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1. The Isoperimetric Inequality and the Sobolev

Inequality
The isoperimetric problem is one of the oldest and most
famous problems in geometry. Its origins date back to the
legend of Queen Dido founding the City of Carthage, as
told in Virgil’s Aeneid.

In two dimensions, the isoperimetric inequality asserts
that a disk has the smallest boundary length among all
domains in the plane with a given area.

Theorem 1 (Isoperimetric inequality in the plane). Let �
be a compact domain in ℝ2 with smooth boundary. Then|��| ≥ 2� 12 |�| 12 .

Here, |�| denotes the area of � and |��| denotes the
length of the boundary ��. Note that disks achieve equal-
ity in the isoperimetric inequality. Indeed, if � is a closed
disk of radius � in the plane, then |�| = ��2 and |��| = 2��.

Theorem 1 is a special case of a more general inequality
which holds in arbitrary dimension.

Theorem 2 (Isoperimetric inequality in ℝ�). Let � be a
compact domain in ℝ� with smooth boundary. Then|��| ≥ �|��1 | 1� |�| �−1� .

Here, |�| denotes the volume of � and |��| denotes the(� − 1)-dimensional measure of the boundary ��. More-
over, ��1 = {ý ∈ ℝ� ∶ |ý| < 1} denotes the open unit ball
in ℝ� and |��1 | denotes its volume.

The isoperimetric inequality is sharp on balls. To see
this, recall that the volume and boundary area of the unit
ball in ℝ� are related by |���1 | = �|��1 |. Hence, if � is
a closed ball of radius �, then |�| = |��1 |�� and |��| =|���1 |��−1 = �|��1 |��−1.

Another important inequality related to the isoperimet-
ric inequality is the sharp version of the Sobolev inequal-
ity.
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Theorem 3 (Sobolev inequality on ℝ�). Let � be a smooth
function on ℝ� with compact support. Then

∫ℝ� |∇�| ≥ �|��1 | 1� (∫ℝ� |�| ��−1 ) �−1� .
The Sobolev inequality plays a fundamental role in the

modern theory of partial differential equations. For a func-
tion de昀椀ned on a ball, we have the following variant of the
Sobolev inequality.

Theorem 4 (Sobolev inequality on a ball). Let � be a posi-
tive smooth function on the closed unit ball ̄��1 . Then∫��1 |∇�| +∫���1 � ≥ �|��1 | 1� (∫��1 � ��−1 ) �−1� .

Note that Theorem 4 implies the Sobolev inequality onℝ� (Theorem 3). To see this, we assume that � is a smooth
function on ℝ� with compact support. After a suitable
rescaling, we may assume that the support of � is con-
tained in the open unit ball ��1 . We then apply Theorem 4
to the function √�−2 + �2 and send � → ∞.

Moreover, Theorem 3 implies the isoperimetric inequal-
ity (Theorem 2). To see this, we assume that � is a compact
domain in ℝ� with smooth boundary. We then approxi-
mate the indicator function of � by a sequence of nonneg-
ative smooth functions with compact support. To explain
this, we 昀椀x a smooth cutoff function � ∶ [0,∞) → [0,∞)
such that �(�) = 1 for � ∈ [0, 1], �′(�) ≤ 0 for � ∈ [1, 2],
and �(�) = 0 for � ∈ [2,∞). For each positive integer �, we
de昀椀ne ��(ý) = �(� dist(ý, �)). If � is suf昀椀ciently large, then�� is a nonnegative smooth function on ℝ�. Moreover,∫ℝ� � ��−1� → |�|,
while ∫ℝ� |∇��| → |��|
as � → ∞. Theorem 3 then implies |��| ≥ �|��1 ||�| �−1� .

In Sections 2 and 3we present several different proofs of
Theorem 4. In Section 2, we sketch how Theorem 4 can be
proven using measure transportation. This strategy is due
to Gromov and can be implemented in two ways. Gro-
mov’s original approach uses the Knothe rearrangement.
An alternative approach, due to McCann and Trudinger,
is based on the Monge-Ampère equation. In Section 3,
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we discuss a proof of Theorem 4 due to Cabré that uses
linear partial differential equations and the Alexandrov-
Bakelman-Pucci method.

2. Proof of Theorem 4 Using Measure
Transportation

In this section, we present the measure transportation ap-
proach to Theorem4. By scaling, one can reduce to the spe-

cial case where ∫��1 � ��−1 = |��1 |. The 昀椀rst step of the proof
involves constructing a smooth map Φ from the open unit
ball ��1 into itself with the following properties:

(i) For each point ý ∈ ��1 , the eigenvalues of the differen-
tial �Φ(ý) are nonnegative real numbers.

(ii) For each point ý ∈ ��1 , the determinant det�Φ(ý)
equals �(ý) ��−1 .

Suppose that Φ is a map with these properties. We may
view Φ as a vector 昀椀eld de昀椀ned on ��1 . Since the eigenval-
ues of the differential �Φ are nonnegative real numbers,
their geometricmean can be estimated from above by their
arithmetic mean. This gives�� 1�−1 = �(det �Φ) 1� ≤ tr(�Φ) = divΦ
at each point in ��1 . Since Φ takes values in the unit ball,
we know that −⟨∇�,Φ⟩ ≤ |∇�| at each point in ��1 . Conse-
quently,�� ��−1 ≤ � divΦ = div(�Φ) − ⟨∇�,Φ⟩ ≤ div(�Φ) + |∇�|
at each point in ��1 . In the next step, we integrate over the
ball ��� = {ý ∈ ℝ� ∶ |ý| < �}, where 0 < � < 1. Using the
divergence theorem, we conclude that�∫��� � ��−1 ≤ ∫��� div(�Φ) +∫��� |∇�|= ∫���� �⟨Φ, ý� ⟩ +∫��� |∇�|
for each 0 < � < 1. On the other hand, using again the fact
that Φmaps into the unit ball, we obtain ⟨Φ(ý), �� ⟩ ≤ 1 for
each 0 < � < 1 and each point ý ∈ ���� . This implies�∫��� � ��−1 ≤ ∫���� � +∫��� |∇�|
for each 0 < � < 1. Sending � → 1, one obtains�∫��1 � ��−1 ≤ ∫���1 � +∫��1 |∇�|.
Using the normalization ∫��1 � ��−1 = |��1 |, it follows that

�|��1 | 1� (∫��1 � ��−1 ) �−1� ≤ ∫���1 � +∫��1 |∇�|,
as desired.

It remains to construct a map Φ that satis昀椀es the condi-
tions (i) and (ii) above. Gromov’s proof in [19] is based
on the Knothe rearrangement [16]. This construction gives
a smooth map Φ from the open unit ball ��1 to itself with
the following properties:• For each point ý ∈ ��1 , the differential �Φ(ý) is a tri-

angular matrix and the diagonal entries of �Φ(ý) are
nonnegative.• For each point ý ∈ ��1 , the determinant det�Φ(ý)
equals �(ý) ��−1 .

Clearly, the Knothe map Φ satis昀椀es the conditions (i) and
(ii) above.

Let us sketch the construction of the Knothe map. For
simplicity, we consider the special case � = 2. The
Knothe map Φ ∶ �21 → �21 has the form Φ(ý1, ý2) =(�1(ý1), �2(ý1, ý2)) for (ý1, ý2) ∈ �21 . The function �1 maps
the interval (−1, 1) to itself and satis昀椀es∫{(�1,�2)∈�21∶�1≤�1} �2∫�21 �2 = |{(ā1, ā2) ∈ �21 ∶ ā1 ≤ �1(�1)}||�21 |
for each �1 ∈ (−1, 1). For each �1 ∈ (−1, 1), the functioný2 ↦ �2(�1, ý2) maps the interval (−√1 − �21,√1 − �21) to
the interval (−√1 − �1(�1)2, √1 − �1(�1)2) and satis昀椀es∫{(�1,�2)∈�21∶�1=�1,�2≤�2} �2∫{(�1,�2)∈�21∶�1=�1} �2= |{(ā1, ā2) ∈ �21 ∶ ā1 = �1(�1), ā2 ≤ �2(�1, �2)}||{(ā1, ā2) ∈ �21 ∶ ā1 = �1(�1)}|
for each �2 ∈ (−√1 − �21,√1 − �21).

We next describe an alternative approach, due to Mc-
Cann and Trudinger, which is based on a different choice
of the map Φ. The key step in this approach is to solve a
suitable boundary value problem for the Monge-Ampère
equation. It was shown by Caffarelli [8] and Urbas [20]
that there exists a convex function � ∶ ̄��1 → ℝ with the
following properties:• The function � is smooth and solves the Monge-

Ampère equationdet�2� = � ��−1
at each point in ̄��1 .• The gradient map ý ↦ ∇�(ý)
maps ̄��1 to itself.

We now de昀椀ne Φ to be the gradient map of �, so thatΦ(ý) = ∇�(ý) for each ý ∈ ��1 . At each point ý ∈ ��1 ,
the differential �Φ(ý) is a symmetric matrix with nonneg-
ative eigenvalues, and the determinant det�Φ(ý) equals
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�(ý) ��−1 . Therefore, the gradient map Φ satis昀椀es the condi-
tions (i) and (ii) above.

Remark 5. The solution of the Monge-Ampère equation
has a natural interpretation in terms of optimal mass trans-
port (see [5], [17]). To explain this, let � denote the solu-
tion of the Monge-Ampère equation described above. Letÿ denote the measure on ̄��1 which has density � ��−1 with
respect to the Lebesguemeasure. Let Ā denote the Lebesgue
measure on ̄��1 . Note that ÿ( ̄��1 ) = Ā( ̄��1 ) in view of our
normalization. We then consider the problem of minimiz-
ing the transport cost12 ∫̄��1 ×�̄�1 |ý − ā|2 ��(ý, ā)
over all measures � on ̄��1 × ̄��1 with the property that the
marginal distributions of � are given by ÿ and Ā. It is
known that there exists a measure � which minimizes the
transport cost. Moreover, the optimal measure � is sup-
ported on the graph {(ý, ∇�(ý)) ∈ ̄��1 × ̄��1 ∶ ý ∈ ̄��1 }.
3. Proof of Theorem 4 Using the

Alexandrov-Bakelman-Pucci Method
In this section, we describe a proof of Theorem 4 us-
ing the Alexandrov-Bakelman-Pucci technique. This tech-
nique plays a central role in the theory of partial differen-
tial equations, where it is used to prove a-priori estimates
for elliptic partial differential equations in nondivergence
form. Cabré [7] showed that the Alexandrov-Bakelman-
Pucci technique can be used to give an alternative proof of
the isoperimetric inequality. His argument can be adapted
to give a proof of the Sobolev inequality.

By scaling, one can reduce to the special case where∫��1 |∇�| + ∫���1 � = �∫��1 � ��−1 . This normalization en-

sures that one can 昀椀nd a function � ∶ ̄��1 → ℝ with the
following properties:• The function � is twice continuously differentiable

and solves the linear partial differential equation

div(�∇�) = �� ��−1 − |∇�|
at each point in ̄��1 .• The function � satis昀椀es the Neumann boundary con-
dition ⟨∇�(ý), ý⟩ = 1
at each point ý ∈ ���1 .

The existence and regularity of � follow from the standard
theory of linear elliptic partial differential equations of sec-
ond order.

Let Φ ∶ ��1 → ℝ� denote the gradient map of �, so thatΦ(ý) = ∇�(ý) for each ý ∈ ��1 . Let � denote the set of all
points ý ∈ ��1 with the property that |∇�(ý)| < 1 and the
Hessian �2�(ý) is weakly positive de昀椀nite.

Clearly, −⟨∇�,∇�⟩ ≤ |∇�| at each point in �. The par-
tial differential equation for � implies that�Δ� = div(�∇�) − ⟨∇�,∇�⟩ ≤ div(�∇�) + |∇�| = �� ��−1
at each point in �. Applying the arithmetic-geometric
mean inequality to the eigenvalues of theHessian of �, one
obtains 0 ≤ det�2� ≤ (Δ�� )� ≤ � ��−1
at each point in �. Using the change-of-variables formula,
one can estimate themeasure of the imageΦ(�). This gives|Φ(�)| ≤ ∫� | det �Φ| = ∫� | det �2�| ≤ ∫� � ��−1 ≤ ∫��1 � ��−1 .

(1)
On the other hand, it can be shown that the set Φ(�) con-
tains the open unit ball ��1 . To see this, suppose that a
point ā ∈ ��1 is given. It follows from the Neumann
boundary condition for � that the function ý ↦ �(ý) −⟨ý, ā⟩ attains its minimum at an interior point ý0 ∈ ��1 .
The 昀椀rst- and second-order conditions at the minimum
point imply that ∇�(ý0) = ā and the Hessian �2�(ý0) is
weakly positive de昀椀nite. Thus, ý0 ∈ � and Φ(ý0) = ā.

Since Φ(�) contains the open unit ball ��1 , we obtain|Φ(�)| ≥ |��1 |. (2)

Combining (1) and (2) gives∫��1 � ��−1 ≥ |��1 |.
In view of the normalization, it follows that

∫��1 |∇�| +∫���1 � = �∫��1 � ��−1 ≥ �|��1 | 1� (∫��1 � ��−1 ) �−1� .
This completes the proof of Theorem 4.

4. The Sobolev Inequality and the Isoperimetric
Inequality on a Hypersurface in ℝ�+1

We next discuss how the Sobolev inequality and the
isoperimetric inequality can be generalized to hypersur-
faces in ℝ�+1. It is particularly natural to study this ques-
tion for minimal hypersurfaces.

To explain the notion of a minimal hypersurface, we
昀椀rst recall the de昀椀nition of the mean curvature. Suppose
that Σ is a compact smooth hypersurface in ℝ�+1 (possi-
bly with boundary), and let � be a point on Σ. We may
locally write Σ as a level set �(ý1, … , ý�+1) = 0, where � is
a smooth function which is de昀椀ned on an open neighbor-
hood of � and satis昀椀es ∇� ≠ 0. The unit normal vector
昀椀eld to Σ is given by Ā = ∇�|∇�| . Moreover, the mean curva-

ture of Σ is given by� = Δ� − (�2�)(Ā, Ā)|∇�| = Δ�|∇�| − (�2�)(∇�,∇�)|∇�|3 .
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It turns out that this de昀椀nition depends only on the hy-
persurface Σ and the choice of orientation. It does not,
however, depend on the choice of the de昀椀ning function�.

The notion of mean curvature is closely related to the
formula for the 昀椀rst variation of area. To explain this, sup-
pose that � is a smooth vector 昀椀eld on ℝ�+1. If Σ has
non-empty boundary, we assume that the vector 昀椀eld �
vanishes along the boundary of Σ. We consider the de-
formed hypersurfaces Σ� = ��(Σ), where � is a small real
number and the maps �� ∶ ℝ�+1 → ℝ�+1 are de昀椀ned by��(ý) = ý + ��(ý) for ý ∈ ℝ�+1. In other words, we de-
form the hypersurface Σ with a velocity given by the vector
昀椀eld � . Since � vanishes along the boundary of Σ, this de-
formation leaves the boundary of Σ unchanged. With this
understood, the 昀椀rst order change in the area is given by��� |Σ�|||�=0 = ∫Σ�⟨�, Ā⟩,
where � denotes the mean curvature of Σ (see, e.g., [12],
Chapter 1, Section 1).

De昀椀nition 6. We say that Σ is a minimal hypersurface if
the mean curvature of Σ vanishes identically.

In particular, if Σ is a minimal hypersurface, then Σ is a
critical point of the area functional.

There are many examples of minimal surfaces in ℝ3.
The most basic ones are the plane, the catenoid{(ý1, ý2, ý3) ∈ ℝ3 ∶ ý21 + ý22 − cosh2(ý3) = 0},
and the helicoid{(ý1, ý2, ý3) ∈ ℝ3 ∶ ý1 sin(ý3) − ý2 cos(ý3) = 0}.

In 1921, Carleman [9] showed that the isoperimetric in-
equality holds for two-dimensional minimal surfaces inℝ3 that are diffeomorphic to a disk.

Theorem 7 (Isoperimetric inequality for minimal disks).
Let Σ be a compact two-dimensional minimal surface inℝ3 with
boundary �Σ. If Σ is diffeomorphic to a disk, then|�Σ| ≥ 2� 12 |Σ| 12 .

Note that this inequality is sharp. Carleman’s proof of
Theorem 7 uses techniques from complex analysis.

Theorem 7 raises the question whether the isoperimet-
ric inequality holds for minimal surfaces of arbitrary di-
mension and topology. In the 1970s, Allard [1] and
Michael and Simon [18] proved a general Sobolev inequal-
ity which holds for arbitrary hypersurfaces in Euclidean
space (and, more generally, for submanifolds of arbitrary
codimension). Their arguments are based on the mono-
tonicity formula in minimal surface theory together with
covering arguments. More recently, Castillon [10] gave an
alternative proof based on techniques from optimal trans-
port. However, these works do not give a sharp constant.

In 2019, the 昀椀rst-named author proved a sharp version of
the Michael-Simon-Sobolev inequality.

Theorem 8 (Sobolev inequality on a hypersurface). Let Σ
be a compact hypersurface in ℝ�+1 with boundary �Σ. Let � be
a positive smooth function on Σ. Then

∫Σ√|∇Σ�|2 + �2�2 +∫�Σ � ≥ �|��1 | 1� (∫Σ � ��−1 ) �−1� .
Here and below, ∇Σ� denotes the gradient of � along Σ.

In particular, if Σ is a minimal hypersurface, then the
mean curvature term vanishes and we can draw the follow-
ing conclusion.

Corollary 9 (Sobolev inequality on a minimal hypersur-
face). Let Σ be a compact minimal hypersurface in ℝ�+1 with
boundary �Σ. Let � be a positive smooth function on Σ. Then

∫Σ |∇Σ�| +∫�Σ � ≥ �|��1 | 1� (∫Σ � ��−1 ) �−1� .
Putting � = 1, we obtain the following result.

Corollary 10 (Isoperimetric inequality on a minimal hy-
persurface). Let Σ be a compact minimal hypersurface inℝ�+1
with boundary �Σ. Then|�Σ| ≥ �|��1 | 1� |Σ| �−1� .

Theorem 8 can be proven in two ways. The original
proof by the 昀椀rst-named author [3] uses the Alexandrov-
Bakelman-Pucci technique. This involves studying a Neu-
mann boundary value problem for a linear partial differ-
ential equation on Σ. The authors [4] recently gave an al-
ternative proof which uses optimal transport. In [4], only
the special case � = 1 is considered, but the proof can be
adapted so that it works for an arbitrary positive smooth
function �.

In the optimal transport approach, it is convenient to

normalize � such that ∫Σ � ��−1 = 1. Let ÿ denote the mea-

sure on Σ which has density � ��−1 with respect to the vol-
ume measure on Σ. Let � ∶ [0,∞) → (0,∞) be a contin-
uous function with the property that ∫�̄�+11 �(|ā|2) �ā = 1.
Let Ā denote the measure on the (� + 1)-dimensional unit
ball ̄��+11 which has density �(|ā|2) with respect to the(� + 1)-dimensional Lebesgue measure. By de昀椀nition, ÿ
is a probability measure on Σ and Ā is a probability mea-
sure on ̄��+11 .

The key idea is to consider the optimal transport prob-
lem between (Σ, ÿ) and ( ̄��+11 , Ā), with a quadratic cost
function. In other words, we minimize the transport cost12 ∫Σ×�̄�+11 |ý − ā|2 ��(ý, ā)
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over all measures � on Σ × ̄��+11 with the property that
the marginal distributions of � are given by ÿ and Ā. Note
that this is a transport problem between spaces of different
dimensions.

The solution of the optimal transport problem can be
described in terms of a function � ∶ Σ → ℝ. The func-
tion � is Lipschitz continuous with Lipschitz constant 1.
Moreover, � is the restriction to Σ of a convex function
on ℝ�+1. In particular, � is a semiconvex function on Σ.
A classical theorem of Alexandrov implies that � admits
昀椀rst and second derivatives at almost every point on Σ. We
next establish a pointwise inequality involving the Alexan-
drov Hessian of � and the second fundamental form of Σ
(compare [4], Proposition 9). This inequality can viewed
as the analogue of the Monge-Ampère equation in this set-
ting. Using the arithmetic-geometric mean inequality, we
obtain a pointwise inequality involving the Laplacian of �
and the mean curvature of Σ (compare [4], Corollary 10).
More precisely, we can show that the inequality��− 1�� ��−1 ≤ �ΔΣ� + ⟨∇Σ�,∇Σ�⟩ +√|∇Σ�|2 + �2�2 (3)

holds almost everywhere onΣ. Here,ΔΣ� denotes the trace
of the Alexandrov Hessian of �. Moreover, � is de昀椀ned by

� = sup�∈[0,1)∫√1−�2
−√1−�2 �(ÿ2 + þ2) �þ.

Note that � is a positive real number that depends on our
choice of the density �. Integrating the inequality (3) overΣ gives��− 1� ∫Σ � ��−1 ≤ ∫�Σ � +∫Σ√|∇Σ�|2 + �2�2.
Using the normalization ∫Σ � ��−1 = 1, it follows that
��− 1� (∫Σ � ��−1 ) �−1� ≤ ∫�Σ � +∫Σ√|∇Σ�|2 + �2�2. (4)

Finally, one needs to make a suitable choice of the den-
sity �. For each positive integer �, we de昀椀ne a continuous
density �� ∶ [0,∞) → (0,∞) by��(�) = 1��√max{1 − �, �−1}
for all � ≥ 0, where�� = ∫̄��+11

1√max{1 − |ā|2, �−1} �ā.
This choice of the constant �� ensures that∫�̄�+11 ��(|ā|2) �ā = 1. Note that

lim�→∞ �� = ∫��+11
1√1 − |ā|2 �ā = �|��1 |.

Moreover, if we put

�� = sup�∈[0,1)∫√1−�2
−√1−�2 ��(ÿ2 + þ2) �þ,

then

�� ≤ sup�∈[0,1)∫√1−�2
−√1−�2 1��√1 − ÿ2 − þ2 �þ = ���

for each �. Consequently,lim sup�→∞ �� ≤ 1|��1 | . (5)

Theorem 8 follows by combining (4) and (5).

5. Outlook: Isoperimetric Problems in
Riemannian Geometry and Mathematical
Relativity

There is an extensive literature concerning isoperimetric
problems in Riemannian manifolds; in particular, there
is a version of the isoperimetric inequality in hyperbolic
space and in the standard sphere (see, e.g., [6]). Gromov
proved an isoperimetric inequality which holds for every
Riemannian manifold with Ricci curvature bounded be-
low by a positive constant (see [14], Appendix C). Klartag
gave an alternative proof of Gromov’s isoperimetric in-
equality (see [15], Proposition 5.4). His approach uses
needle decompositions; to construct these, one considers
a solution of an optimal transport problem, where the
cost function is given by the Riemannian distance. Bray
[2] used isoperimetric surfaces to prove volume compari-
son theorems for three-dimensional manifolds with lower
bounds on the scalar curvature and the Ricci curvature.
Isoperimetric surfaces have also found important applica-
tions in mathematical general relativity, where they have
been shown to mediate between positive energy density
on small scales and positive mass at in昀椀nity in initial data
of the Einstein 昀椀eld equations that model an isolated grav-
itational system (see [2], [13], [11]).
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