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Figure 1: Free viewpoint relighting of neural radiance �elds trained on 500−1,000 unstructured photographs per scene captured

with a handheld setup.

ABSTRACT

This paper presents a novel neural implicit radiance representation

for free viewpoint relighting from a small set of unstructured pho-

tographs of an object lit by a moving point light source di�erent

from the view position. We express the shape as a signed distance

function modeled by a multi layer perceptron. In contrast to prior

relightable implicit neural representations, we do not disentangle

the di�erent light transport components, but model both the local

and global light transport at each point by a second multi layer

perceptron that, in addition, to density features, the current posi-

tion, the normal (from the signed distance function), view direction,

and light position, also takes shadow and highlight hints to aid

the network in modeling the corresponding high frequency light

transport e�ects. These hints are provided as a suggestion, and

we leave it up to the network to decide how to incorporate these

in the �nal relit result. We demonstrate and validate our neural

implicit representation on synthetic and real scenes exhibiting a
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wide variety of shapes, material properties, and global illumination

light transport.
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1 INTRODUCTION

The appearance of real-world objects is the result of complex light

transport interactions between the lighting and the object’s intricate

geometry and associated material properties. Digitally reproducing

the appearance of real-world objects and scenes has been a long-

standing goal in computer graphics and computer vision. Inverse

rendering methods attempt to undo the complex light transport to

determine a sparse set of model parameters that, together with the

chosen models, replicates the appearance when rendered. However,

teasing apart the di�erent entangled components is ill-posed and

often leads to ambiguities. Furthermore, inaccuracies in one model
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can adversely a�ect the accuracy at which other components can be

disentangled, thus requiring strong regularization and assumptions.

In this paper we present a novel, NeRF-inspired [Mildenhall et al.

2020], neural implicit radiance representation for free viewpoint

relighting of general objects and scenes. Instead of using analytical

re�ectance models and inverse rendering of the neural implicit rep-

resentations, we follow a data-driven approach and refrain from de-

composing the appearance in di�erent light transport components.

Therefore, unlike the majority of prior work in relighting neural

implicit representations [Boss et al. 2021a, 2022; Kuang et al. 2022;

Srinivasan et al. 2021; Zheng et al. 2021], we relax and enrich the

lighting information embedded in handheld captured photographs

of the object by illuminating each view from a random point light

position. This provides us with a broader unstructured sampling of

the space of appearance changes of an object, while retaining the

convenience of handheld acquisition. Furthermore, to improve the

reproduction quality of di�cult to learn components, we provide

shadow and highlight hints to the neural radiance representation.

Critically, we do not impose how these hints are combined with the

estimated radiance (e.g., shadow mapping by multiplying with the

light visibility), but instead leave it up to the neural representation

to decide how to incorporate these hints in the �nal result.

Our hint-driven implicit neural representation is easy to im-

plement, and it requires an order of magnitude less photographs

than prior relighting methods that have similar capabilities, and an

equal number of photographs compared to state-of-the-art methods

that o�er less �exibility in the shape and/or materials that can be

modeled. Compared to �xed lighting implicit representations such

as NeRF [Mildenhall et al. 2020], we only require a factor of �ve

times more photographs and twice the render cost while gaining

relightability. We demonstrate the e�ectiveness and validate the

robustness of our representation on a variety of challenging syn-

thetic and real objects (e.g., Figure 1) containing a wide range of

materials (e.g., subsurface scattering, rough specular materials, etc.)

variations in shape complexity (e.g., thin features, ill-de�ned furry

shapes, etc.) and global light transport e�ects (e.g., interre�ections,

complex shadowing, etc.).

2 RELATED WORK

We focus the discussion of related work on seminal and recent

work in image-based relighting, inverse rendering, and relight-

ing neural implicit representations. For an in-depth overview we

refer to recent surveys in neural rendering [Tewari et al. 2022],

(re)lighting [Einabadi et al. 2021], and appearance modeling [Dong

2019].

Image-based Relighting. The staggering advances in machine

learning in the last decade have also had a profound e�ect on image-

based relighting [Debevec et al. 2000], enabling new capabilities

and improving quality [Bemana et al. 2020; Ren et al. 2015; Xu

et al. 2018]. Deep learning has subsequently been applied to more

specialized relighting tasks for portraits [Bi et al. 2021; Meka et al.

2019; Pandey et al. 2021; Sun et al. 2019, 2020], full bodies [Guo

et al. 2019; Kanamori and Endo 2018; Meka et al. 2020; Yeh et al.

2022; Zhang et al. 2021a], and outdoor scenes [Gri�ths et al. 2022;

Meshry et al. 2019; Philip et al. 2019]. It is unclear how to extend

these methods to handle scenes that contain objects with ill-de�ned

shapes (e.g., fur) and translucent and specular materials.

Our method can also be seen as a free-viewpoint relighting

method that leverages highlight and shadow hints to help model

these challenging e�ects. Philip et al. [2019] follow a deep shad-

ing approach [Nalbach et al. 2017] for relighting, mostly di�use,

outdoor scenes under a simpli�ed sun+cloud lighting model. Re-

lit images are created in a two stage process, where an input and

output shadow map computed from a proxy geometry is re�ned,

and subsequently used, together with additional render bu�ers,

as input to a relighting network. Zhang et al. [2021a] introduce

a semi-parametric model with residual learning that leverages a

di�use parametric model (i.e., radiance hint) on a rough geometry,

and a learned representation that models non-di�use and global

light transport embedded in texture space. To accurately model the

non-di�use e�ects, Zhang et al. require a large number (∼ 8,000)

of structured photographs captured with a light stage. Deferred

Neural Relighting [Gao et al. 2020] is closest to our method in terms

of capabilities; it can perform free-viewpoint relighting on objects

with ill-de�ned shape with full global illumination e�ects and com-

plex light-matter interactions (including subsurface scattering and

fur). Similar to Zhang et al. [2021a], Gao et al. embed learned fea-

tures in the texture space of a rough geometry that are projected to

the target view and multiplied with radiance cues. These radiance

cues are visualizations of the rough geometry with di�erent BRDFs

(i.e., di�use and glossy BRDFs with 4 di�erent roughnesses) under

the target lighting with global illumination. The resulting images

are then used as guidance hints for a neural renderer trained per

scene from a large number (∼10,000) of unstructured photographs

of the target scene for random point light-viewpoint combinations

to reproduce the reference appearance. Philip et al. [2021] also use

radiance hints (limited to di�use and mirror radiance) to guide a

neural renderer. However, unlike Zhang et al. and Gao et al. , they

pretrain a neural renderer that does not require per-scene �ne-

tuning, and that takes radiance cues for both the input and output

conditions. Philip et al. require about the same number as input

images as our method, albeit lit by a single �xed natural lighting

conditions and limited to scenes with hard surfaces and BRDF-like

materials. All four methods rely on multi-view stereo which can

fail for complex scenes. In contrast our method employs a robust

neural implicit representation. Furthermore, all four methods rely

on an image-space neural renderer to produce the �nal relit image.

In contrast, our method provides the hints during volume rendering

of the neural implicit representation, and thus it is independent

of view-dependent image contexts. Our method can relight scenes

with the same complexity as Gao et al. [2020] while only using a

similar number of input photographs as Philip et al. [2021] without

sacri�cing robustness.

Model-based Inverse Rendering. An alternative to data-driven re-

lighting is inverse rendering (a.k.a. analysis-by-synthesis) where a

set of trial model parameters are optimized based on the di�erence

between the rendered model parameters and reference photographs.

Inverse rendering at its core is a complex non-linear optimization

problem. Recent advances in di�erentiable rendering [Li et al. 2018;

Loper and Black 2014; Nimier-David et al. 2019; Xing et al. 2022]

have enabled more robust inverse rendering for more complex
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scenes and capture conditions. BID-R++ [Chen et al. 2021] com-

bines di�erentiable ray tracing and rasterization to model spatially

varying re�ectance parameters and spherical Gaussian lighting for

a known triangle mesh. Munkberg et al. [2022] alternate between

optimizing an implicit shape representation (i.e., a signed distance

�eld), and re�ectance and lighting de�ned on a triangle mesh. Has-

selgren et al. [2022] extend the work of Munkberg et al. [2022] with

a di�erentiable Monte Carlo renderer to handle area light sources,

and embed a denoiser to mitigate the adverse e�ects of Monte

Carlo noise on the gradient computation to drive the non-linear

optimizer. Similarly, Fujun et al. [2021] also employ a di�erentiable

Monte Carlo renderer for estimating shape and spatially-varying

re�ectance from a small set of colocated view/light photographs.

All of these methods focus on direct lighting only and can produce

suboptimal results for objects or scenes with strong interre�ections.

A notable exception is the method of Cai et al. [2022] that combines

explicit and implicit geometries and demonstrates inverse render-

ing under known lighting on a wide range of opaque objects while

taking indirect lighting in account. All of the above methods eventu-

ally express the shape as a triangle mesh, limiting their applicability

to objects with well de�ned surfaces. Furthermore, the accuracy of

these methods is inherently limited by the representational power

of the underlying BRDF and lighting models.

Neural Implicit Representations. A major challenge in inverse

rendering with triangle meshes is to e�ciently deal with changes

in topology during optimization. An alternative to triangle mesh

representations is to use a volumetric representation where each

voxel contains an opacity/density estimate and a description of the

re�ectance properties. While agnostic to topology changes, voxel

grids are memory intensive and, even with grid warping [Bi et al.

2020], �ne-scale geometrical details are di�cult to model.

To avoid the inherent memory overhead of voxel grids, NeRF

[Mildenhall et al. 2020] models the continuous volumetric density

and spatially varying color with two multi layer perceptrons (MLPs)

parameterized by position (and also view direction for color). The

MLPs in NeRF are trained per scene such that the accumulated den-

sity and color ray marched along a view ray matches the observed

radiance in reference photographs. NeRF has been shown to be

exceptionally e�ective in modeling the outgoing radiance �eld of a

wide range of object types, including those with ill-de�ned shapes

and complex materials. One of the main limitations of NeRF is that

the illumination present at capture-time is baked into the model.

Several methods have been introduced to support post-capture

relighting under a restricted lighting model [Li et al. 2022; Martin-

Brualla et al. 2021], or by altering the color MLP to produce the

parameters to drive an analytical model of the appearance of ob-

jects [Boss et al. 2021a, 2022, 2021b; Kuang et al. 2022; Srinivasan

et al. 2021; Yao et al. 2022; Zhang et al. 2021c], participating me-

dia [Zheng et al. 2021], or even whole outdoor scenes [Rudnev et al.

2022].

Due to the high computational cost of ray marching secondary

rays, naïvely computing shadows and indirect lighting is impracti-

cal. Zhang et al. [2021c], Li et al. [2022], and Yang et al. [2022] avoid

tracing shadow rays by learning an additional MLP to model the

ratio of light occlusion. However, all three methods ignore indirect

lighting. Zheng et al. [2021] model the indirect lighting inside a

participating media using anMLP that returns the coe�cients of a 5-

band expansion. NeILF [Yao et al. 2022] embeds the indirect lighting

and shadows in a (learned) 5D incident light �eld for a scene with

known geometry. NeRV [Srinivasan et al. 2021] modi�es the color

MLP to output BRDF parameters and a visibility �eld that models

the distance to the nearest ’hard surface’ and lighting visibility. The

visibility �eld allows them to bypass the expensive ray marching

step for shadow computation and one-bounce indirect illumination.

A disadvantage of these solutions is that they do not guarantee that

the estimated density �eld and the occlusions are coupled. In con-

trast, our method directly ties occlusions to the estimated implicit

geometry reproducing more faithful shadows. Furthermore, these

methods rely on BRDFs to model the surface re�ectance, precluding

scenes with complex light-matter interactions.

NeLF [Sun et al. 2021] aims to relight human faces, and thus

accurately reproducing subsurface scattering is critical. Therefore,

Sun et al. characterize the radiance and global light transport by

an MLP. We also leverage an MLP to model local and global light

transport. A key di�erence is that our method parameterizes this

MLP in terms of view and light directions, whereas NeLF directly

outputs a full light transport vector and compute a relit color via an

inner-product with the lighting. While better suited for relighting

with natural lighting, NeLF is designed for relighting human faces

which only exhibit limited variations in shape and re�ectance.

Similar in spirit to ourmethod, Lyu et al. [2022]model light trans-

port using an MLP, named a Neural Radiance Transfer Field (NRTF).

However, unlike us, Lyu et al. train the MLP on synthetic training

data generated from a rough BRDF approximation obtained through

physically based inverse rendering on a triangle mesh extracted

from a neural signed distance �eld [Wang et al. 2021] computed

from unstructured observations of the scene under static natural

lighting. To correct the errors due the rough BRDF approximation,

a �nal re�nement step of the MLP is performed using the captured

photographs. Similar to Lyu et al. we also use an MLP to model

light transport, including indirect lighting. However, unlike Lyu et

al. we do not rely solely on an MLP to model high frequency light

transport e�ects such as light occlusions and specular highlights.

Instead we provide shadow and highlight hints to the radiance

network and let the training process discover how to best leverage

these hints. Furthermore, we rely on a neural representation for

shape jointly optimized with the radiance, allowing us to capture

scenes with ill-de�ned geometry. In contrast, Lyu et al. optimize

shape (converted to a triangle mesh) and radiance separately, mak-

ing their method sensitive to shape errors and restricted to objects

with a well-de�ned shape.

An alternative to using an implicit neural density �eld, is to

model the shape via a signed distance �eld (SDF). Similar to the

majority of NeRF-based methods, PhySG [Zhang et al. 2021b] and

IRON [Zhang et al. 2022a] also rely on anMLP to represent volumet-

ric BRDF parameters. However, due to the high computational cost,

these methods do not take shadowing or indirect lighting in account.

Zhang et al. [2022b] model indirect lighting separately, and train

an additional incident light �eld MLP using the incident lighting

computed at each point via ray casting the SDF geometry. While

our method also builds on a neural implicit representation [Wang

et al. 2021], our method does not rely on an underlying paramet-

ric BRDF model, but instead models the full light transport via an
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by scaling the radiance with the light source color (i.e., linearity of

light transport).

Given the output from the density network 5 as well as the

output from the radiance network B , the color � along a view ray

starting at the camera position o in a direction v is given by:

� (o, v) =

∫ ∞

0
F (C)B (p,n, v, l, 5̄ ,Θ) dC, (1)

where the sample position along the view ray is p = o+ Cv at depth

C , n is the normal computed as the normalized SDF gradient:

n = ∇5 (p)/| |∇5 (p) | |, (2)

v is the view direction, l is the point light position, 5̄ the corre-

sponding feature vector from the density MLP, and Θ is a set of

additional hints provided to the radiance network (described in sub-

section 3.2). Analogous to NeuS, the view direction, light position,

and hints are all frequency encoded with 4 bands. Finally,F (C) is

the unbiased density weight [Wang et al. 2021] computed by:

F (C) = ) (C)d (C), (3)

) (C) = exp

(

−

∫

C

0
d (D) dD

)

, (4)

d (C) = max

( dΦB

dC (5 (C))

ΦB (5 (C))
, 0

)

, (5)

with ) the transmittance over opacity d , ΦB the CDF of the PDF

qB used to compute the density from the SDF 5 . To speed up the

computation of the color, the integral in Equation 1 is computed by

importance sampling the density �eld along the view ray.

In the spirit of image-based relighting, we opt to have the re-

lightable radiance MLP network include global light transport ef-

fects such as interre�ections and occlusions. While MLPs are in

theory universal approximators, some light transport components

are easier to learn (e.g., di�use re�ections) than others. Especially

high frequency light transport components such as shadows and

specular highlights pose a problem. At the same time, shadows

and specular highlights are highly correlated with the geometry

of the scene and thus the density �eld. To leverage this embedded

knowledge, we provide the relightable radiance MLP with addi-

tional shadow and highlight hints.

3.2 Light Transport Hints

Shadow Hints. While the relightable radiance network is able to

roughly model the e�ects of light source occlusion, the resulting

shadows typically lack sharpness and detail. Yet, light source oc-

clusion can be relatively easily evaluated by collecting the density

along a shadow ray towards the light source. While this process is

relatively cheap for a single shadow ray, performing a secondary

ray march for each primary ray’s sampled position increases the

computation cost by an order of magnitude, quickly becoming too

expensive for practical training. However, we observe that for most

primary rays, the ray samples are closely packed together around

the zero level-set in the SDF due to the importance sampling of

the density along the view ray. Hence, we propose to approximate

light source visibility by shooting a single shadow ray at the zero

level-set, and use the same light source visibility for each sample

along the view ray. To determine the depth of the zero level-set, we

compute the density weighted depth along the view ray:

� (o, v) =

∫ ∞

0
F (p)C dC . (6)

While for an opaque surface a single shadow ray is su�cient,

for non-opaque or ill-de�ned surfaces a single shadow ray o�ers a

poor estimate of the light occlusion. Furthermore, using the shadow

information as a hard mask, ignores the e�ects of indirect lighting.

We therefore provide the shadow information as a additional input

to the radiance network, allowing the network learn whether to

include or ignore the shadowing information as well as blend any

indirect lighting in the shadow regions.

Highlight Hints. Similar to shadows, specular highlights are spar-

sely distributed high frequency light transport e�ects. Inspired

by Gao et al. [2020], we provide specular highlight hints to the

radiance network by evaluating 4 microfacet BRDFs with a GGX

distribution [Walter et al. 2007] with roughness parameters {0.02,

0.05, 0.13, 0.34}. Unlike Gao et al. , we compute the highlight hints

using local shading which only depends on the surface normal

computed from the SDF (Equation 2), and pass it to the radiance

MLP as an additional input. Similar to shadow hints, we compute

one highlight hint per view ray and reused it for all samples along

the view ray.

3.3 Loss & Training

We jointly train the density and radiance network using an image

reconstruction loss L2 and an SDF regularization loss L4 . The im-

age reconstruction loss is de�ned as the !1 distance between the

observation �̄ (o, v) and the corresponding estimated color � (o, v)

computed using Equation 1: L2 = | |�̄ − � | |1, for a random sam-

pling of pixels (and thus view rays) in the captured training images

(subsection 3.4). Furthermore, we follow NeuS, and regularize the

density MLP with the Eikonal loss [Gropp et al. 2020] to ensure a

valid SDF: L4 = ( | |∇5 (p) | |2 − 1)2. For computational e�ciency, we

do not back-propagate gradients from the shadow and highlight

hints.

3.4 Data Acquisition

Training the implicit representation requires observations of the

scene viewed from random viewpoints and lit from a di�erent

random light position such that shadows and interre�ections are in-

cluded. We follow the procedure from Gao et al. [2020]: a handheld

camera is used to capture photographs of the scene from random

viewpoints while a second camera captures the scene with its colo-

cated �ash light enabled. The images from the second camera are

only used to calibrate the light source position. To aid camera cali-

bration, the scene is placed on a checkerboard pattern.

All examples in this paper are captured with a Sony A7II as the

primary camera, and an iPhone 13 Pro as the secondary camera.

The acquisition process takes approximately 10 minutes; the main

bottleneck in acquisition is moving the cameras around the scene.

In practice we capture a video sequence from each camera and

randomly select 500−1,000 frames as our training data. The video

is captured using S-log encoding to minimize overexposure.
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Figure 3: Qualitative comparison between synthetic scenes relit (right) for a novel viewpoint and lighting direction (not part of

the training data) and a rendered reference image (left). For each example we list average PSNR, SSIM, and LPIPS computed

over a uniform sampling of view and light positions.

For the synthetic scenes, we simulate the acquisition process by

randomly sampling view and light positions on the upper hemi-

sphere around the scene with a random distance between 2 to 2.5

times the size of the scene. The synthetic scenes are rendered with

global light transport using Blender Cycles.

3.5 Viewpoint Optimization

Imperfections in camera calibration can cause inaccurate recon-

structions of thin geometrical features as well as lead to blurred

results. To mitigate the impact of camera calibration errors, we

jointly optimize the viewpoints and the neural representation.

Given an initial view orientation '0 and view position C0, we

formulate the re�ned camera orientation ' and position C as:

' = Δ' · '0, (7)

C = ΔC + Δ' · C0, (8)

where Δ' ∈ SO(3) and ΔC ∈ R3 are learnable correction transforma-

tions. During training, we back-propagate, the reconstruction loss,

in addition to the relightable radiance network, to the correction

transformations. We assume that the error on the initial camera cal-

ibration is small, and thus we limit the viewpoint changes by using

a 0.06× smaller learning rate for the correction transformations.

4 RESULTS

We implemented our neural implicit radiance representation in Py-

Torch [Paszke et al. 2019]. We train each model for 1,000: iterations

using the Adam optimizer [Kingma and Ba 2015] with V1 = 0.9 and

V2 = 0.999 with 512 samples per iteration randomly drawn from

the training images. We follow the same warmup and cosine decay

learning rate schedule as in NeuS [Wang et al. 2021]. Training a

single neural implicit radiance representation takes approximate

20 hours on four Nvidia V100 GPUs.

We extensively validate the relighting capabilities of our neural

implicit radiance representation on 17 synthetic and 7 captured

scenes (including 4 from [Gao et al. 2020]), covering a wide range

of di�erent shapes, materials, and lighting e�ects.

Synthetic Scenes. Figure 3 shows relit results of di�erent

synthetic scenes. For each example, we list PSNR, SSIM, and

LPIPS [Zhang et al. 2018] error statistics computed over 100 test

images di�erent from the 500 training images. Our main test scene

contains a vase and two dice; the scene features a highly concave

object (vase) and complex interre�ections between the dice. We

include several versions of the main test scene with di�erent mate-

rial properties: Diffuse, Metallic, Glossy-Metal, Rough-Metal,

Anisotropic-Metal, Plastic, Glossy-Plastic, Rough-Plastic

and Translucent; note, some versions are only included in the

supplemental material. We also include two versions with modi�ed
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Pikachu statue PSNR: 35.08
SSIM: 0.9877
LPIPS: 0.0359

Cat on decor PSNR: 36.39
SSIM: 0.9850
LPIPS: 0.0604

Cup and fabric PSNR: 38.17
SSIM: 0.9900
LPIPS: 0.0355

Figure 4: Qualitative comparison between captured scenes relit (right) for a novel viewpoint and lighting direction (not part of

the training data) and a reference photograph (left). For each example we list average PSNR, SSIM, and LPIPS computed over

randomly sampled view and light positions.

Figure 5: Comparison to inverse rendering results from IRON [Zhang et al. 2022a] (from 500 colocated training images) on

the Metallic scene. Our model is evaluated under colocated point lights. IRON is a�ected by the interre�ections and fails to

accurately reconstruct the geometry.

geometry: Short-Fur and Long-Fur to validate the performance

of our method on shapes with ill-de�ned geometry. In addition,

we also include a Fur-Ball scene which exhibits even longer fur.

To validate the performance of the shadow hints, we also include

scenes with complex shadows: a Basket scene containing thin

geometric features and a Layered Woven Ball which combines

complex visibility and strong interre�ections. In addition to these

specially engineered scenes to systematically probe the capabili-

ties of our method, we also validate our neural implicit radiance

representation on commonly used synthetic scenes in neural im-

plicit modeling: Hotdog, Lego and Drums [Mildenhall et al. 2020].

Based on the error statistics, we see that the error correlates with

the geometric complexity of the scene (vase and dice, Hotdog, and

Layered Woven Ball perform better than the Fur scenes as well

as scenes with small details such as the Lego and the Drums scene),

and with the material properties (highly specular materials such as

Metallic and Anisotropic-Metal incur a higher error). Visually,

di�erences are most visible in specular re�ections and for small

geometrical details.

Captured Scenes. We demonstrate the capabilities of our neu-

ral implicit relighting representation by modeling 3 new scenes

captured with handheld setups (Figure 4). The Pikachu Statue

scene contains glossy highlights and signi�cant self-occlusion. The

Cat on Decor scene showcases the robustness of our method on

real-world objects with ill-de�ned geometry. The Cup and Fabric

scene exhibits translucent materials (cup), specular re�ections of

the balls, and anisotropic re�ections on the fabric. We refer to the

supplementary material for additional video sequences of these

scenes visualized for rotating camera and light positions.

Comparisons. Figure 5 compares our method to IRON [Zhang

et al. 2022b], an inverse rendering method that adopts a neural

representation for geometry as a signed distance �eld. From these

results, we can see that IRON fails to correctly reconstruct the shape

and re�ections in the presence of strong interre�ections. In a second

comparison (Figure 6), we compare our method to Neural Radiance

Transfer Fields (NRTF) [Lyu et al. 2022]; we skip the fragile inverse

rendering step and train NRTF with 500 reference OLAT images and

the reference geometry. To provide a fair comparison, we also train

and evaluate our network under the same directional OLAT images

by conditioning the radiance network on light direction instead of

point light position. From this test we observe that NRTF struggles

to accurately reproduce shadow edges and specular interre�ections,

as well as that our method can also be successfully trained with di-

rectional lighting. Figure 7 compares our method to the pre-trained

neural relighting network of Philip et al. . [2021] on the challenging

Metallic test scene. Because multiview stereo [Schönberger and

Frahm 2016] fails for this scene, we input geometry reconstructed

from the NeuS SDF as well as ground truth geometry. Finally, we

also render the input images under the reference target lighting;

our network is trained without access to the target lighting. Even

under these favorable conditions, the relighting method of Philip et

al. struggles to reproduce the correct appearance. Finally, we com-

pare our method to Deferred Neural Lighting [Gao et al. 2020]

(using their data and trained model). Our method is able to achieve

similar quality results from ∼500 input images compared to ∼10,000

input images for Deferred Neural Lighting. While visually very

similar, the overall errors of Deferred Neural Lighting are slightly

lower than with our method. This is mainly due to di�erences in
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Table 1: Ablation results on synthetic scenes

Ablation Variant PSNR ↑ SSIM ↑ LPIPS ↓

Full hints 32.02 0.9727 0.0401

w/o highlight hint 31.96 0.9724 0.0407

w/o shadow hint 27.67 0.9572 0.0610

w/o any hints 27.54 0.9568 0.0620

1 basis material 31.54 0.9707 0.0428

2 basis materials 31.54 0.9707 0.0429

4 basis materials 32.02 0.9727 0.0401

8 basis materials 31.98 0.9726 0.0401

50 training images 24.29 0.9335 0.0706

100 training images 27.96 0.9572 0.0520

250 training images 30.36 0.9666 0.0456

500 training images 32.02 0.9727 0.0401

Table 2: Ablation results of viewpoint optimization on real

captured scenes

Ablation Variant PSNR ↑ SSIM ↑ LPIPS ↓

w/ viewpoint optimization 34.72 0.9762 0.0695

w/o viewpoint optimization 33.62 0.9719 0.0794

how both methods handle camera calibrations errors. Deferred

Neural Lighting tries to minimize the di�erences for each frame

separately, and thus it can embed camera calibration errors in the

images. However, this comes at the cost of temporal “shimmering”

when calibration is not perfect. Our method on the other hand, opti-

mizes the 3D representation, yielding better temporal stability (and

thus requiring less photographs for view interpolation) at the cost

of slightly blurring the images in the presence of camera calibration

errors.

5 ABLATION STUDIES

We perform several ablation experiments (visual and quantitative)

on the synthetic datasets to evaluate the impact of each of the com-

ponents that comprise our neural implicit radiance representation.

Shadow and Highlight Hints. A key contribution is the inclusion

of shadow and highlight hints in the relightable radiance MLP.

Figure 9 shows the impact of training without the shadow hint, the

highlight hint, or both. Without shadow hints the method fails to

correctly reproduce sharp shadow boundaries on the ground plane.

This lack of sharp shadows is also re�ected in the quantitative

errors summarized in Table 1. Including the highlight hints yield a

better highlight reproduction, e.g., in the mouth of the vase.

Impact of the Number of Shadow Rays. We currently only use a

single shadow ray to compute the shadow hint. However, we can

also shoot multiple shadow rays (by importance sampling points

along the view ray) and provide a more accurate hint to the radiance

network. Figure 10 shows the results of a radiance network trained

with 16 shadow rays. While providing a more accurate shadow

hint, there is marginal bene�t at a greatly increased computational

cost, justifying our choice of a single shadow ray for computing

the shadow hint.

NeuS vs. NeRF Density MLP. While the relightable radiance MLP

learns how much to trust the shadow hint (worst case it can com-

pletely ignore unreliable hints), the radiance MLP can in general

not reintroduce high-frequency details if it is not included in the

shadow hints. To obtain a good shadow hint, an accurate depth

estimate of the mean depth along the view ray is needed. Wang et

al. [2021] noted that NeRF produces a biased depth estimate, and

they introduced NeuS to address this problem. Replacing NeuS by

NeRF for the density network (Figure 10) leads to poor shadow re-

production due to the adverse impact of the biased depth estimates

on the shadow hints.

Impact of the number of Basis Materials for the Highlight Hints.

Table 1 shows the results of using 1, 2, 4 and 8 basis materials for

computing the highlight hints. Additional highlights hints improve

the results up to a point; when too many hints are provided erro-

neous correlations can increase the overall error. 4 basis materials

strike a good balance between computational cost, network com-

plexity, and quality.

Impact of Number of Training Images. Figure 11 and Table 1

demonstrate the e�ect of varying the number of input images from

50, 100, 250 to 500. As expected, more training images improve

the results, and with increasing number of images, the increase

in improvement diminishes. With 250 images we already achieve

plausible relit results. Decreasing the number of training images

further introduces noticeable appearance di�erences.

E�ectiveness of Viewpoint Optimization. Figure 12 and Table 2

demonstrate the e�ectiveness of viewpoint optimization on real

captured scenes. While the improvement in quantitative errors is

limited, visually we can see that viewpoint optimization signi�-

cantly enhances reconstruction quality with increased sharpness

and better preservation of �ner details.

6 LIMITATIONS

While our neural implicit radiance representation greatly reduces

the number of required input images for relighting scenes with com-

plex shape and materials, it is not without limitations. Currently we

provide shadow and highlight hints to help the relightable radiance

MLP model high frequency light transport e�ects. However, other

high frequency e�ects exist. In particular highly specular surfaces

that re�ect other parts of the scene pose a challenge to the radiance

network. Naïve inclusion of ’re�ection hints’ and/or reparameter-

izations [Verbin et al. 2022] fail to help the network, mainly due

to the reduced accuracy of the surface normals (needed to predict

the re�ected direction) for sharp specular materials. Resolving this

limitation is a key challenge for future research in neural implicit

modeling for image-based relighting.

7 CONCLUSION

In this paper we presented a novel neural implicit radiance represen-

tation for free viewpoint relighting from a small set of unstructured

photographs. Our representation consists of twoMLPs: one for mod-

eling the SDF (analogous to NeuS) and a second MLP for modeling

the local and indirect radiance at each point. Key to our method is

the inclusion of shadow and highlight hints to aid the relightable

radiance MLP to model high frequency light transport e�ects. Our
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Figure 6: A comparison to Neural Radiance Transfer Fields (NRTF) trained on 500 OLAT reference images and reference

geometry. To provide a fair comparison, we also train our network on the same directional OLAT images (without reference

geometry) instead of point lighting. NRTF struggles to correctly reproduce shadow boundaries and specular interre�ections

(see zoom-ins).

Figure 7: Comparison to the pretrained relighting network of Philip et al. [2021] on 500 input images of theMetallic scene

rendered with the target lighting. Even under these favorable conditions, their method struggles to reproduce the correct

appearance for novel viewpoints.

Reference
PSNR | SSIM | LPIPS

DNL
39.22 | 0.9932 | 0.0184

Ours
36.42 | 0.9856 | 0.0399

Reference
PSNR | SSIM | LPIPS

DNL
34.02 | 0.9763 | 0.0550

Ours
32.94 | 0.9708 | 0.0791

PSNR | SSIM | LPIPS
Reference

35.36 | 0.9730 | 0.0692
DNL

33.07 | 0.9695 | 0.0967
Ours

PSNR | SSIM | LPIPS
Reference

32.093 | 0.9469 | 0.1178
DNL

30.96 | 0.9445 | 0.1393
Ours

Figure 8: Comparison with Deferred Neural Lighting [Gao et al. 2020]. We train our neural implicit radiance representation

using only 1/25th (∼500) randomly selected frames for Gao et al.’s datasets, while achieving comparable results.

method is able to produce relit results from just ∼500 photographs

of the scene; a saving of one to two order of magnitude compared

to prior work with similar capabilities.
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Figure 9: Impact of shadow and highlight hints; without the hints the network fails to accurately reproduce the desired e�ect.

Figure 10: Impact of the number of shadow rays and the underlying implicit shape representation demonstrated on the Basket

scene. Using 16 shadow rays only provides marginal improvements at the cost of signi�cant computation overhead. Using

NeRF as the basis for the neural implicit shape yields degraded shadow quality due to depth biases.

Figure 11: Impact of the number of captured training images. Increasing the number of training images improves the quality.

The quality degrades signi�cantly when the number of images is less than 250.

Reference
PSNR | SSIM | LPIPS

w/o Viewpoint Optimization
31.43 | 0.9803 | 0.0375

w/ Viewpoint Optimization
35.08 | 0.9877 | 0.0.359

Figure 12: E�ectiveness of Viewpoint Optimization. Using viewpoint optimization greatly enhances the image quality in terms

of sharpness and detail.
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