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et al. 2022; Sasaki et al. 2021] we formulate SVBRDF estimation as a

di�usion task. Existing di�usion based image processing methods

rely on pre-trained large scale image di�usion models to sample

the distribution of natural images. However, the distribution of

SVBRDFs di�ers signi�cantly from natural images. We therefore in-

troduce a novel generative di�usion model geared towards spatially

varying materials. We introduce an unconditional backbone di�u-

sion model, named MatFusion, that synthesizes SVBRDF parameter

maps (i.e., di�use and specular albedo, specular roughness, and nor-

mals). We leverage ConvNeXt blocks [Liu et al. 2022] instead of the

typical Residual blocks [He et al. 2016] commonly used in di�usion

models to increase the number of activations without increasing

the parameter count to better model the 10 SVBRDF channels (ver-

sus 3 for images). Furthermore, training di�usion models typically

requires a signi�cantly larger training set than conventional convo-

lutional neural networks. To support training an SVBRDF di�usion

model, we supplement the INRIA synthetic SVBRDF dataset [De-

schaintre et al. 2018] with a new training set constructed from 1,877

synthetic SVBRDFs, that after augmentation with a novel mixing

strategy, together with the INRIA dataset, grows to 312,165 unique

training exemplars. Building on the MatFusion backbone, we also

introduce three conditional re�nements that di�er in their input: the

classic colocated camera-�ash image, a photograph under uncon-

trolled natural lighting, and a �ash/no-�ash image pair (Figure 1).

By changing the seed, all three models can produce a variety of

candidate SVBRDF replicates, from which the SVBRDF that best

matches the user’s expectation can be selected. Our backbone di�u-

sion network is trained using only SVBRDF parameter losses (i.e.,

without a rendering loss), and thus no backpropagation through a

di�erentiable renderer is needed. This allows us to train the con-

ditional di�usion network on input images that contain a more

complete characterization of the surface re�ectance by integrating

the normal maps and accounting for indirect lighting within the ma-

terial. While such indirect lighting does not contribute signi�cantly

for backscatter surface re�ectance, it does impact the visual appear-

ance signi�cantly for more complex lighting conditions (such as

natural lighting).

We demonstrate the e�cacy of �netuning the MatFusion back-

bone and show that the conditional di�usion networks produce

plausible SVBRDFs, and in case of colocated �ash lighting, with

equal or better quality than existing methods.

In summary, our contributions are:

(1) MatFusion: a backbone k-di�usion model that generates 10

channels of re�ectance properties;

(2) three conditional SVBRDF di�usion models re�ned from

the MatFusion backbone using a novel direct conditioning

strategy; and

(3) a training set of 312,165 unique synthetic SVBRDFs.

2 RELATED WORK

We focus the discussion of related work on learning-based genera-

tive and inference methods for modeling SVBRDFs.

Direct Inference Methods. Estimating spatially varying material

parameters from a single photograph is a di�cult problem. Leverag-

ing advances in neural networks, Li et al. [2017] and Ye et al. [2018]

demonstrate plausible SVBRDF capture from a single photograph

under unknown natural lighting, albeit restricted to a predeter-

mined class of materials (e.g., metals, plastics, etc.) Deschainte et

al. [2018] introduced the de-facto standard training set of approxi-

mately 200,000 synthesized SVBRDFs to train an inference network,

using a novel render loss, that estimates the SVBRDF property maps

from a single photograph lit by a colocated �ash light. Subsequent

work further improved the inference accuracy by exploring novel

architectures and loss functions [Guo et al. 2021; Li et al. 2018; Sang

and Chandraker 2020; Vecchio et al. 2021; Zhou and Kalantari 2021]

or supporting multiple input photographs [Deschaintre et al. 2019;

Ye et al. 2021]. Martin et al. [2022] capture SVBRDFs, albeit without

specular albedo, from outdoor photographs that include ambient

occlusion e�ects. All of the above methods are trained for a speci�c

input lighting condition; it is unclear to what degree the architec-

ture and loss are tuned to the expected lighting, and signi�cantly

changing the lighting condition during capture would require re-

training the network from scratch. In contrast, our method builds

on an unconditional SVBRDF di�usion backbone, trained indepen-

dently from the incident lighting, which can serve as a basis for

conditional �netuning. Furthermore, all the above methods produce

a single result per photograph, and o�er no strategies for producing

alternative estimates that can better explain the appearance.

Iterative Inference Methods. In contrast to direct inference meth-

ods that directly produce the target material property maps, itera-

tive inference methods perform an online optimization to minimize

a rendering loss with respect to the captured photograph. Gao et

al. [2019] and Guo et al. [2020b] perform the optimization in a

learned space modeled by an auto-encoder and a GAN respectively.

In both cases, the lighting condition is only considered during the

online optimization process, and the space of SVBRDFs is lighting

agnostic. Hence, these methods could in theory be applied to dif-

ferent lighting conditions. However, neither method provides an

interface for directing the optimization process to di�erent plau-

sible SVBRDFs. Furthermore, both methods tend to su�er from

over-�tting, resulting in burned-in highlights in the di�use albedo

maps. Zhou and Kalantari [2022] and Fischer and Ritschel [2022]

combat over�tting by combing direct inference and optimization-

based methods using meta-learning. While this greatly improves

the quality, the resulting trained networks are lighting speci�c. Our

method is also iterative, but unlike the above methods, we do not

minimize a render loss function, but instead solve a denoising dif-

ferential equation. Unlike prior iterative methods, our method can

produce di�erent replicate SVBRDFs by changing the input seed.

Generative Methods. Aittala et al. [2016] extend parametric tex-

ture synthesis to replicate the spatially varying appearance of a

mostly stationary material from a single �ash lit photograph of

an exemplar material. Similarly, Wen et al. [2022] train a GAN to

model the appearance from a photograph of a stationary mate-

rial. Henzler et al. [2021] employ a convolutional neural network,

conditioned on a latent code from a learned space, to convert a

random noise �eld into a random non-repeating �eld of BRDFs

that match the appearance of a �ash-lit photograph of a station-

ary material. Inspired by MaterialGAN [Guo et al. 2020b], Zhou et

al. [2022] and Hu et al. [2022a] introduce tileable material GANs

that allow for spatial control through an additional guidance im-

age. While these networks can produce some stochastic variations
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Input First Step EG Full Di�usion

Figure 3: For the �rst di�usion step, the denoising neural net-

work �\ fully relies on the input photograph (left) and acts

as a direct inference network (middle). However, in contrast

to direct inference, a di�usion model iteratively improves

the estimate (right) by reducing burn-in, adding detail in the

normal map, and improving di�use-specular separation.

mapping from the di�usion output to the condition. In the context

of SVBRDFs, this would be akin to driving the di�usion process

by the render error, risking burn-in artifacts. Recently, Zhang and

Agrawala [2023] showed that an existing unconditional di�usion

model can be conditioned by adding zero-initialized dense layers to

each skip connection, and providing them the outputs of a parallel

control network trained on the conditional task.

Inspired by Zhang and Agrawala [2023], we expand the input

head with : additional features with both weights and bias ini-

tialized with zeros (i.e., yielding an initial convolution kernel of

3 × 3 × (10 + :) × 128, and where : = 3# , and # is the number

of condition input photographs). Next, we �netune the backbone

model for the target type of input photographs (unlike direct con-

catenation which requires retraining from scratch). Compared to

ControlNet, our approach is easier to implement and incurs less

overhead as we do not need an additional control network (we

only expand the input head) at the cost of “polluting” the original

di�usion network.

Relation to Direct Inference. When the k-di�usion model is condi-

tioned on a photograph 2 of the target material, the model subsumes

direct inference methods. At C = ) , the signal ~ = 0G + 1= is purely

Gaussian noise (i.e., 0 ∼ 0), and hence �\ (~ |2; C) mostly relies on

the condition 2 to estimate the velocity (i.e., 0= − 1G ∼ G). For all

practical purposes, we can ignore the noisy input at C = ) , and thus

the expectation EG computed from the estimate of �\ (Equation (5))

closely mimics the behavior of a direct inference method. How-

ever, unlike direct inference methods, di�usion only takes a small

step towards the estimate and continues to improve the result in

subsequent steps. Figure 3 demonstrates that the expectation from

the �rst di�usion step is similar to the result of a direct inference

method; note all SVBRDF property maps shown in this paper are

ordered as: di�use albedo, specular albedo, roughness, normal map.

This initial estimate often exhibits burn-in, bended normals and

missing details, and imprecise di�use-specular separation, which

are reduced in subsequent di�usion steps.

4 TRAINING DATA

The MatFusion backbone model has 256M parameters, hence, train-

ing such a model requires a large and diverse training set. Deschain-

tre et al. [2018] augment 150 synthetic SVBRDFs to 199,068 training

exemplars by randomly perturbing parameters, scaling/rotating the

exemplars, and taking convex combinations. However, since the

dataset is augmented from only 150 SVBRDFs, the texture diversity

is limited and insu�cient to train our MatFusion backbone model.

To mitigate this issue, we collected and augment 307 additional syn-

thetic SVBRDFs from https://polyhaven.com and 1,570 additional

synthetic SVBRDFs from https://ambientcg.com.

The 307 SVBRDFs from Polyhaven are CC0 licensed and each con-

tains a unique di�use albedo map, normal map and roughness map

at 2: resolution. Polyhaven’s SVBRDFs do not come with a spec-

ular albedo. We therefore assign a homogeneous specular albedo

uniformly sampled in [0.04, 0.08]. The 1,570 SVBRDFs from Ambi-

entCG are also CC0 licensed, and all contain unique albedo, specular

roughness, and normal maps at 2: resolution. 274 SVBRDFs also

contain a metalness map. A homogeneous specular albedo is as-

signed (uniform random in [0.04, 0.08]) plus albedo times metalness

(if available). The di�use albedo is set to the albedo (scaled by one

minus metalness if available).

For each of the 1,877 SVBRDF maps we randomly crop 16 square

areas, each from from a random position, rotation, and size (be-

tween 512 and 1,400 pixels fully contained within the original maps).

Each cropped map was bilinearly resized to 512 × 512 resolution,

yielding a total of 30,032 basis SVBRDFs. To further diversify the

roughness maps, we randomly select 6,000 basis SVBRDFs, and

blend their roughness maps with procedurally generated maps. We

employ a randomly initialized dense neural network that trans-

forms each pixels’ (di�use + specular) albedo and height (obtained

by integrating the normal map [Quéau et al. 2018]) to a procedural

roughness value; see the supplemental material for more details.

Note, the randomly initialized network is not optimized and it

serves as a random non-linear transformation of albedo and height

to roughness.

To better mimic that real-world materials are often formed by

piece-wise constant combinations of di�erent basis materials (e.g.,

metal and rust), we create 83,065 additional piece-wise constant

mixtures from both the 199,068 INRIA SVBRDFs and the 30,032

basis SVBRDFs. For 66% we mix two randomly selected SVBRDFs

without replacement (i.e., each SVBRDF is only used in one mixture

material), and three SVBRDFs for the remaining 34%. We use a

randomly initialized dense neural network (detailed in the supple-

mental material) that transforms each pixels’ (di�use + specular)

albedo and height into a one-hot selection weight (for each of the

two/three source SVBRDFs). Similar as for the roughness generator,

the randomly initialized network is not optimized and it serves

as a random non-linear transformation and thresholding step. To

avoid unnatural hard edges, we perform the mixing on 2× bilinearly

upsampled randomly selected 288 × 288 crops from the INRIA or

basis SVBRDFs, and after mixing, (average) downsample again to

288 × 288 resolution.

Combining the INRIA training set (199,068 at 288 × 288 resolu-

tion), our basis SVBRDF set (30,032 at 512× 512 resolution), and the

mixture set (83,065 at 288 × 288 resolution) yields our �nal training
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Figure 4: Global illumination transport within the spatially

varying material is negligible for a colocated camera-light

setup. However, under natural lighting, the e�ects are signif-

icant (i.e., self-shadowing and ambient occlusion).

set with 312,165 training exemplars. In addition, we created a test

set of 50 materials that consists of a selection of 31 diverse mate-

rials from the Deep Inverse Rendering [Gao et al. 2019] test set, 6

materials from the look-ahead meta-learning [Zhou and Kalantari

2022] test set, 11 from Polyhaven, and 2 from AmbientCG. None of

the test materials are included in the training set.

5 RESULTS

Implementation. We implemented MatFusion in FLAX [Heek

et al. 2023] and train it for 50 epochs using the full 312,165 SVBRDF

training set (cropped to 256 × 256 resolution) using the AdamW

optimizer [Loshchilov and Hutter 2019] with a batch size of 32, a

learning rate of 2 × 10−5 (with a 100,000 iteration warmup), and

EMA weights [Song and Ermon 2020] on 4 Nvidia A40 GPUs with

48GB of memory. Training took approximately 255 hours.

We train three conditional variants of MatFusion. All three are

�netuned for 19 epochs on MatFusion using the full SVBRDF train-

ing set using the same optimizer and hyperparameters. Training

took approximately 102 hours on 4 Nvidia A40 GPUs, or 2.5× faster

than training MatFusion from scratch. The three variants di�er in

the expected lighting in the input condition photograph: colocated

�ash lighting, flash/no-flash, and natural lighting. The Colo-

cated variant is trained on synthetic photographs rendered with di-

rect illumination only, as indirect lighting is negligible for backscat-

ter re�ectance. However, indirect lighting signi�cantly a�ects the

appearance of spatially varying materials (Figure 4). Therefore, the

Natural and Flash/no-flash variants are trained on images ren-

dered with Blender’s Cycles path-tracer with 32 samples per pixel

with OpenImageDenoise using the height map as the material’s

geometry obtained by integrating the surface normals [Quéau et al.

2018]; we use the original normal maps to determine the shading

normals. Natural illumination is modeled by randomly selecting

and rotating an HDR environment map from 560 CC0 licensed HDR

environment maps retrieved from https://polyhaven.com/hdris. For

the Flash/no-flash variant, the log relative brightness ratio be-

tween the �ash lighting and the environment lighting is randomly

sampled between log(1/50) and log(3/2). Both the Natural and

Flash/no-flash variants are trained on images rendered with a

virtual camera with a focal length of 35mm (i.e., camera distance =

exemplar size). TheColocated variant is trained for a variable cam-

era distance (with matching FOV) sampled according to a 1
2 Γ(2, 2)

distribution (relative to the exemplar size), and we concatenate the

per-pixel view vector as an additional input condition.

During inference, the di�erential equation is iteratively solved

using the EulerA solver [Song et al. 2021b] in just 20 steps and with

the guidance scale set to 1.

Selection. The conditional SVBRDF di�usion models take, be-

sides the input photograph, also a normal distributed random �eld

determined by a seed. By changing the seed, di�erent replicates of

the SVBRDF can be generated (Figure 5). The choice of the seed

can impact the quality of the result. Therefore, we show results

selected with one of the following three selection strategies:

(1) Fixed seed: the seed is �xed for all results.

(2) Render error selection: we render the generated SVBRDFs

from 10 random seeds and select the one that minimizes the

LPIPS error [Zhang et al. 2018] when rendered under the

capture lighting conditions.

(3) Manual selection: a set of 10 SVBRDFs generated with di�er-

ent random seeds are presented and the usermanually selects

the SVBRDF that appears (subjectively) the most plausible.

We also experimented with optimizing the input random �eld on

the render error, but found that this tends to produce burn-in of

the specular highlight. While the majority of seeds do not produce

burn-in, those that do are scattered through the whole space. Thus

no matter the starting point, there is always a nearby point that

produces burn-in which the optimization will inevitably drive the

solution towards.

Synthetic Results. Figure 9 compares the estimated SVBRDFs,

manually selected from 10 random seeds, for 6 selected synthetic

materials for each of the three conditional di�usion models. For

each material, we show two renderings under di�erent point lights

for each of the models and the reference. In general, the colocated

model produces the most consistent results due to the known light-

ing, although it sometimes fails to recover the specular re�ectance

on small features (e.g., the nob in the 2nd material) or produces

unexpected texture variations (e.g., the center of the 6th material).

The results from the natural model exhibit a greater variability

in accuracy, such as incomplete di�use-specular separation (4th

example), or underestimation of specular roughness (6th example).

Nevertheless, the resulting SVBRDFs are still plausible, demonstrat-

ing the ability of MatFusion to recover the SVBRDFs of general

spatially varying materials under unknown lighting. The Flash/no-

flashmodel bene�ts from having an input without strong specular

highlights (i.e., no-�ash) to better recover the di�use texture. On

the other hand, due to the unknown relative brightness of the nat-

ural lighting versus the �ash lighting, it sometimes underestimates

either the di�use albedo (e.g., 4th material) or the specular rough-

ness (e.g., 3rd material). The Flash/no-flash model shows that

MatFusion can be conditioned on more than one input.

Comparison to Prior Work. Figure 10 compares the colocated

variant for each of the three selection methods (�xed seed, render

error, andmanual selection) against the adversarial direct inference

method of Zhou and Kalantari [2021] and the meta-learning look-

ahead method of Zhou and Kalantari [2022] on synthetic SVBRDFs.

Qualitatively, the colocated model produces a more plausible ap-

pearance and the corresponding property maps appear “cleaner”.

These qualitative conclusions are supported by the average LPIPS
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Figure 5: Changing the seed results in di�erent SVBRDF replicates conditioned on the input photograph. For each replicate we

show a rendering under a di�erent lighting than the input photograph as well as the generated SVBRDF property maps. Also

marked are the SVBRDF selection based on the render error with respect to the input lighting, as well as the manual selection

of the (subjectively) most plausible SVBRDF.

Table 1: Quantitative comparison of average RMSE on the

property maps and average LPIPS errors on 128 renders lit by

a uniformly sampled point light on the hemisphere for the

colocated conditioned MatFusion model versus Zhou and

Kalantari’s [2021] adversarial inference method and Zhou

and Kalantari’s [2022] meta-learning look-ahead method.

LPIPS RMSE

Render Di�. Spec. Rough. Normal

Adversarial 0.2304 0.0439 0.0859 0.1358 0.0577

Adversarial (retrained) 0.2292 0.0405 0.0795 0.1276 0.0545

Look-ahead 0.2647 0.0591 0.0727 0.1424 0.0572

MatFusion (�xed seed) 0.2282 0.0427 0.0691 0.1252 0.0561

MatFusion (render err.) 0.2138 0.0440 0.0657 0.1282 0.0543

MatFusion (manual) 0.2056 0.0412 0.0666 0.1265 0.0524

[Zhang et al. 2018] render error listed below. We render each ex-

emplar over a set of 128 randomly selected point lights on the

hemisphere (with a radius of 2.41 units to match the training (and

thus o�er a best case evaluation) of Zhou and Kalantari [2021;

2022]), as well as in Table 1 for manual selection on the whole

test set of 50 materials. We argue that a perceptual render error is

the best metric for comparing the di�erent methods as di�erent

maps can produce similar material appearances. For completeness,

Table 1 also lists the RMSE errors over the SVBRDF property maps.

We also include a comparison to Zhou and Kalantari’s adversarial

direct inference method retrained using our training set. MatFusion

is a generative model which does not guarantee pixel-perfect align-

ment, which can result in sometimes a larger error on texture-rich

property maps (e.g., 6th row) or unobserved properties (e.g., 2nd

row). However, qualitatively, these property maps include �ne de-

tails, albeit not perfectly aligned with the reference. In contrast, the

look ahead-method of Zhou and Kalantari [2022] produces normal

maps with little detail, resulting in a low error, but distributed over

the whole map. Figure 10 also demonstrates that the render error

selection can provide a good match (e.g., 1st and 5th row), but it

can also over�t (e.g., 3rd row).

Real-world Validation. Figure 6 and Figure 7 demonstrate that

MatFusion generalizes well to real-world captures. The results

in Figure 6 are manually selected from 10 random seeds and vali-

dated on the materials captured by Guo et al. [2020b] which also

contain reference photographs captured under di�erent lighting

conditions. Our results are visually closer to the reference than the

Table 2: Achitecture ablation study of average RMSE on the

property maps and average LPIPS render errors on 128 visu-

alizations lit by a uniformly sampled point light, compar-

ing the impact of using Residual convolution blocks versus

ConvNeXt convolution blocks, and comparing the di�erence

between using ControlNet and our direct conditioning.

LPIPS RMSE

Render Di�. Spec. Rough. Normal

ResNet+Control 0.2655 0.0525 0.0813 0.1536 0.0545

ConvNeXt+Control 0.2731 0.0517 0.0764 0.1428 0.0604

ResNet+Direct 0.2093 0.0432 0.0682 0.1055 0.0528

ConvNeXt+Direct 0.2056 0.0412 0.0666 0.1265 0.0524

adversarial direct inference method of Zhou and Kalantari [2021],

and the look-ahead method of Zhou and Kalantari [2022]. Our

method su�ers less from specular burn-in (1st example) and over-

�tting normal detail to specular highlights in the input (2nd and

3rd example).

The materials in Figure 7 are captured in-the-wild by us using

a Pixel 5a cell phone, and we manually select the most plausible

SVBRDFs. Note that these images are captured under unknown

natural lighting, and due to the uncontrolled nature of the cap-

ture conditions, no reference photographs under di�erent lighting

conditions are available. Nevertheless, the SVBRDF property maps

nicely separate di�use and specular, and the renderings plausibly

capture the appearance from the input photographs.

Ablation Study. We perform an ablation study to justify the

design decisions with respect to the architecture of MatFusion

(Table 2). We validate both the impact of using Residual versus

ConvNeXt convolutional blocks and using ControlNet versus di-

rect conditioning. For all models we compute the average RMSE on

the property maps and average LPIPS error on renders under the

same set of random point lights for each of the 50 test materials.

From Table 2, we observe that ConvNeXt layers slightly outperform

Residual convolutional blocks on LPIPS error and ∼5% better on

RMSE on the albedos; the lower roughness error for ResNet is due

to a few outlier materials. Furthermore, direct conditioning outper-

forms ControlNet on all metrics, while training time is similar for

both, except that ControlNet requires signi�cantly more memory

resources. We posit that the di�erence in performance is due to

ControlNet only receiving indirect feedback (by copying the initial

weights) of the di�usion network it aims to control, whereas direct
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Figure 6: Qualitative comparison on real-world materials captured with a colocated light source, and relit from two di�erent

point light positions.

Input SVBRDF Render

Figure 7: Demonstration of in-the-wild SVBRDF capture un-

der uncontrolled unknown natural lighting and revisualized

under novel lighting.

conditioning closely intertwines both control and synthesis. Fur-

thermore, our input conditions are more strict, leaving less room

for synthesis than typical ControlNet conditions (e.g., sketches).

However, our conclusions with respect to ControlNet are only vali-

dated for MatFusion using photographs as conditions, and further

investigations are needed to ascertain whether these conclusions

extend to other di�usion networks and/or condition types.

Input SVBRDF Render

Figure 8: Failure case: arti�cial “blob-like” normal maps.

Limitations. MatFusion is a generative SVBRDFmodel, and it has

trouble generating pixel-perfect reproductions. Hence, MatFusion

does not necessary produce the lowest errors on pixel-basedmetrics.

Furthermore, as a generative model, MatFusion is better suited for

capturing materials with organic structures than those with regular

straight lines. We posit that this is the reason why MatFusion tends

to produce higher quality results on real-world captures than on

artist-generated materials which are more regular. This causes

MatFusion to sometimes generate properties maps that look too

arti�cial (Figure 8). Furthermore, MatFusion is currently limited to

256 × 256 resolution SVBRDFs. Finally, the render error selection

requires prior knowledge of the lighting condition, hampering

automatic selection from photographs under unknown lighting

(e.g., natural lighting). Furthermore, it does not always yield a good

selection because oversaturation canmake it di�cult to di�erentiate

between two SVBRDFs that produce a similar rendered replica but

that substantially di�er in quality. Ideally, we would like to employ

a selection criterion that judges plausibility of the SVBRDFs.
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6 CONCLUSION

We presented MatFusion, a generative SVBRDF di�usion model

trained on a new large and diverse training set of synthetic SVBRDFs.

MatFusion can subsequently serve as a starting point for re�ning

an SVBRDF di�usion model conditioned on captured images under

some target lighting condition. We demonstrated the �exibility and

e�cacy of MatFusion by training three conditional variants: one

for photographs captured with a colocated �ash light, one under

unknown and uncontrolled natural lighting, and one for �ash/no-

�ash image pairs. An advantage of using a generative SVBRDF

model is that di�erent replicates can be synthesized by changing

the seed, allowing user to select the most plausible replicate. For fu-

ture work we would like to investigate more comprehensive metrics

for automatic selection, and better regularization during training

and/or inference for modeling regular features. Based on the recent

successes in coupling large language models with di�usion models,

another interesting avenue would be to explore better authoring

tools for SVBRDF creation.
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Reference Colocated Natural Flash/no-flash

Figure 9: Comparison of the Colocated, Natural, and Flash/no-flash conditional di�usion models on a variety of synthetic

SVBRDFs.
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Input Reference Fixed Seed Render Error Manual Zhou et al. [2021] Zhou et al. [2022]

Average LPIPS Render Error: 0.1762 0.0984 0.0984 0.2450 0.2170

Average LPIPS Render Error: 0.2324 0.2391 0.2146 0.2930 0.3076

Average LPIPS Render Error: 0.3067 0.3129 0.2897 0.3297 0.3213

Average LPIPS Render Error: 0.2192 0.2317 0.2080 0.2350 0.2656

Average LPIPS Render Error: 0.1764 0.1764 0.1728 0.2797 0.3967

Average LPIPS Render Error: 0.3273 0.3044 0.3044 0.3312 0.3932

Figure 10: Qualitative comparison ofMatFusion conditioned on colocated lighting (�xed seed, render error, andmanual selection)

against the adversarial direct inference of Zhou and Kalantari [2021] and the meta-leanring look-ahead method of Zhou and

Kalantari [2022]. The LPIPS errors are averaged over visualizations under 128 di�erent point lights sampled on the hemisphere

surrounding the sample.
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