
Lemma 2.4.
Proposition 2.5. Suppose that s = (s1,...,8m) is an m-tuple of spinors.
Then
xD%s 4+ D¥ys = —Bs.
Proof. Let {e1,...,e,—1} denote a local orthonormal frame on 3. We
compute
n m
(XD*5)q Z (N, Eq) WaapV - (Dzsm
a=1p=1
n—-1 n m 1
(N, Eq) Waap €k - Veysg + B H (x$)a
k=1a=1 =1
and
n—1
(D XS a = ZV €L - Vek(XS) + 5 H(XS)
k=1
n—1 1
= — Zek Ve, (V- Xx8)a — 3 H (x8)a
k=1
n—1 n m
=— Z Z Z(dN(ek) Eq) waap ek - 58
k=1 a=1 =1

n—1 n m

- ZZZ<N7 Ea> WaapB €k * kasﬁ B %H (Xs)a

k=1a=1p=1
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for « = 1,...,m. Putting these facts together, the assertion follows. This
completes the proof of Proposition 2.5.

Corollary 2.6. Let A = D> +%XB. Then A is formally self-adjoint. More-
over, A anti-commutes with x.

Proof. It follows from Lemma 2.3 and Lemma 2.4 that xB is self-adjoint.
Since D is formally self-adjoint, we conclude that A is formally self-adjoint.
This proves the first statement. To prove the second statement, suppose that
s = (81,...,8m) is an m-tuple of spinors. Using Lemma 2.3, Lemma 2.4,
and Proposition 2.5, we obtain

1 1
xAs + Axs = XDES + DEXS + §XXBS + 5)(8)(5

= xD*s + D*xs + Bs
=0.

This completes the proof of Corollary 2.6.

At this point, we recall a definition from linear algebra (see e.g. [22],
p. 92).

Definition 2.7. Let V and W be finite-dimensional real vector spaces of
the same dimension, each of them equipped with an inner product. Let
L :V — W be a linear map. The trace norm of L is defined by ||L|t =
supg tr(QL), where the supremum is taken over all linear isometries @ :
W — V. Equivalently, ||L||t, can be characterized as the sum of the singular
values of L.

It is easy to see from the definition that the trace norm satisfies the tri-
angle inequality.

Lemma 2.8. Suppose that s = (s1,...,8m) is an m-tuple of spinors. Then
m m
> (B9sol| < 1N (3 Isal)
a=1 a=1

at each point x € X. Here, ||dN||i; denotes the trace norm of the differential
dN :T,% — TN(:E)S”_I. The tangent space T3 is equipped with the restric-

tion of the inner product g, and the tangent space TN(JE)S”*1 s equipped
with the restriction of the standard inner product on R™.

Proof. Fix apoint x € 3. Let A1,..., A1 > 0 denote the singular values
of the differential dN : T, X — Ty(y)S n=1 We can find an orthonormal basis

{e1,...,en—1} of T, and an orthonormal basis {El, e En,l} of TN(m)Sn_l
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such that dN(ex) = A E) foreach k=1,...,n— 1. Then
2
|30 S B s
a=1

alﬁl

= - Z Z (B, E EkaEb>Waaﬁwbvo¢ (58, 8y)
a,b=1 a,B8,7=1

=3 > Y (Br, Ea) (Br, By) (Waya Whap + Wiya Waas) (58, 54)
avb:]- Oé,ﬂ,’}/:].

(0%
for each £ =1,...,n — 1. Using the Cauchy-Schwarz inequality, we obtain

Z Z Eka waaﬁ <€k 3,87304>

m n m 1 m 1 m
< (XX St B vwnsen s ) (zw) =3 Jsal?
a=1!a=1p=1 a=1 a=1
for each kK =1,...,n — 1. Summation over k =1,...,n — 1 gives
m n—1 n m
(Bs)a, Sa)| = Z (dN(er), Eq) Waas (€k - 58, Sa)
a=1 k=1a=1 a,f=1
n—1 n m
= Ak (Z > (B, Ea) waas (e 3673a>>‘
k=1 a=1 a,[=1
n—1 m
< (Xn) ()
k=1 a=1

This completes the proof of Lemma 2.8.

Proposition 2.9. Suppose that s = (s1,...,8m) is an m-tuple of spinors.
Then

m m 1 m
2 2 2
_/QZ|DSC“| dvolg+/QZ|vsa\ dvolg—|—4/QZR|sa] dvol,
< Q/ZD S0y 8a — (X8)a) dog + /Z (x$)a, D> Sq) dog
1 .
—5 E(H* AN ) ( D [5al* ) dog.

a=1
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Proof. By the Weitzenbock formula, D?s, = —As, + %Rsa, where A
denotes the connection Laplacian on the spinor bundle. Using the divergence
theorem, we obtain

m m 1 m
—/ Z]Dsalzdvolg—i—/ Z]Vsa|2dvolg+4/ ZR|sal2dvolg
Q=1 Qa=1 Qo=1
:/Z(y-Dsa,sa>dag+/Z(V,/Sa,sa>dag.
X a=1 X a=1

Note that v-Dsq + Vysq = D¥s4 — % H s, at each point on . This implies

m m m
1
—/ > ijsadevongr/ > yvsa\2dvolg+4/ > " R|sq|* dvol,
Qazl Qazl Qa:l

1 m
:/(Dzsa,sa>dag - 2/ ZH|SQ|2dag.
z X a=1

On the other hand, using the fact that x is self-adjoint and D> is formally
self-adjoint, we obtain

/Z;@ Sas (XS)a) dJQ+L;<(X5)a7D Sa) dog

_ . 28) sV do Ex8)as Sa) do
_/Z;«XD Jovsa) oy + [ 3D x)ar50) oy

a=1
:_/ S ((BS)a sa) doy.
Zoz:l

In the last step, we have used Proposition 2.5. Putting these facts together,
we conclude that

m m ] m
_/ Z |Dsal” dvol, +/ Z |Vsal® dvoly + / ZR|sa|2dvolg
2 a=1 Q-1 4 Q=1
:5 EZ<D 304750(>d0'g+§ EZ<S()¢7D 3a>d09—§ ZZH’SQ‘ do’g
a=1 a=1 a=1
1 i 1 m
= 5 /2\: azl<DESOH Sa — (X3>a> dag + 5 /E ;(304 - (X3>Q,D28a> dO'g

1 [ & 1 [ &
-5 /E Z<(Bs)a,sa) dog — 3 /E ZH ]sa‘Q dog.
a=1 a=1

Hence, the assertion follows from Lemma 2.8.

Corollary 2.10. Assume that R > 0 at each point in Q and H > ||dN || at
each point on X. Suppose that s = (s1,...,5m) 15 an m-tuple of harmonic



10 SIMON BRENDLE

spinors on ) which satisfies the boundary condition xs = s at each point on
.. Then s is parallel.

Replacing N by —N, we can draw the following conclusion:

Corollary 2.11. Assume that R > 0 at each point in Q and H > ||dN|| at
each point on X. Suppose that s = (s1,...,8m) is an m-tuple of harmonic
spinors on ) which satisfies the boundary condition xs = —s at each point
on Y. Then s is parallel.

Lemma 2.12. Assume that x € X and £ € T,;X. Then the linear map
(S1y.vySm) = (1V-E-S1,...,iv-& Sy) anti-commutes with x. In particular,
dim ker(id — x) = dim ker(id + x).

Proof. This follows immediately from the definition of x.

Definition 2.13. We denote by F = £|x; the restriction of £ to . Moreover,
we write F = F+ @ F~, where F = ker(id — x) and F~ = ker(id + x).

Note that F is a complex vector bundle over ¥ of rank m?. It follows

from Lemma 2.12 that 7+ and F~ are complex subbundles of F of rank

m2

5
Proposition 2.14. Suppose that € is a compact domain in R™ with smooth
boundary 0 = 3. Let g be a Riemannian metric which is defined on an
open set containing 0, and let N : ¥ — S™ ! be a smooth map. Then the
operator

HYQ,E) = LA, E) & H2(S,F), s (Ds,s— xs)

is a Fredholm operator. The kernel of this operator is a finite-dimensional
subspace of C*°(§2,E). The range of this operator is defined by finitely many
C™ relations.

Proof. We will show that the boundary value problem is elliptic in the
sense of Definition 20.1.1 in Hérmander’s book [12]. To that end, we fix a
point x € Y. Moreover, we consider a vector £ € T,€) with the property
that £ is not a scalar multiple of v. Following Hérmander [12], we denote
by M:f the set of all functions u : R — F, which solve the linear ODE

) t d t 0

i€ ult) — v u(t) =
and which are bounded on the interval [0,00). (Note that D; = —i% in
Hoérmander’s notation; see [11], p. 160.) If we fix a real number a, then
the function ¢ — wu(t) belongs to the space M ; ¢ if and only if the function

t — e y(t) belongs to the space M;§+ay.
We claim that the linear map

M:Zé — F,, u—u(0) —xu(0)
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is bijective. If the claim is true for some vector £ € T,(), then the claim is
also true for £ + av, where a is an arbitrary real number. Hence, it suffices
to verify the claim in the special case when & € T3 and £ # 0.

In the following, we assume that £ € T, and £ # 0. We define a linear
map L : F, — F, by Ls = iv-&-s. Note that L is self-adjoint and
L? = |¢)?id. Therefore,

Foz = ker(|¢]id — L) @ ker(|¢]id + L).

The space M, ; ¢ consists of all functions of the form t — e !¢l ug, where
ug € ker(|¢]id — L).
By Lemma 2.12, L anti-commutes with y. This implies

(5) dimker(|¢]id — L) = dimker(|¢]id + L)
and
(6) ker(|¢]id — L) Nker(id — x) = {0}.

Using (5) and Lemma 2.12, we obtain

2
dim M, = dimker(j¢|id — L) = % = dim F .

Moreover, it follows from (6) that the linear map
M;Zg — F,,  u— u(0) — xu(0)

has trivial kernel. Therefore, the latter map is bijective, as claimed.

To summarize, we have shown that the boundary value problem is ellip-
tic in the sense of Definition 20.1.1 in [12]. The assertion now follows from
Theorem 20.1.2 and Theorem 20.1.8 in [12]. Note that the function spaces
appearing in (20.1.2) in [12] are the usual Sobolev spaces; see Definition 7.9.1
in [11] and Section B.2 in [12] for the relevant definitions. This completes
the proof of Proposition 2.14.

Proposition 2.15. Assume that n > 3 is an odd integer. Suppose that
is a compact, convexr domain in R™ with smooth boundary 02 = . Let g be
a Riemannian metric which is defined on an open set containing ), and let
N : ¥ — 8" be a smooth map which is homotopic to the Euclidean Gauss
map of X2. Then the operator

HY(Q,8) = L*(Q,8) @ H%(E,}"*), s — (Ds,s — xs)
has Fredholm index at least 1.

Proof. We first consider the special case when g is the Euclidean metric
and N is the Euclidean Gauss map of 3. In this case, a spinor can be viewed
as a smooth function taking values in A,,. We claim that the kernel of the
operator

HYQ,6) = LX(Q, &) & H2 (S, F), s+ (Ds,s— ys)
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has dimension at least 1. To see this, recall that {51,...,5,} is an or-
thonormal basis of A,,, and p(E,) §, = Zngl Waap § fora=1,...,n. Con-
sequently, § = (81,...,8y) is an m-tuple of harmonic spinors on {2 which
satisfies the boundary condition xy§ = 5. Thus, the kernel has dimension at
least 1.

We claim that the cokernel of the operator

HY(Q,6) = LXQ,E) @ H2 (S, F ), s+ (Ds,s — ys)

has dimension 0. Suppose that this is false. In view of Proposition 2.14, we
can find a non-zero pair (s,t) such that s € C*°(Q,€), t € C*(3,F ), and

/Q<37DU>+/Z(t,u—Xu):0

for all u € C*°(Q, £). Integration by parts gives

/Q<DS,u)—/E<u-s,u>+/2<t,u—xu>:0

for all u € C*°(Q, ). From this, we deduce that Ds = 0 at each point in
and v-s = 2t at each point on Y. Since t takes values in F~, we conclude that
the restriction s|y, takes values in F~. In other words, ys = —s at each point
on Y. Since g is the Euclidean metric and N is the Euclidean Gauss map of
Y, we have H = ||dN ||t at each point on X. Hence, Corollary 2.11 implies
that s = (s1,...,sp) is parallel. Let us write s, = D> 7' | 20 33, where
z € End(C™) is a constant matrix. Since xs = —s at each point on X, the
matrix z € End(C™) anti-commutes with the matrix Y, (N (), Eq) w, €
End(C™) for each x € ¥. Since the Gauss map N : X — S"~! is surjective,
the matrix z € End(C™) anti-commutes with w, € End(C™) for each a =
1,...,n. Since n is odd, Lemma 2.1 implies that z = 0. Thus, we conclude
that s = 0 at each point in €. Since v - s = 2t at each point on Y, it follows
that £ = 0 at each point on 3. This is a contradiction. Thus, the cokernel
has dimension 0.

To summarize, if g is the Euclidean metric and NV is the Euclidean Gauss
map of 3, then the index is at least 1.

We now turn to the general case. Let g be an arbitrary Riemannian met-
ric which is defined on an open set containing 2, and let N : ¥ — S"~1 be
a smooth map which is homotopic to the Euclidean Gauss map of 3. Using
the deformation invariance of the Fredholm index (cf. [12], Theorem 20.1.8),
we conclude that the index is at least 1. Note that in Héormander’s setting,
the vector bundles are fixed, whereas in our setting the vector bundle F~
depends on g and N. To apply Hormander’s results, we construct a bundle
isomorphism from F~ to some fixed bundle. This completes the proof of
Proposition 2.15.
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Remark 2.16. Under the assumptions of Proposition 2.15, we can show
that the Fredholm index is equal to 1. We will not need this stronger
statement here.

3. APPROXIMATING A COMPACT, CONVEX POLYTOPE BY SMOOTH
DOMAINS

Throughout this section, we assume that n > 3 is an integer and (2
is a compact, convex polytope in R” with non-empty interior. We write
Q = Nies{us < 0}, where u;, @ € I, is a finite collection of non-constant
linear functions defined on R™. After eliminating redundant inequalities, we
may assume that the following condition is satisfied.

Assumption 3.1. For each ig € I, the set
{uig >0} [ {w <0}
i€I\{io}
is non-empty.
Lemma 3.2. For each ig € I, the set
{uip =0}n () {w <0}
iel\{io}
is non-empty. Moreover, this set is a dense subset of QN {u;, = 0}.
Proof. In view of Assumption 3.1, we can find a point zy € R™ such that
wio(20) > 0 and w;(29) < 0 for all ¢ € T\ {ip}. Moreover, since 2 has non-
empty interior, we can find a point z; € R™ such that u;(z1) < 0 for all ¢ € I.

We can find a real number 7 € (0, 1) such that (1—7)u;,(20) + 7w, (21) = 0.
Let y := (1 — 7)z0 + 721. Then

y€{uy =0y () {us <0}
i€I\{io}

This proves the first statement. To prove the second statement, we consider
an arbitrary point x € QN {u;, = 0}. Then

(1—-t)z+ty € {uj, =0} N ﬂ {u; <0}
i€I\{io}
for each t € (0, 1]. This completes the proof of Lemma 3.2.
For each i € I, we denote by N; € S"~! the outward-pointing unit normal
vector to the halfspace {u; < 0} with respect to the Euclidean metric.

Lemma 3.3. We have R" = span{N, :i € I}.

Proof. Suppose that the assertion is false. Then we can find a non-zero
vector in R™ which is orthogonal to N; for all ¢ € I. This implies that €
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is invariant under translations along that vector. This contradicts our as-
sumption that €2 is compact. This completes the proof of Lemma 3.3.

Since €2 has non-empty interior, we can find a real number Ay > 0 such
that
(s < =25 log 1]} # 0.
el
For each A\ > )\g, we define

Oy = {Ze)‘“i < 1}.

i€l
Clearly,
({w < =A""log 1]} € @y € [ {wi < 0}
i€l el
for each A > A\g. In particular,

U o= w <0} =0)\o0.

A> Ao i€l

Lemma 3.4. For each A > Ao, Q) is a compact, convexr domain in R™ with
smooth boundary 3y = 0Qy.

Proof. Let us fix a real number \ > \g. It follows from Lemma 3.3 that
the function ) . ; e M is strictly convex with respect to the Euclidean met-
ric. Moreover, infago > _;c; € > 1. On the other hand, infq >, e < 1
since A > )y. Consequently, we can find a point in the interior of {2 where
the function ) ;. ; e i attains its global minimum. From this, the assertion
follows easily. This completes the proof of Lemma 3.4.

Let g be a Riemannian metric which is defined on an open set containing
Q. For each ¢ € I, Vu; will denote the gradient of w; with respect to the
metric g; D?u; will denote the Hessian of w; with respect to the metric g;
|Vu;| will denote the norm of the gradient of u; with respect to the metric

g; and v; = will denote the unit normal vector field, with respect to

V’LL,L'
[Vu;|
the metric g, to the level sets of u;.

Lemma 3.5. If A is sufficiently large, then infy,, ‘ Yicl et dui’ > C~! for
some large constant C' which is independent of .

Proof. We argue by contradiction. Suppose that the assertion is false.
Then there exists a sequence of positive real numbers A\; — oo and a sequence
of points x; € Xy, such that |Zi61 et dui‘ < 17! at the point z;. After
passing to a subsequence, we may assume that the sequence x; converges to
a point zg € ). Moreover, we may assume that, for each ¢ € I, the sequence
eMui) converges to a nonnegative real number z;. Since Yier ehui@) = 1
for each [, we know that ), ; 2z = 1. Let Iy := {i € I : z; > 0}. Clearly,

Iy is non-empty, and u;(xg) = 0 for all i € Iy. Moreover, Zielo zidu; =0
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at the point xy. On the other hand, since €2 is a convex set with non-empty
interior, we can find a tangent vector £ € T2 such that du;(§) > 0 for all
1 € Iy. This is a contradiction. This completes the proof of Lemma 3.5.

Lemma 3.6. If X is sufficiently large, then infy,, ‘ Sier € V| Ni‘ >t
for some large constant C' which is independent of .

Proof. We argue by contradiction. Suppose that the assertion is false.
Then there exists a sequence of positive real numbers A; — oo and a se-
quence of points z; € X, such that | Y., €M™ [Vu| N;| <171 at the point
x;. After passing to a subsequence, we may assume that the sequence z;
converges to a point xyp € 2. Moreover, we may assume that, for each
i € I, the sequence eM% (@) |V, (x;)| converges to a nonnegative real num-
ber z. Since Y, ;eN%(@) =1 for each I, we know that 3, ;2 > 0. Let
Iy :={i €1:z > 0}. Clearly, Ij is non-empty, and u;(z) = 0 for all i € I.
Moreover, Zielo z;N; = 0 at the point xg. On the other hand, since  is a
convex set with non-empty interior, we can find a vector £ € R™ such that
(N;,&) > 0 for all i € Iy. This is a contradiction. This completes the proof
of Lemma, 3.6.

In the following, we assume that X is chosen sufficiently large so that the
conclusions of Lemma 3.5 and Lemma 3.6 hold. The outward-pointing unit
normal vector to the domain 2y with respect to the metric g is given by

_ Ziel i Y, . Zie] e (V| v;
| Cier e V| | Eiep € [Vua| vi]
This motivates the following definition:
Definition 3.7. We define a map N : ¥ — S"~! by
N e M V| N;
| Yier € [Vus| N;|

Recall that |Vu;| is computed with respect to the metric g. In particular,
the map N depends on the choice of the metric g.

1%

Lemma 3.8. The map N : ¥y — S™! is homotopic to the Euclidean Gauss
map of 2.

Proof. In the special case when g is the Euclidean metric, the map
N : ¥y — S™ ! coincides with the Gauss map of ¥y, and the assertion is
trivial. To prove the assertion in general, we deform the metric g to the
Euclidean metric.

Proposition 3.9. Consider a point x € ¥y. Let m : T, — T, denote
the orthogonal projection to the orthogonal complement of v with respect to
g, and let P : R™ — R" denote the orthogonal projection to the orthogonal
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complement of N with respect to the Euclidean metric. Then H — ||dN ||ty >
V., where H denotes the mean curvature of 3y with respect to the metric g
and the function V) : Xy — R is defined by

Sier M Vil Iw (i) Yier e [Vl [r(vi)| | P(N:)]

B AT e Yl [Sier & V] N
Sicr & (Au; — (D*ui)(v,v))  Yies [V ([Vui])| [P(NG)]
| ier e [Vui| vil | ier e [Vui| N
Proof. Let {e1,...,e,—1} denote a local orthonormal frame on ¥ with

respect to the metric g. The mean curvature of 3, with respect to g is given
by

H =\ ZZ;% iel e (Vu,, €k>2 ZZ;% icl e (Dzui)(eka ek)

| Yier e Vgl | ier e V|
- Dicl e (V) |? Dicl e (Au; — (D*u;) (v, v))
| Yier e Vgl | ier e Vgl
_ )\ el AV [m()|* | Yier M (Aug — (D*uy) (v, v))
| Yier e [Vui| vl | Sier e [Vug| vil
If € is a tangent vector to Xy, then
AN (€)
_ Zier @ Vil (Vui, § P(N:) - Yiep e (V([Vui]), €) P(N:)
‘ Diel e |V NZ‘ ‘ > iel et V| Nz‘
_) Yier € Vi (n(vy), €) P(N;) N Yier € V(I Vi), §) P(Ny)
| Yier e [Vui| N | Yier e [Vui| N

The trace norm of a linear map of the form ¢ — (X, )Y is given by | X||Y].
Since the trace norm satisfies the triangle inequality, it follows that

[dN ||t
Sier € [V [m(vi)] |[P(Ng)| N Sicr € V([ V)| [P(NG))|
| Yier € [Vui| Ni| | Yier e [Vui| N

Putting these facts together, the assertion follows.

<A

Proposition 3.10. Suppose that the Matching Angle Hypothesis is satisfied.
Then supy,, max{—Vy,0} < o(\) as A — oo.

Proof. We argue by contradiction. Suppose that the assertion is false.
Then there exists a sequence of positive real numbers A; — oo and a se-
quence of points ; € X, such that limsup,_,. A ' Vi, (z;) < 0. After
passing to a subsequence, we may assume that the sequence x; converges
to a point xg € ). Moreover, we may assume that, for each i € I, the
sequence e (#) |V, (x;)| converges to a nonnegative real number z;. Since
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Y ier eMui(®) = 1 for each I, we know that Yier#i >0. Let Ip:={iel:
z; > 0}. Clearly, Iy is non-empty, and u;(z9) = 0 for all i € Iy. It follows
from Lemma 3.5 and Lemma 3.6 that } > ziui‘ > 0 and ‘ > ziNi‘ >0
at the point xg.

We now invoke the Matching Angle Hypothesis. Hence, for all i1,i0 € I,
we have (v;,,v4,) = (N;y, Ni,) at the point zg. Let m : T,,Q — T,,Q de-
note the orthogonal projection to the orthogonal complement of . Iy ZiVis
and let P : R® — R" denote the orthogonal projection to the orthogonal
complement of > ., z;N;. For each j € Iy, we have

i€lp i€lg

i€lp
2 2 2
‘ZzzNz |P(N])|2 = ZZle —<ZZ,LN“NJ>
i€lp i€lp i€lp
2 2
= Zzil/i _<ZziVi7Vj>
i€lp i€lg
2
= 1> zwi| ()P

i€1lp
at the point xg. Moreover,

‘ ZZZNZ‘Q = ‘ ZziVi

i€lp IS )

2

at the point zg. Consequently, for each j € Iy, we obtain
[TIP(N)] _ |m(y))?
‘ Zielo ZiNi‘ ‘ Zz’e[o ZM"
at the point x¢. This implies
2iery 7 VUil [T W) [ [PIN)] > ier, 21 [Vl |7 (vi)]?
| Xier z:Vi| | Zier, #ivil

at the point x¢. Using Proposition 3.9, we conclude that )\1—1 Vi, (z7) = 0 as
[ — oo. This is a contradiction.

In the remainder of this section, we estimate the L7-norm of max{—V), 0}
on ¥ N By (p), where o € [1,3) is a fixed exponent and B,(p) denotes a
Fuclidean ball of radius r centered at a point p € R™. We first recall a basic
fact about the area of convex hypersurfaces in R™.

Lemma 3.11. Let B,(p) denote a FEuclidean ball of radius r. Then the
intersection Xy N By(p) has area at most Cr™~', where C' depends only on
n.

Proof. The hypersurface 3 bounds a convex domain in Euclidean space.
This implies that ¥, is outward-minimizing with respect to the Euclidean
metric. From this, the assertion follows.
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Definition 3.12. Consider three pairwise distinct elements i1,49,i3 € I.

We denote by Gf\il’h’i?’) the set of all points x € ¥ with the property that
iy () > wiy(z) > wiy () and wi, () > wi(z) for each i € I\ {i1,1i2,1i3}.

Clearly, ¥x = U;, iy GE\il’i2’i3), where the union is taken over all triplets
(i1,42,13) € I x I x I such that iy,i9,i3 are pairwise distinct. Given three
pairwise distinct elements i1,i2,43 € I, we shall estimate the L-norm of
max{—V), 0} on the set Gg\“’”’”) N B.(p). To that end, we decompose the

set GE\“’m’ZS) into three subsets. Roughly speaking, the first subset consists
of points that are close to one of the (n — 1)-dimensional boundary faces
of Q, but stay away from the (n — 2)-dimensional edges of 2. The second
subset consists of points that are close to one of the (n — 2)-dimensional
edges of Q, but stay away from the (n — 3)-dimensional corners of 2. The
third set consists of points that are close to one of the (n — 3)-dimensional
corners of €.

Lemma 3.13. For each i € I, we assume that the mean curvature of the
hypersurface {u; = 0} with respect to g is nonnegative at each point in
QN {u; = 0}. Let us fix an exponent o € [1,3), and let B,(p) denote a
Euclidean ball of radius 0 < r < 1. If Ar is sufficiently large, then

<TJ+1_n/ o 7 1 (maX{_V)\vo})0>U SC)\re_()\r)
G(172%8) Ay, <A~ 818 }NB.(p)

for all pairwise distinct elements i1,19,13 € I. The constant C may depend
on Q and g, but not on A.

[un
ool

Proof. Let us consider an arbitrary point x € Gf\il’iZ’ig) with wu;,(x) <
—A~%r5. By definition of Gf\il’iQ’i3), it follows that u;(x) < —A"sr§ for
all i € I\ {i1}. Using the identity >, ; e’ = 1, we obtain e @) >
1-C e_(’\”)%, hence u;, (v) > —CA~! 6_0‘7“)%. Moreover, |v—v;, | < C’e_()‘r)%
and [N — N;,| < C’e_(’\r)% at the point . From this, we deduce that

1 1
7 (vir)| = |m(viy —v)| < Cem % and [P(N;,)] = |P(Ni, = N)| < Cem()®
at the point x. This gives

1
(7) Zekui |Vui|2 | (Vi) |P(N;)| < C e (Ar)E
el
and
1
(8) Ze)“” IV (|[Vui)||P(N;)] < O e~ (A)E

el
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at the point x. Moreover,
> M (A — (Dus)(v,v))
iel

9) > M (Augy, — (D, ) (v, 7)) — C e

ool

1
at the point x. Since u;, (z) > —CA~'e~A)® we can find a point y € R”
1
such that u;, (y) = 0 and deya (7, y) < CA7! e~(A)F - This implies u;(y) <

ui(x) + CA71 e*()"")% < —A7Srs + OA7L e*()"”)% for all i € I\ {i1}. In
particular, if Ar is sufficiently large, then u;(y) < 0 for all ¢ € I'\ {i1}. Thus,
y € QN {u;, = 0}. By assumption, the mean curvature of the hypersurface
{ui, = 0} at the point y is nonnegative. This implies

Auil - (D2ui1>(yi1?’/i1) >0
at the point y. Consequently,
1
(10) Aug, — (D)) (viy vi,) > —CA L e A)F

at the point z. Combining (9) and (10), we obtain

ool—

(11) > (Aug — (Du)(v,v)) = —Ce O,
el
Using (7), (8), and (11), we conclude that

1
Va(z) > —Che”O®

for each point = € Gg\il’i2’i3) N {u;, < —A"srs}. By Lemma 3.11, the inter-
section ¥ N B,(p) has area at most Cr"~ 1. Consequently,

1

= 1
(rmn / N . (max{—V)\,O})U) < Care 0%
0;11’12‘13>ﬂ{ui2S_/\_grg}mBr(p)

This completes the proof of Lemma 3.13.

Lemma 3.14. Assume that the Matching Angle Hypothesis holds. Let us
fiz an exponent o € [1, %), and let B.(p) denote a Euclidean ball of radius
0 <r < 1. If Ar is sufficiently large, then

al=

<r"+1”/ o . . (max{—V,\,O})">
G128 ALy, > AT B P8 I {uig <—A” 11T INB,(p)

< C(Ar)s 5
for all pairwise distinct elements i1,12,i3 € 1. The constant C may depend
on ) and g, but not on .
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Proof. We distinguish two cases:

Case 1: Suppose that Q N {u;; = 0} N {u;,, = 0} = 0. We can find a
positive real number § such that Q N {u;; > =0} N {u;,, > —0} =0. If Ar is
sufficiently large, then AErs < ()\r)_% < §. This implies

Gg\ihimis) N {ug, > —/\_%Té}
c XN {uil > —5} N {uiz > —5} = 0.
Hence, the assertion is trivially true in this case.
Case 2: Suppose that QN {u;; = 0} N {u;, = 0} # 0. It follows from

Assumption 3.1 that the hypersurfaces {u;, = 0} and {u;, = 0} intersect
transversally.

Let us consider an arbitrary point x € GE\”’ZQ’ZB) with wg, (z) > ATErS
and wu;, () < —A~iri. Clearly, wiy () > —A~%r5 by definition of Gg\“’”’”’).
By transversality, we can find a point y € R™ such that u;, (y) = i, (y) =
0 and dega(z,y) < CA"srs. This implies u;(y) < wi(z) + CA8rs <
“ATiri 4+ CA S8 foralli €T \ {i1,i2}. In particular, if A\r is sufficiently
large, then w;(y) <0 for all i € I'\ {i1,i2}. Thus, y € QN{u;, =0} N{u;, =
0}. The Matching Angle Hypothesis implies that (v;,,vi,) = (N;,, Ni,) at
the point y. Consequently, |(v;,, viy) — (Niy, Niy)| < CA 575 < C (/\r)_% at
the point z. For each j € {i1,i2}, we have

Au; 2 2
| > vl V| |P(N)
iel

2 2
= | Y vl | = (D0 e Vil N G )

il iel

Au; 2 Au; 2 —
Ze V| v —<Ze Z\Vuilui,uj> +C (Ar)”s
il iel

2
=[S Tuil | Imy)P + € ()
el

IN

at the point . Hence, for each j € {i1,i2}, we obtain
‘ Z M| V| v Z M | V| N;
el

el
1
i€l

‘ Z M | V| v

i€l

|7 ()| [P(N)]

2 1 ' 2
w2+ 5 | D2 e [Vuil M| 1PV
el

2 7
(V)P +C (Ar) 75

IN

at the point x. Moreover,

13) [ vl N i
el

—C(Ar)”

00|~y

2 A
> ‘Ze Y|V | v,
el
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at the point z. In the next step, we divide the inequality (12) by (13).
It follows from Lemma 3.5 that |Y_,.; e [Vus|v;| > C~' at the point
. Lemma 3.6 implies that ‘ZiGI e |Vu,-\NZ-| > C~! at the point .
Consequently, for each j € {i1,i2}, we have
(TP |7 ()
| Cier e [Vuil Ni| = | X e [Vug| vi
at the point x. This implies
Lier ™ [Vui m@)[|P(NG)] _ Xier e [Vuil [n (i)
| Zier i [Vui| Ni| T [ i e Vil vil

at the point x. Thus, we conclude that

+ C()\’I“)_%

+C(Ar)7s

Va(z) = —CAsrs

Al

for each point x € Gf\il’iz’lg) N {ui, > —A‘%r%} N A{uy, < P }. By
transversality, the set {0 > w;, > —)\7%7"%} N{0 > wu;, > —)\7%1"%} N Br(p)

(n—2)
can be covered by C (Ar) “5* Buclidean balls of radius A" %75. By Lemma
3.11, the intersection of ¥y with each ball of radius A"%7% has area at most
_7(n=1)

C (M)~ s 7"l This implies that the set X\ N {u;, > —)\_%r%} N{ugy >
—/\_%r%} N B,(p) has area at most C ()\7“)_% r"~1. Since

G(27) 0 fuy, > —A"ErE} 0 Bo(p)
C ExnA{uy > —)\*gré} N {ui, > —/\7%7“%} N By(p),
it follows that

ql=

( / — - . <max{—vA,0}>")
GV 20 {uiy > A7 818 N{ui; <—AT 174 }NBr(p)
7

< C (Ar)s 5.
This completes the proof of Lemma 3.14.

Lemma 3.15. Let us fix an exponent o € [1, %), and let B(p) denote a
Euclidean ball of radius 0 < r < 1. If Ar is sufficiently large, then

1
3

G§11,12713)m{ui32_)\_17’1}mBr(p)

for all pairwise distinct elements i1,12,i3 € 1. The constant C may depend
on ) and g, but not on .

Proof. We distinguish two cases:
Case 1: Suppose that QN {u;; =0} N {u;, =0} N{u,, =0} =0. We can
find a positive real number § such that QN {u;, > —d}N{u;, > —dN{w;, >
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—0} = 0. If Ar is sufficiently large, then Aird < ()\7“)_% < 4. This implies

Gf\il’i2’i3) N {ug, > —)\_%r%}
c XN {uil > —(5} N {uiQ > —(5} N {’LLZ'3 > —5} = (.

Hence, the assertion is trivially true in this case.

Case 2: Suppose that Q N {u;; = 0} N {us,, = 0} N {uy, =0} # 0. It
follows from Assumption 3.1 that the hypersurfaces {u;, = 0}, {u;, = 0},
and {u;; = 0} intersect transversally.

NI
PN

Let us consider an arbitrary point x € Gf\il’iz’m with wu, () > —A~
Clearly,

r4.

W(z) > —CX\
for all points = € Gg\il’b’i?’) N {uig > —)\*%ri}. By transversality, the set
{0>w;, > A" 1ri}n{0>uy, > —A" 171} N {0 > w, > —A"1r1} N B, (p)

(n—=3) . 3 1
can be covered by C (Ar) ** Buclidean balls of radius A~ 1r1. By Lemma
3.11, the intersection of Xy with each ball of radius A~ir1 has area at most
3(n—1)

C(Aar) 7 r"~1. This implies that the set ¥\ N {u;, > —A‘%r%} N{ui, >
—/\7%7&} N{uy, > —Af%ri} N By (p) has area at most C ()\r)fg r"~L. Since

Gg\ilyi%ig) N {ui:’) 2 7)\_%7’%} M Br(p)
C Xxn{u;; > —)\_%'ri} N {ui, > —)\_%7“%} N {uis > _)‘_%ri} N B (p),

it follows that

1

(r"+1_n/_ o . (max{—V,\,O})J>U SC(Ar)l_%.
G(1728) Ay, > A" 1r1}0B.(p)

This completes the proof of Lemma 3.15.

Proposition 3.16. For each i € I, we assume that the mean curvature of
the hypersurface {u; = 0} with respect to g is nonnegative at each point in
QN {u; = 0}. Moreover, we assume that the Matching Angle Hypothesis is
satisfied. Let us fix an exponent o € [1, %), and let B,.(p) denote a Euclidean
ball of radius 0 < r < 1. If A\r is sufficiently large, then

(r"H_”/ (max{—V,\,O})”> ’
EAﬁBr(p)

1
< Care % 4 O (Ar)s 50 + C (Ar) 2.

The constant C' may depend on ) and g, but not on \.
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Proof. Combining Lemma 3.13, Lemma 3.14, and Lemma 3.15, we con-
clude that

(r”“"/‘ o (max{—V)\,O})U>G
Gg\’blv’LQvlS)mBr(p)

1
< Cxre ¥ L 0 (Ar)sT8e + C (Ar) " 2s
for all pairwise distinct elements 71,492,713 € I. On the other hand, ¥, =
Uiy i s Gg\“’”’m), where the union is taken over all triplets (i1,i2,i3) €
I x I x I such that 41,i9,4i3 are pairwise distinct. Hence, the assertion

follows by summation over i1, 49, 43. This completes the proof of Proposition
3.16.

Corollary 3.17. For each i € I, we assume that the mean curvature of
the hypersurface {u; = 0} with respect to g is nonnegative at each point in
QN {u; = 0}. Moreover, we assume that the Matching Angle Hypothesis is
satisfied. Let us fix an exponent o € [1, %) Then

sup sup <r”+1_”/ (max{—VA,O})")a -0
peR™ 0<r<1 2ANB;(p)

as A — 0.

Proof. Let us consider an arbitrary sequence \; — oco. By Proposition
3.10, we can find a sequence of positive real numbers §; — 0 such that

(51)\1)_1 sup max{—Vj,,0} =0

N

as | — oo. Using Lemma 3.11, we obtain

sup sup <r”+1_"/ (max{—V)\l,O})U>
pER™ 0<7‘S(6l)\l)71 Z)\lmBy-(p)

< C(N) Lsup max{—V),,0} =0

Al

as | — co. On the other hand, it follows from Proposition 3.16 that
1

sup sup (TUH_"/ (maX{V,\l,O})”) T 50
peR? (51}\1)_1§T§1 EklﬂBr(p)

as | — oo. Putting these facts together, the assertion follows.

4. PROOF OF THE THEOREM 1.1

It suffices to prove Theorem 1.1 in the odd-dimensional case. (The even-
dimensional case can be reduced to the odd-dimensional case by considering
the Cartesian product Q x [-1,1] € R"*!) Suppose that n > 3 is an
odd integer, and ) is a compact, convex polytope in R™ with non-empty
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interior. We write 2 = (), ;{u; < 0}, where u;, i € I, is a finite collection of
non-constant linear functions defined on R™. Let g be a Riemannian metric
which is defined on an open set containing ) and has nonnegative scalar
curvature at each point in €. For each ¢ € I, we assume that the mean
curvature of the hypersurface {u; = 0} with respect to g is nonnegative at
each point in Q N {u; = 0}. Moreover, we assume that the Matching Angle
Hypothesis is satisfied.

Consider a sequence \; — oo. For each [, we consider the domain 2y,
defined in Section 3. Note that 2, is a compact, convex domain in R" with
smooth boundary 01, = X,,. For each [, we define a map NO . X\ —
S™~1 as in Definition 3.7. Moreover, we define a function Vi 12\ @ Ras
in Proposition 3.9.

Let us fix a Euclidean ball U such that the closure of U is contained in the
interior of 2. Note that U C (1), if [ is sufficiently large. In the following,
we will always assume that [ is chosen sufficiently large so that U C Q,,.

Proposition 4.1. There exists a uniform constant C (independent of 1)
such that

/ F?do, < C’/ ]VF]deolg—i—C/ F? dvol,
for every smooth function F : €y, — R.

Proof. Note that the hypersurface X, = 92, can be written as a radial
graph with bounded slope. From this, it is easy to see that €2, is bi-Lipschitz
equivalent to the Euclidean unit ball, with constants that are independent
of [. Hence, the assertion follows from the corresponding estimate on the
unit ball (which, in turn, is a consequence of the Poincaré inequality on the
unit ball).

Proposition 4.2. There exists a uniform constant C (independent of 1)
such that

/ F?do, <C | |VF[*dvoly+C [ F?dvol,
N Qy, Qx,
for every smooth function F: {1, — R.

Proof. Note that the hypersurface X, = 02, can be written as a radial
graph with bounded slope. From this, it is easy to see that 2, is bi-Lipschitz
equivalent to the Euclidean unit ball, with constants that are independent of
[. The assertion follows now from the Sobolev trace theorem on the unit ball.

Proposition 4.3. We have

max{—Vy,, 0} F2 do, < o(1) /

Qy,

|V F|?dvol, + o(1) / F?da,

Xy Xy,

for every smooth function F : €y, — R.
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Proof. Note that the hypersurface X, = 02, can be written as a radial
graph with bounded slope. From this, it is easy to see that €2, is bi-Lipschitz
equivalent to the Fuclidean unit ball, with constants that are independent
of [. Hence, the assertion follows from the Fefferman-Phong estimate on the
unit ball (see Corollary A.7) together with Corollary 3.17. This completes
the proof of Proposition 4.3.

For each [, we may use the map N® : XN — 5"~ to define a boundary
chirality x (see Definition 2.2). Tt follows from Lemma 3.8 that N® is

homotopic to the Euclidean Gauss map of X),. By Proposition 2.15, we

can find an m-tuple of spinors st) = (sgl), ... ,s,(fl)) defined on ), with the

following properties:

o s s harmonic, i.e. Ds) = 0 at each point in y,.
o s = 50 at each point on Xy
e 5() does not vanish identically.

Standard unique continuation arguments imply that fU ooy \sg) 2 dvol, >

0if [ is sufficiently large. By scaling, we can arrange that fU >y \sg) 2 dvol, =
mvoly(U) if [ is sufficiently large.

Proposition 4.4. We have
m
/ Z Vs dvol, — 0
Dy a=1
as | — oo.

Proof. Combining Proposition 4.1, Proposition 4.2, and Proposition 4.3,
we obtain

max{—Vy,,0} F? do, 30(1)/ \VF\deolg+o(1)/ F? dvol,
Ty, Qy, U

for every smooth function F' : ), — R. In the next step, we put F' =
1
(2+>0, lsg)|2) 2, and send 6 — 0. This gives

max{—V),,0} (Z ]sg)\Q) dog
Y a=1

<o(1) Zyvsg>|2dvolg+o(1)/ S sOJ2 dvol,.
Ua:l

Dy a=1
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On the other hand, Proposition 2.9 implies

m 1 m
/Q Z 1VsD|2 dvol, + 4/9 ZR\sg)lzdvolg

Al a=1 Al a=1
1 m
<y [ -1 (X 80P do,
x a=1
<

1 m
2/ max{—Va,, 0} (Z |sg>\2> do,.
i a=1

Putting these facts together, we conclude that

m 1 m
/Q z:|V;~:g)|2dvolg+4/Q S RO dvol,

Al a=1 Al a=1
<o() [ S |WsO dvol, +o(1)/ S 15O dvol,.
Q) a=1 Ua=1

By assumption, the scalar curvature of ¢ is nonnegative. If [ is sufficiently
large, then the first term on the right hand side can be absorbed into the
left hand side. This completes the proof of Proposition 4.4.

Corollary 4.5. We have

/ Z \sg)\deolg <C,
Q

Al a=1

where C is a constant that does not depend on .

1
Proof. We apply Proposition 4.1 with F = (6% + >0, |sg)\2)5, and
send § — 0. This gives

/Q > 15D dvoly < C’/Q Z]ng)\2dvolg+C/[]Z\sg)]2dvolg,
a=1

AL a=1 AL a=1
where C' is independent of [. Hence, the assertion follows from Proposition
4.4. This completes the proof of Corollary 4.5.

Combining Corollary 4.5 with standard interior estimates for elliptic PDE,
we obtain smooth estimates for s) on compact subsets of Q\ 9. After

passing to a subsequence if necessary, the sequence s() = (sgl), . .,s%))
converges in C7X (2 \ 092) to an m-tuple of parallel spinors s = (s1,...,5m)

which is defined on '\ 9.
Lemma 4.6. We have

/ Z]sg)fsa\Q%O
>

Al a=1
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as | — oo.

Proof. Combining Proposition 4.1 and Proposition 4.2, we obtain
/ F?do, <C | |VF|*dvol, +C / F? dvol,
S, Q, U

for every smooth function F' : ), — R. In the next step, we put F' =
1
(82 +>m, \sg) — 5q]?)?, and send § — 0. This gives

/Z S50 = saf? do

Al a=1
m m
< C/ Z V(s — s54)|? dvol, + C/ Z s — 5, |2 dvoly,
Dy a=1 Ua=1
where C'is independent of [. Recall that s, is parallel for each « = 1,...,m.

Hence, Proposition 4.4 implies that

/Q D V(s = sa)? dvol, :/Q > Vs dvoly — 0

Al a=1 Al a=1

as | — oo. Moreover, since sg) — 5o in O () 09Q) for each a =1,...,m,

we know that .
/ S 150 — saf? dvoly — 0
U a=1

as | — oo. This completes the proof of Lemma 4.6.

Lemma 4.7. We have

/ ls —xWs2 =0
DN

Proof. Recall that s satisfies the boundary condition xs®) = s() at
each point on Xy,. This implies

s = x| = |(s = s©) = x (s = 5] < C Js - 5]

at each point on X),. Hence, the assertion follows from Lemma 4.6.

as | — oo.

We next analyze the behavior of the map N® : % N S™~1 near the
boundary faces of €.

Lemma 4.8. Let us fix an arbitrary element 19 € I. Suppose that p €
{ui, = 0} N Miepgigp{us < 0} Then we can find a small positive real
number r (depending on p) such that

sup [N — N | =0
ZAlﬁBr(p)
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as | — oo.

Proof. This follows directly from the definition of the map N® : ¥ N
Sn—1,

We now continue with the proof of Theorem 1.1. Since sq,..., S, are
parallel spinors, we can find a fixed matrix z € End(C™) such that z,3 =
(sa,sp) at each point in the interior of 2.

Lemma 4.9. For each i € I, the matriz z € End(C™) commutes with the
matriz o _ (N, Eq) we € End(C™).

Proof. At each point on ¥),, we have

n m

<N(l)a Ea> WaaB 2By — Z Z<N(l)7 Ea> Wapy Zaf

a=1 =1 a=1 =1
n m n m
= Z<N(l)a Eq) Waap (v- Spy V- S’y> + Z Z<N(l)a E,) WavB (v:sa,v- 56>
a=1pB= a=1 =1

1
= _<(X Z)S)OHV ’ S’Y> - <V “Sa; (X(l)s)’7>
= (Sa — (X(l)s)ow V- Sy) + (V- Sa, 8y — (X(l)3)7>
for all a,y =1,...,m. This implies

| (iw(”, Bu)wa) = (anw“), i)

a=1 a=1

< Clslls = x|

at each point on X,. Using Lemma 4.7, we conclude that

/ ) <i<N<l>,Ea>wa) 2—z (iw(”,ma)

a=1 a=1
as | — oo. We now fix an arbitrary element ig € I. By Lemma 3.2, the set
{uic, = 0} N MNiep fipy{wi < 0} is non-empty. Using Lemma 4.8, we deduce

that . )
(Z(Nio,EJ%) z—2z <Z<NimEa>wa> _o.

a=1 a=1

—0

This completes the proof of Lemma 4.9.

Combining Lemma 4.9 and Lemma 3.3, we conclude that the matrix z €
End(C™) commutes with the matrix w, € End(C™) for each a = 1,...,n.
In view of (4), it follows that the matrix z commutes with every element of
End(C™). This implies that z is a scalar multiple of the identity. Using the
normalization [;; Y0, |sa|? dvoly = mvoly(U), we conclude that z is the
identity.

To summarize, s = (s1,...,8y,) is a collection of parallel spinors which
are defined at each point in the interior of 2 and are orthonormal at each
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point in the interior of {2. Therefore, the spinor bundle is a flat bundle. This
implies that the Riemann curvature tensor of g vanishes identically.

It remains to show that the boundary faces of 2 are totally geodesic.
Recall that s = (s1,..., $p) is defined in the interior of 2. Since s is parallel,
we may extend s continuously to €2. Let us fix an arbitrary element ig € I.
By Lemma 3.2, the set {ui, = 0} N \;cp ;03 {us < 0} is non-empty. Using
Lemma 4.7 and Lemma 4.8, we conclude that

n m
Vig * Sa = Z Z<Ni07 Ea> WaaB S8
a=1 =1
at each point in {ui, = 0} N (N;cp (503 {us < 0}. Hence, if X is an arbitrary
vector field on €2, then we obtain

m

m (X, v;y) = Z<X7 Vig) (Sa» Sa)
a=1
1 1
=3 Z(X “Viy * Sas Sa) + B Z(X “Sas Vig * Sar)
a=1 a=1

1 m
=330 > (Nigy ) s (X - 55, 50)
a=1qa,f=1
n m

n

= —Z Z <Ni0’Ea>waOéﬁ <X ' 85’80‘>

at each point in {ui, = 0} N(V;ep o3{wi < 0} Since s = (s1,...,5m) is
parallel, it follows that v;, is parallel along the hypersurface {u;, = 0} N
Mien fioyiui < 0}. Consequently, the second fundamental form of the hy-
persurface {u;, = 0} vanishes at each point in {ui, = 0} N[V, p ;03 {ui < 0}.
In view of Lemma 3.2, we conclude that the second fundamental form of the
hypersurface {u;, = 0} vanishes at each point in QN {u;, = 0}.

APPENDIX A. A VARIANT OF A THEOREM OF FEFFERMAN AND PHONG

In this section, we describe a variant of an estimate due to Fefferman
and Phong [5], which plays a central role in our argument. Throughout
this section, we fix an integer n > 3. We denote by Q the collection of all
(n — 1)-dimensional cubes of the form

(2751, 2" (1 + )] x ... x [2™5n—1, 2" (Jn—1 + 1)] x {0},
where m € Z and j1,...,jn—1 € Z. For abbreviation, we put

r={Joq
Qe
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If Q1,Q2 € Q satisfy Q1 N Q2 \ ' # (), then Q1 C Qa2 or Q2 C Q1.
For each (n — 1)-dimensional cube Q € Q, we denote by |Q| the (n — 1)-
dimensional volume of Q.

Theorem A.l. Let us fix an integer n > 3 and a real number o € (1,n —
1). Suppose that V is a nonnegative continuous function defined on the
hyperplane R"~1 x {0} with the property that

(14 (1o / V)’ < dim(@)

for each (n—1)-dimensional cube Q € Q. Let F' be a smooth function defined
on the half-space R, = {x € R" : x, > 0}, and let f denote the restriction
of F to the boundary OR: = R"~! x {0}. Then

/ V<o IVF|? + Cdiam(Q)—l/ r2
Q @x[0,diam(Q)] Q
for each (n — 1)-dimensional cube Q € Q. The constant C' depends only on

n and o.

The proof of Theorem A.l is a straightforward adaptation of the argu-
ments of Fefferman and Phong [5]. Let us fix an exponent 7 € (1,0). Let
V :R"! x {0} — R be a nonnegative continuous function satisfying (14).
We define a measurable function W : R"~! x {0} — R by

W)= sup (@H / V")
QREQ,zeQ Q

for each point z € R ! x {0}. Tt follows from (14) that W is locally
bounded. Moreover, V < W at each point in R"~1 x {0}.

Let F' be a smooth function defined on the half-space R} = {z € R" :
xn, > 0}, and let f denote the restriction of F' to the boundary OR"Y} =
R"~! x {0}. For each (n — 1)-dimensional cube Q € Q, we denote by
fo=1Q|™* fQ f the mean value of f over the cube Q.

Lemma A.2. For each (n — 1)-dimensional cube Qo € Q, we have

1 1
<|Qor—1 / WT) <C s <|Q|‘1 / vo) |
0 QEQ,QoCQ Q

where C' depends only on n, o, and 7.

Proof. For abbreviation, let

A= sup <\Q]_1/ V")
QeQ,QuCQ Q

ql=
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It follows from (14) that A < co. We define a bounded measurable function
WO : QO — R by

1
wow = s (17 [ v°)
QeQ,xeQCQo Q
for each point « € Qg. Then

W(z) = max{A, Wy(z)}

for each point z € Qo \ I'. The function W{ is bounded from above by
the maximal function associated with the function V7 1¢,. Hence, the weak
version of the Hardy-Littlewood maximal inequality (cf. [19], Proposition
2.9 (i)) implies

(15)  |1Qol ' [{z € Qo : Wo(x)” > a}| < Ca™! |Q0|_1/ Vi< Ca ' A°

Qo

for all @ > 0. We multiply both sides of (15) by gagfl and integrate over
a € (A?,00). Using Fubini’s theorem, we obtain

Qo™ | max{W{ —A7,0}

Qo
— T o o
— Qo 1/A T a5 [{w € Qo Wo(w)? > a}|da
<C Z045_2/\Uda
Aa g
—C— A"
o—T

Putting these facts together, we conclude that
\Qoy—l/ W™ < CA.
Qo
This completes the proof of Lemma A.2.

Lemma A.3. Given a real number ¢ > 0, we can find a real number § > 0
(depending only on n, o, and €) with the property that

/WS& W.
A Qo

for every (n—1)-dimensional cube Qo € Q and every measurable set A C Qg
satisfying |A] < 8|Qol-

Proof. Using Lemma A.2, we obtain

1 1
(\@or-l / WT) <C swp <\Q!_1 / VJ) .
0 QeQ,QoCQ Q
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Moreover,

1
sup <\Q|1/V") <ifw <@l [ w
Q€0,Q0CQ Q Qo Qo

by definition of W. Putting these facts together, we obtain

<Qo!_1/QO W)i < C1Qol! /Q W

Hence, if A C Qo is a measurable set with |A| < §|Qq|, then Holder’s
inequality gives

1
/WSIAITT_I</ WT>T§5T¥1|QO|T¥1</ WT>T§05TT_1 W.
A Qo o Qo

Hence, if we choose § to be a small multiple of eﬁ, then ¢ has the required
property. This completes the proof of Lemma A.3.

Lemma A.4. For each (n — 1)-dimensional cube Qo € Q, we have

1Qo| ™! 0 W < Cdiam(Qo)*,
0

where C' depends only on n and o.

Proof. Using Lemma A.2 and Hélder’s inequality, we obtain

1 1
|Qo\—1/ W<<|Qo\_1/ WT) <0 swp (IQ!‘l/V"> .
Qo Qo QeQ,QuCQ Q

Hence, the assertion follows from (14).

Lemma A.5. Let us fiz an (n — 1)-dimensional cube Qo € Q. We define a
bounded measurable function g : Qo — R by

sw) = sw (@1 [ 17 fol
QEQ,TEQRCQo Q
for each point x € Qo. Then

/ V‘f_fQo|2§C Wgz)
Qo Qo

where C' depends only onn and o.

Proof. We define a bounded measurable function h : Q9 — R by

Wo)= s QI /rf—fQO\
QeQ,2eQCQo Q
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for each point « € Q. Note that V< W and |f — fg,| < h at each point in
Qo- Hence, it suffices to prove that

(16) Wh2<cC [ W

Qo Qo
In order to prove the inequality (16), we define ag = |Qo|™* fQo lf — fool
For each a > ag, we denote by Q, the set of all (n — 1)-dimensional cubes
Q@ € Q with the following properties:

* ) C Qo.
o Q7" [, |f = fqol > o
e IfQ e Qisan (n — 1)-dimensional cube with @ C Q and Q C Qq,
then (O] [ |f — faul < .
It follows from the definition of ag that Qy ¢ Q, for each a > «yg. It is easy
to see that

(1) a<lQt [ 17— fal <270
for each a > g and each QQ € Q.. Moreover,
(18) {(h>a}= ] @

QREQn

for each o > ag. Finally, given a real number o > g and a point = ¢ T,
there is at most one cube Q € 9, that contains the point x.

We next apply Lemma A.3 with ¢ = 272”1, Hence, we can find a real
number 0 € (0,1) such that

o [w ez [w

for every (n — 1)-dimensional cube @ € Q and every measurable set A C @
satisfying |A] < 21776 1Q|.

Let us consider a real number o > «p and an (n — 1)-dimensional cube
Q € Q,. The upper bound in (17) implies |fo — fg,] < 2" 'a. Using the
lower bound in (17), we obtain

210 |G| < /Q(\f ~ fao - 2 a) < /Q - fol

for all (n — 1)-dimensional cubes Qe Qonq. In the next step, we take the
sum over all (n — 1)-dimensional cubes Q) € Qan, with @ C Q. This gives

(20) ly Y \Q|S/Q|f—fc2|~

Q€Q2”Q7QCQ
For each (n — 1)-dimensional cube @ € Q,, we have the inclusion
(21) Qn{n>2"a}\Tc |J @

QEQan4,QCQ



34 SIMON BRENDLE

Combining (20) and (21), we conclude that
(22) 27lalQN (h > 20} < [ 1f - fol

for every (n — 1)-dimensional cube @ € Q. In particular,
QN {h>2"a}| <2'7"5|Q)

for every (n—1)-dimensional cube Q € Q,, satisfying |Q|~* fQ |f—fol < da.
Applying (19) with A = Q N {h > 2"a} gives

(23) / W S 2—2n—1/ W
Qn{h>2na} Q

for every (n—1)-dimensional cube Q € Q, satisfying |Q|~* fQ |f — fol < da.
On the other hand, if @ € Q, is an (n — 1)-dimensional cube satisfying
Q! fQ |f — fol > da, then g > dav at each point in Q). Therefore,

(24) / we [ w
QN{h>2"a} QN{g>da}

for every (n—1)-dimensional cube Q € Q,, satisfying |Q|~! fQ |f— fol > da.
Combining (23) and (24), we conclude that

(25) / W <272l / W+ / W
QN{h>2"7a} Q QN{g>da}

for every (n — 1)-dimensional cube @ € Q,. Summation over all (n — 1)-
dimensional cubes Q € Q,, gives

(26) / W < 2—2"—1/ W +/ W
{h>2"a} {h>a} {g>da}

for each a > «ay.
We now multiply both sides of (26) by 2« and integrate over o € (2ayg, 00).
Using Fubini’s theorem, we obtain

W max{272"h? — 4a3,0}
Qo

:/ 2a (/ W> da

200 {h>2"a}

</ 2_2"a</ W)doH—/ 2a</ W)da
200 {h>a} 200 {g>da}

<27l [ Wwh24672 | W
Qo Qo

Rearranging terms gives

(27) 2721 [ Wh? <40 / W62 [ We
Qo Qo Qo
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On the other hand, g > |Qo|™! fQo |f — fgo| = ao at each point in Qo.
Consequently,

(28) 27l [ Wh2 < (440672 | W
Qo Qo

The inequality (16) follows immediately from (28). This completes the proof
of Lemma A.5.

Lemma A.6. Let us fix an (n — 1)-dimensional cube Qo € Q. We define a
bounded measurable function g : Qo — R by

o) = s Q7 |~ fal
QEQ,TEQCQo Q
for each point x € Qo. Then

/ Wg*<C IVF[?,
Qo Qo x[0,diam(Qo)]

where C' depends only on n and o.

Proof. Let ap = |Qo|™* fQo |f — fqo|- For each o > «, we denote by Q,
the set of all (n —1)-dimensional cubes @ € Q with the following properties:
° Q C Qo.
o QI fQ |f = fol > a.
e If @ € Qis an (n — 1)-dimensional cube with @ C @ and @ C Qo,
then [Q|™" [5|f = fol < .
It follows from the definition of ag that Qo ¢ Q4 for each a > ay. It is easy
to see that

(29) a<lQl [ 17~ sol < 2%
for each @ > g and each Q € Q.. Moreover,
(30) fg>at= U @

QEQan

for each o > . Finally, given a real number a > o and a point x ¢ T,
there is at most one cube ) € Q. that contains the point x.

Let us consider a real number o > ag and an (n — 1)-dimensional cube
Q € Q,. Using the lower bound in (29), we obtain

2”+2a\Q|S/Qlf—fQISZ/Q\f—fQI

for all (n — 1)-dimensional cubes Qe Q2§+2a. In the next step, we take the
sum over all (n — 1)-dimensional cubes @ € Qgn+2, with @ C Q. Using the
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upper bound in (29), we obtain

(31) 42 Y |@|§2/ - fol < 2 Q]
Q€Qyn+2,.QCQ Q

for every (n — 1)-dimensional cube @ € Q,. For each (n — 1)-dimensional
cube Q € Q,, we have the inclusion

(32) Qn{g>2""2a}\T C U Q.
QEQyn12,,QCQ
Combining (31) and (32), we conclude that
2n+2a ‘Q N0 {g > 2n+2a}‘ < 2n+1a ’Q|,

hence
n 1
(33) QN {g <27} > 10l

for every (n — 1)-dimensional cube Q € Q,.
We define a nonnegative function ¢ : R®~! x {0} — R by

diam(Qo)
(34)  o(x1,...,2p-1,0) = </ |VF(1:1,...,xn,1,xn)|2 dxn>
0

Moreover, we define a nonnegative function v : Q9 — R by

(35) via)= s QI [
QeQ,xeQCQo Q
for each point « € Q9. Using the Sobolev trace theorem, we obtain
a<iQ [ 1f - fal
Q

<2]Q|™! inf -

<2/Q/ " nt [ 17 ol
@) <cle ([ V(F )

a€R \ J@x[0,diam(Q)]

+ diam(Q) ! / |F' — a\)
Qx[0,diam(Q)]

for every (n — 1)-dimensional cube ) € Q,. Using (36) and the Poincaré
inequality, we conclude that

(37) 0 <ClQI! / VF|
QX[O,diam(Q)]

for every (n — 1)-dimensional cube @ € Q,. Using Hélder’s inequality, we
deduce that

(38) a < Cdiam(Q)? |Q1/ ¢ < Cdiam(Q)? inf
Q Q
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for every (n — 1)-dimensional cube @ € Q,. Combining (33) and (38) gives

a? diam(Q) ! Q] < 202 diam(Q) 1 |Q N {g < 2"™2a}|

(39) <C P?
QN{g<2"+2a}

for every (n — 1)-dimensional cube @ € Q,. Combining the estimate (39)
with Lemma A.4, we obtain

(40) o? / w<cC / Y?
Q Qn{g<2nt2qa}

for every (n — 1)-dimensional cube @ € Q,. Summation over all (n — 1)-
dimensional cubes @ € Q,, gives

(41) o? / W <C Y2
{g>a} {a<g<2nt2a}

for each o > ay.
We now multiply both sides of (41) by 2a~! and integrate over a €
(2, 00). Using Fubini’s theorem, we obtain

W max{g*® — 4a3,0} = 2a (/ W) do
Qo 2ag {g>a}

(42) < / 2Ca~! ( / yﬂ) do
200 {a<g<2n+2a}

< 2Clog(2"%) [ 2.
Qo

On the other hand, the function ¥ is bounded from above by the maximal

function associated with the function ¢ 1g,. Hence, the strong version of the
Hardy-Littlewood maximal inequality (cf. [19], Proposition 2.9 (ii)) implies

(43) p<C | pP<cC IVF.
Qo Qo Qo x[0,diam(Qo)]

Combining (42) and (43) gives

(44) W max{g* — 4a2,0} < C |VF|?.
Qo Qo x[0,diam(Qo)]
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Finally, using the Sobolev trace theorem, we obtain

ao—\czorl/ f — fool
Qo
<9 —Linf -
<210 it [ 17 ol

(45) < C'|Qo| ™" inf </ IViF = al
acR \ JQqx[0,diam(Qo)]

+ diam(Qo)_l/ |F' — a|>.
Qox[O,diam(Qo)}

Using (45) and the Poincaré inequality, we conclude that
(46) an < ClQul [ VE|

Qo % [0,diam(Qo)]
Using Holder’s inequality, we deduce that

(47) of diam(Qo) ™ |Qo| < C/ |VF|%
Qo x[0,diam(Qo)]

Combing the estimate (47) with Lemma A.4 gives

(48) ag/ w<cC |VF|?.
Qo Qo x[0,diam(Qo)]

The assertion follows by combining (44) and (48). This completes the proof
of Lemma A.6.

After these preparations, we now complete the proof of Theorem A.l.
Combining Lemma A.5 and Lemma A.6, we conclude that

/ VIf—fal? < C VP2
Qo Qo x[0,diam(Qo)]

for every (n — 1)-dimensional cube Qo € Q. This implies

2
[veso |VF|2+0|QO|—2(/ v)(/ |f|>
0 Qo x[0,diam(Qo)] Qo Qo

for each (n — 1)-dimensional cube Q¢ € Q. Moreover,

1
@ [ v (it [ ve)” < diam(@)
Qo Qo
by (14). Thus, we conclude that

2
Vi< VE? + O diam(Qo) " Qo] ( / |f!>
Qo Qo x[0,diam(Qo)] Qo

for each (n — 1)-dimensional cube @y € Q. This completes the proof of
Theorem A.1.



SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 39

Corollary A.7. Let us fiz an integer n > 3 and a real number o € (1,n—1).
Suppose that V' is a nonnegative continuous function defined on the unit
sphere S"~1 C R™ with the property that

(49) <r"+1" / V") "<
Sn=1MB,(p)

for all points p € R™ and all 0 < r < 1. Let F be a smooth function defined
on the unit ball B™ = {x € R" : |x| < 1}, and let f denote the restriction of
F to the boundary OB™ = S"~'. Then

Vf2§0/ IVF|?+C f2.
Snfl Bn Snfl

The constant C depends only onn and o.
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