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Le Cam’s third/contiguity lemma is a fundamental probabilistic tool
to compute the limiting distribution of a given statistic 7, under a non-
null sequence of probability measures {Q}, provided its limiting distribu-
tion under a null sequence {P;} is available, and the log likelihood ratio
{log(dQy/dPy)} has a distributional limit. Despite its wide-spread applica-
tions to low-dimensional statistical problems, the stringent requirement of Le
Cam’s third/contiguity lemma on the distributional limit of the log likelihood
ratio makes it challenging, or even impossible to use in many modern high-
dimensional statistical problems.

This paper provides a nonasymptotic analogue of Le Cam’s third/
contiguity lemma under high-dimensional normal populations. Our conti-
guity method is particularly compatible with sufficiently regular statistics 7j,:
the regularity of 7, effectively reduces both the problems of (i) obtaining a
null (Gaussian) limit distribution and of (ii) verifying our new quantitative
contiguity condition, to those of derivative calculations and moment bound-
ing exercises. More important, our method bypasses the need to understand
the precise behavior of the log likelihood ratio, and therefore possibly works
even when it necessarily fails to stabilize—a regime beyond the reach of
classical contiguity methods.

As a demonstration of the scope of our new contiguity method, we ob-
tain asymptotically exact power formulae for a number of widely used high-
dimensional covariance tests, including the likelihood ratio tests and trace
tests, that hold uniformly over all possible alternative covariance under mild
growth conditions on the dimension-to-sample ratio. These new results go
much beyond the scope of previous available case-specific techniques, and
exhibit new phenomenon regarding the behavior of these important class of
covariance tests.
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1. Introduction.

1.1. Le Cam’s third/contiguity lemma: A review. For each n € N, let (2, B,) be a mea-
surable space, on which a real-valued random variable 7;,, and a pair of probability measures
(P,, Qn) are defined. Here n is a generic index for asymptotics, which is usually related to
“sample size” in statistics literature. Le Cam’s third/contiguity lemma [21], which is essen-
tially an asymptotic change of variable formula, computes the limiting law of {7} under the
laws of {Q,}, provided that its limiting law under the laws of {P,} can be computed, and
the distributions of the log-likelihood ratio {log(dQ,/dP,)} under the laws of {P,} can be
precisely evaluated. The most common form of Le Cam’s third/contiguity lemma states the
following: Suppose that {7},} is asymptotically normal under the laws of { P,}, that is,

T _
(1.1) TP B Ar(0, 1)
op,

for some {mp, € R} and {op, > 0}. Here and below we use ~+ to denote weak convergence.
Then the limiting law of the normalized random variable {(7,, —m p,)/op,} under the laws of
{0} can be computed as

T _
(1.2) I T E QN (e, 1),

op

n



4274 Q. HAN, T. JIANG AND Y. SHEN

provided that op, — op for some op > 0 and Le Cam’s contiguity condition

Ty —mp, Py 0 o top
(- <10g(dQn/dPn)> “N ((—02/2> ’ (f(fp o2 ))

holds for some o2 > 0. The condition that op, — op can typically be ensured by rescaling
T, appropriately, so the real nontrivial condition is the asymptotic distributional expansions
of the statistic 7,, and the log likelihood ratio in (1.3). We refer the reader to [30], Chapter 6,
for an in-depth treatment of Le Cam’s contiguity theory.

Le Cam’s third/contiguity lemma, as stated above, has played a fundamental role in several
major developments of estimation and testing theory in mathematical statistics. For instance,
convolution and asymptotic minimax theorems for parametric models, which quantify the
fundamental information theoretic limits of any regular statistical estimators, are proved with
an essential use of Le Cam’s third/contiguity lemma. In testing theory, Le Cam’s third lemma
also facilitates the computation of exact “power function” (to be defined ahead) of any statis-
tical tests. See, for example, [30], Chapters 7, 8, 15, for a textbook treatment on these by-now
classical topics.

From (1.1)—(1.3), it is clear that a successful application of Le Cam’s third/contiguity
lemma relies heavily on two crucial ingredients: (A) a central limit theorem (CLT) for {7}
under the laws of {P,} in (1.1), and (B) an easy-to-handle log likelihood ratio log(dQ, /d P,,).
This is indeed fairly straightforward in classical models. For instance, a standard application
is the study of maximum likelihood estimator (MLE) in parametric statistical models: Let

X1,..., X, be ii.d. real-valued random variables from a probability distribution Py, in a
paramelric glass P ={Py:0 O CR}, where O is an open set in R, and T,, = /n (0 — )
where 6 =0(X1, ..., X,,) is the MLE for 6y within P. We wish to compute the limiting law

of {T,} under the local laws { Pyoth / ﬁ} for a fixed h € R. To apply Le Cam’s third lemma,
we take {P, = Py} and {Q,, = Pyoth / ﬁ}. Now part A can be easily tackled—it is classical
knowledge that when P is “smooth enough”, then a CLT for {7},} holds with mp, =0 and
op, = (190)_1/ 2 where Iy, is the Fisher information of P at 6. Part B can also be handled
easily, for instance, a direct Taylor expansion of the log likelihood for sufficiently smooth P!
concludes, after some calculations, that T = hI@1 /2 The limiting law of {T,, = ﬁ(§ — 6y}
under {Qn = Py 4/ /n} DOW follows immediately from (1.2).

Although applied in a wide range of contexts with great success in classical low-
dimensional statistical problems, Le Cam’s third/contiguity lemma faces a key challenge
in its stringent requirement for the exact distributional behavior of the log likelihood
{log(dQ, /dP,)} under {P,,} as in (1.3). In many modern high-dimensional statistical applica-
tions, the distributional expansion of the log likelihood can sometimes be extremely difficult,
or even impossible to handle. One leading example is given by high-dimensional normal
populations with spiked covariance, that is, P, = (resp. Q,) law of n i.i.d. observations of p-
dimensional Gaussian vectors with covariance I,, (resp. I, + A ), where A, = >")_; hgvev,
is a (fixed) rank r perturbation matrix with 4, > 0 and |v¢|| =1 for all 1 < £ <r. The log
likelihood {log(dQ, /d P,)} can be computed both over the original data and over the maximal
invariant (i.e., the eigenvalues of the sample covariance):

e For the log likelihood over the original data, fairly straightforward calculations show that,
already in the simplest possible rank one case r = 1, {log(dQ,/dP,)} can stochastically
stabilize under {P,} only if h; = Om=12), a regime of almost no practical relevance in
high-dimensional settings, say, lim(p/n) =y € (0, 00).

I'The celebrated local asymptotic normality (LAN) (cf. [21]) condition can also be used for this purpose to
weaken smoothness requirements.
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e For the log likelihood over the maximal invariant, [25, 26] showed that a distributional
limit of {log(dQ, /dP,)} exists in the subcritical regime below the Baik—Ben Arous—Péché
(BBP) phase transition [3] maxj<¢<, h¢ < ,/y, where y =lim(p/n). The hard threshold
/Y is necessary as the weak limit does not exist when maxj<¢<, h¢ > |/y.

Consequently, even for the fixed-rank spiked covariance alternatives, Le Cam’s contiguity
condition (1.3) already fails to obtain nonnull distributions of the type (1.2) except for a
highly restrictive set of alternatives. Fundamentally, such restrictions arise as it is more than
necessary and in fact far too strong to require a weak limit, or even only stochastic stabiliza-
tion of the log likelihood ratio as in (1.3), for the purpose of computing nonnull distributions
for a given statistics, in particular in high-dimensional settings.

1.2. An analogue to Le Cam’s third/contiguity lemma under high-dimensional Gaussian-
ity. In this paper, we establish a nonasymptotic analogue of Le Cam’s third/contiguity
lemma in the form of (1.1)-(1.2), without the requirement for an exact distributional eval-
uation or even stochastic stabilization of the limiting log likelihood ratio as in (1.3), in the
setting where T}, is a sufficient “regular” function of » i.i.d. observations of a p-dimensional
normal distribution.

Formally, let Xy,..., X, be ii.d. samples from a p-dimensional normal distribution
Np(pc, %), where (u, ¥) € R? x M, with M, denoting the set of all p x p covariance
matrices. Let X = [X1,..., X,]T € R"*P be the data matrix. We will be concerned with

the statistic 7, = T(X) for some T : R"*? — R living in the Sobolev space Wl’z(ynxp),
where y,x is the standard Gaussian measure on R"*? (precise definitions can be found in
Section 1.6). Let (throughout the paper we use the symbol = for definition)

(1.4) mus)=EusTX), o, 5 = Varg s (T(X))

be the mean and variance of 7'(X) under NV, (i, X), respectively. We always assume that the
two quantities in (1.4) are finite. In a similar spirit, we use the subscript (1, £) in E(,, x) and
other probabilistic notation to indicate that the evaluation is under measure N, p(, ).

To motivate the formulation of our results, let us take a pause to see how one may interpret
Le Cam’s formulation (1.1)—(1.2) without going through explicitly the quantities appearing
in the contiguity condition (1.3). The key observation is that, under mild additional inte-
grability, the asymptotics in (1.1) and (1.2) necessarily entail that Ep (7,, —mp,)/op, ~0
and Eg, (T, —mp,)/op, =~ . This gives Tt ~ (Ep,T,, — Ep,T,)/0op,, and therefore we may
interpret (1.1)—(1.2) as

T, — d
(1.5) B SN, 1) under P,
op,
T, — d Eo T, —EpT,
(1.6) =) ﬂg]\/‘(M’l) under Q.
op op

n n

Compared to (1.1)—(1.2), the above formulation does not involve parameters appearing in
(1.3). Our first main result of this paper establishes an analogue of this formulation (1.5)—
(1.6) for T,, = T (X): Under mild regularity conditions on 7, for any pair (o, Xg), (1, X) €
RP x M,

T(X) —muy,5) 4

(1.7) ~N(0,1) under (1o, o)
O(10,%0)
T(X)— d —
ay 9 TR0 L (D N0 ) unger 1, 5),
O (110, %) O (110, %0)
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whereas our contiguity condition (xx) reads

(1.9) Vi, 2): (1. 0)

T 5 = — 0.
(1, 2); (1m0, Z0) maX{|m(M,E)_m(MO»EO)l’U(“O’EO)}

See Theorem 2.1 for a formal statement. The “variance” parameter V(, x):(uo,5,), formally
defined in (2.1) ahead, characterizes the order of stochastic dispersion of 7 (X) under (i, %)
compared to that under (w1, 20). Compared to Le Cam’s contiguity condition (1.3) that re-
quires an exact and strict distributional limit for the log likelihood ratio, (1.9) typically holds
in a far broader regime than the prescribed regime in which a distributional limit of the log
likelihood ratio exists. For example, in the special case of fixed-rank spiked covariance al-
ternatives, (1.9) already holds for all possible i, > 0 with all the covariance test statistics
studied in this paper, as opposed to the highly restrictive regime imposed by the existence of
the weak limit of the log likelihood ratio. In fact, a striking advantage of (1.9) in all the stud-
ied examples is its uniform validity over all possible covariance matrices without the need of
specifying any particular structure (e.g., spiked alternatives).

In addition, for sufficiently regular 7, = T(X) with T(X) € W'2(y,« p), verification of
the contiguity condition (1.9) also has major operational advantages compared to the original
Le Cam’s contiguity condition (1.3). In particular, upper and lower bounds for the stochastic
dispersion V(.. 5): (4o, %0)» the mean difference |m,, =) —m ., 5,)| and the null standard devi-
ation oy, 5, can usually be reduced to derivative calculations and their moment bounds via
efficient applications of Poincaré inequalities (or other Fourier techniques in classical Gaus-
sian analysis). If a bit further regularity persists in 7}, in that 7 (X) € W“(ynx »), which s the
case for all examples considered in this paper, then a null CLT (1.7) can also be reduced to the
same derivative calculations and moment bounding exercises, via the renowned second-order
Poincaré inequality [8]. In essence, when the given statistic 7;, possesses sufficient regularity,
our contiguity method (1.7)—(1.8) can be used to derive its nonnull distributions in a rather
“mechanical” way by evaluating derivatives and their moment (upper and lower) bounds.

It should be mentioned that while our approach (1.7)—(1.8) here appears to be particularly
effective with the sufficient regularity of 7, that naturally postulates a null CLT, it seems less
useful when such regularity fails and a different limit occurs under the null; see Remark 2.3
for some technical discussions. Whether a general, effective contiguity approach as (1.7)—
(1.8) exists in the “low regularity” regime of 7;, remains an interesting open question.

1.3. Power formula of tests with high-dimensional normal population. Similar to the
wide applicability of Le Cam’s third/contiguity lemma in (1.1)—(1.2) in classical statistical
testing problems, our contiguity result in (1.7)—(1.8) can be applied to many modern high-
dimensional statistical problems. Here is a general formulation of the testing problem with
normal populations:

(1.10) Hy:(u,X) ey versus Hj: Hydoes nothold,

where J7) is a subset of R? x M.

Let T (X) be a generic test statistic whose distribution is invariant under Hy, that is, the law
of T (X) remains the same for any (i, ) € 75 in (1.10). Due to the distributional invariance
of T(X), its mean and variance under the null

_ 2 _ 2
(1.11) M Hy = M (1o, o) s 9Hy = 9 (10.%0)

are well-defined for any specification of (i, Xo) € 749. Suppose further that 7 (X) verifies
the CLT in (1.7); this indeed holds in all examples considered in this paper due to their
sufficient regularity, and is also anticipated as many covariance tests statistics depend on
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“sufficient average” of eigenvalues of the sample covariance matrix. Then an asymptotically
exact test can be constructed immediately: for any prescribed « € (0, 1),

T(X)_mHo >z )
o2 B

(1.12) \D(X)E\D(X;mHO,GHO)El< -
0

where z, is the normal quantile such that P(N(0, 1) > z4) = «. Here, following the conven-
tion in statistics literature, W (X) = 1 (resp. ¥ (X) = 0) indicates rejection (resp. acceptance)
of the null hypothesis Hy when X is observed. The quantities m g, and 0210 are usually known
in closed forms, at least asymptotically. Even not amenable to exact expression, these quan-
tities can be simulated easily as well.

The quality of the test W(X) is measured by the power function, defined for each (u, X)
as

Power of W(X) at (1, £) =P, ) (¥ (X) rejects the null Hy) =E,, 5)¥(X).

Applying our contiguity method (1.7)—(1.8), we get the following power formula for the test
W (X) associated with the test statistic 7 (X): Under the assumed CLT condition (1.7) and (a
slight variation of) the contiguity condition (1.9),

(1.13) E(M,E)w(xwl—cl><za—w).

OH,
Interestingly, the contiguity condition (1.9) is usually verified both for the case where (i, )
is away from null set %) in which the mean difference |m, x) — m,,, 5, | dominates the
stochastic dispersion V(, 5):(u0,5,)» and for the case where (i, X) is very close to the null
in which the null standard deviation o, 5,y dominates V(, 5):(u,.%,)- As such, the power
formula (1.13) can usually be strengthened uniformly over all (i, ¥) € R? x M,,.

1.4. Two concrete applications of (1.13). We give two concrete applications of (1.13) in
the context of covariance testing, as a demonstration of the power of our contiguity result
(1.7)—(1.8).

The first application of (1.13) is the test for identity ¥ = /. In the growing p setting,
this problem has been extensively studied in the literature; see,, for example, [1, 7, 10,
11, 14, 17, 22, 29, 32]. Among the tests studied in the above works, we apply our gen-
eral theory (1.13) to the following two tests: likelihood ratio test (LRT) (see Section 3.1.1)
and Ledoit—Nagao—Wolf’s test [22, 24] (see Section 3.1.2). As an example, the LRT, denoted
by WiRrT(X), is shown to admit the following asymptotic power formula (see Theorem 3.3):
under min{n, p} — oo with lim(p/n) < 1,

- Ls(Z, 1) >
C 2 —tee( = )

Here a ~ b stands for a/b — 1 under the prescribed asymptotics, and Lg(-, -) is the matrix
Stein loss to be defined in (3.5) ahead.

To give a flavor of how (1.14) follows from (1.13), recall that the key step in applying
(1.13) is to establish that the contiguity condition err, x) — 0 in (1.9) (or the current vari-
ation defined in (2.6) ahead). In the LRT setting, a much stronger estimate can be proved in
that &, ) < Cp~!/3 holds for some absolute constant C > 0. This key estimate follows
from a series of algebraic manipulations, upon calculating that V(i,):) =mn-DIT —1I|3%,

(1.14) Eu,s)WLrRT(X) ~ 1 — CD(Z

m,xy —mp, =[(n—1)/2]1Ls(X, I), and cr%]o > cp2 for some absolute constant ¢ > 0. See
Proposition 3.2 and its proof for more details.

The second application is the sphericity test ¥ = Al for some unspecified A > 0. In the
growing p setting, this problem has previously been studied in [11, 14, 16, 17, 22, 29]. We
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study in this paper the following two widely used tests: LRT for sphericity (Section 3.2.1),
John’s test [18] (Section 3.2.2), both invariant under Hyp. Similar to the previous case, our re-
sults on the power behavior of these tests do not pose any assumption on the alternative X. As
an example, the LRT for sphericity, denoted by Wi rT s(X), is shown to admit the following
asymptotic power formula (see Theorem 3.9): under min{n, p} — oo with lim(p/n) < 1,

_ 1
(1.15) E .5 WLRT.s (X) ~ 1 — q><za _ —logdet(x - b~'(%)) )
\/2(—% —log(1 — £7))

Here det(-) is the matrix determinant and b(X) = tr(X)/p with tr(-) denoting the trace. To
the best of our knowledge, the above power formula for the LRT in the sphericity is new in
the literature.

The common feature of the power formulae obtained in this paper is that they require
no assumptions on the alternative ¥ and only mild conditions on the growth of (n, p), which
goes much beyond the realm of previous available techniques. Roughly speaking, these avail-
able techniques either (i) directly establish a CLT under the alternative that crucially exploits
the exact form of the test (cf. [7, 10, 15, 31]) and usually requires additional restrictions on
the growth of (n, p) and the alternative covariance, or (ii) resort to the classical Le Cam’s
third/contiguity lemma in (1.1)—(1.2) (cf. [25, 26]) which, as mentioned above, necessarily
fails in a broad regime of alternative covariance for which the log likelihood ratio cannot
stabilize.

It is also worth mentioning that the precise power formulae we obtain for the aforemen-
tioned tests also have interesting implications compared to previous results in the literature
that target at spiked covariance alternatives [25, 26, 31]. In particular, as will be clear in Sec-
tion 3.3, although [25, 26, 31] showed that some of the aforementioned tests have asymptoti-
cally equivalent power behavior under the spiked covariance alternative with a fixed number
of spikes, our new power characterizations indicate that such equivalence in general fails
when many spikes exist.

An interesting question untouched in this paper concerns what the information-theoretic
optimal power curve for (1.10) looks like, and whether the power formulae (1.14)—(1.15) (or
power formulae for other tests) achieve such curves. In general, a successful study of this
optimality problem requires two necessary elements: (i) an identification of the limits of the
statistical experiments, and (ii) the solvability of the optimality problem in the identified lim-
iting experiments. In classical low-dimensional statistical models (cf. [30]), (i) is achieved by
the LAN property of the log likelihood ratio in these models with the help of the classical Le
Cam’s contiguity/third lemma (1.1)—(1.2), and (ii) is a consequence of the classical decision-
theoretic optimality properties of the limiting Gaussian location shift model. In the context
of covariance testing, significant progress has been made in [25, 26], in which the “limit-
ing Gaussian experiment” is obtained for fixed-rank covariance alternatives. However, as the
limiting experiment is not of the LAN type and its optimality properties remain unclear, the
information-theoretic optimal power curve remains unknown. While we believe our contigu-
ity method (1.7)—(1.8) is highly relevant to the optimality problem, achieving fully this goal
is far beyond the content and scope of the current paper, and will therefore be deferred to a
future study elsewhere.

1.5. Organization. The rest of the paper is organized as follows. We formalize our conti-
guity results (1.7)—(1.8) in Section 2. Section 3 is devoted to the application of our contiguity
result to the problem of high-dimensional covariance testing. Some key spectral estimates
that will be used in the proofs for the results in Section 3 are presented in Section 4 and may
be of independent interest. Sections 5—6 contain the main proofs of results in Sections 3.1
and 3.2, with the rest of technical/auxiliary details deferred to the appendices [12].
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1.6. Notation. For any positive integer n, let [n] denote the set {1,...,n}. Fora,b e R,
a Vv b=max{a,b} and a A b =min{a,b}. Fora e R, leta; =a Vv 0 and a_ = (—a) V0.
For x e R", let ||x]|, = ||x||gp(Rn) denote its p-norm (0 < p < o0o) with ||x||» abbreviated as
llx]|. Let B, (r; x) = {z € R” : ||z — x|| <r} be the unit £, ball in R”. By 1, we denote the
vector of all ones in R”. For a matrix M € R"*", let ||[M||op and || M ||r denote the spectral
and Frobenius norms of M respectively. We use {e;} to denote the canonical basis, whose
dimension should be self-clear from the context.

We use C; to denote a generic constant that depends only on x, whose numeric value
may change from line to line unless otherwise specified. Notation a <, b and a =, b mean
a < Cyb and a > C,b respectively, and a =<, b means a <, b and a 2, b. The symbol
a < b means a < Cb for some absolute constant C. For two nonnegative sequences {a,}
and {b,}, we write a, < b, (respectively a, > b,) if lim,_~(an/b,) = 0 (respectively
lim,, s 5o (a;, /by) = 00). We write a,, ~ b, if lim,_, o (a,/b,) = 1. We follow the convention
that 0/0 = 0.

Let ¢, ® be the density and the cumulative distribution function of a standard normal
random variable. For any « € (0, 1), let z, be the normal quantile defined by P(N (0, 1) >
Za) = o. For two random variables X, Y on R, we use dtv(X, Y) and dko (X, Y) to denote
their total variation distance and Kolmogorov distance defined respectively by

k)

drv(X,Y)= sup |P(X € B)—P(Y € B)
BeB(R)

(1.16)
dgol(X,Y) =sup|P(X <r) —P(Y <1)|.
teR

Here B(RR) denotes the Borel o -algebra of R.

Let y4 be the standard Gaussian measure on R¢, and for r, p > 1 let W"P(y4) be the
completion of C{° (R?), the space of smooth and compactly supported functions in R¢, with
respect to the norm

1/p
(1.17) 1 fllp = [ )3 f!a“f(x>|f’yd(dx)] .
loe|<r

In other words, W"?(y,) is the Sobolev space with respect to the Gaussian measure y;.
2. Contiguity under high-dimensional Gaussianity.

2.1. The formal description of (1.7)-(1.8). Let T : R"*? — R be a measurable map. For
any (i, ) € R? x M, let 7, 5) : R"™*P — R"*? be defined by

Fum)@ =VT(EEP 4 L, )E2, 2 e R,

Here 1, is the n-vector of all ones, and VT : R"*P — R"*? is the map with (VT (z));; =
0T (z)/0z;j. Let Zy, ..., Z, be i.i.d. random variables with a standard p-variate normal dis-
tribution A/(0, /). For any (i, £) € R” x M, define the quantity

2 _ 2
2.0 Vi) (o, 20) = E| .2)(2) = o z0) (2 |-

Now we are in a position to give a formal description of our contiguity result (1.7)—(1.8)
under the condition (1.9). Recall the quantities m,, x), m g, O'(ZM’E), o%,o defined in (1.4) and
(1.11) and that y,x , denotes the standard Gaussian measure in R"*7.
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THEOREM 2.1. Suppose that T : R"*P — R is an element of Wl’z(ynxp). Then for any
pair (/’LOa 20)7 (/’Lv E) S R? x Mp andt € R,

T(X)— —
'Pw,z)( (X) m(uo,zo)>t>_P<N<m<u,2> m(uo,zo>’1)>t>‘

O(10,%0) O (10,%0)

— 2/3
< ettg, xg) + C - (L4 1) (e, 220, 20)) -
Here C > 0 is a universal constant, €T, x); (uo,5,) IS defined in (1.9), and

T(X)—
(X) — muy, 50 N, 1)) under (o, Zo)
O (1o, %0)

is the normal approximation errvor of T (X) under (ug, X¢) in Kolmogorov distance as defined

in (1.16).

(2.2) €IT (119, %0) = dKol (

At this point, Theorem 2.1 does not yet exactly guarantee the closeness of the distribution
of the random variable (T (X) —m u,,5))/ (1o, 5o) t0 @ standard normal shifted by (m(,, 5y —
(10, %0))/ O (100, 50) Under (1, X), as t € R in the above theorem cannot be chosen arbitrarily
large to yield an informative bound. This is however not a deficiency of our formulation in
(1.7)—(1.8). In fact, the range of admissible € R depends on the magnitude of the mean shift
parameter (M, x) — MU, %0)) /O (uo, Zo) - A shown in the following corollary, when the mean
shift parameter (m (., 5) — (o, %0))/ O (1o, =) 18 bounded, the conclusion of Theorem 2.1 can
indeed be strengthened to be uniform in ¢ € R. This is in similar spirit to the classical Le
Cam’s formulation (1.1)—(1.2), in which the mean shift parameter T € R is treated as a fixed,
finite real number in the asymptotics.

COROLLARY 2.2. Consider the same setting as in Theorem 2.1. Suppose further that

2.3) M (u.5) = Mg, 50)| <K
O (110, %)
for some K > 0. Then there exists some constant Cg > 0,

T(X)— -
IP’<,,,,2>( (X) m(uo,zo>>t>_P(N<mw,2> m(lto,Eo)’l)>t)‘

O (110, %0) O(10,%0)

sup
teR

__4/9
< erT(uy,50) + Ck T, 5. (0. 30)-

There is no a priori reason to believe that the exponent 4/9 is optimal, but this will
have no impact on the qualitative distributional approximation under the contiguity condi-
tion &rr(., ); (g, £o) = 0-

REMARK 2.3. It is possible to formulate a version of Theorem 2.1 without assuming
the regularity/integrability 7 (X) € W2 (y,x p) and a null CLT as follows. Suppose that se-
quences of {m, )}, {m g, 20} C R, {0(up,50)} C R0 are chosen such that the following
hold:

e (Null distribution) There exists some random variable Y such that (7(X) — m ., x,))/
O (10, %) ~ Y holds under the sequence of {(10, o)}

o (Finite mean shift) (m ., x) — M (19,%0)) /O (uo,50) — T for some 7 € R.

e (Generalized contiguity) With X w2 =zel2 4 1,u’,

(T (X By —m, 5)) — (T(XEED) —m,0s0)l

(2.4)
M (0, 2) — M(ug, 20) | V 0o, 20)

=op(l).
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Then
T(X) = m g, 5)
Oo,Zo
The proof of this result is simpler than that of Theorem 2.1 so we omit the details.

While the above result may be of some interest at an abstract level, currently we are not
aware of a concrete example in which the above result leads to genuine reductions in the
problem complexity beyond the scope of Theorem 2.1. A leading test case here is to take
T (X) = A1(S) as the top eigenvalue of the sample covariance S defined in (3.2) below, un-
der the rank-one spiked alternative ¥ = I + hvv', |v|| = 1. Then in the subcritical regime
h € (0, \/c) where ¢ =lim p/n, it is not hard to see that verification of the generalized con-
tiguity condition (2.4) is equivalent to proving a (Type I) Tracy—Widom limit for A; under
the prescribed alternative. It remains an interesting open question, as to whether a general
contiguity method without assuming 7' (X) € Wl’z()/n>< p) and a null CLT can be formulated
that leads a genuine reduction in deriving, say, at least the Tracy—Widom limit of A; under
the rank-one alternative in the prescribed subcritical regime.

~»Y + 1t under the sequence of {(u, X)}.

2.2. Power formula for tests with high-dimensional normal population. Consider the
general testing problem (1.10). Recall that 7' (X) is a generic test statistic whose distribu-
tion remains invariant under Hp, and the generic test W(X) defined in (1.12). To formalize
the power formula in (1.13), we need a slight variation of the quantity V(. x):(u,,5, for
nonsingleton 7). Let

2.5 V2 .= inf E|J, (2 - A
(2.5) (ws) =, inf | Z40.2)(Z) = Tuo. 200 (D) |0

Now we formalize (1.13) which is an immediate consequence of Theorem 2.1.

COROLLARY 2.4. Suppose that T : R"*P — R is an element ole’z(ynXp) and the law
of T (X) is invariant under Hy. For any o € (0, 1), there exists some Cy > 0 such that

_ 2/3
M(u,x) — MH, |{7%>)
E Z‘P(X)—[l—q)(Z ——H‘SCHH +C( )
(e ¢ OH, ¢ T N mus) — may| vV om,

holds for any (u, X) € R? x M. Here erry, is defined in (2.2) with muy,50)> O(u,So)
replaced by mp,, oH,.

The above result reduces the analysis of the power behavior of W (X) into essentially the
following two steps:

1. (Normal approximation under Hy) Show that

(M,N(O, 1)) — 0 under Hy.

errH() = dKO] o
Ho

2. (Contiguity condition) Show that
{78>)

M (u,2) — MHg |V OHy
Normal approximation of 7'(X) under Hy can be established in different ways. When T (X)
possesses further regularity, say 7(X) € W>*(y,x p), anull CLT can usually be established
efficiently via Chatterjee’s second-order Poincaré inequality [8]. This approach is particularly
compatible with the contiguity condition (2.6), as we only need to calculate derivatives of
T (X) and obtain good enough moment upper and lower bounds for these derivatives. In
Section 3 ahead, we implement this method to a variety of statistics in two concrete problems
of high-dimensional covariance testing. Some of the resulting exact power results are new,
and some improve significantly over earlier results in the literature, both in terms of (n, p)-
conditions and applicable alternatives.

— 0.

(2.6) eIT(y,x) =
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2.3. Proof of Theorem 2.1.

LEMMA 2.5. Foranyt,u e RandneR,
PN (u, 1) <1) =PWN (A +mu, 1) <0)| <2(1+1t]) - [nl.
PROOF. This result strengthens [13], Lemma 5.4. We assume without loss of generality

—1/2, 1/2] because otherwise the right-hand side of the desired display is greater than
or equal to 1. Note that the left-hand side is bounded by

t—(1+n)u
/ v(z)dz
t

—Uu

<Inl-| sup p()lul] = Inl- M, ).
ve[(r—u)—[nul,(t—u)+|nu|]

Here ¢(-) is the normal density. First consider the case u > 0. Then M;(u) <
SUPye(r—3u/2,i—u/2) ¢ (V)u, Which can be bounded further in different situations:

e Ift —u/2<0,then

M;(n) < (p<t — g)u =<p(t — E)(u —2t) +2t<p(t — %)

2
<2sup|x| (X)+—|l|
xeﬂg v V2 V2me V2

Here we used the readily verified fact that sup, g |x|@(x) = 1/+/2me.
o Ifr —3u/2 >0, then

M < t 3u = t 3u 2t>+%t (l—?)—u)
t(u)_¢<—7>u—¢(—7)(”—? T4 >

< %(% n \/%m).

e Otherwise (2/3)t <u <2t,s0 M;(u) < |u| <2|t|.

The case u < 0 can be handled similarly, so we have sup, M;(u) <2(1 4 |¢t]). O
PROOF OF THEOREM 2.1. Let Z € R"*? be a matrix generated by »n i.i.d. samples from
N, 1,). Let X*® = Z%1/2 4+ 1,1 Then,
T(X) = Muo.50) d T (X W2y — (X (Ho-X0)) N T (XH0-Z0)y — m0 50)
O (10, Z0) O (110, Z0) O (10, %0)
_ M —Manzy | W@ TEER) —m sy

O (1o, %0) O (10, %0) O (10, %0)
Here W(Z) is the centered variable defined by

2
W(Z)=T(Z2"? +1,17) = T(Z56 + 1uptg) = (i) = Mg 50)-
Using the chain rule,
8 W(2) = (VT (X#P)E2 — VT (xH020) 2%
= (Ju.n)(2) - g(uo,Eo)(Z))ij-
By the Gaussian—Poincaré inequality ([5], Theorem 3.20),

2.7)

2 2
Var(W(2)) = E[Z(BWW(Z)) } =E[ . 2)(2) ~ Tuo.20 D = Vi 5 u0.50)-
(i)
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This means for any u > 0, on an event E with probability at least 1 — >

’

(W(Z)| <1 Viu5):(u0.50)-

Hence, for any ¢ € R, the decomposition (2.7) entails that (recall the definition of err(,, )
in (2.2))

T(Xx W%y —
P( ( ) = M (uy, o) >t)
O(110,%0)

%
P(m(u,m — My, 30 + W(Z) + T (X0 20)) — im0 ) - t)
O(no,Z0) O(uo,Zo)

IA

D))
P(M(u,m ~ Mo, 50 T4 Vi i Z0) T(X #0020 —my, 5) - t) n 1
O (10, Z0) O (10, Z0) u?

IA

P(’ﬂ(u,m — M (uy,50) + U - Vi, %); (10, 5o)
O (1o, %0)

=p(u)+ eI (110, %0)-

1
+N(@©O,1) > t) + " + erru,, %0)

Next we bound p(-) using two different ways. First, by Lemma 2.5, we have

inf p(u) < P(m(“’):) Mo Z0) 4 Ar(0, 1) > t>
u>0 O (10, Zo)

Vi »); 1
+ inf |:2(1 + [t])u - (.2 (1o %0) _2]
v=0 Im,z) — Mg, sl u

— 1+ )V, . 2/3
E P(’n(ﬂwz) m(/Lo,Eo) +N(O, 1) - t) + C(( + | |) (/’L’E)~(M0~EO)) .
O (110, %0) M, 2) — Mg, 50l

On the other hand, by anticoncentration of the standard normal distribution, that is,
IP(NV(0, 1) <a) —P(N(0,1) <b)| <|a—b|forany a,b € R,

— Vs 1
inf p(u) sIP’(m(‘“E) Moo 4 £ (0, 1) > z) - inf[u W B)io.20) —2]
u>0 O (110, 20) u>0 O (110, 20) u

m —m vV, . 2/3
§P< (1u,%) 0.0 4 ar 0, 1)>z>+c< (u,m,(uo,zo)) ‘
O (1o,%0) O(uo,%0)

Collecting the bounds completes the proof for one direction. For the other direction, we have
T(X W%y —
P( ( ) = Mug.%p) t)
O (10, Z0)

%
P(’ﬂ(u,m —Mu.zy T W@ T (X0 20)) — im0 ) N t)
O(no,Z0) O(uo,Zo)

v

D)
P(W(u,m ~ Mo, 50 ~ 4 Vi )i Zo) T(XH020) —my, 5) - t) _1
O (10, Z0) O (10, %) u?

m — m — l/t . V .
- ]P’( (1, %) (o0, Z0) (o, 2); (o, Zo) +N(@©,1) > ¢
O(po.20)

Using similar arguments as in the previous direction by invoking the two different bounds
concludes the inequality. [J

1
— — —err .
) u2 (05 20)
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2.4. Proof of Corollary 2.2. Using the decomposition (2.7), and the assumed bound-
edness condition |(m(,,x) — My, $0)) /(. =)| < K (Which entails that o, 5, > (K +
D7 m e, s) = Mo, 500l + (u0,50))), We have

Varw’z)(T(X) - m(uo,zo)> <K (Vw,z);wo,zo))z +1
O(1o,%0) O(uo, o)
S (VK2 (1+ 8T, 2529, 70) -
Fix ¢t > 0. Then the above variance bound leads to
IP’(T(X(M’E)) — M (0. %)

O (10,%0)
On the other hand,

> r) S (= KDV K21+ 8 5y (1, 50

P(mw,z) “ M0 | A0, 1) > ,) < =KR/2,
O (0. 20)

Combined with Theorem 2.1, we have, for any ¢ > 0,

‘Pw,z)(T(X) — Mo ) _ t) _ P<N(m<u,2> M0 Zg) 1) - t)’

O(110,%0) O(10,%0)

. __ 2/3 _ __
< €1t 50 + Ck - min{((1+ 1), 5): (uo,50)) 121+ &, £ 10, 50)) -

If et 5): (1u9,50) = 1, then a trivial bound works; otherwise if €T, 5); (40,5, < 1, then the
right-hand side of the above display can be further bounded by

erT(ug,50) + Ck - minf{ (1 + 11)ef (. £): (u0.50)) >+ 1)

__4/9
< ert(u,,5) + Ck - CIT (11, 5): (0, Zo)"
A similar bound holds when ¢ < 0.

3. Applications to high-dimensional covariance testing.

3.1. Testing identity ¥ = 1. Consider the testing problem
3.1 Hy:X =1 versus Hj: Hydoes not hold.

This is a special case of (1.10) by taking &) = R” x {I}, and has been extensively studied in
the literature; see [1, 7, 10, 11, 14, 17, 22, 29, 32] for an incomplete list.

We introduce some additional notation. Based on i.i.d. samples X1, ..., X, from A (i, ),
the sample covariance matrix and its unbiased modification are given by

n
Se=n"'Y "Xk — X)Xk — X)) with X=n —IZX,,

k=1
(3.2) ) N
S= 5 Z (Xe — )" (Xe = ).
Here
(3.3) N=n-1

and the equal in distribution in (3.2) follows from [23], Theorem 3.1.2. Throughout the rest
of the paper, we will mainly work with S for mathematical simplicity (unless otherwise spec-
ified), and adopt the right most expression of (3.2) as its definition whenever no confusion
could arise.
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3.1.1. LRT. This subsection studies the behavior of the LRT for testing (3.1). The modi-
fied log likelihood ratio statistic TRt : RN*P 5 R (cf. [23], Theorem 8.4.2) is defined as

(3.4) Tirr(X) = g[tr(S) —logdet S — p].

Clearly the law of T rT(X) is invariant under Hy. Corollary 2.4 applies in view of the regu-
larity of 71 rT (see Appendix B). We use (m s RT, 0x:LRT, Vx:LRT) tO represent their generic
versions defined in (1.4) and (2.5).

Following the discussion after Corollary 2.4, we start by establishing a quantitative CLT
for 71 rT(X) under Hy; its proof is presented in Section 5.1.2.

PROPOSITION 3.1. Suppose p/N <1 — ¢ for some ¢ € (0, 1). Then there exists some
constant C = C(g) > 0, such that under Hy,

T X) — . C
dTV( LrT(X) mI,LRT’N(O’ 1)) ¢
O[;LRT p

The CLT for the log likelihood ratio statistic 71 rT(X) under Hy was first derived in [1]
using random matrix theory under the assumption that p/n — y for some y € (0, 1). This
result was then improved in [14] and [10] to hold under the conditionn > p+ 1 and p — o0,
and in [32] to relax the Gaussian assumption. The condition p/N <1 — ¢ in Proposition 3.1
is used to derive the stable estimate E|S~! lop < C for some constant C = C(¢) > 0; see
Lemma 4.3 for details. To our best knowledge, the above result is the first quantitative CLT
for Ty rr(X) under Hy in the literature.

The following result establishes the contiguity condition (2.6) for the log likelihood ratio
statistic 71 r7(X); its proof is presented in Section 5.1.3. For p.s.d. ¥; and p.d. 3, let

(3.5) Ls(Z), ) =tr(T1 2, ") — logdet(Z12,") — p

be the Stein loss with the convention that Lg(X1, ¥7) = oo if ¥ is singular.

PROPOSITION 3.2. Suppose % is nonsingular. The following hold:

L V& gr=NIZ -1
2. my;Lrr —myprr = (N/2)Ls(Z, 1).
3. In the asymptotic regime N > p + 1 with p — oo,

N2 p P
2
ot~ |~y (1= ) |

. 2 2 .
In partzc%tlar, O7.LRT z cp” for some universal constant ¢ > 0.
4. There exists some universal constant C > 0 such that

Vs.LRT C

< .
Ims.irr —mp.irrl Vot ~ pl/?

The above proposition gives a prototypical example of how to proceed with the contiguity
condition (2.6). For the log likelihood ratio statistic 7y rr(X) defined in (3.4), both Vx.1rT
and the mean difference myx. rr — m ;. rT admit easy-to-handle closed-form formulae. To
give some insights for the bound obtained in Proposition 3.2-(4), let us consider the ‘local
regime’ of alternatives in which Lg(X, )~ || ¥ — 1 ||%;. Then (2.6) can be bounded, up to a

constant, by
N R x 1 1

< su = =
2 — 2 : O[;LRT 172 >
N|Z =1l VorLrRr  x>0X~VOopLRT  infy>o(x V =57) ‘71;/LRT
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in the prescribed local regime of alternatives. The above simple reasoning exemplifies the
essential reason why (2.6) must be small in high dimensions: if X is sufficiently away from
I, then the mean difference my.; rT — m.LRrT is substantially larger than Vyx.prT, but would
otherwise be compensated by a diverging 7.1 rT.

Let Wrrr(X) be the LRT built from the generic test (1.10) and the log likelihood ratio
statistic 7L rT(X). Now Corollary 2.4 yields the following.

THEOREM 3.3. Suppose p/N <1 — ¢ for some ¢ € (0, 1). Then there exists some con-
stant C = C (g, a) > 0 such that

(3.6) Es Wi gr(X) —P(N(w, 1> >za>‘ <c.p '3
o

Consequently, in the asymptotic regime N A p — oo with lim(p/N) < 1,

Ls(XZ,1) )

2 .
J2(=% —log1 — £)

Ex Wi gp(X) ~ 1 fD(z

Compared to results in [10] on the power behavior of the LRT Wi rr(X), we remove the
condition sup,, || X|op < 00 completely. This unnecessary condition arises as a technical defi-
ciency in the approach of [10] that attempts at directly establishing a CLT for Wi rr(X) under
general alternatives.

3.1.2. Ledoit-Nagao-Wolf’s test. This subsection studies testing (3.1) using the
(rescaled) modified Nagao’s trace statistic [24] by Ledoit and Wolf [22]:

3.7 Ti X—N S —1)? 125
(3.7) L )=Z[“( D - )].

An asymptotically equivalent statistic as an unbiased estimator of || X — [ ||% has also been
studied in [29]. One advantage of using (3.7) is that it applies to the case p > n where the
LRT in Section 3.1.1 becomes degenerate.

We will use (ms.LNw,0x:.LNW, Vs.LNw) to represent their generic versions defined in
(1.4) and (2.9).

PROPOSITION 3.4. There exists an absolute constant C > O such that under Hy,

dTV(TLNW(X) _mI;LNW,N(O’ 1)> < C
O, LNW N A

The proof is presented in Section 5.2.2. The CLT for Tynw(X) was first derived in [22],
Proposition 7, under the condition that p/N — y € (0, o0), which was later improved in [4],
Theorem 3.6, to include the case y € {0, co}. Here we give explicit error bounds in the normal
approximation.

The following result establishes the contiguity condition (2.6) for 71 Nw; its proof is pre-
sented in Section 5.2.3.

PROPOSITION 3.5. Suppose p/N < M for some M > 0. Then the following hold:

L Vi aw <CINUIZI3, v DIIE — 1|3 for some constant Cy = Ci (M) > 0.
2. With Qianw(2)= (N~ — 2N (=2 = 1),

N 2
My LNW — M (0,1) = Z[IIE — 1|7 + Onw(D)].
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3. In the asymptotic regime N A p — 00,
2

o2 o~
LLNW ™ 7

4. There exists some constant Co = Co(M) > 0 such that

Vs.inw 6))
12"

<
|ms.LNw —mpiNw| Vo iNw — P

Compared to Proposition 3.2, although a closed-form formula is available for myx. nw, a
somewhat undesirable “residual term” Q1 nw(2) exists. Removing the effect of these terms
in the final step (4) requires significant additional technicalities, as will be detailed in Sec-
tion 5.2.3.

Let W1 nw(X) be the test built from (1.10) and the statistic in (3.7). Combining the above
results with Corollary 2.4 and some additional efforts to remove the residual term Q1 nw(X)
in the mean difference formula (2) in the above proposition, we have the following asymptotic
power formula for W nw(X); see Section 5.2.4 for its proof.

THEOREM 3.6. Suppose p/N < M for some M > 0. Then there exists some constant
C =C(x, M) > 0 such that

NIz 1|3

EsYiaw(X) — ]P(N(M, 1) > Za)’ <C- p_1/3.
4o1.LNW

Consequently, in the asymptotic regime N A p — oo with lim(p/N) < oo,

2
IIE—IIIF>_

EsW¥inw(X) ~1— CD(Za " 20/N)

The asymptotic behavior of 71 nw under the alternative is previously only known in [29],
Theorem 4.1, under rather restrictive conditions on both ¥ and growth of p. Theorem 3.6
only requires p/N to be bounded and makes no assumptions on X.

3.2. Testing sphericity ¥ = XAI. Consider the testing problem
(3.8) Hy:X =M versus Hj: Hydoes not hold

for some un-specified A > 0. This is a special case of (1.10) by taking ) = R? x {Al : A >
0}, and has been extensively studied previously in [11, 14, 17, 22, 29].

3.2.1. LRT. This subsection studies the LRT for (3.8). The (re-scaled) log-likelihood ra-
tio statistic for (3.8) is defined by (cf. [23], Theorem 8.3.2)

N
(3.9) TirTs(X) = E(p logtr(S) — logdet S — plog p).

Evidently, the law of TirT s(X) does not depend on the XA in (3.8) and hence is invariant
under Hy. Thus the general principle in Theorem 2.1 applies due to regularity of 71 rt.s (see
Appendix B). We will use (mx.1RT.s, OS:LRT.s» VS:LRT.s) to represent their generic versions
defined in (1.4) and (2.5).

For a symmetric p x p matrix M, let

(3.10) be(M)=p~tu(MY),  b(M)=b(M).

The next proposition establishes a quantitative CLT for Tirr (X); its proof is presented in
Section 6.1.2. Recall that 71 rr s is nondegenerate only if p <n —1=N.
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PROPOSITION 3.7. Suppose p/N <1 — ¢ for some ¢ € (0, 1). Then there exists some
C = C(¢g) > 0 such that under Hy,

Ti X)—my. C
dTV( LRT,s (X) mI,LRT,s’N(O’1)>§_.
O[;LRT,s p

The CLT for Tirr,s(X) was previously derived in [17], Theorem 1, under the asymptotics
y € (0, 1]. The quantitative CLT above does not require p to grow proportionally to N but
excludes the boundary case y = 1.

The following result establishes the contiguity condition (2.6) for 71 rt s; see Section 6.1.3
for its proof.

PROPOSITION 3.8. Suppose X is nonsingular. The following hold:
1. There exists some absolute constant C1 > 0 such that
Vgt SCIN|Z-671(2) - I”?r
holds for N, p large enough.

2. The mean difference is given by

N
MY RT,s — M.LRT,s = ?[—logdet(E b7 (D)) 4 Orrrs (T -7 H(D))]
Here
(3.11) |O1rrs (2 -6~ 1(2))| < CNB[(Z - b~ 1(2))]

for some absolute constant Cy > 0. -
3. In the asymptotic regime N A p — oo with lim(p/N) < 1,

N[ p p
2
OL.LRT,s ~ 7[_N - 10g<1 - ﬁ)}

4. There exists some absolute constant C3 > 0 such that
Vs:LRT,s - C3
lms;LrT,s —M.LRT,s| V O1,LRT,s  (O1.LRT,s A N)1/2

There is a genuine difference between the above contiguity result and the previous ones
studied in Section 3.1.1, in that a closed-form formula for the mean difference my. rT s —
m[.LRT,s 1S no longer available. One therefore has to work with strong enough upper bounds
for the “residual term” QpRrr (2 - b~1(%)), the removal of which constitutes the main tech-
nicalities in the proofs; see Section 6.1.3 for details.

Let Wi Rrr,s(X) be the test built from (1.10) and the statistic in (3.9). Combining the above
results with Theorem 2.1 and some additional efforts to remove the residual term QRrr, (% -
b~1(%)), we have the following asymptotic power formula for W gt ¢ (X); see Section 6.1.4
for its proof.

THEOREM 3.9. Suppose p/N <1 — ¢ for some ¢ € (0, 1). Then there exists some con-
stant C = C (e, a) > 0 such that

Nlogdet(T - b~ (=
_ Nlogdet( ( )),1)>za)’§C-pl/3.
201;5

EsWrrr s (X) — P(N(
Consequently, in the asymptotic regime N A p — oo with lim(p/N) < 1,
—logdet(Z - b~ (%)) )

© 2k e F)

EsWiRTs(X) ~ 1 — <I><z



CONTIGUITY UNDER HIGH DIMENSIONAL GAUSSIANITY 4289

To the best of our knowledge, in the high-dimensional regime N A p — oo, the LRT for
(3.8) was only studied in [16, 17], where formal theory was missing on the power behavior
of Wi RrT,s. Theorem 3.9 fills this gap.

3.2.2. John’s test. Consider testing (3.8) using the (rescaled) John’s trace statistic [18]:

3.12 T (X _Nt 75 1 ’
©-12) 4 )ZZY[(p—ltrm_ )]

Clearly the law of T';(X) is invariant under Hy, and the above statistic is nondegenerate for
all configurations of (n, p). The general principle in Theorem 2.1 thereby applies in view
of the regularity of 7y (see Appendix B). We will use (myx.j, 0.5, Vx.)) to represent their
generic versions defined in (1.4) and (2.1).

The next proposition establishes a quantitative CLT for 73(X) under Hy; its proof is given
in Section 6.2.2.

PROPOSITION 3.10. There exists some absolute constant C > 0, such that, under Hy,

T7(X) — . C
dw(ij( )M v, 1))5
or) NAp

CLTs for T3(X) under Hy in high dimensions are first obtained in [22]. We improve these
results both in terms of nonasymptotic normal approximation bound and the removal of the
condition 0 < lim(p/N) <lim(p/N) < oo.

The following result establishes the contiguity condition (2.6) for T7; its proof is presented
in Section 6.2.3. Recall the definition of »(X) in (3.10).

PROPOSITION 3.11. Suppose p/N < M for some M > 1. Then the following hold for
N larger than a big enough absolute constant:
1. There exists some constant C1 = C1(M) > 0 such that
— 2 — 2
Vi, =0 N(E - I v DR 57 ) — 1]

2. The mean difference is given by

N
myg—mpy =[50 @) 1|3+ (67 (®)]
Here
10z b7 ') < N2z b ) |F + DT 6T ) — 1,

for some Co = Ca(M) > 0.
3. In the asymptotic regime N A\ p — 00,
I;J 4 °
4. There exists some C3 = C3(M) > 0 such that
Vs.) < C132'
lms.y —mpylvory ~ pl/

The proof of the above contiguity is the most complicated among the examples studied in
this paper. The main complication is due to the existence of the tr(S) term in the denominator
in (3.12), which leads to the complications both in the control of Vé. ; and the “residual term”

05T - b~ H(Z)).
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Let W;(X) be the test built from (1.10) and the statistic in (3.12). Now we have the follow-
ing theorem.

THEOREM 3.12. Suppose p/N < M for some M > 1. Then there exists some constant
C =C(a, M) > 0 such that

N-|Z-b~ (D) - 13
‘EELDJ—P(N( I (%) ”F,1>>za>‘§c-p_l/3.
40’1;]

Consequently, in the asymptotic regime N A p — oo with lim(p/N) < oo,

Iz -b—1(2>—1||%)
2(p/N) '

ExWy~1— CD(za

See Section 6.2.4 for the proof. The power behavior for John’s test is previous studied
in [25, 26, 31] for a special class of alternatives under the spiked covariance model with
a fixed number of spikes; see Section 3.3 ahead for a detailed discussion. To the best of our
knowledge, the theorem above gives the first complete characterization of the power behavior
for John’s test for arbitrary alternatives in the high-dimensional regime N A p — oo with
lim(p/N) < oo.

3.3. Case study: Spiked covariance models. In this subsection, we consider a special
class of alternatives known as the spiked covariance model [19]:
(3.13) ¥(a) =diag(l +ay, ..., 1 +ap),
where a = (ay, ...,ap) € (—1,00)”. Write a = Z?:] aj/ p. Specializing the results obtained
in Sections 3.1 and 3.2, we have the following.

COROLLARY 3.13. The following hold.

1. The power for the likelihood ratio test of ¥ = I satisfies

Z’.’Zl(aj —log(1 +aj))
Es@WLrTr ~ 1 — CD(Za - = > > > = BLrr(a),
J2(—% —log1 — §))
under N A p — oo with lim(p/N) < 1.
2. The power for Ledoit—-Nagao—Wolf test of ¥ = I satisfies
- a?
Es@Winw ~ 1 — @z — g) = ,
> (a) YLNW <Za 2(o/N) BLaw (@)
under N A p — oo with lim(p/N) < oo.
3. The power for the likelihood ratio test of ¥ = LI satisfies
[? IOg 1+a
Ex (@ VirT:s ~ 1~ ‘D(Za - ; = ) = BLrr;s(a),
V2% —log(1 - £))

under N A p — oo with lim(p/N) < 1.
4. The power for John’s test of ¥ = LI satisfies

Yioaj—a?/A+aPy
2(p/N) ) =Ala).

Ex@W¥r~1-— CD(Za -

under N A p — oo with lim(p/N) < oo.
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(1), (2) and (4) above recover [26], Proposition 8 (i)—(ii), while (3)—(4) above recover [31],
equations (4.5) and (4.8). Both [25, 31] considered the case where » = ||a||p and the nonzero
elements of a are fixed. The techniques in [26] work with a further restriction |la|lcc < /Y
where y is the limiting value of the ratio p/N. As mentioned in the Introduction, this restric-
tion coincides with the Baik—Ben Arous—Péché (BBP) phase transition [3], and is essential
for the techniques of [26], due to the singular nature of the likelihood ratio process when
llallc > /y already in the case r = 1, see [25], Theorem 8. The restriction [|alloo < /¥
is removed in [31] for the likelihood ratio test Wi rr.s and John’s test Wy for sphericity, by
variations of Bai—Silverstein techniques developed in [1, 2].

It is easy to see that in the setting of [25, 31] with a fixed number of spikes as described
above, the asymptotic powers are the same for the following two group of tests:

1. Likelihood ratio tests W rT, WLRT:s: BLRT = BLRT:s-
2. Ledoit-Nagao—Wolf and John’s tests: SLnw = Bj.

Clearly, neither group of tests universally dominates the other in terms of the power behavior.
For instance, the power of tests in (1) dominates that of (2) when some of a;’s are close to
—1 (i.e., X is near singular), while the reversed phenomenon occurs when some of a;’s are
close to co.

In general, the asymptotic power equivalence of the above two groups may not hold when
the number of spikes are no longer fixed. Instead, we have the following power ordering
within each group.

COROLLARY 3.14.

1. Likelihood ratio tests Wy rT, WLRT:s have the power ordering

BLrr(a) = BLRT:s(@).

2. Ledoit—-Nagao—Wolf and John’s tests Vi nw, V5 have the power ordering

B (@ | 2 P1@: a(1-(1+a)7) <a’
W < Bi@), 21— (1 +a)?) > a2,

Here a* = ;7:1 a?/p.
PROOF. (1) follows from the inequality Zle log(1+a) < 2;’:1 a= Zle a;. (2) fol-
lows by the following calculation:

Yhoaj—a? Y @i-ah L o, Yh_ad-(d-0+a)? - pd
d+a?  (+a)? =) aj+ (1+a)? ‘

The proof is complete. [

Note that {@ > 0} C {a2(1 — (1 + @)?) < a%} (the inclusion is in fact proper), so if @ > 0,
John’s test Wy will be less powerful than Ledoit-Nagao—Wolf’s W nw. Furthermore, both
inequalities in the above corollary can be strict asymptotically, and similar to the discussion
above, there are no universal power dominance relationships between the tests in the two
groups.



4292 Q. HAN, T. JIANG AND Y. SHEN

4. Some spectral estimates. In this section, we will prove some spectral estimate for a
class of high-dimensional random matrices that will be useful for the proofs of the results in
Section 3.

First we introduce some convention on notation: Let 7}, 7, be finite index sets. For A =
(A1) ety nel € RE>T2 s operator norm is defined as

4.1) [Allop=sup [lAv],, gT)-
veBIz(l)

It can be readily verified that || Ao, = sup,,¢ Bz, ,veBr, (u, Av)z,, and for a symmetric matrix

A e RT<T | Allop = SUPyeBy, [(u, Au)z,|. Here (-, -)7, is the standard inner product on RZ,
Clearly, the definition of the operator norm does not depend on the choice of the ordering of
the index sets.

Under this notational convention, with the index set A = {(ij) : i € [N],j € [p]}, we
present below two results on the spectral norm of some special A x A matrices that are
crucial to the proof of the quantitative CLTs. We do not specify a particular ordering on A
as we will be only interested in the operator norm as defined above. In the following we use
N to denote the set of natural numbers. Recall the data matrix X = [X1,..., Xy]' € RV*P
and the definition of S in (3.2).

PROPOSITION 4.1.

1. Suppose p/N < 1— ¢ for some & > 0. For £, m € N such that £ +m > 1, let Uy ,,, € RAXA
be defined by

4.2) Uem)ip.ijy =N""XTS7Xp(S7™)

Ji'
Then for any q € N, there exists some C = C(g, €, m, q) > 0 such that E||\Uy ;, ||Zp <C for
p=C. )

2. When X;, S and N is replaced by X; — X, S, and n, the conclusion of (1) still holds.

When the inverse ™! in (4.2) is replaced by S, the condition on p/N can be substantially
relaxed.

PROPOSITION 4.2. Let y= p/N. For {,m € N, let Uy ., € RA*A be defined by
4.3) (Uf,m;-l—)(ij),(i/j’) = N_IXZ.TSEXH(S’")].J./.

Then for any q € N, there exists some C = C({,m, q) > 0 such that E||Ug,m;+||gp <CH/yV
y)q((—i—m—i-l).

The proof of Proposition 4.1 relies crucially on the following stable moment estimate for
|S~! llop- Its proof utilizes two main technical tools: (i) rigidity estimates on the eigenvalues
of the sample covariance matrix (cf. [27]); (ii) closed form distributional formula of sample
eigenvalues via zonal polynomials [23], Chapter 9.7.

LEMMA 4.3. Let Sy =N~! ZlNzl Z,‘Z;r where Z;’s are i.i.d. N (0, I) in RP. Suppose
p/N <1 — ¢ for some fixed ¢ > 0 and every N, p > 2. Then for any positive integer q <
(N — p—1)/8, we have EIISE1 ||8’p < C for some positive C = C(e, q).

PROOF. Write Sz for S in the proof for simplicity. Let A be the smallest eigenvalue of S,
and y=(p —1)/N <1 —e¢. By [28], Theorem 1.1, on an event E with probability at least
1 —e NU=Y) H > (1 — ﬁ)z for some absolute constant ¢ > 0. A similar estimate can



CONTIGUITY UNDER HIGH DIMENSIONAL GAUSSIANITY 4293

be obtained using rigidity estimate for the eigenvalues of the sample covariance matrix, for
example, [27], Theorem 3.1(iii). Hence

w E|s~H 8 =Bl |41 + B[S~ 1k
' <cTI(1— 3 M+ EV2| ST L gmeN A2,

Now we give an upper bound for E||S~! ||§3. Letr = (N — p — 1)/2 assumed to be a positive
integer. For any nonnegative integer k, we write « - k if « = (k1, k, ...), with convention
k1 > ky > ..., is a partition of k, that is, ) _; k; = k. Let C, denote the zonal polynomial (cf.
[23], Chapter 7) with respect to the partition «. Then it follows from [23], Corollary 9.7.4,
that, for any x > 0,

P(|S~ p > %) =1 =P > 1/x)

—1-c¥Y Y

Cy (NI/(Zx))

k=0«ktk:ki<r
_ (Np/@xpk & Ce(NI1/(2x))
R
k=0 k=0«tk:ki<r
=[ yo QGO LAY L s (M )”
k=pr+1 k! im0 K\ 2x ichkiky <r 2x
@ _w[ o Wp/Q)t &
20k 3 WHEL L s (5]
k=pr = Kl—kk1>r

|
k! k=r+1 k! kbk:ki>r

+1
S k pr k
<*:*>e_%[ y Wp/COY s (V/COF 5 CK(I))]
k=pr+1

Ge) _dp % (Np/(2x))k'
- k!
k=r+1
Here (x) follows from [23], Definition 7.2.1, (iii): for any £ > 0 and # > 0,
4.5) > Cet- D =[tr(e - D] = tp)*;

Ktk

(xx) follows from the fact that for each k and partition « of k, C,. is a homogeneous polyno-
mial of order k; (x * x) follows from the nonnegativity of zonal polynomial for 7 (cf. [23],
Corollary 7.2.4) and an application of (4.5) with ¢ = 1:

Yo > G =pt

kbk:ky>r Kk

Hence by using the fact that for any k > 2q + 1,

k 2
/we—%(@) 2 gy — (@) que—yyk—zq—ldy
0 2x 2 0

2,
= (32) w—2g-
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we have for every r > 4q

o0
E|s 2 =2 [ x*B(IS gy > x)dx

o0

Np)zq 1
S J—
(2 k:;le(k—l)---(k—Zq)

4.6)
() & Al e )
\2 k:+12q k—=1)---(k—2q) k---(k—2q—1)
(Np)2q1 1 < (Np)zq
T\ 2 2gr(r—1)-- (r—2q+1)Nq r2q

Combining (4.4) and (4.6),as p/N <1 — ¢,
(4.7) E|S™HE < Cl+CeNTe N Sy 1

withr=(N—p—1)/ 2 being a positive integer. If 7 is not an integer, write S = ¥=1§" +
L v XNX 1, where §' = N N=T ZZN 11 XiX; T Then using Sherman—Morrison formula,
N SH Xnxj(sHt
(N=1D? 1+ X181 Xy

4.8)

As X1 (S Xy = X 12/ Amax(S"), we have

E||R||gps(%)".E[”(S/)—IXNXN( i P )ZQ}

P Xl
S/)2
< E max( )<E1/2 S/ 4q IE1/2
S/ (S ) <EV S B2 ()

The claim for r not being an integer follows from the decomposition (4.7) and the estimate
above. [

op NCIS

The following corollary of the Koltchinskii—Lounici theorem [20] will also be repeatedly
used.

LEMMA 4.4. Let Sz =N~! ZlNz1 Z,'ZI.T where Z;’s are i.i.d. N'(0, 1) in RP. Then for
any positive integer q, there exists some positive C = C(q) such that

q
ElSz —1lI4,<C- ( £vﬁ).
N N

PROOF. This is a direct consequence of [20], Corollary 2. [
Now we prove Propositions 4.1 and 4.2.
PROOF OF PROPOSITION 4.1. We only prove (1); claim (2) follows from completely

same arguments by noting that (4.9) and (4.11) below still hold with the prescribed substi-
tution. Note that Uy ,, is symmetric in that (U¢ m)j)ijr) = (Ue,m) /)i j)» and satisfies that



CONTIGUITY UNDER HIGH DIMENSIONAL GAUSSIANITY 4295
for any nonnegative integers (£1, m1) and (£3, m3) such that ({1 +m) A (€a +m2) > 1,

Weymi - Uey,my) iy, i)
) T ot - T ot -
= N2 XSO (ST X ST X (57
)

(4.9) = N2 s (Z XinT) ST (Z(S_ml)ff(s_mz)f’”)
,~ ]

—1 3T =€ +r—1 -
=N"'xs (b1+L2 )Xl.,(s (ml+m2))jj’
= (Uei+6—1,m1+m) i), (i j7)-

Consequently the above argument entails that for any g € N, (Uy ,)? = Uy ,,y With
(4.10) U=0(@q)=q—1)+1, m' =m'(q) = qm.

Using that [|Ue,mllop = SUPyey,, (1) 12y jny i Uem) i, jottijr 1, we have

1Uemllop= sup N~ Z X?S_eXi/(S_m)jj/uiju,-/j/

MEBpr(l) ii'j,J'
=N"' sup  [YXTSTEXp > ui - (ST iy
MEBNXI)(I) i’i, ]]

=N~ sup DOXTSTXp[u-STul]l.
1,1

u€BNxp(1); ;1

As the (i,i)th entry of XTS7¢X is XiTS_EX,-/ and that tr(AB) = ZlNi,:l A;ir Bjir for two
symmetric matrices in RV >V we have

IUemllop=N"" sup [t XSTEXT - uS™u']|
U€Byx (1)

=N sup |u[(u"X)STE(XTu) ST

u€BNx (1)

Further using twice the fact that tr(AB) < tr(A)||B|lop for any two p.s.d. and symmetric
matrices A, B, we arrive at

||U£,m||opSN_IHS_’"HOPHS_KHOP- sup  |tr(XX Tuu')|

u€Byx (1)
4.11) < | NTHXX Ty sup te(uu”)
ueByxp(1)
=57 oy IS lop = 157 3"~

Hence for any ¢ € N, equations (4.9)—(4.11) and Lemma 4.3 entail that

E”Ug’m”g :E”Ugmno :E||U€/,m/||op SE”Silnﬁl—i_m,_]
P , p P
=E[s7' 5" " < Comg,

completing the proof. [
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PROOF OF PROPOSITION 4.2. The proof largely follows that of Proposition 4.1 with
modifications. We sketch the difference below. Using the same calculations as in (4.9), we
have

Weymii+ - Utyomai+) ). (77
-2 T ol T
=N X SUXG(S™) 5 X7 SR X (™) 5
@)

N—ZXiTSh (Z X;X;>S£2Xi/ . (Z(Sml)]]_(smz)]_]/>
i J

_ a1y T l1+0+1 mi+m —
=NTX; STTRETX (8™ = (Ut Ly ma 1) ), )

Hence for any ¢ € N, (Uy :4)? = Up .+ with £ now defined by ¢’ =¢'(q) =€ + (¢ —
1)(€ + 1) and m’ = gm remains the same as in (4.10).

Then using the same arguments as in (4.11), we have [|Ug p;+ llop < ||S||H’"Jrl hence for
any g € N,

ElUem+ 1% <EISIS™ T Seamg (V3 V) ?EmHD,
where the last inequality follows by Lemma 4.4 and the fact that ¢’ +m' + 1 =€+ (¢ —
D+ +gm+1=ql+m+1). U
5. Proofs for Section 3.1 (testing identity).

5.1. Proofs for Section 3.1.1 (LRT). Recall A ={(ij):i € [N], j € [p]}. In the following
sections, for a sufficiently smooth function 7 : R* — R, its gradient VT : R* — R and
Hessian V2T : RA — RA*A are defined respectively by

(VT (%)) "0 and (V1) T
X L= — (X an X iy oy = (X)),
) dxj) G-I 9y dxr
with x = (x(;j)) € RA . Slightly abusing notation, we use |VT (x)||r = IVT (x)lg,wa)- The
operator norm ||V2T(x) llop is defined in (4.1).

5.1.1. Evaluation of derivatives. In the following, we use {e; 2 j=1 torepresent the canon-
ical basis in R”. Let §;; be the Kronecker delta.

LEMMA 5.1. Recall the form of TLrT(X) in (3.4). We assume without loss of generality
that uw = 0. Then, for any (i, j), (i’, j') € [N] x [p]:

L. (VTirr(X)j) = (XUT — S aj =6JT(1 - S hHx;.
2. (V2Tirr (X)) i),y = N1 XS Nep X1 + Xi/e})s—lej + 8,-,'/6;!—(1 — S Dej.

PROOF. We use T as a shorthand for 71 rt.
(1). By definition, we have

a(lj)T(X) (8(,]) tr(S) — a(ij) logdetS).

For the first partial derivative, using 8(,- Xk = direj, we have

3ij) tr(S(X)) = 12 AN

5.1
= N_l Z(Siktr[ejxk +Xke;r] = ]\/v_1 Zaik . 2ij = 2N_1Xij-
k k
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For the second partial derivative, using the well-known fact that V1ogdet A = A~! for any
invertible and symmetric matrix A (see, e.g., [6], Section A.4.1), we have

dlogdetS 0S8k, ) Z
0Ske  0Xjj o

1
dij)logdet S = ¢ N(Sjkxm +8jeXik)
k.t

(5.2)

TN Xt 05” Xi= (X5,

¢
where in (x), we use

ISk 1 0
dXij N Xy

1
(5.3) (Xex, Xey) = N((Sjkxiﬁ‘i‘ajﬁXik)-

Combining (5.1) and (5.2) yields the first claim.
(2). Again by definition, we have
N
3T (X) = = @jyar ) w(S) = jyrjry log et S).
For the first derivative, it follows from (5.1) that
(5.4) dijyi i tr(S) =2N 18 i Xi; = 2N 718,18 r.
For the second derivative, it follows from (5.2) that

8(,']')(,'/]-/) logdet S

2 0 yrgt = 2( 2N TS‘1~ XTaS_ -
(55) _NaXi/j/ i ej_ﬁ 8Xi/j/ ej+ ! aXﬂ]/ €

2
() N(Siif;s_l@j —N7'XT ST ey X)) + Xie)Se)),

where in (x*) we use the following calculation with the help of (5.3):

as~! N ds,
SR e e <X:eke@T K ) !
8Xi/j/ 8Xl'/J/ 8Xl/]/
1
(5.6) = —NS_I . (Z ekeZ(Sj/kXi/e +5j/£Xi/k)> s
ke

| T T\ o—1
:—NS (ej/Xi/ +Xl'/ej/)S .
We obtain the second claim by combining (5.4) and (5.5). O

5.1.2. Normal approximation.

PROOF OF PROPOSITION 3.1. We again shorthand Ty rt.x by 7. By Lemma 5.1,

VT O 7 =Y (06, T (X))? ZH HxiP<|s” lIIOPHI—SHOPZHXH

i,j
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Using Lemma 4.3 and Lemma 4.4,
2
E|YT 0L SE(IS 51 - 513, 1%1?)
i
=Y B[S oIl = SI& X121 X0 17]

i,i’

—116
<Y BT BV - S0 BV XS BV X
i,i

2 P\ 4
< N<4. /_>. .p=npt
~ (N p-p=p

Again by Lemma 5.1, the second derivatives are

5.7

Aijy.iinTX)=NT'XT S e X S e + N7 XTSI X (S7h) i+ 83 (1 = S71) 10
=N+ T2+ 13)j),i -
Recall the definition of Uy ,, in Proposition 4.1-(1). Then

2 -2 Tg-1 T o1 T o1 T o1
(Tl)(,-j),(,-/,-/) =N in STei-X: 8 ej- X- 8 ey - Xy S e
@y

(538) =N (LTS XX 5 ey ) (L XTs el s Xy )
,- ;

= NS XS X = (U2, ).y
and T = Uy 1. Proposition 4.1-(1) entails that
(5.9) ElTi 3, v EIT2lg, = O(D).

On the other hand, T3 has a block diagonal structure with respect to the index (i, i’), so its
spectral norm equals that of (/ — S~!) € R?*”, and hence

4 —14 —14 4
(5.10) E|T3llgy =E[1 = S7 5, E[[S™ 5,1 = Sligp] = O(D).
Combining all the estimates above, we find that
(5.11) E|V2T(X)[s, SEITiIS, + EIT2lIS, + EIT308, = O(1).

Let X’ be an independent copy of X and let X| = /1X + /1 —tX' € RV*P. Let E’ denote
expectation only with respect to X’ and

_ 11
T(X E/ ——(VT(X),E'VT(X)))dt.
(0= |5 AVTE0EVT (X))
Then by the Gaussian—Poincaré inequality

Var(T (X)) <E|VT(X)|7 < JE[V2T O |2 VEIVT (O]} S p*.

The claim now follows from the second-order Poincaré inequality in Lemma A.1 and Propo-
sition 3.2-(4). 0O
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5.1.3. Contiguity.

PROOF OF PROPOSITION 3.2. We shorthand (TLRTa My LRT; O%;LRT, VE;LRT) by
(T,myz, 0%, Vx).
(1). Recall that Zy, ..., Z, are i.i.d. samples from N (0, I,). By Lemma 5.1, with §7 =
N1 Z,N:1 ZiZiT, we have
T2 (2) =22V (1 -7 w2 sl2 = 7(2 — 571).
Hence with {A; };7:1 denoting the eigenvalues of X, we have
2 2
Vi =E| %2 - 72| =E| 2= - D}
=Eu((Z-NZ'Z(Z 1)) =u(EZTZ(T - 1)?)
=NIZ - 1lF=NY ;- D>
J
(2). Note that

my = (N/2)E[tr(Z1/25751?) —logdet(2!/%25,21/%) — p]
= (N/2)[tr(2) — logdet T — p] — (N/2)Elogdet Sz,
SO

my —my;=(N/2)Ls(XZ, 1)

P )4
=(N/2)> (hj—logh;— 1) ZNY [IAj =1 AQ;— 2]
Jj=1 j=1

(3). It is shown by the proof of [10], Theorem 1, that with w, o, 0,12’0 defined in [10],
Corollary 1, and Y, = (T (X) — wn,0)/(noy ), for s € (—sg, so) for some sg > 0,

lim My, (s) = Mo (s) =e* /2,

nAp—0o,n>p+2

where My (s) = Ee®? denotes the moment generating function of a generic random vari-
able Y. Now using that for any s € (0, sg),

o o
EY}=4 / PP(Y, >1)dr <4 / e My, (s) dr = (6/s%) My, (s),
0 0

it follows that sup,, IEY;t < oo, and hence convergence of moments yields that EY,, — O,
IEY”2 — 1. This implies 012/(1120’1270) = Var(Y,) = IEYn2 — (EY,)?> — 1. Hence the asymptotic
formula for 012 holds. In particular, this means that there exists some sufficiently large M
suchthatforn Ap>M,n>p+2,

_ 1 p P\T® 1 P _p
2 1 2 2 2 2
O'IZM -non’0=—-n [—N—10g<l—ﬁ>]>—l’l mZm,
where in (%) we used the inequality —x — log(1 — x) > x2/2 that holds for x € (0, 1).

(4). Recall that {A j}f=1 are eigenvalues of . By (1)—(3), we only need to show that for
some universal C > 0,

INY (A; —1)2
5.12) i —=1 C

(NZJ'(P‘_/' 1A — 1)2)) vV oy = (o7 AN)/2°
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To see this, let v; = |A; — 1|, and J = {j € [p] : v; < 1}, it suffices to prove

\/NZje]VJZ'V\/NZjeJCVJZ' - C
(NYjesvHV (NYjegevj) Vor — (o1 AN/

(5.13)

This follows as

JNDY 2 NY . cv;
LHS of (5.13) < et Y] VN jese Vi

(NZ‘/'GJVJZ)VO'I (sz‘e]cvj)\/o‘]

< L NT2< (g ANV
= infeso(x v ) S©@AN)

The proof is complete. [J
5.2. Proofs for Section 3.1.2 (Ledoit—-Nagao—Wolf’s test).
5.2.1. Evaluation of derivatives.

LEMMA 5.2. Recall the form of Tinw (X) in (3.7). We assume without loss of generality
that u = 0. Then for any (i, j), (i’, j') € [N] x [p]:

L (VIiaw (X)) j) = (X(S = 1) = @(S)/N) X)ij = e (S = D X; — ((S)/N)Xyj.
2. (VTisw@)aparyy = N8 X[ Xe + N7'XiyjXip + 8w — Dy
Q/NHX;;Xirj — (w(S)/N);i8 .

Furthermore, for any (ig, j¢) € [N] x [pl, £=1,2, 3,4,
iy j1)(i2.2) i3 j3) Gia ju) TN W (X)
= N (81,13800148 1 58 js s + SiriaBiniz 81 1nS s s
+ 8i1i40i2i30 1 36 j ja Tt 8i1iz0iniad 1 jabja j3
+ 8111283148 1 30 jo ju T 8i1in0i3is0 1 jaS 2 j3)
— 2N 7281138121481 j30 )2 ja + 8i1i48iniz 81 jaSjajs F 8irinSiniadji oS s ja)-

PROOF. We shorthand Ty nw as 7. As 9;;S(X) = N~! (e Xl.T + Xie}—), for the first-order
derivatives we have

a(ij)T(X) = Z(tr[a(,-j)(S -1 ] - N . ZtI(S) tr[a(,-j)S]>

1 tr(S) Xij
= Etr[(s —D(e;X] + Xie])] - T’
tr(S S
=(X(S-D);; - %XU =e/ (S—DX; - %X,-j.

For the second-order derivatives we have
¥ij).ajn T (X)
=dgj1y(e] (S — DX;) = N~ ' jr) (r() X))
=N""ef (e X + Xire]) - Xi +8iie] (S — Dej — N ((2/N)Xij Xirjr + 8iir8 s tr(S))

=N"'8; X Xy + N7 Xi i Xijp + 8i(S — D jjr —2N "X Xy jr — N~ r(8)8118 .
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For the third-order derivatives we have
Uiy jn) 2z T (X)
= N8, 1,30 (Xiy Xiy) + N 71803y (Ko jy X )
+ N_I(Silize;': (eJ3X—r + Xize ]g)ejz - 2N_28(i3j3)(Xi1j1 Xirjp) — 2N_zé;ilizsjljzXi3j3
= N_1(5i1i35j1j2Xi2j3 + 8i5i38 1 jo Xiy j3)
+ N_l(8i2i3311j3 Xiyjy +8i1i38 )5 j3 Xinj1) + N_1(5i1i28j1j3Xi3j2 +8i1iy8 o j3 Xiz j1)
— 2N 2811381 js Xinjo + SiisS o js Xivjy + 8irizd 1 jp Xisjs)-
For the fourth-order derivatives we have
Uiy j1) (1223 j3) Gaja) T (XD
=N"! (8113812148 j1 28 j3 ju + 8i1is8i2iz 81 28 3 ju
+ 8i1i48iri30jy ja 8 jaja + 8iri8iriad i ja s
+ 8i1iy8i3i48 j1 30 joju T 81112813140 1 ju j2 j3)
— 2N 281138121481 j58 s + BiriaSinisS 1 a8 s  BiriaBiniadji 1283 ju)-
The proof is complete. [

5.2.2. Normal approximation.

PROOF OF PROPOSITION 3.4. Let y = p/N. We start by showing that
4
(5.14) E| V2T (X) lop =CUV DN
for some absolute constant C > 0. Reorganizing the terms in Lemma 5.2, we have

(V2T (X)) y=NT'X X8+ N7 Xiy Xy — 2N 7> Xirj0 X

@), (@'j
+ 8”/6 (S=IT—-N" tr(S)I)ej
=T+ 1o —To3+ To4)j), i)
Recall the definition of Uy .4 from Proposition 4.2. As 75,1 = Uy .+ and

2 N2 -2
(T2,2)(z]) (@'jh = ZXUX X X j =N (Z leX )(Z Xi]TXi/JT)
J

(ij)
=N1S..x"X., =(U L
= jir X Xir=(Uo,1:4) ). (0 ")»

Proposition 4.2 entails that [E|| 7 1 ||§p \Y, IEJ||T2,2||§p =0O((1V y)*). For 153, as

IT230l0p = (2/N?)  sup = (2/N?)|IX||%.

u,vEBNxp

> wiXij X jvprj
i)'

Hence E| 733 ||§p = (’)(y4) =0(1v y)4). For T 4, it holds by the block diagonal structure
that

T2 4llop=1S—1— N7 tr(S)I||Op <IS—="TIllop+ N~ Lir(S).



4302 Q. HAN, T. JIANG AND Y. SHEN

Hence it holds by Lemma 4.4 that
ElTo4llyy S OV YD+ N NTEIXE S vyt
By collecting the estimates of 7> 1-7» 4, we complete the proof of (5.14).
Next we show that E||VT (X) ||j‘r < p*. This will be done by two estimates below.
(Estimate 1) By Lemma 5.2-(1),

VT2 SIS = DX P + N 2§ 1X 13

< (IS =113, + N72*($) Y_I1Xi 1%,

1

so by Lemma 4.4 and Proposition 4.2,

2
BIVT 0L} SB[ (15 - 113+ N 202(9) LI

S E(IS — Illgp + N~ () 1 X3 11711 X0 [1°]
i,i’
<Y E"ZIs =115, + NTE2 () BV X BV X8

ii’

<N2.|(E 2+ P 4.[@‘11/2”5”8 p-p <140
S N N op| P PSPH1I+0).

(Estimate 2) Note that
VI(X)=X(S—N'u(S$)I) -~ X =T+ Tio.
It is clear that E||T1,2||% < Np. To handle Ty 1, note that
IT1111% = N tw((S — N~ w(8)1)*S)

=Nt(S*+ N 2u?(8)S — 2N 1 t(8)S?)

= N[tr(8?) + N2t (S) — 2N~ e(S) tr(5%)].
Then using Lemma C.5-(1)(2)(3), we have under the prescribed asymptotics that

E|T1.111% = N[py> +3py + p+3y> +3y +4N "'y + N7 2(p> + 6py + 8N 1y)
—2N"' PPy + PP+ py +40° +y) +4NTY)]

(. N 1 3 4 2
=PIttt T e

=p’[1+O(WN A p)~")]+ pN.
Hence we have
515 E|VTOO[} = (E]VTCO 1)+ Var( VT 00 )
= O(p* (1 +y73) + Var(|VT () 7).
By the Gaussian—Poincaré inequality, we have
Var(|VT (X)) <E[V[VTO[FF = 4E[(VT(X0) VT (X7

<4E'Z|V2T(X) |, - EV2[VT OO -
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Combining the above display with (5.15) yields that
E[VTO[ < O(p*(1+y72) +4E2 V2T (X5, - BV VT (X0 3.
Solving the quadratic inequality above and using (5.14), we arrive at
E|[VT(X)|F=O(p*(1+y7) VE|V’T(X)[5) = O(p* (1 +y72).
Combining the above two estimates, we have

E|VT (X[ < p* maxmin{(1 + ). (147} = p*.

The rest of the proof proceeds along the lines in the proof of Proposition 3.1, with the help of
the variance formula in Proposition 3.5-(3). [

5.2.3. Contiguity.

PROOF OF PROPOSITION 3.5. (1). Recall that Zy,...,Z, are i.i.d. samples from
N(0, I,). By Lemma 5.2, with Sz = N1 vazl ZiZl.T,

Tsanw(Z) = [22V2(2125,212 — 1) = N7 (2 52) 22?2 1/?
=Z¥S7% - Z¥X -~ N 'w(ES2)Z%,
SO
Ts.nw(Z2) — T1inw(2)
=[Z2(Sz2 —1) - Z(Sz — D] — %[tr(ESZ)ZZ —tr(Sz)Z]
=[Z2(Sz% —1) = Z(Sz% — D)+ Z(Sz% — 1) — Z(Sz — D]

- %[tr(ESz)ZE —t(E82)Z +tr(ES2)Z — tr(Sz) Z]

=Z(X-DSzZ-DH+ZSz(x-1)— %tr(ZSz)Z(E -1 — %tr((E — I)SZ)Z
= VI(2) + Va(Z) + V3(Z) + V4(2).
Note that
IViD)|7 <1525 = 112,|Z(Z = D} < 1523 = LI Z12, 1S = 1113
V2D 7 < 1ZS212,1% = 113 < 1Z12, 18212, — 113,

[Vs@)|7 = N2 (S| Z(2 = D3 < PPN IS5, 08215, 122 = D7

2 _
|Va(2) |7 < N2 (2 — DSZ) 11213
< N2ISZIFNZIEIE — 11} < pN 2SI 21318 — 113
Under p/N < M, we have

VZ.aw Su N(IZ12, v DS = 113
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(2). By Lemma C.4, with 8y = N~! —2N 2,

my = %[Etr(S — 1) - %Etrz(S)} = %[Etr(Sz) —2Etr(S)+ p — %Etrz(S)]

= %[(1 + N u(2?) + N eA(E) - 2u() + p— N7 (D) - 2N P u(2?)]

= %[(1 +8n) tr(E2) = 2tr(2) + p].
Hence
il
4

my —myp=—[(1+8y)t(T* = 1) = 2t(X — )]

N
= Z[||2 — 15+ sy te(22 = 1)].
(3). By Plancherel’s theorem (i.e., [9], formula (6.2)), we have

2 1 2
of.nw = P _[Edij T(X)] +5 Y (B jiyiajn T(X)]

@) (102 j)

1 2
+3 Yo (B asin T X))

T (i1 j) 223 3)

1 2
+5 > (B, ji) iz isis)iain T (X)]

T (10 22)(33) (4 ja)
= (I) + dI) + (D) + AV).
Terms (I)—(IV) are handled as follows:
e To handle (I), note that
Ed;T (X) =Ee; (S — I)X; — E[(tr(S)/N) X;;].

The first term satisfies

1 o _
Eej (S —DX; = EeJT<N > ka,j) X;=N""e]E(X; - 1 X:]°)
k=1

X; X
:N_leJTIE( ’ -||xl-||3)=N—‘e,TIE( ’)-E||x,-||3=o.
1 X1 X1

A similar identity holds for the second term, so (I) = 0.
e (IN) < p/N = o(p?) by noting that Ed, ),y T(X) = (N"' =2N72) - 8;,1,8/, .-
e (III) = 0 by direct calculation.
o (IV)=6 p2(1 + o(1)) by direct calculation.

The proof is now complete by collecting all of the estimates.
4). By (1)-(3), |Zllop < IIZ — Ilr + 1 and the condition p/N < M, we only need to
show that

NIz —=I|% V. /N|Z —I|>
5.16) VN]|| %V NI 1% - Cu

(N|Z =13 = Noy|tr(Z2 = 1)) ¢ Vorinw ~ (@r,Lnw A N)/2
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Note that with {A j}f:] denoting the eigenvalues of X,

p

> 02-1)

j=1

< VP(IZllop + DIZ = IIlr Sy VN(IZ = Ilp v D)IS — 1| F,

p
tr(Z* —1)| = gmjax(/\j+1)-2|xj—1|

j=1

(5.17)

so for N large enough, (5.16) is satisfied provided that

VN|Z - 1|%V /NI -5 B Cuy

(NIZ =13 = Clyv/NIIZ = IF)4 Vorinw _ (Ornw AN/

(5.18)

To see this, note that the left-hand side of the above display is bounded, up to a constant that

may depend on M, by
1 VNIZ — 1|7 VNIT =117

1«/ﬁ|\2—1||F§2C}V, o1 LNW + IWIIE—I\\PZCﬁw N|IZ = I3V orinw

— 112 N|Z —I|3
o 1 N VNI - 1I|% N VNI I

Yopinw  N|Z =1l Vornw  NIZ =13 Vorinw
- 1 n 1 n 1
“oprinw NY2infiso(x v

< RHS of (5.18).

oy,
1 ENW)
This completes the proof. [
5.2.4. Completing the proof for power expansion.

PROOF OF THEOREM 3.6. Abbreviate Wi nw by W. By Proposition 3.4 and Proposi-
tion 3.5, we have

. T
Eg@(X)—IP(./\/'(N (1= II|F+QLNW(E)),1>>Za>‘fc'p_1/3.
4o1.LNw

We only need to remove the residual term Qpnw(X). To see this, note that by (5.17),
|Qiaw (D) < CuN~2(IE = TIr vV DIE — 1]l F.
So using Lemma 2.5 we have

Com(XZ—1llFVv]D)

AP < s
~  NWY2|Z—I|F
where
N-(|Z =13 ) N-|T —1]|>3
APEP(N< (I I+ + OQranw( )),1>>Zo{>—P<N<M,1>>Za)-
4o, NW 4o, LNw

On the other hand, by anticoncentration of normal random variable,

MNW(HE —IlFVv DT —I|F

OI;LNW

AP <C
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Hence

(IIZ—=1Ilpv1l) NP2 -I|rvDIZ=1|F

NS — T)i7 OLLNW
i 1 N'2IE = 1)F
< 1||>3—I||F>1_N1/2 + lllﬁ—”Ffl[Nlﬂuz —1I|F A OT.LNW ]
1 1 !

< + = .
T N2 infoso(x v BN T (6w A N)2

Similarly we may get a lower bound for A P. The proof is complete. [
6. Proofs for Section 3.2 (testing sphericity).
6.1. Proofs for Section 3.2.1 (LRT).
6.1.1. Evaluation of derivatives.

LEMMA 6.1. Recall the form of Ty rr s(X) in (3.9) and the definition of b(S) in (3.10).
Then for any (i, j), (i’, j') € [IN] x [p]:

1. 8j) Tirrs(X) = (XU = S j) + (A/b(S) = DXij = e] [ = S™HX; + (1/b(S) —
DX;].

2. 3j.a i Tirrs(X) = N7IXTS ey X + Xi/e})S*lej + Sii/e;!—(l — 8 Dey +
(1/b(S) — 1)8;8;» — 2/Np)X;; X1 j /b*(S).

PROOF. (1). We shorthand T gt s(X) as T. By definition, (5.1) and (5.3), we have

N
dijHT(X) = (p d(ijylogtr(S) — 9;; logdet S)

_N( diptr(S) <. dlogdetS 8Skg>

2 tr(.S) ki1 0Ske  0Xjj

2p Xij L 1
- N c— (i Xig + 60 X
|:Ntl‘(S) k%:jl( )kZ N( kj it + £j lk)

p

p _
= ws) XU D (571 Xik

k=1

= (X(1—-s7"),; + (trfs) - 1>x,-,-.

(2). By the previous part, we have
8. jn T(X) = 8 jry (X (1 = S71)) 5 + 3(:/;/)( S 1) ij =D + (D).
The first term above is already calculated in Lemma 5.1-(2):

M =N"'X[S""(e; X + Xie])S™ ej +8ive] (I — S )ejr.
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So we only need to evaluate the second term:

- P
(ID=p-0gjytr IOR Xij+ (m - 1>3(i/j’)Xij

) p
=—p- a(i/j/) tr(S) : XZJ - tr (S) + <ﬁ - I)Bii/éjj/

2[7 -2 p
:—WXini/j/-tr (S)"F(@_l)gll’&]],

The proof is complete. [
6.1.2. Normal approximation.

PROOF OF THEOREM 3.7. We abbreviate 71 rt (X) as T. First we bound the norm for
the gradient. Comparing Lemmas 5.1-(1) and 6.1-(1), we only need to control

E[(b7'(S) = )X |7 =ENGHS) — 1) w(s))?

2
< N2p*-E24S) BV 7S - ) SN (%) =7

The inequality in the final line of the above display follows as

(6.1) Eb*(S) <E[Sllg, S 1,
*)
6.2) E(b~(S) — 1)* =EY2719(8) - EV2(b(S) — 1)'° < (pN—1)™.

Here (x) follows from Lemma C.4-(3). Now by combining with (5.7) derived in the proof of
Proposition 3.1, we see that E||VT (X) ||j.‘, < p4.

Next we bound the spectral norm of the Hessian. Comparing Lemmas 5.1-(1) and 6.1-(1),
we only need to control the spectral norms of 74 and 75, where

_ 2 _
(Tw)ijy, i jn = (b () - 18180, (Ts5) ijy, (it jry = _N—pxini/j’ b(S).

For T4, clearly || T4llop = [1/b(S) — 1], s0 E[| T34, = E(1/b(S) — )* < (p/N)* by (6.1). For
Ts, note that

sup

2
Isllop = w5
|| 5||0P Np . bZ(S) u,UGBNXP(l)

2
Z uijXij Xy jrpjr| = N 2 1 X1F = .
So E||T5||§p < Eb—4(S) = O(1) by Lemma C.4-(3). By combining with (5.11) derived in
the proof of Proposition 3.1, we see that E| V2T (X )||§p = O(1). The rest of the proof pro-
ceeds along the lines in the proof of Proposition 3.1, with the help of the variance formula in

Proposition 3.8-(3). [
6.1.3. Contiguity.

PROOF OF PROPOSITION 3.8.  We will abbreviate (T1.RT.s, " 5:LRT.s» O5:LRT.ss VS:LRT.s)
as (T,mx.5,0%., Vs.s), and assume without loss of generality that b(X) =tr(X)/p =1
(otherwise we may replace X by X - b~ (D).
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(1). By Lemma 6.1, with Sz, = N~' "N | 7,7, we have
1
b(ZI/ZSZEI/Z)

=7(z -5, ! 1)z = £y zs;!
=2E =520+ Gaess )RS s w457

Ty = [221/2(1 N R ( 1>Zzl/2]21/2

Hence

zZy Z |?

b(Z125,5172)  b(Sy)

V2. =El| s — Tisll} =EH

F

<2{E[< SR )2||ZE||2]+E[b2<S >||Z(2—1>H2]}
= b(El/ZSZEI/Z) b(Sz) F V4 F

= 2E((I) + (II)).
We bound (I) and (II) separately:
M) =b"2(225, V) p72(S)P*((Z — DS)IIZZ||%
<b (22522 (SDISz NG, - (I 1F/PIZIZIT — T
(D <b2(S2) - 1Z12 1= = 113
Using Lemmas C.2 and 4.4, we have

V23, S (s — 12+ )N|(E - D3

s~
On the other hand, a trivial bound for V% s is
EH zZy Z |?
b(Z128;%12)  b(S2) | F

SELA(ZV2S, 2231 + Bb 2 SHIZIE SN(IZ = 13V p).

2 _
VE;S -

Collecting the two bounds, we have
Vi SUpTIE = 1IF+ ON|E = DIFIAN(IZ = 117V p) < N|(E = D7
(2). As
N
my.g = E[p -Elogtr(XSz) — logdet(X) — plog p — Elogdet(Sz)],

by Lemma C.3 we have

Mmy.s —M.g = %[—logdet(E) + QS(Z)],
where
\QS(E)| = |p(IElogtr(2Sz) — Elogtr(Sz))]
SN HL+b(E?) + e N1+ () SN T[T +b(2)] SN 1B(2?),

where the last inequality follows as b(%?) = p~! Zle }\5 > p*Z(Zf:1 )\,j)z =1.
(3). Recall Ti gt defined in (3.4). Define

A(X) = TLrr(X) — Tirr, s (X).
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Then for any ¢ > 0, there exists some C, > 0 such that under the null (i.e., X1, ..., X, are

ii.d. N0, 1)),

6.3) [0 —&)of. gy — Ce Var; (D)), <0f gy < (14 8)0f gr + Ce Vars (A).

We will now bound Varj(A). By Lemmas 5.1-(1) and 6.1-(1), we have for any i, j € [N] X
[p]

i j) A(X) = 9 j) TLrT(X) — 9(;jy TLrT,s (X) = Xij[b_l(S) —1].
By the Gaussian—Poincaré inequality [5], Theorem 3.20,

Var; A(X) <E[b~(S) — 121X 1% = NpE[b(S) — 1]*b(S)

(%)
< Np -EY2(b(S) —1)* EY272(S) < Np- (Np)~' =

Here (x) follows from Lemma C.4-(3). Hence by choosing ¢ in (6.3) to be decaying to 0
slowly enough, 0’12; Lrr and 012; LRT,s Share the same asymptotic formula in Proposition 3.2-
3).

(4). By (1)—~(2), and using that b(Ez) =z ||%/p, we only need to prove that for a given
constant Cy > 0, there exists some constant C = C(Cp) > 0 such that

JNIZ = 1% C
<

2 = 12
(=N logdet(s) — Co(1 + 1212) — Coe=eN (L + 1)) v gy, (1 AN)

Equivalently, with A = (A1, ...,4,) € (0,00)” and r=p! >_j*j =1, we only need to

show
1/sz()»j —1)2
_on ZiAD12

a2
(N Zj —10g(1 =+ ()"j - 1)) - CO - Co(%) — C()e T)+ VOor.s

is at most a multiple of (o7,s AN) V2 LetJ ={j:|A;—1| <1}and JE={j: |r; — 1] > 1}.
As |1; — 1| S p, so the first term in the denominator becomes

12 2y1/2
ZJ)‘J'_CO cN(ZJ)‘

NZ log(1+ ;= 1)+ (*; — 1] = Co—Co i

zNZ(AJ-—1)2A|Aj—1|—clp—12(xj — 12—,
j j

Next, by breaking the summation in 3~ ; (4 — 1)2 into J and J¢, the above display equals

=D e —1)2
NZ()\.‘/—1)2+NZ|)\J_1|_C]ZJ€J(J ) ZJEJ(J ) _c

jed jel p
(N=Cip™)Y (= D*+(N=0M) Y ;11— C,
jeJ jeJe¢

N
> 2 0= DA = 1= C
J
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for N and p large enough. Hence with v; = |A; — 1|, we only need to show that for given
Co >0,

\/NZje]VJZ'V\/NZjeJCVJZ' _ c
(NYjesvi+ NEjejevj—Co)y Vors (O AN/

Equivalently, we only need to show

INY iesv3
(64) Z] ij C

< 9
(N Z_/ej VJZ' —Co)t Vv OJ;s (711./S2

INY e v?
(65) Z] J V] C

< .
(NZ]'GJCVJ‘ —C0)+\/O'1;s - Nl/2

To see these inequalities, note that the left side of (6.4) is bounded by

2
) (2Cp)'/? ) VN Zjesvj

<2C T o ey v}
N¥jervis2C™ g NZ,erJ>2CO(N/2)ZJ.EJv]2.vm;s

1 1 < —12
S 5 S On -
ors  infy>o(x vV =) '

Also, the left side of (6.5) is bounded by

\/NZjeJ‘ Vj
(N> jesevi—Co)y Vors
<1 (2Cy)1/? 1 \/NZ/'GJ" Vj
= NZ_/‘GJ" VjSZC() ﬁgl;s NngjL' Vj>2C() N Zje]f‘ Vj \V4 GI;S
1 1 1

N +—=73 :
\/NO'I;S \/N N1/2

proving the claim. [
6.1.4. Completing the proof for power expansion.

PROOF OF THEOREM 3.9. The proof is similar to that of Theorem 3.6, we provide some
details for the convenience of the reader. Without loss of generality we assume b(X) = 1.
Abbreviate W rt ¢ by ¥ and Q1 Rt s(X) by Q(X). By Theorem 3.7 and Proposition 3.8, we
have

13

Exw(X) —]P’(N(N - (—logdet(X) + Q(E))’ 1) - Za)

201;s

=C-p~

We only need to remove the residual term Q(X). To this end, we claim that

NQ(E)/\ 0(%) ]
o |logdet()|]’

6.6) AP sca[

where

app(p( VRO ) )y (Noede® )y

201;S 2U[;s
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Here the first bound in (6.6) is by anticoncentration of the normal distribution, and the second
bound in (6.6) follows from Lemma 2.5.
Let {kj}le be the eigenvalues of ¥ so that 25):1 Aj = p. Then by (3.11), Q(%) <

2(Np)_1 Zle )\%. Hence using the bound o7.; > cp, (6.6) entails that

P Zjll/\ (Np)l 11)‘3]

6.7) |AP|§C&-[ .

If max; A; < 10, we use the first bound in (6.7) to conclude that AP S, p~ I Otherwise, by
writing J {jelpl:Ir; —1|>1}and J¢ =[p]\J, the second bound in (6.7) yields that

apl<, — PTXjA ()T S e Gy = 2 V)TN 1D
~ zlem—lmu]—nzw Yjes =1
Np) 'y, —1)? -1
WP 2 e D) N = (D) + (D).

< +
Yjeslrj—1] Yjeslrj—1]
Now (II) SN~ ! as max; A; > 10, and (I) satisfies

O <(Np)~ max|k —1] <N_

by using the trivial bound that max; A ; < p due to the normalization 5(X) = 1. The proof is
complete. [

6.2. Proofs for Section 3.2.2 (John’s test).
6.2.1. Evaluation of derivatives.

LEMMA 6.2. Recall the form of T;(X) in (3.12) and the definition of be(S) in (3.10).
Then the following hold:

1. For the first-order partial derivatives: for any (i, j) € [N] x [p],

) /XS br($)\ _ X[Sej . ba(S)
8(’J)TJ(X)_(1)2(S) ‘X'b3<S>),,‘ B TSy

2. For the second-order partial derivatives: for any (i, j), (i’, j') € [N] x [p],

iy, ' jn T (X)

o i ba(S)

:b(S) 2(N léjj/XiTXl-r—i—N IXi/jX,'j/—FS,','/Sjj’)_81i’8jj’b3(S)
6by(S 4

b xi X 228) (X" Sej - Xivj + Xl Sejr - Xij]-

YEYTBAS)Np  B3(S)Np
PROOF. We abbreviate T77(X) by T(X) and write b = b(S) in the proof if no confusion

could arise.
(1). Note that 3;;S(X) = N~ (e; X[ + Xie]), 3j) r(S) = 2N~ X;; and

2 2 4
(6.8)  dujb(S) = —X,J,a(,J)bz(S) N—ptr(S(eriT—i-Xie;!—)):N—pXiTSej.
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For the first-order derivatives we have

N S S
a(,'j)T(X) = Ztr[Z(E — I>8(,-j)(g)}

N [(S 1) ‘ NN X[ + Xie[ )b — 2(Np)—lsx,~j]

= —t
2 b2

b

1 X;i

= 553 0[S =D (e; X1 + Xie])] - b3f t[(S — b1)S]
b? b b3 b

_ (X5)ij

by
ke Xij - 3= Th,ij)(X) — T2, i) (X).

(2). For the second-order derivatives,

3 in (X, Se)b* — (X Se o inb®
8 i Th iy (X) = L2 20 B NS

b4
Sive),Sej+ N\ X[ (ep X + Xpeldej 4 XTSe;- Xy
- b2 pN b3
N_15jj/XiTXi/+N_1X,-/inj/+5ii/Sjj/ _ iXiTsej'Xi/j/
b? pN b3 ’

by by
dirjn T, (U)(X)_(Sll/(sjj/b + Xij - i jr) b3

4X)) Sejr 6 Xy j/}
b3Np b*Np

by
= 8il’/6]-]'/ﬁ + Xl] .

b> 6b> axT 1
:8”/8“/§—X X//bN + X Se, lijNp.
Combining the above two displays, we have
o _ by
Aijy.ijnTX) =b(N~'8;; X Xir + N™' Xyrj Xijr + 8iirSjr) — 8iirdjj 3
+leXl'/j/m—b3N [X Se_] X /+X Se] lj]-

The proof is complete. [J
6.2.2. Normal approximation.

PROOF OF PROPOSITION 3.10. We abbreviate 7; by T and write b = b(S) in the proof
if no confusion could arise. First we bound the operator norm of the Hessian. By Lemma 6.2-
),
8. TX) = b2 (NT'8; X Xir + N™' Xirj Xijr + 8iirS )
— 8 b2 + Xii Xy -&— 4 [
Jps TSN T B3ND

= (T — T+ T35 — T4 ijy, @' j)-

X[ Sej- Xij+ X[ Sej - Xij]
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Following the proof of Proposition 3.4 along with Lemma C.2, we have E| T} ||§p <(1vyt
Next for 7>, we have by Lemma C.2 and Lemma 4.4 that

ElT2 [, SE(b3 - 6712 <EV2b3 - B2 SE'2|S|I5, S (1 v p)*.

op ~v

The operator norm of 73 can be similarly bounded by

6* by \* _ _
BTSN = oyosB| (77) 1XI | < vpy 208 - EVAb OB

S(Np)~H-EV2S - (Np)t S (v )t
Last,

T
Xi S€j . X,-/j/uijv,-/jr
@70 j"

i/j/

i,j

1 Tallop S

—_— Sup
B3ND  uveByy,(D)

1

=— " sup

B3NPy veByy,(D)

1
b3Np b3Np
Hence by Lemma 4.4 and Lemma C.2, E||T4(X) ||§p <(lv y)4. Putting together the bounds
for T1~Ty yields that E[| V2T (X)|[5, < (1 Vv y)*.

Next we bound the norm of the gradient. We will show that E|| VT (X) ||% < p? by consid-
ering the two cases p/N <1 and p/N > 1 separately.

(Case p/N < 1) By Lemma 6.2-(1), we may write

VI(X)=b"'X(b~'S—1)=b"'X -b(b~'S - 1)%

< ANIXSIF - I1XNF < NS llopl X117

)
4 _ _
IVT O[5 SBRIXNENS = bINE, + 07 2UXIFIS — b1,
SUXIE@ PSS = Ilig, + 57816 — 11* + b7 2| S = 15, + b~ b — 1°).
By Lemma 4.4 and Lemma C.4, it holds under the condition p/N <1 that
4 1 \2 1 4
E|TCO[F S NpX(N~'p)"+ (N'p)Y) S 0
(Case p/N > 1) By Lemma 6.2-(1), we have
XS|? | Xby|? XS Xb bbs — b3
R e e o e e
b? b3 |lp b’ b3 b3
= Np -E(bbs — b3) + Np - E(bb3 — b3) (b~ — 1) = (I) + (ID).
To handle (1), it holds by Lemma C.5-(4)(5) that under p > N,

Envr(X)Hi:E[

I = %E[tr(S) tr($%) — tr?(s%)] = %N—“O(N3 ) =0(p?).
To handle (II), it holds by Lemmas C.2, C.4-(3), and C.5-(6) that under p > N,
(I) = Np - E(bbs — b3)b~>(1 —b°) < Np - EV2(bb3 — b3)*E/4p~20EV4(p° — 1)*
< Np - (|[E(bbs — b3)| + Var'?(bbs — b3)) - EV*p~2E/4(5° — 1)*
=Np-O(N~1p)-001)-O((Np)~1?) = o(p?).
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Putting together the estimates for (I) and (II) yield that E||VT (X )||% = O(p?) under the
considered case p > N. The rest of the proof proceeds along the lines in the proof of Propo-
sition 3.4, with the help of the variance formula in Proposition 3.11-(3). The normal approx-
imation error bound becomes a constant multiple of
(1vy)-p_§v1_ 1
p? p  nAp

as desired. [J
6.2.3. Contiguity.
PROOF OF PROPOSITION 3.11. We assume without loss of generality that b(X) =

tr(X)/p = 1 (otherwise we replace X by X b~ H(D).
(1). By Lemma 6.2, with Sz = N~ YN | 7, ZT, we have

yZ.J _ {221/221/25221/2 B l/zbZ(ZI/ZSZZI/Z)} 12
’ bZ(EI/ZSZEI/Z) b3(21/25221/2)
_ ZXS;% by (21/25,%1/2)
- b2(21/25221/2) - b3(21/25221/2)’
SO
Tz — T3
_{ Z¥S7% ZSz } { by (Z1/285,51/2) bz(Sz)}
- bZ(Zl/ZSZEI/Z) bz(Sz) b3(21/25221/2) b3(Sz)
_{ Z2S7% ZSz } {bz(zl/zszzl/z) bg(Sz)}
- b2(21/25Z21/2) bz(Sz) b3(21/25221/2) b3(Sz)
b EI/ZS 21/2
_Zs-7). 2( z )

p3I (D125, %1/2)
= Vi(Z2) + Va(Z2) + V3(2).
We will handle the Frobenius norms of Vi(Z), V»2(Z), V3(Z) separately below. For Vi (Z),

VAT ZSy 2 ZS, AV K
”VI(Z)”?”5 2031/2 172y~ p2(31/2 172 +‘ 2(y1/2 172y~ 32
b2(Z1/28,21/2)y  p2(Z28,%1/2) | g b2(Z128,321/2)y  b2(SH | F
1

J— — 2'
=[ZX85zX - ZSz|% (D128, %1/2)

bZ(Zl/ZSZEI/Z) _ bZ(SZ)i|2

ZS7|% -
+ | Z”F |: bz(EI/ZSZEI/Z)bZ(SZ)

=Vii+ Vi
Note that
Via S22 ) (128828 = D7 + 1 2(2 = DSz|7)
S[BHEY2S2EY2) - 1SzI5,] - (115, V 1) - 1 ZIZ IS = 1TE
Via ISz 1Z1F0~ 4 (228,224 (S2)

x (tr((Z — DS2)/p)*(D*('2S7 %) v b2 (S2))
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SISzIlgb ™ (2128222~ (S) (> (212522 1%) v b (S2))]
x p N ZIFIZ ~ 1E
So under p/N < M, by Lemma C.2 and Lemma 4.4, we have
E[Vi(2)|% Su N(ISIZ, v DIE — 113

For V,(2),

by (125,172 bz(Sz))2
b3(21/25221/2) b3(Sz)

g2 ] (P2 E 28222 by(Sz)
~ || ||F b3(21/25221/2) - b3(21/25221/2)
+< by(Sz) B b2(52)>2}
b3(Z128,21/2)  b3(Sy)
=Vo1+ Voo

1Va(2)|% = ||Z||%(

Note that
(b2(=172872Y%) — by(S2))? = p 2t} (S8, 5 — S2)
< p 2 (S2(2 = DSZE) + t?(S2(Z — 1))}
Sp M ISzIg, (IS 1E/p+ DIE — 117

S USzIg, (1212, v VIS = 17,

(6.9)

SO
Va1 SIb0(ZV28222) 1821151 - (1215, v 1) - (P~ ZIE) - 12 = 111
Voo < 1IZ1367(2128 2120 70(52)b3(S2) (b(2V/2S22Y%) — b(S2))°
» (bz(Zl/zSzzl/z) +b(21/25221/2)b(52) +b2(Sz))2
S[O(E282 21 2)b0(S2) (b (31252 22) v 5*(82)) 152115, ]
x p UNZIFIE = 1115
Hence under p/N < M, by Lemma C.2 and Lemma 4.4, we have
E[V22) |7 Su N(IZ1Z, v DIE = 113

Last, recall that tr(¥) = p so using trace Holder inequality we have tr(SzXSzX) <
tr(X)[1SzXSzllop < pIISzllgpIIEHop, so V3(Z) satisfies

V3@ |7 < p72IZ = 113 - 11Z1I2, - b~ 8(282) -t (S 282 5)
<[~ (12522 ) 1SzlIg,] - 1213, - 1 Z1Igp IS = T
Hence under p/N < M, by Lemma C.2 and Lemma 4.4, we have
2
E|V3(2)|7 Su N(IB1Z, v DI = 1113

Combining the estimates proves the claim.
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(2). Recall the normalization b(X) = 1. Note that

bz(EI/ZSZEl/Z)
[b2(21/2sz21/2>}

Eby (2128, 31/2) 1 1
T Ep2(x12 - 1/2 +E[b2( 1/2SZEI/Z)< 2(y1/2 /2y~ Wp2(s1/2 172 )]
(Z128,%1/2) b2(Z128,21/2)  Eb2(EV28,%1/2)

b (X)
w (1N HBE

() bZ(E)
1+ 2tr(22)/(NP2)
1 1
E|by(2!/%s,51/? ( - >]
+ [2( z ) bA(T128,%1/2)  Eb2(T1/25,21/2)

_ bha(%) { [ 12¢. s1/2 1 1
by(z'2s, 3l ( — )]
bZ(Z) + + el Z ) PE(T128,51/2)  Eb2(s1/25,%1/2)

+ [(l—i-N_l)bZ(E) +ﬂ< : — 1) +N‘1b2(2)}

b2(%) 1+2tr(X?) - (Np?)~! b2 (%)
(%)
R

=2 + + R(%).

Here we use Lemma C.4-(1) in (%) and
1 1
R(Z)=E|by(=1/?5,%1/? ( — )]
(%) [ 2 z ) PA(TI25,51/2) ~ Eb2(21/28,5172)
1\ ba(3) P]( 1 ) 1 ba(%)
1+N~! = —1)+N
+ [( + )bz(E) + N I\1+2tr(X2)- (Np?)~! + b2(%)
=R (X)+ R (X) + R3(X).
As
1/2S221/2 2 Np bz(EI/ZSZEI/Z)
wer= (g - - L)
’ 4 b(Z1/28,%1/2) 4 b2(ZSz)
we have
_Np, 2
my;y —mpy= T(P IZ = I+ R(Z) — R(I)).
Now we handle R¢(X) — R;(I) for £ =1, 2, 3.
For ¢ =1,

|Ri1(Z) — Ri(])|

1 1
_ 1/2 1/2 —
_‘ |:b2( SZE )<b2(21/2S221/2) EbZ(zl/Zszzl/Z))

- bz(Sz)(bz(ISZ) B Ebzl(Sz)ﬂ‘

< ‘E[(bz(ﬁl/zSzzl/z) - bz<Sz>)( 1 - 1 )]’

b2(21/25221/2) Ebz(ZI/ZSZEI/z)

1 1
+ ‘E[” Z(SZ){(M(EI/ZSZEI/Z) - b2(52)>

- (Ebz(Zl/iSZZI/Z) B Ebzl(Sz))m
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=Ry + Ry .
The term R | can be handled as follows: by (6.9) Lemmas 4.4, C.2 and C.4, under p/N < M,
Rl,l §E1/4(b2(21/2szzl/2) _ bZ(SZ))4 . ]El/4b78(21/2521/2)
x Var'2(b* (2125, 512)) . (Ep*(2'/2521/?) 7!
Sup 2 [P (7 PIENE + DI — 1| F] - Var' 2 (1 (£52))
<u (N2p)  (p IS IF A+ DIE = 1 p.
For R; >, we have by Lemmas 4.4 and C.4 that, under p/N <M,

b3(Sy) —b3(ZV25,2V2)  Eb%(Sz) — Eb2(Z1/28,51/%)
RlaZZ‘E[bQ(SZ)< 23172 1/2\52 - 2(31/2 12\ 52 )”
b= (X 128,51/ )b=(Sz) Eb* (X2 128,51/ YEb(S7)

<Eby(S7)b (228,22 (S2)
x |b3(Sz) — 2(V2S,51/2) —E(b*(Sz) — b2 (2125, 5172))
+ |E(b*(Sz) — b*(2'/%252212))| - Eba(Sz2)

1 1
P2(S128,212)p2(Sz)  Eb2(S1/28,S12)Eb2(Sz)

<u Var'2(b*(Sz) — b (2125, 21/%))
+ [E(b?(Sz) — b* (212822 V2)| - (Va2 (b* (212 5,21/%)) v Var! 2 (7 (S7)))

d

() _ B _
Sy (INp)yNE —1r+p7 IS = 1e - (N2p) T (IS E v PP

~

SN2 e IS IE+ D)IE = ) r.
Here in (%) we use the fact that
IE(b?(Sz) — b*(21/25,21%)| < p'EV e (2 - 1)Sz)
<p IS = 1lr-EYV21S202, Su p” I = I .
Hence
_ < 12 \—1/ —1 2 _
R1(Z) = Ri(D| S (NV“p) (p IZNE + DIZ = 1| F.

For ¢ =2, with a(2) = 1/(1 4+ 2tr(£?)/(Np?)) — 1 (then |a(Z)| < 2/N and |a(l)| <
2/(Np)), we have

Ry(Z) = (1+ N by(D)a(2) + N~ ' pa(x),
SO
|R2(Z) — Ro(D)| S |b2(B)a(D) — ba(Da(D)| + [a(2) — a(l)| = Ra,1 + R

The two terms Rj 1, R2 2 can be handled as follows: using tr(x?) < p2 under b(X) =1, we
have

Ry1 Sha(D)]a() — a(D)| + |a(D)||b2(Z) — ba(D)]
< p! tr(Ez)(sz)_lhr(Z2 —D+Wp) - pTw(22 =)
SN VIS E+ V)IE = 1 F,

Roa S (NP2 (o7 211 F + DIS = I,
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SO
|R2(2) — Ro(D)| St (N T (1SN p /" + DI ~ 1.
For ¢ =3,
IR3(2) — R3(D)| = N~ bo(2) = 2| S (Np") " (ISl + DI — 1.
Now with Q5(2) = p(R(¥) — R(I)), we have
105(2)| S pmax{(N'2p) " (NpA) Y IZIZ + VIS — £
Su NTPTHZIE+DIZ = I)F,

and

N
myy—mpy=—(I% - I + Q3(D)).
(3). Recall T nw defined in (3.7). Let

A(X) = Tinw(X) — Ti(X).

Then for any € > 0, there exists some C, > 0 such that under the null (i.e., X1, ..., X, are

Li.d. NV(0, 1)),
6.10)  [(1 —&)of. nw — Ce Var (A)], <ofy < (1 + )0 nw + Ce Vars (A).

We will now bound Vary(A). By Lemmas 5.2-(1) and 6.2-(1), we have for any i, j € [N] x
[p]

i jH A(X) = 9 jy TLnw (X) — 9 j) Ty (X)

=(X(S—D-N"u®X),; - [%(% - I) - % b((% - 1)2)]0

- [X(S —1)— %(g B I):|ij + [Xb((S - b(S)I)z)(b_3(S) B 1)]i1

+[X (b2(S) — b*(S) — N~ tr(5))];;
= (A1 + A2+ Az)ij.
We now handle A1—As separately below. For Ay, by Lemmas 4.4, C.2 and C.4, we have
ElA1} SE62(1—5)%|X(S — D} +Eb~(1 - b1 XS]}
< NEb™2(1 — b)*||SllopllS — 113 + NEb~*(b — 1)*tr(S?)
SN-(pN)H - (A v ) (N7 p?) + NEVA ORIV (5 — 3R 12 (57)

)
<o(p?)+N-0O1)-(Np)~H-O(N2p* v p?) = o(p?).

Here in (x) the first bound follows by direct calculation and the second bound follows as: by
Lemma C.5-(7),

Etr(5%) < Ew?(S%)[S]I5, < B2 te*(8%) - EV2||S]l5,

< p*. (y2 vl)= (’)(N74p6 v p4).
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For Ay, using b((S —b(S)1)?) < (S = b)) ?lop S IISII5, V b(S), we have
Bl Az |7 SELO(b* v b* v 1) (b — D(ISIlg, v B2 I X117
SN (pN) - EMV2(ISIG, v b*) < (1 v )2 = 0 (p?).

For A3, let h(S) = by(S) — b*(S) — N~ tr(S), we have

E|As|: SEIX|Fh%(S) < NEV2 0 (S) - B0 (S)

SNp-[(ER(S)* + Var (h(8)) + E[ VRS ]2,
where the last inequality follows since
Er*(S) = [ER2(S)]* + Var(h*(S)) < 2[Eh(S))* + 2 Var?(h(S)) + Var(h*(S)]

<2(Eh(S))* + 2 Var? (h(S)) + 4ER2(S) | VA(S) |5

< 2(ER(S))* + 2 Var? (h(S)) + 4tER*(S) + C.E|VA(S) |
and choosing, say, T = 1/8. For EA(S), Lemma C.4 yields the direct evaluation
(A+NDHp+N~'p> p>+2N"'p p

Ea(S) =

P p? N
_ P 2 p 1 2 -
— (14N —_<1 —)——:———:ON .
(1+ )+N +Np N N Np ( )

For Var(h(S)), the Gaussian—Poincaré inequality [5], Theorem 3.20, yields that

4XTSe;  4X;b(S)  2Xii\>2
Var(h(S)) < E, o nh(S 2 () E( A - - U)
ar(h(S)) < 121:( ih(S)) ZX]: Np Np N?

S(Np)HEIXS|E +EPX(S)IX %) + NT*EI X%

< (NP T'Ew(S?)[Sllop + (Np)2(Np) + N~*(Np)
< (NpH) BV (SHEY2S)2, + (Np) T 4+ pN T3
SINP)T P AV )+ (Np) T+ pN T =o(N T p).
Here (xx) follows from (6.8). Last E||VA(S) ||A; can be bounded similarly:
E|VAS) |4 < (Np) 4 BIX S|4 +EL S)IX ) + N BN X |4 = o(N2p?).
Now by the Gaussian—Poincaré inequality ([5], Theorem 3.20),

2
Var;(A) <EY (36 AX))? SENAF +Ell A2 1% +ElAzll3 = o(p?).
ij
As 012;LNW ~ p?/4 — oo whenever N A p — o0, by taking ¢ in (6.10) slowly decaying to 0
we conclude 012; LNW ™~ 012; I
@). By (D-(2), as |IZ]1%/p SIZ = II%/p+ 1 SIIZ — I]lF Vv 1 [where we use || —

IlF < I1ZllF + /P < p+./p under tr(¥) = p], we only need to prove that given Co, we
may find some constant C > 0,

VNIZ = I|r(IVIIZ =1|F) C

6.11) < ‘
(NI — 113 = CoN'2IIZ = TIF(AVIIZ =P+ Vory ~ (or3AN)/?
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Write « = || X — ||, we only need to prove that

V' Na Vv /Na? - Cy

(Na?2 — CoN'2a)y vory = (op.3 AN)Y2

(6.12)

This follows as

1 VNa Vv +/Na?
LHS 0f(612)§ a<2CoN— 12— 017 +10{>2C0N l/21vaz—

5

Vor.g
1 1 1
S—+ +
or.J  N1/2 infy>o(or V o J/N) N1
1 1 1 1

< = .
~ o1.7 + 1/2 + N1/2 (UI;J A N)1/2

The proof is complete. [
6.2.4. Completing of the proof for power expansion.

PROOF OF THEOREM 3.12. The proof essentially follows that of Theorem 3.6 by noting
that the key property used therein is | QI nw(Z)| < Cy N~V2(|Z = I||p v D[ Z — 1| F, while
here we have |Qy(Z -6~ (2))| < CyuN~2IZ-07(2) — IIF = N72(IZ - 071 (D) -
IHpvDIS-p7'(Z) = I|p. O
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SUPPLEMENTARY MATERIAL

Supplement: Additional proofs (DOI: 10.1214/22-AAP1917SUPP; .pdf). In the supple-
ment [12], we collect the proof of auxiliary lemmas in the appendix.
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