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A GENERALIZATION OF GEROCH’S CONJECTURE

SIMON BRENDLE, SVEN HIRSCH, AND FLORIAN JOHNE

ABSTRACT. The Theorem of Bonnet-Myers implies that manifolds with topology M"~! x S' do
not admit a metric of positive Ricci curvature, while the resolution of Geroch’s conjecture implies
that the torus T™ does not admit a metric of positive scalar curvature. In this work we introduce a
new notion of curvature interpolating between Ricci and scalar curvature (so called m-intermediate
curvature), and use stable weighted slicings to show that for n < 7 and 1 < m < n— 1 the manifolds
N™ = M"™™ x T™ do not admit a metric of positive m-intermediate curvature.

1. INTRODUCTION

Closed manifolds with positive Ricci curvature have finite fundamental group due to the Theorem of
Bonnet-Myers, in particular manifolds of topological type N™ = M™~ ! x S! do not admit a metric
of positive Ricci curvature. A different proof (at least in dimension n < 7) can be obtained by
minimizing area in a homology class and using the stability inequality with test function f = 1.

On the other hand, a conjecture of Geroch asks whether the torus T™ does admit a metric of
positive scalar curvature. This conjecture was resolved by R. Schoen und S.-T. Yau for 3 <n <7
by using minimal hypersurfaces [10], and by M. Gromov and H.-B. Lawson by using spinors for all
dimensions [6]. The non-existence result for metrics of positive scalar curvature was extended to
closed n-dimensional aspherical manifolds for n € {4,5} independently by O. Chodosh and C. Li [2]
and by M. Gromov [5]. For a more detailed overview on topological obstructions to positive scalar
curvature we refer to the recent survey by O. Chodosh and C. Li [3].

The above obstruction for positive Ricci curvature and positive scalar curvature raise the following
question: What kind of curvature obstructions can be found for manifolds of topological type N™ =
M"™™ x T™? This is an interesting question even for the case N* = S? x T2,

To investigate this question we define a family of curvature conditions (for 1 < m < n — 1) reducing
to Ricci curvature for m = 1 and to scalar curvature for m = n — 1 as follows:

Definition 1.1 (Positive m-intermediate curvature).
Suppose (N™, g) is a Riemannian manifold. For given orthonormal vectors {ei,...,en} at the point
p € N extend them to an orthonormal basis {e1,... ey} of T,M. The m-intermediate curvature Cy,
of the orthornormal vectors {e1,...,en} is defined by

m n

Cml(er, ... em) = Z Rmp (ep, eq, €p, €q).

p=1g=p+1
We say that (N, g) has positive m-intermediate curvature at p € N, if we have Cp(e1,...,€m) >0
for any choice of orthornormal vectors {ey,...,en}. Moreover, we say that the manifold (N™,g)
has positive m-intermediate curvature, if it has positive m-intermediate curvature for all p € M.

The product manifold N” = S"™™ x T™ (with 1 < m < n — 2) with the standard metric on both
factors has positive (m + 1)-intermediate curvature, and nonnegative m-intermediate curvature.
1
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We observe that the condition of positive m-intermediate curvature defines a non-empty, open, O(n)-
invariant convex cone in the space of algebraic curvature tensors for 1 < m < n — 1. Moreover,
under the conditions 2 <m <n—1and n+ 2 —m < k < n the curvature tensor of SF=1 x R*—k+1
is contained in this open cone. The general surgery result due to S. Hoelzel |7, Theorem A] then
implies that positive m-intermediate curvature is preserved under surgeries of codimension at least
n+2—m.

Remark 1.2 (Connection to other notions of curvature).

(i) The quantity Cp,(€1,...,em) is a sum of sectional curvatures of planes containing at least one of
the vectors e1,...,emn. In particular, positive m-intermediate curvature is a weaker condition than
positive sectional curvature.

(i) A manifold with positive m-intermediate curvature has positive scalar curvature. Indeed, the
sum Zl<p1<---<pm<n Cr(€pys---,€p,) is equal to the scalar curvature, up to a factor.

(iii) There is a connection to the notion of (m,n)-intermediate scalar curvature introduced (as m-
curvature) into the literature by M.-L. Labbi |9] and also studied by M. Burkemper, C. Searle and
M. Walsh [1]. More precisely, the (m,n)-intermediate scalar curvature defined by
n n
Sm,n(elv"'7em) = Z Z Rm(epvetpe]beq)
p=m—+1qg=m+1

satisfies the relation
Smn(€1s...,em) +2Cnler,...,em) =R.

In particular, Cy,(e1,...,en) depends only on the span of {ei1,...,en}, hence the m-intermediate
curvature Cp, can be regarded as a scalar function on the Grassmannian.

(iv) For m = n — 1, we obtain sp_1p(e1,...,en—1) =0 and 2Cp—1(e1,...,en—1) = R. Hence, the
intermediate curvature reduces to the scalar curvature in this case.

The case m = 2 (also called bi-Ricci curvature) was studied by Y. Shen and R. Ye in [12, 13].
They proved diameter estimates for stable minimal submanifolds in manifolds of positive bi-Ricci
curvature and an estimate on the homology radius.

Our first main theorem concerns obstructions for the existence of metrics of positive m-intermediate
curvature. To that end, we consider a notion of stable weighted slicing. Our definition closely
resembles the notion of minimal k-slicings by R. Schoen and S.-T. Yau [11].

Definition 1.3 (Stable weighted slicing of order m).

Suppose 1 < m < n —1 and let (N",g) be an orientable Riemannian manifold of dimension
dim N = n. A stable weighted slicing of order m consists of a collection of orientable and smooth
submanifolds X, 0 < k < m, and a collection of positive functions pr, € C*(Xg) satisfying the
following conditions:

e o= N and pyg = 1.
e Foreach 1 <k <m, X is an embedded two-sided hypersurface in Xp_1. Moreover, Xy is a
stable critical point of the pr_1-weighted area

Wik (3) = /E pe1dp

in the class of hypersurfaces ¥ C Yj_1.
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e For each 1 < k < m, the function o plk‘z € C®(Xy) is a first eigenfunction of the stability
- k

operator associated with the pp_1-weighted area.

Observe that we use the first eigenfunction of the Jacobi operator of weighted area, while in [11,
p. 7] a perturbed version of the weighted stability operator (denoted by Q) is used.

It is a classical theorem that manifolds with positive Ricci curvature do not admit stable minimal
hypersurfaces. Our first theorem shows that manifolds with m-intermediate curvature do not allow
stable weighted slicings of order m.

Theorem 1.4 (m-intermediate curvature and stable weighted slicings).
Assume that 1 < m < n —1 and n(m — 2) < m? — 2. Suppose (N",g) is a closed and orientable
Riemannian manifold with positive m-intermediate curvature. Then N does not admit a stable
weighted slicing

YmC--CYX1CYXy=N"

of order m.

The inequality n(m — 2) < m? — 2 is automatically satisfied for m = 1 (Ricci curvature), m = 2
(bi-Ricci curvature), m = n — 2, and m = n — 1 (scalar curvature). Moreover, the inequality
n(im—2) < m?—2holds foralln < 7and all 1 <m <n—1. Surprisingly, in dimension n > 8, the
inequality n(m —2) < m?—2 fails for m = 3 (tri-Ricci curvature) and m = 4 (tetra-Ricci curvature).

The second step, which essentially is given in work of R. Schoen and S.-T. Yau [10], gives a topological
condition for the existence of a stable weighted slicing:

Theorem 1.5 (Existence of stable weighted slicings).
Assumen <7 and1 <m <n—1. Let N" be a closed and orientable manifold of dimension n, and
suppose that there exists a closed and orientable manifold M™™ " and a map F: N* — M"™ " x T™
with non-zero degree. Then for each Riemannian metric g on N™ there exists a stable weighted
slicing

Y CYpe1 C - CX1 CYyg=N"
of order m. In conjunction with Theorem 1.4 we deduce that the manifold N does not admit a metric
with positive m-intermediate curvature.

The dimensional restriction allows us to invoke the regularity theory for hypersurfaces minimizing
a weighted area. As a consequence of the above theorem we observe the following corollary:

Corollary 1.6 (Nonexistence of metrics of positive m-intermediate curvature).
The product manifolds N = M™™ ™ xT™ do not admit a metric of positive m-intermediate curvature
form<T7andl<m<n-1.

In particular, the manifold S? x T? does not admit a metric of positive bi-Ricci curvature.

In Section 2 we introduce our notation and recall the first and second variation formula for weighted
area. In Section 3, we describe the proof of Theorem 1.4. Afterwards, in Section 4, we give the proof
of Theorem 1.5 and establish existence of stable weighted slicings under topological assumptions.
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grant DMS-2103573 and by the Simons Foundation. The second author would like to thank Hubert
Bray and Yiyue Zhang for their interest in this work, and he acknowledges the hospitality of Columbia
University, where this project was initiated.
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2. THE FIRST AND SECOND VARIATION OF WEIGHTED AREA

For a Riemannian manifold (N™,g) we consider its Levi-Civita connection D and its Riemann
curvature tensor Rmy given by the formula

Ry (X,Y,Z, W) = —g(DxDyZ — DyDxZ — Dix.yZ,W)

for vector fields X,Y, Z,W € I'(TN).

Consider a two-sided embedded submanifold ¥"~!. We denote its induced Levi-Civita connection
by Dy, its unit normal vector field by v € I'(IVY), its scalar-valued second fundamental form by
hy, and its mean curvature (the trace of the scalar-valued second fundamental form over X) by Hy.
The gradient of a smooth function on N or ¥ is denoted by Dy f or Dx f.

Our arguments employ the first and second variation formula of a suitably weighted area: Consider
a Riemannian manifold (N™,g), a smooth positive function p : N — R, and an embedded two-
sided closed manifold ¥ C N™. For a given smooth function f € C°°(X) we consider a variation
F: (=€) x X — N with F(0,z) = z and %F(s,x)‘szo = f(z)v(z). In the following, we denote
the map F'(s,-) by Fs. Moreover, we denote by X4 the image of Fs and by v, the unit normal vector
field to Fi.

By precomposing the maps F,; with suitable tangential diffeomorphisms, we can arrange that the
variation is normal in the sense that 5

%Fs :fSV87

where f5 is a smooth function on ;.

We consider the weighted area defined by
7—[2_1(2) = /Epd,u.

We recall the classical formulae for the first and second variation of weighted area:

Proposition 2.1 (First variation of weighted area).
The first variation of weighted area is given by

d_ .
2| = [ of (Hs + (Dylog piv) di
dS s=0 b
Proof. This is a consequence of the first variation formula for area, and the chain rule. O

Corollary 2.2.
Suppose 3 is a critical point of weighted area. Then we have

Hy, = —(Dylogp,v).

For a constant weight we recover the minimal surface equation Hy, = 0.

Proposition 2.3 (Second variation formula on critical points).
If ¥ is a critical point of the weighted area functional, then the second variation of weighted area is
given by
d2 n—1
a2t (%)

s=0

:/EP (—fAsf — (|hsl* + Ricy (v, v)) f* + f2(DX log p)(v,v) — f(Dxlog p, Ds.f)) dpu.
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Proof. We use normal variations for our computation, and hence the first derivative is given by

d

L = / ofs (Hs, + (D 108 p, va) dpta.
S Js, s

We now differentiate both sides of this equation with respect to s, and evaluate the result at s = 0.
By the variation formulas for hypersurfaces, compare for example with [8], the first order change in
the mean curvature is given by
0 .
8_st = —Axf — (|hs]* + Ricn (v,v)) f,
5 s=0
whereas the first order change in the normal vector field is given by

D5V5’820 = —sz.

This implies

0
= (Hx, + (Dnlog p, vs))

Js s=0
= —Axf — (Ihs]’ + Ricy (v,v)) f + (DX log p)(v,v) f — (Ds log p, Ds f),
hence
d? 1
—H," (28)
ds® " s=0

Z/pr (—Asf — (Ihs* + Ricy (v,v)) f + (DX log p) (v, v) f — (Dxlog p, Ds f)) dp.

For a constant weight we recover the usual second variation formula for minimal hypersurfaces:

d2
L1z = /E (—fAsf — (1hsl? + Riex(v,1)) £2) dp.

ds?

s=0
3. PROPERTIES OF STABLE WEIGHTED SLICINGS

Let (N™, g) be a closed and orientable Riemannian manifold of dimension dim N = n. Throughout
this section, we assume that we are given a stable weighted slicing of order m. Our goal is to show
that the metric g cannot have positive m-intermediate curvature.

By the first variation formula for weighted area, Corollary 2.2, the mean curvature Hy;, of the slice
Yk in the manifold X;_; satisfies for 1 < k < m the relation

HEk = _<D2k,1 lngk—ly Vk‘>‘

By the second variation formula for weighted area (compare Proposition 2.3) we obtain for 1 < k <m
the inequality

0 S/E pr—1 (= Ax, ¥ —(Dy, log pr—1, Ds, 1)) dp

- / Pk—1 (\hzklz + Rics, (U, v) — (D%, 1og pr—1) (v, Vk)) W* dp
2k
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for all ¢p € C*°(Xg). By Definition 1.3 we may write pp = pr_1 v, where vy > 0 is the first
eigenfunction of the stability operator for the weighted area functional. The function vy satisfies

kv = — Axvp — (Dsy, log pp—1, Ds,vp) — (|hs,|* + Rics,, (Ui, vk)) v
+ (D%k,l log pr—1) (Vs Vi) Uk
where A > 0 denotes the first eigenvalue of the stability operator.

By setting wy = log v we record the following equation:
0 i = — Ay wy — (D, log py—1, Dy, wi) — (|hs, |* + Ries,, , (vk, vk))

+ (D%, log pr—1) (v, vi) — |Ds, wi .

We next record two lemmata connecting the second derivatives on consecutive slices.

Lemma 3.1 (First slicing identity).
We have for 1 < k < m the identiy

Ay, log pp_1 + (D3, log pr—1) (v, vk) = Asx,_, log pr—1 + H3, .

Proof. The above formula follows by applying the formula relating the Laplace operator on a sub-
manifold to the Laplace operator on the ambient space

As, f+ (D%, )k ve) = As,_, f— Hs, (Ds,_, f, k).

to the function f = logpr_1. The gradient term on the right-hand side is rewritten by using the
first variation formula for weighted area

HEk = _<D2k,1 lOg pk‘—17 Vk‘>‘
from Corollary 2.2. O

Lemma 3.2 (Second slicing identity).
We have for 1 < k < m — 1 the identity

Ay, log p, =As;, log pp—1 + (D%, log pr—1)(ve, vi)
— (M + |hs, | + Rics, (v, vi) + (Ds;, log pg, Dy wg)) -

Proof. This follows from the identity log pr = wy + log pr_1 together with the equation (1). U

Lemma 3.3 (Stability inequality on the bottom slice).
On the bottom slice X, we have the inequality

/ pfr_nl_l (A2m71 log pm—1 + H%m) dp > / py_nl_l (’h2m’2 + RiCEmfl(Vma Vm)) dp.
b))

m m

Proof. By the second variation of weighted area (compare Proposition 2.3) the stability inequality
on the bottom slice ¥, gives

0< / Pt (A, — (D, 108 pr, Dss, b)) dp

- / Pm—1 <\h2m!2 + Rics,, , (Vms vm) — (D%, 10g prm—1)(Vm, Vm)> VP du
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for all v € C*°(%,,). Since the weight p,,_1 is positive, we may use the direction ¢ = p:nl_l in the
stability inequality, and observe

—As, ¥ = =As, pl 1 = 1A%, 108 Pt = pr 1| Dsypmea |
~(Ds,, 108 pm-1, Ds,,¥) = —~(Ds,, 108 p-1, D, p1) = Py | D, [
The gradient terms in the previous formulae cancel, and we obtain by rearrangement

[ ot (A, 108 pms + (DR, 108 o), )

2/ p7_nl—l (’thP +RiCEm71(Vm,l/m)) du
Xm
Finally, we use the first slicing equality from Lemma 3.1 to replace

Ay, log pm—1+ (D%, 10g pm—1)Vm,Vm) = As,,,,_, log pm—1 + HE, .

Lemma 3.4 (Main inequality).
We have the inequality

/ Pl (A+R+E+G) du <0,

m

where the eigenvalue term A, the intrinsic curvature term R, the extrinsic curvature term &, and
the gradient term G are given by

-1

3

m—1
Ak, R = ZRICEk 1 Vkayk , G = Z Dzk lngkaEkwk>7
1 k=1 k=1

and €= |hy, P =) HZ,.
k=1 k=2

A=

(]

=i

Proof. If we substitute the first slicing equality, Lemma 3.1, into the second slicing equality, Lemma
3.2, we obtain for 1 < k < m — 1 the identity

Asx, log pp = Ax, , log pr—1 + HE, — (A + |hs, |* + Rics,_, (e, vk) + (Dx;, log pi, Ds, wy)) -

Summation of the above formula over k£ from 1 to m — 1 yields

m—1
Ay, 1og pm—1 =Ax, log po + Z H%k
k=1
m—1
)\k + ‘hzk + RiCEk,l(Vlm I/k) + <l)z;,c logpk,Dkak» .
k=1

We plug this equation into the stability inequality, Lemma 3.3. Moreover, we observe that the weight
po is constant, the mean curvature of the top slice Hy, vanishes, and that the stability inequality
contains the mean curvature term H%m the extrinsic curvature term |hy, |> and the curvature term
Ricy,, | (Vm, Vm). Then the lemma follows by grouping the terms suitably. O

We consider two examples to illustrate the structure of the curvature terms:
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Example 3.5 (Positive Ricci curvature and m = 1).

In the case m = 1 we have the slicing 31 C Yo = N" and we recover the classic result on the
instability of minimal hypersurfaces in positive Ricci curvature Ric > 0. Indeed, we have A = G = 0,
& = |hs, %, and R = Ricy(v1,v1). Thus R + & > 0. Combined with the existence theory for stable
weighted slicings from Section 4 this implies the non-existence of metrics of positive Ricci curvature
on manifolds with topology N™ = M™ 1 x S! in dimension dim N < 7.

Example 3.6 (Positive bi-Ricci curvature and m = 2).
In the case m = 2 we have the slicing o C X1 C X9 = N™. We moreover observe A = \; > 0,
G = |Ds,w1|* > H%z, and the curvature terms € and R are given by

&= |h21|2 + |h22|2 - H%gv
and R = Ricy(v1,v1) + Ricy (ve, v0) — Rmpy (vq, v, v1,19) — (h%l)(yl, V).

Thus if we assume positive bi-Ricci curvature we have A+ R+E+G > 0. This shows a non-existence
result for stable weighted slicings of order two. Combined with the existence theory for stable weighted
slicings from Section 4 this implies that a manifold with topology N™ = M"~2 x T? (with n < 7)
does not admit a metric of positive bi-Ricci curvature.

The eigenvalue term A is non-negative, since it is the sum of the non-negative eigenvalues. We will
estimate the other terms below.

The first step is to estimate the gradient terms:

Lemma 3.7 (Estimate of gradient terms).
We have the estimate

gzi(}ﬁ)f@k.

Proof. We define for k > 1 the nonnegative real numbers «y by

k—1
o = ——.
P ok
By direct computation one verifies the identity
1
l—ap1=—
kol 4oy,

for k > 2. Using the identity Hy, ., = —(Dx, log pg,Vk+1), we obtain
(Dsy,, log p., Dy, wi)
=(Ds, log py, Dy, (log p. — log p—1))
1
=(1 — a3)| Ds;, log p|* — —|Dx, log pg—1?
4oy
2

1
+ ay, | Dy, log pi, — 2—Dzk log pr.—1
o

=(1 — ) HE,,, + (1 — ax) [Ds,., log pif* = (1 — 1) | Dy, og i1 |
2

1
5—Ds, log pr—1

Dy, 1 —
+ ag |Dy, log pk o
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for 2 < k < m — 1. Summation over k from 2 to m — 1 yields the formula

—_
,_.

3

m—

(Ds, log pi, Dy wy) > Y (1= ag) Hy, | + (1= 1) | Dy, 108 prm—1|* — | Ds;, log p1 |*
2 k=2

e
[|

Moreover, the identity Hy, = —(Dsy, log p1,v2) implies
(Ds, log p1, Ds,w1) = | Dy, log p1|* = H$, + | D, log p1]*.

Adding the two inequalities gives

m—1 m—1
> (Ds,log pi, Dzwe) > Y (1 —ap) H,, + (1= am-1) |Ds,, 10g pm—1/*.
k=1 k=1
0
In the next step we rewrite the intrinsic curvature terms with the help of the Gauss equations:
Lemma 3.8 (Iterated Gauss equations).
The curvature term R is given by
m—1 m n
R =Cnler,...,em)+ Z (hsy (epy ep)hs, (€g: €q) — hsy (eps€q)?) s
k=1 p=k+1q=p+1
where Cy, denotes the m-intermediate curvature of the Riemannian manifold (N™,g).
Proof. Fix a point « € ¥,, and consider an orthornomal basis {e1,...,e,} of T, N with e; = v; for

1 < 5 <m as above. We observe by the definition of the Ricci curvature on the slice 31, and by
the Gauss equations the formula

RiCEpA (VIN Vp) RICEp 1 (epv ep Z RmEp 1 (epv €q)Cps 6q)
q=p+1
n n
Z Rmy (ep, €q, €p, €9) + Z Z (hﬁk(e:m ep)hy, (€q: €q) — hx, (ep, eq)2) :
q=p+1 g=p+1k=1

Summation over p from 1 to m then implies

I
NE

R Rics, , (Vp, p)
p=1
m m n
_ 2
—Z Z Rmy (ep, eq; €p, €4) +Z Z Z hEk ep, ep)hs, (€q, €q) — hEk(epveq))
p=1 gq=p+1 p=1qg=p+1 k=1

=Cml(e1,...,em) + Z Z Z (b, (eps ep)hs, (€q: €q) — by (e, €q)?) -

p=1q=p+1 k=1

If we interchange the order of summation, the assertion follows. O
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Remark 3.9 (Observation on full slicing).
In the special case m = n — 1 the curvature term R can be rewritten as

n—2 n—1 n

R = Cn_l(el, ce en_l) + Z Z Z (hzk (ep, ep)th(eq, eq) — hzk(e]u7 eq)2)
k=1 p=k+1q=p+1

n—2

1 1
=5 Ryt > (B, - s, ]?).
k=1

CJ. emar . ). ote a e mean curvature o e top siice 1 vanisnes, an a =

R k 1.2 (iv)). Note that th t the top slice ¥ shes, and that HE
> stncee 2up—1 1S one-armenstonat. erejore, jor m = n — we ootarn

hy, |2 since Sp_q i di jonal. Th 1 btai

n—1 n—1
1 1 1
= S s P =5 ) H
R+E+G 2RN+2k:1!zk\ 3 2 SRR

>1g +17§|h |2+n§_:1 L w2
S N T R T L 1)

In the last step we have used the estimate for the gradient terms G from Lemma 8.7. Hence, we
recover a similar result as in the computation of R. Schoen and S.-T. Yau [11].

In the next step we need to analyze the contributions coming from the extrinsic curvature. We fix

m € {2,...,n — 1}, and we define for 1 < k < m the extrinsic curvature terms Vj:
m n
Vi :|hEl|2 + Z Z (hEl(epaep)h&(eq’eq) - h21(epaeq)2) )
p=2q=p+1

1 1
Vi thzk\Q - <§ - m) H%k

+ Z Z (s (eps ep)hsy (eq, €q) — hEk(epaeq)z) for2 <k <m—1,
p=k+1 g=p+1

1 1
_ 2_(Z_ I 2

By combining Lemma 3.7, with Lemma 3.8, and the above expressions V}, for the extrinsic curvature
terms, we obtain:

Lemma 3.10.
For 2 <m <n—1 we have the pointwise estimate

R+E+G>Crler,.. em)+ > Vi

In the following lemmata we estimate the extrinsic curvature terms V. The estimate for V), follows
from the trace estimate for symmetric two-tensors. The estimate for V; uses minimality of the top
slice ¥1. The estimate for V}, with 2 < k <m — 1 is the most involved.
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Lemma 3.11 (Extrinsic curvature terms on top slice).
For 2 <m <n—1 we have the estimate

2

m? —2—n
Vi > 5 —m Zhgl €p, €p)

Proof. To estimate the term V;, we begin by discarding the off-diagonal terms of the second funda-
mental form hy, :

Vi :|h21|2 + Z Z (h21(epaep)h21(eqveq) - h21(ermeq)2)

p=2gq=p+1
>§ :hﬁl ep’ep 2+ E : E h21 €p, €Ep h21(eqaeq)
p=2q=p+1

The terms on the right hand side can be rewritten as follows:

2
1 m
Vi 2 §Zh21(€pvep Z hy, (€q: €q) +Zh21 ep; €p) Hyy — thl €p; €p)
p=2 g=m+1 p=2
Recall that Hy,, = 0. By the Cauchy-Schwarz inequality,
2
m m
Z hs, (ep, ep)2 2 Z hs, (ep, ep)
p=2 p=2
and
2 2
2
Z hs, (eg,€9)” > Z hs, (eq; €q) = thl(ep’ep) )
n—m n—m
qg=m+1 qg=m+1 p=2

where in the last step we have used the fact that Hy,, = 0. Putting these facts together, the assertion
follows. O

Lemma 3.12 (Extrinsic curvature terms on intermediate slices).
For2<m<n-—1and2 <k <m—1 we have the estimate

2

2_ o . n
m* —2—n(m—2) Z hs, (€q, ¢0)

Vi 2(m —1)(n —m) Bt

Y

Proof. To estimate the term Vi, we start by discarding the off-diagonal terms:

1 1 m n
Vi :|h2k|2 - <§ - m) H%k + Z Z (hEk(epa ep)hEk (eq, eq) - hEk (ep, eq)2)
p=k+1g=p+1

> Z hzk(ep,ep)2 - <§ - m) H%k + Z Z hsy (ep, ep)his, (€4, €q)-

p=k+1 p=k+1 q=p+1
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The terms on the right hand side can be rewritten as follows:

1 & g
Vi 25 Z hsy (epy ep)? + Z hsy (eq:€q)”
p=k+1 g=m+1
2 2

1 n 1 1 n
+ 72(]{7 Y Z hEk(epaep) - <§ - m) Z hzk(eq,eq)

p=k+1 q=m+1

1 m n
R— > hs(epep) > hylegeq)

p=k+1 g=m+1

The Cauchy—Schwarz inequality gives

m 1 m
Z hzk(ep’ep)22 Z hy, (ep, €p

m —
p:k+1 p:k-i—l

o

and

n 1 n
2
Z s, (eq.€q)" > n_m E by, (eq: €q
q:m—‘,—l q:m+1

2
))
2
)
Moreover, Young’s inequality implies
2

> hs(epep) > hulegeq) E—W > hxlepep)

p=k+1 g=m+1 p=k+1
2

m—k -
- hz €q, €
2(m_1) qzzrn:-i_l k( q q)

Putting these facts together, the assertion follows.

Lemma 3.13 (Extrinsic curvature terms on bottom slice).
For 2 <m <n—1 we have the estimate

m?—-2-n(m-2) ,

® Vi 2 2n—m)(m —1) =

Proof. We observe by the the trace estimate for symmetric two-tensors the inequality

1 1 1 1 1
_ 2 _ (2 __+ 2 > s~ :
o=t (3 5 77) 7 2 (25 - (- 3 ) ) e

- m?P-2-n(m-2) ,
T 2n—m)(m—1) E

With the above observations we prove our first theorem:
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Proof of Theorem 1.4. Assume that 1 <m <n —1 and n(m —2) < m? — 2. Suppose that (N", g)
is a closed and orientable Riemannian manifold which admits a stable weighted slicing

Ym CXm_1 C - C2q CE():NH.
If m = 1, the stability inequality implies that (N™, g) cannot have positive Ricci curvature. Hence,
it remains to consider the case when 2 < m <n —1and n(m —2) < m? — 2. In this case, it follows

from Lemma 3.11, Lemma 3.12, and Lemma 3.13 that Vi > 0 for all 1 < k < m. Using Lemma
3.10, we obtain the pointwise inequality

R4+E+G>Cnler,...,em).

If C(e,...,en) is strictly positive, this contradicts our main inequality, Lemma 3.4. Therefore,
the Riemannian manifold (N™, g) cannot have positive m-intermediate curvature. O

4. EXISTENCE OF STABLE WEIGHTED SLICINGS

In this section we prove existence of stable weighted slicings of order m. The argument uses the
mapping degree and is essentially contained in Theorem 4.5 of [11]|. Alternatively, one could also
use an argument based on homology, compare with Theorem 4.6 in [11].

Proof of Theorem 1.5. Suppose N™ and M"™~ ™ are closed and orientable manifolds, and suppose
F:N" —T"™x M™ ™ is a map of degree d # 0. The projection of F' onto the factors yields maps
fo: N — M and maps fi,...,fm : N = S'. Let © be a top-dimensional form of the manifold
M normalized such that fM © = 1, and let A be a one-form on the circle S' with fSl 0 =1. We
define the pull-back forms (2 := f7© and w; := f76. By the normalization condition we deduce

that [ywi A Awn AQ=d.

We claim that one can construct closed and orientable slices Xj and weights pg such that fEk W41 A
- Awm AQ = d. We prove the claim by induction. The base case k = 0 holds by the previous
observation and by setting Yo := N and pg := 1. For the induction step we suppose that we have
constructed the slice ¥;_1 and the weight pr_1, such that fzk—l W Ao Awm AQ =d.

We define a class Ay by

A = {E is an (n — k) — integer rectifiable current in X with /
)

wk+1/\---/\wm/\Q:d}.

The first step is to show that the class Ay is non-empty. To prove this, let us fix a regular value
pr € St of the map frls,_y @ Zpm1 — S!. The existence of a regular value follows from Sard’s
Theorem.

On the complement S'\{p;} the one-form 6 is exact. In other words, there exists a smooth function
Yr : S"'\{px} — R, such that di), = 6. Moreover, due to the normalization condition Jo1 0 =1, the
function vy jumps by 1 at py.

We next consider the pre-image ¥, = {z € k-1 fr(xz) = pi}. Since py € St is a regular value of
the map fi|s, , : Zp—1 — S!, it follows that X is a closed and orientable submanifold of ¥j_;. We

define a function ¢y : Ek_l\i]k — R by setting ¢y := ¥ o fi. Si~nce the pull-back commutes with
the differential, we deduce dyy, = f} (dyn) = f; 0 = wi, on Lp_1\Zy.

The above observation (and the closedness of the forms wg, ..., wn,, ) implies

(3) W AWgr1 A+ Awm AQ = d(pg w1 A+ Awp A ).
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We first consider the case when ¥y is empty. Integrating the identity (3) over Xj_1 gives
d:/ wk/\wk+1/\---/\wm/\§2:/ d(pgpwir1 A - Awm AQ) = 0.
Yk_1 Yk

This is a contradiction.

It remains to consider the case when %, is non-empty. In this case 3 is a smooth, orientable and
embedded hypersurface in 3j_1. We integrate identity (3) over ¥j_1 \ Yi. By Stokes theorem, the
integral of the right hand side yields two boundary integrals over . Since the function ¢, jumps
by 1 along ¥, we obtain

d:/ i kawk+1A---AwmAQ:/ A w1 A Awm A Q)
Sr_1\Zk Br-1\Zg

::|:/~ W1 A Awm A Q,
Xk

where the sign depends on the choice of orientation of Yk. Therefore, we can make a choice of
orientation so that Y belongs to the class Aj. In particular, the class Ay is non-empty.

We consider the variational problem
o) = inf {Mpk,l,n—k(z) HDINS .Ak} ,

where M, | »— denotes the pj_1-weighted mass functional on (n—k)-integer rectifiable currents. By
the compactness theory for integer rectifiable currents, compare for example Theorem 7.5.3 in [14],
we deduce that there exists an (n—k)-integer rectifiable current ¥ ; with mass M, | ,—x(Xx) = op.

By the regularity theory for integer rectifiable currents, compare for example Theorem 7.5.8 in [14]
or the survey [4], and the dimension bound n < 7 we deduce that ¥, is a smooth and orientable (and
hence two-sided) hypersurface. Moreover, the smooth surface ¥y, is stable with respect to variations
of the weighted area, and therefore we can find a positive first eigenfunction v, of the weighted
stability operator. Defining the weight pr by the formula pr = pr_1 - v completes the induction
step. ]
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