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Figure 1: SVBRDF diffusion estimates visualized with integrated normal maps and global illumination for four different
spatially varying materials captured by: a colocated flash photograph (1st and 2nd), a photograph captured under uncontrolled

natural lighting (3rd), and a flash/no-flash image pair (4th).

ABSTRACT

We formulate SVBRDF estimation from photographs as a diffusion
task. To model the distribution of spatially varying materials, we
first train a novel unconditional SVBRDF diffusion backbone model
on a large set of 312,165 synthetic spatially varying material exem-
plars. This SVBRDF diffusion backbone model, named MatFusion,
can then serve as a basis for refining a conditional diffusion model
to estimate the material properties from a photograph under con-
trolled or uncontrolled lighting. Our backbone MatFusion model is
trained using only a loss on the reflectance properties, and therefore
refinement can be paired with more expensive rendering methods
without the need for backpropagation during training. Because
the conditional SVBRDF diffusion models are generative, we can
synthesize multiple SVBRDF estimates from the same input photo-
graph from which the user can select the one that best matches the
users’ expectation. We demonstrate the flexibility of our method by
refining different SVBRDF diffusion models conditioned on differ-
ent types of incident lighting, and show that for a single photograph
under colocated flash lighting our method achieves equal or better
accuracy than existing SVBRDF estimation methods.

CCS CONCEPTS

« Computing methodologies — Reflectance modeling.
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1 INTRODUCTION

Reproducing the visual appearance of real-world spatially varying
materials is a challenging research problem that requires balancing
multiple competing goals such as ease of capture, robustness, accu-
racy of the reproduction, and suitability for post-production editing.
The most promising recent solutions leverage machine learning to
produce Spatially Varying Bidirectional Reflectance Distribution
Function (SVBRDF) parameter maps that correspond to one or more
photographs of the target material. These methods are convenient
and can produce plausible SVBRDFs. However, SVBRDF modeling
is inherently ambiguous as multiple parameter combinations can
explain the (underconstrained) appearance observations of the ma-
terial, and there is no recourse when the inferred property maps fail
to reproduce plausible material properties; there are typically no
additional hyper-parameters that can be tuned to produce alterna-
tive solutions. Furthermore, these machine learning based methods
are trained for a specific type of incident lighting, and modifying
the input lighting often requires a lengthy retraining step and an
appropriate corresponding loss.

Inspired by recent successes in using diffusion models [Karras
et al. 2022; Rombach et al. 2022; Song et al. 2021b] for image syn-
thesis tasks such as image restoration [Dhariwal and Nichol 2021;
Ho et al. 2020, 2022], super-resolution [Kadkhodaie and Simoncelli
2021; Saharia et al. 2023], and image-to-image translation [Saharia
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et al. 2022; Sasaki et al. 2021] we formulate SVBRDF estimation as a
diffusion task. Existing diffusion based image processing methods
rely on pre-trained large scale image diffusion models to sample
the distribution of natural images. However, the distribution of
SVBRDFs differs significantly from natural images. We therefore in-
troduce a novel generative diffusion model geared towards spatially
varying materials. We introduce an unconditional backbone diffu-
sion model, named MatFusion, that synthesizes SVBRDF parameter
maps (i.e., diffuse and specular albedo, specular roughness, and nor-
mals). We leverage ConvNeXt blocks [Liu et al. 2022] instead of the
typical Residual blocks [He et al. 2016] commonly used in diffusion
models to increase the number of activations without increasing
the parameter count to better model the 10 SVBRDF channels (ver-
sus 3 for images). Furthermore, training diffusion models typically
requires a significantly larger training set than conventional convo-
lutional neural networks. To support training an SVBRDF diffusion
model, we supplement the INRIA synthetic SVBRDF dataset [De-
schaintre et al. 2018] with a new training set constructed from 1,877
synthetic SVBRDFs, that after augmentation with a novel mixing
strategy, together with the INRIA dataset, grows to 312,165 unique
training exemplars. Building on the MatFusion backbone, we also
introduce three conditional refinements that differ in their input: the
classic colocated camera-flash image, a photograph under uncon-
trolled natural lighting, and a flash/no-flash image pair (Figure 1).
By changing the seed, all three models can produce a variety of
candidate SVBRDF replicates, from which the SVBRDF that best
matches the user’s expectation can be selected. Our backbone diffu-
sion network is trained using only SVBRDF parameter losses (i.e.,
without a rendering loss), and thus no backpropagation through a
differentiable renderer is needed. This allows us to train the con-
ditional diffusion network on input images that contain a more
complete characterization of the surface reflectance by integrating
the normal maps and accounting for indirect lighting within the ma-
terial. While such indirect lighting does not contribute significantly
for backscatter surface reflectance, it does impact the visual appear-
ance significantly for more complex lighting conditions (such as
natural lighting).

We demonstrate the efficacy of finetuning the MatFusion back-
bone and show that the conditional diffusion networks produce
plausible SVBRDFs, and in case of colocated flash lighting, with
equal or better quality than existing methods.

In summary, our contributions are:

(1) MatFusion: a backbone k-diffusion model that generates 10
channels of reflectance properties;

(2) three conditional SVBRDF diffusion models refined from
the MatFusion backbone using a novel direct conditioning
strategy; and

(3) a training set of 312,165 unique synthetic SVBRDFs.

2 RELATED WORK

We focus the discussion of related work on learning-based genera-
tive and inference methods for modeling SVBRDFs.

Direct Inference Methods. Estimating spatially varying material
parameters from a single photograph is a difficult problem. Leverag-
ing advances in neural networks, Li et al. [2017] and Ye et al. [2018]
demonstrate plausible SVBRDF capture from a single photograph
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under unknown natural lighting, albeit restricted to a predeter-
mined class of materials (e.g., metals, plastics, etc.) Deschainte et
al. [2018] introduced the de-facto standard training set of approxi-
mately 200,000 synthesized SVBRDFs to train an inference network,
using a novel render loss, that estimates the SVBRDF property maps
from a single photograph lit by a colocated flash light. Subsequent
work further improved the inference accuracy by exploring novel
architectures and loss functions [Guo et al. 2021; Li et al. 2018; Sang
and Chandraker 2020; Vecchio et al. 2021; Zhou and Kalantari 2021]
or supporting multiple input photographs [Deschaintre et al. 2019;
Ye et al. 2021]. Martin et al. [2022] capture SVBRDFs, albeit without
specular albedo, from outdoor photographs that include ambient
occlusion effects. All of the above methods are trained for a specific
input lighting condition; it is unclear to what degree the architec-
ture and loss are tuned to the expected lighting, and significantly
changing the lighting condition during capture would require re-
training the network from scratch. In contrast, our method builds
on an unconditional SVBRDF diffusion backbone, trained indepen-
dently from the incident lighting, which can serve as a basis for
conditional finetuning. Furthermore, all the above methods produce
a single result per photograph, and offer no strategies for producing
alternative estimates that can better explain the appearance.

Iterative Inference Methods. In contrast to direct inference meth-
ods that directly produce the target material property maps, itera-
tive inference methods perform an online optimization to minimize
a rendering loss with respect to the captured photograph. Gao et
al. [2019] and Guo et al. [2020b] perform the optimization in a
learned space modeled by an auto-encoder and a GAN respectively.
In both cases, the lighting condition is only considered during the
online optimization process, and the space of SVBRDFs is lighting
agnostic. Hence, these methods could in theory be applied to dif-
ferent lighting conditions. However, neither method provides an
interface for directing the optimization process to different plau-
sible SVBRDFs. Furthermore, both methods tend to suffer from
over-fitting, resulting in burned-in highlights in the diffuse albedo
maps. Zhou and Kalantari [2022] and Fischer and Ritschel [2022]
combat overfitting by combing direct inference and optimization-
based methods using meta-learning. While this greatly improves
the quality, the resulting trained networks are lighting specific. Our
method is also iterative, but unlike the above methods, we do not
minimize a render loss function, but instead solve a denoising dif-
ferential equation. Unlike prior iterative methods, our method can
produce different replicate SVBRDFs by changing the input seed.

Generative Methods. Aittala et al. [2016] extend parametric tex-
ture synthesis to replicate the spatially varying appearance of a
mostly stationary material from a single flash lit photograph of
an exemplar material. Similarly, Wen et al. [2022] train a GAN to
model the appearance from a photograph of a stationary mate-
rial. Henzler et al. [2021] employ a convolutional neural network,
conditioned on a latent code from a learned space, to convert a
random noise field into a random non-repeating field of BRDFs
that match the appearance of a flash-lit photograph of a station-
ary material. Inspired by Material GAN [Guo et al. 2020b], Zhou et
al. [2022] and Hu et al. [2022a] introduce tileable material GANs
that allow for spatial control through an additional guidance im-
age. While these networks can produce some stochastic variations
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around the expected value, they do not effectively sample the dis-
tribution conditioned on the input image. In contrast our method
samples the conditional SVBRDF distribution that better adheres to
the input material’s appearance. An alternative strategy to directly
synthesizing the SVBRDF property maps, is to generate a proce-
dural model [Guerrero et al. 2022; Hu et al. 2022b; Shi et al. 2020].
The parameters of such procedural models can be matched to the
appearance of an exemplar in a photograph [Guo et al. 2020a]. How-
ever, current procedural methods are limited to specific material
classes.

3 SVBRDF DIFFUSION MODEL

Preliminaries. We model the appearance of a planar spatially
varying material by an SVBRDF, where each surface point’s re-
flectance is modeled by a microfacet BRDF with a GGX distribu-
tion [Walter et al. 2007] parameterized by its diffuse albedo, specular
albedo, and monochrome specular roughness. In addition, we model
the local surface variations by a normal map.

MatFusion. We first model the distribution of SVBRDFs using
an unconditional diffusion model, named MatFusion, that we will
subsequently refine based on the capture conditions. The basic
observation of diffusion modeling is that adding noise to a signal
(e.g., image) is a destructive process, and hence the process of re-
moving noise must therefore be generative. In the limit, an entirely
synthetic signal can be generated by starting from pure random
Gaussian noise, and iteratively denoising the signal [Ho et al. 2020].
Formally, the goal of a generative model is to sample a random vari-
able according to a target data distribution xo ~ pgata- In a diffusion
model, we consider a sequence of related random variables x1 5 1
where each subsequent variable is increasingly more noisy until xr
is indistinguishable from pure Gaussian noise:

plxtlx) = N (x0,07) 1)

with o; > o;—1. The diffusion process itself repeatedly samples
p(xr—1|x;) starting with t = T and ending when ¢t = 0 [Ho et al.
2020; Song et al. 2021a]. This differs from a traditional generator
(e.g., GAN) that samples xy directly. Song et al. [2021b] formulate
diffusion as a differential equation that maintains the distribution
p as x evolves over time. The change in x with time ¢ is then?:

dx = —6(t)o(t)Vyx log p(x; 0(1))dt, (2)

where &(t) denotes the time-derivative of o(t). Vx log p(x; o(t)) is
also called the score function: a vector that points towards the high-
est density of probable signals. The differential denoising equation
can then be solved by taking discrete time-steps to evolve the solu-
tion (e.g., using an Euler method) using Equation (2). To compute
the score function, we define a neural denoising network Dg(x;;t)
that minimizes the expected error on samples drawn from pga¢a
for every o;. To avoid that the inputs of Dy grow with increasing

o1, it is standard practice to normalize the estimate x; by /1 + o2,

Denoting the normalization factor of x; as a, abstracts the network
input y as ax + bn s.t. a® + b? = 1, where n is Gaussian distributed
noise 2. Karras et al. [2022] introduced a robust diffusion variant,

1We assume no time-dependent signal scaling, i.e., s(t) = 1.
2@ and b in this case correspond to V& and V1 — & in [Ho et al. 2020].
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Figure 2: Summary of the MatFusion architecture.

named k-diffusion, that instead of estimating the noise as in prior
diffusion models, estimates the “velocity” an—bx (note the swapped
position of n and x and change of sign for the second term) such
that the denoising network Dg minimizes the loss function:

Ex~paua En~n(0.1) 1Do (yst) = (an = bx) |13, (3
This allows us to estimate both the expectation of noise and signal
with equal ease by leveraging that a® + b% = 1:

E, = by + aDy(y; ), (4)
Ex ~ ay — bDg(y; t). ©)

Note that depending on a (which depends on o(t)), the output of
the neural network Dy varies from an estimate of the signal x to
and estimate of the noise n when t — 0.

Architecture. In this paper we follow the normalization and
sampling schedule (i.e., o(t)) from [Ho et al. 2020], but use the
k-diffusion loss function for Dy. Our architecture for Dy is inspired
by Dhariwal et al. [2021]’s ImageNet-256 U-net architecture with 6
resolutions for the encoder and decoder (Figure 2). To accommodate
for the larger number of channels (10 for SVBRDFs vs. 3 for images),
we employ a 3 X 3 X 10 X 128 convolution kernel to transform the
10 input channels into 128 features. We replace the Residual con-
volution blocks with ConvNeXt blocks [Liu et al. 2022] to increase
the number of activations for the same number of parameters; we
argue that the higher channel count benefits from more activations.
We follow DDIM [Song et al. 2021a] and encode t as a 512-length
feature (using Fourier embedding and a 2-layer MLP) and pass it to
each ConvNeXt block as a dense residual layer between the 7 x 7
convolution and the first depth-wise convolution. Similar to DDIM,
all layers use a group norm with 32 groups, and the 32 and 16
resolution layers include self-attention blocks (with 8 heads) after
each ConvNeXt block, as well as an additional attention-layer at
the bottleneck. We follow the method of Rabe et al. [2021] to reduce
the memory overhead of the attention layers during training.

Conditional SVBRDF Diffusion Model. In order to recover a plau-
sible SVBRDF from a photograph, we need to make the SVBRDF
diffusion backbone network conditional on the photograph. One
possible strategy to condition the neural network Dg on additional
input images is by concatenating them to the input noise [Saharia
et al. 2022; von Platen et al. 2022]. However, this would require
retraining the diffusion network from scratch which is very costly.
Vonyov et al. [2022] perform sketch-guided text-to-image diffu-
sion by backpropagating the loss over the condition and an inverse
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Figure 3: For the first diffusion step, the denoising neural net-
work Dy fully relies on the input photograph (left) and acts
as a direct inference network (middle). However, in contrast
to direct inference, a diffusion model iteratively improves
the estimate (right) by reducing burn-in, adding detail in the
normal map, and improving diffuse-specular separation.

mapping from the diffusion output to the condition. In the context
of SVBRDFs, this would be akin to driving the diffusion process
by the render error, risking burn-in artifacts. Recently, Zhang and
Agrawala [2023] showed that an existing unconditional diffusion
model can be conditioned by adding zero-initialized dense layers to
each skip connection, and providing them the outputs of a parallel
control network trained on the conditional task.

Inspired by Zhang and Agrawala [2023], we expand the input
head with k additional features with both weights and bias ini-
tialized with zeros (i.e., yielding an initial convolution kernel of
3 X3 X (10 + k) x 128, and where k = 3N, and N is the number
of condition input photographs). Next, we finetune the backbone
model for the target type of input photographs (unlike direct con-
catenation which requires retraining from scratch). Compared to
ControlNet, our approach is easier to implement and incurs less
overhead as we do not need an additional control network (we
only expand the input head) at the cost of “polluting” the original
diffusion network.

Relation to Direct Inference. When the k-diffusion model is condi-
tioned on a photograph ¢ of the target material, the model subsumes
direct inference methods. At ¢t = T, the signal y = ax + bn is purely
Gaussian noise (i.e., a ~ 0), and hence Dg(y|c; t) mostly relies on
the condition c to estimate the velocity (i.e., an — bx ~ x). For all
practical purposes, we can ignore the noisy input at t = T, and thus
the expectation Ex computed from the estimate of Dg (Equation (5))
closely mimics the behavior of a direct inference method. How-
ever, unlike direct inference methods, diffusion only takes a small
step towards the estimate and continues to improve the result in
subsequent steps. Figure 3 demonstrates that the expectation from
the first diffusion step is similar to the result of a direct inference
method; note all SVBRDF property maps shown in this paper are
ordered as: diffuse albedo, specular albedo, roughness, normal map.
This initial estimate often exhibits burn-in, bended normals and
missing details, and imprecise diffuse-specular separation, which
are reduced in subsequent diffusion steps.

Sartor and Peers

4 TRAINING DATA

The MatFusion backbone model has 256M parameters, hence, train-
ing such a model requires a large and diverse training set. Deschain-
tre et al. [2018] augment 150 synthetic SVBRDFs to 199,068 training
exemplars by randomly perturbing parameters, scaling/rotating the
exemplars, and taking convex combinations. However, since the
dataset is augmented from only 150 SVBRDFs, the texture diversity
is limited and insufficient to train our MatFusion backbone model.
To mitigate this issue, we collected and augment 307 additional syn-
thetic SVBRDFs from https://polyhaven.com and 1,570 additional
synthetic SVBRDFs from https://ambientcg.com.

The 307 SVBRDFs from Polyhaven are CCO0 licensed and each con-
tains a unique diffuse albedo map, normal map and roughness map
at 2k resolution. Polyhaven’s SVBRDFs do not come with a spec-
ular albedo. We therefore assign a homogeneous specular albedo
uniformly sampled in [0.04, 0.08]. The 1,570 SVBRDFs from Ambi-
entCG are also CCO licensed, and all contain unique albedo, specular
roughness, and normal maps at 2k resolution. 274 SVBRDFs also
contain a metalness map. A homogeneous specular albedo is as-
signed (uniform random in [0.04, 0.08]) plus albedo times metalness
(if available). The diffuse albedo is set to the albedo (scaled by one
minus metalness if available).

For each of the 1,877 SVBRDF maps we randomly crop 16 square
areas, each from from a random position, rotation, and size (be-
tween 512 and 1,400 pixels fully contained within the original maps).
Each cropped map was bilinearly resized to 512 X 512 resolution,
yielding a total of 30,032 basis SVBRDFs. To further diversify the
roughness maps, we randomly select 6,000 basis SVBRDFs, and
blend their roughness maps with procedurally generated maps. We
employ a randomly initialized dense neural network that trans-
forms each pixels’ (diffuse + specular) albedo and height (obtained
by integrating the normal map [Quéau et al. 2018]) to a procedural
roughness value; see the supplemental material for more details.
Note, the randomly initialized network is not optimized and it
serves as a random non-linear transformation of albedo and height
to roughness.

To better mimic that real-world materials are often formed by
piece-wise constant combinations of different basis materials (e.g.,
metal and rust), we create 83,065 additional piece-wise constant
mixtures from both the 199,068 INRIA SVBRDFs and the 30,032
basis SVBRDFs. For 66% we mix two randomly selected SVBRDFs
without replacement (i.e., each SVBRDF is only used in one mixture
material), and three SVBRDFs for the remaining 34%. We use a
randomly initialized dense neural network (detailed in the supple-
mental material) that transforms each pixels’ (diffuse + specular)
albedo and height into a one-hot selection weight (for each of the
two/three source SVBRDFs). Similar as for the roughness generator,
the randomly initialized network is not optimized and it serves
as a random non-linear transformation and thresholding step. To
avoid unnatural hard edges, we perform the mixing on 2X bilinearly
upsampled randomly selected 288 x 288 crops from the INRIA or
basis SVBRDFs, and after mixing, (average) downsample again to
288 X 288 resolution.

Combining the INRIA training set (199,068 at 288 X 288 resolu-
tion), our basis SVBRDF set (30,032 at 512 X 512 resolution), and the
mixture set (83,065 at 288 X 288 resolution) yields our final training
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Figure 4: Global illumination transport within the spatially
varying material is negligible for a colocated camera-light
setup. However, under natural lighting, the effects are signif-
icant (i.e., self-shadowing and ambient occlusion).

set with 312,165 training exemplars. In addition, we created a test
set of 50 materials that consists of a selection of 31 diverse mate-
rials from the Deep Inverse Rendering [Gao et al. 2019] test set, 6
materials from the look-ahead meta-learning [Zhou and Kalantari
2022] test set, 11 from Polyhaven, and 2 from AmbientCG. None of
the test materials are included in the training set.

5 RESULTS

Implementation. We implemented MatFusion in FLAX [Heek
et al. 2023] and train it for 50 epochs using the full 312,165 SVBRDF
training set (cropped to 256 X 256 resolution) using the AdamW
optimizer [Loshchilov and Hutter 2019] with a batch size of 32, a
learning rate of 2 X 107> (with a 100,000 iteration warmup), and
EMA weights [Song and Ermon 2020] on 4 Nvidia A40 GPUs with
48GB of memory. Training took approximately 255 hours.

We train three conditional variants of MatFusion. All three are
finetuned for 19 epochs on MatFusion using the full SVBRDF train-
ing set using the same optimizer and hyperparameters. Training
took approximately 102 hours on 4 Nvidia A40 GPUs, or 2.5X faster
than training MatFusion from scratch. The three variants differ in
the expected lighting in the input condition photograph: coLocATED
flash lighting, FLASH/NO-FLASH, and NATURAL lighting. The Cotro-
CATED variant is trained on synthetic photographs rendered with di-
rect illumination only, as indirect lighting is negligible for backscat-
ter reflectance. However, indirect lighting significantly affects the
appearance of spatially varying materials (Figure 4). Therefore, the
NATURAL and FLASH/NO-FLASH variants are trained on images ren-
dered with Blender’s Cycles path-tracer with 32 samples per pixel
with OpenlmageDenoise using the height map as the material’s
geometry obtained by integrating the surface normals [Quéau et al.
2018]; we use the original normal maps to determine the shading
normals. Natural illumination is modeled by randomly selecting
and rotating an HDR environment map from 560 CCO licensed HDR
environment maps retrieved from https://polyhaven.com/hdris. For
the FLASH/NO-FLASH variant, the log relative brightness ratio be-
tween the flash lighting and the environment lighting is randomly
sampled between log(1/50) and log(3/2). Both the NATURAL and
FLASH/NO-FLASH variants are trained on images rendered with a
virtual camera with a focal length of 35mm (i.e., camera distance =
exemplar size). The COLOCATED variant is trained for a variable cam-
era distance (with matching FOV) sampled according to a %T(Z, 2)
distribution (relative to the exemplar size), and we concatenate the
per-pixel view vector as an additional input condition.
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During inference, the differential equation is iteratively solved
using the EulerA solver [Song et al. 2021b] in just 20 steps and with
the guidance scale set to 1.

Selection. The conditional SVBRDF diffusion models take, be-
sides the input photograph, also a normal distributed random field
determined by a seed. By changing the seed, different replicates of
the SVBRDF can be generated (Figure 5). The choice of the seed
can impact the quality of the result. Therefore, we show results
selected with one of the following three selection strategies:

(1) Fixed seed: the seed is fixed for all results.

(2) Render error selection: we render the generated SVBRDFs
from 10 random seeds and select the one that minimizes the
LPIPS error [Zhang et al. 2018] when rendered under the
capture lighting conditions.

(3) Manual selection: a set of 10 SVBRDFs generated with differ-
ent random seeds are presented and the user manually selects
the SVBRDF that appears (subjectively) the most plausible.

We also experimented with optimizing the input random field on
the render error, but found that this tends to produce burn-in of
the specular highlight. While the majority of seeds do not produce
burn-in, those that do are scattered through the whole space. Thus
no matter the starting point, there is always a nearby point that
produces burn-in which the optimization will inevitably drive the
solution towards.

Synthetic Results. Figure 9 compares the estimated SVBRDFs,
manually selected from 10 random seeds, for 6 selected synthetic
materials for each of the three conditional diffusion models. For
each material, we show two renderings under different point lights
for each of the models and the reference. In general, the COLOCATED
model produces the most consistent results due to the known light-
ing, although it sometimes fails to recover the specular reflectance
on small features (e.g., the nob in the 2nd material) or produces
unexpected texture variations (e.g., the center of the 6th material).
The results from the NATURAL model exhibit a greater variability
in accuracy, such as incomplete diffuse-specular separation (4th
example), or underestimation of specular roughness (6th example).
Nevertheless, the resulting SVBRDFs are still plausible, demonstrat-
ing the ability of MatFusion to recover the SVBRDFs of general
spatially varying materials under unknown lighting. The FLAsH/NO-
FLASH model benefits from having an input without strong specular
highlights (i.e., no-flash) to better recover the diffuse texture. On
the other hand, due to the unknown relative brightness of the nat-
ural lighting versus the flash lighting, it sometimes underestimates
either the diffuse albedo (e.g., 4th material) or the specular rough-
ness (e.g., 3rd material). The FLASH/NO-FLASH model shows that
MatFusion can be conditioned on more than one input.

Comparison to Prior Work. Figure 10 compares the COLOCATED
variant for each of the three selection methods (fixed seed, render
error, and manual selection) against the adversarial direct inference
method of Zhou and Kalantari [2021] and the meta-learning look-
ahead method of Zhou and Kalantari [2022] on synthetic SVBRDFs.
Qualitatively, the coLocATED model produces a more plausible ap-
pearance and the corresponding property maps appear “cleaner”.
These qualitative conclusions are supported by the average LPIPS
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Manual

Figure 5: Changing the seed results in different SVBRDF replicates conditioned on the input photograph. For each replicate we
show a rendering under a different lighting than the input photograph as well as the generated SVBRDF property maps. Also
marked are the SVBRDF selection based on the render error with respect to the input lighting, as well as the manual selection

of the (subjectively) most plausible SVBRDF.

Table 1: Quantitative comparison of average RMSE on the
property maps and average LPIPS errors on 128 renders lit by
a uniformly sampled point light on the hemisphere for the
coLOCATED conditioned MatFusion model versus Zhou and
Kalantari’s [2021] adversarial inference method and Zhou
and Kalantari’s [2022] meta-learning look-ahead method.

LPIPS RMSE

Render | Diff. Spec.  Rough. Normal

Adversarial | 0.2304  0.0439  0.0859  0.1358 0.0577
Adversarial (retrained) | 0.2292  0.0405 0.0795 0.1276  0.0545
Look-ahead | 0.2647 0.0591 0.0727  0.1424 0.0572
MatFusion (fixed seed) | 0.2282  0.0427  0.0691  0.1252  0.0561
MatFusion (render err.) | 0.2138  0.0440 0.0657 0.1282  0.0543
MatFusion (manual) | 0.2056 0.0412  0.0666  0.1265  0.0524

[Zhang et al. 2018] render error listed below. We render each ex-
emplar over a set of 128 randomly selected point lights on the
hemisphere (with a radius of 2.41 units to match the training (and
thus offer a best case evaluation) of Zhou and Kalantari [2021;
2022]), as well as in Table 1 for manual selection on the whole
test set of 50 materials. We argue that a perceptual render error is
the best metric for comparing the different methods as different
maps can produce similar material appearances. For completeness,
Table 1 also lists the RMSE errors over the SVBRDF property maps.
We also include a comparison to Zhou and Kalantari’s adversarial
direct inference method retrained using our training set. MatFusion
is a generative model which does not guarantee pixel-perfect align-
ment, which can result in sometimes a larger error on texture-rich
property maps (e.g., 6th row) or unobserved properties (e.g., 2nd
row). However, qualitatively, these property maps include fine de-
tails, albeit not perfectly aligned with the reference. In contrast, the
look ahead-method of Zhou and Kalantari [2022] produces normal
maps with little detail, resulting in a low error, but distributed over
the whole map. Figure 10 also demonstrates that the render error
selection can provide a good match (e.g., 1st and 5th row), but it
can also overfit (e.g., 3rd row).

Real-world Validation. Figure 6 and Figure 7 demonstrate that
MatFusion generalizes well to real-world captures. The results
in Figure 6 are manually selected from 10 random seeds and vali-
dated on the materials captured by Guo et al. [2020b] which also
contain reference photographs captured under different lighting
conditions. Our results are visually closer to the reference than the

Table 2: Achitecture ablation study of average RMSE on the
property maps and average LPIPS render errors on 128 visu-
alizations lit by a uniformly sampled point light, compar-
ing the impact of using Residual convolution blocks versus
ConvNeXt convolution blocks, and comparing the difference
between using ControlNet and our direct conditioning,.

LPIPS RMSE
‘ Render | Diff. Spec.  Rough. Normal
ResNet+Control | 0.2655  0.0525  0.0813  0.1536 0.0545
ConvNeXt+Control | 0.2731 0.0517  0.0764 0.1428 0.0604
ResNet+Direct | 0.2093  0.0432  0.0682 0.1055  0.0528
ConvNeXt+Direct | 0.2056 0.0412 0.0666 0.1265 0.0524

adversarial direct inference method of Zhou and Kalantari [2021],
and the look-ahead method of Zhou and Kalantari [2022]. Our
method suffers less from specular burn-in (1st example) and over-
fitting normal detail to specular highlights in the input (2nd and
3rd example).

The materials in Figure 7 are captured in-the-wild by us using
a Pixel 5a cell phone, and we manually select the most plausible
SVBRDFs. Note that these images are captured under unknown
natural lighting, and due to the uncontrolled nature of the cap-
ture conditions, no reference photographs under different lighting
conditions are available. Nevertheless, the SVBRDF property maps
nicely separate diffuse and specular, and the renderings plausibly
capture the appearance from the input photographs.

Ablation Study. We perform an ablation study to justify the
design decisions with respect to the architecture of MatFusion
(Table 2). We validate both the impact of using Residual versus
ConvNeXt convolutional blocks and using ControlNet versus di-
rect conditioning. For all models we compute the average RMSE on
the property maps and average LPIPS error on renders under the
same set of random point lights for each of the 50 test materials.
From Table 2, we observe that ConvNeXt layers slightly outperform
Residual convolutional blocks on LPIPS error and ~ 5% better on
RMSE on the albedos; the lower roughness error for ResNet is due
to a few outlier materials. Furthermore, direct conditioning outper-
forms ControlNet on all metrics, while training time is similar for
both, except that ControlNet requires significantly more memory
resources. We posit that the difference in performance is due to
ControlNet only receiving indirect feedback (by copying the initial
weights) of the diffusion network it aims to control, whereas direct
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Figure 6: Qualitative comparison on real-world materials captured with a colocated light source, and relit from two different

point light positions.

Input SVBRDF Render

Figure 7: Demonstration of in-the-wild SVBRDF capture un-
der uncontrolled unknown natural lighting and revisualized
under novel lighting.

conditioning closely intertwines both control and synthesis. Fur-
thermore, our input conditions are more strict, leaving less room
for synthesis than typical ControlNet conditions (e.g., sketches).
However, our conclusions with respect to ControlNet are only vali-
dated for MatFusion using photographs as conditions, and further
investigations are needed to ascertain whether these conclusions
extend to other diffusion networks and/or condition types.

SVBRDF Render

Figure 8: Failure case: artificial “blob-like” normal maps.

Limitations. MatFusion is a generative SVBRDF model, and it has
trouble generating pixel-perfect reproductions. Hence, MatFusion
does not necessary produce the lowest errors on pixel-based metrics.
Furthermore, as a generative model, MatFusion is better suited for
capturing materials with organic structures than those with regular
straight lines. We posit that this is the reason why MatFusion tends
to produce higher quality results on real-world captures than on
artist-generated materials which are more regular. This causes
MatFusion to sometimes generate properties maps that look too
artificial (Figure 8). Furthermore, MatFusion is currently limited to
256 X 256 resolution SVBRDFs. Finally, the render error selection
requires prior knowledge of the lighting condition, hampering
automatic selection from photographs under unknown lighting
(e.g., natural lighting). Furthermore, it does not always yield a good
selection because oversaturation can make it difficult to differentiate
between two SVBRDFs that produce a similar rendered replica but
that substantially differ in quality. Ideally, we would like to employ
a selection criterion that judges plausibility of the SVBRDFs.
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6 CONCLUSION
We presented MatFusion, a generative SVBRDF diffusion model

trained on a new large and diverse training set of synthetic SVBRDFs.

MatFusion can subsequently serve as a starting point for refining
an SVBRDF diffusion model conditioned on captured images under
some target lighting condition. We demonstrated the flexibility and
efficacy of MatFusion by training three conditional variants: one
for photographs captured with a colocated flash light, one under
unknown and uncontrolled natural lighting, and one for flash/no-
flash image pairs. An advantage of using a generative SVBRDF
model is that different replicates can be synthesized by changing
the seed, allowing user to select the most plausible replicate. For fu-
ture work we would like to investigate more comprehensive metrics
for automatic selection, and better regularization during training
and/or inference for modeling regular features. Based on the recent
successes in coupling large language models with diffusion models,
another interesting avenue would be to explore better authoring
tools for SVBRDF creation.
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Reference COLOCATED FLASH/NO-FLASH

Figure 9: Comparison of the CoLocATED, NATURAL, and FLASH/NO-FLASH conditional diffusion models on a variety of synthetic
SVBRDFs.
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Figure 10: Qualitative comparison of MatFusion conditioned on colocated lighting (fixed seed, render error, and manual selection)
against the adversarial direct inference of Zhou and Kalantari [2021] and the meta-leanring look-ahead method of Zhou and

Kalantari [2022]. The LPIPS errors are averaged over visualizations under 128 different point lights sampled on the hemisphere
surrounding the sample.
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