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ABSTRACT
In this article, we develop automated inference methods for “local” parameters in a collection of convexity
constrained models based on the natural constrained tuning-free estimators. A canonical example is given
by the univariate convex regression model, in which automated inference is drawn for the function value,
the function derivative at a fixed interior point, and the anti-mode of the convex regression function,
based on the widely used tuning-free, piecewise linear convex least squares estimator (LSE). The key to our
inference proposal in this model is a pivotal joint limit distribution theory for the LS estimates of the local
parameters, normalized appropriately by the length of certain data-driven linear piece of the convex LSE.
Such a pivotal limiting distribution instantly gives rise to confidence intervals for these local parameters,
whose construction requires almost no more effort than computing the convex LSE itself. This inference
method in the convex regression model is a special case of a general inference machinery that covers a
number of convexity constrained models in which a limit distribution theory is available for model-specific
estimators. Concrete models include: (i) log-concave density estimation, (ii) s-concave density estimation,
(iii) convex nonincreasing density estimation, (iv) concave bathtub-shaped hazard function estimation,
and (v) concave distribution function estimation from corrupted data. The proposed confidence intervals
for all these models are proved to have asymptotically exact coverage and oracle length, and require
no further information than the estimator itself. We provide extensive simulation evidence that validates
our theoretical results. Real data applications and comparisons with competing methods are given to
illustrate the usefulness of our inference proposals. Supplementary materials for this article are available
online.
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1. Introduction

1.1. Overview of the Inference Problems

In this article, we shall consider the problem of inference for
“local” parameters in a collection of convexity constrained mod-
els, the precise meaning of which will be clear below. Here are
two prototypical examples we have in mind.

Example 1.1 (Convex regression). Consider the standard non-
parametric regression model:

Yi = f0(Xi) + ξi, 1 ≤ i ≤ n, (1)

where f0 : [0, 1] → R is an unknown convex function,
X1, . . . , Xn are fixed or random design points, and ξi’s are
iid mean 0 (unobserved) errors with variance σ 2 > 0. The
convex/concave regression model has been studied for more
than 60 years in statistics. It was first proposed by Hildreth
(1954) to solve real problems particularly in economics where,
for example, demand and supply relationship is often assumed
to satisfy a concavity constraint; also see Varian (1984),
Matzkin (1991), and Ait-Sahalia and Duarte (2003). Here we
are interested in inference for local parameters of this model,
including the function value f0(x0) and its derivative f ′

0(x0) at
an interior point x0 ∈ (0, 1), and the anti-mode of f0, that is, the
smallest minimizer of f0.

CONTACT Qiyang Han qh85@stat.rutgers.edu Department of Statistics, Rutgers University, New Brunswick, NJ.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

Example 1.2 (Log-concave density estimation). Suppose that we
observe iid data X1, . . . , Xn from a log-concave density f0 ≡
exp(ϕ0) where ϕ0 is a proper concave function on R. The
class of log-concave densities has become a popular nonpara-
metric alternative to standard parametric models due to its
many desirable statistical properties; see for example, Walther
(2002), Cule, Samworth, and Stewart (2010), Cule and Sam-
worth (2010), Dümbgen and Rufibach (2009), Dümbgen, Sam-
worth, and Schuhmacher (2011), Pal, Woodroofe, and Meyer
(2007), Seregin and Wellner (2010), Kim and Samworth (2016),
Kim, Guntuboyina, and Samworth (2018), Feng et al. (2021),
Doss and Wellner (2016), Barber and Samworth (2020), and
Han (2021) for extensive study from theoretical, methodological
and application points of view. The local parameters in this
model we are interested in will be the density function value
f0(x0), its derivative f ′

0(x0), for x0 ∈ R, and the mode of
f0.

The common theme in these two examples is the existence
of natural tuning free estimators in both problems that exhibit
common distributional properties in the large sample limit. To
fix ideas, let us focus on the convex regression model (1), and
the canonical tuning free estimator in this model is the convex
least squares estimator (LSE) f̂n, defined as the convex function
that minimizes the mean squared error:

© 2022 American Statistical Association
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Figure 1. Figure illustration of the quantities in (2) and (3).

f̂n ∈ arg min
f : convex

1
n

n∑
i=1

(
Yi − f (Xi)

)2,

where the minimization is over all convex functions f : R → R.
Although not unique, the convex LSE f̂n has unique specification
at the design points, that is, (̂fn(X1), . . . , f̂n(Xn))� is unique. If
we linearly interpolate this unique specification, the resulting
piecewise linear function with kinks (i.e., points of change of
slope) at design points is also unique and we treat this f̂n as
the (unique) convex LSE without loss of generality. Consistency
of the convex LSE f̂n is proved in Hanson and Pledger (1976).
Mammen (1991) derives the pointwise convergence rate and
Dümbgen, Freitag, and Jongbloed (2004) gives the uniform con-
vergence rate of f̂n. For global risk and the adaptation behavior of
the convex LSE, results can be found in Chatterjee, Guntuboy-
ina, and Sen (2015), Guntuboyina and Sen (2015), and Bellec
(2018).

The hope of making inference using the convex LSE is
spurred by the seminal work Groeneboom et al. (2001a),
Groeneboom, Jongbloed, and Wellner (2001b) that estab-
lished a joint limit distribution theory for

(
n2/5(̂fn(x0) −

f0(x0)), n1/5(̂f ′
n(x0) − f ′

0(x0))
)
, when f0 is twice continuously

differentiable in a neighborhood of x0 with f ′′
0 (x0) > 0, and the

noise {ξi} and the design points {Xi} satisfy certain conditions;
see Section 2.1 for a detailed technical review. One particularly
unfortunate fact of this result is that it cannot be directly used in
practice to form tuning-free confidence intervals for f0(x0) and
f ′
0(x0), primarily due to the existence of the unknown second

derivative f ′′
0 (x0) in the limiting distribution theory. In fact, as

the convex LSE f̂n is piecewise linear, that is, f̂ ′′
n = 0 a.e., so

f ′′
0 (x0) is not directly estimable by the LSE. Alternatively, it is

tempting to look for a sample proxy of f ′′
0 (x0) by considering,

for example, kernel smoothing methods to estimate f ′′
0 (x0); or

we might consider bootstrap methods such as the m-out-of-n
bootstrap and bootstrap with smoothing (Sen, Banerjee, and
Woodroofe (2010), and Seijo and Sen (2011)) so that such
a sample proxy can be bypassed. However, these inference
approaches require careful tuning (bandwidth for smoothing
and m for m-out-of-n bootstrap) that can be delicate and hard

to evaluate, making them not very appealing in shape restricted
problems.

1.2. Tuning-Free Inference with the Convex LSE

In this article, we introduce the first method for tuning-free
inference using the convex LSE directly. The key idea is to make
effective use of the length of the data-driven linear piece in the
convex LSE around x0 to “cancel out” the otherwise difficult-
to-estimate second derivative. More concretely, let [̂u(x0), v̂(x0)]
be the maximal interval containing x0 where f̂n is linear (see
Figure 1). We rigorously establish a pivotal limit distribution
theory (see Theorem 2.3): Under the same conditions for the
limit distribution theory as in Groeneboom, Jongbloed, and
Wellner (2001b),(√

n(̂v(x0) − û(x0))(̂fn(x0) − f0(x0))√
n(̂v(x0) − û(x0))3(̂f ′

n(x0) − f ′
0(x0))

)
� σ ·

(
L

(0)
2

L
(1)
2

)
, (2)

where (L
(0)
2 ,L(1)

2 ) is a universal bivariate random vector, whose
distribution does not depend on f0, n, or σ . We also show that
L

(0)
2 ,L(1)

2 have exponentially decaying tails (see Corollary 2.11).
As we may treat

√
n(̂v(x0) − û(x0)) and

√
n(̂v(x0) − û(x0))3 in

(2) as local normalizing factors for the magnitude of the stan-
dard deviation of f̂n(x0)−f0(x0) and f̂ ′

n(x0)−f ′
0(x0), respectively,

we call the normalized errors in (2) and other errors of this type
the locally normalized errors (LNEs).

The asymptotically pivotal LNE theory in (2) can be used for
inference immediately: For instance, a 1 − δ confidence interval
(CI) for f0(x0), based on (2), is[̂

fn(x0) − σ̂ · c(0)
δ

/√
n(̂v(x0) − û(x0)),

f̂n(x0) + σ̂ · c(0)
δ

/√
n(̂v(x0) − û(x0))

]
,

where c(0)
δ is the (1 − δ)-quantile of |L(0)

2 |, and σ̂ is a consistent
estimator of σ . The above CI is easily seen to have asymptoti-
cally exact coverage by our theory (2). What makes this simple
tuning-free CI even more attractive is that:
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• Theoretically, the above CI shrinks at the oracle length sug-
gested by the limit theory developed in Groeneboom, Jong-
bloed, and Wellner (2001b) which is known to be locally min-
imax optimal; so no other CIs can substantially beat the above
CI in terms of length, at least in theory (see Theorem 2.5 for
a formal statement).

• Numerically, the length of the above CI is typically very
close to the oracle CI constructed using the limit distribution
theory in Groeneboom, Jongbloed, and Wellner (2001b) with
the knowledge of f ′′

0 (x0). When f ′′
0 (x0) is estimated using

standard nonparametric methods, for example, local poly-
nomial estimators with fixed or data-driven bandwidths, the
resulting CI using the limit distribution theory in Groene-
boom, Jongbloed, and Wellner (2001b) can suffer from severe
under-coverage issues that makes it unreliable in practice
unless the sample size is extremely large. This is so even in
settings where estimation of f ′′

0 (x0) is deemed relatively easy;
see Section 4.3 for simulation evidence.

• Practically, our confidence interval proposal can easily han-
dle general covariate designs, and can be extended to tackle
heteroscedastic errors. See Section 2.4 for technical details,
and Appendix B.5 of the Supplementary Materials for simu-
lation results.

Another important problem in convex regression is inference
for the anti-mode, defined as the smallest minimizer of f0. It
turns out that the above approach of constructing an asymptot-
ically pivotal LNE is still applicable for this location parameter.
We establish a pivotal limit distribution theory for the anti-
mode as follows: Let m0 and m̂n be the anti-mode of f0 and f̂n,
respectively. Under regularity conditions on the noise variables
and design points, it holds, when f0 is twice continuously dif-
ferentiable in a neighborhood of m0 with f ′′

0 (m0) > 0, that (see
Theorem 2.8)

1
v̂m − ûm

(
m̂n − m0

)
� M2, (3)

where ûm and v̂m are the nearest kink points of f̂n to the left
and right of m̂n (see Figure 1), and M2 has a pivotal distri-
bution. What is even more striking in (3), compared to the
pivotal limiting distribution in (2), is that the LNE for the
anti-mode is scale-free and therefore it is not necessary to
estimate σ .

As an application of our proposed CIs via (2)–(3), we con-
sider two real datasets on mean weakly wage (Bierens and
Ginther (2001)) and Belgian firm production data (Verbeek
(2000)) that serve as canonical examples of concave regression.
Both datasets exhibit natural heteroscedasticity which can be
handled particularly easily using our inference proposals; see
Section 5 for details. As will be reported therein, our CIs not only
give simultaneous inference results for the “local parameters” of
interest in these applications, but also provide substantial gain
compared to some classical methods.

1.3. General Inference Machinery in Convexity
Constrained Models

The asymptotically pivotal LNE theories developed in (2)–(3)
in the convex regression model (see Example 1.1) naturally

suggest a similar inference method in the log-concave density
estimation model (see Example 1.2). This is so as the limiting
distributional behavior of the log-concave maximum likelihood
estimator (MLE) can be described in a similar way as the convex
LSE. We describe in Section 3 a general inference machinery
in convexity constrained models, by establishing pivotal LNE
theories analogous to (2) and (3) whenever a natural tuning-
free estimator exhibits similar limit behavior as that of the
convex LSE. In additional to the log-concave density estima-
tion model, other models that fall in this general machinery
include

• s-concave density estimation (Dharmadhikari and Joag-Dev
(1988), Koenker and Mizera (2010), and Han and Wellner
(2016)),

• convex nonincreasing density estimation (Groeneboom,
Jongbloed, and Wellner (2001b)),

• convex bathtub-shaped hazard function estimation (Jankowski
and Wellner (2009)),

• concave distribution function estimation from corrupted
data (Jongbloed and van der Meulen (2009)).

We will present detailed inference procedures in the important
log-concave density estimation model in Section 3. Due to space
constraints, inference details for other convexity constrained
models mentioned above are relegated to Appendix A of the
Supplementary Materials.

To the best of our knowledge, inference procedures with
theoretical guarantees in the above models are limited to the
problem of inference for the mode of log-concave densities,
for which Doss and Wellner (2019) developed the likelihood
ratio test (LRT). We discuss this LRT based method in
Section 3 and provide a numerical performance comparison
with the proposed CIs in Appendix B.6 of the Supplementary
Materials.

1.4. Related Literature

The idea of constructing such an asymptotically pivotal LNE for
inference in shape constrained problems was first employed in
isotonic regression. Deng, Han, and Zhang (2020) establishes a
pivotal limit distribution theory similar to the first line of (2),
with the convex LSE f̂n replaced by the isotonic LSE f̂ (iso)

n , and
[̂u(x0), v̂(x0)) replaced by [̂u(iso)(x0), v̂(iso)(x0)), the maximal
interval containing x0 where f̂ (iso)

n remains constant. Compared
to the result in Deng, Han, and Zhang (2020), the asymptotically
pivotal LNE theory (2)–(3) demonstrates the additional advan-
tage of convexity/concavity constraints in providing simultane-
ous inference for all local parameters f0(x0), f ′

0(x0), m0. This
is possible as the convexity/concavity constraints induce a nat-
ural second-order curvature condition under which sufficient
information is available for all these local parameters, whereas
it is not possible to infer more than f0(x0) from the first-order
monotonicity constraint as in Deng, Han, and Zhang (2020).

In a different line of work, Cai, Low, and Xia (2013) estab-
lished the existence of an adaptive CI in the convex regression
setting for the function value f0(x0). Their proposal is however,
purely theoretical and tailored to the specific function value set-

https://doi.org/10.1080/01621459.2022.2071721
https://doi.org/10.1080/01621459.2022.2071721
https://doi.org/10.1080/01621459.2022.2071721
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ting in regression. To the best of our knowledge, the confidence
intervals for local parameters of a convex regression function
proposed in this article, based on the pivotal distribution theo-
ries of the LSE in (2) and (3), are the first practical tuning-free
inference procedures in the literature.

1.5. Organization

The rest of the article is organized as follows. We study
the local inference problem mainly through (2)–(3) and its
extensions to heteroscedastic errors for convex regression in
Section 2. Section 3 builds a framework for constructing the
LNEs for general models under convexity/concavity constraints
and applies it to the models mentioned above. Section 4
reports (approximate) critical values of L

(0)
2 , L

(1)
2 and M2,

investigates the numerical performance of the proposed CIs in
convex regression, and makes comparisons to some competing
methods. Section 5 details the application of the proposed CIs
to two real datasets mentioned above. Due to space constraints,
inference procedures for the remaining models not included in
Section 3 are detailed in Appendix A of the Supplementary
Materials. Appendix B contains a number of additional
simulation studies, including: (i) numerical performance of
the proposed CIs in the log-concave density estimation model,
(ii) simulation results for the (modified) CIs with interval
trimming, or with random design and heteroscedastic errors
in convex regression, and (iii) comparison with the LRT-based
CIs for mode of log-concave densities. Technical proofs are
collected in the remaining appendices of the Supplementary
Materials. All appendices can be found in the Supplementary
Materials.

Notation. For simplicity of presentation, we write the CI [θ̂ −
c0, θ̂ + c0] which is symmetric around θ̂ as I = [θ̂ ± c0]. The
anti-mode, or the smallest minimizer, of a convex function f
is denoted by [f ]m = [f ]m+ , and the mode, or the smallest
maximizer of a concave function g is denoted by [g]m− which
equals [−g]m; see (8) for a formal definition. Let f (k)

0 (·), with
k = 1, 2, . . ., denote the kth derivative of f0(·). We may also use
f (0)
0 (x0) ≡ f0(x0) and f (1)

0 (x0) ≡ f ′
0(x0) interchangeably. For

two real numbers a, b, a ∨ b ≡ max{a, b}, a ∧ b ≡ min{a, b},
and a+ ≡ a ∨ 0, a− ≡ (−a) ∨ 0. The indicator function
1A(x) = 1{x∈A} outputs 1 if x ∈ A and 0 otherwise. We use
Cx or Kx to denote a generic constant that depends only on
x, whose numeric value may change from line to line unless
otherwise specified. a �x b and a �x b mean a ≤ Cxb and
a ≥ Cxb, respectively, and a �x b means a �x b and a �x b
(a � b means a ≤ Cb for some absolute constant C). OP and
oP denote the usual big and small O notation in probability.
� is reserved for weak convergence for general metric-space
valued random variables. In this article we will consider weak
convergence of stochastic processes in the topology induced by
uniform convergence on compacta (that is, compact sets). A
function f is locally Cα at x0 if it has a continuous αth derivative
in a neighborhood of x0. Lastly, C([a, b]) is the class of real-
valued continuous functions defined on [a, b] ⊂ R.

2. Pivotal LNE Theory: Convex Regression

2.1. Review of the Limit Distribution Theory

First we state the assumptions we make about the regression
model (1).

Assumption A. Suppose that f0 : [0, 1] → R is a convex function
and there exists some integer α ≥ 2 such that f0 is locally Cα

at x0 ∈ (0, 1) with f (β)
0 (x0) = 0, β = 2, . . . , α − 1, and f (α)

0
(x0) �= 0.

Assumption A is standard in the literature, see Balabdaoui,
Rufibach, and Wellner (2009). For example, if f0(x) = (x −
1/2)4, then α = 2 for all x ∈ (0, 1) \ {1/2} and α = 4 for
x0 = 1/2. A simple Taylor’s expansion of degree α−2 of f (2)

0 (·) at
x0 yields that α must be even and f (α)

0 (x0) > 0 (see Balabdaoui,
Rufibach, and Wellner 2009, pp. 1305). The canonical and most
interesting case is α = 2.

Assumption B. Suppose the design points {Xi} are either: (i)
Equally spaced fixed points on [0, 1], or (ii) iid sampled from
a distribution on [0, 1] with Lebesgue density π(·) that is locally
continuous at x0 with π(x0) > 0. In the fixed design case we
write π(x0) = 1.

Assumption C. Suppose the errors {ξi} are iid mean-zero with
variance σ 2 and sub-Gaussian, that is, E exp(tξ 2

1 ) < ∞ for t in
a neighborhood of 0, and are independent of {Xi} in the case of
a random design.

Here we have used a perhaps stronger-than-necessary sub-
Gaussianity assumption, as in Groeneboom, Jongbloed, and
Wellner (2001b), on the errors to avoid unnecessary detours.
The reader should however, keep in mind that our main pivotal
limit distribution theory (see Theorem 2.3) will work under the
same conditions that validate the proof of Theorem 2.1.

Now we state the limit distribution theory for the convex
LSE f̂n due to Groeneboom, Jongbloed, and Wellner (2001b) and
Ghosal and Sen (2017).

Theorem 2.1. Suppose Assumptions A–C hold. Then with
σ̄ 2(x0) ≡ σ 2/π(x0),( (

n/σ̄ 2(x0)
)α/(2α+1)(̂fn(x0) − f0(x0)

)(
n/σ̄ 2(x0)

)(α−1)/(2α+1)(̂f ′
n(x0) − f ′

0(x0)
))

�
(

d(0)
α (f0, x0) · H(2)

α (0)

d(1)
α (f0, x0) · H(3)

α (0)

)
.

Here d(0)
α (f0, x0) ≡ (

f (α)
0 (x0)/(α + 2)!)1/(2α+1), d(1)

α (f0, x0)

≡ (
f (α)
0 (x0)/(α + 2)!)3/(2α+1), and Hα is an a.s. uniquely well-

defined random continuous function satisfying the following
conditions: (i) For all t ∈ R,Hα(t) ≥ Yα(t) ≡ ∫ t

0 B(s) ds+tα+2,
where B is the standard two-sided Brownian motion starting
from 0; (ii) Hα has a convex second derivative H

(2)
α ; (iii) Hα

satisfies
∫∞
−∞
(
Hα(t) − Yα(t)

)
dH(3)

α (t) = 0.

In words, Hα is a.s. determined as a random continuous
function with piecewise linear convex second derivative, that

https://doi.org/10.1080/01621459.2022.2071721
https://doi.org/10.1080/01621459.2022.2071721
https://doi.org/10.1080/01621459.2022.2071721
https://doi.org/10.1080/01621459.2022.2071721
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majorizes Yα with equality (touch points) taken at jumps of its
third derivative. The processHα is called the “invelope” function
of Yα .

2.2. Pivotal LNE Theory I: Pointwise Inference for the
Function and its Derivative

In this section, we consider the inference problem for the
parameters f0(x0) and f ′

0(x0). We propose the following
construction of CIs: Let [̂u(x0), v̂(x0)] be the “maximal interval”
containing x0 on which f̂n is linear, and

I(0)
n (c(0)

δ ) ≡
[̂

fn(x0) ± c(0)
δ · σ̂√∑

i 1{̂u(x0)≤Xi≤̂v(x0)}

]
,

I(1)
n (c(1)

δ ) (4)

≡
[̂

f ′
n(x0) ± c(1)

δ · σ̂√(∑
i 1{̂u(x0)≤Xi≤̂v(x0)}

) · (̂v(x0) − û(x0))2

]
,

where c(i)
δ (i = 0, 1) are universal critical values determined

only by the confidence level 1 − δ, and will be detailed (see
Theorem 2.5). Here σ̂ is the square root of a consistent estimator
of σ 2. In the fixed design case, we may also use

I(0)
n (c(0)

δ ) ≡
[̂

fn(x0) ± c(0)
δ · σ̂√

n(̂v(x0) − û(x0))

]
,

I(1)
n (c(1)

δ ) ≡
[̂

f ′
n(x0) ± c(1)

δ · σ̂√
n(̂v(x0) − û(x0))3

]
. (5)

Remark 2.2. We require [̂u(x0), v̂(x0)] to be the “maximal inter-
val” which means: (i) The only interval containing x0 if x0 is not
a kink of f̂n, and (ii) the longer one (either one for equal length)
if x0 is a kink. This definition is primarily for practical concerns,
as in theory any fixed point x0 is a kink of f̂n with vanishing
probability in the large sample limit.

Our proposal (4) (or (5) specific to the fixed design case) for
the CIs of f0(x0) and f ′

0(x0) is based on the following asymptot-
ically pivotal LNE theory.

Theorem 2.3. Suppose Assumptions A–C hold. Then with
σ̄ 2(x0) = σ 2/π(x0),(√

n(̂v(x0) − û(x0))
(̂
fn(x0) − f0(x0)

)√
n(̂v(x0) − û(x0))3

(̂
f ′
n(x0) − f ′

0(x0)
)
)

� σ̄ (x0) ·
(
L

(0)
α

L
(1)
α

)
.

Here L(0)
α and L

(1)
α are a.s. finite random variables defined by

L
(0)
α ≡ √

h∗
α;− + h∗

α;+ · H(2)
α (0) and L

(1)
α ≡

√(
h∗

α;− + h∗
α;+
)3 ·

H
(3)
α (0), where h∗

α;− (resp. h∗
α;+) is the absolute value of the

location of the first touch point of the pair (Hα ,Yα) to the left
(resp. right) of 0.

In Section 2.5, we will derive an exponential tail bound for
H

(2)
α (0), H(3)

α (0) and h∗
α;± that holds uniformly in α, which

immediately implies a uniform exponential tail bound for L(0)
α

and L
(1)
α over all α.

Remark 2.4. Theorem 2.3 can be understood via the bias-
variance heuristics in connection to Theorem 2.1. For simplicity
we focus on the canonical case α = 2 and the fixed design
setting. As the convex LSE f̂n around x0 can be roughly
identified as the best linear fit for the observations over the
interval [̂u(x0), v̂(x0)], the squared bias of f̂n can be “calculated”
as follows: With nû,̂v ≡ n(̂v(x0) − û(x0)) denoting the
number of samples in [̂u(x0), v̂(x0)] and 
̂ ≡ v̂(x0) −
û(x0), we have approximations (omitting x0 in the notation)
bias2 ≈ mina,b(nû,̂v)

−1∑
Xi∈[̂u,̂v]

(
f0(Xi) − a − bXi

)2 ≈
mina,b 
̂−1 ∫ 
̂

0
(
f ′′
0 (̂u)x2/2 − (a − f0(̂u)) − (b − f ′

0(̂u))x
)2 dx �

(f ′′
0 (̂u))2
̂4 ≈ (f ′′

0 (x0))
2(̂v − û)4. On the other hand, the

variance is roughly σ 2 normalized by the number of sample in
[̂u(x0), v̂(x0)] so is roughly σ 2/nû,̂v. Now bias-variance balance
leads to the heuristic

(bias) f ′′
0 (x0)(̂v(x0) − û(x0))

2 � σ√
n(̂v(x0) − û(x0))

(s.d.)

⇒ f ′′
0 (x0) � σ/

√
n(̂v(x0) − û(x0))5. (6)

Therefore, it is reasonable to expect that, by plugging (6) into
d(i)

2 (f0, x0)(i = 0, 1) in Theorem 2.1, the resulting quantities
will be asymptotically pivotal. Theorem 2.3 formalizes this intu-
ition. It is however, important to note that the distribution of
(L

(0)
α ,L(1)

α ) in Theorem 2.3 is different from (H
(2)
α (0),H(3)

α (0))

in Theorem 2.1, as the sample proxy σ/
√

n(̂v(x0) − û(x0))5 in
(6) is actually not a consistent estimator of f ′′

0 (x0); it has the same
order of magnitude as f ′′

0 (x0) up to a multiplicative, universal
random variable.

Although Theorem 2.3 bears certain resemblance to its “iso-
tonic” analogue in Deng, Han, and Zhang (2020), its proof uses
a completely different method. Fundamentally, this is caused
by the lack of an explicit representation of the convex LSE (or
more generally, convexity constrained estimators), whereas the
isotonic LSE has a closed-form min–max formula. Technical
complications due to the lack of such explicit formulas are well
documented in convexity constrained problems (Groeneboom
et al. 2001a; Groeneboom, Jongbloed, and Wellner 2001b; and
Doss and Wellner 2019).

More concretely, the proof of Theorem 2.3, at a high level,
proceeds via a careful application of the continuous mapping
theorem, by combining the proof of Theorem 2.1 and a suitable
implicit characterization of û(x0) and v̂(x0). Intuitively, one may
wish to do so by considering û(x0) and v̂(x0) as two function-
als H± of the underlying process (Hloc

n )(2), the finite sample
version of H

(2)
α defined in Theorem 2.1, whose realizations

are piecewise linear convex functions (see Appendix C.1 for
a precise definition). However, it turns out that H± are not
continuous with respect to the topology induced by uniform
convergence on compacta in which (Hloc

n )(2) converges weakly
to H

(2)
α ; see Equation (C.5) in the Supplementary Materials for

a counterexample. To overcome this difficulty, we employ a dual
characterization of û(x0), v̂(x0) using both (Hloc

n )(2) and Hloc
n

(see Equations (C.6)–(C.7) in the Supplementary Materials)
that maintains suitable topological openness and closedness
properties. In essence, the additional information onHloc

n shows
that the convergence of the underlying process (Hloc

n )(2) to its
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limit must occur inside the “continuity set” of the function-
als H± in the prescribed topology, and therefore û(x0) and
v̂(x0), after proper scaling, converge in distribution to their
white noise analogues. The universality of the limit then fol-
lows from Brownian scaling arguments. We provide a detailed
proof for the canonical case α = 2 in Appendix C.2 in the
Supplementary Materials, while the general case follows from
minor modifications (indicated in the beginning of the proof
therein).

One particularly important and the canonical case is α =
2, where the CIs in (4) have asymptotically exact coverage and
shrink at the optimal rate, as detailed below. See Appendix C.3 in
the Supplementary Materials for a proof of the following result.

Theorem 2.5. Suppose Assumptions A–C hold with α = 2. Let
c(0)
δ , c(1)

δ be chosen such that P
(|L(i)

2 | > c(i)
δ

) = δ, i = 0, 1. Then
for any consistent variance estimator σ̂ , the CIs in (4) (or (5)
specific to the fixed design case) satisfy the following:

1. (exact asymptotic coverage) limn Pf0
(
f (i)
0 (x0) ∈ I(i)

n (c(i)
δ )
) =

1 − δ, i = 0, 1;
2. (oracle length) For any ε > 0, lim infn Pf0

(∣∣I(i)
n (c(i)

δ )
∣∣ <

2c(i)
δ g

(i)
ε · σ̄ 2(x0)/n)(2−i)/5d(i)

2 (f0, x0)
) ≥ 1 − ε, i = 0, 1. Here

g
(i)
ε (i = 0, 1)’s are constants that depend only on ε.

In the above theorem, g(i)
ε can be chosen to be a constant no

smaller than the (1−ε)-quantile of (h∗
2;++h∗

2;−)−i−1/2 (i = 0, 1)
(defined in Theorem 2.3). Note that although the above theorem
focuses only on separate CIs for f0(x0), f ′

0(x0), the joint pivotal
limit theory in Theorem 2.3 allows the construction of joint
confidence regions for any given functional of f0(x0), f ′

0(x0).

Remark 2.6 (Oracle length of the proposed CIs). The lengths of
the proposed CIs shrink at the optimal rates in the sense that
they adapt to the oracle rates which are locally asymptotically
minimax optimal as shown in Groeneboom, Jongbloed, and
Wellner 2001b, Theorem 5.1. In the oracle case where f ′′

0 (x0)
and σ̄ (x0) are both known, Theorem 2.1 implies an oracle CI
for f (i)

0 (x0) (i = 0, 1) as

I(i)
n,ora(cδ(|H(2)

(i+2)(0)|))
≡
[̂

f (i)
n (x0) ± (σ̄ 2(x0)/n)(2−i)/5d(i)

2 (f0, x0)cδ

(|H(i+2)
2 (0)|)],

where cδ

(|H(i+2)
2 (0)|) is the (1 − δ)-quantile of |H(i+2)

2 (0)|. The
length of this oracle CI shrinks at the rate (σ̄ 2(x0)/n)(2−i)/5d(i)

2
(f0, x0). The proposed CI I(i)

n (c(i)
δ ) in (4) has an oracle length in

the sense that |I(i)
n (c(i)

δ )| d≈ U · |I(i)
n,ora(cδ(|H(2)

(i+2)(0)|))| for some
universal, nondegenerate and nonnegative random variable U.
Our simulation results in Section 4.2 indicate that the proposed
CIs actually have almost the same length as the oracle CIs above
for moderate sample size in an averaged sense, so it seems
reasonable to conjecture that the mean or median of U is close
to 1.

Let us now consider the case when α �= 2. Let c(0)
δ , c(1)

δ be
chosen such that

sup
α

{
P
(|L(0)

α | > c(0)
δ

) ∨ P
(|L(1)

α | > c(1)
δ

)} ≤ δ. (7)

Then we may construct adaptive CIs for both f0(x0) and
f ′
0(x0). We formalize this result in the following theorem; the

proof is essentially the same as that of Theorem 2.5 and is thus,
omitted.

Theorem 2.7. Suppose Assumptions A–C hold. Let c(0)
δ , c(1)

δ be
chosen as above. Then:

1. (asymptotic coverage) lim infn Pf0
(
f (i)
0 (x0) ∈ I(i)

n (c(i)
δ )
) ≥

1 − δ, i = 0, 1;
2. (oracle length) For any ε > 0, lim infn Pf0

(∣∣I(i)
n (c(i)

δ )
∣∣ <

2c(i)
δ g

(i)
ε,α ·(σ̄ 2(x0)/n)(α−i)/(2α+1)d(i)

α (f0, x0)
) ≥ 1−ε, i = 0, 1.

Here g
(i)
ε,α ’s (for i = 0, 1) are constants that depend only on

ε, α, and d(i)
α (f0, x0)’s are defined in Theorem 2.1.

The existence of critical values c(i)
δ (i = 0, 1) satisfying (7) is

verified in Corollary 2.11 ahead, so indeed adaptive CIs for both
f0(x0) and f ′

0(x0) can be constructed by calibrating the critical
values alone. Theorem 2.7 should however be primarily viewed
as purely theoretical as it seems difficult to obtain a practically
useful value for c(i)

δ (i = 0, 1) either via simulation or analytic
theory.

2.3. Pivotal LNE Theory II: Inference for the Anti-mode

The above idea of constructing CIs for f0(x0) and f ′
0(x0) can

be taken further to other “local parameters” for which a limit
distribution theory is available. In this section we consider the
inference problem for the anti-mode of the convex regression
function f0. More precisely, we define the anti-mode of a convex
function f on [0, 1] as its smallest minimizer

[f ]m = [f ]m+ ≡ min
{

t : f (t) = min
u∈[0,1] f (u)

}
. (8)

For a concave function g, the mode is defined as its smallest
maximizer [g]m− ≡ [−g]m. We continue to use this notion of
the mode for densities not necessarily convex or concave.

Let m0 ≡ [f0]m ∈ (0, 1) be the anti-mode of f0 and m̂n ≡
[̂fn]m be the anti-mode of the convex LSE f̂n. Note that m̂n is a
kink point of f̂n. Let ûm (resp. v̂m) be the first kink of f̂n to the
left (resp. right) of m̂n. We propose the following CI for m0:

Im
n (cm

δ ) ≡
[

m̂n ± cm
δ

(̂
vm − ûm

)] ∩ [0, 1]. (9)

Here cm
δ is a universal critical value determined only by the

confidence level 1− δ, to be described below (see Theorem 2.9).
For finite samples, when m̂n has no kink to its left (resp. right),
we simply let ûm = m̂n (resp. v̂m = m̂n). It does not affect the
limit theory as either case happens with vanishing probability
for m0 ∈ (0, 1). Note that v̂m − ûm > 0 always holds unless
n = 1.

The above proposal (9) for a CI of m0 is based on the fol-
lowing asymptotically pivotal LNE theory (see Appendix C.4 in
the Supplementary Materials for a proof of the following result).
We will focus on the canonical case α = 2 for simplicity of
exposition.

Theorem 2.8. Suppose f0 is locally C2 at m0 ∈ (0, 1) with
f ′′
0 (m0) > 0, and that Assumptions B–C hold. Then

(n/σ 2)1/5(m̂n − m0
)

� dm
2 (f0) · [H(2)

2
]

m, (10)
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where dm
2 (f0) ≡ (4!/f ′′

0 (m0)
)2/5. Furthermore,

1
v̂m − ûm

(
m̂n − m0

)
� M2. (11)

Here M2 is an a.s. finite random variable defined by M2 ≡
[H(2)

2 ]m/(h∗
2,m;− + h∗

2,m;+), where h∗
2,m;− (resp. h∗

2,m;+) is the
first kink of the random convex function H

(2)
2 (defined in The-

orem 2.1) to the left (resp. right) of its anti-mode
[
H

(2)
2
]

m.

As we will mention later in Section 3, Balabdaoui, Rufibach,
and Wellner (2009) proved a limit distribution theory for the
mode of the MLE of log-concave densities analogous to (10).
Although our proof strategy is similar to that in Balabdaoui,
Rufibach, and Wellner (2009), (10) is new in convex regression.
The proof of the more significant result (11) is more difficult
than the proofs of Theorem 2.3 and (10). As ûm and v̂m have
to be characterized by processes with center m̂n that is random,
the continuous mapping argument in the proof of Theorem 2.3
and the argmax continuous mapping argument in the proof of
(10) (originally developed in Balabdaoui, Rufibach, and Wellner
2009) cannot be applied, at least directly. As a result, the weak
convergence on compacta must be argued for randomly cen-
tered processes. Details of the resulting technical complications
and the proof can be found in Appendix C.4 in the Supplemen-
tary Materials.

One striking difference of the CI (9) compared to (4) is the
complete elimination of the need to estimate the effective noise
level σ̄ 2(x0) = σ 2/π(x0). This is clearly reflected in the pivotal
limiting distribution for m0 in the above theorem. The intuition
is that both the quantities m̂n − m0 and v̂m − ûm have roughly
the same order of magnitudes, so their ratio becomes pivotal in
the limit.

As a straightforward consequence of Theorem 2.8, the CI
(9) has asymptotically exact coverage and shrinks at the oracle
length.

Theorem 2.9. Let cm
δ be chosen such that P

(|M2| > cm
δ

) = δ.
Then the CI in (9) satisfies:

1. (exact asymptotic coverage) limn Pm0

(
m0 ∈ Im

n (cm
δ )
) = 1 −

δ;
2. (oracle length) For any ε > 0, lim infn Pm0

(∣∣Im
n (cm

δ )
∣∣ <

2cm
δ g

m
ε · (σ̄ 2(x0)/n)1/5dm

2 (f0)
) ≥ 1− ε. Here gm

ε is a constant
depending only on ε, and dm

2 (f0) is defined in Theorem 2.8.

The proof of the above theorem can be found in Appendix
C.5 in the Supplementary Materials.

2.4. Inference with Heteroscedastic Errors

Our results in Theorems 2.5 only require a consistent variance
estimator σ̂ 2. Typically, it can be very well approximated by,
say, the difference-based estimators Rice (1984) and Munk et al.
(2005). In a fixed design case, we can naturally extend the con-
clusions to heteroscedastic errors where the variance function
σ 2 : [0, 1] → R>0 is strictly positive and continuous over [0, 1].
Both the residual-based estimator

σ̂ 2
res(x0) = 1∑

1≤i≤n 1{̂u(x0)≤Xi≤̂v(x0)}

∑
û(x0)≤Xi≤̂v(x0)

(Yi − f̂n(x0))
2

and the difference estimators (von Neumann 1941 and Munk
et al. 2005), for example,

σ̂ 2
dif (x0) = 1

2(
∑

1≤i≤n 1{̂u(x0)≤Xi≤̂v(x0)} − 1)∑
û(x0)≤Xi−1,Xi≤̂v(x0)

(Yi − Yi−1)
2 (12)

over the region [̂u(x0), v̂(x0)] would be consistent for σ 2(x0).
See, for example, Wang et al. (2008) and Shen et al. (2020) for
more detailed treatments when stronger smoothness conditions
are imposed on the variance function. Some simulations vali-
dating the use of (12) in convex regression with heteroscedastic
errors are reported in Appendix B.5.2 in the Supplementary
Materials.

2.5. A Uniform Tail Bound for the Limit Distributions

We present a result on an exponential tail bound of the limit pro-
cesses in Theorem 2.1 that holds uniformly in α; see Appendix
C.6 in the Supplementary Materials for its proof.

Theorem 2.10. There exist universal constants L > 0, b > 0
such that

sup
α

{
P
(|H(2)

α (0)| > t
) ∨ P

(|H(3)
α (0)| > t

) ∨ P
(
h∗

α;± > t
)}

≤ Le−tb/L. (13)

Here h∗
α;− (resp. h∗

α;+) is the absolute value of the location of
the first touch point of the pair (Hα ,Yα) to the left (resp. right)
of 0.

The above result resolves an open question posed in Groene-
boom et al. (2001a) concerning the existence of moments of
H

(2)
2 (0) (see pp. 1648 therein). In fact, the theorem above shows

that all moments of H
(2)
α (0) and H

(3)
α (0) can be controlled

uniformly in α.
As a direct consequence of Theorem 2.10, we have the follow-

ing exponential tail for the limit distributions in Theorem 2.3;
see Appendix C.7 in the Supplementary Materials for its proof.

Corollary 2.11. There exist universal constants L > 0, b > 0
such that

sup
α

{
P
(|L(0)

α | > t
) ∨ P

(|L(1)
α | > t

)} ≤ L exp(−tb/L).

The above corollary verifies the existence of c(i)
δ (i = 0, 1) in

(7) and hence the existence of adaptive CIs in Theorem 2.7.

3. Inference in Other Convex/Concave Models

3.1. General Inference Machinery

The inference methods developed in Section 2 in regression can
be generalized to other convexity/concavity constrained models,
in which a natural estimator (not necessarily the LSE/MLE)
exhibits a nonstandard limiting distribution similar to Theo-
rem 2.1. Concrete models include:
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https://doi.org/10.1080/01621459.2022.2071721
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• log-concave density estimation (Balabdaoui, Rufibach, and
Wellner 2009),

• s-concave density estimation (Han and Wellner 2016),
• convex nonincreasing density estimation (Groeneboom,

Jongbloed, and Wellner 2001b),
• convex bathtub-shaped hazard function estimation (Jankowski

and Wellner 2009),
• concave distribution function estimation from corrupted

data (Jongbloed and van der Meulen 2009).

We develop below a general inference machinery for these con-
vexity/concavity constrained models, and provide the specific
inference procedures for the log-concave density estimation
model. The detailed procedures and the theoretical results for
the other models we mention above are relegated to Appendix
A in the Supplementary Materials.

Before stating our most general (and abstract) result, we shall
first present some heuristics. Suppose that a piecewise linear
convex estimator ĝn for a convex function g0, where g0 is locally
C2 at x0 with g′′

0 (x0) > 0, satisfies the following nonstandard
limit distribution theory with (a, b) ∈ R2

>0:(
n2/5(̂gn(x0) − g0(x0)

)
n1/5(̂g′

n(x0) − g′
0(x0)

))�

⎛⎝H(2)

a,b(0)

H(3)

a,b(0)

⎞⎠ .

Here Ha,b is a.s. uniquely determined as a piecewise cubic
function that majorizes a drifted integrated Brownian motion
Ya,b(t) ≡ a

∫ t
0 B(s) ds + bt4, with equality taken at jumps of the

piecewise constant nondecreasing function H(3)

a,b , see Groene-
boom et al. (2001a). For convex regression in Section 2, a =
σ̄ (x0) and b = f (2)

0 (x0)/4!. So although two nuisance param-
eters a, b are present in Ya,b(t), the really difficult nuisance
parameter to estimate is b, which is typically related to the
second derivative of the underlying unknown convex/concave
function. This parameter cannot be estimated directly from a
piecewise linear estimator ĝn as its second derivative is a.e. 0,
and hence its elimination constitutes the main hurdle in the
construction of valid CIs.

Inspired by the bias calculation in (6), with [̂u(x0), v̂(x0)]
denoting the maximal interval containing x0 on which ĝn is
linear, we expect v̂(x0) − û(x0) to be of the same order as
(a/b)2/5·n−1/5 up to a universal random variable. By a Brownian
scaling argument, it is easy to show that H(2)

a,b (0)
d= (a4b)1/5 ·

H
(2)
2 (0), where the distribution ofH2, as defined in Theorem 2.1,

is pivotal. Consequently, we may expect that√
n(̂v(x0) − û(x0))

(̂
gn(x0) − g0(x0)

)
≈ a × universal random variable,

and similar conclusions would hold for estimators of g′
0(x0) and

the mode m0 using ĝn with appropriate normalization.
The following theorem makes the above heuristics rigorous.

Its formulation essentially requires an identification of a pair of
processes (Hn, Yn) so that: (i) Hn can be viewed as a version
of the double (indefinite) integral of the (properly rescaled)
convex function estimator ĝn under study, and (ii) (Hn, Yn) can
be viewed as a “finite-sample” version of the (rescaled) limiting
process (H2,Y2) as defined in Theorem 2.1.

Theorem 3.1. Let ĝn be a piecewise linear convex (resp. concave)
function estimator for an underlying convex (resp. concave)
function g0, where g0 is locally C2 at x0 ∈ R with g′′

0 (x0) > 0
(resp. g′′

0 (x0) < 0). Suppose that there exists a pair of stochastic
processes (H̃n, Ỹn) on R such that the following hold with the
convex case taking + and concave case taking −:

(C1) H̃n is approximately the (scaled) double integral of ĝn up to
a linear indeterminacy in the following sense: Let Ḡn(t) ≡
±n2/5(̂gn(x0 + n−1/5t) − g0(x0) − n−1/5g′

0(x0)t
)
. There

exist tight sequences of random variables {An}, {Bn} and a
process {εn(·)} asymptotically vanishing on any compacta
(i.e., sup|t|≤K |εn(t)| →p 0 for any K > 0), such that
with H̄n(t) ≡ (1 + εn(t))

∫ t
0
∫ v

0 Ḡn(u) dudv + An +
Bnt, the processes {H̄(�)

n }3
�=0 are tight on compacta and

sup|t|≤K |H̃n(t) − H̄n(t)| →p 0 for any K > 0.
(C2) (H̃n, Ỹn) is a “finite-sample version” of (Ha,b, Ya,b), where

Ha,b is a.s. uniquely determined as a piecewise cubic func-
tion that majorizes a drifted integrated Brownian motion
Ya,b(t) ≡ a

∫ t
0 B(s) ds + bt4, with equality taken at jumps

of the piecewise constant nondecreasing function H(3)

a,b , in
the following sense: (i) H̃′′

n is piecewise linearly convex,
and H̃n(t) ≥ Ỹn(t) with equality taken at the jumps of
H̃(3)

n ; (ii) Ỹn → Ya,b in C([−K, K]) for any K > 0.

Whenever anti-mode (resp. mode) m0 ∈ R is concerned,
suppose that g0 is locally C2 at m0 with g′′

0 (m0) > 0 (resp.
g′′

0 (m0) < 0), (C1) holds with x0 replaced by m0, and let m̂n ≡
[̂gn]m± . Then the following hold:

1. For any ψi(·) continuously differentiable at g(i)
0 (x0) (i = 0, 1),

⎛⎝n2/5{ψ0
(̂
gn(x0)

)− ψ0
(
g0(x0)

)}
n1/5{ψ1

(̂
g′

n(x0)
)− ψ1

(
g′

0(x0)
)}

n1/5(m̂n − m0
)

⎞⎠
�

⎛⎜⎝±(a4b)1/5ψ ′
0(g0(x0)) · H(2)

2 (0)

±(a2b3)1/5ψ ′
1(g′

0(x0)) · H(3)
2 (0)

(a/b)2/5[H(2)
2,m]m

⎞⎟⎠ . (14)

Here H2,m = H2 if x0 = m0, and H2,m is an independent
copy of H2 if x0 �= m0.

2. Let [̂u(x0), v̂(x0)] be the maximal interval containing x0 on
which ĝn is linear, and let ûm (resp. v̂m) be the first kink
of ĝn to the left (resp. right) of m̂n. Then the pivotal limit
distribution theory holds:

⎛⎝√
n(̂v(x0) − û(x0))

{
ψ0
(̂
gn(x0)

)− ψ0
(
g0(x0)

)}√
n(̂v(x0) − û(x0))3

{
ψ1
(̂
g′

n(x0)
)− ψ1

(
g′

0(x0)
)}(

m̂n − m0
)
/
(̂
vm − ûm

)
⎞⎠

�

⎛⎝±a · ψ ′
0
(
g0(x0)

) · L(0)
2

±a · ψ ′
1
(
g′

0(x0)
) · L(1)

2
M2

⎞⎠ . (15)

Here M2 is independent of L(i)
2 if and only if x0 �= m0. If

x0 = m0, then (L
(0)
2 ,L(1)

2 ,M2) can be realized as a vector-
valued functional of one underlying process H2.
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3. For any consistent estimator ân of a, let the CIs for
ψ0(g0(x0)), ψ1(g′

0(x0)) and m0 be

I(0)
n,∗(c(0)

δ ) ≡
[
ψ0
(̂
gn(x0)

)± ân · ψ ′
0
(̂
gn(x0)

) · c(0)
δ√

n(̂v(x0) − û(x0))

]
,

I(1)
n,∗(c(1)

δ ) ≡
[
ψ1
(̂
g′

n(x0)
)± ân · ψ ′

1
(̂
g′

n(x0)
) · c(1)

δ√
n(̂v(x0) − û(x0))3

]
, (16)

Im
n,∗(cm

δ ) ≡
[

m̂n ± cm
δ

(̂
vm − ûm

)]
, (17)

where the critical values c(i)
δ , cm

δ are chosen to be the corre-
sponding quantiles for the universal random variables L(i)

2 in
Theorem 2.3 and M2 in Theorem 2.8. Then

• (exact asymptotic coverage) Both limn P
(
ψi(g(i)

0 (x0))∈ I(i)
n,∗

(c(i)
δ )
)

for i = 0, 1, and limn P
(
m0 ∈ Im

n,∗(cm
δ )
)

equal 1−δ.
• (oracle length) For any ε > 0, both lim infn P

(|I(i)
n,∗(c(i)

δ )|
< 2c(i)

δ g
(i)
ε · n−(2−i)/5(a4−2ib1+2i)1/5ψ ′

i (g(i)
0 (x0))

)
for i =

0, 1, and lim infn P
(|Im

n,∗(cm
δ )| < 2cm

δ g
m
ε n−1/5(a/b)2/5)

are bounded from below by 1 − ε, where g
(i)
ε (i = 0, 1)

and gm
ε are constants depending only on ε.

The above theorem is essentially an abstraction of the under-
lying proof mechanism used in Theorems 2.3 and 2.8, and its
proof can be found in Appendix D.1. in the Supplementary
Materials. As has been clear from (15), the crux of (1) and (2)
in Theorem 3.1 is to eliminate the nuisance parameter b that is
present in (14). The reason that b is the essential difficulty in
inference for convexity constrained models is due to the nature
of the theory (14) that holds in the regime where the second
derivative is possibly not consistently estimable.

The conditions (C1)–(C2) are abstract and intrinsically tied
to the model structure and the estimator under study. As already
mentioned before Theorem 3.1, one should aim to find a process
Hn such that its second derivative recovers exactly the estimator
ĝn, while being a finite sample version of the limit process
appearing in (14). It is sometimes not possible for one process to
simultaneously satisfy these two requirement, so it is often use-
ful to find two “close enough” processes H̄n, H̃n that serve these
two purposes separately. A common way to identify the pair of
processes (H̃n, Ỹn) is to look at the precise KKT conditions (or
“characterizations” as in, for example, (Groeneboom, Jongbloed,
and Wellner 2001b, Lemma 2.2) for the specific convex function
estimator. This step depends crucially on the model/sampling
structures as well as how convexity enters as a constraint, so will
necessarily be problem specific in nature. Once these processes
are identified, tightness can typically be satisfied by establishing
apriori rates of convergence for ĝn and ĝ′

n (e.g., Groeneboom,
Jongbloed, and Wellner 2001b, Lemma 4.4).

Example 3.2. In the (relatively simple) convex regression model,
the processes (H̃n, Ỹn, H̄n) in Theorem 3.1 can be identified as
(Hloc

n ,Yloc
n , H̃loc

n ) defined in Eq. (C.2) of Appendix C.1 in the
Supplementary Materials, where the slight difference between
Hloc

n and H̃loc
n is due to the discretization of [0, 1] by the design

points Xi = i/n.

Remark 3.3. The choice of the functions ψ0 and ψ1 is geared
toward the inference target. For instance, in the log concave

density estimation model to be studied below, g0 is the log
density, so we will take ψ0 = ψ1 = e(·) when interests lie in
the density and its derivative.

3.2. Log-Concave Density Estimation

Recall the setting in Example 1.2: We observe iid data X1, . . . , Xn
from a log-concave density f0 ≡ exp(ϕ0) where ϕ0 is a proper
concave function on R. Let f̂n = exp(ϕ̂n) be the log-concave
MLE based on X1, . . . , Xn, that is,

ϕ̂n ≡ arg max
ϕ: concave,

∫
R

eϕ=1

∫ ∞

−∞
ϕ(x) dFn(x)

= arg max
ϕ: concave

{∫ ∞

−∞
ϕ(x) dFn(x) −

∫ ∞

−∞
eϕ(x) dx

}
. (18)

Here Fn is the empirical distribution function of the sample
X1, . . . , Xn. It can be shown that ϕ̂n is a piecewise linear concave
function with possible kinks at the data points.

The class of log-concave densities is statistically appealing
due to its several nice closure properties with respect to
marginalization, conditioning and convolution operations
(see e.g., Saumard and Wellner 2014). The estimation of log-
concave densities can be carried out using the method of
maximum likelihood, and has been investigated by many
authors; see Walther (2002), Cule, Samworth, and Stewart
(2010), Cule and Samworth (2010), Dümbgen and Rufibach
(2009), Dümbgen, Samworth, and Schuhmacher (2011), Pal,
Woodroofe, and Meyer (2007), Seregin and Wellner (2010),
Kim and Samworth (2016), Kim, Guntuboyina, and Samworth
(2018), Feng et al. (2021), Doss and Wellner (2016), Barber and
Samworth (2020), and Han (2021), just to name a few. The log-
concave shape constraint also has applications in other settings;
see, for example, Müller and Rufibach (2009), Samworth and
Yuan (2012), Chen and Samworth (2013), and Balabdaoui and
Doss (2018). We refer the reader to Saumard and Wellner (2014)
and Samworth (2018) for comprehensive reviews.

Balabdaoui, Rufibach, and Wellner (2009) established the
pointwise limit distribution theory, as in (14) for ϕ̂n with a =
1/
√

f0(x0), b = −ϕ′′
0 (x0)/4! and then, by the delta method,

the limit distribution theory for the log-concave MLE f̂n can
be established. Now we consider the inference problem. Let
[̂u(x0), v̂(x0)] be the maximal interval containing x0 on which
ϕ̂n is linear, and let ûm (resp. v̂m) be the first kink of ϕ̂n to the
left (resp. right) of m̂n. The CIs for f0(x0), f ′

0(x0) and the mode
m0 are given by

I(i)
n,lc(c(i)

δ ) ≡
[̂

f (i)
n (x0) ±

√̂
fn(x0) · c(i)

δ√
n(̂v(x0) − û(x0))2i+1

]
, i = 0, 1,

(19)

Im
n,lc(cm

δ ) ≡
[

m̂n ± cm
δ

(̂
vm − ûm

)]
, (20)

which are justified by the following theorem.

Theorem 3.4. Suppose f0 is a log-concave density with f0 = eϕ0

for some concave function ϕ0, f0(x0) > 0 and ϕ0 is locally C2

at x0 and m0 with ϕ′′
0 (x0) ∨ ϕ′′

0 (m0) < 0, where m0 ≡ [ϕ0]m−
is the mode of f0. Then the conclusions in Theorem 3.1-(1)(2)
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hold for concave ĝn = ϕ̂n, and the CIs in (19)–(20) satisfy
the conclusions in Theorem 3.1-(3) with ψ0 ≡ e(·), ân =
1/

√̂
fn(x0).

Doss and Wellner (2019) developed a different procedure
for inference of the mode m0 based on the likelihood ratio
test (LRT). More specifically, consider the hypothesis testing
problem:

H0 : [ϕ0]m− = m0 versus H1 : [ϕ0]m− �= m0.

Let f̂n,0 be the mode-constrained log-concave MLE, that is,
f̂n,0 = eϕ̂n,0 , where ϕ̂n,0 is defined by ϕ̂n,0 ≡ arg max

{ ∫∞
−∞ ϕ(x)

dFn(x) − ∫∞
−∞ eϕ(x) dx

}
with the argmax running over all con-

cave functions ϕ with ϕ(m0) ≥ ϕ(x) for all x ∈ R. The LRT
statistic is now defined as

2 log λn(m0) ≡ 2nPn
(

log f̂n − log f̂n,0
) = 2nPn

(
ϕ̂n − ϕ̂n,0

)
,

(21)

where Pn = n−1∑n
i=1 δXi is the empirical measure based on

iid observations X1, . . . , Xn. Doss and Wellner (2019) proved the
following result: Under the same conditions as in Theorem 3.4,

2 log λn(m0) � K, (22)

where K has a universal limiting distribution. A CI for m0 can
then be obtained by inverting the above LRT statistic: Let

I(m),DW
n,lc (dδ) ≡ {m0 : 2 log λn(m0) ≤ dδ}, (23)

where dδ is chosen such that P(K > dδ) = δ. Then
limn Pm0

(
m0 ∈ I(m),DW

n,lc (dδ)
) = P

(
K ≤ dδ

) = 1 − δ. It is easy
to see that the implementation of (23) requires the computation
of many mode-constrained log-concave MLEs, whereas our
proposed CI (20) only requires the computation of the log-
concave MLE once. A detailed numerical comparison between
the Doss-Wellner CI (23) and our proposed CI (20) is conducted
in Appendix B.6 in the Supplementary Materials.

4. Numerical Experiments

4.1. Approximated Limiting Distributions

We report in Table 1 some important quantiles of these
empirical distributions as the approximate corresponding
critical values cδ(T), defined by P{T > cδ(T)} = δ for
T ∈ {L(0)

2 ,L(1)
2 ,M2}.

We give in Table 2 some absolute sample quantiles which
approximate the corresponding critical values cδ(|T|) for T ∈
{L(0)

2 ,L(1)
2 ,M2}. They are used to construct the symmetric CIs

(e.g., in (4) and (9)).
Finally, as we will later compute the lengths of the oracle CIs

(with derivatives of f0 known), we shall simulate the quantiles of
H

(2)
2 (0),H(3)

2 (0) and [H(2)
2 ]m in Theorems 2.1 and 2.8 (10). They

can be conveniently obtained as byproducts when we simulate
the critical values of L

(0)
2 , L(1)

2 and M2; see Table 3 for the
approximate quantiles.

Details of the simulation methods used in the above tables
can be found in Appendix B.1 of the Supplementary Materials.

Table 1. Approximate quantiles of L(0)
2 , L(1)

2 and M2.

δ 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010

cδ
(
L

(0)
2
) −2.60 −2.04 −1.62 −1.19 0.04 1.40 1.82 2.20 2.65

cδ
(
L

(1)
2
) −11.88 −9.03 −6.78 −4.54 0.00 4.55 6.77 8.96 11.87

cδ
(
M2
) −0.83 −0.60 −0.47 −0.35 0.00 0.35 0.47 0.60 0.82

Table 2. Approximate critical values of |L(0)
2 |, |L(1)

2 | and |M2|.
δ 0.50 0.20 0.10 0.05 0.02 0.01

cδ
(|L(0)

2 |) 0.65 1.30 1.73 2.13 2.63 2.98
cδ
(|L(1)

2 |) 1.72 4.55 6.77 9.00 11.87 14.03
cδ
(|M2|) 0.19 0.35 0.47 0.60 0.82 1.06

Table 3. Approximate critical values of |H(2)
2 (0)|, |H(3)

2 (0)| and
∣∣[H(2)

2 ]m
∣∣.

δ 0.50 0.20 0.10 0.05 0.02 0.01

cδ
(|H(2)

2 (0)|) 0.89 1.69 2.16 2.58 3.08 3.43
cδ
(|H(3)

2 (0)|) 4.27 7.77 9.64 11.13 12.71 13.69
cδ
(|[H(2)

2 ]m|) 0.18 0.32 0.40 0.46 0.53 0.57

4.2. Numerical Performance for the CIs in Convex
Regression

We report in this section the numerical performance of the pro-
posed CIs in convex regression; simulation results of a similar
flavor in the log-concave density estimation model is deferred
to Appendix B.3 of the Supplementary Materials. The following
results mainly serve as numerical support of Theorems 2.5 and
2.9, showing that: (i) the corresponding proposed CIs have
asymptotically accurate coverage, and (ii) their lengths adapt to
oracle rates (see Remark 2.6).

Suppose we observe in convex regression data {(Xi, Yi), 0 ≤
i ≤ n} with f0(x) = 20 − 20

√
1 − (x − 0.5)2, Xi = i/n and

ξi
iid∼ N (0, σ 2 = 1). The goal is to construct 95% CIs for the

function value f0(x0), derivative value f ′
0(x0) at x0 = 0.5 and

the anti-mode m0 = x0 = 0.5. The noise level σ 2 > 0 can be
very well estimated by the difference estimators Rice (1984) and
Munk et al. (2005); here we use σ̂ 2 = ∑n−1

i=1 (Yi+1 + Yi−1 −
2Yi)2/(6(n − 1)) whenever variance estimation is needed.

We apply the support reduction algorithm implemented in
the R function conreg from package cobs to compute the
convex LSE and construct the 95% CIs defined in (5) and (9)
with approximate critical values in Table 2. Simulated cover-
age probabilities are reported in Figure 2(a) with 104 repe-
titions. Boxplots of the lengths of these 104 CIs for each of
{f0(x0), f ′

0(x0), m0} are reported in Figures 2(b)–(d), along with
the oracle CI lengths in red dashed lines. By Theorem 2.1 and
(10) in Theorem 2.8, the symmetric oracle CIs are:

[̂
f (i)
n (x0) ±

(f (2)
0 (x0)/24)1/5(n/σ 2)−(2−i)/5cδ(|H(2+i)

2 (0)|)] for f (i)
0 (x0) with

i = 0, 1 and
[
m̂n ± (24/f (2)

0 (m0))
2/5(n/σ 2)−1/5cδ(|[H(2)

2 ]m|)]
for m0.

As in Figure 2(a), all CIs for the local parameters have rather
accurate coverage and the convergence of coverage probabilities
is approximately achieved for sample size as small as n = 100;
most coverage errors deviate from the nominal coverage by less
than 0.01. In terms of length, Figures 2(b)–(d) show that the

https://doi.org/10.1080/01621459.2022.2071721
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Figure 2. Plot of the simulated coverage probabilities and boxplots of the lengths of the proposed CIs for corresponding local parameters in convex regression. Here
f0(x) = 20 − 20

√
1 − (x − 0.5)2, x0 = 0.5 and anti-mode m0 = 0.5. The red dashed lines in boxplots (b)–(d) represent the lengths of the oracle CIs.

lengths of the proposed CIs shrink at the same rate with those
of the oracle CIs. Note that when [̂u(x0), v̂(x0)] is short the
proposed CI for f0(x0), f ′

0(x0) may become quite wide; so we
observe relatively more outliers on the CIs for f0(x0) and f ′

0(x0)
than for m0. A simple solution in practice would be forcing
v̂(x0)− û(x0) to be no smaller than a small value: As the interval
length has asymptotic order n−1/5, we find that replacing v̂(x0)−
û(x0) with max{̂v(x0) − û(x0), n−3/10} removes extreme CIs
significantly and maintain satisfactory coverage probabilities.
See our simulation results in Appendix B.4 of the Supplementary
Materials.

For the performance of the proposed CIs at different design
points, rather than at one single point x0 = 0.5, see Appendix
B.2 of the Supplementary Materials. We observe that, other than
at points near the boundary where the limit distribution theory
is unlikely to hold, the coverage and length behaviors of the
proposed CIs are similar to what we observe in this section for
x0 = 0.5.

4.3. Comparison to CIs with Estimated Second Derivative

While the goal of the article is to propose and study tuning-free
CI construction procedures, it is natural to wonder how they
compare with the CIs constructed with smoothing methods.

Here we consider convex regression. Based on Theorem 2.1, we

may use, for example, a local polynomial estimator ̂f (2)
0 (x0) to

estimate the second derivative f (2)
0 (x0) and construct CIs for

f0(x0) and f ′
0(x0) as

I(i)
n,locpoly ≡

[̂
f (i)
n (x0) ± cδ,i

( ̂f (2)
0 (x0)/4!)(2i+1)/5/(n/σ̂ 2)(2−i)/5

]
,

i = 0, 1, (24)

where cδ,0 (resp. cδ,1) is the (1 − δ)-quantile of
∣∣H(2)

α (0)
∣∣ (resp.∣∣H(3)

α (0)
∣∣). We let f0(x) = e2x and continue to use the simulation

setting from Section 4.2. Note that we make this choice of
a smooth and highly regular f0 in favor of estimation of its

second derivative. To compute ̂f (2)
0 (x0), we use the R func-

tion locpoly from package KernSmooth. For bandwidth
selection, we consider a fixed bandwidth 0.1 and a data-driven
bandwidth selector, proposed by Ruppert, Sheather, and Wand
(1995) and implemented as function dpill in the same pack-
age. The simulated coverage probabilities of the proposed CIs at
x0 = 0.5, referred to as LNE CIs, and the CIs with estimated
second derivative, referred to as locpoly CIs, bw=0.1 for fixed
bandwidth 0.1 and locpoly CIs, auto for bandwidth determined
by the selector dpill, are all given in Figure 3. The boxplots of
the CI lengths are reported in Figure 4.

https://doi.org/10.1080/01621459.2022.2071721
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Figure 3. Simulated coverage probabilities of the proposed 95% CIs (LNE CI) and the 95% CIs with estimated second derivative (locpoly CI) for corresponding parameters
in convex regression. Here f0(x) = 20 − 20

√
1 − (x − 0.5)2 and x0 = 0.5.

Figure 4. Boxplots of the lengths of the LNE and locpoly CIs for corresponding parameters in convex regression with f0(x) = e2x . Here “auto” means the bandwidth is
chosen by the selector “dpill” (proposed by Ruppert, Sheather, and Wand 1995) and “bw=0.1” means the bandwidth is a constant 0.1 for all n. Red dashed lines represent
the lengths of oracle CIs.

From these simulation results, it seems that the proposed
LNE CIs produce the most stable coverage for all considered
sample sizes. The bandwidth selector by Ruppert, Sheather,
and Wand (1995) introduces a severe under-coverage and the
resulting CIs seem not reliable enough for practical use for even
large sample size n, say, n = 10,000. The locpoly CIs with
fixed bandwidth 0.1 produce comparable coverage when sample
size n ≥ 2000 for function value, while they are less stable
than the LNE CIs for derivative estimation. As such, even in
settings where estimation of second derivatives is deemed easy,
these simulation results still clearly show the advantage of our
proposed LNE CIs in terms of stable coverage for all considered
sample sizes while enjoying similar lengths, compared to either
fixed and data-driven bandwidth selection methods.

5. Real Data Analysis

5.1. Mean Weekly Wage Inference

We apply the proposed inference procedures to facilitate under-
standing of the relationship between mean weekly wage and
years of potential work experience based on the 1988 March
Current Population Survey data. The dataset can be accessed
as ex1029 in R package Sleuth2 and was first studied in
Bierens and Ginther (2001) for different purposes. After clean-

ing, the dataset contains a sample of 25,437 men aged 18–70 with
positive annual income greater than $50 in 1992 after deflated by
the deflator of Personal Consumption Expenditure for 1992.

We consider the relationship between mean weekly wage and
years of experience. Let Ni be the number of males with xi years
of experience and yi,j with 1 ≤ j ≤ Ni the weekly wage of the jth
male with xi years of experience. Our model for the mean weekly
wage and years of experience is yi,j = f (xi) + εi,j, where xi ∈
{0, 1, . . . , 63}\{59, 62}. We assume εi,j has the same variance for
fixed i and f (·) is concave. The concavity constraint for f (·) is in
line with our common sense: Years of experience is particularly
important in early career but has decreasing positive impact
until weekly wage hits the highest level; after that, the earning
will decline as years of experience increases.

To fit into the standard nonparametric regression model as
in (1), we let yi = Ave(yi,j, 1 ≤ j ≤ Ni) be the averaged weekly
wage for xi years of experience, so it follows that yi = f (xi) + ξi
where error ξi = Ave(εi,j, 1 ≤ j ≤ Ni) can vary for different i.
In Figure 5, we plot the mean weekly wage data against years
of experience and the fitted concave LSE, which clearly fits
the data very well. General inference for heteroscedastic errors
is discussed in Section 2.4. Essentially, inference procedures
will not change as long as we have a good estimate for local
variance. Here we have {εi,j, ∀j} to estimate the noise level of
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Figure 5. Plots of the real data and their concave LSEs.

ξi, that is, we use the variance estimator σ̂ 2
i = 1

Ni−1
∑Ni

j=1(yi,j −
1

Ni

∑Ni
j=1 yi,j)2/Ni.

We first carry out point inference at x = 8, that is, we are
interested in 95% CIs for the mean weekly wage and its growth
rate for people with eight years of experience. The concave
LSE for mean weekly wage and its growth rate are $554.00 and
$22.15/year. Following the proposed procedures in (4), we can
easily calculate the 95% CI for mean weekly wage as [$542.70,
$565.32] and its growth rate as [$12.74/year, $31.56/year]. An
interesting comparison can be made by also looking at the
classical CI from t-test using sample {yi,j, 1 ≤ j ≤ Ni and xi =
8}, which is [$511.97, $558.60]. It is obvious that the convexity
constraint helps us construct a much shorter CI, reducing the
length by more than 50%, from $46.62 to $22.63.

Finally, we want to have a interval of high confidence (95%)
for the number of years of experience to reach the highest
mean weekly wage, which translates to a 95% CI for the
mode/maximizer of the function f (·). A very simple calculation
based on (9) will give us the 95% CI as [27.8 years, 30.2 years].

5.2. Labor Demand Inference

We apply the inference procedures to conduct labor demand
inference using a dataset that contains information for 569
Belgian firms in 1996 on the total number of employees (labor)
and a measure of output (value added in million euro). Here
we intend to understand the relationship between output and
the number of employees and thus the labor demand. We adopt
the convention of taking the logarithm of output and assume
y : log(output) = f (x : number of employees) satisfies a
concavity constraint. It is a well-acknowledged assumption in
practice as the extra value added to the company by hiring more
employees will generally decrease as the company grows. See
Figure 5(b) for the plot of the data and the fitted concave LSE.1
To derive a CI for the log(output) and its growth rate at labor size
200, we estimate the local variance using difference estimator
(12) and apply the procedure in (4). We obtain the 95% CI for
log(output) as [2.21, 2.44] and the 95% CI for the growth rate as
[0, 0.01].

1There were some ties in the covariate values; we added noise to break the
ties.

6. Conclusion

In this article, we developed the first fully automated inference
method for local parameters in the univariate convex regression
model, based on the widely used tuning-free convex LSE. The
key idea in our inference proposal is to make effective use of the
length of certain data-driven linear piece in the convex LSE, to
obtain a pivotal limiting distribution for the “locally normalized
errors” (LNEs) that cancels out the otherwise difficult-to-
estimate second derivative (impossible to estimate by the convex
LSE directly). This inference method in convex regression using
the convex LSE extends to other convexity constrained models,
in which a natural tuning-free estimator exhibits a nonstandard
limit distribution. Notably, inference for local parameters
in the popular log-concave density estimation model can
be carried out immediately using the standard log-concave
MLE.

Finally we mention some open problems related to the topic
of this article: (i) In the regression setting with a random design,
it is would be interesting to extend our results to allow for the
case that E[ξi|Xi] = 0 and E[ξ 2

i |Xi] = σ 2(Xi); (ii) it would be
interesting to develop fully automated inference method for the
maximum/minimum of a concave/convex function in addition
to its location considered in this article; (iii) the construction
of global confidence regions/bands for the unknown convex
regression functions/log-concave density, etc. is still open(we
conjecture that an L∞-aggregated version of Theorems 2.3/3.4
may lead to a tuning-free construction of confidence bands);
(iv) developing tuning-free inference methods in multivariate
convexity constrained models is another interesting problem.
At this point, a limit distribution theory for convex function
estimators in any of these models in multiple dimensions is still
lacking.

Supplementary Materials

The supplementary material, which is available online, contains proofs of
our main results and additional simulation results.
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