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Existence and uniqueness
Weighted Sobolev spaces

1. Introduction and main results

1.1. Settings

Let T ∈ (−∞, ∞] and ΩT = (−∞, T ) × R
d
+ with Rd

+ = R
d−1 × R+ for d ∈ N and 

R+ = (0, ∞). We study the following degenerate parabolic equation in nondivergence 

form

{

L u = μ(xd)f in ΩT ,

u = 0 on (−∞, T ) × ∂R
d
+,

(1.1)

where u : ΩT → R is an unknown solution, f : ΩT → R is a given measurable forcing 

term, and

L u = a0(z)ut + λc0(z)u − μ(xd)aij(z)DiDju. (1.2)

Here in (1.2), λ ≥ 0 is a constant, z = (t, x) ∈ ΩT with x = (x′, xd) ∈ R
d−1 × R+, Di

denotes the partial derivative with respect to xi, and a0, c0 : ΩT → R and μ : R+ → R

are measurable and satisfy

a0(z), c0(z),
μ(xd)

xα
d

∈ [ν, ν−1], ∀ xd ∈ R+, ∀ z ∈ ΩT , (1.3)

for some given α ∈ (0, 2) and ν ∈ (0, 1). Moreover, (aij) : ΩT → R
d×d are measurable 

and satisfy the uniform ellipticity and boundedness conditions

ν|ξ|2 ≤ aij(z)ξiξj , |aij(z)| ≤ ν−1, ∀ z ∈ ΩT , (1.4)

for all ξ = (ξ1, ξ2, . . . , ξd) ∈ R
d.

We observe that due to (1.3) and (1.4), the diffusion coefficients in the PDE in (1.1)

are degenerate when xd → 0+, and singular when xd → ∞. We also note that the PDE 

in (1.1) can be written in the form

[a0(z)ut + λc0(z)u]/μ(xd) − aij(z)DiDju = f in ΩT ,

in which the singularity and degeneracy appear in the coefficients of the terms involving 

ut and u. In the special case when a0 = c0 = 1, μ(xd) = xα
d , and (aij) is an identity 

matrix, the equation (1.1) is reduced to
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{

ut + λu − xα
d Δu = xα

d f in ΩT ,

u = 0 on (−∞, T ) × ∂R
d
+,

(1.5)

in which the results obtained in this paper are still new.

The theme of this paper is to study the existence, uniqueness, and regularity estimates 

for solutions to (1.1). To demonstrate our results, let us state the following theorem 

which gives prototypical estimates of our results in a special weighted Lebesgue space 

Lp(ΩT , xγ
d dz) with the power weight xγ

d and norm

‖f‖Lp(ΩT ,xγ
d dz) =

⎛

⎝

ˆ

ΩT

|f(t, x)|pxγ
d dxdt

⎞

⎠

1/p

.

For any measurable function f and s ∈ R, we define the multiplicative operator 

(Msf)(·) = xs
df(·).

Theorem 1.1. Let α ∈ (0, 2), λ > 0, p ∈ (1, ∞), and γ ∈
(

p(α−1)+ −1, 2p −1
)

. Then, for 

every f ∈ Lp(ΩT , xγ
d dz), there exists a unique strong solution u to (1.5), which satisfies

‖M
−αut‖Lp

+ λ‖M
−αu‖Lp

+ ‖D2u‖Lp
≤ N‖f‖Lp

(1.6)

and additionally

λ1/2‖M
−α/2Du‖Lp

≤ N‖f‖Lp
if γ ∈ (αp/2 − 1, 2p − 1), (1.7)

where ‖ · ‖Lp
= ‖ · ‖Lp(ΩT ,xγ

d dz) and N = N(d, ν, α, γ, p) > 0. If d+2+γ+

p < 1, then the 

solution u is also in C(1+β)/2,1+β((−∞, T ) × R
d

+) with β = 1 − d+2+γ+

p .

See Corollary 2.3 and Theorem 4.1 for more general results. We note that the ranges 

of γ in (1.6)–(1.7) are optimal as pointed out in Remarks 2.5–2.7 below. In fact, in 

this paper, a much more general result in weighted mixed-norm spaces is established in 

Theorem 2.2. As an application, we obtain a regularity result for solutions to degenerate 

viscous Hamilton-Jacobi equations in Theorem 6.1. To the best of our knowledge, our 

main results (Theorems 1.1, 2.2, 4.1, Corollary 2.3, and Theorem 6.1) appear for the first 

time in the literature.

1.2. Relevant literature

The literature on regularity theory for solutions to degenerate elliptic and parabolic 

equations is extremely rich, and we only describe results related to (1.1).

The divergence form of (1.1) was studied by us in [15] with motivation from the 

regularity theory of solutions to degenerate viscous Hamilton-Jacobi equations of the 

form
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ut + λu − μ(xd)Δu = H(z, Du) in ΩT . (1.8)

Here, H : ΩT × R
d → R is a given Hamiltonian. Under some appropriate conditions 

on H, we obtain a regularity and solvability result for (1.8) in Theorem 6.1. Another 

class of divergence form equations, which is closely related to that in [15], was analyzed 

recently in [21] when α < 1. When α = 2 and d = 1, a specific version of (1.8) gives 

the well-known Black-Scholes-Merton PDE that appears in mathematical finance. The 

analysis for (1.1) when α ≥ 2 is completely open.

A similar equation to (1.1), (1.5), and (1.8)

ut + λu − βDdu − xdΔu = f in ΩT

with an additional structural condition β > 0, an important prototype equation in the 

study of porous media equations and parabolic Heston equation, was studied extensively 

in the literature (see [7,18,25,20,21] and the references therein). We stress that we do not 

require this structural condition in the analysis of (1.1) and (1.8), and thus, our analysis 

is rather different from those in [7,18,25].

We note that similar results on the wellposedness and regularity estimates in weighted 

Sobolev spaces for a different class of equations with singular-degenerate coefficients 

were established in a series of papers [11–14]. There, the weights of singular/degenerate 

coefficients of ut and D2u appear in a balanced way, which plays a crucial role in the 

analysis and functional space settings. If this balance is lost, then Harnack’s inequalities 

were proved in [4,5] to be false in certain cases. However, with an explicit weight xα
d

as in our setting, it is not known if some version of Harnack’s inequalities and Hölder 

estimates of the Krylov-Safonov type as in [29] still hold for in (1.1). Of course, (1.1)

does not have this balance structure, and our analysis is quite different from those in 

[11–14].

Finally, we emphasize again that the literature on equations with singular-degenerate 

coefficients is vast. Below, let us give some references on other closely related results. 

The Hölder regularity for solutions to elliptic equations with singular and degenerate 

coefficients, which are in the A2-Muckenhoupt class, were proved in the classical papers 

[16,17]. See also the books [19,35], the papers [22,37,38], and the references therein for 

other results on the wellposedness, Hölder, and Schauder regularity estimates for various 

classes of degenerate equations. Note also that the Sobolev regularity theory version of 

the results in [16,17] was developed and proved in [3]. In an interesting paper [24], the 

author developed Sobolev regularity theory for a class of nondivergence form parabolic 

equations in C1 domains:

ut = ψαaijDiju + ψα−1biDiu + ψα−2cu + f,

where ψ is a “regularized” distance function to the boundary, α ∈ [0, ∞), and aij are 

uniformly elliptic and uniformly continuous. It is also assumed that the coefficients have 
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certain control near the boundary, in particular, bi(t, x), c(t, x) → 0 as ψ(x) → 0. In 

addition, we would like to point out that equations with degenerate coefficients also 

appear naturally in geometric analysis [32,39], in which Hölder and Schauder estimates 

for solutions were proved.

1.3. Main ideas and approaches

The main ideas of this paper are along the lines with those in [15]. However, at the 

technical level, the proofs of our main results are quite different from those in [15]. More 

precisely, instead of the L2-estimates as in [15], the starting point in this paper is the 

weighted Lp-result in Lemma 4.3 which is based on the weighted Lp for divergence form 

equations established in [15], an idea introduced by Krylov [27], together with a suitable 

scaling. Moreover, while the proofs in [15] use the Lebesgue measure as an underlying 

measure, in this paper we make use of more general underlying measure μ1(dz) = xγ1

d

with an appropriate parameter γ1. In particular, this allows us to obtain an optimal 

range of exponents for power weights in Corollary 2.3. See Remarks 2.5 - 2.7. Several 

new Hölder estimates for higher order derivatives of solutions to a class of degenerate 

homogeneous equations are proved in Subsections 4.2–4.3. The results and techniques 

developed in these subsections might be of independent interest.

Organization of the paper

The paper is organized as follows. In Section 2, we introduce various function spaces, 

assumptions, and then state our main results. The filtration of partitions, a quasi-metric, 

the weighted mixed-norm Fefferman-Stein theorem and Hardy-Littlewood theorem are 

recalled in Section 3. A weighted parabolic embedding result is also proved in this section. 

Then, in Section 4, we consider (1.1) in the case when the coefficients in (1.1) only depend 

on the xd variable. A special version of Theorem 2.2, Theorem 4.1, will be stated and 

proved in this section. The proofs of Theorem 2.2 and Corollary 2.3 are given in Section 5. 

Finally, we study the degenerate viscous Hamilton-Jacobi equation (1.8) in Section 6.

2. Function spaces, parabolic cylinders, and main results

2.1. Function spaces

Fix p, q ∈ [1, ∞), −∞ ≤ S < T ≤ +∞, and a domain D ⊂ R
d
+. Denote by Lp((S, T ) ×

D) the usual Lebesgue space consisting of measurable functions u on (S, T ) × D such 

that

‖u‖Lp((S,T )×D) =

⎛

⎜

⎝

ˆ

(S,T )×D

|u(t, x)|p dxdt

⎞

⎟

⎠

1/p

< ∞.
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For a given weight ω on (S, T ) ×D, let Lp((S, T ) ×D, ω) be the weighted Lebesgue space 

on (S, T ) × D equipped with the norm

‖u‖Lp((S,T )×D,ω) =

⎛

⎜

⎝

ˆ

(S,T )×D

|u(t, x)|pω(t, x) dxdt

⎞

⎟

⎠

1/p

< ∞.

For the weights ω0 = ω0(t), ω1 = ω1(x), and a measure σ on D, set ω(t, x) = ω0(t)ω1(x)

and define Lq,p((S, T ) × D, ωdσ) to be the weighted and mixed-norm Lebesgue space on 

(S, T ) × D equipped with the norm

‖u‖Lq,p((S,T )×D,ωdσ) =

⎛

⎜

⎝

T̂

S

⎛

⎝

ˆ

D

|u(t, x)|pω1(x) σ(dx)

⎞

⎠

q/p

ω0(t) dt

⎞

⎟

⎠

1/q

< ∞.

2.1.1. Function spaces for nondivergence form equations

Consider α > 0. We define the solution spaces as follows. Firstly, define

W 1,2
p ((S, T ) × D, ω) =

{

u : M
−αu, M

−αut, D2u ∈ Lp((S, T ) × D, ω)
}

,

where, for u ∈ W 1,2
p ((S, T ) × D, ω),

‖u‖W 1,2
p ((S,T )×D,ω)

= ‖M
−αu‖Lp((S,T )×D,ω) + ‖M

−αut‖Lp((S,T )×D,ω) + ‖D2u‖Lp((S,T )×D,ω)

and for s ∈ R the multiplicative operator Ms is defined as Msf(·) = xs
df(·).

Let W 1,2
p ((S, T ) ×D, ω) be the closure in W 1,2

p ((S, T ) ×D, ω) of all compactly supported 

functions in C∞((S, T ) × D) vanishing near D ∩ {xd = 0} if D ∩ {xd = 0} is not empty. 

The space W 1,2
p ((S, T ) × D, ω) is equipped with the same norm ‖ · ‖

W
1,2

p ((S,T )×D,ω) =

‖ · ‖W 1,2
p ((S,T )×D,ω). When there is no time dependence, we write these two spaces as 

W 2
p (D, ω) and W 2

p (D, ω), respectively.

Next, denote by

W 1,2
q,p ((S, T ) × D, ω dσ)

=
{

u : M
−αu, M

−αut, D2u ∈ Lq,p((S, T ) × D, ω dσ)
}

,

which is equipped with the norm

‖u‖W 1,2
q,p ((S,T )×D,ω dσ) = ‖M

−αu‖Lq,p((S,T )×D,ω dσ)

+ ‖M
−αut‖Lq,p((S,T )×D,ω dσ) + ‖D2u‖Lq,p((S,T )×D,ω dσ).
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Let W 1,2
q,p ((S, T ) × D, ω dσ) be the closure in W 1,2

q,p ((S, T ) × D, ωdσ) of all compactly 

supported functions in C∞((S, T ) × D) vanishing near D ∩ {xd = 0} if D ∩ {xd =

0} is not empty. The space W 1,2
q,p ((S, T ) × D, ω dσ) is equipped with the same norm 

‖ · ‖
W

1,2
q,p ((S,T )×D,ω dσ) = ‖ · ‖W 1,2

q,p ((S,T )×D,ω dσ).

2.1.2. Function spaces for divergence form equations

We also need function spaces for divergence form equations in this paper, which are 

taken from [15]. Set

W 1
p ((S, T ) × D, ω) =

{

u : M
−α/2u, Du ∈ Lp((S, T ) × D, ω)

}

,

which is equipped with the norm

‖u‖W 1
p ((S,T )×D,ω) = ‖M

−α/2u‖Lp((S,T )×D,ω) + ‖Du‖Lp((S,T )×D,ω).

We denote by W 1
p ((S, T ) × D, ω) the closure in W 1

p ((S, T ) × D, ω) of all compactly 

supported functions in C∞((S, T ) ×D) vanishing near D∩{xd = 0} if D∩{xd = 0} is not 

empty. The space W 1
p ((S, T ) ×D, ω) is equipped with the same norm ‖ ·‖W 1

p ((S,T )×D,ω) =

‖ · ‖W 1
p ((S,T )×D,ω).

Set

H
−1
p ((S, T ) × D, ω)

=
{

u : u = μ(xd)DiFi + f1 + f2, where M
1−αf1, M

−α/2f2 ∈ Lp((S, T ) × D, ω)

and F = (F1, . . . , Fd) ∈ Lp((S, T ) × D, ω)d
}

,

equipped with the norm

‖u‖
H

−1
p ((S,T )×D,ω)

= inf
{

‖F‖Lp((S,T )×D,ω) + ‖|M1−αf1| + |M−α/2f2|‖Lp((S,T )×D,ω) :

u = μ(xd)DiFi + f1 + f2

}

.

Define

H1
p((S, T ) × D, ω) =

{

u : u ∈ W
1

p ((S, T ) × D, ω)), ut ∈ H
−1
p ((S, T ) × D, ω)

}

,

where, for u ∈ H1
p((S, T ) × D, ω),

‖u‖H1
p((S,T )×D,ω) = ‖M

−α/2u‖Lp((S,T )×D,ω) + ‖Du‖Lp((S,T )×D,ω)

+ ‖ut‖H
−1
p ((S,T )×D,ω).
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2.2. Parabolic cylinders

We use the same setup as that in [15]. For x0 = (x′
0, x0d) ∈ R

d−1 × R+ and ρ > 0, 

denote by Bρ(x0) the usual ball with center x0 radius ρ in Rd, B′
ρ(x′

0) the ball center x′
0

radius ρ in Rd−1, and

B+
ρ (x0) = Bρ(x0) ∩ R

d
+.

We note that (1.1) is invariant under the scaling

(t, x) �→ (s2−αt, sx), s > 0. (2.1)

For xd ∼ x0d 
 1, aij = δij , and λ = f = 0, then (1.1) behaves like a heat equation

ut − xα
0dΔu = 0,

which can be reduced to the heat equation with unit heat constant under the scaling

(t, x) �→ (s2−αt, s1−α/2x
−α/2
0d x), s > 0.

It is thus natural to use the following parabolic cylinders in ΩT in this paper. For 

z0 = (t0, x0) ∈ (−∞, T ) × R
d
+ with x0 = (x′

0, x0d) ∈ R
d−1 × R+ and ρ > 0, set

Qρ(z0) = (t0 − ρ2−α, t0) × Br(ρ,x0d)(x0),

Q+
ρ (z0) = Qρ(z0) ∩ {xd > 0},

(2.2)

where

r(ρ, x0d) = max{ρ, x0d}α/2ρ1−α/2. (2.3)

Of course, Qρ(z0) = Q+
ρ (z0) ⊂ (−∞, T ) ×R

d
+ for ρ ∈ (0, x0d). For z′ = (t, x′) ∈ R ×R

d−1, 

we write

Q′
ρ(z′) = (t − ρ2−α, t0) × B′

ρ(x′).

Finally, when x0 = 0, t0 = 0, for simplicity of notation we drop x0, z0 and write Bρ =

Bρ(0), Qρ = Qρ(0), and Q+
ρ = Q+

ρ (0), etc.

2.3. Main results

Throughout the paper, for a locally integrable function f , a locally finite measure ω, 

and a domain Q ⊂ R
d+1, we write
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(f)Q =

 

Q

f(s, y) dyds, (f)Q,ω =
1

ω(Q)

ˆ

Q

f(s, y) ω(dyds). (2.4)

Also, for a number γ1 ∈ (−1, ∞) to be determined, we define

μ1(dz) = xγ1

d dxdt. (2.5)

We impose the following assumption on the partial mean oscillations of the coefficients 

(aij), a0, and c0.

Assumption 2.1 (ρ0, γ1, δ). For every ρ ∈ (0, ρ0) and z0 = (z′
0, z0d) ∈ ΩT , there exist 

[aij ]ρ,z′ , [a0]ρ,z′ , [c0]ρ,z′ : ((xd − r(ρ, xd))+, xd + r(ρ, xd)) → R such that (1.3)–(1.4) hold 

on ((xd − r(ρ, xd))+, xd + r(ρ, xd)) with [aij ]ρ,z′ , [a0]ρ,z′ , [c0]ρ,z′ in place of (aij), a0, c0, 

respectively, and

a#
ρ (z0) := max

1≤i,j≤d

 

Q+
ρ (z0)

|aij(z) − [aij ]ρ,z′(xd)| μ1(dz)

+

 

Q+
ρ (z)

|a0(z) − [a0]ρ,z′(xd)| μ1(dz)

+

 

Q+
ρ (z)

|c0(z) − [c0]ρ,z′(xd)| μ1(dz) < δ.

We note that the un-weighted partial mean oscillation was introduced in [23] to study 

a class of elliptic equations with uniformly elliptic and bounded coefficients (i.e., γ1 =

α = 0). Note also that by dividing the equation (1.1) by add and adjusting ν, we can 

assume without loss of generality throughout the paper that

add ≡ 1. (2.6)

The theorem below is the first main result of our paper, in which the definition of the 

Ap Muckenhoupt class of weights can be found in Definition 3.1 below.

Theorem 2.2. Let T ∈ (−∞, ∞], ν ∈ (0, 1), p, q, K ∈ (1, ∞), α ∈ (0, 2), and γ1 ∈ (β0 −
α, β0 −α+1] for β0 ∈ (α − 1, min{1, α}]. Then, there exist δ = δ(d, ν, p, q, K, α, β0, γ1) >

0 sufficiently small and λ0 = λ0(d, ν, p, q, K, α, β0, γ1) > 0 sufficiently large such that the 

following assertion holds. Suppose that (1.3), (1.4), and (2.6) are satisfied, ω0 ∈ Aq(R), 

ω1 ∈ Ap(Rd
+, xγ1

d dx) with

[ω0]Aq(R) ≤ K and [ω1]Ap(Rd
+,x

γ1
d dx) ≤ K.
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Suppose also that Assumption 2.1 (ρ0, γ1, δ) holds for some ρ0 > 0. Then, for any func-

tion f ∈ Lq,p(ΩT , x
p(α−β0)
d ω dμ1) and λ ≥ λ0ρ

−(2−α)
0 , there exists a strong solution 

u∈ W 1,2
q,p (ΩT , x

p(α−β0)
d ω dμ1) to the equation (1.1), which satisfies

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ‖M

−αu‖Lq,p
≤ N‖f‖Lq,p

, (2.7)

where ω(t, x) = ω0(t)ω1(x) for (t, x) ∈ ΩT , Lq,p = Lq,p(ΩT , x
p(α−β0)
d ω dμ1) with μ1

defined in (2.5), and N = N(d, ν, p, q, K, α, β0, γ1) > 0. Moreover, if β0 ∈ (α − 1, α/2], 

then it also holds that

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ‖M

−αu‖Lq,p
+ λ1/2‖M

−α/2Du‖Lq,p

≤ N‖f‖Lq,p
.

(2.8)

The following is an important corollary of Theorem 2.2 in which ω1 is a power weight 

of the xd variable and β0 and γ1 are specifically chosen.

Corollary 2.3. Let T ∈ (−∞, ∞], ν ∈ (0, 1), p, q ∈ (1, ∞), α ∈ (0, 2), and γ ∈ (p(α −
1)+ − 1, 2p − 1). Then, there exist δ = δ(d, ν, p, q, α, γ) > 0 sufficiently small and λ0 =

λ0(d, ν, p, q, α, γ) > 0 sufficiently large such that the following assertion holds. Suppose 

that (1.3), (1.4) hold and suppose also that Assumption 2.1 (ρ0, 1 − (α − 1)+, δ) holds 

for some ρ0 > 0. Then, for any f ∈ Lq,p(ΩT , xγ
ddz) and λ ≥ λ0ρ

−(2−α)
0 , there exists a 

strong solution u ∈ W 1,2
q,p (ΩT , xγ

d dz) to the equation (1.1), which satisfies

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ‖M

−αu‖Lq,p
≤ N‖f‖Lq,p

, (2.9)

where Lq,p = Lq,p(ΩT , xγ
ddz) and N = N(d, ν, p, q, α, γ) > 0. If Assumption 2.1 (ρ0, 1 −

α/2, δ) also holds and γ ∈ (αp/2 − 1, 2p − 1), then we have

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ‖M

−αu‖Lq,p
+ λ1/2‖M

−α/2Du‖Lq,p
≤ N‖f‖Lq,p

. (2.10)

Additionally, if d+γ+

p + 2
q < 1, then the solution u is also in C(1+β)/2,1+β((−∞, T ) ×R

d

+)

with β = 1 − d+γ+

p − 2
q .

Remark 2.4. By viewing solutions to elliptic equations as stationary solutions to 

parabolic equations, from Theorem 2.2 and Corollary 2.3, we derive the correspond-

ing results for elliptic equations. Also, by using a localization technique, similar results 

on local boundary W 1,2
q,p estimates as those in [11, Corollary 2.10] can be derived.

In the remarks below, we give examples showing that the ranges of γ in (1.6)–(1.7) as 

well as (2.9)–(2.10) are optimal. We note that the range of γ for the estimate of Du in 

(1.7), (2.8), and (2.10) is smaller than that for u, ut, D
2u in (1.6), (2.7), and (2.9). See 

Remark 2.6 below to see the necessity of such different ranges.
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Remark 2.5. When α ∈ (0, 1), the range (p(α − 1)+ − 1, 2p − 1) for the power γ in (1.6)

becomes (−1, 2p − 1), which agrees with the range in [26] for equations with uniformly 

elliptic and bounded coefficients. See also [13] and [34] in which a similar range of the 

power γ is also used in for a class of equations of extensional type. When α ∈ [1, 2), 

the lower bound p(α − 1)+ − 1 for γ in (1.6) is optimal. To see this, consider an explicit 

example when d = 1, λ > 0, T < ∞, and

u(t, x) =
(

x + cx3−α
)

ξ(x)eλt for (t, x) ∈ ΩT .

Here, ξ ∈ C∞([0, ∞), [0, ∞)) is a cutoff function such that ξ = 1 on [0, 1], ξ = 0 on 

[3, ∞), ‖ξ′‖L∞(R) ≤ 1, and

c =
2λ

(3 − α)(2 − α)
.

Set

f(t, x) = x−α(ut + λu) − uxx.

Then, u solves

ut + λu − xαuxx = xαf in ΩT

and it satisfies the boundary condition

u(t, 0) = 0 for t ∈ (−∞, T ).

Moreover, we see that M−αut, M
−αu ∈ Lp(ΩT , xγ) for γ > p(α − 1) − 1. We claim that

f ∈ Lp(ΩT , xp(α−1)−1) but M
−αut, M

−αu /∈ Lp(ΩT , xp(α−1)−1). (2.11)

To prove the claim (2.11), we note that

ˆ

ΩT

|x−αu|pxp(α−1)−1 dz =

ˆ

ΩT

|x−1u|px−1 dz

≥
1
ˆ

0

T̂

−∞

x−1epλt dtdx = N

1
ˆ

0

x−1 dx = ∞.

Thus, M−αut, M
−αu /∈ Lp(ΩT , xp(α−1)−1).

We next note that f(t, x) = 0 for (t, x) ∈ (−∞, T ] × [3, ∞), and

f(t, x) = 2cλx3−2αeλt for (t, x) ∈ (−∞, T ] × [0, 1].
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From this and

1
ˆ

0

T̂

0

|x3−2α|pxp(α−1)−1epλtdtdx = N

1
ˆ

0

xp(2−α)−1dx < ∞,

it follows that f ∈ Lp(ΩT , xp(α−1)−1) and (2.11) is verified.

Remark 2.6. When α ∈ (0, 2), the lower bound αp/2 −1 for γ in (1.7) is optimal. Indeed, 

consider the same example as that in Remark 2.5 above. It is clear that M
−α/2ux ∈

Lp(ΩT , xγ) for γ > αp/2 − 1. On the other hand, M−α/2ux /∈ Lp(ΩT , xαp/2−1) as

ˆ

ΩT

|x−α/2ux|pxαp/2−1 dz =

ˆ

ΩT

|ux|px−1 dz ≥
1
ˆ

0

T̂

−∞

x−1epλt dtdx = ∞.

Besides, f(t, x) = 0 for (t, x) ∈ (−∞, T ] × [3, ∞), and

f(t, x) = 2cλx3−2αeλt for (t, x) ∈ (−∞, T ] × [0, 1].

Hence, f ∈ Lp(ΩT , xαp/2−1) as

1
ˆ

0

T̂

0

|x3−2α|pxαp/2−1epλtdtdx = N

1
ˆ

0

xp(3−3α/2)−1dx < ∞.

Remark 2.7. We also have that the upper bound γ < 2p − 1 in (1.6)–(1.7) is optimal. 

Indeed, for γ = 2p − 1, the trace of W 2
p (D, x2p−1

d ) is not well defined. For simplicity, let 

d = 1, D = [0, 1/2], and consider

φ(x) = log(| log x|).

Then,

φxx =
1

x2

(

| log x|−1 − | log x|−2
)

.

It is clear that φ ∈ W 2
p ([0, 1/2], x2p−1), and φ is not finite at 0.

3. Preliminaries

3.1. A filtration of partitions and a quasi-metric

We recall the construction of a filtration of partitions {Cn}n∈Z (i.e., dyadic decom-

positions) of R × R
d
+ in [15], which satisfies the following three basic properties (see 

[28]):
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(i) The elements of partitions are “large” for big negative n’s and “small” for big 

positive n’s: for any f ∈ L1,loc,

inf
C∈Cn

|C| → ∞ as n → −∞, lim
n→∞

(f)Cn(z) = f(z) a.e.,

where Cn(z) ∈ Cn is such that z ∈ Cn(z).

(ii) The partitions are nested: for each n ∈ Z, and C ∈ Cn, there exists a unique 

C ′ ∈ Cn−1 such that C ⊂ C ′.

(iii) The following regularity property holds: For n, C, C ′ as in (ii), we have

|C ′| ≤ N0|C|,

where N0 > 0 is independent of n, C, and C ′.

For s ∈ R, denote by �s� the integer part of s. For a fixed α ∈ (0, 2) and n ∈ Z, let 

k0 = �−n/(2 − α)�. The partition Cn contains boundary cubes in the form

((j − 1)2−n, j2−n] × (i12k0 , (i1 + 1)2k0 ] × · · · × (id−12k0 , (id−1 + 1)2k0 ] × (0, 2k0 ],

where j, i1, . . . , id−1 ∈ Z, and interior cubes in the form

((j − 1)2−n, j2−n] × (i12k2 , (i1 + 1)2k2 ] × · · · × (id2k2 , (id + 1)2k2 ],

where j, i1, . . . , id ∈ Z and

id2k2 ∈ [2k1 , 2k1+1) for some integer k1 ≥ k0, k2 = �(−n + k1α)/2� − 1. (3.1)

It is clear that k2 increases with respect to k1 and decreases with respect to n. As 

k1 ≥ k0 > −n/(2 − α) − 1, we have (−n + k1α)/2 − 1 ≤ k1, which implies k2 ≤ k1 and 

(id + 1)2k2 ≤ 2k1+1. According to (3.1), we also have

(2k2/2k1)2 ∼ 2−n/(2k1)2−α,

which allows us to apply the interior estimates after a scaling.

The quasi-metric � : Ω∞ × Ω∞ → [0, ∞) is defined as

�((t, x), (s, y)) = |t − s|1/(2−α) + min
{

|x − y|, |x − y|2/(2−α) min{xd, yd}−α/(2−α)
}

.

There exists a constant K1 = K1(d, α) > 0 such that

�((t, x), (s, y)) ≤ K1

(

�((t, x), (t̂, x̂)) + �((t̂, x̂), (s, y))
)

for any (t, x), (s, y), (t̂, ̂x) ∈ Ω∞, and �((t, x), (s, y)) = 0 if and only if (t, x) = (s, y). 

Besides, the cylinder Q+
ρ (z0) defined in (2.2) is comparable to
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{(t, x) ∈ ΩT : t < t0, �((t, x), (t0, x0)) < ρ}.

Of course, (ΩT , �) equipped with the Lebesgue measure is a space of homogeneous type 

and we have the above dyadic decomposition.

3.2. Maximal functions and sharp functions

The dyadic maximal function and sharp function of a locally integrable function f

and a given weight ω in Ω∞ are defined as

Mdy,ωf(z) = sup
n<∞

1

ω(Cn(z))

ˆ

Cn(z)∈Cn

|f(s, y)|ω(s, y) dyds,

f#
dy,ω(z) = sup

n<∞

1

ω(Cn(z))

ˆ

Cn(z)∈Cn

|f(s, y) − (f)Cn(z),ω|ω(s, y) dyds.

Observe that the average notation in (2.4) is used in the above definition. Similarly, the 

maximal function and sharp function over cylinders are given by

Mωf(z) = sup
z∈Q+

ρ (z0), z0∈Ω∞

1

ω(Q+
ρ (z0))

ˆ

Q+
ρ (z0)

|f(s, y)|ω(s, y) dyds,

f#
ω (z) = sup

z∈Q+
ρ (z0), z0∈Ω∞

1

ω(Q+
ρ (z0))

ˆ

Q+
ρ (z0)

|f(s, y) − (f)Q+
ρ (z0)|ω(s, y) dyds.

We have, for any z ∈ Ω∞,

Mdy,ωf(z) ≤ NMωf(z) and f#
dy,ω(z) ≤ Nf#

ω (z),

where N = N(d, α) > 0.

We also recall the following definition of the Ap Muckenhoupt class of weights.

Definition 3.1. For each p ∈ (1, ∞) and for a nonnegative Borel measure σ on R
d, a 

locally integrable function ω : R
d → R+ is said to be in the Ap(Rd, σ) Muckenhoupt 

class of weights if and only if [ω]Ap(Rd,σ) < ∞, where

[ω]Ap(Rd,σ)

= sup
ρ>0, x=(x′,xd)∈Rd

[
 

Bρ(x)

ω(y) σ(dy)

][
 

Bρ(x)

ω(y)
1

1−p σ(dy)

]p−1

.
(3.2)

Similarly, the class of weights Ap(Rd
+, σ) can be defined in the same way in which the 

ball Bρ(x) in (3.2) is replaced with B+
ρ (x) for x ∈ Rd

+. For weights with respect to 
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the time variable, the definition is similar with the balls replaced with intervals (t0 −
ρ2−α, t0 + ρ2−α) and σ(dy) replaced with dt. If σ is a Lebesgue measure, we simply 

write Ap(Rd
+) = Ap(Rd

+, dx) and Ap(Rd) = Ap(Rd, dx). Note that if ω ∈ Ap(R), then 

ω̃ ∈ Ap(Rd) with [ω]Ap(R) = [ω̃]Ap(Rd), where ω̃(x) = ω(xd) for x = (x′, xd) ∈ R
d. 

Sometimes, if the context is clear, we neglect the spatial domain and only write ω ∈ Ap.

The following version of the weighted mixed-norm Fefferman-Stein theorem and 

Hardy-Littlewood maximal function theorem can be found in [10].

Theorem 3.2. Let p, q ∈ (1, ∞), γ1 ∈ (−1, ∞), K ≥ 1, and μ1(dz) = xγ1

d dxdt. Suppose 

that ω0 ∈ Aq(R) and ω1 ∈ Ap(Rd
+, xγ1

d dx) satisfy

[ω0]Aq
, [ω1]Ap(Rd

+,x
γ1
d dx) ≤ K.

Then, for any f ∈ Lq,p(ΩT , ω dμ1), we have

‖f‖Lq,p(ΩT ,ω dμ1)≤ N‖f#
dy,μ1

‖Lq,p(ΩT ,ω dμ1) ≤ N‖f#
μ1

‖Lq,p(ΩT ,ω dμ1),

‖Mμ1
(f)‖Lq,p(ΩT ,ω dμ1) ≤ N‖f‖Lq,p(ΩT ,ω dμ1),

where N = N(d, q, p, γ1, K) > 0 and ω(t, x) = ω0(t)ω1(x) for (t, x) ∈ ΩT .

3.3. Weighted parabolic Sobolev embeddings

We denote the standard parabolic cylinders by

Qρ(t, x) = (t − ρ2, t) × Bρ(x), Q+
ρ (t, x) = (t − ρ2, t) × B+

ρ (x).

When x = 0 and t = 0, we write Qρ = Qρ(0, 0) and Q+
ρ = Q+

ρ (0, 0). Recall that for 

γ ∈ R and p, q ∈ [1, ∞), we say u ∈ Lq,p(Q+
1 , xγ

ddz) if

‖u‖Lq,p(Q+
1 ,xγ

d dz) =

⎛

⎜

⎝

0
ˆ

−1

(

ˆ

B+
1

|u(t, x)|pxγ
d dx

)q/p

dt

⎞

⎟

⎠

1/q

< ∞.

We denote

W1,2
q,p (Q+

1 , xγ
ddz) =

{

u : ut, D2u ∈ Lq,p(Q+
1 , xγ

d) and u, Du ∈ L1,loc(Q+
1 )
}

.

We prove some weighted parabolic Morrey inequalities that are needed to prove 

C(1+β)/2,1+β-regularity of solutions. See [1, Lemma 4.66] and also [36, Theorem 5.3]

for similar results for the elliptic case. Let us recall that, for an open set Q ⊂ R
d+1,

‖u‖C(1+β)/2,1+β(Q) = ‖u‖L∞(Q) + ‖Du‖L∞(Q) + �u�C(1+β)/2,0(Q) + �Du�Cβ/2,β(Q).
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Here, �·�C(1+β)/2,0(Q), �·�Cβ/2,β(Q) are the usual Hölder-semi norms.

Proposition 3.3. Let γ∈ (−1, p − 1) and p, q ∈ [1, ∞) so that β = 1 − d+γ+

p − 2
q > 0. Also, 

let D be a non-empty open bounded set in Q+
1/2. Then, there is N = N(d, p, q, |D|, γ) > 0

so that the following assertion holds. If u ∈ W1,2
q,p (Q+

1 , xγ
ddz), then

‖Du‖L∞(Q+
1/2) ≤ N

[

‖Du‖L1(D) + ‖ut‖Lq,p(Q+
1 ,xγ

d dz) + ‖D2u‖Lq,p(Q+
1 ,xγ

d dz)

]

(3.3)

and

|Du(t, x) − Du(s, y)| ≤ Nrβ
[

‖ut‖Lq,p(Q+
1 ,xγ

d dz) + ‖D2u‖Lq,p(Q+
1 ,xγ

d dz)

]

, (3.4)

for every (t, x), (s, y) ∈ Q+
1/2 and for r = (|x − y|2 + |t − s|)1/2. Moreover, we have

|u(t, x) − u(s, x)| ≤ N |t − s|(1+β)/2
[

‖ut‖Lq,p(Q+
1 ,xγ

d dz) + ‖D2u‖Lq,p(Q+
1 ,xγ

d dz)

]

. (3.5)

Proof. We start with proving (3.4). Let us denote v = Diu with some fixed i = 1, 2, . . . , d. 

By the triangle inequality, we only need to prove the assertion with r = (|x − y|2 +

|t − s|)1/2 ∈ (0, 1/2) for (t, x), (s, y) ∈ Q+
1/2. Without loss of generality, we assume 

that s ≤ t. Let (t0, x0) = ((t + s)/2, (x + y)/2) + red/2, where ed = (0, · · · , 0, 1), and 

Q = Qr/2(t0, x0) ⊂ Q+
1 . Let ψ ∈ C∞

0 (Q) be a standard cut-off function satisfying

0 ≤ ψ ≤ 2, ‖Dψ‖L∞
≤ N

r
, and

 

Q

ψ(t, x) dtdx = 1. (3.6)

Then,

v(t, x) − v(s, y) =

 

Q

(

v(t, x) − v(s, y)
)

ψ(t̄, x̄) dt̄dx̄

=

 

Q

(

v(t, x) − v(t̄, x̄)
)

ψ(t̄, x̄) dt̄dx̄ +

 

Q

(

v(t̄, x̄) − v(s, y)
)

ψ(t̄, x̄) dt̄dx̄

=: I1 + I2. (3.7)

Next, we estimate the terms I1 and I2 on the right-hand side of (3.7). By the fundamental 

theorem of calculus, we have

v(t, x) − v(t̄, x̄) =

1
ˆ

0

[

2θvt((1 − θ2)t + θ2t̄, (1 − θ)x + θx̄)(t − t̄)

+ Dv((1 − θ2)t + θ2t̄, (1 − θ)x + θx̄) · (x − x̄)
]

dθ.
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Then, it follows from the Fubini theorem that

I1 :=

 

Q

(

v(t, x) − v(t̄, x̄)
)

ψ(t̄, x̄) dt̄dx̄

= Nr−(d+2)

1
ˆ

0

θ−1

⎛

⎝

ˆ

Q

(

2vt(τ, h)(t − τ) + Dv(τ, h) · (x − h)
)

ψ(t̄, x̄) dt̄dx̄

⎞

⎠ dθ,

where we denote

h = (1 − θ)x + θx̄ and τ = (1 − θ2)t + θ2t̄.

We observe that

vt(τ, h) = Diut(τ, h).

From this, (3.6), and by the change of variables t̄ �→ τ and x̄ �→ h, and the integration 

by parts for the term involving vt, we infer that

|I1| ≤ Nr−(d+1)

1
ˆ

0

θ−(d+2)
(

ˆ

Qθr/2((1−θ2)t+θ2t0,(1−θ)x+θx0)

(

|ut| + |D2u|
)

dτdh
)

dθ.

By the convexity of Q+
1 , it is easily seen that Qθr/2((1 −θ2)t +θ2t0, (1 −θ)x +θx0) ⊂ Q+

1 . 

It then follows from Hölder’s inequality that

|I1| ≤ Nr1−
d+γ+

p − 2
q

[

‖D2u‖Lq,p(Q+
1 ,xγ

d dz) + ‖ut‖Lq,p(Q+
1 ,xγ

d dz)

]

,

where N = N(d, p, q, γ) > 0, and we also used the fact that

⎛

⎜

⎝

ˆ

Bθr/2((1−θ)x+θx0)

|hd|−γ/(p−1) dh

⎞

⎟

⎠

1− 1
p

≤ N(θr)d−
d+γ+

p ,

for all x ∈ B1/2 and for all θ, r ∈ (0, 1). Similarly, we also have

|I2| ≤ Nr1−
d+γ+

p − 2
q

[

‖D2u‖Lq,p(Q+
1 ,xγ

d dz) + ‖ut‖Lq,p(Q+
1 ,xγ

d dz)

]

.

From the last two estimates, we infer from (3.7) that

|v(t, x) − v(s, y)| ≤ |I1| + |I2|

≤ Nr1−
d+γ+

p − 2
q

[

‖D2u‖Lq,p(Q1,xγ
d dz) + ‖ut‖Lq,p(Q1,xγ

d dz)

]

, (3.8)
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which gives (3.4) as v = Diu with i ∈ {1, 2, . . . , d}.

To prove (3.3), we note from (3.7) that

|v(t, x)| ≤ |v(s, y)| + N
[

‖D2u‖Lq,p(Q1,xγ
d dz) + ‖ut‖Lq,p(Q1,xγ

d dz)

]

,

for every (t, x), (s, y) ∈ Q+
1/2. Then, integrating this with respect to the (s, y) variable 

on D, we obtain (3.3).

Finally, by the triangle inequality,

|u(t, x) − u(s, x)|
≤ |u(t, x) − u(t, y) + Du(t, x) · (y − x)| + |u(s, x) − u(s, y) + Du(s, x) · (y − x)|

+ |u(t, y) − u(s, y)| + |Du(t, x) − Du(s, x)||y − x| =: J1 + J2 + J3 + J4, (3.9)

where y ∈ B+
(t−s)1/2(x). It follows from (3.4) that J1+J2+J4 is bounded by the right-hand 

side of (3.5). Moreover, by the fundamental theorem of calculus and Hölder’s inequality,

 

B+

(t−s)1/2 (x)

|u(t, y) − u(s, y)| dy ≤
t

ˆ

s

 

B+

(t−s)1/2 (x)

|ut(τ, y)| dydτ

≤ N(t − s)1− 1
q −

d+γ+
2p ‖ut‖Lq,p(Q+

1 ,xγ
d dz).

Taking the average of (3.9) with respect to y ∈ B+
(t−s)1/2(x) and using the above inequal-

ities, we reach (3.5). The lemma is proved. �

4. Equations with coefficients depending only on the xd variable

In this section, we consider (1.1) when the coefficients in (1.1) only depend on the xd

variable. Let us denote

L0u = ā0(xd)ut + λc̄0(xd)u − μ(xd)āij(xd)DiDju. (4.1)

where μ, ̄a0, ̄c0, ̄aij : R+ → R are given measurable functions and they satisfy (1.3)-(1.4). 

We consider

{

L0u = μ(xd)f in ΩT ,

u = 0 on (−∞, T ) × ∂R
d
+.

(4.2)

The main result of this section is the following theorem, which is a special case of 

Corollary 2.3.
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Theorem 4.1. Assume that ā0, ̄c0, (āij) satisfy (1.3)–(1.4) and assume further that f ∈
Lp(ΩT , xγ

d dz) for some given p > 1 and

γ ∈
(

p(α − 1)+ − 1, 2p − 1
)

.

Then, (4.2) admits a unique strong solution u ∈ W 1,2
p (ΩT , xγ

d dz). Moreover,

‖M
−αut‖Lp(ΩT ,xγ

d dz) + ‖D2u‖Lp(ΩT ,xγ
d dz)

+ λ‖M
−αu‖Lp(ΩT ,xγ

d dz) ≤ N‖f‖Lp(ΩT ,xγ
d dz); (4.3)

and if γ ∈ (αp/2 − 1, 2p − 1), we also have

λ1/2‖M
−α/2Du‖Lp(ΩT ,xγ

d dz) ≤ N‖f‖Lp(ΩT ,xγ
d dz), (4.4)

where N = N(d, ν, α, γ, p) > 0.

The proof of Theorem 4.1 requires various preliminary results and estimates. Our 

starting point is Lemma 4.3 below which gives Theorem 4.1 when γ is large. See Sub-

section 4.1 below. Then, in Subsections 4.2 and 4.3, we derive pointwise estimates for 

solutions to the corresponding homogeneous equations. Afterwards, we derive the oscil-

lation estimates for solutions in Subsection 4.4. The proof of Theorem 4.1 will be given 

in the last subsection, Subsection 4.5.

Before starting, let us point out several observations as well as recall several needed 

definitions. Note that by dividing the PDE in (4.2) by ā0 and then absorbing ādd into 

μ(xd), without loss of generality, we may assume that

ādd = 1 and ā0 = 1. (4.5)

Observe that (4.2) can be rewritten into a divergence form equation

ā0ut + λc̄0(xd)u − μ(xd)Di(ãij(xd)Dju) = μ(xd)f in ΩT , (4.6)

where

ãij =

⎧

⎪

⎨

⎪

⎩

āij + āji for i �= d and j = d;

0 for i = d and j �= d;

āij otherwise.

(4.7)

We note that even though (ãij) is not symmetric, it still satisfies the ellipticity condition 

(1.4) and also ãdd = 1 when (4.5) holds.

Due to the divergence form as in (4.6), we need the definition of its weak solutions. In 

fact, sometimes in this section, we consider the following class of equations in divergence 

form which are slightly more general than (4.6)



20 H. Dong et al. / Journal of Functional Analysis 286 (2024) 110374

ut + λc̄0(xd)u − μ(xd)Di(ãij(xd)Dju − Fi) = μ(xd)f in (S, T ) × D (4.8)

with the boundary condition

u = 0 on (S, T ) × (D ∩ {xd = 0})

for some open set D ⊂ R
d
+ and −∞ ≤ S < T ≤ ∞.

Definition 4.2. For a given weight ω defined on (S, T ) × D and for given F =

(F1, F2, . . . , F2) ∈ Lp,loc((S, T ) × D)d and f ∈ Lp,loc((S, T ) × D), we say that a function 

u ∈ H1
p((S, T ) × D, ω) is a weak solution of (4.8) if

ˆ

(S,T )×D

μ(xd)−1(−uϕt + λc0uϕ)dz +

ˆ

(S,T )×D

(ãijDju − Fi)Diϕdz

=

ˆ

(S,T )×D

f(z)ϕ(z)dz, ∀ ϕ ∈ C∞
0 ((S, T ) × D).

(4.9)

4.1. Lp strong solutions when the powers of weights are large

The following lemma is the main result of this subsection, which gives Theorem 4.1

when γ ∈ (p − 1, 2p − 1).

Lemma 4.3. Let ν ∈ (0, 1), λ > 0, α ∈ (0, 2), p ∈ (1, ∞), and γ ∈ (p − 1, 2p −
1). Assume that ā0, ̄c0, (āij), and μ satisfy the ellipticity and boundedness conditions 

(1.3)–(1.4). Then, for any f ∈ Lp(ΩT , xγ
d dz), there exists a unique strong solution 

u ∈ W 1,2
p (ΩT , xγ

d dz) to (4.2). Moreover, for every solution u ∈ W 1,2
p (ΩT , xγ

d dz) of (4.2)

with f ∈ Lp(ΩT , xγ
d dz), it holds that

λ‖M
−αu‖Lp(ΩT ,xγ

d dz) +
√

λ‖M
−α/2Du‖Lp(ΩT ,xγ

d dz)

+ ‖D2u‖Lp(ΩT ,xγ
d dz) + ‖M

−αut‖Lp(ΩT ,xγ
d dz) ≤ N‖f‖Lp(ΩT ,xγ

d dz), (4.10)

where N = N(d, α, ν, γ, p) > 0.

Proof. The key idea is to apply [15, Theorem 2.4] to the divergence form equation (4.6), 

and then use an idea introduced by Krylov in [27, Lemma 2.2] with a suitable scaling. 

To this end, we assume that (4.5) holds, and let us denote γ′ = γ − p ∈ (−1, p − 1) and 

we observe that

x1−α
d μ(xd)|f(z)| ∼ xd|f(z)| ∈ Lp(ΩT , xγ′

d dz).

As γ′ ∈ (−1, p − 1), we have xγ′

d ∈ Ap. Moreover, the equation (4.2) can be written in 

divergence form as (4.6). Therefore, we apply [15, Theorem 2.4] to (4.6) with f1 = μ(xd)f
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and f2 = 0 to yield the existence of a unique weak solution u ∈ H 1
p (ΩT , xγ′

d dz) of (4.6)

satisfying

‖Du‖
Lp(ΩT ,xγ′

d dz)
+

√
λ‖M

−α/2u‖
Lp(ΩT ,xγ′

d dz)

≤ N‖x1−α
d f1‖

Lp(ΩT ,xγ′

d dz)
= N‖f‖Lp(ΩT ,xγ

d dz), (4.11)

with N = N(d, ν, α, γ, p) > 0. We note here that because the coefficients c̄0, ̄aij only 

depend on xd, [15, Theorem 2.4] holds for any λ > 0 by a scaling argument. From (4.11), 

the zero boundary condition, and the weighted Hardy inequality (see [14, Lemma 3.1]

for example), we infer that

‖u‖Lp(ΩT ,xγ−2p
d dz) = ‖M

−1u‖
Lp(ΩT ,xγ′

d dz)
≤ N‖Du‖

Lp(ΩT ,xγ′

d )

≤ N‖f‖Lp(ΩT ,xγ
d ). (4.12)

It remains to prove that (4.10) holds as it also implies that u ∈ W 1,2
p (ΩT , xγ

d). We apply 

the idea introduced by Krylov in [27, Lemma 2.2] and combine it with a scaling argument 

to remove the degeneracy of the coefficients. See also [9, Theorem 3.5] and [13, Lemma 

4.6]. To this end, let us fix a standard non-negative cut-off function ζ ∈ C∞
0 ((1, 2)). For 

each r > 0, let ζr(s) = ζ(rs) for s ∈ R+. Note that with a suitable assumption on the 

integrability of a given function v : ΩT → R and for β ∈ R, by using the substitution 

rαt �→ s for the integration with respect to the time variable, and then using the Fubini 

theorem, we have

∞̂

0

⎛

⎜

⎝

ˆ

Ωr−αT

|ζr(xd)vr(z)|p dz

⎞

⎟

⎠
r−β−1 dr = N1

ˆ

ΩT

|v(z)|pxβ+α
d dz,

∞̂

0

⎛

⎜

⎝

ˆ

Ωr−αT

|ζ ′
r(xd)vr(z)|p dz

⎞

⎟

⎠
r−β−1 dr = N2

ˆ

ΩT

|v(z)|pxβ+α−p
d dz,

∞̂

0

⎛

⎜

⎝

ˆ

Ωr−αT

|ζ ′′
r (xd)vr(z)|p dz

⎞

⎟

⎠
r−β−1 dr = N3

ˆ

ΩT

|v(z)|pxβ+α−2p
d dz,

(4.13)

where vr(z) = v(rαt, x) for z = (t, x) ∈ Ωr−αT ,

N1 =

∞̂

0

|ζ(s)|ps−β−α−1ds, N2 =

∞̂

0

|ζ ′(s)|psp−β−α−1ds,

and
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N3 =

∞̂

0

|ζ ′′(s)|ps2p−β−α−1ds.

Next, for r > 0, we denote ur(z) = u(rαt, x),

âij(xd) = rαμ(xd)āij(xd), λ̄ = λrα, and fr(z) = rαμ(xd)f(rαt, x).

Note that ur solves the equation

∂tur + λ̄c̄0ur − âij(xd)DiDjur = fr in Ωr−αT .

Let w(z) = ζr(xd)ur(z), which satisfies

wt + λ̄c̄0(xd)w − âij(xd)DiDjw = ĝ in Ωr−αT (4.14)

with the boundary condition w(z′, 0) = 0 for z′ ∈ (−∞, r−αT ) × R
d−1, where

ĝ(z) = ζrfr(z) − âddζ ′′
r ur −

∑

i�=d

(

âid + âdi

)

ζ ′
rDiur.

We note that supp(w) ⊂ (−∞, r−αT ) × R
d−1 × (1/r, 2/r), and on this set the coefficient 

matrix (âij) is uniformly elliptic and bounded as rαμ(xd) ∼ 1 due to (1.3).

We now prove (4.10) with the extra assumption that u ∈ W 1,2
p (ΩT , xγ′

d dz). Under this 

assumption and as ζr is compactly supported in (0, ∞), we see that w ∈ W 1,2
p (Ωr−αT ), 

the usual parabolic Sobolev space. Then by applying the W 1,2
p -estimate for the uniformly 

elliptic and bounded coefficient equation (4.14) (see, for instance, [8]), we obtain

λ̄‖w‖ + λ̄1/2 ‖Dw‖ + ‖D2w‖ + ‖wt‖ ≤ N‖ĝ‖,

where ‖ · ‖ = ‖ · ‖Lp(Ωr−αT ) and N = N(d, ν, p) > 0. From this, the definition of ĝ, and 

a simple manipulation, we obtain

λrα‖ζrur‖ +
√

λrα/2‖ζrDur‖ + ‖ζrD2ur‖ + ‖ζr∂tur‖

≤ N
[

‖ζrfr‖ +
√

λrα/2‖ζ ′
rur‖ + ‖ζ ′′

r ur‖ + ‖ζ ′
rDur‖

]

.

Now, we raise this last estimate to the power p, multiply both sides by r−(γ−α)−1, 

integrate the result with respect to r on (0, ∞), and then apply (4.13) to obtain

λ‖M
−αu‖Lp(ΩT ,xγ

d dz) +
√

λ‖M
−α/2Du‖Lp(ΩT ,xγ

d dz)

+ ‖D2u‖Lp(ΩT ,xγ
d dz) + ‖M

−αut‖Lp(ΩT ,xγ
d dz)

≤ N
[

‖f‖Lp(ΩT ,xγ
d dz) +

√
λ‖M

−α/2u‖Lp(ΩT ,xγ−p
d dz) + ‖u‖Lp(ΩT ,xγ−2p

d dz)

+ ‖Du‖Lp(ΩT ,xγ−p
d dz)

]

.
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From the last estimate, (4.11), (4.12), and the fact that γ′ = γ − p, we infer that

λ‖M
−αu‖Lp(ΩT ,xγ

d dz) +
√

λ‖M
−α/2Du‖Lp(ΩT ,xγ

d dz)

+ ‖D2u‖Lp(ΩT ,xγ
d dz) + ‖M

−αut‖Lp(ΩT ,xγ
d dz) ≤ N‖f‖Lp(ΩT ,xγ

d dz).

This proves (4.10) under the additional assumption that u ∈ W 1,2
p (ΩT , xγ′

d dz).

It remains to remove the extra assumption that u ∈ W 1,2
p (ΩT , xγ′

d dz). By mollifying 

the equation (4.2) in t and x′ and applying [15, Theorem 2.4] to the equations of u
(ε)
t

and Dx′u(ε), we obtain

M
−αu(ε), M

−αu
(ε)
t , DDx′u(ε) ∈ Lp(ΩT , xγ′

d dz).

This and the PDE in (4.2) for u(ε) imply that

Dddu(ε) ∈ Lp(ΩT , xγ′

d dz).

Therefore u(ε) ∈ W 1,2
p (ΩT , xγ′

d dz) is a strong solution of (4.2) with f (ε) in place of f . 

From this, we apply the a priori estimate (4.10) that we just proved for u(ε) and pass 

to the limit as ε → 0+ to obtain the estimate (4.10) for u. The proof of the lemma is 

completed. �

4.2. Boundary Hölder estimates for homogeneous equations

Recall the operator L0 defined in (4.1). In this subsection, we consider the homoge-

neous equation

{

L0u = 0 in Q+
1 ,

u = 0 on Q1 ∩ {xd = 0}.
(4.15)

As the discussion that leads to (4.6), without loss of generality we assume (4.5) so that 

(4.15) can be written in divergence form as

{

ut + λc̄0(xd)u − μ(xd)Di(ãij(xd)Dju) = 0 in Q+
1 ,

u = 0 on Q1 ∩ {xd = 0}.
(4.16)

A function u ∈ H1
p(Q+

1 ) with p ∈ (1, ∞) is said to be a weak solution of (4.15) if it is a 

weak solution of (4.16) in the sense defined in (4.9) and u = 0 on Q1 ∩ {xd = 0} in the 

sense of trace.

For each β ∈ (0, 1), the β-Hölder semi-norm in the spatial variable of a function u on 

an open set Q ⊂ R
d+1 is given by
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�u�C0,β(Q) = sup

{ |u(t, x) − u(t, y)|
|x − y|β : x �= y, (t, x), (t, y) ∈ Q

}

.

For k, l ∈ N ∪ {0}, we denote

‖u‖Ck,l(Q) =

k
∑

i=0

∑

|j|≤l

‖∂i
tD

j
xu‖L∞(Q).

We also use the following Hölder norm of u on Q

‖u‖Ck,β(Q) = ‖u‖Ck,0(Q) +

k
∑

i=0

�∂i
tu�C0,β(Q).

We begin with the following Caccioppoli type estimate.

Lemma 4.4. Suppose that u ∈ H1
2(Q+

1 ) is a weak solution of (4.15). Then, for any integers 

k, j ≥ 0 and l = 0, 1,

ˆ

Q+
1/2

|∂k
t Dj

x′D
l
du|2 dz ≤ N

ˆ

Q+
1

u2 dz, (4.17)

where N = N(d, ν, α, k, j, l) > 0.

Proof. Again, we can assume (4.5) holds. The estimate (4.17) follows from [15, (4.12)]

applied to (4.16). �

Lemma 4.5. Let p0 ∈ (1, ∞) and suppose that u ∈ H1
p0

(Q+
1 ) is a weak solution of (4.15). 

Then,

‖u‖C1,1(Q+
1/2) + ‖Dx′u‖C1,1(Q+

1/2) + ‖Ddu‖C1,δ0 (Q+
1/2)

+
√

λ‖M
−α/2u‖C1,1−α/2(Q+

1/2) ≤ N‖Du‖Lp0 (Q+
1 ),

(4.18)

where N = N(d, ν, α, p0) > 0 and δ0 = min{2 − α, 1}.

Proof. As explained, we can assume that (4.5) holds. We apply [15, Lemma 5.5] to (4.16)

by noting that U := ãdjDju = Ddu in view of (4.5) and (4.7). �

Lemma 4.6. Let p0 ∈ (1, ∞), β0 ∈ (−∞, min{1, α}], and α0 > −1 be fixed constants. 

There exists a number β1 = β1(α, β0) ∈ (0, 1] such that for every weak solution u ∈
H1

p0
(Q+

1 ) to (4.15), it holds that



H. Dong et al. / Journal of Functional Analysis 286 (2024) 110374 25

‖M
−β0u‖C1,β1 (Q+

1/2) ≤ N‖M
−β0u‖Lp0 (Q+

3/4,x
α0
d dz), (4.19)

‖M
−β0ut‖C1,β1 (Q+

1/2) ≤ N‖M
−β0ut‖Lp0 (Q+

3/4,x
α0
d dz), (4.20)

‖M
α−β0DDx′u‖C1,β1 (Q+

1/2) ≤ N‖M
α−β0DDx′u‖Lp0 (Q+

3/4,x
α0
d dz), (4.21)

and

‖M
β0Du‖C1,β1 (Q+

1/2) ≤ N‖M
β0Du‖Lp0 (Q+

3/4,x
α0
d dz), (4.22)

where N = N(d, ν, α, α0, β0, p0) > 0.

Proof. Again, we assume (4.5). Note that once the lemma with α0 ≥ 0 is proved, the 

case when α0 ∈ (−1, 0) will follow immediately. Hence, we only need to prove the lemma 

with the assumption that α0 ≥ 0. We first assume p0 = 2. Since β0 ≤ min{1, α}, by 

(4.17) and the boundary Poincaré inequality, the right-hand sides of (4.19), (4.20), and 

(4.21) are all finite. We consider two cases.

Case 1: β0 = 0. When α0 = 0, (4.19) and (4.22) follow from (4.18) and (4.17). For 

general α0 ≥ 0, by (4.19) with β0 = 0 and α0 = 0 and Hölder’s inequality, we have

‖u‖L∞(Q+
1/2) ≤ N‖u‖L2(Q+

2/3) ≤ N‖u‖2α0/(1+2α0)

L2(Q+
2/3,x

−1/2
d dz)

‖u‖1/(1+2α0)

L2(Q+
2/3,x

α0
d dz)

≤ N‖u‖2α0/(1+2α0)

L∞(Q+
2/3)

‖u‖1/(1+2α0)

L2(Q+
2/3,x

α0
d dz)

≤ 1

2
‖u‖L∞(Q+

2/3) + N‖u‖L2(Q+
2/3,x

α0
d dz),

where N = N(d, ν, α, α0) > 0. From this and the standard iteration argument (see [30, 

p. 75] for example), we obtain

‖u‖L∞(Q+
1/2) ≤ N‖u‖L2(Q+

3/4,x
α0
d dz). (4.23)

The above, together with Lemma 4.4, yields

ˆ

Q+
1/2

|∂k
t Dj

x′D
l
du|2 dz ≤ N(d, ν, α, α0, k, j, l)

ˆ

Q+
3/4

u2xα0

d dz (4.24)

for any integers k, j ≥ 0 and l = 0, 1. Using this last estimate, (4.18), and by suitably 

adjusting the sizes of the cylinders, we obtain (4.19) with β1 = 1. Similar to (4.23), we 

have

‖Du‖L∞(Q+
1/2) ≤ N‖Du‖L2(Q+

3/4,x
α0
d dz).

From this, (4.18), and by shrinking the cylinders, we obtain
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‖Du‖C1,δ0 (Q+
1/2) ≤ N‖Du‖L2(Q+

3/4,x
α0
d dz), where δ0 = min{2 − α, 1},

which is (4.22) when β0 = 0.

Since ut and Dx′u satisfy the same equation with the same boundary condition, 

similarly we also obtain (4.20) as well as

‖DDx′u‖C1,δ0 (Q+
1/2) ≤ N‖DDx′u‖L2(Q+

2/3), (4.25)

by Lemma 4.5. This together with (4.24) implies (4.21) with

β1 = min{δ0, α} = min{α, 2 − α, 1}.

Case 2: β0 �= 0. We first prove (4.21). By (4.25) and by using the iteration argument as 

in (4.23), we have

‖DDx′u‖L∞(Q+
1/2) ≤ N‖DDx′u‖L2(Q+

3/4,x
α0
d dz),

where N = N(d, ν, α, α0) > 0. Then, it follows from (4.25) that

‖DDx′u‖C1,δ0 (Q+
1/2) ≤ N‖DDx′u‖L2(Q+

3/4,x
α0
d dz). (4.26)

Therefore, if β0 = α, (4.21) with β1 = δ0 follows from (4.26). If β0 < α, it follows from 

(4.26) that

‖DDx′u‖C1,δ0 (Q+
1/2) ≤ N‖M

α−β0DDx′u‖L2(Q+
3/4,x

α0
d dz),

where N = N(d, ν, α, β0, α0) > 0. Then we also have (4.21) with

β1 = min{δ0, α − β0} = min{2 − α, 1, α − β0}.

Similarly, (4.22) can be deduced from (4.22) with β0 = 0 by taking β1 = min{δ0, β0}. 

Hence, both (4.21) and (4.22) hold with

β1 = min{δ0, α − β0, β0} = min{2 − α, 1, α − β0, β0}.

Next we show (4.19). Since β0 ≤ 1, using the zero boundary condition, (4.18), and 

(4.24), we get

‖M
−β0u‖L∞(Q+

1/2) ≤ N‖Ddu‖L∞(Q+
1/2) ≤ N‖u‖L2(Q+

3/4,x
α0
d dz). (4.27)

Since ut and Dx′u satisfy the same equation and the same boundary condition, we have
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‖M
−β0ut‖L∞(Q+

1/2) + ‖M
−β0Dx′u‖L∞(Q+

1/2)

≤ N‖Ddut‖L∞(Q+
1/2) + N‖DdDx′u‖L∞(Q+

1/2)

≤ N‖Du‖L2(Q+
2/3,x

α0
d ) ≤ N‖u‖L2(Q+

3/4,x
α0
d dz), (4.28)

where we used (4.18). To estimate the Hölder semi-norm of M−β0u in xd, we write

x−β0

d u(t, x) = x1−β0

d

1
ˆ

0

(Ddu)(t, x′, sxd) ds

and use (4.18) and (4.24). Then we see that

�M−β0u�C0,β1 (Q+
1/2) + �M−β0ut�C0,β1 (Q+

1/2) ≤ N‖M
−β0u‖L2(Q+

3/4,x
α0
d dz),

where β1 = min{δ0, 1 − β0}. Combining this with (4.27) and (4.28), we reach (4.19).

Note that ut satisfies the same equation and the same boundary condition, we deduce 

(4.20) from (4.19). The proof of the lemma when p0 = 2 is completed.

Next, we observe that when p0 > 2, the estimates (4.19)–(4.22) can be derived directly 

from the case p0 = 2 that we just proved using Hölder’s inequality. On the other hand, 

when p0 ∈ (1, 2), it follows from Lemma 4.5 that u ∈ H1
2(Q+

3/4). Then, by shrinking 

the cylinders, we apply the assertion when p0 = 2 that we just proved and an iteration 

argument as in the proof of (4.23) to obtain the estimates (4.19)–(4.22). �

Remark 4.7. The number β1 defined in Lemma 4.6 can be found explicitly. However, we 

do not need its explicit formula in the paper.

4.3. Interior Hölder estimates for homogeneous equations

Fix a point z0 = (t0, x0) ∈ ΩT , where x0 = (x′
0, x0d) ∈ R

d−1 × R+. For 0 < ρ < x0d

and β ∈ (0, 1), we define the weighted β-Hölder semi-norm of a function u on Qρ(z0) by

�u�
C

β/2,β
α (Qρ(z0))

= sup
{ |u(s, x) − u(t, y)|
(

x
−α/2
0d |x − y| + |t − s|1/2

)β
: (s, x) �= (t, y)

and (s, x), (t, y) ∈ Qρ(z0)
}

.

As usual, we denote the corresponding weighted norm by

‖u‖
C

β/2,β
α (Qρ(z0))

= ‖u‖L∞(Qρ(z0)) + �u�
C

β/2,β
α (Qρ(z0))

.

The following result is the interior Hölder estimates of solutions to the homogeneous 

equation (4.16).
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Lemma 4.8. Let z0 = (t0, x0) ∈ ΩT , where x0 = (x′
0, x0d) ∈ R

d−1 × R+, and ρ ∈
(0, x0d/4). Let u ∈ W 1,2

p0
(Q2ρ(z0)) be a strong solution of

L0u = 0 in Q2ρ(z0)

with some p0 ∈ (1, ∞). Then for any β ∈ R,

‖M
βu‖L∞(Qρ(z0)) + ρ(1−α/2)/2�Mβu�

C
1/4,1/2
α (Qρ(z0))

≤ N

⎛

⎜

⎝

 

Q2ρ(z0)

|xβ
d u|p0μ0(dz)

⎞

⎟

⎠

1/p0

,

and

‖M
βDu‖L∞(Qρ(z0)) + ρ(1−α/2)/2�MβDu�

C
1/4,1/2
α (Qρ(z0))

≤ N

⎛

⎜

⎝

 

Q2ρ(z0)

|xβ
d Du|p0μ0(dz)

⎞

⎟

⎠

1/p0

,

where μ0(dz) = xα0

d dtdx with some α0 > −1, and N = N(ν, d, α, β, α0) > 0.

Proof. As in the proof of Lemma 4.6, we may assume that p0 = 2. Without loss of 

generality, we assume that x0d = 1. Note that when β = 0, the assertions follow directly 

from [15, Proposition 4.6]. In general, the assertions follow from the case when β = 0

and the fact that

⎛

⎜

⎝

 

Q2ρ(z0)

|Mβf(z)|p0μ0(dz)

⎞

⎟

⎠

1/p0

≈

⎛

⎜

⎝

 

Q2ρ(z0)

|f(z)|p0dz

⎞

⎟

⎠

1/p0

.

The lemma is proved. �

4.4. Mean oscillation estimates

In this subsection, we apply Lemmas 4.6 and 4.8 to derive the mean oscillation esti-

mates of

U = (M−β0ut, M
α−β0DDx′u, λM

−β0u) and Du

respectively with the underlying measure

μ1(dz) = xγ1

d dxdt and μ̄1(dz) = xγ̄1

d dxdt, (4.29)
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where u is a strong solution of (4.2),

γ1 ∈ (p0(β0 − α + 1) − 1, p0(β0 − α + 2) − 1) and γ̄1 = γ1 + p0(α/2 − β0)

with some p0 ∈ (1, ∞) and β0 ∈ (α − 1, min{1, α}]. The main result of the subsection is 

Lemma 4.10 below.

Let us point out that both μ1 and μ̄1 depend on the choice of β0, and

μ1 = μ̄1 when β0 = α/2. (4.30)

To get the weighted estimate of U in Lp(ΩT , xγ
d dz) with the optimal range for γ as in 

Theorem 4.1, we will use β0 = min{1, α}. On the other hand, to derive the estimate for 

Du, we will use β0 = α/2 and (4.30).

For the reader’s convenience, let us also recall that for a cylinder Q ⊂ R
d+1, a locally 

finite measure ω, and an ω-integrable function g on Q, we denote the average of g on Q

with respect to the measure ω by

(g)Q,ω =
1

ω(Q)

ˆ

Q

g(z) ω(dz)

and the average of g on Q with respect to the Lebesgue measure by

(g)Q =
1

|Q|

ˆ

Q

g(z) dz.

We begin with the following lemma on the mean oscillation estimates of solutions to the 

homogeneous equations.

Lemma 4.9. Let ν ∈ (0, 1), α ∈ (0, 2), p0 ∈ (1, ∞), β0 ∈ (α − 1, min{1, α}], and γ1 ∈
(p0(β0 − α + 1) − 1, p0(β0 − α + 2) − 1). There exists N = N(d, ν, α, γ1, β0, p0) > 0 such 

that if u ∈ W 1,2
p0

(Q+
14ρ(z0), x

γ′

1

d dz) is a strong solution of

{

L0u = 0 in Q+
14ρ(z0)

u = 0 on Q14ρ(z0) ∩ {xd = 0}

for some λ > 0, ρ > 0, z0 = (z′
0, xd0) ∈ ΩT , and for γ′

1 = γ1 − p0(β0 − α), then

(|U − (U)Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

≤ Nκθ(|U |p0)
1/p0

Q+
14ρ(z0),μ1

(4.31)

and

(|Du − (Du)Q+
κρ(z0),μ̄1

|)Q+
κρ(z0),μ̄1

≤ Nκθ(|Du|p0)
1/p0

Q+
14ρ(z0),μ̄1

(4.32)
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for every κ ∈ (0, 1), where μ1, μ̄1 are defined in (4.29),

U = (M−β0ut, M
α−β0DDx′u, λM

−β0u),

and θ = min{β1(α, β0), (2 − α)/4, 2 − α, 1} ∈ (0, 1) in which β1 is defined in Lemma 4.6.

Proof. By using the scaling (2.1), we assume that ρ = 1. We consider two cases: the 

boundary case and the interior one.

Boundary case. Consider x0d < 4. Let z̄ = (t0, x′
0, 0) and note that from the definition 

of cylinders in (2.2), we have

Q+
1 (z0) ⊂ Q+

5 (z̄0) ⊂ Q+
10(z̄0) ⊂ Q+

14(z0).

Then, we apply the mean value theorem and the estimates (4.19)-(4.21) in Lemma 4.6

with γ1 in place of α0. We infer that

(|U − (U)Q+
κ (z0),μ1

|)Q+
κ (z0),μ1

≤ Nκ2−α‖Ut‖L∞(Q1(z0)) + Nκβ1�U�C0,β1 (Q+
1 (z0))

≤ Nκθ
[

‖Ut‖L∞(Q+
5 (z̄)) + �U�C0,β1 (Q+

5 (z̄))

]

≤ Nκθ(|U |p0)
1/p0

Q+
10(z̄),μ1

≤ Nκθ(|U |p0)
1/p0

Q+
14(z0),μ1

,

where we used the doubling property of μ1 in the last step. This implies the estimate 

(4.31) as κ ∈ (0, 1). To estimate the oscillation of Du as asserted in (4.32), we note that

γ̄1 = γ1 − p0(β0 − α/2) > p0(1 − α/2) − 1 > −1.

Therefore, (4.32) can be proved in a similar way as that of (4.31) using the estimate 

(4.22) in Lemma 4.6 with β0 = 0 and α0 = γ̄1 > −1.

Interior case. Consider x0d > 4ρ = 4. By using Lemma 4.8 with β = −β0 and the 

doubling property of μ1, we see that

(|M−β0u − (M−β0u)Q+
κ (z0),μ1

|)Q+
κ (z0),μ1

≤ Nκ1/2−α/4�M−β0u�
C

1/4,1/2
α (Q+

1 (z0))

≤ Nκ1/2−α/4

⎛

⎜

⎝

 

Q+
2 (z0)

|M−β0u|p0μ1(dz)

⎞

⎟

⎠

1/p0

≤ Nκ1/2−α/4

⎛

⎜

⎝

 

Q+
14(z0)

|M−β0u|p0μ1(dz)

⎞

⎟

⎠

1/p0

.
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Similarly, by using the finite difference quotient, we can apply Lemma 4.8 to ut and 

obtain

(|M−β0ut − (M−β0ut)Q+
κ (z0),μ1

|)Q+
κ (z0),μ1

≤ Nκ1/2−α/4

⎛

⎜

⎝

 

Q+
14(z0)

|M−β0ut|p0μ1(dz)

⎞

⎟

⎠

1/p0

.

In the same way, by applying Lemma 4.8 to Dx′u with β = α − β0 and α0 = γ1, we infer 

that

(|Mα−β0DDx′u − (Mα−β0DDx′u)Q+
κ (z0),μ1

|)Q+
κ (z0),μ1

≤ Nκ1/2−α/4

⎛

⎜

⎝

 

Q+
14(z0)

|Mα−β0DDx′u|p0μ1(dz)

⎞

⎟

⎠

1/p0

.

The oscillation estimate of Du can be proved in a similar way. Therefore, we obtain 

(4.31). The proof of the lemma is completed. �

Now, we recall that for a given number a ∈ R, a+ = max{a, 0}. We derive the 

oscillation estimates of solutions to the non-homogeneous equation (4.2), which is the 

main result of the subsection.

Lemma 4.10. Let ν ∈ (0, 1), α ∈ (0, 2), p0 ∈ (1, ∞), β0 ∈ (α − 1, min{1, α}], and γ1 ∈
(p0(β0 − α + 1) − 1, p0(β0 − α + 2) − 1). There exists N = N(d, ν, α, γ1, β0, p0) > 0

such that the following assertions hold. Suppose that u ∈ W
1,2

p0,loc(ΩT , x
γ′

1

d dz) is a strong 

solution of (4.2) with f ∈ Lp0,loc(ΩT , x
γ′

1

d dz) and γ′
1 = γ1 − p0(β0 − α). Then, for every 

z0 ∈ ΩT , ρ ∈ (0, ∞), κ ∈ (0, 1), we have

(|U − (U)Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

≤ Nκθ(|U |p0)
1/p0

Q+
14ρ(z0),μ1

+ Nκ−(d+(γ1)++2−α)/p0(|Mα−β0f |p0)
1/p0

Q+
14ρ(z0),μ1

and

λ1/2(|Du − (Du)Q+
κρ(z0),μ̄1

|)Q+
κρ(z0),μ̄1

≤ Nκθλ1/2(|Du|p0)
1/p0

Q+
14ρ(z0),μ̄1

+ Nκ−(d+(γ1)++2−α)/p0(|Mα/2f |p0)
1/p0

Q+
14ρ(z0),μ̄1

,

where θ∈ (0, 1) is defined in Lemma 4.9,

U = (M−β0ut, M
α−β0DDx′u, λM

−β0u),
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and μ1, μ̄1 are defined in (4.29).

Proof. As γ1 ∈ (p0(β0 − α + 1) − 1, p0(β0 − α + 2) − 1), we see that

γ′
1 = γ1 − p0(β0 − α) ∈ (p0 − 1, 2p0 − 1).

Therefore, by Lemma 4.3, there is a strong solution v ∈ W 1,2
p0

(ΩT , x
γ′

1

d dz) to

{

L0v = μ(xd)f1Q+
14ρ(z0) in ΩT ,

v = 0 on {xd = 0}
(4.33)

satisfying

‖M
−αvt‖

Lp0 (ΩT ,x
γ′

1
d dz)

+ ‖D2v‖
Lp0 (ΩT ,x

γ′

1
d dz)

+ λ1/2‖M
−α/2Dv‖

Lp0 (ΩT ,x
γ′

1
d dz)

+ λ‖M
−αv‖

Lp0 (ΩT ,x
γ′

1
d dz)

≤ N‖f‖
Lp0 (Q+

14ρ(z0),x
γ′

1
d dz)

. (4.34)

Let us denote

V = (M−β0vt, M
α−β0DDx′v, λM

−β0v).

Then, it follows from (4.34) and the definitions of μ1 and γ′
1 that

(|V |p0)
1/p0

Q+
14ρ(z0),μ1

≤ N(|Mα−β0f |p0)
1/p0

Q+
14ρ(z0),μ1

. (4.35)

Note also that due to (4.34) and the definition of γ̄1,

λ1/2

⎛

⎜

⎝

ˆ

Q+
14ρ(z0)

|Dv|p0xγ̄1

d dz

⎞

⎟

⎠

1/p0

= λ1/2

⎛

⎜

⎝

ˆ

Q+
14ρ(z0)

|M−α/2Dv|p0x
γ′

1

d dz

⎞

⎟

⎠

1/p0

≤ N

⎛

⎜

⎝

ˆ

Q+
14ρ(z0)

|Mα/2f |p0xγ̄1

d dz

⎞

⎟

⎠

1/p0

.

Then,

λ1/2(|Dv|p0)
1/p0

Q+
14ρ(z0),μ̄1

≤ N(|Mα/2f |p0)
1/p0

Q+
14ρ(z0),μ̄1

. (4.36)

Now, let w = u − v. From (4.33), we see that w ∈ W 1,2
p0

(Q+
14ρ(z0), x

γ′

1

d dz) is a strong 

solution of
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{

L0w = 0 in Q+
14ρ(z0),

w = 0 on Q14ρ(z0) ∩ {xd = 0}.

Then, by applying Lemma 4.9 to w, we see that

(|W − (W )Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

≤ Nκθ(|W |p0)
1/p0

Q+
14ρ(z0),μ1

(4.37)

and

(|Dw − (Dw)Q+
κρ(z0),μ̄1

|)Q+
κρ(z0),μ̄1

≤ Nκθ(|Dw|p0)
1/p0

Q+
14ρ(z0),μ̄1

, (4.38)

where

W = (M−β0wt, M
α−β0DDx′w, λM

−β0w).

Now, note that from (2.2) and (2.3) we have

μ1(Q+
14ρ(z0))

μ1(Q+
κρ(z0))

= N(d)κα−2
(r(14ρ, x0d)

r(κρ, x0d)

)d+(γ1)+

≤ N(d)κ−(d+(γ1)++2−α). (4.39)

Then, it follows from the triangle inequality, Hölder’s inequality, (4.37), and (4.39) that

(|U − (U)Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

≤ (|W − (W )Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

+ (|V − (V )Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

≤ (|W − (W )Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

+ N(d)κ−(d+(γ1)++2−α)/p0(|V |p0)
1/p0

Q+
14ρ(z0),μ1

≤ Nκθ(|W |p0)
1/p0

Q+
14ρ(z0),μ1

+ N(d)κ−(d+(γ1)++2−α)/p0(|V |p0)
1/p0

Q+
14ρ(z0),μ1

.

As W = U − V and κ ∈ (0, 1), we apply the triangle inequality again to the term 

involving W on the right-hand side of the last estimate to see that

(|U − (U)Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

≤ Nκθ(|U |p0)
1/p0

Q+
14ρ(z0),μ1

+ N
(

κ−(d+(γ1)++2−α)/p0 + κθ
)

(|V |p0)
1/p0

Q+
14ρ(z0),μ1

≤ Nκθ(|U |p0)
1/p0

Q+
14ρ(z0),μ1

+ Nκ−(d+(γ1)++2−α)/p0(|V |p0)
1/p0

Q+
14ρ(z0),μ1

.

From this and (4.35), it follows that
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(|U − (U)Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

≤ Nκθ(|U |p0)
1/p0

Q+
14ρ(z0),μ1

+ Nκ−(d+(γ1)++2−α)/p0(|Mα−β0f |p0)
1/p0

Q+
14ρ(z0),μ1

,

where N = N(d, ν, α, γ1, β0, p0) > 0. This proves the assertion on the oscillation of U . 

The oscillation estimate of Du can be proved similarly using (4.36) and (4.38). The proof 

of the lemma is completed. �

We now conclude this subsection by pointing out the following important remark, 

whose proof can be achieved by following that of Lemma 4.10 with minor modifications.

Remark 4.11. Under the assumptions as in Lemma 4.10, and if β0 ∈ (α − 1, α/2], it holds 

that

(|U ′ − (U ′)Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

≤ Nκθ(|U ′|p0)
1/p0

Q+
14ρ(z0),μ1

+ Nκ−(d+(γ1)++2−α)/p0(|Mα−β0f |p0)
1/p0

Q+
14ρ(z0),μ1

,

where

U ′ = (M−β0ut, M
α−β0DDx′u, λ1/2

M
α/2−β0Du, λM

−β0u).

4.5. Proof of Theorem 4.1

We are now ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. We begin with the proof of the a priori estimates (4.3)–(4.4)

assuming that u ∈ W 1,2
p (ΩT , xγ

d dz) is a strong solution to the equation (4.2) with

γ ∈ (p(α − 1)+ − 1, 2p − 1), where (α − 1)+ = max{α − 1, 0}. (4.40)

In our initial step, we prove (4.3)–(4.4) with an extra assumption that u is compactly 

supported. We first prove (4.3). Let β0 = min{1, α}, and we will apply Lemma 4.10 with 

this β0. Let p0 ∈ (1, p) and γ1 ∈ (p0(β0 − α + 1) − 1, p0(β0 − α + 2) − 1). We choose p0

to be sufficiently close to 1 and γ1 to be sufficiently close to p0(β0 − α + 2) − 1 so that

γ − [γ1 + p(α − β0)] < (1 + γ1)(p/p0 − 1). (4.41)

We note that this is possible because α − β0 = (α − 1)+ and

γ − [γ1 + p(α − β0)] < p[2 − (α − 1)+] − 1 − γ1,

and also from our choices of p0 and γ1,

(1 + γ1)(p/p0 − 1) ∼ p(1 + γ1) − 1 − γ1 ∼ p[2 − (α − 1)+] − 1 − γ1.
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Now, let us denote

γ′
1 := γ1 + p(α − β0) = γ1 + p(α − 1)+. (4.42)

Due to (4.40) and the definition of γ′
1, it follows that

γ − γ′
1 = γ − p(α − 1)+ − γ1 > −1 − γ1. (4.43)

From (4.43) and (4.41), it holds that

γ′ := γ − γ′
1 ∈ (−1 − γ1, (1 + γ1)(p/p0 − 1)). (4.44)

Now, since u has compactly support in ΩT , we have u ∈ W 1,2
p (ΩT , x

γ′

1

d dz). Therefore, 

it follows from Lemma 4.10 that

U#
μ1

≤ N
[

κθMμ1
(|U |p0)1/p0 + κ−(d+(γ1)++2−α)/2Mμ1

(|Mα−β0f |p0)1/p0

]

,

where μ1(dz) = xγ1

d dxdt, the sharp function and the maximal function with respect to 

the measure μ1 are defined as in Subsection 3.2, and

U = (M−β0ut, M
α−β0DDx′u, λM

−β0u).

Next, due to (4.44), xγ′

d ∈ Ap/p0
(μ1). It then follows from the weighted Fefferman-Stein 

theorem and Hardy-Littlewood theorem (i.e., Theorem 3.2) that

‖U‖
Lp(ΩT ,xγ′

d dμ1)
≤ N‖U#

μ1
‖

Lp(ΩT ,xγ′

d dμ1)

≤ N
[

κθ‖Mμ1
(|U |p0)1/p0‖

Lp(ΩT ,xγ′

d dμ1)

+ κ−(d+(γ1)++2−α)/2‖Mμ1
(|Mα−β0f |p0)1/p0‖

Lp(ΩT ,xγ′

d dμ1)

]

≤ N
[

κθ‖U‖
Lp(ΩT ,xγ′

d dμ1)
+ κ−(d+(γ1)++2−α)/2‖M

α−β0f‖
Lp(ΩT ,xγ′

d dμ1)

]

. (4.45)

From the definition of U , the choices of γ′ in (4.44) and γ′
1 in (4.42), we have

‖U‖
Lp(ΩT ,xγ′

d dμ1)
= ‖M

−αut‖Lp(ΩT ,xγ
d dz) + ‖DDx′u‖Lp(ΩT ,xγ

d dz)

+ λ‖M
−αu‖Lp(ΩT ,xγ

d dz) < ∞.

Then, by choosing κ ∈ (0, 1) sufficiently small so that Nκθ < 1/2, we obtain from (4.45)

that

‖M
−αut‖Lp(ΩT ,xγ

d dz) + ‖DDx′u‖Lp(ΩT ,xγ
d dz) + λ‖M

−αu‖Lp(ΩT ,xγ
d dz)

≤ N‖f‖
Lp(ΩT ,xγ′

d dμ1)
= N‖f‖Lp(ΩT ,xγ

d dz).
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Also, from the PDE in (4.2), we see that

|Dddu| ≤ N [|DDx′u| + (|ut| + λ|u|)x−α
d + |f |],

and therefore

‖M
−αut‖Lp(ΩT ,xγ

d dz) + λ‖M
−αu‖Lp(ΩT ,xγ

d dz) + ‖D2u‖Lp(ΩT ,xγ
d dz)

≤ N‖f‖Lp(ΩT ,xγ
d dz),

which is (4.3).

Next, we prove the estimate (4.4) also with the extra assumption that u has compact 

support. We observe that if γ ∈ (p − 1, 2p − 1), (4.4) follows from (4.10). Therefore, it 

remains to consider the case that γ ∈ (αp/2 − 1, p − 1] or equivalently

γ − αp/2 ∈ (−1, p(1 − α/2) − 1]. (4.46)

The main idea is to apply Lemma 4.10 with this β0 = α/2. Let p0, γ1 be as before but 

with the new choice of β0. As noted in (4.30), we have

γ̄1 = γ1 − p0(β0 − α/2) = γ1 and μ̄1 = μ1.

Because of (4.46), we can perform the same calculation as the one that yields (4.44) to 

obtain

γ̄′ := γ − (γ̄1 + pα/2) ∈ (−1 − γ̄1, (1 + γ̄1)(p/p0 − 1))

and therefore xγ̄′

d ∈ Ap/p0
(μ̄1). By using Lemma 4.10, we have

λ1/2(Du)#
μ̄1

≤ N
[

κθλ1/2Mμ̄1
(|Du|p0)1/p0

+ κ−(d+γ̄1+2−α)/2Mμ̄1
(|Mα/2f |p0)1/p0

]

,
(4.47)

where μ̄1(dz) = xγ̄1

d dxdt. We apply Theorem 3.2 to (4.47), and then choose κ > 0

sufficiently small as in the proof of (4.3) to obtain

λ1/2‖Du‖
Lp(ΩT ,xγ̄′

d dμ̄1)
≤ N‖M

α/2f‖
Lp(ΩT ,xγ̄′

d dμ̄1)
.

This implies

λ1/2‖M
−α/2Du‖Lp(ΩT ,xγ

d dz) ≤ N‖f‖Lp(ΩT ,xγ
d dz)

as γ − pα/2 = γ̄′ + γ̄1. The estimate (4.4) is proved.
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Now, we prove (4.3)–(4.4) without the assumption that u is compactly supported. As 

u ∈ W 1,2
p (ΩT , xγ

ddz), there is a sequence {un} in C∞
0 (ΩT ) such that

lim
n→∞

‖un − u‖
W

1,2
p (ΩT ,xγ

d dz) = 0. (4.48)

Let fn = f + L0(un − u)/μ(xd) and observe that un is a strong solution of

L0un = μ(xd)fn in ΩT and un = 0 on {xd = 0}.

Then, applying the estimates (4.3)–(4.4) to un, we obtain

‖un‖
W

1,2
p (ΩT ,xγ

d dz) ≤ N‖fn‖Lp(ΩT ,xγ
d dz). (4.49)

Note that

‖fn‖Lp(ΩT ,xγ
d dz) ≤ ‖f‖Lp(ΩT ,xγ

d dz) + Nλ‖M
−α(u − un)‖Lp(ΩT ,xγ

d dz)

+ N
[

‖D2(u − un)‖Lp(ΩT ,xγ
d dz) + ‖M

−α(u − un)t‖Lp(ΩT ,xγ
d dz)‖

]

→ ‖f‖Lp(ΩT ,xγ
d dz) as n → ∞.

Therefore, by taking n → ∞ in (4.49) and using (4.48), we obtain the estimates 

(4.3)–(4.4) for u. Hence, the proof of (4.3)–(4.4) is completed.

It remains to prove the existence of a strong solution u ∈ W 1,2
p (ΩT , xγ

d dz) to (4.2)

assuming that f ∈ Lp(ΩT , xγ
d dz), for p ∈ (1, ∞) and γ ∈ (p(α − 1)+ − 1, 2p − 1). We 

observe when γ ∈ (p −1, 2p −1), the existence of solution is already proved in Lemma 4.3. 

Therefore, it remains to consider the case when

γ ∈ (p(α − 1)+ − 1, p − 1].

We consider two cases.

Case 1. Consider γ ∈ (p(α − 1)+ − 1, p − 1). As f ∈ Lp(ΩT , xγ
d dz), there is a sequence 

{fk}k ⊂ C∞
0 (ΩT ) such that

lim
k→∞

‖fk − f‖Lp(ΩT ,xγ
d dz) = 0. (4.50)

For each k ∈ N, because fk has compact support, we see that

x1−α
d μ(xd)fk ∼ xdfk ∈ Lp(ΩT , xγ

d dz).

Then, as in the proof of Lemma 4.3, we apply [15, Theorem 2.4] to find a weak solution 

uk ∈ H1
p(ΩT , xγ

d dz) to the divergence form equation (4.6) with fk in place of f . Moreover,

‖Duk‖Lp(ΩT ,xγ
d dz) + ‖M

−α/2uk‖Lp(ΩT ,xγ
d dz) < ∞. (4.51)
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We claim that uk ∈ W 1,2
p (ΩT , xγ

d dz) for each k ∈ N. Note that if the claim holds, we can 

apply the a priori estimate that we just proved for the equations of uk and of uk − ul to 

get

‖uk‖
W

1,2
p (ΩT ,xγ

d dz) ≤ N‖fk‖Lp(ΩT ,xγ
d dz) and

‖uk − ul‖W
1,2

p (ΩT ,xγ
d dz) ≤ N‖fk − fl‖Lp(ΩT ,xγ

d dz)

for any k, l ∈ N, where N = N(d, ν, γ, α, p) > 0 which is independent of k, l. The last 

estimate and (4.50) then imply that the sequence {uk}k is convergent in W 1,2
p (ΩT , xγ

d dz). 

Let u ∈ W 1,2
p (ΩT , xγ

d dz) be the limit of such sequence, we see that u solves (4.2).

Hence, in this case, it remains to prove the claim that uk ∈ W 1,2
p (ΩT , xγ

d dz) for every 

k ∈ N. Also, let us fix k ∈ N, and let us denote Ω′
T = (−∞, T ) × R

d−1. Let 0 < r0 < R0

such that

supp(fk) ⊂ Ω′
T × (r0, R0). (4.52)

Without loss of generality, we assume that r0 = 2. From (4.51), it follows directly that

‖Duk‖Lp(Ω′

T ×(1,∞),xγ−p
d dz) + ‖uk‖Lp(Ω′

T ×(1,∞),xγ−2p
d dz)

+ ‖M
−α/2uk‖Lp(Ω′

T ×(1,∞),xγ−p
d dz) < ∞.

Then, we can follow the proof of Lemma 4.3 to show that

‖uk‖
W

1,2
p (Ω′

T ×(1,∞),xγ
d dz) < ∞.

It now remains to prove that uk ∈ W 1,2
p (Ω′

T × (0, 1), xγ
d dz) and

‖uk‖
W

1,2
p (Ω′

T ×(0,1),xγ
d dz) < ∞. (4.53)

To this end, because of (4.52), we note that uk solves the homogeneous equation

L0uk = 0 in Ω′
T × (0, 2) (4.54)

with the boundary condition uk = 0 on {xd = 0}. Let us denote

Cr = [−1, 0) ×
{

x = (x1, . . . , xd) × R
d
+ : max

1≤i≤d
|xi| < r

}

,

Cr(t, x) = Cr + (t, x), r > 0.

Consider α ∈ (0, 1). By using Lemmas 4.4, and 4.6 with a scaling argument and trans-

lation, we obtain
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‖M
−αuk‖L∞(C1(z0)) + ‖Duk‖L∞(C1(z0)) + ‖M

−α∂tuk‖L∞(C1(z0))

+ ‖DDx′uk‖L∞(C1(z0)) ≤ N
[

‖Duk‖Lp(C2(z0),xγ
d dz) + ‖M

−α/2uk‖Lp(C2(z0),xγ
d dz)

]

for every z0 = (t0, x′
0, 0) ∈ Ω′

T × {0}. Note that N depends on k, but is independent of 

z0. This and the PDE in (4.54) imply that

‖M
−αuk‖L∞(C1(z0)) + ‖Duk‖L∞(C1(z0)) + ‖M

−α∂tuk‖L∞(C1(z0))

+ ‖D2uk‖L∞(C1(z0)) ≤ N
[

‖Duk‖Lp(C2(z0),xγ
d dz) + ‖M

−α/2uk‖Lp(C2(z0),xγ
d dz)

]

.

Then, as γ > −1, we see that

‖M
−αuk‖Lp(C1(z0),xγ

d dz) + ‖Duk‖Lp(C1(z0),xγ
d dz) + ‖M

−α∂tuk‖Lp(C1(z0),xγ
d dz)

+ ‖ D2uk‖Lp(C1(z0),xγ
d dz) ≤ N

[

‖Duk‖Lp(C2(z0),xγ
d dz) + ‖M

−α/2uk‖Lp(C2(z0),xγ
d dz)

]

.

Then, with z0 = (t0, x′
0, 0) and with I = ((Z + T ) ∩ (−∞, T ]) × (2Z)d−1, we have

‖uk‖p

W
1,2

p (Ω′

T ×(0,1))
=

∑

(t0,x′

0)∈I

‖uk‖p

W
1,2

p (C1(z0))

≤ N
∑

(t0,x′

0)∈I

[

‖Duk‖p
Lp(C2(z0)) + ‖M

−α/2uk‖p
Lp(C2(z0))

]

= N
[

‖Duk‖p
Lp(ΩT ,xγ

d dz)
+ ‖M

−α/2uk‖p
Lp(ΩT ,xγ

d dz)

]

< ∞.

Hence, (4.53) holds.

Now, we consider α ∈ [1, 2). As γ + p(1 − α) > −1, we see that

ˆ

C1(z0)

|x−α
d uk(z)|pxγ

ddz =

ˆ

C1(z0)

|x−1
d uk(z)|px

γ+p(1−α)
d dz

≤ N‖Duk‖p
L∞(C1(z0))

≤ N
[

‖Duk‖p
Lp(C2(z0),xγ

d dz)
+ ‖M

−α/2uk‖p
Lp(C2(z0),xγ

d dz)

]

.

Then, by taking the sum of this inequality for (t0, x′
0) ∈ I, we also obtain

‖M
−αuk‖Lp(Ω′

T ×(0,1),xγ
d dz) ≤ N

[

‖Duk‖Lp(ΩT ,xγ
d dz) + ‖M

−αuk‖Lp(ΩT ,xγ
d dz)

]

.

Similarly, we also have M−α(uk)t, Duk ∈ Lp(Ω′
T × (0, 1), xγ

d dz). By using the different 

quotient, we also get DDx′uk ∈ Lp(Ω′
T × (0, 1), xγ

d dz). From this, and the PDE of uk, 

we have D2uk ∈ Lp(Ω′
T × (0, 1), xγ

d dz). Therefore, (4.53) holds. The proof of the claim 

in this case is completed.
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Case 2. We consider γ = p −1. Let {fk}k be as in (4.50) and let γ̄ ∈ (p(α−1)+ −1, p −1). 

As in Case 1, we can find a weak solution uk ∈ H1
p(ΩT , xγ̄

d dz) to the divergence form 

equation (4.6) with fk in place of f , and

‖Duk‖Lp(ΩT ,xγ̄
d dz) + ‖M

−α/2uk‖Lp(ΩT ,xγ̄
d dz) < ∞. (4.55)

We claim that for each k ∈ N,

‖Duk‖Lp(ΩT ,xγ
d dz) + ‖M

−α/2uk‖Lp(ΩT ,xγ
d dz) < ∞. (4.56)

Once this claim is proved, we can follow the proof in Case 1 to obtain the existence of 

a solution u ∈ W 1,2
p (ΩT , xγ

d dz). Therefore, we only need to prove (4.56).

Let us fix k ∈ N and let 0 < r0 < R0 such that (4.52) holds. As γ̄ < γ, we see that

‖Duk‖Lp(Ω′

T ×(0,2R0),xγ
d dz) + ‖M

−α/2uk‖Lp(Ω′

T ×(0,2R0),xγ
d dz)

≤ N
[

‖Duk‖Lp(Ω′

T ×(0,2R0),xγ̄
d dz) + ‖M

−α/2uk‖Lp(Ω′

T ×(0,2R0),xγ̄
d dz)

]

< ∞

due to (4.55). Hence, it remains to prove

‖Duk‖Lp(Ω′

T ×(2R0,∞),xγ
d dz) + ‖M

−α/2uk‖Lp(Ω′

T ×(2R0,∞),xγ
d dz) < ∞. (4.57)

To prove (4.57), we use the localization technique along the xd variable. See [13, Proof 

of Theorem 4.5, Case II]. We skip the details. �

5. Equations with partially VMO coefficients

We study (1.1) in this section. Precisely, we consider the equation

{

L u = μ(xd)f in ΩT ,

u = 0 on (−∞, T ) × ∂R
d
+,

(5.1)

where L is defined in (1.2) in which the coefficients a0, c0, and aij are measurable 

functions depending on z = (z′, xd) ∈ ΩT . We employ the perturbation method by 

freezing the coefficients. For z0 = (z′
0, x0d) ∈ ΩT , let [aij ]Q′

ρ(z′

0), [a0]Q′

ρ(z′

0), and [c0]Q′

ρ(z′

0)

be functions defined in Assumption 2.1 (δ, γ1, ρ0), and we denote
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a#
ρ0

(z0) = sup
ρ∈(0,ρ0)

⎡

⎢

⎣
max

i,j=1,2,...,d

 

Q+
ρ (z0)

|aij(z) − [aij ]Q′

ρ(z′

0)(xd)|μ1(dz)

+

 

Q+
ρ (z0)

|a0(z) − [a0]Q′

ρ(z′

0)(xd)|μ1(dz)

+

 

Q+
ρ (z0)

|c0(z) − [c0]Q′

ρ(z′

0)(xd)|μ1(dz)

⎤

⎥

⎦
.

(5.2)

For the reader’s convenience, recall that μ1, μ̄1 are defined in (4.29). We also recall that 

for a given u, we denote

U = (M−β0ut, M
α−β0DDx′u, λM

−β0u).

We also denote

U ′ = (M−β0ut, M
α−β0DDx′u, λ1/2

M
α/2−β0Du, λM

−β0u).

We begin with the following oscillation estimates for solutions to (5.1) that have small 

supports in the time-variable.

Lemma 5.1. Let ν, ρ0 ∈ (0, 1), p0 ∈ (1, ∞), α ∈ (0, 2), β0 ∈ (α − 1, min{1, α}], γ1 ∈
(p0(β0 − α + 1) − 1, p0(β0 − α + 2) − 1), and γ′

1 = γ1 − p0(β0 − α) ∈ (p0 − 1, 2p0 − 1). 

Assume that u ∈ W 1,2
p (Q+

6ρ(z0), x
γ′

1

d dz) is a strong solution of

{

L u = μ(xd)f in Q+
6ρ(z0),

u = 0 on Q6ρ(z0) ∩ {xd = 0}

for f ∈ Lp0
(Q+

6ρ(z0), x
γ′

1

d dz), and supp(u) ⊂ (t1 − (ρ0ρ1)2−α, t1 + (ρ0ρ1)2−α) for some 

t1 ∈ R and ρ0 > 0. Then,

(

|U − (U)Q+
κρ(z0),μ1

|
)

Q+
κρ(z0),μ1

≤ N
[

κθ + κ−(d+(γ1)++2−α)/p0
(

a#
ρ0

(z0)
1

p0
− 1

p + ρ
(2−α)(1−1/p0)
1

)

]

(|U |p)
1/p

Q+
14ρ(z0),μ1

+ Nκ−(d+(γ1)++2−α)/p0(|Mα−β0f |p0)
1/p0

Q+
14ρ(z0),μ1

, (5.3)

where θ > 0 is defined in Lemma 4.9, p ∈ (p0, ∞), and N = N(p, p0, γ1, α, β0, d, ν) > 0. 

In addition, if β0 ∈ (α − 1, α/2], we also have

(

|U ′ − (U ′)Q+
κρ(z0),μ1

|
)

Q+
κρ(z0),μ1
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≤ N
[

κθ + κ−(d+(γ1)++2−α)/p0
(

a#
ρ0

(z0)
1

p0
− 1

p + ρ
(2−α)(1−1/p0)
1

)

]

(|U ′|p)
1/p

Q+
14ρ(z0),μ1

+ Nκ−(d+(γ1)++2−α)/p0(|Mα−β0f |p0)
1/p0

Q+
14ρ(z0),μ1

. (5.4)

Proof. We split the proof into two cases.

Case 1. We consider ρ < ρ0/14. We denote

Lρ,z0
u = [a0]Q′

6ρ(z′

0)(xd)ut + λ[c0]Q′

6ρ(z′

0)(xd)u − μ(xd)[aij ]Q′

6ρ(z′

0)(xd)DiDju

and

f̃(z) = f(z) + [aij − [aij ]Q′

6ρ(z′

0)(xd)]DiDju

+
[

λ([c0]Q′

6ρ(z′

0) − c0)u + ([a0]Q′

6ρ(z′

0) − a0)ut

]

/μ(xd).

Then, u ∈ W 1,2
p (Q+

6ρ(z0), x
γ′

1

d dz) is a strong solution of

{

Lρ,z0
u = μ(xd)f̃ in Q+

6ρ(z0)

u = 0 on Q+
6ρ(z0) ∩ {xd = 0}.

We note that due to (2.6), the term add −ādd = 0. Therefore, by using Hölder’s inequality 

and (1.4), we obtain

⎛

⎜

⎝

 

Q+
14ρ(z0)

|Mα−β0
(

aij − [aij ]Q′

6ρ(z′

0)(xd)
)

DiDju|p0μ1(dz)

⎞

⎟

⎠

1/p0

≤

⎛

⎜

⎝

 

Q+
14ρ(z0)

|aij − [aij ]Q′

6ρ(z′

0)(xd)|pp0/(p−p0)μ1(dz)

⎞

⎟

⎠

1
p0

− 1
p

×

⎛

⎜

⎝

 

Q+
14ρ(z0)

|Mα−β0DDx′u|pμ1(dz)

⎞

⎟

⎠

1/p

≤ Na#
ρ0

(z0)
1

p0
− 1

p

⎛

⎜

⎝

 

Q+
14ρ(z0)

|Mα−β0DDx′u|pμ1(dz)

⎞

⎟

⎠

1/p

.

By a similar calculation using (1.3), we also obtain the estimate for the term 
[

λ([c0]Q′

6ρ(z′

0)(xd) − c0)u + ([a0]Q′

6ρ(z′

0)(xd) − a0)ut

]

/μ(xd). Thus,
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(|Mα−β0 f̃ |p0)
1/p0

Q+
14ρ(z0),μ1

≤ (|Mα−β0f |p0)
1/p0

Q+
14ρ(z0),μ1

+ Na#
ρ0

(z0)
1

p0
− 1

p (|U |p)
1/p

Q+
14ρ(z0),μ1

.

Then, applying Lemma 4.10, we obtain

(|U − (U)Q+
κρ(z0),μ1

|)Q+
κρ(z0),μ1

≤ Nκθ(|U |p0)
1/p0

Q+
14ρ(z0),μ1

+ Nκ−(d+(γ1)++2−α)/p0(|Mα−β0 f̃ |p0)
1/p0

Q+
14ρ(z0),μ1

≤ N
(

κθ + κ−(d+(γ1)++2−α)/p0a#
ρ0

(z0)
1

p0
− 1

p
)

(|U |p)
1/p

Q+
14ρ(z0),μ1

+ Nκ−(d+(γ1)++2−α)/p0(|Mα−β0f |p0)
1/p0

Q+
14ρ(z0),μ1

.

Therefore, (5.3) holds. In a similar way but applying Remark 4.11, we also obtain (5.4).

Case 2. Consider ρ ≥ ρ0/14. Denoting Γ = (t1 − (ρ0ρ1)2−α, t1 + (ρ0ρ1)2−α), we apply 

(4.39) and the triangle inequality to infer that

 

Q+
κρ(z0)

|U − (U)Q+
κρ(z0),μ1

|μ1(dz) ≤ 2

 

Q+
κρ(z0)

|U(z)|μ1(dz)

≤ Nκ−(d+2−α+(γ1)+)

⎛

⎜

⎝

 

Q+
14ρ(z0)

|U(z)|p0μ1(dz)

⎞

⎟

⎠

1
p0
⎛

⎜

⎝

 

Q+
14ρ(z0)

1Γ(z)μ1(dz)

⎞

⎟

⎠

1− 1
p0

≤ Nκ−(d+2−α+(γ1)+)ρ
(2−α)(1−1/p0)
1

⎛

⎜

⎝

 

Q+
14ρ(z0)

|U(z)|p0μ0(dz)

⎞

⎟

⎠

1/p0

≤ Nκ−(d+2−α+(γ1)+)ρ
(2−α)(1−1/p0)
1 (|U |p)

1/p

Q+
14ρ(z0),μ1

.

Therefore, (5.3) follows. Similarly, (5.4) can be proved. �

Our next lemma gives the a priori estimates of solutions having small supports in t.

Lemma 5.2 (Estimates of solutions having small supports). Let T ∈ (−∞, ∞], ν ∈ (0, 1), 

p, q, K ∈ (1, ∞), α ∈ (0, 2), and γ1 ∈ (β0−α, β0−α+1] for β0 ∈ (α − 1, min{1, α}]. Then, 

there exist sufficiently small positive numbers δ and ρ1, depending on d, ν, p, q, K, α, β0, 

and γ1, such that the following assertion holds. Suppose that ω0 ∈ Aq(R), ω1 ∈
Ap(Rd

+, xγ1

d dx) with

[ω0]Aq(R) ≤ K and [ω1]Ap(Rd
+,x

γ1
d dx) ≤ K.

Suppose that (1.3), (1.4), and (2.6) hold, and Assumption 2.1 (δ, γ1, ρ0) holds with some 

ρ0 > 0. If u ∈ W 1,2
q,p (ΩT , x

p(α−β0)
d ω dμ1) is a strong solution to (1.1) with some λ > 0
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and a function f ∈ Lq,p(ΩT , x
p(α−β0)
d ω dμ1), and u vanishes outside (t1 − (ρ0ρ1)2−α, t1 +

(ρ0ρ1)2−α) for some t1 ∈ R, then

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ‖M

−αu‖Lq,p
≤ N‖f‖Lq,p

, (5.5)

where N = N(d, ν, p, q, α, β0,γ1, K) > 0, Lq,p = Lq,p(ΩT , x
p(α−β0)
d ω dμ1), ω(t, x) =

ω0(t)ω1(x) for (t, x) ∈ ΩT , and μ1(dz) = xγ1

d dxdt. Moreover, if β0 ∈ [0, α/2], then 

it also holds that

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ1/2‖M

−α/2Du‖Lq,p
+ λ‖M

−αu‖Lq,p

≤ N‖f‖Lq,p
.

(5.6)

Proof. As ω0 ∈ Aq((−∞, T )) and ω1 ∈ Ap(Rd
+, xγ1

d dx), by the reverse Hölder’s inequality 

[33, Theorem 3.2], we find p1 = p1(d, p, q, γ1, K) ∈ (1, min(p, q)) such that

ω0 ∈ Aq/p1
((−∞, T )), ω1 ∈ Ap/p1

(Rd
+, xγ1

d dx). (5.7)

Because γ1 ∈ (β0 − α, β0 − α + 1], we can choose p0 ∈ (1, p1) sufficiently closed to 1 so 

that

γ1 ∈ (p0(β0 − α + 1) − 1, p0(β0 − α + 2) − 1).

By (5.3) of Lemma 5.1 and Hölder’s inequality, we have

U#
μ1

≤N
[

κθ + κ−(d+(γ1)++2−α)/p0
(

a#
ρ0

(z0)
1

p0
− 1

p1 + ρ
(2−α)(1−1/p0)
1

)

]

Mμ1
(|U |p1)1/p1

+ Nκ−(d+(γ1)++2−α)/p0Mμ1
(|Mα−β0f |p1)1/p1 in ΩT

for any κ ∈ (0, 1), where N = N(ν, d, p0, p1, α, β0, γ1) > 0 and a#
ρ0

is defined in (5.2). 

Therefore, it follows from Theorem 3.2 and (5.7) that

‖U‖Lq,p(ΩT ,ω dμ1)

≤ N
[

κθ + κ−(d+(γ1)++2−α)/p0
(

δ
1

p0
− 1

p1 + ρ
(2−α)(1−1/p0)
1

)

]

×

× ‖Mμ1
(|U |p1)1/p1‖Lq,p(ΩT ,ω dμ1)

+ Nκ−(d+(γ1)++2−α)/p0‖Mμ1
(|Mα−β0f |p1)

1
p1 ‖Lq,p(ΩT ,ω dμ1)

≤ N
[

κθ + κ−(d+(γ1)++2−α)/p0
(

δ
1

p0
− 1

p1 + ρ
(2−α)(1−1/p0)
1

)

]

‖U‖Lq,p(ΩT ,ω dμ1)

+ Nκ−(d+(γ1)++2−α)/p0‖M
α−β0f‖Lq,p(ΩT ,ω dμ1),

where N = N(d, ν, p, q, α, β0, γ1, K) > 0. Now, by choosing κ sufficiently small and then 

δ and ρ1 sufficiently small depending on d, ν, p, q, α, γ1, β0, and K such that
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N
[

κθ + κ−(d+(γ1)++2−α)/p0
(

δ
1

p0
− 1

p1 + ρ
(2−α)(1−1/p0)
1

)

]

< 1/2,

we obtain

‖U‖Lq,p(ΩT ,ω dμ1) ≤ N(d, ν, p, q, α, β0, γ1, K)‖M
α−β0f‖Lq,p(ΩT ,ω dμ1).

From this and the PDE in (1.1), we obtain

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ‖M

−αu‖Lq,p
≤ N‖f‖Lq,p

.

This proves (5.5). The proof of (5.6) is similar by applying (5.4) instead of (5.3). �

Below, we provide the proof of Theorem 2.2.

Lemma 5.3 (A priori estimates of solutions). Let T ∈ (−∞, ∞], ν ∈ (0, 1), p, q, K ∈
(1, ∞), α ∈ (0, 2), and γ1 ∈ (β0 − α, β0 − α + 1] for β0 ∈ (α − 1, min{1, α}]. 

Then, there exist δ = δ(d, ν, p, q, K, α, β0, γ1) > 0 sufficiently small and λ0 =

λ0(d, ν, p, q, K, α, β0, γ1) > 0 sufficiently large such that the following assertions hold. 

Let ω0 ∈ Aq(R), ω1 ∈ Ap(Rd
+, xγ1

d dx) satisfy

[ω0]Aq(R) ≤ K and [ω1]Ap(Rd
+,x

γ1
d dx) ≤ K.

Suppose that (1.3), (1.4), and (2.6) hold, and suppose that Assumption 2.1 (δ, γ1, ρ0)

holds with some ρ0 > 0. If u ∈ W 1,2
q,p (ΩT , x

p(α−β0)
d ω dμ1) is a strong solution to (1.1)

with some λ≥ λ0ρα−2
0 and f ∈ Lq,p(ΩT , x

p(α−β0)
d ω dμ1), then

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ‖M

−αu‖Lq,p
≤ N‖f‖Lq,p

, (5.8)

where ω(t, x) = ω0(t)ω1(x) for (t, x) ∈ ΩT , Lq,p = Lq,p(ΩT , x
p(α−β0)
d ω dμ1), and N =

N(d, ν, p, q, K, α, β0, γ1) > 0. Moreover, if β0 ∈ (α − 1, α/2], then it also holds that

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ1/2‖M

−α/2Du‖Lq,p
+ λ‖M

−αu‖Lq,p

≤ N‖f‖Lq,p
.

(5.9)

Proof. Let δ, ρ1 be positive numbers defined in Lemma 5.2, and let λ0 > be a number 

sufficiently large to be determined, depending on d, p, q, α, β0, ν,γ1, K. As the proof of 

(5.8) and of (5.9) are similar, we only prove the a priori estimate (5.8). We use a partition 

of unity argument in the time variable. Let δ > 0 and ρ1 > 0 be as in Lemma 5.2 and 

let

ξ = ξ(t) ∈ C∞
0 (−(ρ0ρ1)2−α, (ρ0ρ1)2−α)

be a non-negative cut-off function satisfying
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ˆ

R

ξ(s)q ds = 1 and

ˆ

R

|ξ′(s)|q ds ≤ N

(ρ0ρ1)q(2−α)
(5.10)

for some N = N(q) > 0. For fixed s ∈ (−∞, ∞), let u(s)(z) = u(z)ξ(t −s) for z = (t, x) ∈
ΩT . We see that u(s) ∈ W 1,2

p (ΩT , x
p(α−β0)
d ω dμ1) is a strong solution of

L u(s)(z) = μ(xd)f (s)(z) in ΩT

with the boundary condition u(s) = 0 on {xd = 0}, where

f (s)(z) = ξ(t − s)f(z) + ξ′(t − s)u(z)/μ(xd).

As spt(u(s)) ⊂ (s − (ρ0ρ1)2−α, s + (ρ0ρ1)2−α) × R
d
+, we apply Lemma 5.2 to get

‖M
−αu

(s)
t ‖Lq,p

+ ‖D2u(s)‖Lq,p
+ λ‖M

−αu(s)‖Lq,p
≤ N‖f (s)‖Lq,p

.

Then, by integrating the q-th power of this estimate with respect to s, we get

ˆ

R

(

|M−αu
(s)
t ‖q

Lq,p
+ ‖D2u(s)‖q

Lq,p
+ λq‖M

−αu(s)‖q
Lq,p

)

ds

≤ N

ˆ

R

‖f (s)‖q
Lq,p

ds, (5.11)

where N = N(d, ν, p, q, K, α, β0,γ1) > 0. Now, by the Fubini theorem and (5.10), it 

follows that

ˆ

R

‖M
−αu

(s)
t ‖q

Lq,p
ds

=

ˆ

R

⎛

⎝

T̂

−∞

‖M
−αut(t, ·)‖q

Lp(Rd
+,x

p(α−β0)
d ω1 dμ1)

ω0(t)ξq(t − s) dt

⎞

⎠ ds

=

T̂

−∞

⎛

⎝

ˆ

R

ξq(t − s) ds

⎞

⎠ ‖M
−αut(t, ·)‖q

Lp(Rd
+,x

p(α−β0)
d ω1 dμ1)

ω0(t) dt

= ‖M
−αut‖q

Lq,p(Rd
+,x

p(α−β0)
d ω dμ1)

,

and similarly
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ˆ

R

‖D2u(s)‖q
Lq,p

ds = ‖M
α−β0D2u‖q

Lq,p
,

ˆ

R

‖M
−αu(s)‖q

Lq,p
ds = ‖M

−β0u‖q
Lq,p

.

Moreover,

ˆ

R

‖f (s)‖q
Lq,p

ds ≤ ‖f‖q
Lq,p

+
N

(ρ0ρ1)q(2−α)
‖M

−αu‖q
Lq,p

,

where (5.10) is used and N = N(q) > 0. As ρ1 depends on d, ν, p, q, K, α, β0, γ1, by 

combining the estimates we just derived, we infer from (5.11) that

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ‖M

−αu‖Lq,p
≤ N

(

‖f‖Lq,p
+ ρα−2

0 ‖M
−αu‖Lq,p

)

with N = N(d, ν, p, q, K, α, β0,γ1) > 0. Now, we choose λ0 = 2N . Then for λ ≥ λ0ρα−2
0 , 

we have

‖M
−αut‖Lq,p

+ ‖D2u‖Lq,p
+ λ‖M

−αu‖Lq,p
≤ N‖f‖Lq,p

.

This estimate yields (5.8). �

Now, we have all ingredients to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. The a priori estimates (2.7) and (2.8) follow from Lemma 5.3. 

Hence, it remains to prove the existence of solutions. We employ the technique introduced 

in [10, Section 8]. See also [13, Proof of Theorem 2.3]. The proof is split into two steps, 

and we only outline the key ideas in each step.

Step 1. We consider the case p = q, ω0 ≡ 1, and ω1 ≡ 1. We employ the method of 

continuity. Consider the operator

Lτ = (1 − τ)
(

∂t + λ − μ(xd)Δ
)

+ τL , τ ∈ [0, 1].

It is a simple calculation to check that the assumptions in Theorem 2.2 are satis-

fied uniformly with respect to τ ∈ [0, 1]. Then, using the solvability in Theorem 4.1

and the a priori estimates obtained in Lemma 5.3, we get the existence of a solution 

u ∈ W 1,2
p (ΩT , x

p(α−β0)
d dμ1) to (1.1) when λ ≥ λ0ρα−2

0 , where λ0 is the constant in 

Lemma 5.3.

Step 2. We combine Step 1 and Lemma 5.3 to prove the existence of a strong solution 

u satisfying (2.7). Let p1 > max{p, q} be sufficiently large and let ε1, ε2 ∈ (0, 1) be 

sufficiently small depending on K, p, q, and γ1 such that
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1 − p

p1
=

1

1 + ε1
and 1 − q

p1
=

1

1 + ε2
, (5.12)

and both ω1+ε1
1 and ω1+ε2

0 are locally integrable and satisfy the doubling property. Specif-

ically, there is N0 > 0 such that

ˆ

Γ2r(t0)

ω1+ε2
0 (s) ds ≤ N0

ˆ

Γr(t0)

ω1+ε2
0 (s) ds (5.13)

for any r > 0 and t0 ∈ R, where Γr(t0) = (t0 − r2−α, min{t0 + r2−α, T}). Similarly

ˆ

B+
2r(x0)

ω1+ε1
1 (x) dμ1 ≤ N0

ˆ

B+
r (x0)

ω1+ε1
1 (x) dμ1 (5.14)

for any r > 0 and x0 ∈ Rd
+.

Next, let {fk} be a sequence in C∞
0 (ΩT ) such that

lim
k→∞

‖fk − f‖
Lq,p(ΩT ,x

p(α−β0)
d ω dμ1)

= 0. (5.15)

By Step 1, for each k ∈ N, we can find a solution uk ∈ W 1,2
p1

(ΩT , x
p1(α−β0)
d dμ1) of (1.1)

with fk in place of f , where λ ≥ λ0ρα−2
0 for λ0 = λ0(d, ν, p1, p1, K, α, β0, γ1) > 0. Observe 

that if the sequence {uk} is in W 1,2
q,p (ΩT , x

p(α−β0)
d ω dμ1), then by applying the a priori 

estimates in Lemma 5.3, (5.15), and the linearity of the equation (1.1), we conclude that 

{uk} is Cauchy in W 1,2
q,p (ΩT , x

p(α−β0)
d ω dμ1). Let u ∈ W 1,2

q,p (ΩT , x
p(α−β0)
d ω dμ1) be the 

limit of the sequence {uk}. Then, by letting k → ∞ in the equation for uk, we see that 

u solves (1.1).

It remains to prove that for each fixed k ∈ N, uk ∈ W 1,2
q,p (ΩT , x

p(α−β0)
d ω dμ1). To this 

end, let us denote

DR = (−R2−α, min{R2−α, T}) × B+
R .

Then, let R0 > 0 be sufficiently large such that

supp(fk) ⊂ DR0
. (5.16)

We note that R0 depends on k. It follows from (5.12), (5.13), (5.14), and Hölder’s in-

equality that

‖uk‖
W

1,2
q,p (D2R0 ,x

p(α−β0)
d ωdμ1)

≤ N(d, p, q, p1, α, γ1, β0, R0)‖uk‖
W

1,2
p1 (D2R0 ,x

p1(α−β0)
d dμ1)

< ∞.

Hence, we only need to prove
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‖uk‖
W

1,2
q,p (ΩT \DR0 ,x

p(α−β0)
d ωdμ1)

< ∞.

This is done by the localization technique employing (5.12), (5.13), (5.14), (5.16), and 

Hölder’s inequality, using the fast decay property of solutions when the right-hand side 

is compactly supported. We skip the details as the calculation is very similar to that of 

[10, Section 8], and also of [13, Step II - Proof of Theorem 2.3]. The proof of Theorem 2.2

is completed. �

Next, we prove Corollary 2.3.

Proof of Corollary 2.3. It is sufficient to show that we can make the choices for γ1, β0, 

and ω1 to apply Theorem 2.2 to obtain (2.9) and (2.10). Indeed, the choices are similar 

to those in the proof of Theorem 4.1. To obtain (2.9), we take β0 = min{1, α}, and with 

this choice of β0, we have

α − β0 = (α − 1)+ and (β0 − α, β0 − α + 1] = (−(α − 1)+, 1 − (α − 1)+].

Then, let γ1 = 1 − (α − 1)+ and γ′ = γ − [γ1 + p(α − 1)+]. From the choice of γ1 and 

the condition on γ, we see that

−1 − γ1 < γ′ < (1 + γ1)(p − 1). (5.17)

Now, let ω1(x) = xγ′

d for x ∈ R
d
+. It follows from (5.17) that ω1 ∈ Ap(xγ1

d dx). As 

Assumption (ρ0, γ1, δ) holds, we can apply (2.7) to obtain (2.9).

Next, we prove (2.10). In this case, we choose β0 = α/2, γ1 = 1 − α/2, and

γ′ = γ − [γ1 + pα/2]. (5.18)

We use the fact that γ ∈ (pα/2 − 1, 2p − 1) and (5.18) to get (5.17). As Assumption 

(ρ0, 1 − α/2, δ) holds, by taking ω1(x) = xγ′

d , we obtain (2.10) from (2.8).

Finally, we prove the last assertion of the corollary on the C(1+β)/2,1+β-regularity 

of the solution u. Note that the C(1+β)/2,1+β-regularity in the interior of ΩT follows 

from the standard parabolic Sobolev embedding theorem. To prove the C(1+β)/2,1+β-

regularity near {xd = 0}, it is sufficient to prove such regularity on Q
+

1/2. This follows 

immediately from Proposition 3.3. The proof is completed. �

6. Degenerate viscous Hamilton-Jacobi equations

To demonstrate an application of the results in our paper, we consider the following 

degenerate viscous Hamilton-Jacobi equation

{

ut + λu − μ(xd)Δu = H(z, Du) in ΩT ,

u = 0 on (−∞, T ) × ∂R
d
+,

(6.1)
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where μ satisfies (1.3) and H : ΩT × R
d → R is a given Hamiltonian. We assume that 

there exist β, � > 0, and h : ΩT → R+ such that, for all (z, P ) ∈ ΩT × R
d,

|H(z, P )| ≤ ν−1(min{xβ
d , 1}|P |
 + xα

d h(z)). (6.2)

The following is the main result in this section.

Theorem 6.1. Let p ∈ (1, ∞), α ∈ (0, 2), and γ ∈ (p(α − 1)+ − 1, 2p − 1). Assume 

that (6.2) holds with � = 1, β ≥ 1, and h ∈ Lp(ΩT , xγ
d dz). Then, there exists λ0 =

λ0(d, p, α, β, γ) > 0 sufficiently large such that the following assertion holds. For any 

λ ≥ λ0, there exists a unique solution u ∈ W 1,2
p (ΩT , xγ

d dz) to (6.1) such that

‖M
−αut‖Lp

+ ‖D2u‖Lp
+ λ‖M

−αu‖Lp
≤ N‖h‖Lp

,

where ‖ · ‖Lp
= ‖ · ‖Lp(ΩT ,xγ

d dz) and N = N(d, p, α, β, γ) > 0.

Proof. The proof follows immediately from Theorem 4.1 and the interpolation inequality 

in Lemma 6.3 (i) below. �

Remark 6.2. Overall, it is meaningful to study (6.1) for general Hamiltonians H. It is 

typically the case that if we consider (6.1) in (0, T ) × R
d
+ with a nice given initial data, 

then we can obtain Lipschitz a priori estimates on the solutions via the classical Bernstein 

method or the doubling variables method under some appropriate conditions on H. See 

[6,2,31] and the references therein. In particular, ‖Du‖L∞([0,T ]×Rd
+) ≤ N , and hence, the 

behavior of H(z, P ) for |P | > 2N + 1 is unrelated and can be modified according to our 

purpose. As such, if we assume (6.2), then it is natural to require that � = 1 because of 

the above.

We note however that assuming (6.2) with � = 1 and β ≥ 1 in Theorem 6.1 is rather 

restrictive. It is not yet clear to us what happens when 0 ≤ β < 1, and we plan to revisit 

this point in the future work.

To obtain a priori estimates for solutions to (6.1), we consider the nonlinear term H

as a perturbation. We prove the following interpolation inequalities when the nonlinear 

term satisfies (6.2) with � = 1 and � = 2, which might be of independent interests.

Lemma 6.3. Let p ∈ (1, ∞), β ≥ 0, γ > −1, 1 ≤ � ≤ d
d−p , and θ = 1

2 (1 + d
p − d


p ). Assume 

that H satisfies (6.2). The following interpolation inequalities hold for every u ∈ C∞
0 (ΩT )

and f̃(z) = x−α
d min{xβ

d , 1}|Du|
,

(i) If � = 1 and β ≥ 1,

‖f̃‖Lp(ΩT ,xγ
d dz) ≤ N‖M

−αu‖1/2

Lp(ΩT ,xγ
d dz)

‖D2u‖1/2

Lp(ΩT ,xγ
d dz)

+ N‖M
−αu‖Lp(ΩT ,xγ

d dz),
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where N = N(d, p, β, γ) > 0.

(ii) If � = 2, p ≥ d
2 , and β ≥ max{ γ

p + dα
2p , γp + 2 + α

d − dα
p }, then

‖f̃‖Lp(ΩT ,xγ
d dz) ≤ N‖M

−αu‖2(1−θ)

Lp(ΩT ,xγ
d dz)

‖D2u‖2θ
Lp(ΩT ,xγ

d dz)

+ N‖M
−αu‖2

Lp(ΩT ,xγ
d dz),

where N = N(d, p, β, γ) > 0.

Proof. For m ∈ Z, set Ωm = {z ∈ ΩT : 2−m−1 < xd ≤ 2−m}. By the Gagliado-

Nirenberg interpolation inequality, for m ∈ Z,

‖Du‖Lp	(Ωm) ≤ N
(

‖u‖1−θ
Lp(Ωm)‖D2u‖θ

Lp(Ωm) + 22mθ‖u‖Lp(Ωm)

)

.

Hence, for m ≥ 0,

‖M
β−α|Du|
‖p

Lp(Ωm,xγ
d dz)

=

ˆ

Ωm

x
p(β−α)+γ
d |Du|p
 dz

≤ 2−m(p(β−α)+γ)

ˆ

Ωm

|Du|p
 dz

≤ N2−m(p(β−α)+γ)

⎛

⎝

ˆ

Ωm

|u|p dz

⎞

⎠


(1−θ) ⎛

⎝

ˆ

Ωm

|D2u|p dz

⎞

⎠


θ

+ N2−m(p(β−α)+γ+d−p
−d
)

⎛

⎝

ˆ

Ωm

|u|p dz

⎞

⎠




≤ N2−m(p(β−α)+γ+p
α(1−θ)−
γ)‖M
−αu‖p
(1−θ)

Lp(Ωm,xγ
d dz)

‖D2u‖p
θ
Lp(Ωm,xγ

d dz)

+ N2−m(p(β−α)+γ+d−p
−d
+p
α−
γ)‖M
−αu‖p


Lp(Ωm,xγ
d dz)

.

By performing similar computations, we get that, for m < 0,

‖M
−α|Du|
‖p

Lp(Ωm,xγ
d )

≤ N2−m(−pα+γ+p
α(1−θ)−
γ)‖M
−αu‖p
(1−θ)

Lp(Ωm,xγ
d dz)

‖D2u‖p
θ
Lp(Ωm,xγ

d dz)

+ N2−m(−pα+γ+d−p
−d
+p
α−
γ)‖M
−αu‖p


Lp(Ωm,xγ
d dz)

.

Then, if � = 1 and β ≥ 1, we have
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⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

p(β − α) + γ + p�α(1 − θ) − �γ = p(β − α
2 ) ≥ 0,

p(β − α) + γ + d − p� − d� + p�α − �γ = p(β − 1) ≥ 0,

−pα + γ + p�α(1 − θ) − �γ = −pα
2 ≤ 0,

−pα + γ + d − p� − d� + p�α − �γ = −p ≤ 0.

We thus obtain (i). Similarly, the above four inequalities hold true when � = 2, p ≥ d
2 , 

and β ≥ max{ γ
p + dα

2p , γp + 2 + α
d − dα

p }, which yield (ii). �
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