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camera setup and a newly designed lightweight Spiking Eye Emo-

tion Network (SEEN). Compared to conventional cameras, event-

based cameras o�er a higher dynamic range (up to 140 dB vs. 80

dB) and a higher temporal resolution (in the order of `s vs. 10s of

<s). Thus, the captured events can encode rich temporal cues under

challenging lighting conditions. However, these events lack texture

information, posing problems in decoding temporal information

e�ectively. SEEN tackles this issue from two di�erent perspectives.

First, we adopt convolutional spiking layers to take advantage of

the spiking neural network’s ability to decode pertinent tempo-

ral information. Second, SEEN learns to extract essential spatial

cues from corresponding intensity frames and leverages a novel

weight-copy scheme to convey spatial attention to the convolu-

tional spiking layers during training and inference. We extensively

validate and demonstrate the e�ectiveness of our approach on a

specially collected Single-eye Event-based Emotion (SEE) dataset.

To the best of our knowledge, our method is the �rst eye-based

emotion recognition method that leverages event-based cameras

and spiking neural networks.
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1 INTRODUCTION

Real-time emotion recognition in uncontrolled environments is a

challenging problem that forms the cornerstone of many in-the-wild

human-centered interactive computer graphics experiences such

as interactive storytelling that adapts to the users emotions, and

emotion-aware virtual avatars. Predicting emotions from regular

RGB video streams is a challenging and ambiguous endeavor; infor-

mative spatial and temporal emotive cues can be adversely a�ected

by head pose and partial occlusions. To help classify emotions in

RGB video frames, existing facial emotion recognition models build

on complex CNN-based models such as ResNet 50 [Deng et al.

2020b], Transformer [Zhao and Liu 2021], and Inception-based

methods [Hickson et al. 2019]. Robustly handling varying lighting

conditions and rapid user movements further complicates emotion

recognition, and existing methods rely on cumbersome large net-

work enhancement modules [Zhao and Liu 2021] or impose active

IR lighting [Wu et al. 2020]. Despite all these innovations, emotion

recognition from RGB video streams remains di�cult and fragile.

In this paper, we introduce a novel wearable emotion recognition

prototype in which a bio-inspired event-based camera (DAVIS346)

is a�xed in front of a user’s right eye. An event-based camera can

provide more robust temporal cues for emotion recognition under

adverse lighting conditions as it o�ers a higher dynamic range (up

to 140 dB vs. 80 dB) and a higher temporal resolution (in the order

of `s vs. 10s of<B) than a conventional camera. Even though this

setup provides a stable �xed perspective of a right eye and it can

robustly handle various lighting conditions, estimating emotion

from a single eye still poses unique challenges.

A key issue is that event-based cameras do not capture texture

information e�ectively (see Figure 1). These spatial features are

not only essential for emotion recognition but also important for

inferring more informative temporal features. For example, while

pupil motion and blinking are dominant temporal cues, they are

less informative for emotion classi�cation. In contrast, the subtle

movements related to the facial units, such as raising the outer brow

and squinting, are stronger cues for eye-based emotion recognition.

To address these challenges, we devise a lightweight SEEN,which

combines the best from both events and intensity frames to guide

emotion recognition from asynchronous events with spatial texture

cues from corresponding intensity frames. In particular, SEEN con-

sists of a spatial feature extractor and a temporal feature extractor

that partially share the same convolutional architecture. During

training, the shared convolutional parts are only learned in the

spatial feature extractor, and the updated weights are copied to the

temporal feature extractor. Consequently, spatial attention can be

e�ectively conveyed to the temporal decoding process. As such, the

temporal feature extractor learns to associate spatial and temporal

features, resulting in a consistent emotion classi�cation.

To train our lightweight Spiking Eye Emotion Network (SEEN)

and to stimulate research in event-based single-eye emotion recog-

nition, we introduce a new Single-eye Event-based Emotion (SEE)

dataset. We validate our approach on the SEE dataset and demon-

strate state-of-the-art emotion recognition under di�erent challeng-

ing lighting conditions, outperforming the runner-up method by a

signi�cant margin, 4.8% and 4.6% in WAR and UAR, respectively.

The prototype system with an NVIDIA Jetson TX2 operates at 30

FPS in real-world testing scenarios.

Speci�cally, our work makes the following contributions:

• a novel real-time emotion recognitionmethod based on event

camera measurements and a spiking neural network suited

for in-the-wild deployment;

• a weight-copy training scheme to enforce learned weights

awareness of both spatial and temporal cues; and

• the �rst publicly available single-eye emotion dataset con-

taining both intensity frames and corresponding raw events,

captured under four di�erent lighting conditions.

Limitations. SEEN partially relies on spatial features extracted

from intensity frames, which can be adversely a�ected by extremely

degraded lighting conditions, resulting in a signi�cant performance

drop. While our method robustly handles most lighting conditions

e�ectively, as evidenced by our experimental results, further im-

proving robustness by solely leveraging events forms an exciting

avenue for future research in eye-based emotion recognition.

The code and dataset are available on github.
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2 RELATED WORK

We focus our discussion on related work in emotion recognition

on measuring emotions (wearable emotion sensing systems) and

recognition (facial emotion recognition).

Wearable Emotion Sensing Systems. Emotions impact the human

body in subtle ways. However, not all of these signals are equally

robust indicators of emotional state, and not all are easily mea-

sured. Various bio-signals have been investigated for convenient

measurement of indicators of emotional state. Long-term heart rate

variability (HRV) has been shown to strongly correlate with emo-

tional patterns [Appelhans and Luecken 2006; Costa et al. 2019].

Similarly, brain activity recorded by electroencephalogram (EEG)

sensors also correlates to di�erent emotions [Li et al. 2018; Liu et al.

2020]. Inspired by human perception of emotions, Electromyogram

(EMG) measurements of facial muscle contractions [Lucero and

Munhall 1999] map to emotions, making wearable emotional detec-

tion devices possible [Gruebler and Suzuki 2014]. A disadvantage

of these methods is that they require the sensors to make direct skin

contact, dramatically restricting freedom of activity. Furthermore,

due to the displacement of sensors and muscular cross-talk dur-

ing movement, the results can be of low reliability. An alternative

to contact-based measurement is pupillometry, i.e., the measure-

ment of pupil size and reactivity, as a potential indicator of emo-

tion [Mathôt 2018; Nie et al. 2020]. However, pupilometry requires

expensive equipment, and the reliability is signi�cantly impacted

by ambient lighting [Couret et al. 2019]. Similar to pupilometry, our

method also focuses on the eye as an indicator of emotional state.

However, in contrast to prior work, we employ an event-based

camera that does not require direct skin contact and which can

operate in challenging lighting conditions.

Facial Emotion Recognition. Facial emotion recognition has re-

ceived signi�cant attention in computer graphics and computer vi-

sion, with applications ranging from driving facial expressions [Hick-

son et al. 2019; Ji et al. 2022] to facial reenactment for e�cient social

interactions [Burgos-Artizzu et al. 2015; Li et al. 2015]. A signi�-

cant portion of prior work in facial emotion recognition requires

observations of the entire face, and several methods have been

introduced for e�ective facial feature learning [Ruan et al. 2021;

Xue et al. 2021], dealing with uncertainties in facial expression

data [Zhang et al. 2021a], handing partial occlusions [Georgescu

and Ionescu 2019; Houshmand and Khan 2020], and exploiting tem-

poral cues [Deng et al. 2020b; Sanchez et al. 2021]. Combinations

with other modalities such as contextual information [Lee et al.

2019] and depth [Lee et al. 2020] have also been explored to further

improve facial recognition accuracy.

However, observing the entire face is not feasible in many prac-

tical situations. Alternatively, several methods focus on the eye

area only for emotion recognition. Hickson et al. [2019] infer emo-

tional expressions based on images of both eyes captured with

an infrared gaze-tracking camera inside a virtual reality headset.

Wu et al. [2020] rely on infrared single-eye observations to reduce

camera synchronization and data bandwidth issues when monitor-

ing both eyes. Both systems require a personalized initialization

procedure; Hickson et al. require a personalized neutral image,

and Wu et al. require a reference feature vector of each emotion.

The need for a personalized setup makes these systems intrusive

and non-transparent to the user and could raise privacy concerns.

Furthermore, neither system leverages temporal cues, which are

essential for robust emotion recognition [Sanchez et al. 2021]. Our

approach does not require personalization, and it leverages tempo-

ral and spatial cues to improve emotion recognition accuracy.

3 BACKGROUND

Before detailing our method, we �rst reviewwork related to the two

key components of our event-based emotion recognition method:

event-based cameras and spiking neural networks.

Event-based Cameras. An event-based camera di�ers from a con-

ventional camera in that it does not measure pixel intensities, but

instead, an event-based camera records asynchronous (log-encoded)

per-pixel brightness changes [Gallego et al. 2022; Gehrig et al. 2021].

Event-based cameras o�er a signi�cantly higher dynamic range

(up to 140 dB) and a higher temporal resolution (in the order of `s)

than conventional cameras. Each event 4 is characterized by three

pieces of information: the pixel location, (G,~); the event triggering

time, C ; and a polarity, ? ∈ {−1, 1} which re�ects the direction of

the brightness change. Formally, a set of # events can be de�ned

as:

E = {4: }
#
:=1

= {[G: , ~: , C: , ?: ]}
#
:=1

. (1)

Under static lighting, a stationary event-based camera only records

scene motion, and events are typically triggered by moving edges

(e.g., object contours, and texture boundaries). Since the events pre-

dominately stem from the motion of edges, the measured events are

inherently sparse and devoid of texture information. Furthermore,

since the captured events are triggered asynchronously, events are

incompatible with CNN-based architectures. Instead, events are

aggregated into a frame or grid-based representation [Gehrig et al.

2019; Lagorce et al. 2017; Maqueda et al. 2018; Wang et al. 2022]

before neural processing. In our implementation, we adopt the ag-

gregation algorithm of Zhang et al. [2021b], which currently o�ers

the highest performance for single object tracking under normal

and degraded conditions. We refer to the Supplementary Material

for additional details.

Spiking Neural Network (SNN). Spiking neural networks (SNNs)

closely mimic biological information processes. An SNN incorpo-

rates the concept of time and only exchanges information (i.e.,

spike) when a membrane potential exceeds some potential thresh-

old. Mathematically an SNN neuron simulates the properties of

a cell in a nervous system with varying degrees of detail, which

models three states of a biological neuron: rest, depolarization, and

hyperpolarization [Ding et al. 2022]. When a neuron is at rest, its

membrane potential remains constant; typically set to 0. When

not at rest, the change in the membrane potential can either de-

crease or increase. An increase in membrane potential is called

depolarization. In contrast, hyperpolarization describes a reduction

in membrane potential. When a membrane potential is higher than

a potential threshold, an action potential, i.e., spike, is triggered,

which for an SNN is a binary value. We refer the interested reader

to Ding et al. [2022] for an in-depth discussion of these concepts.

In this paper, we use the leaky integrate-and-�re (LIF) spiking

neuron model [Gerstner and Kistler 2002], one of the most widely

used spiking models. When a LIF neuron receives spikes from other
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neurons, the spikes are scaled accordingly based on learned synap-

tic weights. Depolarization is achieved by summing over all the

scaled spikes. A decay function over time is used to drive the poten-

tial membrane to hyperpolarization. We refer to the Supplemental

Material for a detailed formal de�nition of LIF.

4 SPIKING EYE EMOTION NETWORK (SEEN)

Existing facial emotion recognition methods typically only identify

the “peak” states of emotions [Hickson et al. 2019] or a single emo-

tion state over a whole sequence [Zhao and Liu 2021], making these

methods unsuitable for applications that also require a robust esti-

mate of the in-between states. We introduce a lightweight Spiking

Eye Emotion Network (SEEN) that is able to e�ectively recognize

emotions from various states of emotions.

Instead of only memorizing the peak phase of an individual’s

facial emotion, SEEN is designed to leverage temporal cues to dis-

tinguish di�erent phases of emotions using sparse events input cap-

tured with an event-based camera (DAVIS346 camera). Compared

to a conventional camera, an event-based camera has a number of

advantages: it is more sensitive to motion, less sensitive to ambient

lighting, and it o�ers a high dynamic range. Hence, an event-based

camera is capable of providing stable temporal information un-

der di�erent lighting conditions. While this makes event-based

cameras, in theory, an attractive input modality for motion-based

measurements, in practice, a major drawback of existing event-

based cameras is that the recorded events are noisy and lack texture

information. We address this drawback with a hybrid system that

leverages both spatial cues together with conventional intensity

frames to guide temporal feature extraction during training and

inference. Most commercial event-based cameras are capable of

simultaneously capturing both intensity frames and events through

spatially-multiplexed sensing.

4.1 SEEN Architecture

As illustrated in Figure 2(a), at its core, the architecture of SEEN

consists of a spatial feature extractor, ( (described in detail in sub-

section 4.2), and a temporal feature extractor, ) (detailed in subsec-

tion 4.3). Given two intensity frames, �1 and �= , SEEN interpolates

the asynchronous captured events between both intensity frames

in = synchronous event frames. Next, the spatial feature extractor

( distills spatial cues from the intensity frames �1 and �= , and the

temporal feature extractor ) processes each of the = event frames

sequentially in time order. Finally, the temporal features and the

spatial cues are then combined to predict = emotion scores. The

�nal predicted emotion is based on the average of the = scores. The

core component of the temporal feature extractor ) is the SNN

layers that make decisions based on membrane potentials to re-

member temporal information from previous event frames. Unlike

RNNs [Kag and Saligrama 2021; Nah et al. 2019], SNNs can e�ec-

tively learn temporal dependencies of arbitrary length without any

special treatment.

4.2 Spatial Feature Extractor (

To make spatial feature extraction independent from the intensity

sequence length, we only use the �rst and last frames of a sequence

as the input to the spatial feature extractor, thereby �xing the

input size regardless of the sequence length, i.e., two frames. The

spatial feature extractor ( (Figure 2(b)) leverages a multiscale self-

attention perception module, Ω, to obtain discriminative features

from di�erent-sized neighborhoods. The extracted spatial features

are then transferred into the spiking format, �B , via a spiking layer,

which is subsequently combined with temporal features to enhance

feature discrimination. Formally, the spatial feature extractor can

be de�ned as:

�B = Φ
1 (�B ), (2)

�B = �3 (�3 (Ω (3,5,7) (;B ))), (3)

Ω (G1,...,G= ) (·) := �1 ( [l
B1
(G1,...,G= )

�G1 (·), ..., l
B=
(G1,...,G= )

�G= (·)]), (4)

l
B8
(G1,...,G= )

= f
(〈

Υ(�G1 (;B )), ...Υ(�G= (;B ))
〉)

8
, (5)

Υ(·) := �1 (BR(�1 (A(·)))), (6)

;B = �1 ( [�
1, �=]), (7)

where [·] and ⟨·⟩ indicate channel-wise concatenation and a vector,

respectively;�8 andf denote an 8×8 convolution layer and a softmax

function, respectively;A denotes an adaptive pooling layer;BR is a

fused batch normalization layer with a ReLU activation function; ΦC

is a spiking layer that keeps membrane potential from the previous

time step, C − 1. The initial membrane potential, i.e., C = 0, is set to

0 (see Equation 13).

4.3 Temporal Feature Extractor )

The basis building blocks of the temporal feature extractor ) are

SNN layers. An SNN neuron outputs signals based on a membrane

potential accumulation, decay, and reset mechanisms to capture the

temporal trends in an input sequence [Ding et al. 2022]. When the

membrane potential exceeds a threshold, an action potential (i.e.,

spike) is triggered and the membrane potential is reset. The trigger

process itself is non-differentiable, prohibiting training via conven-

tional stochastic gradient descent optimization methods. Instead,

we adopt spatio-temporal backpropagation (STBP) along with a

CNN-SNN layer [Wu et al. 2018] to circumvent this issue. This

CNN-SNN layer employs a CNN-based layer for the aggregation

process and a LIF-based SNN neuron [Gerstner and Kistler 2002]

for managing the potential decay and reset processes. This modi�-

cation takes advantage of CNN-based layers that enable learning

of diverse accumulation strategies, resulting in more e�ective SNN

neurons in the temporal domain.

Intensity Attention-Guided Temporal Features. Purely relying on

events does not yield a robust solution due to the lack of reliable

texture information in the event domain. We, therefore, leverage

spatial features from ( to inject rich texture cues. Figure 2(c) illus-

trates the architecture of the temporal extractor ) .

The feature extractor ) takes = event frames, �1 to �= , as input

and processes each frame sequentially in time order. Formally, given

the spatial feature �B , the temporal feature extraction of �C is de�ned
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Table 1: Quantitative comparison against the state-of-the-art. All methods are retrained and tested on the SEE dataset. The

abbreviations are de�ned as Ha → Happiness; Sa → Sadness; An → Anger; Di → Disgust; Su → Surprise; Fe → Fear; Ne →

Neutrality; Nor → Normal; Over → Overexposure; Low → Low-Light. The �rst and second best results are highlighted in bold

and underline, respectively.

Methods
Acc. of Emotion Class (%) Acc. under Light Conditions (%) Metrics (%)

Ha Sa An Di Su Fe Ne Nor Over Low HDR WAR ↑ UAR ↑ FLOPS (G) Time (ms)

Resnet18 + LSTM [2016; 1997] Face 57.8 86.0 64.9 46.5 9.2 81.6 59.8 57.9 60.4 53.9 52.5 56.3 58.0 7.9 5.0

Resnet50 + GRU [2020a; 2016] Face 27.9 38.0 49.7 44.5 6.9 70.0 5.6 43.0 35.7 28.9 32.8 35.2 34.7 17.3 10.3

3D Resnet18 [2018] Face 54.8 45.4 67.7 23.8 37.2 42.8 81.6 51.9 51.4 44.8 47.8 49.1 50.5 8.3 21.2

R(2+1)D [2018] Face 63.6 45.5 65.7 27.8 33.3 37.9 86.6 54.3 50.3 44.4 49.3 49.7 51.5 42.4 47.3

Former DFER [2021] Face 81.5 75.2 85.8 59.4 39.3 50.8 78.6 70.1 65.4 66.2 61.1 65.8 67.2 8.3 7.7

Former DFER w/o pre-train Face 44.1 65.2 46.0 66.5 28.0 50.3 36.1 47.0 51.9 45.6 47.2 48.0 48.0 8.3 7.7

Eyemotion [2019] Eye 74.3 85.5 79.5 74.3 69.1 79.2 94.5 79.0 81.8 81.5 72.5 78.8 79.5 5.7 17.5

Eyemotion w/o pre-train Eye 79.6 85.7 81.2 71.2 54.7 71.6 96.4 77.8 75.9 79.8 69.7 75.9 77.2 5.7 17.5

EMO [2020] Eye 75.0 75.1 70.2 48.1 37.5 54.1 82.8 61.8 62.8 60.1 69.6 63.1 63.3 0.3 7.1

EMO w/o pre-train Eye 62.0 73.2 60.1 38.7 25.7 48.0 65.3 46.1 60.2 55.5 58.9 53.2 53.3 0.3 7.1

Ours(E4-S0) Eye 76.0 85.0 85.8 74.8 66.8 79.9 85.3 78.0 80.0 78.1 78.3 78.6 79.1 0.9 7.2

Ours(E4-S1) Eye 76.9 89.2 88.9 76.3 69.0 82.3 86.6 78.5 83.4 80.5 81.0 80.9 81.3 0.9 7.2

Ours(E7-S0) Eye 76.7 86.8 87.6 74.2 66.2 82.4 86.7 78.1 80.9 77.3 82.1 79.6 80.1 1.5 10.7

Ours(E4-S3) Eye 85.0 89.9 92.2 76.7 72.1 87.7 85.2 83.3 85.6 80.8 84.8 83.6 84.1 0.9 7.2

Ours(E7-S1) Eye 79.0 90.9 91.1 77.2 71.7 85.0 84.4 82.4 86.7 79.8 80.3 82.4 82.7 1.5 10.7

Ours(E13-S0) Eye 77.9 88.7 90.2 79.2 69.7 87.6 84.6 81.1 86.5 79.4 81.8 82.3 82.5 2.6 19.0

conditions than SEEN with E4-S3. We posit that Eymotion bene�ts

from the Imagenet[Deng et al. 2009] pre-training process; without

this pre-training step, Eyemotion’s accuracy is 1% less than the one

o�ered by SEEN with E4-S3 setting. Moreover, we note that Eyemo-

tion requires a personalization preprocessing step, which requires

subtracting a mean neutral image for each person. Personalization

dramatically increases the accuracy of neutral emotion estimation

regardless of whether Eyemotion is pre-trained on ImageNet or

not.

We compare SEEN with three di�erent sequence lengths: 4/30

s, i.e., E4-S0; 7/30 s, i.e., E4-S1 group; 13/30 s, i.e., E4-S3 group.

The experimental results show that the accuracy of SEEN improves

with longer sequence length under all lighting conditions, especially

under HDR conditions. Note, all other prior video-based approaches

require the full video sequences; consequently, their delay time is

the length of an input sequence. In contrast, our method can �exibly

adjust the delay time by changing input settings. Figures 4 and 5

qualitatively demonstrate the bene�ts of our method compared

to prior eye-based emotion recognition methods. In Table 1, the

complexity and processing speed of each competing approach are

also provided. As the temporal feature extractor processes event

frames iteratively, the complexity and processing time increase

with the number of event frames. Nevertheless, with the E4-S3

setting, our method o�ers the second fastest processing speed, but

it is more than 20% more accurate than the fastest method, EMO.

6.3 Ablation Study

To gain better insight into the abilities of SEEN, we perform a series

of ablation studies that investigate a) the impacts of input, b) the

in�uence of each component of SEEN, and c) the impact of outputs.

Table 2 summarizes the experimental results.

Table 2: Quantitative ablation comparisons show that: a) both

the �rst and last intensity frames are essential for provid-

ing discriminative features; b) all components of SEEN con-

tribute to the overall performance (except experiment E un-

der the E4-S0 setting); and c) potential averaging is necessary

results in a more accurate performance.

E4-S0 E4-S1 E4-S3

Networks WAR UAR WAR UAR WAR UAR

� w/o �= 77.1 77.6 79.9 80.2 81.3 81.8

� �= → �2 76.4 76.9 80.1 80.6 81.8 82.2

� [�1, ..., �=] 78.0 78.4 79.9 80.2 82.9 83.3

� No weight copy 77.5 78.0 79.6 80.0 82.1 82.6

� No Att. weight copy 78.7 79.2 80.7 81.1 83.0 83.2

� SNN→ CNN 50.2 50.2 53.2 53.2 55.7 55.6

� SNN→ LSTM 52.9 53.0 55.3 55.2 55.8 55.7

� SNN→ Transformer 69.2 69.8 73.6 74.2 77.1 77.3

� SNN→ 3D CNN 54.3 54.3 57.7 57.7 59.9 59.9

� Last potential 76.6 77.2 78.8 79.2 81.1 81.7

 Last spike 55.7 54.8 59.5 58.9 63.2 62.8

! Mean spike 63.5 63.2 64.1 63.6 69.7 69.5

" Ours 78.6 79.1 80.9 81.3 83.6 84.1

Impacts of Input. SEEN leverages the �rst and last intensity

frames. Experiments (A), (B) and (C) gauge the impact of the in-

tensity frames: experiment (A) only uses the �rst intensity frame,

experiment (B) replaces the last intensity frame with the second

frame, and experiment (C) uses all the intensity frames correspond-

ing to the included event frames. The results of (A) and (B) demon-

strate spatial di�erences are critical for ) to extract descriptive

temporal cues. Compared to experiments (A) and (B), the results of
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experiment (C) show that using more intensity frames slightly in-

creases performance. However, compared to our method, the setup

dramatically increases data bandwidth.

In�uence of SEEN components.We investigate the e�ectiveness of

the di�erent components that comprise SEEN: 1) the e�ectiveness

of the weight-copy scheme (experiments (D) and (E)) and 2) the

bene�ts of SNNs (experiments (F) to (I)). These two experiment

groups show that SEEN with all components o�ers the best perfor-

mance, except experiment E under the E4-S0 setting. Experiments

(F) to (I) show that replacing the CNN-SNN with a 3-layer CNN,

LSTM, Transformer, or 3D CNN signi�cantly degrades performance.

A CNN fails to extract useful temporal cues, so the performance

degradation further justi�es the inclusion of temporal cues. Al-

though LSTM, Transformer, and 3D CNN can extract temporal

cues, they are less e�ective than SNNs. Notably, an SNN neuron’s

spiking mechanism acts as temporal memory and a natural noise

�lter, which is bene�cial for robust emotion recognition.

Impact of outputs. SEEN estimates emotions based on the average

of =membrane potentials; see Equation 8 and Equation 14. To better

understand the impact of this design decision, we conduct three

ablation experiments: instead of using the average of = membrane

potentials, we de�ne the prediction score based on the potential

generated by the last event frame only (experiment (J)); similar to

the previous but using output spikes instead of potential (experi-

ment (K)); and �nally using the average of = output spikes instead

of the = membrane potentials for emotion classi�cation, i.e., remove

the M operator in Equation 8 (experiment (L)). These results show

that membrane potentials are more e�ective signals than spikes.

We posit that the higher precision of membrane potentials (�oat vs.

binary for spikes) o�ers more discriminative features for emotion

classi�cation. When a membrane potential triggers a spike, the

potential is reset to 0. However, it becomes a problem if we leverage

the potential as an output signal since the rest operation breaks

the temporal cues. To address the problem, we design to use the

average of the output potentials as the output signal. Experiment

(J) validates the e�ectiveness of this design.

7 CONCLUSION

In this work, we introduce a novel wearable single-eye-based emo-

tion recognition prototype that can e�ectively estimate emotions

under challenging lighting conditions. To this end, we investigate

event-based camera inputs for emotion recognition. Due to the high

dynamic range and temporal resolution of event-based cameras,

the captured events can robustly encode temporal information un-

der di�erent lighting conditions. However, the captured events are

asynchronous, noisy, and lack texture cues. We introduce SEEN, a

novel learning-based solution to extract informative temporal cues

for emotion recognition. SEEN introduces two novel design com-

ponents: a weight-copy scheme and a CNN-SNN-based temporal

feature extractor. The former injects spatial attention into temporal

feature extraction during the training and inference phases. The

latter exploits both spatial awareness and the spiking mechanism of

SNNs to provide discriminative features for emotion classi�cation

e�ectively. Our extensive experimental results show that SEEN can

e�ectively estimate an emotion from any phase of the emotion. To

the best of our knowledge, SEEN is the �rst attempt at leveraging

event-based cameras and SNNs for emotion recognition tasks.
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