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Figure 1: Demonstration of a wearable single-eye emotion recognition prototype system consisting with a bio-inspired event-
based camera (DAVIS346) and a low-power NVIDIA Jetson TX2 computing device. Event-based cameras simultaneously provide
intensity and corresponding events, which we input to a newly designed lightweight Spiking Eye Emotion Network (SEEN) to
effectively extract and combine spatial and temporal cues for emotion recognition. Given a sequence, SEEN takes the start
and end intensity frames (green boxes) along with n intermediate event frames (red boxes) as input. Our prototype system
consistently recognizes emotions based on single-eye areas under different lighting conditions at 30 FPS.
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ABSTRACT

We introduce a wearable single-eye emotion recognition device
and a real-time approach to recognizing emotions from partial
observations of an emotion that is robust to changes in lighting
conditions. At the heart of our method is a bio-inspired event-based
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camera setup and a newly designed lightweight Spiking Eye Emo-
tion Network (SEEN). Compared to conventional cameras, event-
based cameras offer a higher dynamic range (up to 140 dB vs. 80
dB) and a higher temporal resolution (in the order of ys vs. 10s of
ms). Thus, the captured events can encode rich temporal cues under
challenging lighting conditions. However, these events lack texture
information, posing problems in decoding temporal information
effectively. SEEN tackles this issue from two different perspectives.
First, we adopt convolutional spiking layers to take advantage of
the spiking neural network’s ability to decode pertinent tempo-
ral information. Second, SEEN learns to extract essential spatial
cues from corresponding intensity frames and leverages a novel
weight-copy scheme to convey spatial attention to the convolu-
tional spiking layers during training and inference. We extensively
validate and demonstrate the effectiveness of our approach on a
specially collected Single-eye Event-based Emotion (SEE) dataset.
To the best of our knowledge, our method is the first eye-based
emotion recognition method that leverages event-based cameras
and spiking neural networks.
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1 INTRODUCTION

Real-time emotion recognition in uncontrolled environments is a
challenging problem that forms the cornerstone of many in-the-wild
human-centered interactive computer graphics experiences such
as interactive storytelling that adapts to the users emotions, and
emotion-aware virtual avatars. Predicting emotions from regular
RGB video streams is a challenging and ambiguous endeavor; infor-
mative spatial and temporal emotive cues can be adversely affected
by head pose and partial occlusions. To help classify emotions in
RGB video frames, existing facial emotion recognition models build
on complex CNN-based models such as ResNet 50 [Deng et al.
2020b], Transformer [Zhao and Liu 2021], and Inception-based
methods [Hickson et al. 2019]. Robustly handling varying lighting
conditions and rapid user movements further complicates emotion
recognition, and existing methods rely on cumbersome large net-
work enhancement modules [Zhao and Liu 2021] or impose active
IR lighting [Wu et al. 2020]. Despite all these innovations, emotion
recognition from RGB video streams remains difficult and fragile.
In this paper, we introduce a novel wearable emotion recognition
prototype in which a bio-inspired event-based camera (DAVIS346)
is affixed in front of a user’s right eye. An event-based camera can
provide more robust temporal cues for emotion recognition under
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adverse lighting conditions as it offers a higher dynamic range (up
to 140 dB vs. 80 dB) and a higher temporal resolution (in the order
of us vs. 10s of ms) than a conventional camera. Even though this
setup provides a stable fixed perspective of a right eye and it can
robustly handle various lighting conditions, estimating emotion
from a single eye still poses unique challenges.

A key issue is that event-based cameras do not capture texture
information effectively (see Figure 1). These spatial features are
not only essential for emotion recognition but also important for
inferring more informative temporal features. For example, while
pupil motion and blinking are dominant temporal cues, they are
less informative for emotion classification. In contrast, the subtle
movements related to the facial units, such as raising the outer brow
and squinting, are stronger cues for eye-based emotion recognition.

To address these challenges, we devise a lightweight SEEN, which
combines the best from both events and intensity frames to guide
emotion recognition from asynchronous events with spatial texture
cues from corresponding intensity frames. In particular, SEEN con-
sists of a spatial feature extractor and a temporal feature extractor
that partially share the same convolutional architecture. During
training, the shared convolutional parts are only learned in the
spatial feature extractor, and the updated weights are copied to the
temporal feature extractor. Consequently, spatial attention can be
effectively conveyed to the temporal decoding process. As such, the
temporal feature extractor learns to associate spatial and temporal
features, resulting in a consistent emotion classification.

To train our lightweight Spiking Eye Emotion Network (SEEN)
and to stimulate research in event-based single-eye emotion recog-
nition, we introduce a new Single-eye Event-based Emotion (SEE)
dataset. We validate our approach on the SEE dataset and demon-
strate state-of-the-art emotion recognition under different challeng-
ing lighting conditions, outperforming the runner-up method by a
significant margin, 4.8% and 4.6% in WAR and UAR, respectively.
The prototype system with an NVIDIA Jetson TX2 operates at 30
FPS in real-world testing scenarios.

Specifically, our work makes the following contributions:

e anovel real-time emotion recognition method based on event
camera measurements and a spiking neural network suited
for in-the-wild deployment;

e a weight-copy training scheme to enforce learned weights
awareness of both spatial and temporal cues; and

o the first publicly available single-eye emotion dataset con-
taining both intensity frames and corresponding raw events,
captured under four different lighting conditions.

Limitations. SEEN partially relies on spatial features extracted
from intensity frames, which can be adversely affected by extremely
degraded lighting conditions, resulting in a significant performance
drop. While our method robustly handles most lighting conditions
effectively, as evidenced by our experimental results, further im-
proving robustness by solely leveraging events forms an exciting
avenue for future research in eye-based emotion recognition.

The code and dataset are available on github.
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2 RELATED WORK

We focus our discussion on related work in emotion recognition
on measuring emotions (wearable emotion sensing systems) and
recognition (facial emotion recognition).

Wearable Emotion Sensing Systems. Emotions impact the human
body in subtle ways. However, not all of these signals are equally
robust indicators of emotional state, and not all are easily mea-
sured. Various bio-signals have been investigated for convenient
measurement of indicators of emotional state. Long-term heart rate
variability (HRV) has been shown to strongly correlate with emo-
tional patterns [Appelhans and Luecken 2006; Costa et al. 2019].
Similarly, brain activity recorded by electroencephalogram (EEG)
sensors also correlates to different emotions [Li et al. 2018; Liu et al.
2020]. Inspired by human perception of emotions, Electromyogram
(EMG) measurements of facial muscle contractions [Lucero and
Munhall 1999] map to emotions, making wearable emotional detec-
tion devices possible [Gruebler and Suzuki 2014]. A disadvantage
of these methods is that they require the sensors to make direct skin
contact, dramatically restricting freedom of activity. Furthermore,
due to the displacement of sensors and muscular cross-talk dur-
ing movement, the results can be of low reliability. An alternative
to contact-based measurement is pupillometry, i.e., the measure-
ment of pupil size and reactivity, as a potential indicator of emo-
tion [Mathot 2018; Nie et al. 2020]. However, pupilometry requires
expensive equipment, and the reliability is significantly impacted
by ambient lighting [Couret et al. 2019]. Similar to pupilometry, our
method also focuses on the eye as an indicator of emotional state.
However, in contrast to prior work, we employ an event-based
camera that does not require direct skin contact and which can
operate in challenging lighting conditions.

Facial Emotion Recognition. Facial emotion recognition has re-
ceived significant attention in computer graphics and computer vi-
sion, with applications ranging from driving facial expressions [Hick-
son et al. 2019; Ji et al. 2022] to facial reenactment for efficient social
interactions [Burgos-Artizzu et al. 2015; Li et al. 2015]. A signifi-
cant portion of prior work in facial emotion recognition requires
observations of the entire face, and several methods have been
introduced for effective facial feature learning [Ruan et al. 2021;
Xue et al. 2021], dealing with uncertainties in facial expression
data [Zhang et al. 2021a], handing partial occlusions [Georgescu
and Ionescu 2019; Houshmand and Khan 2020], and exploiting tem-
poral cues [Deng et al. 2020b; Sanchez et al. 2021]. Combinations
with other modalities such as contextual information [Lee et al.
2019] and depth [Lee et al. 2020] have also been explored to further
improve facial recognition accuracy.

However, observing the entire face is not feasible in many prac-
tical situations. Alternatively, several methods focus on the eye
area only for emotion recognition. Hickson et al. [2019] infer emo-
tional expressions based on images of both eyes captured with
an infrared gaze-tracking camera inside a virtual reality headset.
Wu et al. [2020] rely on infrared single-eye observations to reduce
camera synchronization and data bandwidth issues when monitor-
ing both eyes. Both systems require a personalized initialization
procedure; Hickson et al. require a personalized neutral image,
and Wu et al. require a reference feature vector of each emotion.
The need for a personalized setup makes these systems intrusive
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and non-transparent to the user and could raise privacy concerns.
Furthermore, neither system leverages temporal cues, which are
essential for robust emotion recognition [Sanchez et al. 2021]. Our
approach does not require personalization, and it leverages tempo-
ral and spatial cues to improve emotion recognition accuracy.

3 BACKGROUND

Before detailing our method, we first review work related to the two
key components of our event-based emotion recognition method:
event-based cameras and spiking neural networks.

Event-based Cameras. An event-based camera differs from a con-
ventional camera in that it does not measure pixel intensities, but
instead, an event-based camera records asynchronous (log-encoded)
per-pixel brightness changes [Gallego et al. 2022; Gehrig et al. 2021].
Event-based cameras offer a significantly higher dynamic range
(up to 140 dB) and a higher temporal resolution (in the order of ys)
than conventional cameras. Each event e is characterized by three
pieces of information: the pixel location, (x, y); the event triggering
time, t; and a polarity, p € {—1, 1} which reflects the direction of
the brightness change. Formally, a set of N events can be defined
as:

& = {echily = {lxk Yo tio PRl 1y ()

Under static lighting, a stationary event-based camera only records
scene motion, and events are typically triggered by moving edges
(e.g., object contours, and texture boundaries). Since the events pre-
dominately stem from the motion of edges, the measured events are
inherently sparse and devoid of texture information. Furthermore,
since the captured events are triggered asynchronously, events are
incompatible with CNN-based architectures. Instead, events are
aggregated into a frame or grid-based representation [Gehrig et al.
2019; Lagorce et al. 2017; Maqueda et al. 2018; Wang et al. 2022]
before neural processing. In our implementation, we adopt the ag-
gregation algorithm of Zhang et al. [2021b], which currently offers
the highest performance for single object tracking under normal
and degraded conditions. We refer to the Supplementary Material
for additional details.

Spiking Neural Network (SNN). Spiking neural networks (SNNs)
closely mimic biological information processes. An SNN incorpo-
rates the concept of time and only exchanges information (i.e.,
spike) when a membrane potential exceeds some potential thresh-
old. Mathematically an SNN neuron simulates the properties of
a cell in a nervous system with varying degrees of detail, which
models three states of a biological neuron: rest, depolarization, and
hyperpolarization [Ding et al. 2022]. When a neuron is at rest, its
membrane potential remains constant; typically set to 0. When
not at rest, the change in the membrane potential can either de-
crease or increase. An increase in membrane potential is called
depolarization. In contrast, hyperpolarization describes a reduction
in membrane potential. When a membrane potential is higher than
a potential threshold, an action potential, i.e., spike, is triggered,
which for an SNN is a binary value. We refer the interested reader
to Ding et al. [2022] for an in-depth discussion of these concepts.

In this paper, we use the leaky integrate-and-fire (LIF) spiking
neuron model [Gerstner and Kistler 2002], one of the most widely
used spiking models. When a LIF neuron receives spikes from other
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neurons, the spikes are scaled accordingly based on learned synap-
tic weights. Depolarization is achieved by summing over all the
scaled spikes. A decay function over time is used to drive the poten-
tial membrane to hyperpolarization. We refer to the Supplemental
Material for a detailed formal definition of LIF.

4 SPIKING EYE EMOTION NETWORK (SEEN)

Existing facial emotion recognition methods typically only identify
the “peak” states of emotions [Hickson et al. 2019] or a single emo-
tion state over a whole sequence [Zhao and Liu 2021], making these
methods unsuitable for applications that also require a robust esti-
mate of the in-between states. We introduce a lightweight Spiking
Eye Emotion Network (SEEN) that is able to effectively recognize
emotions from various states of emotions.

Instead of only memorizing the peak phase of an individual’s
facial emotion, SEEN is designed to leverage temporal cues to dis-
tinguish different phases of emotions using sparse events input cap-
tured with an event-based camera (DAVIS346 camera). Compared
to a conventional camera, an event-based camera has a number of
advantages: it is more sensitive to motion, less sensitive to ambient
lighting, and it offers a high dynamic range. Hence, an event-based
camera is capable of providing stable temporal information un-
der different lighting conditions. While this makes event-based
cameras, in theory, an attractive input modality for motion-based
measurements, in practice, a major drawback of existing event-
based cameras is that the recorded events are noisy and lack texture
information. We address this drawback with a hybrid system that
leverages both spatial cues together with conventional intensity
frames to guide temporal feature extraction during training and
inference. Most commercial event-based cameras are capable of
simultaneously capturing both intensity frames and events through
spatially-multiplexed sensing.

4.1 SEEN Architecture

As illustrated in Figure 2(a), at its core, the architecture of SEEN
consists of a spatial feature extractor, S (described in detail in sub-
section 4.2), and a temporal feature extractor, T (detailed in subsec-
tion 4.3). Given two intensity frames, I 1 and I", SEEN interpolates
the asynchronous captured events between both intensity frames
in n synchronous event frames. Next, the spatial feature extractor
S distills spatial cues from the intensity frames I' and I", and the
temporal feature extractor T processes each of the n event frames
sequentially in time order. Finally, the temporal features and the
spatial cues are then combined to predict n emotion scores. The
final predicted emotion is based on the average of the n scores. The
core component of the temporal feature extractor T is the SNN
layers that make decisions based on membrane potentials to re-
member temporal information from previous event frames. Unlike
RNNs [Kag and Saligrama 2021; Nah et al. 2019], SNNs can effec-
tively learn temporal dependencies of arbitrary length without any
special treatment.

4.2 Spatial Feature Extractor S

To make spatial feature extraction independent from the intensity
sequence length, we only use the first and last frames of a sequence
as the input to the spatial feature extractor, thereby fixing the
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input size regardless of the sequence length, i.e., two frames. The
spatial feature extractor S (Figure 2(b)) leverages a multiscale self-
attention perception module, Q, to obtain discriminative features
from different-sized neighborhoods. The extracted spatial features
are then transferred into the spiking format, J, via a spiking layer,
which is subsequently combined with temporal features to enhance
feature discrimination. Formally, the spatial feature extractor can
be defined as:

Js = @' (Fy), @)

Fs = C3(C3(Q3,5,7) (1)), (3
Qo) ) = Cr([07 o Cry (Dol Ca, (O] (@)
ooy =0 ((X(Cxy (1)), X (Cx, (1)) (5)
() = CL(BR(C1(A()))), ©)

Is = CL([1', 1), ()

where [-] and (-) indicate channel-wise concatenation and a vector,
respectively; C; and o denote an iXi convolution layer and a softmax
function, respectively; A denotes an adaptive pooling layer; BR is a
fused batch normalization layer with a ReLU activation function; ®*
is a spiking layer that keeps membrane potential from the previous
time step, t — 1. The initial membrane potential, i.e, t = 0, is set to
0 (see Equation 13).

4.3 Temporal Feature Extractor T

The basis building blocks of the temporal feature extractor T are
SNN layers. An SNN neuron outputs signals based on a membrane
potential accumulation, decay, and reset mechanisms to capture the
temporal trends in an input sequence [Ding et al. 2022]. When the
membrane potential exceeds a threshold, an action potential (i.e.,
spike) is triggered and the membrane potential is reset. The trigger
process itself is non-differentiable, prohibiting training via conven-
tional stochastic gradient descent optimization methods. Instead,
we adopt spatio-temporal backpropagation (STBP) along with a
CNN-SNN layer [Wu et al. 2018] to circumvent this issue. This
CNN-SNN layer employs a CNN-based layer for the aggregation
process and a LIF-based SNN neuron [Gerstner and Kistler 2002]
for managing the potential decay and reset processes. This modifi-
cation takes advantage of CNN-based layers that enable learning
of diverse accumulation strategies, resulting in more effective SNN
neurons in the temporal domain.

Intensity Attention-Guided Temporal Features. Purely relying on
events does not yield a robust solution due to the lack of reliable
texture information in the event domain. We, therefore, leverage
spatial features from S to inject rich texture cues. Figure 2(c) illus-
trates the architecture of the temporal extractor T.

The feature extractor T takes n event frames, E! to E", as input
and processes each frame sequentially in time order. Formally, given
the spatial feature Js, the temporal feature extraction of E? is defined
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Figure 2: Our Spiking Eye Emotion Network (a) leverages a CNN-SNN-based temporal feature extractor, T, (c) to process n
accumulated event frames, i.e., E/, in time order sequentially. During the process, based on two intensity frames, I' and I”, the
spatial feature extractor, S, (b) relies on a multiscale self-attention module to extract spatial features, J;, which are combined
with temporal cues to estimate emotions. The convolutional blocks before spiking-addition operator in the temporal feature
extractor T fail to properly train due to lack of texture information in the event frames. Instead, we copy the updated weights
from the corresponding blocks of the spatial feature extractor S. During inference, the attention weights are also copied directly
from S to T to increase inference speed. The copying operations are marked by the red dashed arrows.

by:
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Jo = @' (F), (10)
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where M is an operator for obtaining membrane potentials from an
SNN layer, and ¥ represents a fully connected layer; ®°(-) indicates
an SNN layer, which records the previous spiking status, P*~!, and
potential value, V¥ ™!, When receiving membrane potentials X*, this
SNN layer outputs updated spikes, P!, and updates the recorded
membrane potential V* as follows:

Pt =hn(V' -0),
Vi=aviTla-pPh) + XY,
1 x>=0
h(x) = , 13
(x) {0 <0 (13)

where © is the membrane potential threshold set to 0.3 in all our

experiments. The parameter « is a decay factor used for achieving

hyperpolarization. The potential value V! is updated such that, for

a spike at timestamp ¢ — 1, the membrane potential should be reset

to 0 by scaling 1 — P*~1, and X? is the corresponding item here.
Finally, the emotion is the average of O, t € [1,n]:

n
1
R=a(- Z oh), (14)
n
=1
where ¢ is a Softmax activation function.

4.4 Weight-Copy Scheme

Intuitively, we want temporal information extraction to focus on
informative spatial positions, such as facial action units [Ekman and

Friesen 1978]. However, events lack sufficient texture information,
which impedes the temporal feature extractor from considering
spatial information. To alleviate this problem, we propose a weight-
copy scheme that copies the weights from the spatial feature extrac-
tor to the temporal feature extractor. Thus, during training, only the
fully connected layers in T are trained. The weight-copy scheme
requires that all convolutional blocks before the spiking-addition
operator, i.e., Equation 9, are of the same architecture in S and T see
Equation 3 and Equation 11. Note that the supervised loss conveys
the impact from both the spatial and temporal domains enabled by
the spiking-addition. Since the weights are fixed before the spiking-
addition in the temporal feature extractor T, the training of the
spatial features must also account for temporal cues. Therefore,
the weight updating implicitly bridges the domain gap between
intensity and event frames.

Weight copying is also applied to the self-attention weights,
i.e., the self-attention weights in Equation 11 are replaced by the
weights from Equation 5; see Figure 2(a). As we will show in our
experimental results, this design is more effective than inferring
the self-attention weights based on input events (row E in Table 2
except E4-S0) and it yields a more efficient inference.

4.5 Loss Function

Because emotion recognition is a classification task, we use a regular
cross-entropy loss for supervised training of SEEN:

7
1 .
f=—;2;wkg@n, (15)

where y; and §j; are the predicted i-th emotion’s probability and
corresponding ground truth probability, respectively.

5 DATASET

To the best of our knowledge, there does not exist an event-based
dataset for single-eye emotion recognition. The two most related are
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Figure 3: The newly collected Single-eye Event-based Emo-
tion (SEE) dataset covers seven emotion classes (c) under
four lighting conditions (a). The detailed statistics of the SEE
dataset are illustrated in (b).

the active infrared lighting/camera datasets Eyemotion [Hickson
et al. 2019] (both eyes) and EMO [Wu et al. 2020] (single eye).

To address this lack of training data for event-based emotion
recognition, we collect a new Single-eye Event-based Emotion (SEE)
dataset; see Figure 3. SEE contains data from 111 volunteers cap-
tured with a DAVIS346 event-based camera placed in front of the
right eye and mounted on a helmet; see Figure 1. The DAVIS346
camera is equipped with a dynamic version sensor (DVS) and an ac-
tive pixel sensor (APS), providing both raw events and conventional
frames simultaneously. Unlike Eyemotion and EMO, our approach
does not require any active lighting source, thereby simplifying
installation, testing, and maintenance of the hardware setup. A
summary of the technical differences between SEE and the existing
emotion datasets is provided in Supplementary Materials.

SEE contains videos of 7 emotions (see Figure 3(c) for an exam-
ple) under four different lighting conditions: normal, overexposure,
low-light, and high dynamic range (HDR) (Figure 3(a)). The aver-
age video length ranges from 18 to 131 frames, with a mean frame
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number of 53.5 and a standard deviation of 15.2 frames, reflect-
ing the differences in the duration of emotions between subjects.
In total, SEE contains 2, 405/128, 712 sequences/frames with corre-
sponding raw events for a total length of 71.5 minutes (Figure 3(b)),
which we split in 1, 638 and 767 sequences for training and testing,
respectively.

6 ASSESSMENT

The main goal of SEEN is to recognize an emotion for any phase of
the emotion. Consequently, when evaluating a test sequence, we
choose a uniformly distributed random starting point and corre-
sponding testing length. A start point is selected such that the rest
sequernce is longer than the corresponding testing length. The test-
ing length is defined as the total accumulation time of all included
event frames, x, and a skip time, y, between two adjacent event
frames, denoted as Ex-Sy. The skip time defines a window in the
time domain where all events are ignored; see “skip” in Figure 2.
Note that the skip time is not associated with event-based cameras
but an experimental setting. Without loss of generality, the accu-
mulation time and skip time are expressed as a multiple of 1/30 s.
Thus, Ex-Sy indicates a testing length equal to (x+ (x—1) Xy)/30s.
To reduce the impact of the randomness, we evaluate all competing
methods 20 times for different randomly selected start points for
each testing sequence; we use the same random starting points
for single-frame competing methods, where only the random start
frame is used. To evaluate the proposed approach and compare it to
competing methods, we adopt two widely used metrics: Unweighted
Average Recall (UAR) and Weighted Average Recall (WAR) [Schuller
et al. 2011]. UAR reflects the average accuracy of different emo-
tion classes without considering instances per class, while WAR
indicates the accuracy of overall emotions; we refer to the Supple-
mentary Materials for formal definitions of both metrics.

6.1 Training Setup

SEEN is implemented in PyTorch [Paszke et al. 2019] and trained
with stochastic gradient descent (SGD) with a momentum of 0.9
and a weight decay of 1e—3. We train SEEN for 180 epochs with a
batch size of 32 on an NVIDIA TITAN V GPU. We use the StepLR
scheduler to moderate the learning rate. Specifically, the initial
learning rate is set to 0.015, the step size is set to 1, and the decay
rate is set to 0.94. For the SNN settings, we use a spiking threshold
of 0.3 and a decay factor of 0.2 for all SNN neurons.

6.2 Qualitative and Quantitative Evaluation

We compare the effectiveness of SEEN to existing emotion recogni-
tion methods relying on conventional intensity images only, includ-
ing whole-face, single-eye, and double-eye based methods. Of these
prior methods, Eyemotion [Hickson et al. 2019] and EMO [Wu et al.
2020] are single-frame methods for predicting an emotion, while all
other methods require the full video sequence. As shown in Table 1,
SEEN for E4-S3 offers the best performance, outperforming the
runner-up method, Eyemotion, by significant margins, 4.8% and
4.6% higher in WAR and UAR, respectively. Under normal, overex-
posure, and HDR lighting conditions, our approach with the same
setting also outperforms Eyemotion by at least 4% in accuracy. How-
ever, Eyemotion offers slightly better performance under low-light
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Table 1: Quantitative comparison against the state-of-the-art. All methods are retrained and tested on the SEE dataset. The
abbreviations are defined as Ha — Happiness; Sa — Sadness; An — Anger; Di — Disgust; Su — Surprise; Fe — Fear; Ne —
Neutrality; Nor — Normal; Over — Overexposure; Low — Low-Light. The first and second best results are highlighted in bold

and underline, respectively.

Methods Acc. of Emotion Class (%) Acc. under Light Conditions (%) Metrics (%)
Ha Sa An Di Su Fe Ne | Nor Over Low HDR |WART UART|FLOPS(G) Time (ms)

Resnet18 + LSTM [2016; 1997] | Face | 57.8 86.0 649 46.5 9.2 816 59.8 | 57.9 60.4 53.9 52.5 56.3 58.0 7.9 5.0
Resnet50 + GRU [2020a; 2016] | Face | 27.9 38.0 49.7 445 69 700 5.6 43.0 35.7 28.9 32.8 35.2 34.7 17.3 10.3
3D Resnet18 [2018] Face | 54.8 454 67.7 238 37.2 428 81.6| 519 51.4 44.8 47.8 49.1 50.5 8.3 21.2
R(2+1)D [2018] Face | 63.6 45.5 65.7 27.8 333 379 86.6 54.3 50.3 444 49.3 49.7 51.5 42.4 47.3
Former DFER [2021] Face | 815 752 858 594 393 508 786 | 70.1 65.4 66.2 61.1 65.8 67.2 8.3 7.7
Former DFER w/o pre-train Face | 44.1 65.2 46.0 66.5 28.0 503 36.1 47.0 51.9 45.6 47.2 48.0 48.0 8.3 7.7
Eyemotion [2019] Eye | 743 855 795 743 69.1 792 945| 790 818 815 725 | 788 795 5.7 175
Eyemotion w/o pre-train Eye | 79.6 857 81.2 712 547 71.6 96.4| 77.8 75.9 79.8 69.7 75.9 77.2 5.7 17.5
EMO [2020] Eye | 750 751 702 48.1 375 541 828 | 618 62.8 60.1 69.6 63.1 63.3 0.3 7.1
EMO w/o pre-train Eye | 62.0 73.2 60.1 38.7 257 480 653 | 46.1 60.2 55.5 58.9 53.2 53.3 0.3 7.1
Ours(E4-S0) Eye | 76.0 850 858 748 668 799 853 78.0 80.0 78.1 78.3 78.6 79.1 0.9 7.2
Ours(E4-S1) Eye | 769 89.2 889 763 69.0 823 86.6 78.5 83.4 80.5 81.0 80.9 81.3 0.9 7.2
Ours(E7-S0) Eye | 76.7 86.8 87.6 742 662 824 86.7| 78.1 80.9 77.3 82.1 79.6 80.1 1.5 10.7
Ours(E4-S3) Eye | 85.0 899 92.2 76.7 72.1 87.7 852 | 83.3 85.6 80.8 84.8 83.6 84.1 0.9 7.2
Ours(E7-S1) Eye | 79.0 909 91.1 772 717 850 844 | 824 86.7 79.8 80.3 82.4 82.7 1.5 10.7
Ours(E13-S0) Eye | 779 887 90.2 79.2 69.7 87.6 846 81.1 86.5 79.4 81.8 82.3 82.5 2.6 19.0

conditions than SEEN with E4-S3. We posit that Eymotion benefits
from the Imagenet[Deng et al. 2009] pre-training process; without
this pre-training step, Eyemotion’s accuracy is 1% less than the one
offered by SEEN with E4-S3 setting. Moreover, we note that Eyemo-
tion requires a personalization preprocessing step, which requires
subtracting a mean neutral image for each person. Personalization
dramatically increases the accuracy of neutral emotion estimation
regardless of whether Eyemotion is pre-trained on ImageNet or
not.

We compare SEEN with three different sequence lengths: 4/30
s, i.e., E4-S0; 7/30 s, i.e, E4-S1 group; 13/30 s, ie., E4-S3 group.
The experimental results show that the accuracy of SEEN improves
with longer sequence length under all lighting conditions, especially
under HDR conditions. Note, all other prior video-based approaches
require the full video sequences; consequently, their delay time is
the length of an input sequence. In contrast, our method can flexibly
adjust the delay time by changing input settings. Figures 4 and 5
qualitatively demonstrate the benefits of our method compared
to prior eye-based emotion recognition methods. In Table 1, the
complexity and processing speed of each competing approach are
also provided. As the temporal feature extractor processes event
frames iteratively, the complexity and processing time increase
with the number of event frames. Nevertheless, with the E4-S3
setting, our method offers the second fastest processing speed, but
it is more than 20% more accurate than the fastest method, EMO.

6.3 Ablation Study

To gain better insight into the abilities of SEEN, we perform a series
of ablation studies that investigate a) the impacts of input, b) the
influence of each component of SEEN, and c) the impact of outputs.
Table 2 summarizes the experimental results.

Table 2: Quantitative ablation comparisons show that: a) both
the first and last intensity frames are essential for provid-
ing discriminative features; b) all components of SEEN con-
tribute to the overall performance (except experiment E un-
der the E4-S0 setting); and c) potential averaging is necessary
results in a more accurate performance.

E4-S0 E4-S1 E4-S3

Networks WAR UAR|WAR UAR|WAR UAR
A w/oI" 771 77.6|79.9 802|813 81.8
BI">1? 76.4 76.9| 80.1 80.6| 81.8 82.2
C (1.1 78.0 784|799 802|829 833
D No weight copy 775 78.0|79.6 80.0| 82.1 82.6
E No Att. weight copy | 78.7 79.2| 80.7 81.1| 83.0 83.2
F SNN — CNN 50.2 50.2| 53.2 53.2| 55.7 55.6
G SNN — LSTM 52.9 53.0| 553 552|558 557
H SNN — Transformer| 69.2 69.8 | 73.6 74.2| 77.1 77.3
I SNN — 3D CNN 54.3 54.3|57.7 57.7|59.9 59.9
J Last potential 76.6 77.2| 788 79.2| 81.1 81.7
K Last spike 55.7 54.8|59.5 589|632 62.8
L Mean spike 63.5 63.2| 64.1 63.6| 69.7 69.5
M Ours 78.6 79.1|80.9 813|83.6 84.1

Impacts of Input. SEEN leverages the first and last intensity
frames. Experiments (A), (B) and (C) gauge the impact of the in-
tensity frames: experiment (A) only uses the first intensity frame,
experiment (B) replaces the last intensity frame with the second
frame, and experiment (C) uses all the intensity frames correspond-
ing to the included event frames. The results of (A) and (B) demon-
strate spatial differences are critical for T to extract descriptive
temporal cues. Compared to experiments (A) and (B), the results of
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experiment (C) show that using more intensity frames slightly in-
creases performance. However, compared to our method, the setup
dramatically increases data bandwidth.

Influence of SEEN components. We investigate the effectiveness of
the different components that comprise SEEN: 1) the effectiveness
of the weight-copy scheme (experiments (D) and (E)) and 2) the
benefits of SNNs (experiments (F) to (I)). These two experiment
groups show that SEEN with all components offers the best perfor-
mance, except experiment E under the E4-SO setting. Experiments
(F) to (I) show that replacing the CNN-SNN with a 3-layer CNN,
LSTM, Transformer, or 3D CNN significantly degrades performance.
A CNN fails to extract useful temporal cues, so the performance
degradation further justifies the inclusion of temporal cues. Al-
though LSTM, Transformer, and 3D CNN can extract temporal
cues, they are less effective than SNNs. Notably, an SNN neuron’s
spiking mechanism acts as temporal memory and a natural noise
filter, which is beneficial for robust emotion recognition.

Impact of outputs. SEEN estimates emotions based on the average
of n membrane potentials; see Equation 8 and Equation 14. To better
understand the impact of this design decision, we conduct three
ablation experiments: instead of using the average of n membrane
potentials, we define the prediction score based on the potential
generated by the last event frame only (experiment (J)); similar to
the previous but using output spikes instead of potential (experi-
ment (K)); and finally using the average of n output spikes instead
of the n membrane potentials for emotion classification, i.e., remove
the M operator in Equation 8 (experiment (L)). These results show
that membrane potentials are more effective signals than spikes.
We posit that the higher precision of membrane potentials (float vs.
binary for spikes) offers more discriminative features for emotion
classification. When a membrane potential triggers a spike, the
potential is reset to 0. However, it becomes a problem if we leverage
the potential as an output signal since the rest operation breaks
the temporal cues. To address the problem, we design to use the
average of the output potentials as the output signal. Experiment
(J) validates the effectiveness of this design.

7 CONCLUSION

In this work, we introduce a novel wearable single-eye-based emo-
tion recognition prototype that can effectively estimate emotions
under challenging lighting conditions. To this end, we investigate
event-based camera inputs for emotion recognition. Due to the high
dynamic range and temporal resolution of event-based cameras,
the captured events can robustly encode temporal information un-
der different lighting conditions. However, the captured events are
asynchronous, noisy, and lack texture cues. We introduce SEEN, a
novel learning-based solution to extract informative temporal cues
for emotion recognition. SEEN introduces two novel design com-
ponents: a weight-copy scheme and a CNN-SNN-based temporal
feature extractor. The former injects spatial attention into temporal
feature extraction during the training and inference phases. The
latter exploits both spatial awareness and the spiking mechanism of
SNNs to provide discriminative features for emotion classification
effectively. Our extensive experimental results show that SEEN can
effectively estimate an emotion from any phase of the emotion. To
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the best of our knowledge, SEEN is the first attempt at leveraging
event-based cameras and SNNs for emotion recognition tasks.
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Fear emotion under overexposure condition
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Figure 4: We show four examples across four different emotions, Fear, Anger, Disgust, and Happiness, under overexposure
and normal lighting conditions. The frames marked with red boxes are the inputs for EMO [Wu et al. 2020] and Eyemotion

[Hickson et al. 2019], which is also the first input frame of our approach. Our approach offers the most accurate emotion
predictions under all test settings.
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Surprise emotion under HDR condition
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Figure 5: We show four additional examples across another four different emotions, Surprise, Sadness, Anger, and Surprise,
under HDR and low-light conditions. The frames marked with red boxes are the inputs for EMO [Wu et al. 2020] and Eyemotion
[Hickson et al. 2019], which is also the first input frame of our approach. Our approach offers the most accurate emotion
predictions under all test settings.
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