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ABSTRACT

This paper presents a novel neural material relighting method for

revisualizing a photograph of a planar spatially-varying material

under novel viewing and lighting conditions. Our approach is moti-

vated by the observation that the plausibility of a spatially varying

material is judged purely on the visual appearance, not on the un-

derlying distribution of appearance parameters. Therefore, instead

of using an intermediate parametric representation (e.g., SVBRDF)

that requires a rendering stage to visualize the spatially-varying

material for novel viewing and lighting conditions, neural material

relighting directly generates the target visual appearance. We ex-

plore and evaluate two di�erent use cases where the relit results are

either used directly, or where the relit images are used to enhance

the input in existing multi-image spatially varying re�ectance esti-

mation methods. We demonstrate the robustness and e�cacy for

both use cases on a wide variety of spatially varying materials.
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• Computing methodologies→ Image-based rendering; Re-

�ectance modeling.
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1 INTRODUCTION

Recovering the spatially-varying appearance of a material from a

limited number of measurements is a challenging problem in com-

puter graphics that has received signi�cant attention in the past

decade. The application of machine learning to appearance model-

ing [Dong 2019] enabled the recovery of plausible spatially-varying

bidirectional re�ectance functions (SVBRDFs) from a planar sam-

ple from as little as a single photograph. These recent advances

in machine learning-driven appearance modeling can be catego-

rized in two classes: direct inference methods and neural inverse
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rendering methods. Direct inference methods rely on a neural net-

work to directly convert the input image in the desired SVBRDF

parameter maps without the need for additional processing steps.

Alternatively, neural inverse rendering methods perform an online

optimization that matches a rendering of the recovered SVBRDF

parameters to the input photograph, with one or more steps in the

optimization process replaced by a learned component (e.g., using

a learned optimization domain).

Estimating the spatially varying appearance from a single photo-

graph is highly underconstrained. Both direct inference and neural

inverse rendering methods learn a non-linear mapping from the

space of visual material appearance to the higher dimensional space

of SVBRDF parameter maps. Typically, specular re�ections are not

observed at every surface point, and hence both direct inference and

neural inverse methods must somehow decide how to implement

the non-linear mapping despite incomplete observations. Given

the inherent richness of spatially varying materials, this process is

ambiguous and direct inference and neural inverse rendering meth-

ods therefore aim to recover the most plausible SVBRDF parameter

maps. Once the SVBRDF parameter maps are estimated, new visual-

izations of the material can be generated by e�ectively performing

another non-linear mapping from the SVBRDF parameter space

back to the visual material appearance space. Our key observation

is that the plausibility of the resulting spatially varying material is

judged purely on its visual appearance, and not on the distribution

of the underlying SVBRDF parameter maps.

In this paper, we take a di�erent approach to appearance model-

ing. Instead of learning a mapping between two di�erent spaces, we

learn how to navigate the visual appearance space directly. This has

two major advantages compared to going through an intermediate

SVBRDF parameter space. First, learning to navigating the visual

appearance space only requires a loss de�ned in the same space

(namely visual material appearance). In contrast, prior SVBRDF esti-

mation methods need to balance possibly con�icting losses de�ned

in di�erent spaces: the SVBRDF parameter space and the visual

material appearance space (i.e., parameter loss versus render loss).

Second, when leveraging skip connections, prior SVBRDF methods

need to translate image features to SVBRDF features. While cor-

related, this is not a one-to-one mapping. In contrast, our method

leverages skip connections between two identical domains, avoid-

ing the need for additional translations, resulting in a more e�ective

propagation of information from the input photograph to the relit

output image. To control the navigation, we specify the destination

by providing the target view direction and point light position,

resulting in a revisualization of the material present in the input

photograph. This process is conceptually akin to relighting, hence

we name our method “neural material relighting”.
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We show that neural material relighting from a single photo-

graph is able to reproduce equally or more plausible visual mate-

rial appearance and that it generalizes better compared to prior

SVBRDF estimation methods. Our solution builds on a poweful

encoder-decoder architecture with passthrough connections, resid-

ual blocks [He et al. 2016] and highlight aware convolutions [Guo

et al. 2021], as well as a novel multi-resolution injection strategy for

specifying the target lighting during decoding. Our neural material

relighting is trained on the INRIA-SVBRDF dataset [Deschaintre

et al. 2018] using three di�erent losses: an image similarity loss to

ensure visual similarity to reference relit images, a conditional dis-

criminator loss that promotes similarity of the material appearance

between the input and relit image, and a perceptual loss to ensure

that inevitable di�erences are perceptually plausible.

We present two use cases of our neural material relighting net-

work. First, we demonstrate that neural material relighting can

produce, given a single input photograph, plausible relit images

under a novel view and point light for a wide range of spatially

varying materials. These relit images can then be directly used in

existing rendering systems. Second, we can also use neural material

relighting to produce a set of intermediate synthetic input images

for any existing multi-image SVBRDF parameter map estimation

method, thereby improving reconstruction quality and extending

the capabilities of SVBRDF estimation methods that require multi-

ple input photographs to operate on a single input photograph.

2 RELATED WORK

We focus our discussion of related work on selected learning based

appearance modeling approaches in relighting and SVBRDF estima-

tion. We refer the reader to the excellent surveys by Dong [2019]

on neural appearance modeling, and by Einabadi et al. [2021] on

relighting.

Relighting. Relighting directly infers changes in an object’s vi-

sual appearance under varying incident lighting from a set of pho-

tographs of a subject under controlled lighting conditions [Debevec

et al. 2000]. Recently, with rise in popularity of machine learning

methods, relighting has seen renewed interest. At a high level, learn-

ing based relighting methods can be categorized based on whether

they are speci�cally (over)trained for relighting a single object [Be-

mana et al. 2020; Chen et al. 2020; Gao et al. 2020; Guo et al. 2019;

Ren et al. 2015; Srinivasan et al. 2021; Zhang et al. 2021], or whether

they rely on a pretrained model to relight an object from a small

set of photographs, e.g., for face relighting [Meka et al. 2019; Sun

et al. 2019; Yeh et al. 2022; Zhou et al. 2019], human body relight-

ing [Kanamori and Endo 2018], and general outdoor [Gri�ths et al.

2022; Philip et al. 2019] and indoor scene relighting [Philip et al.

2021; Xu et al. 2018]. Our method is most similar to the second

class of methods that rely on a pretrained model to relight, in our

case, a planar material sample. However, unlike the majority of the

relighting methods in second class, our method is not limited to a

�xed viewpoint (albeit in texture space) and features more complex

variations in surface normal and surface re�ectance.

SVBRDF Estimation. A popular representation of surface appear-

ance is by means of the spatially-varying bidirectional re�ectance

function (SVBRDF), a collection of 2D maps that serve as the per-

surface point parameters of an analytical BRDF model such as the

Cook-Torrance BRDF model [1982] or GGX BRDF model [Walter

et al. 2007] and a local shading frame in the form of a local surface

normal. A common strategy for creating an SVBRDF is by an in-

verse rendering process that searches for the 2D property maps

that, when rendered, best matches a series of reference photographs

of a physical material exemplar.

Estimating an SVBRDF from a single photograph is an ill-condi-

tioned problem as it has more unknowns (9 or more BRDF parame-

ters) than knowns (3 observations) per surface point. Before the use

of machine learning, robust estimation of an SVBRDF from a single

photograph was only possible for a restricted class of texture-like

materials [Aittala et al. 2016]. Machine learning, and in particular

convolutional neural networks, made it practical to estimate plau-

sible SVBRDFs from a single photograph. Many variants have been

introduced that estimate SVBRDF-based representations under un-

controlled lighting for planar surfaces [Li et al. 2017; Martin et al.

2022; Ye et al. 2018] and complex indoor scenes [Li et al. 2020], and

from a �ash-photograph of a planar sample [Deschaintre et al. 2018;

Guo et al. 2021; Henzler et al. 2021; Li et al. 2018a; Vecchio et al. 2021;

Wen et al. 2022; Zhou and Kalantari 2021] and general objects [Li

et al. 2018b; Sang and Chandraker 2020]. Our neural appearance

relighting also infers surface appearance from a single �ash photo-

graph of a planar material exemplar. However, our work di�ers from

these SVBRDF estimation methods in that we bypass the SVBRDF

estimation step and directly produce a revisualization of the ma-

terial for a new view and light condition. As a consequence, our

training loss does not need to balance di�erences between property

maps and the visual appearance of the material (expressed in prior

work with an additional rendering loss [Deschaintre et al. 2018]),

and it can better leverage information sharing via skip connections.

Of special note is the work by Sang and Chandraker [2020] who

learn both SVBRDF estimation and (�xed viewpoint) relighting at

the same time. However, unlike our work, Sang and Chandraker’s

relighting network is limited to a single �xed view, for an arbitrary

object, and requires estimated SVBRDF maps (recovered jointly) as

an input, and is therefore more similar to Deep Shading [Nalbach

et al. 2017]. Our neural material relighting network directly operates

on the input photograph and can relight for any viewpoint, albeit

limited to a planar surface.

An alternative strategy to promote visual similarity of a recov-

ered SVBRDF is to provide multiple input photographs of the ma-

terial sample. Following the success of learning-based approaches

in single-image SVBRDF estimation, several multi-image methods

have been introduced ranging from direct inference methods [De-

schaintre et al. 2019] to neural inverse rendering methods where

one or more components in the optimization pipeline are replaced

by a learned component [Fischer and Ritschel 2022; Gao et al. 2019;

Guo et al. 2020; Ye et al. 2021; Zhou et al. 2022; Zhou and Kalantari

2022], to di�erentiable rendering approaches [Azinović et al. 2019;

Bi et al. 2020]. Neural material relighting is complementary to these

multi-image SVBRDF estimation methods, by allowing us to aug-

ment a single input photograph to a small collection of relit images

that can subsequently be used as synthetic input to a multi-image

method, thereby extending the range (of number of input images)

on which these methods can operate.
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towards a plausible relit image and a discriminator loss L2 condi-

tioned on the input image that judges whether the relit image is

the same material as the input image. The discriminator consists of

a resolution dependent number of 2D convolution layers (kernel

size 4, stride 2, and 8 output channels) with a leaky ReLU activation

function and a batch-norm layer. An adaptive max-pooling followed

by a fully connected layer completes the discriminator network.

We use 5 layers for 128 × 128 and 6 for 256 × 256 resolution inputs.

The condition images are fed together with the input image to the

network. The �nal loss is then:

L = _3L3 + _?L? + _2L2 , (1)

with _3 = 1, _? = 0.01, and _2 = 0.025.

We found that the sampling of the training exemplars in each

training batch is critical for obtaining a well behaved neural relight-

ing network. Unlike SVBRDF-based methods, appearance relight-

ing cannot rely on the extrapolation capabilities of the underlying

model. We use a batch size of 16, and each batch consists of 4

di�erent materials. Each material is relit and viewed from 4 dif-

ferent view/light combinations with none of the directions shared

between the materials. Hence, in each training batch the network

sees 4materials and 16 di�erent view/light combinations. However,

the sampling of view and lighting also matters. A key challenge

for the network is to learn how to ’move’ the highlight. Hence, a

majority of training samples should feature a highlight. However,

the network also needs to learn how to relight di�use surface re-

�ectance, thus some portion of training samples should should be

highlight free. Equally important is that the light source varies in

distance, so that the network learns to take in account the relative

di�erence in light directions between neighboring surface points.

To address these concerns, we follow the procedure outlined below,

assuming that the material sample forms a square with corners at

−1 and +1 in G and ~ coordinates:

(1) We select a camera position ?20< by uniformly sampling a

point on a hemisphere with radius 4 surrounding the sample.

(2) Next, we pick where the center of a highlight ?ℎ should

be (if the surface was perfectly �at) by sampling a normal

distribution with a standard deviation of two and centered

at a uniformly sampled position 23 on the material surface:

23 = U(−1, +1) (2)

?ℎ = N(23 , 2) (3)

This ensures that a signi�cant portion of the highlights will

appear on the sample (due to the mean always lying on the

surface) with a non-negligible chance that it falls outside

(due to the standard deviation being the size of the sample).

(3) We compute the main (non-normalized) light direction by

re�ecting the vector from the camera to the ideal highlight

center around the I-axis: ; = A4 5 ;42C (?ℎ − ?20<, I). Note:

|; | = |?ℎ − ?20< | ≈ 4.

(4) Finally, we compute the point light source position ?; by scal-

ing the resulting main lighting vector ; by 1 plus the absolute

value of a normal distributed random value with mean zero

and standard deviation of two: ?; = ?ℎ + ; (1 + |N (0, 2) |).

This ensures that the network generalizes to di�erent light

source distances.

We train the conditional discriminator network, using a regular

mean square loss, simultaneously with the neural material relight-

ing network by providing, for each batch, a positive exemplar (a

relit image from the same material) and a negative exemplar (a

relit image from another material). Including a negative sample is

important as we want the discriminator to learn to decide whether

the relit image depicts the same material as the input. Including

only positive training examples would result in a network that

essentially ignores the input image. In our implementation, we use

the same set of reference relit images as used in the batch for train-

ing the neural material relighting network since it contains both

positive as well as negative exemplars (given a reference material).

We exploit the full convolutional architecture of our network

to improve robustness and to speed up the training process. We

�rst train our network on 128 × 128 crops from the INRIA SVBRDF

dataset, after which we re�ne the network weights on 256 × 256

crops. Because our network is fully convolutional, we can use the

same weights when doubling the resolution without needing to

add extra layers. However, the number of convolution layers in the

discriminator varies with resolution, and therefore, when changing

training resolution, we train the discriminator again from scratch.

6 RESULTS

We implemented and trained our network in PyTorch with the

following hyperparameters: learning rate of 10−4, variational beta

of 0.5, and a learning rate decay of 1% every 10,000 batches. We train

for 500,000 batches at 128 × 128 resolution on a single Nvidia RTX

A40, followed by a re�nement for an additional 150,000 batches at

256 × 256 resolution distributed over four Nvidia RTX A40. Once

trained, material relighting takes 15ms on an Nvidia RTX 2070ti.

We validate our neural appearance relighting network for two

use cases: direct relighting and as an input augmentation step for

existing SVBRDF estimation methods. All results in this section are

at 256 × 256 resolution.

6.1 Direct Relighting

For the �rst use-case the output of the neural relighting is directly

used. Hence, the quality of the relit images is of primary concern.

Figure 2 and 3 show visual comparisons with respect to the refer-

ence and with respect to prior single image SVBRDF methods (we

include comparisons to [Zhou and Kalantari 2021] and [Gao et al.

2019] (using [Zhou and Kalantari 2021] as starting point) for both

�gures plus [Deschaintre et al. 2018] for Figure 2 and [Guo et al.

2021] for Figure 3) for a selection of materials not used in training.

The results for most prior methods [Deschaintre et al. 2018; Gao

et al. 2019; Zhou and Kalantari 2021] are generated with the authors’

provided trained networks; there does not exist a publicly available

solution for the two-stream highlight aware network [Guo et al.

2021] and the corresponding results in Figure 3 are computed from

the SVBRDF property maps from Gou et al.’s supplemental mate-

rial. Note, all results are recti�ed (i.e., shown in texture space); the

azimuthal view angle used for relighting is listed in the �rst column.

Observe how neural appearance relighting is able to reproduce chal-

lenging spatially varying specular re�ections (e.g., discontinuous

highlights in the 2nd material, and the specular re�ections on ridges
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\E84F Reference Relighting Deschaintre et al. Zhou et al. Gao et al. Input
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Figure 2: Qualitative comparison of neural relit results (at 256 × 256 resolution) against three prior SVBRDF estimation methods

for a variety of materials. The �rst column list the azimutal angle of the view angle for relighting.
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\E84F Reference Relighting Guo et al. Zhou et al. Gao et al. Input
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Figure 3: Qualitative comparison of neural relit results (at 256 × 256 resolution) against three prior SVBRDF estimation methods

for a variety of materials. The �rst column list the azimutal angle of the view angle for relighting.
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Table 1: Quantitative comparison of LPIPS errors on render-

ings at 256 × 256 resolution obtained with neural material

relighting and representative prior single-image SVBRDF

estimation methods.

Material Our Deschaintre Zhou et al. Gao et al.

Method Relighting SVBRDF et al. [2018] [2021] [2019]

LPIPS 0.1902 0.1966 0.2713 0.2375 0.2323

in the 3rd example), handle specular re�ections for small geomet-

rical details (e.g., the highlights on the “nubs” in the �rst example

are correctly oriented), and model large scale normal variations

and foreshortening (e.g., the bricks and tiles in the last examples

for both result �gures). While there are clear di�erences with the

reference relit image due to the highly ambiguous nature of single

image relighting, neural material relighting produces overall visu-

ally more plausible results with less artifacts than the four prior

methods. In addition, Table 1 summarizes LPIPS [Zhang et al. 2018]

errors averaged over a test set of 40materials rerendered for 3 view

directions (0◦, 20◦, and 45◦) and 49 light directions chosen such that

for each view the highlights are regularly distributed in the texture

space. These errors also con�rm that neural material relighting

produces more plausible relit images than prior work.

Despite not explicitely enforcing similarity between neighboring

views or light directions, neural material relighting produces relit

images that change smoothly with varying view and light. We refer

to the supplementary video for a demonstration.

Finally, the robustness of neural appearance relighting outside

the training set is further demonstrated in Figure 4 on photographs

captured by a cellphone. While no reference photographs under

novel lighting are available, the results show plausible relit images.

To better gauge the generalization capabilities our neural material

relighting outside the training set, we also include a comparison to

the SVBRDF method of Zhou and Kalantari [2021]. Note how ma-

terial relighting is able to produce more plausible results, ranging

from retaining the �ne-scale details without over or underestimat-

ing the specular highlight (1st row and 4th row), more plausible

recreating of appearance e�ects due to normal variations (2nd and

3rd row), and reproducing complex highlights (5th row). We refer

to the supplementary video for a comparison under varying view

and lighting that further reinforces the plausibility di�erences, as

well as a comparison to deep inverse rendering [Gao et al. 2019].

6.2 Input Augmentation

A second use case of neural material relighting is to augment a sin-

gle input photograph to a set of relit synthetic photographs that are

subsequently used as an input to a multi-image SVBRDF estimation

methods. We demonstrate this use case with deep inverse render-

ing [Gao et al. 2019] (using the estimate of the adversarial SVBRDF

estimation method [Zhou and Kalantari 2021] as starting point)

for which we synthesize 5 new relit input images with varying

light positions ensuring that each images’ highlight is contained

within the camera view from a single captured photograph (Fig-

ure 5). The SVBRDFs recovered from the augmented input shows

more plausible rerenderings with less artifacts than from a single

input photograph. Over all 40 test materials, the augmented results

Relighting Zhou et al. Relighting Zhou et al. Input

Figure 4: Neural material relighting for two light source po-

sitions (1st and 3rd column) on photographs captured with a

handheld camera (last column) and compared to [Zhou and

Kalantari 2021] (2nd and 4th column).

Reference Augmented Single-image Input

Figure 5: Neural material relighting can be used to generate

synthetic inputs to multi image SVBRDF estimation meth-

ods. In this example we generated 5 synthetic input images

for Deep Inverse Rendering [Gao et al. 2019] yielding more

plausible revisualizations than from a single input image.

yield a signi�cantly lower LPIPS error (0.2021) compared to without

augmentation (0.2323).

7 ABLATION STUDY

We perform a number of ablation and sensitivity experiments to

provide further insight and to validate the design of the network

architecture. All ablation experiments are performed on images and

networks trained at 128 × 128 resolution.
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Table 2: Quantitative comparison of LPIPS errors on ren-

derings at 128 × 128 resolution for variations in the model:

residual vs. regular convolution blocks, and highlight aware

(HA) vs. standard convolutions.

Backbone Residual Residual Regular Regular

Convolution HA Standard HA Standard

LPIPS Err. 0.1735 0.1792 0.1774 0.1871

Table 3: Quantitative comparison of LPIPS errors on render-

ings at 128×128 resolution for models trained with variations

in input and out speci�cation.

Our Remove Remove Pass Output

Variant Method Input Z Output H at Encoder

LPIPS Err. 0.1735 0.1785 0.1828 0.1941

Network Architecture. We validate the importance of using both

residual blocks and highlight aware convolutions by comparing

results from a network where the residual blocks are replaced by

regular convolution blocks, with and without highlight aware con-

volutions (Table 2). Numerically, the combined residual blocks and

highlight aware convolutions provide the lowest average LPIPS

error. In general, we �nd that the residual blocks are able to better

reproduce the shape of the specular highlights, while the highlight

aware convolutions reduce burn-in artifacts.

Loss Terms. Figure 6 shows the impact of each loss term on

the relighting quality. Using only the data loss results in blurred

highlights. Adding the perceptual loss, sharpens the highlights

but it fails to capture the correct highlight details (e.g., the ridge

highlight on the right). Finally, adding the discriminator yields the

highest quality highlights.

Input/output Speci�cation. Our neural material relighting net-

work takes as additional input (besides the photograph) the I coor-

dinate of the lighting direction. Since the input lighting is always

the same, one could argue that this extra input is unnecessary. The

errors in Table 3 show that without this information the network

does not perform as well. Inclusion of the I component serves a

similar role as the so-called “coord-conv” trick [Liu et al. 2018]

to help the network learn the location and statistics of specular

highlights, due to the strong correlation with the I coordinate; only

providing the (G,~) coordinate (cf. coord-conv trick) fails to capture

this correlation.

The output conditions passed to the relighting network do not

only contain the view and lighting directions per surface point,

but also the halfway vector. The corresponding error in Table 2

con�rms that including the halfway vector improves the result

quality.

Currently, neural material relighting concatenates the (spatially

scaled) output conditions to each feature vector in the decoder.

However, a more common strategy is to concatenate the conditions

to the input. The corresponding error in Table 3 shows that this

does not yield a good result due to two reasons. First, during train-

ing the encoder might learn erroneous correlations between the

output conditions and the input photograph; injecting the output

Reference L3 L3 + L? L3 + L? + L2

Figure 6: Impact of the di�erent loss terms: data lossL3 , VGG

perceptual loss L? , and the conditional discriminator loss

L2 .
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Figure 7: Neural material relighting is robust to deviations

of the light source position for up to 5
◦ from a colocated

con�guration.

conditions only in the decoder cleanly separates material encoding

from neural rendering. Second, the network would need to learn

to correctly downsample the output direction images (including

renormalization) for e�ective use at each level in the decoder.

Input Robustness. The easiest way to obtain a photograph of a

material lit by a colocated light source is by handheld capture with a

cell phone. However, the camera �ash light is not exactly colocated

due to physical constraints. Figure 7 shows that ourmethod is robust

for deviations of up to 5◦ between the light source and sensor.While

still plausible, at larger deviations the quality degrades gracefully.

Output Lighting Generalization. While our method is trained

for a limited range of variations in light source distance, neural

material relighting generalizes well to light source positions outside

this range. Figure 8 shows that neural material relighting produces

plausible relit results when placing the light source at 0.5, 2, 10, and

100 units distance from the material sample.

Relighting vs. SVBRDF Estimation. The results in Figure 2 and Ta-

ble 1 show that neural material relighting can produce more plau-

sible relit results than existing single-image SVBRDF estimation

methods. To better understand the di�erence between neural mate-

rial relighting and SVBRDF estimation, we perform an additional

ablation experiment where we use the same architecture, loss terms,
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Figure 8: Neural material relighting is robust to moving the

point light away from the positions seen during training.

and training procedure, but output SVBRDF property maps instead

of relit images, and include an additional !1 SVBRDF property

map loss. Figure 9 shows a comparison between both methods

on a variety of synthetic materials, as well as a captured material

(without a reference); the LPIPS errors over the test set are also

listed in Table 1. While the LPIPS errors over the test set are closer

to neural material relighting than those from prior SVBRDF es-

timation methods, we �nd that the SVBRDF estimation version

of our network is less stable to train due to the con�icting loss

functions, and that it produces an artifact (i.e., ’stuck’ pixels) in the

lower left corner; this artifact is very noticeable but not captured

by LPIPS errors. Furthermore, we observe that for materials from

the INRIA-SVBRDF test set both methods perform well. However,

for challenging materials more dissimilar from the training set, we

observe that material relighting tends to generalize better. This is

also con�rmed by comparing the average LPIPS error on the 20

non-INRIA test materials (0.2431 for the SVBRDF estimation versus

0.2248 for neural material relighting).

8 LIMITATIONS

Our neural material relighting is not without limitations. Due to the

convolutional nature of the decoding network, our material relight-

ing network is limited by the view/light combinations seen during

training. Currently, our relighting network is only trained for pla-

nar materials and it cannot handle mapping the material over a

curved surface. Possibly including such cases during training could

help extend the capabilities, although we expect a more powerful

or deeper network architecture might be needed. Alternatively, we

could also subdivide the curved surface in patches and relight the

material for each patch. Similarly, our neural material relighting

network does not support relighting a single selected pixel without

relighting the whole material. This makes our method less suited

for ray tracing based rendering systems. An interesting avenue for

future research would be to replace the decoder by an MLP that

takes a pixel coordinate as additional input, and that outputs the

Reference Relighting SVBRDF Input

N.A.

Figure 9: SVBRDF estimation using a similar architecture

tends to generalize less well to materials that are challenging

or that are from outside the training set.

relit pixel value. Furthermore, our lighting network currently is

only able to relight from a single point light, making relighting with

environmentmaps expensive (cf. classic image-based relighting [De-

bevec et al. 2000]). Extending our method to direct relighting with

environment lighting is another avenue for future research. Finally,

neural material relighting can fail to reproduce correct highlights if

the input does not contain many specular highlights. Furthermore,

despite the highlight aware convolutions, severe oversaturation

can still lead to burn-in (Figure 10). However, existing SVBRDF

methods typically also fail on these challenging materials.

Ground Truth Relighting Zhou et al. Deschaintre et al.

Figure 10: Top: Neural material relighting requires a su�-

cient number of pixels featuring a specular highlight in the

input photograph to correctly reproduce highlights. Bottom:

Despite the highlight aware convolutions, severe oversatura-

tion still causes burn-in.
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9 CONCLUSION

In this paper we presented neural material relighting, a novel strat-

egy for appearance modeling that from a single photograph pro-

duces a relit image of the material without going through an in-

termediate SVBRDF estimation and rendering step. Our learning

based method features an encoder-decoder network architecture

with residual blocks and highlight aware convolutions trained with

a combination of three loss terms: a data loss, a perceptual loss, and

a conditional loss. Besides directly using the relit materials as is,

neural material relighting can also be used to create synthetic input

images to drive multi-image SVBRDF estimation methods thereby

extending the conditions under which these methods can operate.
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