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Figure 1: Free viewpoint relighting of neural radiance fields trained on 500—1,000 unstructured photographs per scene captured

with a handheld setup.
ABSTRACT

This paper presents a novel neural implicit radiance representation
for free viewpoint relighting from a small set of unstructured pho-
tographs of an object lit by a moving point light source different
from the view position. We express the shape as a signed distance
function modeled by a multi layer perceptron. In contrast to prior
relightable implicit neural representations, we do not disentangle
the different light transport components, but model both the local
and global light transport at each point by a second multi layer
perceptron that, in addition, to density features, the current posi-
tion, the normal (from the signed distance function), view direction,
and light position, also takes shadow and highlight hints to aid
the network in modeling the corresponding high frequency light
transport effects. These hints are provided as a suggestion, and
we leave it up to the network to decide how to incorporate these
in the final relit result. We demonstrate and validate our neural
implicit representation on synthetic and real scenes exhibiting a
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wide variety of shapes, material properties, and global illumination
light transport.
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1 INTRODUCTION

The appearance of real-world objects is the result of complex light
transport interactions between the lighting and the object’s intricate
geometry and associated material properties. Digitally reproducing
the appearance of real-world objects and scenes has been a long-
standing goal in computer graphics and computer vision. Inverse
rendering methods attempt to undo the complex light transport to
determine a sparse set of model parameters that, together with the
chosen models, replicates the appearance when rendered. However,
teasing apart the different entangled components is ill-posed and
often leads to ambiguities. Furthermore, inaccuracies in one model
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can adversely affect the accuracy at which other components can be
disentangled, thus requiring strong regularization and assumptions.

In this paper we present a novel, NeRF-inspired [Mildenhall et al.
2020], neural implicit radiance representation for free viewpoint
relighting of general objects and scenes. Instead of using analytical
reflectance models and inverse rendering of the neural implicit rep-
resentations, we follow a data-driven approach and refrain from de-
composing the appearance in different light transport components.
Therefore, unlike the majority of prior work in relighting neural
implicit representations [Boss et al. 2021a, 2022; Kuang et al. 2022;
Srinivasan et al. 2021; Zheng et al. 2021], we relax and enrich the
lighting information embedded in handheld captured photographs
of the object by illuminating each view from a random point light
position. This provides us with a broader unstructured sampling of
the space of appearance changes of an object, while retaining the
convenience of handheld acquisition. Furthermore, to improve the
reproduction quality of difficult to learn components, we provide
shadow and highlight hints to the neural radiance representation.
Critically, we do not impose how these hints are combined with the
estimated radiance (e.g., shadow mapping by multiplying with the
light visibility), but instead leave it up to the neural representation
to decide how to incorporate these hints in the final result.

Our hint-driven implicit neural representation is easy to im-
plement, and it requires an order of magnitude less photographs
than prior relighting methods that have similar capabilities, and an
equal number of photographs compared to state-of-the-art methods
that offer less flexibility in the shape and/or materials that can be
modeled. Compared to fixed lighting implicit representations such
as NeRF [Mildenhall et al. 2020], we only require a factor of five
times more photographs and twice the render cost while gaining
relightability. We demonstrate the effectiveness and validate the
robustness of our representation on a variety of challenging syn-
thetic and real objects (e.g., Figure 1) containing a wide range of
materials (e.g., subsurface scattering, rough specular materials, etc.)
variations in shape complexity (e.g., thin features, ill-defined furry
shapes, etc.) and global light transport effects (e.g., interreflections,
complex shadowing, etc.).

2 RELATED WORK

We focus the discussion of related work on seminal and recent
work in image-based relighting, inverse rendering, and relight-
ing neural implicit representations. For an in-depth overview we
refer to recent surveys in neural rendering [Tewari et al. 2022],
(re)lighting [Einabadi et al. 2021], and appearance modeling [Dong
2019].

Image-based Relighting. The staggering advances in machine
learning in the last decade have also had a profound effect on image-
based relighting [Debevec et al. 2000], enabling new capabilities
and improving quality [Bemana et al. 2020; Ren et al. 2015; Xu
et al. 2018]. Deep learning has subsequently been applied to more
specialized relighting tasks for portraits [Bi et al. 2021; Meka et al.
2019; Pandey et al. 2021; Sun et al. 2019, 2020], full bodies [Guo
et al. 2019; Kanamori and Endo 2018; Meka et al. 2020; Yeh et al.
2022; Zhang et al. 2021a], and outdoor scenes [Griffiths et al. 2022;
Meshry et al. 2019; Philip et al. 2019]. It is unclear how to extend
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these methods to handle scenes that contain objects with ill-defined
shapes (e.g., fur) and translucent and specular materials.

Our method can also be seen as a free-viewpoint relighting
method that leverages highlight and shadow hints to help model
these challenging effects. Philip et al. [2019] follow a deep shad-
ing approach [Nalbach et al. 2017] for relighting, mostly diffuse,
outdoor scenes under a simplified sun+cloud lighting model. Re-
lit images are created in a two stage process, where an input and
output shadow map computed from a proxy geometry is refined,
and subsequently used, together with additional render buffers,
as input to a relighting network. Zhang et al. [2021a] introduce
a semi-parametric model with residual learning that leverages a
diffuse parametric model (i.e., radiance hint) on a rough geometry,
and a learned representation that models non-diffuse and global
light transport embedded in texture space. To accurately model the
non-diffuse effects, Zhang et al. require a large number (~ 8,000)
of structured photographs captured with a light stage. Deferred
Neural Relighting [Gao et al. 2020] is closest to our method in terms
of capabilities; it can perform free-viewpoint relighting on objects
with ill-defined shape with full global illumination effects and com-
plex light-matter interactions (including subsurface scattering and
fur). Similar to Zhang et al. [2021a], Gao et al. embed learned fea-
tures in the texture space of a rough geometry that are projected to
the target view and multiplied with radiance cues. These radiance
cues are visualizations of the rough geometry with different BRDFs
(i.e., diffuse and glossy BRDFs with 4 different roughnesses) under
the target lighting with global illumination. The resulting images
are then used as guidance hints for a neural renderer trained per
scene from a large number (~10,000) of unstructured photographs
of the target scene for random point light-viewpoint combinations
to reproduce the reference appearance. Philip et al. [2021] also use
radiance hints (limited to diffuse and mirror radiance) to guide a
neural renderer. However, unlike Zhang et al. and Gao et al., they
pretrain a neural renderer that does not require per-scene fine-
tuning, and that takes radiance cues for both the input and output
conditions. Philip et al. require about the same number as input
images as our method, albeit lit by a single fixed natural lighting
conditions and limited to scenes with hard surfaces and BRDF-like
materials. All four methods rely on multi-view stereo which can
fail for complex scenes. In contrast our method employs a robust
neural implicit representation. Furthermore, all four methods rely
on an image-space neural renderer to produce the final relit image.
In contrast, our method provides the hints during volume rendering
of the neural implicit representation, and thus it is independent
of view-dependent image contexts. Our method can relight scenes
with the same complexity as Gao et al. [2020] while only using a
similar number of input photographs as Philip et al. [2021] without
sacrificing robustness.

Model-based Inverse Rendering. An alternative to data-driven re-
lighting is inverse rendering (a.k.a. analysis-by-synthesis) where a
set of trial model parameters are optimized based on the difference
between the rendered model parameters and reference photographs.
Inverse rendering at its core is a complex non-linear optimization
problem. Recent advances in differentiable rendering [Li et al. 2018;
Loper and Black 2014; Nimier-David et al. 2019; Xing et al. 2022]
have enabled more robust inverse rendering for more complex
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scenes and capture conditions. BID-R++ [Chen et al. 2021] com-
bines differentiable ray tracing and rasterization to model spatially
varying reflectance parameters and spherical Gaussian lighting for
a known triangle mesh. Munkberg et al. [2022] alternate between
optimizing an implicit shape representation (i.e., a signed distance
field), and reflectance and lighting defined on a triangle mesh. Has-
selgren et al. [2022] extend the work of Munkberg et al. [2022] with
a differentiable Monte Carlo renderer to handle area light sources,
and embed a denoiser to mitigate the adverse effects of Monte
Carlo noise on the gradient computation to drive the non-linear
optimizer. Similarly, Fujun et al. [2021] also employ a differentiable
Monte Carlo renderer for estimating shape and spatially-varying
reflectance from a small set of colocated view/light photographs.
All of these methods focus on direct lighting only and can produce
suboptimal results for objects or scenes with strong interreflections.
A notable exception is the method of Cai et al. [2022] that combines
explicit and implicit geometries and demonstrates inverse render-
ing under known lighting on a wide range of opaque objects while
taking indirect lighting in account. All of the above methods eventu-
ally express the shape as a triangle mesh, limiting their applicability
to objects with well defined surfaces. Furthermore, the accuracy of
these methods is inherently limited by the representational power
of the underlying BRDF and lighting models.

Neural Implicit Representations. A major challenge in inverse
rendering with triangle meshes is to efficiently deal with changes
in topology during optimization. An alternative to triangle mesh
representations is to use a volumetric representation where each
voxel contains an opacity/density estimate and a description of the
reflectance properties. While agnostic to topology changes, voxel
grids are memory intensive and, even with grid warping [Bi et al.
2020], fine-scale geometrical details are difficult to model.

To avoid the inherent memory overhead of voxel grids, NeRF
[Mildenhall et al. 2020] models the continuous volumetric density
and spatially varying color with two multi layer perceptrons (MLPs)
parameterized by position (and also view direction for color). The
MLPs in NeRF are trained per scene such that the accumulated den-
sity and color ray marched along a view ray matches the observed
radiance in reference photographs. NeRF has been shown to be
exceptionally effective in modeling the outgoing radiance field of a
wide range of object types, including those with ill-defined shapes
and complex materials. One of the main limitations of NeRF is that
the illumination present at capture-time is baked into the model.
Several methods have been introduced to support post-capture
relighting under a restricted lighting model [Li et al. 2022; Martin-
Brualla et al. 2021], or by altering the color MLP to produce the
parameters to drive an analytical model of the appearance of ob-
jects [Boss et al. 2021a, 2022, 2021b; Kuang et al. 2022; Srinivasan
et al. 2021; Yao et al. 2022; Zhang et al. 2021c], participating me-
dia [Zheng et al. 2021], or even whole outdoor scenes [Rudnev et al.
2022].

Due to the high computational cost of ray marching secondary
rays, naively computing shadows and indirect lighting is impracti-
cal. Zhang et al. [2021c], Li et al. [2022], and Yang et al. [2022] avoid
tracing shadow rays by learning an additional MLP to model the
ratio of light occlusion. However, all three methods ignore indirect
lighting. Zheng et al. [2021] model the indirect lighting inside a
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participating media using an MLP that returns the coefficients of a 5-
band expansion. NeILF [Yao et al. 2022] embeds the indirect lighting
and shadows in a (learned) 5D incident light field for a scene with
known geometry. NeRV [Srinivasan et al. 2021] modifies the color
MLP to output BRDF parameters and a visibility field that models
the distance to the nearest "hard surface’ and lighting visibility. The
visibility field allows them to bypass the expensive ray marching
step for shadow computation and one-bounce indirect illumination.
A disadvantage of these solutions is that they do not guarantee that
the estimated density field and the occlusions are coupled. In con-
trast, our method directly ties occlusions to the estimated implicit
geometry reproducing more faithful shadows. Furthermore, these
methods rely on BRDFs to model the surface reflectance, precluding
scenes with complex light-matter interactions.

NeLF [Sun et al. 2021] aims to relight human faces, and thus
accurately reproducing subsurface scattering is critical. Therefore,
Sun et al. characterize the radiance and global light transport by
an MLP. We also leverage an MLP to model local and global light
transport. A key difference is that our method parameterizes this
MLP in terms of view and light directions, whereas NeLF directly
outputs a full light transport vector and compute a relit color via an
inner-product with the lighting. While better suited for relighting
with natural lighting, NeLF is designed for relighting human faces
which only exhibit limited variations in shape and reflectance.

Similar in spirit to our method, Lyu et al. [2022] model light trans-
port using an MLP, named a Neural Radiance Transfer Field (NRTF).
However, unlike us, Lyu et al. train the MLP on synthetic training
data generated from a rough BRDF approximation obtained through
physically based inverse rendering on a triangle mesh extracted
from a neural signed distance field [Wang et al. 2021] computed
from unstructured observations of the scene under static natural
lighting. To correct the errors due the rough BRDF approximation,
a final refinement step of the MLP is performed using the captured
photographs. Similar to Lyu et al. we also use an MLP to model
light transport, including indirect lighting. However, unlike Lyu et
al. we do not rely solely on an MLP to model high frequency light
transport effects such as light occlusions and specular highlights.
Instead we provide shadow and highlight hints to the radiance
network and let the training process discover how to best leverage
these hints. Furthermore, we rely on a neural representation for
shape jointly optimized with the radiance, allowing us to capture
scenes with ill-defined geometry. In contrast, Lyu et al. optimize
shape (converted to a triangle mesh) and radiance separately, mak-
ing their method sensitive to shape errors and restricted to objects
with a well-defined shape.

An alternative to using an implicit neural density field, is to
model the shape via a signed distance field (SDF). Similar to the
majority of NeRF-based methods, PhySG [Zhang et al. 2021b] and
IRON [Zhang et al. 2022a] also rely on an MLP to represent volumet-
ric BRDF parameters. However, due to the high computational cost,
these methods do not take shadowing or indirect lighting in account.
Zhang et al. [2022b] model indirect lighting separately, and train
an additional incident light field MLP using the incident lighting
computed at each point via ray casting the SDF geometry. While
our method also builds on a neural implicit representation [Wang
et al. 2021], our method does not rely on an underlying paramet-
ric BRDF model, but instead models the full light transport via an
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Figure 2: Overview: our neural implicit radiance representation is trained on unstructured photographs of the scene captured
from different viewpoints and lit from different point light positions. The neural implicit radiance representation consists of
two multi layer perceptron (MLP) networks for modeling the density field and for modeling the light transport. The MLP for
modeling the density takes as input the position, and outputs the signed distance function of the shape and a feature vector
that together with the current position, the normal extracted from the SDF, the view direction, the light source position, and
the light transport hints, are passed into the radiance MLP that then computes the view and lighting dependent radiance.

MLP. Furthermore, we do not rely on an MLP decoupled from the
estimated geometry to estimate shadowing, but instead accumulate
light occlusion along a single shadow ray per view ray, ensuring
consistency between the shadows and the estimated geometry.

3 METHOD

Our goal is to extend neural implicit representations such as NeRF
[Mildenhall et al. 2020] to model variations in lighting. NeRF has
proven to be exceptionally efficient for viewpoint interpolation.
In contrast to ray tracing with solid surfaces, NeRF relies on ray
marching through the volume, requiring at least an order of mag-
nitude more computations. Not only does this ray marching cost
affect rendering, it also leads to a prohibitively large training cost
when secondary rays (e.g., shadows and indirect lighting) are con-
sidered. Instead of building our method on NeRF, we opt for using
NeuS [Wang et al. 2021], a neural implicit signed distance field
representation, as the basis for our method. Although NeuS does
not speed up ray marching, it provides an unbiased depth estimate
which we will leverage in subsection 3.2 for reducing the number
of shadow rays.

Following prior work, our neural implicit radiance representation
relies on two multi layer perceptrons (MLPs) for modeling the
density field (following NeuS) and for modeling the (direct and
indirect) radiance based on the current position, the normal derived
from the density field, the view direction, the point light position,
and the features provided by the density network. In addition, we
also provide light transport hints to the relightable radiance MLP to
improve the reproduction quality of difficult to model effects such
as shadows and highlights. Figure 2 summarizes our architecture.

To train our neural implicit relightable radiance representation,
we require observations of the target scene seen from different
viewpoints and lit from different point light positions. It is essen-
tial that these observations include occlusions and interreflections.
Colocated lighting (e.g., as in [Luan et al. 2021; Nam et al. 2018])
does not exhibit visible shadows and is therefore not suited. Instead
we follow the acquisition process of Deferred Neural Lighting [Gao
et al. 2020] and capture the scene from different viewpoints with
a handheld camera while lighting the scene with a flash light of a
second camera from a different direction.

We opt for parameterizing the radiance function with respect
to a point light as the basis for relighting as this better reflects
the physical capture process. A common approximation in prior
religting work that relies on active illumination (e.g., Light Stage) is
to ignore the divergence of incident lighting due to the finite light
source distance, and parameterize the reflectance field in terms
lighting directions only. Similarly, we can also approximate distant
lighting with point lighting defined by projecting the light direction
onto a large sphere with a radius equal to the capture distance.

3.1 Representation

Density Network. Our neural implicit geometry representation
follows NeuS [Wang et al. 2021] which uses an MLP to encode a
Signed Distance Function (SDF) f(p) from which the density func-
tion is derived using a probability density function ¢s(f(p)). This
probability density function is designed to ensure that for opaque
objects the zero-level set of the SDF corresponds to the surface.
The width of the probability distribution models the uncertainty
of the surface location. We follow exactly the same architecture
for the density MLP as in NeuS: 8 hidden layers with 256 nodes
using a Softplus activation and a skip connection between the input
and the 4th layer. The input (i.e., current position along a ray) is
augmented using a frequency encoding with 6 bands. In addition,
we also concatenate the original input signal to the encoding. The
resulting output from the density network is the SDF at p as well
as a latent vector that encodes position dependent features.

Relightable Radiance Network. Analogous to the color MLP in
NeRF and NeuS that at each volumetric position evaluates the
view-dependent color, we introduce a relightable radiance MLP
that at each volumetric position evaluates the view and lighting
dependent (direct and indirect) light transport. We follow a similar
architecture as NeRF/NeuS’ color MLP and extend it by taking the
position dependent feature vector produced by the density MLP,
the normal derived from the SDF, the current position, the view
direction, and the point light position as input. Given this input,
the radiance MLP outputs the resulting radiance which includes all
light transport effects such as occlusions and interreflections. We
assume a white light source color; colored lighting can be achieved
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by scaling the radiance with the light source color (i.e., linearity of
light transport).

Given the output from the density network f as well as the
output from the radiance network s, the color C along a view ray
starting at the camera position o in a direction v is given by:

C(o,v) = /000 w(t)s(p,n,v,1, f,0) dt, (1)

where the sample position along the view ray is p = o+ tv at depth
t, n is the normal computed as the normalized SDF gradient:

n=Vfp)/lIVfpll @

v is the view direction, 1 is the point light position, f the corre-
sponding feature vector from the density MLP, and O is a set of
additional hints provided to the radiance network (described in sub-
section 3.2). Analogous to NeusS, the view direction, light position,
and hints are all frequency encoded with 4 bands. Finally, w(t) is
the unbiased density weight [Wang et al. 2021] computed by:

wt) = T(Op(), )
t
(1) = exp(— /0 p(u)du), @
ddg ¢
p(t) = max(%,o), (5)

with T the transmittance over opacity p, s the CDF of the PDF
¢s used to compute the density from the SDF f. To speed up the
computation of the color, the integral in Equation 1 is computed by
importance sampling the density field along the view ray.

In the spirit of image-based relighting, we opt to have the re-
lightable radiance MLP network include global light transport ef-
fects such as interreflections and occlusions. While MLPs are in
theory universal approximators, some light transport components
are easier to learn (e.g., diffuse reflections) than others. Especially
high frequency light transport components such as shadows and
specular highlights pose a problem. At the same time, shadows
and specular highlights are highly correlated with the geometry
of the scene and thus the density field. To leverage this embedded
knowledge, we provide the relightable radiance MLP with addi-
tional shadow and highlight hints.

3.2 Light Transport Hints

Shadow Hints. While the relightable radiance network is able to
roughly model the effects of light source occlusion, the resulting
shadows typically lack sharpness and detail. Yet, light source oc-
clusion can be relatively easily evaluated by collecting the density
along a shadow ray towards the light source. While this process is
relatively cheap for a single shadow ray, performing a secondary
ray march for each primary ray’s sampled position increases the
computation cost by an order of magnitude, quickly becoming too
expensive for practical training. However, we observe that for most
primary rays, the ray samples are closely packed together around
the zero level-set in the SDF due to the importance sampling of
the density along the view ray. Hence, we propose to approximate
light source visibility by shooting a single shadow ray at the zero
level-set, and use the same light source visibility for each sample
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along the view ray. To determine the depth of the zero level-set, we
compute the density weighted depth along the view ray:

D(o,v) = —/Ooow(p)tdt. (6)

While for an opaque surface a single shadow ray is sufficient,
for non-opaque or ill-defined surfaces a single shadow ray offers a
poor estimate of the light occlusion. Furthermore, using the shadow
information as a hard mask, ignores the effects of indirect lighting.
We therefore provide the shadow information as a additional input
to the radiance network, allowing the network learn whether to
include or ignore the shadowing information as well as blend any
indirect lighting in the shadow regions.

Highlight Hints. Similar to shadows, specular highlights are spar-
sely distributed high frequency light transport effects. Inspired
by Gao et al. [2020], we provide specular highlight hints to the
radiance network by evaluating 4 microfacet BRDFs with a GGX
distribution [Walter et al. 2007] with roughness parameters {0.02,
0.05, 0.13, 0.34}. Unlike Gao et al., we compute the highlight hints
using local shading which only depends on the surface normal
computed from the SDF (Equation 2), and pass it to the radiance
MLP as an additional input. Similar to shadow hints, we compute
one highlight hint per view ray and reused it for all samples along
the view ray.

3.3 Loss & Training

We jointly train the density and radiance network using an image
reconstruction loss £ and an SDF regularization loss L. The im-
age reconstruction loss is defined as the L; distance between the
observation C(o, v) and the corresponding estimated color C(o,v)
computed using Equation 1: £, = ||C — C||1, for a random sam-
pling of pixels (and thus view rays) in the captured training images
(subsection 3.4). Furthermore, we follow NeusS, and regularize the
density MLP with the Eikonal loss [Gropp et al. 2020] to ensure a
valid SDF: L = (||Vf(p)|]2 = 1)2. For computational efficiency, we
do not back-propagate gradients from the shadow and highlight
hints.

3.4 Data Acquisition

Training the implicit representation requires observations of the
scene viewed from random viewpoints and lit from a different
random light position such that shadows and interreflections are in-
cluded. We follow the procedure from Gao et al. [2020]: a handheld
camera is used to capture photographs of the scene from random
viewpoints while a second camera captures the scene with its colo-
cated flash light enabled. The images from the second camera are
only used to calibrate the light source position. To aid camera cali-
bration, the scene is placed on a checkerboard pattern.

All examples in this paper are captured with a Sony A7II as the
primary camera, and an iPhone 13 Pro as the secondary camera.
The acquisition process takes approximately 10 minutes; the main
bottleneck in acquisition is moving the cameras around the scene.
In practice we capture a video sequence from each camera and
randomly select 500—1,000 frames as our training data. The video
is captured using S-log encoding to minimize overexposure.
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Figure 3: Qualitative comparison between synthetic scenes relit (right) for a novel viewpoint and lighting direction (not part of
the training data) and a rendered reference image (left). For each example we list average PSNR, SSIM, and LPIPS computed

over a uniform sampling of view and light positions.

For the synthetic scenes, we simulate the acquisition process by
randomly sampling view and light positions on the upper hemi-
sphere around the scene with a random distance between 2 to 2.5
times the size of the scene. The synthetic scenes are rendered with
global light transport using Blender Cycles.

3.5 Viewpoint Optimization

Imperfections in camera calibration can cause inaccurate recon-

structions of thin geometrical features as well as lead to blurred

results. To mitigate the impact of camera calibration errors, we

jointly optimize the viewpoints and the neural representation.
Given an initial view orientation Ry and view position #, we

formulate the refined camera orientation R and position t as:

R = AR-Ry, (7)
At + AR - to, (8)

-
I

where AR € SO(3) and At € R3 are learnable correction transforma-
tions. During training, we back-propagate, the reconstruction loss,
in addition to the relightable radiance network, to the correction
transformations. We assume that the error on the initial camera cal-
ibration is small, and thus we limit the viewpoint changes by using
a 0.06x smaller learning rate for the correction transformations.

4 RESULTS

We implemented our neural implicit radiance representation in Py-
Torch [Paszke et al. 2019]. We train each model for 1,000k iterations
using the Adam optimizer [Kingma and Ba 2015] with f; = 0.9 and
P2 = 0.999 with 512 samples per iteration randomly drawn from
the training images. We follow the same warmup and cosine decay
learning rate schedule as in NeuS [Wang et al. 2021]. Training a
single neural implicit radiance representation takes approximate
20 hours on four Nvidia V100 GPUs.

We extensively validate the relighting capabilities of our neural
implicit radiance representation on 17 synthetic and 7 captured
scenes (including 4 from [Gao et al. 2020]), covering a wide range
of different shapes, materials, and lighting effects.

Synthetic Scenes. Figure 3 shows relit results of different
synthetic scenes. For each example, we list PSNR, SSIM, and
LPIPS [Zhang et al. 2018] error statistics computed over 100 test
images different from the 500 training images. Our main test scene
contains a vase and two dice; the scene features a highly concave
object (vase) and complex interreflections between the dice. We
include several versions of the main test scene with different mate-
rial properties: DIFFUSE, METALLIC, GLOSSY-METAL, ROUGH-METAL,
ANISOTROPIC-METAL, PrASTIC, GLOSSY-PLASTIC, ROUGH-PLASTIC
and TRANSLUCENT; note, some versions are only included in the
supplemental material. We also include two versions with modified
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CUP AND FABRIC

850
0604

Figure 4: Qualitative comparison between captured scenes relit (right) for a novel viewpoint and lighting direction (not part of
the training data) and a reference photograph (left). For each example we list average PSNR, SSIM, and LPIPS computed over

randomly sampled view and light positions.

Reference IRON
PSNR | SSIM | LPIPS

19.13 ] 0.8736 | 0.1440

Ours
26.16 | 0.9516 | 0.05741

Figure 5: Comparison to inverse rendering results from IRON [Zhang et al. 2022a] (from 500 colocated training images) on
the METALLIC scene. Our model is evaluated under colocated point lights. IRON is affected by the interreflections and fails to

accurately reconstruct the geometry.

geometry: SHORT-FUR and LOoNG-FUR to validate the performance
of our method on shapes with ill-defined geometry. In addition,
we also include a FUR-BALL scene which exhibits even longer fur.
To validate the performance of the shadow hints, we also include
scenes with complex shadows: a BASKET scene containing thin
geometric features and a LAYERED WOVEN BALL which combines
complex visibility and strong interreflections. In addition to these
specially engineered scenes to systematically probe the capabili-
ties of our method, we also validate our neural implicit radiance
representation on commonly used synthetic scenes in neural im-
plicit modeling: HoTpog, LEGo and DruMs [Mildenhall et al. 2020].
Based on the error statistics, we see that the error correlates with
the geometric complexity of the scene (vase and dice, Horpog, and
LAYERED WOVEN BALL perform better than the Fur scenes as well
as scenes with small details such as the LEGo and the DrRuUMS scene),
and with the material properties (highly specular materials such as
METALLIC and ANISOTROPIC-METAL incur a higher error). Visually,
differences are most visible in specular reflections and for small
geometrical details.

Captured Scenes. We demonstrate the capabilities of our neu-
ral implicit relighting representation by modeling 3 new scenes
captured with handheld setups (Figure 4). The PIKACHU STATUE
scene contains glossy highlights and significant self-occlusion. The
CAT oN DECOR scene showcases the robustness of our method on
real-world objects with ill-defined geometry. The Cup aND FaBRIC
scene exhibits translucent materials (cup), specular reflections of
the balls, and anisotropic reflections on the fabric. We refer to the
supplementary material for additional video sequences of these
scenes visualized for rotating camera and light positions.

Comparisons. Figure 5 compares our method to IRON [Zhang
et al. 2022b], an inverse rendering method that adopts a neural
representation for geometry as a signed distance field. From these
results, we can see that IRON fails to correctly reconstruct the shape
and reflections in the presence of strong interreflections. In a second
comparison (Figure 6), we compare our method to Neural Radiance
Transfer Fields (NRTF) [Lyu et al. 2022]; we skip the fragile inverse
rendering step and train NRTF with 500 reference OLAT images and
the reference geometry. To provide a fair comparison, we also train
and evaluate our network under the same directional OLAT images
by conditioning the radiance network on light direction instead of
point light position. From this test we observe that NRTF struggles
to accurately reproduce shadow edges and specular interreflections,
as well as that our method can also be successfully trained with di-
rectional lighting. Figure 7 compares our method to the pre-trained
neural relighting network of Philip et al.. [2021] on the challenging
METALLIC test scene. Because multiview stereo [Schonberger and
Frahm 2016] fails for this scene, we input geometry reconstructed
from the NeuS SDF as well as ground truth geometry. Finally, we
also render the input images under the reference target lighting;
our network is trained without access to the target lighting. Even
under these favorable conditions, the relighting method of Philip et
al. struggles to reproduce the correct appearance. Finally, we com-
pare our method to Deferred Neural Lighting [Gao et al. 2020]
(using their data and trained model). Our method is able to achieve
similar quality results from ~500 input images compared to ~10,000
input images for Deferred Neural Lighting. While visually very
similar, the overall errors of Deferred Neural Lighting are slightly
lower than with our method. This is mainly due to differences in
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Table 1: Ablation results on synthetic scenes

Ablation Variant PSNRT SSIMT LPIPS |
Full hints 32.02 0.9727  0.0401
w/o highlight hint 31.96 09724  0.0407
w/o shadow hint 27.67 0.9572  0.0610
w/o any hints 27.54 0.9568  0.0620
1 basis material 31.54 09707  0.0428
2 basis materials 31.54 09707  0.0429
4 basis materials 32.02 09727  0.0401
8 basis materials 3198  0.9726  0.0401
50 training images 24.29 0.9335  0.0706
100 training images 27.96 0.9572  0.0520
250 training images 30.36 0.9666  0.0456
500 training images | 32.02 0.9727  0.0401

Table 2: Ablation results of viewpoint optimization on real
captured scenes

Ablation Variant PSNRT SSIMT LPIPS|
w/ viewpoint optimization | 34.72 0.9762  0.0695
w/o viewpoint optimization 33.62  0.9719  0.0794

how both methods handle camera calibrations errors. Deferred
Neural Lighting tries to minimize the differences for each frame
separately, and thus it can embed camera calibration errors in the
images. However, this comes at the cost of temporal “shimmering”
when calibration is not perfect. Our method on the other hand, opti-
mizes the 3D representation, yielding better temporal stability (and
thus requiring less photographs for view interpolation) at the cost
of slightly blurring the images in the presence of camera calibration
errors.

5 ABLATION STUDIES

We perform several ablation experiments (visual and quantitative)
on the synthetic datasets to evaluate the impact of each of the com-
ponents that comprise our neural implicit radiance representation.

Shadow and Highlight Hints. A key contribution is the inclusion
of shadow and highlight hints in the relightable radiance MLP.
Figure 9 shows the impact of training without the shadow hint, the
highlight hint, or both. Without shadow hints the method fails to
correctly reproduce sharp shadow boundaries on the ground plane.
This lack of sharp shadows is also reflected in the quantitative
errors summarized in Table 1. Including the highlight hints yield a
better highlight reproduction, e.g., in the mouth of the vase.

Impact of the Number of Shadow Rays. We currently only use a
single shadow ray to compute the shadow hint. However, we can
also shoot multiple shadow rays (by importance sampling points
along the view ray) and provide a more accurate hint to the radiance
network. Figure 10 shows the results of a radiance network trained
with 16 shadow rays. While providing a more accurate shadow
hint, there is marginal benefit at a greatly increased computational
cost, justifying our choice of a single shadow ray for computing
the shadow hint.

Zeng et al.

NeusS vs. NeRF Density MLP. While the relightable radiance MLP
learns how much to trust the shadow hint (worst case it can com-
pletely ignore unreliable hints), the radiance MLP can in general
not reintroduce high-frequency details if it is not included in the
shadow hints. To obtain a good shadow hint, an accurate depth
estimate of the mean depth along the view ray is needed. Wang et
al. [2021] noted that NeRF produces a biased depth estimate, and
they introduced NeuS to address this problem. Replacing NeuS by
NeRF for the density network (Figure 10) leads to poor shadow re-
production due to the adverse impact of the biased depth estimates
on the shadow hints.

Impact of the number of Basis Materials for the Highlight Hints.
Table 1 shows the results of using 1, 2,4 and 8 basis materials for
computing the highlight hints. Additional highlights hints improve
the results up to a point; when too many hints are provided erro-
neous correlations can increase the overall error. 4 basis materials
strike a good balance between computational cost, network com-
plexity, and quality.

Impact of Number of Training Images. Figure 11 and Table 1
demonstrate the effect of varying the number of input images from
50, 100, 250 to 500. As expected, more training images improve
the results, and with increasing number of images, the increase
in improvement diminishes. With 250 images we already achieve
plausible relit results. Decreasing the number of training images
further introduces noticeable appearance differences.

Effectiveness of Viewpoint Optimization. Figure 12 and Table 2
demonstrate the effectiveness of viewpoint optimization on real
captured scenes. While the improvement in quantitative errors is
limited, visually we can see that viewpoint optimization signifi-
cantly enhances reconstruction quality with increased sharpness
and better preservation of finer details.

6 LIMITATIONS

While our neural implicit radiance representation greatly reduces
the number of required input images for relighting scenes with com-
plex shape and materials, it is not without limitations. Currently we
provide shadow and highlight hints to help the relightable radiance
MLP model high frequency light transport effects. However, other
high frequency effects exist. In particular highly specular surfaces
that reflect other parts of the scene pose a challenge to the radiance
network. Naive inclusion of ’reflection hints’ and/or reparameter-
izations [Verbin et al. 2022] fail to help the network, mainly due
to the reduced accuracy of the surface normals (needed to predict
the reflected direction) for sharp specular materials. Resolving this
limitation is a key challenge for future research in neural implicit
modeling for image-based relighting.

7 CONCLUSION

In this paper we presented a novel neural implicit radiance represen-
tation for free viewpoint relighting from a small set of unstructured
photographs. Our representation consists of two MLPs: one for mod-
eling the SDF (analogous to NeuS) and a second MLP for modeling
the local and indirect radiance at each point. Key to our method is
the inclusion of shadow and highlight hints to aid the relightable
radiance MLP to model high frequency light transport effects. Our
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NRTF Ours
22.01]0.9008 | 0.1238 26.72 1 0.9602 | 0.05351

Reference
PSNR | SSIM | LPIPS

Figure 6: A comparison to Neural Radiance Transfer Fields (NRTF) trained on 500 OLAT reference images and reference
geometry. To provide a fair comparison, we also train our network on the same directional OLAT images (without reference
geometry) instead of point lighting. NRTF struggles to correctly reproduce shadow boundaries and specular interreflections
(see zoom-ins).

Reference [Philip et al. 2021] [Philip et al. 2021] Ours
PSNR | SSIM | LPIPS w/ reconstructed geometry w/ reference geometry 27.7910.9613 | 0.04873
21.290.8655 | 0.1290 23.22]0.8992 | 0.1054

Figure 7: Comparison to the pretrained relighting network of Philip et al. [2021] on 500 input images of the METALLIC scene
rendered with the target lighting. Even under these favorable conditions, their method struggles to reproduce the correct
appearance for novel viewpoints.

Reference DNL Ours Reference DNL Ours
PSNR | SSIM | LPIPS 39.220.9932 | 0.0184 36.42 | 0.9856 | 0.0399 PSNR | SSIM | LPIPS 34,02 0.9763 | 0.0550 32.94|0.9708 | 0.0791

A"
¥

Reference Reference

DNL Ours
PSNR | SSIM | LPIPS 35.36 | 0.9730 | 0.0692 33.07 | 0.9695 | 0.0967 PSNR | SSIM | LPIPS

Figure 8: Comparison with Deferred Neural Lighting [Gao et al. 2020]. We train our neural implicit radiance representation
using only 1/25th (~500) randomly selected frames for Gao et al’s datasets, while achieving comparable results.

method is able to produce relit results from just ~500 photographs ACKNOWLEDGMENTS

of the scene; a saving of one to two order of magnitude compared Pieter Peers was supported in part by NSF grant IIS-1909028. Chong

to prior work with similar capabilities. Zeng and Hongzhi Wu were partially supported by NSF China
(62022072 & 62227806), Zhejiang Provincial Key R&D Program
(2022C01057) and the XPLORER PRIZE.



SIGGRAPH 23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA Zeng et al.

Reference Ours w/o Highlight Hint w/o Shadow Hint w/o Any Hints

TRANSLUCENT

LAYERED WOVEN BALL

Figure 9: Impact of shadow and highlight hints; without the hints the network fails to accurately reproduce the desired effect.

Reference 16 shadow rays 1 shadow ray (Ours) NeRF 1 shadow ray
PSNR | SSIM | LPIPS 28.22 | 0.9667 | 0.0365 26.84 | 0.9586 | 0.0411 23.7110.9160 | 0.0733
== o P == . ¥ T

po== i i

Figure 10: Impact of the number of shadow rays and the underlying implicit shape representation demonstrated on the BASKET
scene. Using 16 shadow rays only provides marginal improvements at the cost of significant computation overhead. Using
NeRF as the basis for the neural implicit shape yields degraded shadow quality due to depth biases.

Reference 50 inputs 100 inputs 250 inputs 500 inputs

Figure 11: Impact of the number of captured training images. Increasing the number of training images improves the quality.
The quality degrades significantly when the number of images is less than 250.

Reference w/o Viewpoint Optimization w/ Viewpoint Optimization
PSNR | SSIM | LPIPS 31.430.9803]0.0375 _ 35.08]0.98770.0.359 -

-

Figure 12: Effectiveness of Viewpoint Optimization. Using viewpoint optimization greatly enhances the image quality in terms
of sharpness and detail.
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