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Existence and uniqueness
Weighted Sobolev spaces

1. Introduction and main results
1.1. Settings

Let T € (—o00,00] and Qp = (—00,T) x R% with R4 = R4™! x R, for d € N and
R4 = (0,00). We study the following degenerate parabolic equation in nondivergence
form

(1.1)

Lu=p(xq)f in Qr,
u=0 on (—o0,T) x OR?,

where u : Q7 — R is an unknown solution, f : Q7 — R is a given measurable forcing
term, and

Lu = ap(2)ug + Aco(2)u — p(zq)ai;(2)D;Dju. (1.2)
Here in (1.2), A > 0 is a constant, z = (¢,2) € Qp with x = (2/,74) € R¥*! x Ry, D;

denotes the partial derivative with respect to x;, and ag,co : Q7 — R and p: Ry — R
are measurable and satisfy

€v,v], VYzaeRy, VzeQr, (1.3)

ap(z), co(2),

for some given o € (0,2) and v € (0,1). Moreover, (a;;) : Qr — R4*? are measurable
and satisfy the uniform ellipticity and boundedness conditions

VIEP? < aij(2)&&5,  lay(2)| <v™h, YV zeQr, (1.4)

for all &€ = (&1, &, ...,&4) € RY,

We observe that due to (1.3) and (1.4), the diffusion coefficients in the PDE in (1.1)
are degenerate when z4 — 0T, and singular when x4 — oo. We also note that the PDE
in (1.1) can be written in the form

[ao(2)ur + Aco(2)u]/(xa) — aij(2)D;Dju=f in Qp,

in which the singularity and degeneracy appear in the coefficients of the terms involving
u; and u. In the special case when ag = ¢o = 1, u(zq) = 2§, and (a;;) is an identity
matrix, the equation (1.1) is reduced to
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{ut—i—)\u—xZ‘Au zGf in Qp, (15)

U =0 on (—oo,T)xa]Ri,

in which the results obtained in this paper are still new.

The theme of this paper is to study the existence, uniqueness, and regularity estimates
for solutions to (1.1). To demonstrate our results, let us state the following theorem
which gives prototypical estimates of our results in a special weighted Lebesgue space
L, (Qp, 2} dz) with the power weight 2 and norm

1/p

£z, 27dz) = /If(t,x)\px} dxdt
T
For any measurable function f and s € R, we define the multiplicative operator
(M*f)() = 23 f ().

Theorem 1.1. Let o € (0,2),A >0, p € (1,00), and v € (p(a—1)+—1,2p—1). Then, for
every [ € L,(Qr,x)) dz), there exists a unique strong solution u to (1.5), which satisfies

M, + AIM®ullz, + D%z, < NIfl, (1.6

and additionally
A2IM 2 Dullr, < N|flle, if 7€ (ap/2-1,2p—1), (1.7)
where || - [z, = || - |z, (@r23dz) and N = N(d,v,a,7,p) > 0. Ifw% < 1, then the

solution u is also in C(HP)/21H8((—oo, T) x Ri) with B =1— M%.

See Corollary 2.3 and Theorem 4.1 for more general results. We note that the ranges
of v in (1.6)—(1.7) are optimal as pointed out in Remarks 2.5-2.7 below. In fact, in
this paper, a much more general result in weighted mixed-norm spaces is established in
Theorem 2.2. As an application, we obtain a regularity result for solutions to degenerate
viscous Hamilton-Jacobi equations in Theorem 6.1. To the best of our knowledge, our
main results (Theorems 1.1, 2.2, 4.1, Corollary 2.3, and Theorem 6.1) appear for the first
time in the literature.

1.2. Relevant literature

The literature on regularity theory for solutions to degenerate elliptic and parabolic
equations is extremely rich, and we only describe results related to (1.1).

The divergence form of (1.1) was studied by us in [15] with motivation from the
regularity theory of solutions to degenerate viscous Hamilton-Jacobi equations of the
form
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up + Au — p(xg)Au = H(z, Du) in Qrp. (1.8)

Here, H : Qp x R — R is a given Hamiltonian. Under some appropriate conditions
on H, we obtain a regularity and solvability result for (1.8) in Theorem 6.1. Another
class of divergence form equations, which is closely related to that in [15], was analyzed
recently in [21] when o < 1. When o = 2 and d = 1, a specific version of (1.8) gives
the well-known Black-Scholes-Merton PDE that appears in mathematical finance. The
analysis for (1.1) when « > 2 is completely open.

A similar equation to (1.1), (1.5), and (1.8)
ur + Au— BDgu — xzqAu = f in Qr

with an additional structural condition 8 > 0, an important prototype equation in the
study of porous media equations and parabolic Heston equation, was studied extensively
in the literature (see [7,18,25,20,21] and the references therein). We stress that we do not
require this structural condition in the analysis of (1.1) and (1.8), and thus, our analysis
is rather different from those in [7,18,25].

We note that similar results on the wellposedness and regularity estimates in weighted
Sobolev spaces for a different class of equations with singular-degenerate coefficients
were established in a series of papers [11-14]. There, the weights of singular/degenerate
coefficients of u; and D?u appear in a balanced way, which plays a crucial role in the
analysis and functional space settings. If this balance is lost, then Harnack’s inequalities
were proved in [4,5] to be false in certain cases. However, with an explicit weight z§
as in our setting, it is not known if some version of Harnack’s inequalities and Hdélder
estimates of the Krylov-Safonov type as in [29] still hold for in (1.1). Of course, (1.1)
does not have this balance structure, and our analysis is quite different from those in
[11-14].

Finally, we emphasize again that the literature on equations with singular-degenerate
coefficients is vast. Below, let us give some references on other closely related results.
The Hoélder regularity for solutions to elliptic equations with singular and degenerate
coefficients, which are in the As-Muckenhoupt class, were proved in the classical papers
[16,17]. See also the books [19,35], the papers [22,37,38], and the references therein for
other results on the wellposedness, Holder, and Schauder regularity estimates for various
classes of degenerate equations. Note also that the Sobolev regularity theory version of
the results in [16,17] was developed and proved in [3]. In an interesting paper [24], the
author developed Sobolev regularity theory for a class of nondivergence form parabolic
equations in C'!' domains:

uy = p®ai; Diju+ b Diu + ¢ 2eu + f,

where v is a “regularized” distance function to the boundary, o € [0,0), and a% are
uniformly elliptic and uniformly continuous. It is also assumed that the coefficients have
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certain control near the boundary, in particular, b;(¢,z),c(¢t,2) — 0 as ¥(z) — 0. In
addition, we would like to point out that equations with degenerate coefficients also
appear naturally in geometric analysis [32,39], in which Hélder and Schauder estimates
for solutions were proved.

1.3. Main ideas and approaches

The main ideas of this paper are along the lines with those in [15]. However, at the
technical level, the proofs of our main results are quite different from those in [15]. More
precisely, instead of the Lo-estimates as in [15], the starting point in this paper is the
weighted Ly-result in Lemma 4.3 which is based on the weighted L, for divergence form
equations established in [15], an idea introduced by Krylov [27], together with a suitable
scaling. Moreover, while the proofs in [15] use the Lebesgue measure as an underlying
measure, in this paper we make use of more general underlying measure p;(dz) = x)'
with an appropriate parameter ;. In particular, this allows us to obtain an optimal
range of exponents for power weights in Corollary 2.3. See Remarks 2.5 - 2.7. Several
new Holder estimates for higher order derivatives of solutions to a class of degenerate
homogeneous equations are proved in Subsections 4.2—4.3. The results and techniques
developed in these subsections might be of independent interest.

Organization of the paper

The paper is organized as follows. In Section 2, we introduce various function spaces,
assumptions, and then state our main results. The filtration of partitions, a quasi-metric,
the weighted mixed-norm Fefferman-Stein theorem and Hardy-Littlewood theorem are
recalled in Section 3. A weighted parabolic embedding result is also proved in this section.
Then, in Section 4, we consider (1.1) in the case when the coefficients in (1.1) only depend
on the x4 variable. A special version of Theorem 2.2, Theorem 4.1, will be stated and
proved in this section. The proofs of Theorem 2.2 and Corollary 2.3 are given in Section 5.
Finally, we study the degenerate viscous Hamilton-Jacobi equation (1.8) in Section 6.

2. Function spaces, parabolic cylinders, and main results
2.1. Function spaces

Fix p,q € [1,00), —00 < § < T < +00, and a domain D C R%. Denote by L,((5,T) x
D) the usual Lebesgue space consisting of measurable functions v on (S,T") x D such
that

1/p

lullL, ((s.myxD) = / lult, )P dudt | < oo,
(S, T)xD
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For a given weight w on (S,T) x D, let L,((S,T) x D,w) be the weighted Lebesgue space
on (S,T) x D equipped with the norm

1/p
llullz, (s, r)xDw) = / |u(t, z)[Pw(t, z) dedt < 0.

(S, T)xD

For the weights wo = wp(t), w1 = wi(x), and a measure o on D, set w(t, x) = wo(t)ws ()
and define L, ,((S,T') x D,wdo) to be the weighted and mixed-norm Lebesgue space on
(S,T) x D equipped with the norm

q/p /4

T
lullz,  (52)xDwdo) = / / fu(t, )P () o(dz) | wolt)dt | < oo
S D

2.1.1. Function spaces for nondivergence form equations
Consider o > 0. We define the solution spaces as follows. Firstly, define

W2((S,T) x D,w) = {u : M~ *u, M~ %u;, D*u € L,((S,T) x D,w)},

where, for u € W,2((S,T) x D,w),

||U||W;~2((S,T)xp,w)

= M™%z, (s7)xDw) + M™%l 1, (5.7 xDw) + 1D*ullL, (5,75 D)

and for s € R the multiplicative operator M* is defined as M f(-) = z3f(-).

Let 7/2,1’2((5, T)xD,w) be the closure in I/I/'pl’z((S7 T)xD,w) of all compactly supported
functions in C*°((S,T) x D) vanishing near D N {x4 = 0} if DN {z4 = 0} is not empty.
The space #,"2((S,T) x D,w) is equipped with the same norm || - lyr2(s1)xDw) =
II - |‘W;,2((S’T)><,D7w). When there is no time dependence, we write these two spaces as

2 2 .

W5 (D,w) and #,7(D,w), respectively.

Next, denote by

1,2
W, (S, T) x D,wdo)
={u : M™%, M™%, D*u € Ly, ((S,T) x D,wdo)},

which is equipped with the norm

lullwr2(s,mxDwdey = M™%l L, ,((5,7)xDwdo)

+ [IM™%u| L, (5, 7)xDwdo) + ||D2U||Lq,p((s,T)xD,w do)-
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Let #.'2((S,T) x D,wdo) be the closure in W} >((S,T) x D,wdo) of all compactly
supported functions in C°°((S,T) x D) vanishing near D N {xy = 0} if DN {zg =
0} is not empty. The space #,*((S,T) x D,wdo) is equipped with the same norm

Iy, x 0w doy = 1 lwi2(s.0)x D, dor)-

2.1.2. Function spaces for divergence form equations
We also need function spaces for divergence form equations in this paper, which are
taken from [15]. Set

W(S,T) x D,w) = {u . M~°/2y, Du € L,((S,T) x D,w)},

which is equipped with the norm

lullws (5.1 x Dy = IM™ 2]l 1 ((57)xDw) + DUl Ly ((5.7)x D)

We denote by #,}((S,T) x D,w) the closure in W) ((S,T) x D,w) of all compactly
supported functions in C>°((S, T') x D) vanishing near DN{xy = 0} if DN{z4 = 0} is not
empty. The space 7/; ((S,T) x D,w) is equipped with the same norm || - ||Wp1((57T)XD7w) =
I W (5,7)xDw)-

Set

-1
H (S, T) x D,w)
= {u :u = p(xq)DiF; + fi1 + f2, where Ml_afl,M_a/zfg € L,((S,T) x D,w)
and F = (Fy,...,Fy) € Ly((S,T) x D,w)*},

equipped with the norm
Hu||H;1((S,T)><D,w)

=inf {||F||z,((s1)xDw) + M7 fi] + (M7 2 fo| |1, (5,7 x D)
u = p(xa) D;iF; + f1+ fa}.

Define
’H;,((S,T) x D,w) = {u tu € 7/1,1((5',T) X D,w)),us € H;l((S, T) x D,w)},
where, for u € H,((S,T) x D,w),

a/2

[ullrg(s.m)xpw) = M7 ullL, (5,1 xD,0) + [1DullL, ((57)xD,0)

+ Hut||]I-]I;1((S,T)><D,w)'
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2.2. Parabolic cylinders

We use the same setup as that in [15]. For 2o = (2§, 704) € R x R, and p > 0,
denote by B, (o) the usual ball with center zo radius p in R?, Bj(z(,) the ball center x,
radius p in R4, and

B (z0) = By(zo) NRY.
We note that (1.1) is invariant under the scaling
(t,x) = (827, sz), s> 0. (2.1)
For x4 ~ xoq > 1, a;; = 6;j, and A = f = 0, then (1.1) behaves like a heat equation
uy — xoyAu =0,
which can be reduced to the heat equation with unit heat constant under the scaling
(t,z) — (szfo‘t,sl*”‘/za:gdamx), s> 0.

It is thus natural to use the following parabolic cylinders in Q7 in this paper. For
zo = (to, z0) € (—00,T) x RY with zg = ({,z04) € R¥™1 x Ry and p > 0, set

Qp(zO) = (tO - ,027&’ tO) X Br(p,zo{i)(x())a
Q, (20) = Qp(20) N {zq > 0},

where
r(p, Toq) = max{p, :cOd}o‘/Qpl*”‘/z. (2.3)

Of course, Q,(20) = Qf (20) C (—00,T) xR for p € (0, z0q). For 2’ = (t,2') € RxR41,
we write

Q,(2') = (t = p*~*,10) x B ().

Finally, when zg = 0,%y = 0, for simplicity of notation we drop ¢, z0 and write B, =
B,(0),Q, = Q,(0), and Qf = Q(0), etc.

2.3. Main results

Throughout the paper, for a locally integrable function f, a locally finite measure w,
and a domain Q C R4t! we write
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1
(flo ZZf(Svy) dyds, (HNow= m@/f(s,y)w(dyds). (2.4)

Also, for a number v; € (—1,00) to be determined, we define
pa(dz) = )t dadt. (2.5)

We impose the following assumption on the partial mean oscillations of the coefficients
(@ij), ao, and co.

Assumption 2.1 (pg,71,9). For every p € (0,p0) and zg = (2§, z04) € 7, there exist
[@ijlp,2rs [aolp,2rs [colp,2 - ((®a —7(p, xa))+,2xa +7r(p,24)) — R such that (1.3)—(1.4) hold
on ((zqg —r(p,xa))+,xa+1(p,xa)) With [aijlpzr, [aolp.zr, [colp,z in place of (ai;), ao, co,
respectively, and

o) = max f o) = [l (@) 1 (d2)

1<i,5<d
Q7 (20)
o laos) = laolp (@)l (@)
QY (2)
+ f lco(2) — [colpor ()| 2 (d2) < 6.
QF (2)

We note that the un-weighted partial mean oscillation was introduced in [23] to study
a class of elliptic equations with uniformly elliptic and bounded coefficients (i.e., y; =
a = 0). Note also that by dividing the equation (1.1) by a4q and adjusting v, we can
assume without loss of generality throughout the paper that

Qqqd = 1. (26)

The theorem below is the first main result of our paper, in which the definition of the
A, Muckenhoupt class of weights can be found in Definition 3.1 below.

Theorem 2.2. Let T € (—o0,00], v € (0,1), p,q, K € (1,00), a € (0,2), and v1 € (By —
a, fo—a+1] for By € (a — 1, min{1, a}]. Then, there exist 6 = é(d,v,p,q, K, o, fo, V1) >
0 sufficiently small and Mg = \o(d, v, p,q, K, o, Bo,v1) > 0 sufficiently large such that the
following assertion holds. Suppose that (1.3), (1.4), and (2.6) are satisfied, wy € A4(R),
wy € A,,(]Ri,a::j“ dzr) with

[wola,) < K and  [wila,®d o)1 de) < K-
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Suppose also that Assumption 2.1 (pg,71,0) holds for some py > 0. Then, for any func-
tion f € Lq7p(QT,xZ(a_ﬁ°)wd,u1) and A\ > )\Opa@_a), there exists a strong solution
ue %{éQ(QT,mZ(a_ﬁo)w du) to the equation (1.1), which satisfies

M™%z, , + 1Dl + AIM™ulL, , < NI|f[l

ap — q,p?

2.7)

where w(t,z) = wo(t)wi(z) for (t,x) € Qp, Ly, = Lq,p(QT,wz(afﬂo)w dur) with py
defined in (2.5), and N = N(d,v,p,q, K, a, fo,71) > 0. Moreover, if By € (o — 1, /2],
then it also holds that

M~ wlln, , + [1D%uls, , + AIM ™ "ulls, , + A2 M~ Dull,,

(2.8)
< N fllzg,-

The following is an important corollary of Theorem 2.2 in which w; is a power weight
of the x4 variable and [y and 7y are specifically chosen.

Corollary 2.3. Let T € (—o0,00], v € (0,1), p,q € (1,00), @ € (0,2), and v € (p(a —
1)y —1,2p —1). Then, there exist § = 6(d,v,p, q,a,7y) > 0 sufficiently small and \g =
Ao(d, v, p,q,c,y) > 0 sufficiently large such that the following assertion holds. Suppose
that (1.3), (1.4) hold and suppose also that Assumption 2.1 (po,1 — (o — 1)4,0) holds
for some pg > 0. Then, for any f € Lq,(Qr,z)dz) and X > /\0p5(2_a)
strong solution u € W2 (Qp, x) dz) to the equation (1.1), which satisfies

, there exists a

M~ wlle,,, + D%z, + AIM™"ullz,,, < N|f

ap — q,p?

(2.9)

where Lq, = Lq,(Qp,2}dz) and N = N(d,v,p,q,c,y) > 0. If Assumption 2.1 (po,1 —
a/2,9) also holds and v € (ap/2 — 1,2p — 1), then we have

IMu ]z, , + D]z, , + MM ], , + X [MDul,, < N|f|z,,. (210)
Additionally, if ‘H% —&—% < 1, then the solution u is also in CU+P)/21H8((—oo, T) x ﬁi)
with f=1— &0 2,

P q
Remark 2.4. By viewing solutions to elliptic equations as stationary solutions to
parabolic equations, from Theorem 2.2 and Corollary 2.3, we derive the correspond-
ing results for elliptic equations. Also, by using a localization technique, similar results
on local boundary quﬁ estimates as those in [11, Corollary 2.10] can be derived.

In the remarks below, we give examples showing that the ranges of v in (1.6)—(1.7) as
well as (2.9)—(2.10) are optimal. We note that the range of v for the estimate of Du in
(1.7), (2.8), and (2.10) is smaller than that for u,u;, D?u in (1.6), (2.7), and (2.9). See
Remark 2.6 below to see the necessity of such different ranges.
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Remark 2.5. When « € (0,1), the range (p(a — 1)4 — 1,2p — 1) for the power v in (1.6)
becomes (—1,2p — 1), which agrees with the range in [26] for equations with uniformly
elliptic and bounded coefficients. See also [13] and [34] in which a similar range of the
power ~ is also used in for a class of equations of extensional type. When a € [1,2),
the lower bound p(a—1)4 — 1 for «y in (1.6) is optimal. To see this, consider an explicit
example when d =1, A > 0, T' < oo, and

u(t,z) = (z + ca® ) &(z)eM for (¢,z) € Qr.

Here, £ € C*°([0,00),[0,00)) is a cutoff function such that £ = 1 on [0,1], £ = 0 on
[37 OO), ||§/HL°°(]R) <1, and

2\

‘T B-ae-a)

Set

Ft,z) =27 (us + M) — Ugy.
Then, u solves

U + A\ — 2%Ugy = x4 f in Qp

and it satisfies the boundary condition

u(t,0) =0 forte (—oo,T).
Moreover, we see that M~ “u;, M™%y € L,(Qp,z7) for v > p(aw — 1) — 1. We claim that

feLy(Qr, 2P D7) but M™%, M™% ¢ L, (Qp,2P(@~D71), (2.11)

To prove the claim (2.11), we note that

/|gc_°‘u|psvp(‘°‘_1)_1 dz:/|x_1u|px_1dz
QT QT

1
=/
0

Thus, M~ %u;, M~%u ¢ L, (Qp,2P(@=1=1),
We next note that f(¢,z) =0 for (¢,z) € (—o0,T] x [3,00), and

é\;ﬂ

1
xLePM dtdy = N/a:*1 dx = oo.
0

ft,z) = 2cha3 722 for (¢,z) € (—o0,T] x [0, 1].
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From this and
1T 1
// |32 PPl =LAt gp gy — N/xp(2_a)_1dx < 00,
00 0

it follows that f € L,(Qp, 2P~ D=1) and (2.11) is verified.

Remark 2.6. When « € (0, 2), the lower bound ap/2—1 for «y in (1.7) is optimal. Indeed,
consider the same example as that in Remark 2.5 above. It is clear that M~%/2y, €
L,(Qp,27) for 4 > ap/2 — 1. On the other hand, M~%/2u, ¢ L,(Qr,z°?/271) as

1
/ ‘Ifa/2u$|pxap/2*1 dz = / |um|px71 dz > /
Qr 0

Qr

2 LePM dtdr = co.

é\*ﬂ

Besides, f(t,z) =0 for (t,z) € (=00, T] x [3,00), and
ft,z) = 2cha3 722 for (t,z) € (—oo0,T] x [0, 1].

Hence, f € L,(Qp,z°P/271) as
1T 1
//|$3_2a|px“p/2_1ep)‘tdtdx = N/xp(3_3°‘/2)_1dx < 00.
0 0 0

Remark 2.7. We also have that the upper bound v < 2p — 1 in (1.6)—(1.7) is optimal.
Indeed, for v = 2p — 1, the trace of WI? (D, :czp _1) is not well defined. For simplicity, let
d=1,D=10,1/2], and consider

¢(z) = log(| log ).
Then,
1 —1 -2
bre = 5 (logal " — [loga|?).
It is clear that ¢ € W2([0,1/2],#*~'), and ¢ is not finite at 0.
3. Preliminaries
3.1. A filtration of partitions and a quasi-metric
We recall the construction of a filtration of partitions {Cy,},ecz (i-e., dyadic decom-

positions) of R x R¢ in [15], which satisfies the following three basic properties (see
[28]):
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(i) The elements of partitions are “large” for big negative n’s and “small” for big
positive n’s: for any f € L1 joc,

Clenén |C] = 00 asn — —oo, nlgrr;o(f)cn(z) = f(2) ae.,

where C),(z) € C,, is such that z € Cy,(2).

(ii) The partitions are nested: for each n € Z, and C € C,,, there exists a unique
C’' € C,,_1 such that C c C".

(iii) The following regularity property holds: For n, C, C” as in (ii), we have

|C'] < No|C,
where Ny > 0 is independent of n, C, and C’.

For s € R, denote by |s] the integer part of s. For a fixed a € (0,2) and n € Z, let
ko = |—n/(2 — «)|. The partition C,, contains boundary cubes in the form

((F—1)27™, 527" x (i12%0, (i1 + 1)250] x -+ x (ig_12%0, (ig—1 4+ 1)2%] x (0, 2"°],
where j,71,...,7q—1 € Z, and interior cubes in the form
. —n o—n - oky (- ko N ko
((J—1D)277, 527" x (41272, (i1 + 1)272] x -+ x (142"2, (iq + 1)272],

where j,71,...,1q € Z and

iq2% € [2F1,2MHL) for some integer ki > ko, ko = |(—n 4 k1a)/2] — 1. (3.1)
It is clear that ko increases with respect to k; and decreases with respect to n. As
k1 > ko > —n/(2 —a) — 1, we have (—n + k1) /2 — 1 < ky, which implies ko < k7 and
(ig + 1)2k2 < 2M+1 According to (3.1), we also have

(2k2/2k1)2 ~ 2—n/(2k1)2—a’

which allows us to apply the interior estimates after a scaling.
The quasi-metric ¢ : Qs X Qoo — [0, 00) is defined as

Q((t, ‘T)a (Sv y)) = |t - 5|1/(27a) + min{|:r - y|a |$ - y|2/(27a) min{wda yd}ia/(zia)}'
There exists a constant K7 = K7(d, @) > 0 such that

o((t, @), (s,y)) < K1(o((t,2), (. 2)) + o((L, ). (5,9)))

for any (t,2), (5,9), (£,4) € e, and o((t,2), (5,)) = 0 if and only if (£,2) = (s,3).
Besides, the cylinder @ (20) defined in (2.2) is comparable to
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{(t,z) € Qr : t < to, o((t,x), (to,z0)) < p}.

Of course, (Qr, 0) equipped with the Lebesgue measure is a space of homogeneous type
and we have the above dyadic decomposition.

3.2. Mazimal functions and sharp functions

The dyadic maximal function and sharp function of a locally integrable function f
and a given weight w in 2., are defined as

1
Masof () = sup — s / (5, 9)(s, y) dyds,
Cn(2)eC,
FE(2) = sup — / F(5.9) = (P oy ol(s, ) dyds.
dveol2) = S0P T ) ! n(@wlls:
Cp(2)eC,

Observe that the average notation in (2.4) is used in the above definition. Similarly, the
maximal function and sharp function over cylinders are given by

1
Mof(z)=  sip  —t / 1£(5,9) (s, y) dyds,
20 (20), 2ot W(@p (20))
Q7 (20)
1
A= s / 1F(5:8) — (P oo (5. ) dyds.
zeQ;(zoLzOe@W(QX(Zo))w( | QF (20)

We have, for any z € Q,

Maywf(z) SNMuf(z)  and  fI (2) < Nf#(2),

where N = N(d, ) > 0.
We also recall the following definition of the A, Muckenhoupt class of weights.

Definition 3.1. For each p € (1,00) and for a nonnegative Borel measure o on R?, a
locally integrable function w : R® — R, is said to be in the AP(Rd,a) Muckenhoupt
class of weights if and only if [w] 4 (ra,,) < 00, where

[W]a, (R%,0)
1

— sup [ ][ w(y)a(dy)][ ][ w(y)Tr o'(dy):|p_ (3.2)

p>0,x=(2',za) ER?
By (z) By ()

Similarly, the class of weights AP(RiJ) can be defined in the same way in which the
ball B,(x) in (3.2) is replaced with Bf (z) for 2 € R%. For weights with respect to
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the time variable, the definition is similar with the balls replaced with intervals (to —
P2~ % to + p*~%) and o(dy) replaced with dt. If o is a Lebesgue measure, we simply
write 4,(RY) = A,(R?,dz) and A,(R?) = A,(R?, dz). Note that if w € A,(R), then
@ € Ap(RY) with [w]a, ) = [@]a,®e), where &(z) = w(zq) for z = (2/,24) € R
Sometimes, if the context is clear, we neglect the spatial domain and only write w € A,.

The following version of the weighted mixed-norm Fefferman-Stein theorem and
Hardy-Littlewood maximal function theorem can be found in [10].

Theorem 3.2. Let p,q € (1,00), 11 € (—1,00), K > 1, and p1(dz) = z}} dadt. Suppose
that wy € Ag(R) and wy € A,(RL, z7'dzx) satisfy

[wola,, [wila,®e 2yt de) < K.
Then, for any f € Lq p(Qr,wdp), we have

1Nl 2y (0 dpan) < N||fdy7m||Lq S @rwdun) < NI Ly @0 dun)

My (g p@rwdun) < NIy @0 wdu)
where N = N(d,q,p,v1,K) > 0 and w(t,z) = wo(t)wi(x) for (t,x) € Qp.
3.3. Weighted parabolic Sobolev embeddings
We denote the standard parabolic cylinders by
Qu(t,z) = (t — p°,t) X By(x), Qf(t,x) = (t—p*,t) x Bf (x).

When 2 = 0 and ¢t = 0, we write Q, = Q,(0,0) and Q;‘ = Q;‘(0,0). Recall that for
v €R and p,q € [1,00), we say u € Ly ,(Qf,z)d?) if

0 1/q
a/p
lullp, (of wyaz) = / /|u (t,z)[Px) d ) dt < 0.
S1opy

We denote
Wi2(QF  )dz) = {u: uy, D*u € Ly p(QF  x)) and u, Du € Ly10c(Qf )}

We prove some weighted parabolic Morrey inequalities that are needed to prove
C+8) /2145 regularity of solutions. See [1, Lemma 4.66] and also [36, Theorem 5.3]
for similar results for the elliptic case. Let us recall that, for an open set Q C R4t1,

[ull ca+srrzats gy = llullLo @) + 1DullL (@) + [Wlca+s /2oy + [Dulcsrzeg)-
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Here, [-Jca+s/2.0(q), []cs/2.5(g) are the usual Holder-semi norms.

Proposition 3.3. Let y€ (—1,p — 1) and p,q € [1,00) so that § =1— p > 0. Also,

let D be a non-empty open bounded set in Q1/2 Then, there is N = N(d, p, q, |D|, v) >0
so that the following assertion holds. If u € Wl 2(Q1 ,xydz), then

||DUHLOC(Q+2) < N[”DUHLl(D + ||UtHL“, (of 2ydz) T |D? U||Lqp(gl, )} (3:3)
and

IDu(t,z) = Du(s,)| < No? [l ot wgany + D%l ot mpan]s (3)
for every (t,x), (s,y) € QT/Q and for v = (|x —y|? + |t — s|)'/2. Moreover, we have

lu(t, ) — uls, z)| < Nt — |1+B)/2[||ut||qup(Q+ vany F 1Dl (oF ana Z)] (3.5)

Proof. We start with proving (3.4). Let us denote v = D;u with some fixedi = 1,2,...,d.
By the triangle inequality, we only need to prove the assertion with r = (|z — y|? +
It — s[)1/?2 € (0,1/2) for (t,z),(s,y) € QT/Q. Without loss of generality, we assume
that s < t. Let (to,z0) = ((t+ 5)/2,(z + y)/2) + req/2, where eq = (0,---,0,1), and
Q = Q,2(to,z0) C Qf . Let ¢ € C§°(Q) be a standard cut-off function satisfying

N
0<v<2 DYl <5 and vl dide =1 (3.6)

Then,

v(t,z) — v(s,y) f (t,z) — v(s,y))¥(t, T) dtdz

Q
= ][ (v(t,z) —v(t, Z))p(t, T) dtdz + ][ (v(t, ) — v(s,y))¥(t, &) dtdz
Q Q
=: Il"’IQ. (37)

Next, we estimate the terms I; and I on the right-hand side of (3.7). By the fundamental
theorem of calculus, we have

1
v(t,z) — v(t, ) /26‘1},5 (1 — 6%t + 6%, (1 — 0)x + 02)(t — 1)
0

+ Du((1 — 6*)t + 0%t, (1 — 0)x + 0z) - (x — z) | db.
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Then, it follows from the Fubini theorem that

L= ][ (ult, 2) — v(F, 2)) (7, 7) dide

Q

_ Np—(d2) / g1 / (20,(r, h)(t — 7) + Du(r, h) - (z — h))(F, ) didz | db,
0 Q

where we denote
h=(1-0z+60z and 7= (1—6%)t+ 6%t
We observe that

ve(7, h) = Diug(T, h).

17

From this, (3.6), and by the change of variables ¢ — 7 and Z ~ h, and the integration

by parts for the term involving v;, we infer that

1
| < Np—(d+D) /a—<d+2>( / (Jug] + |D2u|)d7dh)d9.
0

Qor/2((1—62)t4+602t0,(1—0)x+0x0)

By the convexity of QF, it is easily seen that Qg, /o ((1—62)t+6%to, (1—6)z+60x) C OF .

It then follows from Holder’s inequality that

_dtvy 2
L] < Nr'” 75 T [HDQUHL“,(Q;f,x}dz) + HUtHLq,p(Qf,z}dz)]v

where N = N(d,p,q,7) > 0, and we also used the fact that

1—1
P

d+v4

|hg| /=) dh < N(Or)*= 5,

Bor/2((1—0)z+0z0)

for all # € By, and for all 6, r € (0, 1). Similarly, we also have

_dty 2
|I2] < Nrl= 75 [HDQUHLW(Qf@}dz) + HUtHLq,p(Qf,z}dz)]

From the last two estimates, we infer from (3.7) that

l(t,z) —v(s,y)| <[] + |12

_dtry 2
Ser P q[

1D2ulln, @0 g + Mttllz, 1030 |, (38)
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which gives (3.4) as v = D;u with ¢ € {1,2,...,d}.
To prove (3.3), we note from (3.7) that

lo(t,z)| < |v(s,y)| + N[HDQUHLM(Ql,mgdz) + llutllz, , (01 .a7dz) |

for every (t,z),(s,y) € Q;r/z. Then, integrating this with respect to the (s,y) variable
on D, we obtain (3.3).
Finally, by the triangle inequality,

u(t, ) —u(s, z)|
< fu(t,x) —ult,y) + Du(t, z) - (y — )| + [u(s, 2) — u(s,y) + Du(s,z) - (y — @)

+|u(t,y) —u(s,y)| + |[Du(t,z) — Du(s,z)||ly — x| =: J1 + Jo + J3 + Ja, (3.9)

where y € B(—;—s)l/2 (x). It follows from (3.4) that J; +J2+J4 is bounded by the right-hand

side of (3.5). Moreover, by the fundamental theorem of calculus and Hélder’s inequality,

F o lut) sy < / f o lutnyldyr
s )

+ +
B(tfs)1/2(x) B(tfs)l/Q(:C

1717d+7+
< N(t - S) N 2» ||utHqup(QT,a:;’dz)'

Taking the average of (3.9) with respect to y € B(Jg 172 (x) and using the above inequal-

—S

ities, we reach (3.5). The lemma is proved. O
4. Equations with coefficients depending only on the x4 variable

In this section, we consider (1.1) when the coefficients in (1.1) only depend on the x4
variable. Let us denote

Zou = ag(xa)ur + Aeo(za)u — p(zq)aj(zq)D;Dju. (4.1)

where p, ag, ¢, @;; : Ry — R are given measurable functions and they satisfy (1.3)-(1.4).
We consider

Zou = p(za)f in Qr, (4.2)
u = 0 on (—oo,T) x ORL. '

The main result of this section is the following theorem, which is a special case of

Corollary 2.3.
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Theorem 4.1. Assume that ag, o, (ai;) satisfy (1.3)~(1.4) and assume further that f €
L,(Qr,x) dz) for some given p > 1 and

v€ (pla—1)4 —1,2p—1).

Then, (4.2) admits a unique strong solution u € 7/[)1’2(QT,.’EZ dz). Moreover,

|\M7aut||L,,(QT,w} dz) T ||D2U||L,,(QT,wg dz)

+ MM Ul (r 27 dz) < NI fllL,@r 2] de)s (4.3)
and if v € (ap/2 — 1,2p — 1), we also have

)‘1/2”M_a/2Du”LP(QT,m;’ dz) S N flle,@r ey dz) (4.4)

where N = N(d,v,a,7,p) > 0.

The proof of Theorem 4.1 requires various preliminary results and estimates. Our
starting point is Lemma 4.3 below which gives Theorem 4.1 when ~ is large. See Sub-
section 4.1 below. Then, in Subsections 4.2 and 4.3, we derive pointwise estimates for
solutions to the corresponding homogeneous equations. Afterwards, we derive the oscil-
lation estimates for solutions in Subsection 4.4. The proof of Theorem 4.1 will be given
in the last subsection, Subsection 4.5.

Before starting, let us point out several observations as well as recall several needed
definitions. Note that by dividing the PDE in (4.2) by a¢ and then absorbing aq4q into
u(xq), without loss of generality, we may assume that

agq = 1 and ag = 1. (4.5)
Observe that (4.2) can be rewritten into a divergence form equation
aous + Aco(zq)u — p(xa)Di(a;5(xq)Dju) = p(zq) f  in Qp, (4.6)
where
ai; +aj; fori#dand j=d,
a;; =4 0 for i = d and j # d; (4.7)
aij otherwise.

We note that even though (@;;) is not symmetric, it still satisfies the ellipticity condition
(1.4) and also a4q = 1 when (4.5) holds.

Due to the divergence form as in (4.6), we need the definition of its weak solutions. In
fact, sometimes in this section, we consider the following class of equations in divergence
form which are slightly more general than (4.6)
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u + Aeo(za)u — p(xq)Di(asj(xa)Dju — Fy) = p(zq)f in (S,T) x D (4.8)
with the boundary condition
u=0 on (S,T)x (DN{zq=0})
for some open set D C Ri and —00 < S < T < 0.

Definition 4.2. For a given weight w defined on (S,7) x D and for given F =
(F1, Fay .oy F2) € Lyp1oc((S,T) x D)? and f € Ly 10c((S, T) x D), we say that a function
u € Hy((S,T) x D,w) is a weak solution of (4.8) if

p(zq) " H(—up; + Neougp)dz + / (@i;Dju — F;)D;pdz
(8, T)xD (S, T)xD

_ / F)p(2)dz, Y g€ C((S,T) x D).

(S, T)xD

(4.9)

4.1. L, strong solutions when the powers of weights are large

The following lemma is the main result of this subsection, which gives Theorem 4.1
when v € (p—1,2p —1).

Lemma 4.3. Let v € (0,1), A > 0, o € (0,2), p € (1,00), and v € (p — 1,2p —
1). Assume that ao,Co, (@i;), and p satisfy the ellipticity and boundedness conditions
(1.3)=(1.4). Then, for any f € L,(Qr,x)dz), there exists a unique strong solution
we W2 (Qp,x) dz) to (4.2). Moreover, for every solution u € #,*(Qp, ) dz) of (4.2)
with f € L,(Qr, 2} dz), it holds that

AIM™ul| L, (r ,27dz) \/XHM_Q/QDUHL,,(QT,x}dz)
+ ||D2u||Lp(QT,$2dz) + HM_aut||Lp(QT,$3dz) < N”f”Lp(QT,m;dzﬁ (410)
where N = N(d, a,v,7v,p) > 0.

Proof. The key idea is to apply [15, Theorem 2.4] to the divergence form equation (4.6),
and then use an idea introduced by Krylov in [27, Lemma 2.2] with a suitable scaling.
To this end, we assume that (4.5) holds, and let us denote v/ =~y —p € (—1,p— 1) and
we observe that

Ty " w(@a)| F(2)] ~ zal f(2)] € Ly(Qr, 2 d2).

As v € (-1,p — 1), we have x;y/ € A,. Moreover, the equation (4.2) can be written in
divergence form as (4.6). Therefore, we apply [15, Theorem 2.4] to (4.6) with f1; = p(zq)f
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and fy = 0 to yield the existence of a unique weak solution u € %’;,1 (Qrp, :Ug/dz) of (4.6)
satisfying

1Dull, gy a sy + VAIM2u]

QT,I;’,dz p(QT,z;’/dz)

< N”xéia.fl”Lp(QT?zzldz) = N”f”Lp(QT,x}dz)a (411)

with N = N(d,v,,7,p) > 0. We note here that because the coefficients ¢y, a;; only
depend on x4, [15, Theorem 2.4] holds for any A > 0 by a scaling argument. From (4.11),
the zero boundary condition, and the weighted Hardy inequality (see [14, Lemma 3.1]
for example), we infer that

-1
lall, (pay-2rany = M7l o oty S NIDull, g o)

S NIz, @2y (4.12)

It remains to prove that (4.10) holds as it also implies that u € 7/1,1’2((273 z))). We apply
the idea introduced by Krylov in [27, Lemma 2.2] and combine it with a scaling argument
to remove the degeneracy of the coefficients. See also [9, Theorem 3.5] and [13, Lemma
4.6]. To this end, let us fix a standard non-negative cut-off function ¢ € C5°((1,2)). For
each r > 0, let (.(s) = ((rs) for s € Ry. Note that with a suitable assumption on the
integrability of a given function v : Q7 — R and for f € R, by using the substitution
r“t — s for the integration with respect to the time variable, and then using the Fubini
theorem, we have

/ / (G (za)vr ()7 dz | 7P dr = Ny / lv(z) Pzt dz,

0 \@ a, ke

/ / |G (@a)vn ()P dz | r77 7 dr = Ny / [o(2) Py ™" dz, (4.13)
0\, ey g

/ / ¢ (@a)or(2)|P dz | +77 7" dr = N / jo(2) Py T dz,

0 \-ar Qr

where v,.(z) = v(r®t, z) for z = (t,z) € Qp—ar,

. :/K(s)'ps_ﬁ_a_ldsa N2=/|C/(s)\psp_5_a_1ds,
0 0

and
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(o)
Na = [[1¢"(s)Ps e s
0

Next, for r > 0, we denote u,(z) = u(r®t, z),

Gij(zq) =ru(zq)a;;(zq), =% and f.(2) =ru(zqe)f(rt, x).
Note that u, solves the equation
Oty + Moty — @ij(xq)DiDju, = fr in Qu-ap.
Let w(z) = {-(zq)ur(2), which satisfies
wy + Aeo(va)w — 45 (vg) DiDjw =§ in Qu-arp (4.14)

with the boundary condition w(z’,0) = 0 for 2’ € (—o00,77°T) x R?~! where
§(2) = G fr(2) — GaaCur — Z (@id + Gai) ¢, Diuy.
i#d

We note that supp(w) C (—oo,r~*T) x R4~1 x (1/r,2/r), and on this set the coefficient
matrix (d;;) is uniformly elliptic and bounded as r*u(z4) ~ 1 due to (1.3).

We now prove (4.10) with the extra assumption that u € 7/1,1’2(QT, mgldz). Under this
assumption and as (. is compactly supported in (0,00), we see that w € VVI}’Q(QFQT)7
the usual parabolic Sobolev space. Then by applying the Wl}’z—estimate for the uniformly
elliptic and bounded coefficient equation (4.14) (see, for instance, [8]), we obtain

Mfwll + X2 || Dwl| + | D*w]| + [lwe ]| < N3]

where || - || = |-z, _.,) and N = N(d,v,p) > 0. From this, the definition of g, and
a simple manipulation, we obtain

AP G || + VA2 (|G Duy || + (|G- D2 || + 1|0y |
< NG Foll + VX2 ||+ 11¢ un || + ||<¢Dur|\]

Now, we raise this last estimate to the power p, multiply both sides by r—(v—®)—1,
integrate the result with respect to r on (0, 00), and then apply (4.13) to obtain

AIM™ |l (r 27 d2) + \aHMﬂ/QDUHLP(QT,I; dz)
+1D*ull 1, 0y dz) + Ml 1, (07 07 a2)

= N[”f”%(ﬂmz @) + VAMT Ul o, anmr aoy + [l 0y 032 as)

S LI P



H. Dong et al. / Journal of Functional Analysis 286 (2024) 110374 23

From the last estimate, (4.11), (4.12), and the fact that v/ = v — p, we infer that

AMIM™ ||, @r 2 dz) T ﬁ”Mia/zDu”LP(QT@; dz)

D% ullL, @0y dz) + M 0t L0007 a2) < NI FllLp(2ray a2)-

This proves (4.10) under the additional assumption that u € #,"2(Qr, $3, dz).

It remains to remove the extra assumption that u € 7/1)1’2(QT, xg/dz). By mollifying
the equation (4.2) in ¢ and «’ and applying [15, Theorem 2.4] to the equations of uga)

and D,u(®), we obtain
M~*u© M~ DD, u() € L,(Qr,2) dz).
This and the PDE in (4.2) for »(®) imply that
Dgqu'®) e Lp(QT,:cZ,dz).

Therefore u(®) e 7/1)1’2(QT,xgldz) is a strong solution of (4.2) with f(¢) in place of f.
From this, we apply the a priori estimate (4.10) that we just proved for u®) and pass
to the limit as € — 0T to obtain the estimate (4.10) for u. The proof of the lemma is
completed. O

4.2. Boundary Hélder estimates for homogeneous equations

Recall the operator % defined in (4.1). In this subsection, we consider the homoge-
neous equation
Zou=0 in Q7,
ot i Q; (4.15)
u=0 on Q1 N{xy =0}

As the discussion that leads to (4.6), without loss of generality we assume (4.5) so that
(4.15) can be written in divergence form as

g + Aeo(za)u — p(xq) Di(aij(za) Dju) = 0 in QF, (4.16)
u =0 on QN{zg=0}. '

A function u € H3(Q) with p € (1,00) is said to be a weak solution of (4.15) if it is a
weak solution of (4.16) in the sense defined in (4.9) and v = 0 on Q1 N {xg = 0} in the
sense of trace.

For each 8 € (0, 1), the 8-Ho6lder semi-norm in the spatial variable of a function u on
an open set Q C R4t is given by
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ut, ) = u(t,y)|

|x—y|5 cr#y, (t,:L‘),(Ly)EQ},

[[U]]CM(Q) = sup {

For k,1 € N U {0}, we denote

lullcriq Z > l0iDdull . ).

=0 |j|<i
We also use the following Holder norm of u on @
k .
lullcreqy = llullcro) + Y _[0iulcosq)

=0

We begin with the following Caccioppoli type estimate.

Lemma 4.4. Suppose that u € H3(Q7) is a weak solution of (4.15). Then, for any integers
k,7>0andl=0,1,

/ |08 D7, Dlul? dz < N / u? dz, (4.17)
Q1) Qf
where N = N(d,v,a, k, j,1) > 0.

Proof. Again, we can assume (4.5) holds. The estimate (4.17) follows from [15, (4.12)]
applied to (4.16). O

Lemma 4.5. Let pg € (1,00) and suppose that u € ’H;}O(Qf) is a weak solution of (4.15).
Then,

||UHCI,1(Q;r/2) + HDz/U||CL1(Q1+/2) + HDdu”CL%(sz) (4 18)
+ VMl oo ggr,) < NIDully, o)

where N = N(d,v,a,po) > 0 and o = min{2 — a, 1}.

Proof. As explained, we can assume that (4.5) holds. We apply [15, Lemma 5.5] to (4.16)
by noting that U := @4;Dju = Dgu in view of (4.5) and (4.7). O

Lemma 4.6. Let pg € (1,00), By € (—oo,min{1,a}], and oy > —1 be fixed constants.
There exists a number B1 = B1(«,Bo) € (0,1] such that for every weak solution u €
HL (QF) to (4.15), it holds that
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||M_ﬂ0u”Clv51 (Q+ ) S NHM u||Lp0(Q3/4 rdO dz) (4.19)
M~ Fo “urll . P1(QY ) < N|[M~™ o utHLpo (QF,4.25° dz)’ (4.20)
”Ma_BODDéD’uHCLBl (QT/z) < NHMa_ﬁODDquHLpo(Q;—/uwjo dz)? (4.21)

and
[ MPo Dl . 51(QF,) S < N|mPo DUHL,,O (QF4.250dz) (4.22)

where N = N(d, v, o, g, Bo, po) > 0.

Proof. Again, we assume (4.5). Note that once the lemma with oy > 0 is proved, the
case when g € (—1,0) will follow immediately. Hence, we only need to prove the lemma
with the assumption that ag > 0. We first assume pg = 2. Since 5y < min{l,a}, by
(4.17) and the boundary Poincaré inequality, the right-hand sides of (4.19), (4.20), and
(4.21) are all finite. We consider two cases.

Case 1: Bp = 0. When ag = 0, (4.19) and (4.22) follow from (4.18) and (4.17). For
general ag > 0, by (4.19) with Sy = 0 and ap = 0 and Holder’s inequality, we have

2a 1+2a 1 1+20¢
< Nllullpygp,) < Nlull20l 5200, lhll)g2)

HUHLM(Q;Z) w‘md ) L2(Q3/5:%3° dz)

2&0/(1+2a0 1/(1+2a0
< NH || Q+ ) || ||L2 Q2/3’xd0 dz)

1
§||UHLOO(Q2/3) + N||“|\L2(Q2/3,z30 dz)

where N = N(d,v,a, ap) > 0. From this and the standard iteration argument (see [30,
p. 75] for example), we obtain

||U||LOO(Q1+/2) < NHU||L2(Q3/4,xd° dz) (4.23)

The above, together with Lemma 4.4, yields

/ |08 D7, Dhul? dz < N(d, v, a, ag, k, j,1) / u?z50 dz (4.24)
Q)2 Q34

for any integers k,j > 0 and [ = 0,1. Using this last estimate, (4.18), and by suitably
adjusting the sizes of the cylinders, we obtain (4.19) with $; = 1. Similar to (4.23), we
have

1Dl gty < NIDull gz a0 as)

From this, (4.18), and by shrinking the cylinders, we obtain
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HDU||Clv50(Qj/2) < N||D“||L2(Q3+/4,mjodz)7 where §p = min{2 — «, 1},
which is (4.22) when £y = 0.
Since u; and D,/ u satisfy the same equation with the same boundary condition,
similarly we also obtain (4.20) as well as
HDDI/uHC1,5O(Q1+/2) < NHDDm/U||L2(Q2+/3)a (4.25)

by Lemma 4.5. This together with (4.24) implies (4.21) with

f1 = min{dp, a} = min{ce, 2 — «, 1}.

Case 2: By # 0. We first prove (4.21). By (4.25) and by using the iteration argument as
n (4.23), we have

IDDorullr qf,,) < NIDDwullpy g, 050 azs

where N = N(d, v, a, ag) > 0. Then, it follows from (4.25) that

IDDarullcaso g1,y < NIIDD (4.26)

m/uHLQ(Q3/4,wd dz)*

Therefore, if Sy = a, (4.21) with 81 = o follows from (4.26). If 8y < «, it follows from
(4.26) that

||DD$/U||01,50 (QT/Z) S N||Ma7ﬁ0DDa:’u||L2(Q;/4,$dao dz)»
where N = N(d,v, o, By, ag) > 0. Then we also have (4.21) with
B1 = min{dg, @ — fo} = min{2 —a, 1,0 — fp}.

Similarly, (4.22) can be deduced from (4.22) with Sy = 0 by taking 8; = min{dg, 5o }.
Hence, both (4.21) and (4.22) hold with

p1 = min{do, @ — Bo, fo} = min{2 — o, 1, — Bo, fo}-

Next we show (4.19). Since Sy < 1, using the zero boundary condition, (4.18), and
(4.24), we get

IM=ull, o,y < NIDaull, o1, < NllullL,oz,, 250 as)- (4.27)

Since u; and D, u satisfy the same equation and the same boundary condition, we have
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HM_BDWHLOC(QT/Q) + ”M_’BODI’UHL(}C(Qfm)

< N||Ddut||Loo(Ql+/2) + N||DdDz'U||LN(Q;f/2)
< N||DU||L2(Q;/3,IZ‘0) < N||U||L2(Q;/4,a:;‘0 dz)> (4.28)

where we used (4.18). To estimate the Holder semi-norm of M™% in x4, we write
1
zPout,z) =% [(D ! d
P ,T) =1y qau)(t, a2’ sxq) ds
0

and use (4.18) and (4.24). Then we see that

[[M_Bou]}c()ﬁl (Q1+/2) + [M_ﬂl)utﬂco,ﬁl (Q;r/z) < N”M_'BOUHLQ(Q;M,IZO dz)?
where 8; = min{dp, 1 — Sp}. Combining this with (4.27) and (4.28), we reach (4.19).

Note that u; satisfies the same equation and the same boundary condition, we deduce
(4.20) from (4.19). The proof of the lemma when py = 2 is completed.

Next, we observe that when py > 2, the estimates (4.19)—(4.22) can be derived directly
from the case pg = 2 that we just proved using Hélder’s inequality. On the other hand,
when py € (1,2), it follows from Lemma 4.5 that u € H3 (Q;r/4). Then, by shrinking
the cylinders, we apply the assertion when py = 2 that we just proved and an iteration
argument as in the proof of (4.23) to obtain the estimates (4.19)—(4.22). O

Remark 4.7. The number 3; defined in Lemma 4.6 can be found explicitly. However, we
do not need its explicit formula in the paper.

4.8. Interior Holder estimates for homogeneous equations

Fix a point 2o = (to,70) € Qr, where zg = (7),z04) € R4 x Ry. For 0 < p < wgq
and € (0,1), we define the weighted 3-Holder semi-norm of a function u on @,(z0) by

|U(S,l‘) —U(t,y)|
: (s, t,
xgda/2|$ _ y‘ + |t - S|1/2)ﬁ (S 33) #* ( y)

and (s,0), (t,y) € Qy(z0) }-

[ulcsrs g, o)) = S“p{ (

As usual, we denote the corresponding weighted norm by

lellosras g, oy = Nellw(@ozon) + [l gar2o (g, 0))-

The following result is the interior Holder estimates of solutions to the homogeneous
equation (4.16).
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Lemma 4.8. Let zg = (to,xo) € Qr, where o = (X, Tod) € R4 x Ry, and p €
(0,20a/4). Let u € #,*(Q2p(20)) be a strong solution of

.,S/ﬂou =0 m Qgp(ZO)
with some py € (1,00). Then for any 5 € R,

M ull . (@,e0n + PP U] iz g )y

1/po

<N| e |
Q2p(20)

and

IMPDullp (@, 0y + 01 PRI Dl 112 g )
1/po

<N| f D) |
Q25 (%0)

where po(dz) = x3°dtdx with some ag > —1, and N = N(v,d,a, 8, a0) > 0.

Proof. As in the proof of Lemma 4.6, we may assume that pg = 2. Without loss of
generality, we assume that xgq = 1. Note that when 8 = 0, the assertions follow directly
from [15, Proposition 4.6]. In general, the assertions follow from the case when § = 0
and the fact that

1/po 1/po

M F()Popo(dz) | ~ f\f(z)\mdz
Q2 (20) Q25 (20)

The lemma is proved. O
4.4. Mean oscillation estimates

In this subsection, we apply Lemmas 4.6 and 4.8 to derive the mean oscillation esti-
mates of

U= (M oy, M® P DD, u, \M o) and Du
respectively with the underlying measure

pi(dz) =zl dedt  and [y (dz) = 2} dxdt, (4.29)
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where u is a strong solution of (4.2),

1 € (Po(Bo—a+1)—1,po(fo —a+2)—1) and 1 = +po(a/2 — o)

with some pg € (1,00) and By € (o — 1, min{1, a}]. The main result of the subsection is
Lemma 4.10 below.

Let us point out that both p; and ji; depend on the choice of §y, and
p1 =1 when Sy =a/2. (4.30)

To get the weighted estimate of U in L, (Qr, 2z dz) with the optimal range for 7 as in
Theorem 4.1, we will use fp = min{1, a}. On the other hand, to derive the estimate for
Du, we will use By = a/2 and (4.30).

For the reader’s convenience, let us also recall that for a cylinder Q@ C R¥*!, a locally
finite measure w, and an w-integrable function g on @), we denote the average of g on @
with respect to the measure w by

1

W= S Z 9(2) w(dz)

and the average of g on ) with respect to the Lebesgue measure by

1
@ =15 Q/ 9(2) dz.

We begin with the following lemma on the mean oscillation estimates of solutions to the
homogeneous equations.

Lemma 4.9. Let v € (0,1), a € (0,2), po € (1,00), By € (a — 1, min{1,a}], and v €
(po(Bo—a+1)—1,p0(Bo — a+2) — 1). There exists N = N(d, v, a, 1, Bo,po) > 0 such
that if u € %%’Q(Qﬂp(zo), z )t dz) is a strong solution of

fou
U

for some A > 0,p >0, 29 = (24, zq0) € Qr, and for v, =v1 — po(Bo — ), then

0 in Qﬁp(zo)
0 on Quap(z0) N{zq=0}

6 1/p
(10~ (U)Qj:p(zo)vﬂl DQ»JSp(Zo)le < N& (|U|p0)Q‘1"4(:(zo),p1 (4.31)

and

6 1/po
([1Du = D)oy, o). Dty oy < VR (IDulP) 07 s ) (4.32)
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for every k € (0,1), where uy, 11 are defined in (4.29),
U= (M Poy,, M* P DD u, \M o),
and 6 = min{p (o, o), (2—a)/4,2 —a,1} € (0,1) in which By is defined in Lemma 4.6.

Proof. By using the scaling (2.1), we assume that p = 1. We consider two cases: the
boundary case and the interior one.
Boundary case. Consider xgq < 4. Let z = (to,z(,0) and note that from the definition

of cylinders in (2.2), we have

Q7 (20) C QF (20) € Qy(20) C Q74 (20).

Then, we apply the mean value theorem and the estimates (4.19)-(4.21) in Lemma 4.6
with 7 in place of ag. We infer that

(|U - (U)Q:-r(zo)Ml')Qi(zo);Ml
< NEZ Ul oo (@u (20)) + NE [UD o010 (20
< NE (Ul e (@ (29 + [UDcousn (0 (2]

0(|77|Po1/Po o(|7|poy /o
S Nk (|U| )Qiro(i)yul S N (|U| )Qﬂ(zo)nul’

where we used the doubling property of p; in the last step. This implies the estimate
(4.31) as k € (0,1). To estimate the oscillation of Du as asserted in (4.32), we note that

N =m—po(Bo—/2) >po(l —a/2)—1>—1.

Therefore, (4.32) can be proved in a similar way as that of (4.31) using the estimate
(4.22) in Lemma 4.6 with Sy =0 and ap =¥ > —1.
Interior case. Consider xgq > 4p = 4. By using Lemma 4.8 with § = —f; and the

doubling property of uq, we see that

(IM=70u = (MUt ) 1, Dt ) 0
< N2 A M Pou] 1jange

(QF (20))
1/po
< Ngl/2-a/4 ][ |M73°u|p0u1(dz)
@4 (20)
1/po
< Nl | M (d2)

Q;r4(20)
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Similarly, by using the finite difference quotient, we can apply Lemma 4.8 to u; and
obtain

(M0t = (M00) 1 () s Dot (200
1/po
< Ngl/2-o/d ][ M Poug [P0 (dz)
Q1+4(ZO)

In the same way, by applying Lemma 4.8 to D,u with = o — y and ag = 71, we infer
that

(‘Ma_BODDm’u - (Ma_ﬂoDDI'u)Q:(zo)’Hl DQ:(zo)am

1/po
< Ngl/2-a/4 ][ |M2=P0 DD sulPo iy (dz)
L(ZO)

The oscillation estimate of Du can be proved in a similar way. Therefore, we obtain
(4.31). The proof of the lemma is completed. O

Now, we recall that for a given number a € R, a; = max{a,0}. We derive the
oscillation estimates of solutions to the non-homogeneous equation (4.2), which is the
main result of the subsection.

Lemma 4.10. Let v € (0,1), a € (0,2), po € (1,00), So € (« — 1, min{l,a}]|, and 11 €
(po(Bo —a+1) — 1,p0(Bo — a + 2) — 1). There exists N = N(d,v,a,v1,Po0,p0) > 0
such that the following assertions hold. Suppose that u € (QTJZI dz) is a strong

Po,loc
solution of (4.2) with f € LpoJOC(QT,le dz) and v} = v1 — po(Bo — ). Then, for every
20 € Qr, p€(0,00), k € (0,1), we have
(U~ (U)Q:-rp(zo)aul DQH(ZD)#M

0 po\1/Po —(d+(11)++2—a)/po a—Bo ¢[poy1/Po
SNA(UP)GE )+ N (M) 08 ey n

and
1/2
N2(1Du = (D) g, (20), 1 Doty (200
< NHG/\I/2(|Du|p0)1/p0 + Nﬂf(d+(71)++2fa)/po(lMa/2f|p0)1/p0

QT4p(20),i11 QT1,(20),01"

where 0€ (0, 1) is defined in Lemma /.9,

U= (M Poy,, M* P DD iu, \M~Poy),
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and py, i are defined in (4.29).
Proof. As v € (po(fo —a+1) —1,po(fo — o+ 2) — 1), we see that

Y =7 —po(Bo — @) € (po —1,2po — 1).

Therefore, by Lemma 4.3, there is a strong solution v € Vﬂplo’Q(QT, x}l dz) to

go’l} = M(md)leﬂp(Zo) in QT, (433)
v o= 0 on {xq=0}
satisfying
—a , 2 , 1/2 —a/2 ,
M vt||LPO(QT’I31dZ) +ID UHLPO(QT)led@ + A7 M DUIILPO(QN}M
Al|M~—¢ / <N Lo 4.34
+ ” U”Lpo (QT,zzldz) = HfHLpO(Qﬂp(zo),zZl dz) ( )
Let us denote
V = (M Poy,, M P DD v, AM~Pov).
Then, it follows from (4.34) and the definitions of p1 and ~4 that
(V)G oy < N(MEPopproyiee (4.35)
Qs (20)m1 — Q4 (20) 01
Note also that due to (4.34) and the definition of 71,
1/po 1/po
AL/2 / | Do|Po)dz = A1/ / IM—*/2 Dy|Po2 i dz
@14, (20) 11p(20)
1/po
<N / IMO/2 fPog Tz
Q4 (20)
Then,
1/2 po\1/Po a/2 pipoy1/Po
A (‘D’U‘ )Q;r4p(20)7ﬁ1 S N(|M f‘ )Q;r4p(20),ﬂ1. (436)

Now, let w = u — v. From (4.33), we see that w € 7/1,10’2(621"@(20),9331 dz) is a strong
solution of
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Zw =0 in QTALp(ZO)a
w =0 on Qup(z0)N{xq=0}.

Then, by applying Lemma 4.9 to w, we see that

6 1/
(W = (W)t oy Dty oy S NE (W) G2 L (4.37)
and
0 1/po
([1Dw = (Dw) gt ), D@ty oy < N6 (DwP) o s (4.38)
where

W = (M~ Pow, M P DD w, \M~Pow).

Now, note that from (2.2) and (2.3) we have

11(Qi1,(20)) oy ((14p, Toq) \ 4+ +
11 (Qip(20)) N(d)x (r(np, Toq) )

< N(d)r~(dF0n)e+2=a), (4.39)

Then, it follows from the triangle inequality, Holder’s inequality, (4.37), and (4.39) that

(U = (W)t 201 Dty z0)m
<S(UW = Mot zo)um Datuzoym T IV = (Vo zo)u Datazo)m

<(w- (W) o (20), #1|)Q¢p(zo) Ha

o 1
+ N(d)x —(d+(y1)++2— /po(|V|po)Q/£i(zo) 5

N(d)x —(d+(v1)4+2— a/po(|V|po)1/P0

14p(20) i

< 0 Po 1/po

< Nk (|W| ) Qf1,(20)s1
As W =U —V and k € (0,1), we apply the triangle inequality again to the term
involving W on the right-hand side of the last estimate to see that

(|U - (U)Qrtp(zo)wl ‘)Qip(zo),m
< NK,'9(|U|PO)1/Z70 + N(H—(d+(71)++2—a)/p0 n Ke)(|V|p0)1/p0

Qﬂp(zo)yul 14,,(20) 1

< N&(JUP) 2
1

- - 1
Q 4P(Z0):H1 +NK} (d+(v1)++2 a)/])o(|v|p0) /po

Q14p(ZD) p1’

From this and (4.35), it follows that
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(U - (U)Qi,,(zo),m DQE(ZO)»M
0 poy1/Po —(d+(v1)++2—a)/po a=po fIpo)t/po
< NEU)GE aps N8 M )G o

where N = N(d, v, a,¥1, fo,po) > 0. This proves the assertion on the oscillation of U.
The oscillation estimate of Du can be proved similarly using (4.36) and (4.38). The proof
of the lemma is completed. O

We now conclude this subsection by pointing out the following important remark,
whose proof can be achieved by following that of Lemma 4.10 with minor modifications.

Remark 4.11. Under the assumptions as in Lemma 4.10, and if 5y € (o — 1, /2], it holds
that

(10" = U s, 200 Dty (00

0 (|77 1P0\1/Po —(d+(11)++2-a)/po a—PBo £|po)1/Po
S N (|U | )Qﬂp(zo)ﬂl + N (|M fl )Qﬂp(zo)a/h’

where
U = (M~ Puy, M* A0 DDyru, N 2M*/ 2750 Dy, \M~Pow).
4.5. Proof of Theorem .1

We are now ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. We begin with the proof of the a priori estimates (4.3)—(4.4)
assuming that u € 7/1,1’2(QT, x) dz) is a strong solution to the equation (4.2) with

ve€plaa—1)y —1,2p—1), where (o —1); = max{a —1,0}. (4.40)

In our initial step, we prove (4.3)—(4.4) with an extra assumption that u is compactly
supported. We first prove (4.3). Let Sy = min{1, o}, and we will apply Lemma 4.10 with
this Bg. Let pg € (1,p) and v1 € (po(Bo — a + 1) — 1,po(Bo — a+2) — 1). We choose py
to be sufficiently close to 1 and 77 to be sufficiently close to po(8y — o+ 2) — 1 so that

7= [n+pla—pBo)] < (@ +7)(p/po—1). (4.41)
We note that this is possible because o — 8y = (o — 1) and
Y—[n+pla—PB)] <p2—(a—1)1]-1—,

and also from our choices of pg and 71,

(L+y)@/po—1) ~p(l+7)—1-m~p2—(a—1)+]-1—m.
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Now, let us denote

7 =7+ pla—Bo) =71 +pla—1);. (4.42)

Due to (4.40) and the definition of ~4, it follows that

TN =7-pla-1)4-—mn>-1-m. (4.43)

From (4.43) and (4.41), it holds that
Y=y =y € (=1 =7, 1+ m)p/po 1)) (4.44)

Now, since u has compactly support in Qr, we have u € 7/]31’2(QT, x}{ dz). Therefore,
it follows from Lemma 4.10 that

Ujél < N[/{OMM(|U|”°)1/I’° + K_(d+(71)++2_a)/2M#1(|Ma_ﬂof|170)1/170i|,

where p;(dz) = x))' dzdt, the sharp function and the maximal function with respect to
the measure p; are defined as in Subsection 3.2, and

U= (M Pou, M® P DDu, \M~P0u).

Next, due to (4.44), x;/ € Ap/po(p11). Tt then follows from the weighted Fefferman-Stein
theorem and Hardy-Littlewood theorem (i.e., Theorem 3.2) that

<N,

#
HUHLP(QT;{(;/ dpn 5 ”L,,(QT,mg' duy)

< N[O IMy, (U)o

QT@:;/ dp1)

4 K*(d+(71)++2—a)/2”M“1 (|Ma7ﬁof|p0)1/:ﬂo ”L,,(QT,x:i" dul):l

< N[HGHUHLP( + R*(d+(vl)++2fa)/2||Mocfﬁof||L

4.45)

’ ’ .
Qr,z) dpr) »(Q7,2] dm)} (

From the definition of U, the choices of 4/ in (4.44) and 7 in (4.42), we have
U, o dpey = M el (@7 23 az) + 1D Dartt]l 07 aa2)
+ MM ™l L, (7 dz) < 0

Then, by choosing & € (0, 1) sufficiently small so that Nx? < 1/2, we obtain from (4.45)
that

M™%l L, (0p .7 dz) + 1D Dartl| L, (0,07 az) + MMl (r 27 d2)

< N”f”Lp(QT,x;/ du) N”f”Lp(QT,x; dz)-
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Also, from the PDE in (4.2), we see that
[Daaul < N{[DDyruf + (Jue] + Alul)zg® + | 1],
and therefore

IM ™|z, (07 dz) + MM Ul (@ 07 az) + 1D*0ll 1, (0 27 d)

< N”fHLp(QT,x;’ dz)»

which is (4.3).
Next, we prove the estimate (4.4) also with the extra assumption that u has compact

support. We observe that if v € (p — 1,2p — 1), (4.4) follows from (4.10). Therefore, it
remains to consider the case that v € (ap/2 — 1,p — 1] or equivalently

v—ap/2 € (-1,p(1 —a/2) —1]. (4.46)
The main idea is to apply Lemma 4.10 with this 8y = /2. Let pg, 71 be as before but
with the new choice of y. As noted in (4.30), we have

M =71 —po(Bo—/2) =7 and H1 = p1.

Because of (4.46), we can perform the same calculation as the one that yields (4.44) to
obtain

=/

V== +pe/2) € (=1 =31, (1L+71)(p/po — 1))

and therefore le € Ap/po (ji1). By using Lemma 4.10, we have

Al/z(Du)}i < N|:/€0)\1/2Mﬁ1 (| DulPe)/ro
) (4.47)
+ ,.{—(d+“/1+2—0t)/2./\/1ﬁ1 (|1\/[oz/2f|po)l/po}7

where fii(dz) = x'dxdt. We apply Theorem 3.2 to (4.47), and then choose x > 0
sufficiently small as in the proof of (4.3) to obtain

AY2[[Dull, ) < NIMS

p(Qr .,z djix Ly(Qr,a) diin)’

This implies
A2IM™2Dull 1, (0p a7 dz) < NIFllL, @007 d2)

as v — pa/2 =" + 7. The estimate (4.4) is proved.
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Now, we prove (4.3)—(4.4) without the assumption that u is compactly supported. As
u € #,}*(Qr, x)dz), there is a sequence {u,} in C5°(€Qr) such that

nlggo lwn — u||Wp1,2(QT’z; iz =0 (4.48)
Let fn, = f + % (un —u)/p(zq) and observe that w, is a strong solution of
Loun, = p(zg)fn in Qr and wu, =0 on {z4s=0}

Then, applying the estimates (4.3)—(4.4) to u,, we obtain

[unllyr2(0r w7 dz) < Nfnlle,@r.0] az)- (4.49)
Note that
I folle, ey dz) < fllz,r a7 dz) + NAIMT(w = un)llL, @ 27 dz)

+ N [ID2( = )l o7 3 ) + M (= wnilln, r .0

= 1 fllz,r.aydsy as n— oo

Therefore, by taking n — oo in (4.49) and using (4.48), we obtain the estimates
(4.3)—(4.4) for u. Hence, the proof of (4.3)—(4.4) is completed.

It remains to prove the existence of a strong solution u € #,"*(Qp, x) dz) to (4.2)
assuming that f € L,(Qr,z) dz), for p € (1,00) and v € (p(@ — 1)y —1,2p — 1). We
observe when v € (p—1,2p—1), the existence of solution is already proved in Lemma 4.3.
Therefore, it remains to consider the case when

7€ (pla—=1)+ —1,p—1].

We consider two cases.
Case 1. Consider v € (p(a —1)4 —1,p —1). As f € L,(Qr, 2 dz), there is a sequence
{fr}r C C§°(Q2r) such that

klggo [ fi — f”LP(QT,:c:lY dz) = 0. (4.50)
For each k € N, because f; has compact support, we see that

2y “w(za) fo ~ zafr € Lp(Qr, 2] dz2).

Then, as in the proof of Lemma 4.3, we apply [15, Theorem 2.4] to find a weak solution
uy € Hy(Qr, ) dz) to the divergence form equation (4.6) with f in place of f. Moreover,

||Duk||Lp(QT,:cﬂ’ dz) + ||1\/I_a/2uk||LP(QT,:E’Y dz) < 0. (451)
d d
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We claim that uj, € WZ}’Q(QT, x)) dz) for each k € N. Note that if the claim holds, we can
apply the a priori estimate that we just proved for the equations of uy and of uy — u; to
get

||uk||Wpl’2(SZT,:E;{ dz) S NkaHLp(QT,ZL”; dz) a‘nd
lur = willyr 204,07 az) < Nk = fill 00,27 a2)

for any k,l € N, where N = N(d,v,7,a,p) > 0 which is independent of k,{. The last
estimate and (4.50) then imply that the sequence {ug } is convergent in %, (Qq, x) dz).
Let u € #,/*(Qr, ) dz) be the limit of such sequence, we see that u solves (4.2).

Hence, in this case, it remains to prove the claim that u, € #,"*(Qp, 2 dz) for every
k € N. Also, let us fix k € N, and let us denote Q. = (—00,T) x R¥"L. Let 0 < ro < Ry
such that

supp(fx) C Q7 x (1o, Ro). (4.52)

Without loss of generality, we assume that ro = 2. From (4.51), it follows directly that

1Dkl x (1,000,037 dz) T 10kl 1 % (1,00) 07727 d2)

—a/2
L ukll 1, x(1,00) 077 dz) < O
Then, we can follow the proof of Lemma 4.3 to show that
||uk||Wp1’2(Q’T><(1,oo),:cg dz) < 0.
It now remains to prove that u, € #,"*(Qf x (0,1),z] dz) and
||ukHWpl'2(Q/T><(O,1),x; dz) < OO (4.53)
To this end, because of (4.52), we note that uy solves the homogeneous equation
ZLour, =0 in Qf x(0,2) (4.54)
with the boundary condition u; =0 on {4 = 0}. Let us denote
_ _ d .
Cr =[-1,0) x {z = (21,...,24) x R : 112?§Xd|xi| <r},
Cr(t,x) =Cr + (t,x), r>0.

Consider « € (0,1). By using Lemmas 4.4, and 4.6 with a scaling argument and trans-
lation, we obtain
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IM ™| oo (Cy (20)) + DUk Lo (01 (20)) F VT “Opuk || 2o (€4 (20))
+ HDDI’UIC”LOO(Cl(Zo)) < N[”Duk”LP(Cz(zo),xg dz) + ||M_(l/2’u,kHLP(Cz(zo),:c;dz)
for every zo = (to,xp,0) € Q7 x {0}. Note that NV depends on k, but is independent of
zo. This and the PDE in (4.54) imply that
IM™%up| L (1(20)) + DUkl L (€1(20)) + IMT*Oruk|l Los (1 (20))

+ 1 D%urllnos (01 (20)) < N (I1Dukll 1, (o (0),07 a2y + IMT 20k 1 (o 20),07 do) |-
Then, as v > —1, we see that

IM™ Ukl L, (1 (20),27 d=) T DUk L, (1 (20),27 dz) + IV ¥ Opuie]| L, (04 (20,0 d2)

+ H D2uk||Lp(Cl(20),x;’ dz) < N|:||Duk||Lp(CQ(zo),:rg dz) + ||M7a/2uk|‘Lp(CQ(zo),z; dz):| :

Then, with zg = (¢, zj,0) and with Z = ((Z + T) N (=00, T]) x (2Z)¢~1, we have

P _ p
larlly iz woiy = Do Mkl )
(to,x{))EI

p —a/2 p
<N Z {HDukHLP(Cz(zo)) +M uk”Lp(Cb(Zo))}
(to,xp)EL

. —a/2
- N{HDU”CH:ZP(QT@; i T (LY UkHI[)/p(QT@; dz)] < 00.

Hence, (4.53) holds.
Now, we consider a € [1,2). As v+ p(1 — «) > —1, we see that

/ |$;auk(2)|pmgdz = / |x;1uk(z)|pmz+p(lfa)dz
Ci(z0) €1 (20)

< NDukllf_ (o))

< NIDWI 0y ey any + IV 2

C2(20),® p(C2(20),2] dz)]'

Then, by taking the sum of this inequality for (to,x() € Z, we also obtain

M™% ukl| L, 1% (0,1),27 dz) < N[||Duk||Lp(QT,z; a2y T IM™ %kl L, p .23 dz)]'

Similarly, we also have M™% (uy)¢, Duy, € Ly(Q7 x (0,1),2) dz). By using the different
quotient, we also get DDyrug, € Ly(Q x (0,1),2) dz). From this, and the PDE of uy,
we have D?uy, € L,( x (0,1),z) dz). Therefore, (4.53) holds. The proof of the claim
in this case is completed.
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Case 2. We consider v = p—1. Let {fi}r be asin (4.50) and let ¥ € (p(a—1)+ —1,p—1).
As in Case 1, we can find a weak solution uy € "H},(QT,wZ dz) to the divergence form
equation (4.6) with fi in place of f, and

||Duk||L:D(QT1TZ dz) T ||M7a/2uk||Lp(QT,zz dz) < 00 (4.55)

We claim that for each k € N,

IDurl 1, 07 az) + IMT Pl (a7 az) < 00 (4.56)

Once this claim is proved, we can follow the proof in Case 1 to obtain the existence of
a solution u € #,%(Qr, z) dz). Therefore, we only need to prove (4.56).
Let us fix k € N and let 0 < rg < Rg such that (4.52) holds. As ¥ <+, we see that

Dl 2, (% (0.2R0),07 =) T IMT il 0,20 .27 d)
—a/2
< N[||Duk||Lp(Q'Tx(o,2Ro),x3 dz) T M o/ “kHLp(Q’Tx(o,zRO),mz dz)} <00

due to (4.55). Hence, it remains to prove

[ Duk| L, 04 x (2Ro,00) 2] dz) + HM_Q/QW||L,,(Q'Tx(2R0,oo),xg dz) < 00. (4.57)

To prove (4.57), we use the localization technique along the x4 variable. See [13, Proof
of Theorem 4.5, Case II]. We skip the details. O

5. Equations with partially VMO coefficients

We study (1.1) in this section. Precisely, we consider the equation

{gu =ulzq)f  inQr, (5.1)

u=0 on (—o00,T) x OR?,

where £ is defined in (1.2) in which the coefficients ag, ¢y, and a;; are measurable
functions depending on z = (2/,z4) € Qr. We employ the perturbation method by
freezing the coefficients. For 29 = (20, w0a) € Qr, let [ai;]q; (24), [ao]qy (24), and [colgr ()
be functions defined in Assumption 2.1 (4,71, o), and we denote
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# — Y —Ta T
)= s | max ()~ ooy ol (@)
Q% (20)
b lao(2) ~ laolay e (@l (2 52

QF (20)

b leola) ~ leolay oty (za) i (d2)
Q4 (20)

For the reader’s convenience, recall that uq, i1 are defined in (4.29). We also recall that
for a given u, we denote

U= (M Pou,, M* P DD u, \M~Po,).
We also denote
U = (M~Pou,, M* P DDru, \Y2M*/ 2750 Dy, AM~Pow).

We begin with the following oscillation estimates for solutions to (5.1) that have small
supports in the time-variable.

Lemma 5.1. Let v,p0 € (0,1), pg € (1,00), a € (0,2), By € (o — 1,min{l,a}], 11 €
(Po(Bo —a+1) =1,po(fo —a+2) = 1), and v; =71 = po(fo — @) € (po —1,2po — 1).

Assume that u € %1’2(62&(20),:10;1 dz) is a strong solution of

Lu = p(ra)f i Q,(20),
uw = 0 on  Qep(20) N {xq = 0}

for f € Lpo(Qgp(Zo),ﬂ?Zle), and supp(u) C (t1 — (pop1)*~ %, t1 + (pop1)*>~*) for some
t1 € R and pg > 0. Then,

(|U o (U)thﬂ(ZO)v“l |)Q¢p(zo),#1
1 1

_ —a 11 2—a)(1-1 1
< N [ O 0 (o ()50~ 4 pP ) | ()

Qi1 (20),111

—(d+(71)++2—a)/po a—Bo f|po)1/Po
+NKZ (|M f| )Qﬂp(zo),/tﬁ (53)
where 0 > 0 is defined in Lemma 4.9, p € (pg, ), and N = N(p,po,V1,, Bo,d,v) > 0.
In addition, if By € (a — 1, /2], we also have

’ /
(|U - (U )Qip(ZO)’l‘l DQ%(ZO)’M
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0 vy 9 g 11 (2—a)(1—1/po) 1/
e G L ) (LA -

—(d+(71)++2—a)/po a—PBo £|po)1/Po
+ Nk (na=fogpoyre (5.4)

Proof. We split the proof into two cases.

Case 1. We consider p < pg/14. We denote

Lzt = [ao]qy, (=) (@a)ue + Alcolqy, (z0) (Ta)u — pl(za)laizlqy, =) (za) DiDju
and
f(2) = f(2) + [aij — [ais]qy, (=) ()] DiDju
+ [Mleolay, =) — co)u+ ([aolqy, (=) — ao)ue] /n(zxa).

Then, u € ¥, (Qg'p(zo), x)'dz) is a strong solution of

D‘Zp,zou - M(xd)f in Qg_p(zo)
u = 0 on Qg (20) N{xa =0}

We note that due to (2.6), the term agq—aqq = 0. Therefore, by using Holder’s inequality
and (1.4), we obtain

1/po

][ ‘Ma—ﬁo (aij — [aij]Qép(Zé) (l'd))DiDju‘pUMl (dZ)

tlp(zo)
1 1
PO P
< ][ |aij_[aij]Qgp(z(’,)(xd)|pp0/(p_p0),uf1(dz)
Q;r4p(20)
1/p
X ][ M5 DD rulP iy (dz)
QR14,(20)
1/p
1 1 _
SNaﬁ)(zo)Po P ][ M50 DD rulP iy (dz)

@11, (20)

By a similar calculation using (1.3), we also obtain the estimate for the term
[Aleolqy, (=) (Ta) — co)u + ([aolqy, =) (Ta) — ao)us] /u(zq). Thus,
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(M=o freyee ), < (M2 o) e

Qi1 (20) 11 Q4,(20) 11

11 1
+ Naf (z0)70 7 (|UP)LLP

QD,;(ZO)aMl.

Then, applying Lemma 4.10, we obtain

(U = (o, o) Dt (z0)

< NHO(|U|170)1/PO

o ot +NH—(d+(71)++2—a)/p0(|Ma—ﬂof|P0)1/P0
14p\20)5

Qtlp(z()))yfl

0 —(d+ +2-a # (50)70 " ® 1/p
SN(/Q + K (d+(v)+ )/PoapO(ZO)pU p)(|U|p)Q1+4p(zo)7#1

+N,ﬁf(d+(“y1)++27a)/po(|Ma7ﬁof|po);/fo( ™
14p(20),H1

Therefore, (5.3) holds. In a similar way but applying Remark 4.11, we also obtain (5.4).

Case 2. Consider p > pg/14. Denoting T' = (1 — (pop1)?>~%,t1 + (pop1)?~%), we apply
(4.39) and the triangle inequality to infer that

F -l <2 £ UEn)

Qi—p(z(]) Qh‘fp(zO)
1 1— L
pro PO
< Np~(@r2atns) ][ U (2)[7° pa(dz) ][ 1p(2)p1(dz)
Qi1 (20) Tap(20)
1/po
< N~ (@2=atn)y) p@=e)1=1/po) f U (2)[7° po(d2)
?ﬁp(ZO)

< N,ﬁ*(d+2fa+(71)+)p§2—0¢)(1—1/110)(|U|p);/1€p(zo)7m_

Therefore, (5.3) follows. Similarly, (5.4) can be proved. O
Our next lemma gives the a priori estimates of solutions having small supports in ¢.

Lemma 5.2 (Estimates of solutions having small supports). Let T € (—oo, 0], v € (0,1),
p,q, K € (1,00), a € (0,2), andy1 € (Bo—a, fo—a+1] for By € (a — 1, min{1, a}]. Then,
there exist sufficiently small positive numbers § and py, depending on d,v,p,q, K, «, Bo,
and 1, such that the following assertion holds. Suppose that wy € Ag(R), wi €
Ap(RY, 20t dx) with

[wola,®) < K and [Wl]Ap(Ri,xgldx) <K.

Suppose that (1.3), (1.4), and (2.6) hold, and Assumption 2.1 (8,1, po) holds with some
po> 0. Ifuce %%f(QT,xZ(af’Bo)w duy) is a strong solution to (1.1) with some X\ > 0
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and a function f € L QT,xp(afﬁo)wd 1), and u vanishes outside (t; — (pop1)? =, t1 +
a.p d H

(pop1)?~%) for some t; € R, then

HM_aut”Lq,p + ||D2uHLq,p + )\”M_au”Lq,p < N||fHLq,p7 (55)

where N = N(dvl/ap7Q7avﬂ()a’71aK) > 07 Lq,p = Lq,p(QTvxZ(a_ﬁO)Wd/il); w(t,x) =
wo(t)wi(x) for (t,x) € Qp, and pi(dz) = ' dedt. Moreover, if By € [0,a/2], then
it also holds that

IM™ulz, , + ID%ullz, , + A2 M2 Dul g, , + AIM ™ *ullL,,

(5.6)
< N|[fllz,,-

Proof. Aswy € Ay((—00,T)) and wy € Ay(R%L, 2 dx), by the reverse Holder’s inequality
[33, Theorem 3.2], we find p; = p1(d, p,q,v1, K) € (1, min(p, ¢)) such that

wo € Aq/pl((foO,T)), wi € Ap/p1 (Ri,l‘gldx) (57)

Because 71 € (89 — a, o — a + 1], we can choose pg € (1,p;) sufficiently closed to 1 so
that

v € (po(Bo—a+1)—1,po(Bo —a+2)—1).

By (5.3) of Lemma 5.1 and Holder’s inequality, we have

1

Ufl <N |K? 4+ g~ (@t(n)++2-a)/po (aﬁ)(zo)%_ﬁ —l—p§2_a)(1_1/p°))]M#1(|U|p1)1/p1

+N,{—(d+(71)++2—a)/poMM(|Ma—6of|p1)l/p1 in Q_T

for any k € (0,1), where N = N(v,d, po,p1,®, Bo,71) > 0 and aﬁ) is defined in (5.2).
Therefore, it follows from Theorem 3.2 and (5.7) that

10U, (00 w dur)
< N[M + k(@) 20) /o (575 hr 4 pgfa)(lfl/po))} «
XM ([UPHYPH L dun)
1
+ N~ d+(1)++2-a)/po ”Mm (|Mo¢fﬁof|p1)p1 ||Lq,p(QT7UJ )
< N[Ke + g (@+()++2-a)/po (5%—% I p§27a)(171/po))} HUHLq,p(QT,wdul)

+Nﬁ_(d+(71)++2_a)/p0||Ma_60f||Lq1p(QT,wd/l,l)7

where N = N(d, v, p, q, @, Bo,71, K) > 0. Now, by choosing x sufficiently small and then
0 and p; sufficiently small depending on d, v, p, q, a, 71, Bo, and K such that
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N HG+K/—(d+('yl)++2—a)/p0(6%—ﬁ —s-pf’“)(l*l/p(’))} <1/2,

we obtain

UL, @ wdp) < N(dv,p,q, 0, B0, 71, KM fll L 0r wdp)-
From this and the PDE in (1.1), we obtain
Mz, + 1D, + XM ~ulz,, < N|fl,,.
This proves (5.5). The proof of (5.6) is similar by applying (5.4) instead of (5.3). O
Below, we provide the proof of Theorem 2.2.

Lemma 5.3 (A priori estimates of solutions). Let T € (—oo,00], v € (0,1), p,q, K €
(1,0), a € (0,2), and y1 € (Bo — a, B0 — a + 1] for By € (a—1,min{l,a}.
Then, there exist 6 = d(d,v,p,q,K,a,Bo,v1) > 0 sufficiently small and \g =
Ao(d,v,p,q, K, a, Bo,v1) > 0 sufficiently large such that the following assertions hold.
Let wy € Ag(R), w1 € Ap(RY, 2] dx) satisfy

[wola,®) < K and [M]A,,(Ri,mgldm) <K.

Suppose that (1.3), (1.4), and (2.6) hold, and suppose that Assumption 2.1 (6,71, o)
holds with some py > 0. If u € 7/(11,]’,2(QT,xZ(a_B°)w du) is a strong solution to (1.1)
with some A\> )\Op8‘72 and [ € Lq’p(meZ(a*’BO)w duy), then

IM~wllr,, + D%z, , + MM ~"ulr,, < N|flL,,. (5.8)

where w(t, ) = wo(t)wi(z) for (t,x) € Qp, Lyp = LQVP(QT,CCZ(O(_'BO)W duy), and N =
N(d,v,p,q, K, , Bo,v1) > 0. Moreover, if By € (o — 1,a/2], then it also holds that

IM- s, , + D%, + A2 M™/2Dully, , + XM,

(5.9)
< Nfllz,,-

Proof. Let 0, p; be positive numbers defined in Lemma 5.2, and let Ay > be a number
sufficiently large to be determined, depending on d,p, q, o, 8o, v,71, K. As the proof of
(5.8) and of (5.9) are similar, we only prove the a priori estimate (5.8). We use a partition
of unity argument in the time variable. Let § > 0 and p; > 0 be as in Lemma 5.2 and
let

€ =¢&(t) € C5°(—(pop1)* ™%, (pop1)*™)

be a non-negative cut-off function satisfying
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N

—_— 5.10
(Pop1)9=) (>10)

[e@ras=1 ad [igias <
R

R

for some N = N(q) > 0. For fixed s € (—00,00), let u(®) (2) = u(2)£(t—s) for z = (t,2) €
Qr. We see that ul®) € W2 (Qr, xs(a_ﬁ‘))w dp1) is a strong solution of

Lu(2) = p(zq) fO(2) in Qp
with the boundary condition u(®) = 0 on {z4 = 0}, where

FO(z) = €(t = 5)f(2) + € (t = s)u(z)/pul(wa).

As spt(u®) C (s — (pop1)>~ %, s + (pop1)?>~) x RZ, we apply Lemma 5.2 to get
+

M=z, , + D%, , + MM, , < NP,

P —

Then, by integrating the g-th power of this estimate with respect to s, we get

[ (e, D2, A ds
R

<~ [, , ds (5.11)
R

where N = N(d,v,p,q,K,a,Bo,71) > 0. Now, by the Fubini theorem and (5.10), it
follows that

Jineealyy, as
R

T
_ —a NI a(s _
7/ /||M UMY oo g 0 (DE7(E = )t | s
R \— OO
T
_ a4 _ —a e
_/ /g(t $)els | IMC (6] o o g @00
— o R
= [[M™ ||

L R4 ,zp(afﬁo)wdﬂl ’
a,p\N1,Tg

and similarly
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/”Dgu(s)u%w ds = ||Ma_'80D2quLq,p’
R

J IO ds = I
R

Moreover,

N

o g
(Pom)qm_a)HM uHL””

()4 q

[, as <, +
R

where (5.10) is used and N = N(q) > 0. As p; depends on d,v,p,q, K, a, Bo,v1, by

combining the estimates we just derived, we infer from (5.11) that

IM~wlly,, + 1D%ullr,, + AIMulls, , < N(If]L,, + o6 ~2IM ulL,, )

with N = N(d,v,p,q, K, a, fo,71) > 0. Now, we choose \g = 2N. Then for A > )\Opg_2,
we have

IM~wlz,, + D%z, + AIM~*uls,, < NI/,

ap —

This estimate yields (5.8). O
Now, we have all ingredients to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. The a priori estimates (2.7) and (2.8) follow from Lemma 5.3.
Hence, it remains to prove the existence of solutions. We employ the technique introduced
in [10, Section 8]. See also [13, Proof of Theorem 2.3]. The proof is split into two steps,
and we only outline the key ideas in each step.

Step 1. We consider the case p = ¢, wp = 1, and w; = 1. We employ the method of
continuity. Consider the operator

Ly =1-7) (0 + A= plza)A) + 7.2, T €10,1].

It is a simple calculation to check that the assumptions in Theorem 2.2 are satis-
fied uniformly with respect to 7 € [0,1]. Then, using the solvability in Theorem 4.1
and the a priori estimates obtained in Lemma 5.3, we get the existence of a solution
u € 7/1,172((2@:02(0‘_%)03/11) to (1.1) when A > X\opg 2, where )\ is the constant in

Lemma 5.3

Step 2. We combine Step 1 and Lemma 5.3 to prove the existence of a strong solution
u satisfying (2.7). Let p; > max{p, ¢} be sufficiently large and let 1,22 € (0,1) be
sufficiently small depending on K, p, ¢, and ~; such that
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1 1
1—£: and l—iz ,
P l+e P l+e

(5.12)

and both w%“l and wé+€2 are locally integrable and satisfy the doubling property. Specif-
ically, there is Ny > 0 such that

/ wy T (s) ds < N / wy 2 (s) ds (5.13)

Tar(to) T (to)

for any 7 > 0 and ¢y € R, where T',.(tg) = (to — 7=, min{to + r>~%,T}). Similarly

/ Wit (x) dpy < Ny / Wi () dpy (5.14)

Bi,.(z0) Bt (w0)

for any » > 0 and z¢ € @.
Next, let {fr} be a sequence in C§°(Qr) such that

= Tl ey = 515
By Step 1, for each k € N, we can find a solution uy € %11,2(97”@51(&—50) dpq) of (1.1)
with f in place of f, where A > /\0p8‘_2 for Ag = Ao(d, v, p1,01, K, o, Bo,71) > 0. Observe
that if the sequence {u} is in %{bQ(QT,xs(a_BO)w dp1), then by applying the a priori
estimates in Lemma 5.3, (5.15), and the linearity of the equation (1.1), we conclude that
{ug} is Cauchy in ”//ql’j’f(QT,xZ(OﬁBO)w dpq). Let u € 7/(117]’02(QT,£U§(O(7/60)0J dpuq) be the
limit of the sequence {u}. Then, by letting k — oo in the equation for ug, we see that
u solves (1.1).

It remains to prove that for each fixed k € N, uy € “//(117;,2 (Qr, xs(a_ﬁ())w dpq). To this
end, let us denote

Dr = (—R*>~* min{R**,T}) x Bf.
Then, let Ry > 0 be sufficiently large such that

supp(fx) C Dg,- (5.16)

We note that Ry depends on k. It follows from (5.12), (5.13), (5.14), and Holder’s in-
equality that

llurllya

2 -8
L2 (D2R07x5(0 Bo)

wdjpir)

S N(d7p7 q,DP1, aa717ﬂ07 RO)||uk:||Wp1£2(D2RO7‘,L,51(0<*/30)dﬂl) < 00.

Hence, we only need to prove
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Huk Hyyqlf(QT\DRO’ZZM*BO)wd#l) < 0.

This is done by the localization technique employing (5.12), (5.13), (5.14), (5.16), and
Holder’s inequality, using the fast decay property of solutions when the right-hand side
is compactly supported. We skip the details as the calculation is very similar to that of
[10, Section 8], and also of [13, Step II - Proof of Theorem 2.3]. The proof of Theorem 2.2
is completed. O

Next, we prove Corollary 2.3.

Proof of Corollary 2.3. It is sufficient to show that we can make the choices for 71, 8o,
and w; to apply Theorem 2.2 to obtain (2.9) and (2.10). Indeed, the choices are similar
to those in the proof of Theorem 4.1. To obtain (2.9), we take S8y = min{1, o}, and with
this choice of 5y, we have

a—pFy=(a—-1)y and (Bo—a,fp—a+1]=(—(a—1)4,1—(a—1)4].

Then, let vy =1 — (e« — 1)y and v/ = v — [y1 + p(a — 1)4]. From the choice of v; and
the condition on v, we see that

—1-m <y <@+7)p-1). (5.17)

Now, let wy(z) = x}, for x € RY. It follows from (5.17) that wy € A,(z)'dx). As
Assumption (pg,~1,9) holds, we can apply (2.7) to obtain (2.9).

Next, we prove (2.10). In this case, we choose Sy = a/2, 1 =1 — /2, and

v =5 [y +pa/2]. (5.18)

We use the fact that v € (pa/2 — 1,2p — 1) and (5.18) to get (5.17). As Assumption
(po,1 — a/2,9) holds, by taking wq(x) = x}l, we obtain (2.10) from (2.8).

Finally, we prove the last assertion of the corollary on the C'(!*+8)/2:1+5 regularity
of the solution u. Note that the C(*+8)/21+5 regularity in the interior of Qp follows
from the standard parabolic Sobolev embedding theorem. To prove the C(1+F)/214+5_
regularity near {z4 = 0}, it is sufficient to prove such regularity on QT/Q. This follows
immediately from Proposition 3.3. The proof is completed. O

6. Degenerate viscous Hamilton-Jacobi equations

To demonstrate an application of the results in our paper, we consider the following
degenerate viscous Hamilton-Jacobi equation

{ut + A — p(xg)Au = H(z, Du) in Qp, (6.1)

u=20 on (—oo,T) X 3Ri,
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where p satisfies (1.3) and H : Qp x R? — R is a given Hamiltonian. We assume that
there exist 3,¢ > 0, and h : Q7 — R such that, for all (z, P) € Qp x R4,

|H(z, P)| < y_l(min{ycg7 1} P|E 4 25h(z)). (6.2)
The following is the main result in this section.

Theorem 6.1. Let p € (1,00), o € (0,2), and v € (p(a — 1)y — 1,2p — 1). Assume
that (6.2) holds with ¢ = 1, B > 1, and h € L,(Qp,x)dz). Then, there exists \g =
Ao(d, p,a, B,7) > 0 sufficiently large such that the following assertion holds. For any
A > N, there exists a unique solution u € #,}*(Qp,x) dz) to (6.1) such that

M=z, + D%, + MMl 1, < Nl
where || : ||Lp = || : ||LP(QT,x;’ dz) and N = N(d7pvavﬂa7) > 0.

Proof. The proof follows immediately from Theorem 4.1 and the interpolation inequality
in Lemma 6.3 (i) below. O

Remark 6.2. Overall, it is meaningful to study (6.1) for general Hamiltonians H. It is
typically the case that if we consider (6.1) in (0,7") X ]Ri with a nice given initial data,
then we can obtain Lipschitz a priori estimates on the solutions via the classical Bernstein
method or the doubling variables method under some appropriate conditions on H. See
[6,2,31] and the references therein. In particular, HDu||Loo([O’T]XR$) < N, and hence, the
behavior of H(z, P) for |P| > 2N + 1 is unrelated and can be modified according to our
purpose. As such, if we assume (6.2), then it is natural to require that £ = 1 because of
the above.

We note however that assuming (6.2) with £ =1 and 8 > 1 in Theorem 6.1 is rather
restrictive. It is not yet clear to us what happens when 0 < g < 1, and we plan to revisit
this point in the future work.

To obtain a priori estimates for solutions to (6.1), we consider the nonlinear term H
as a perturbation. We prove the following interpolation inequalities when the nonlinear
term satisfies (6.2) with £ =1 and ¢ = 2, which might be of independent interests.
Lemma 6.3. Letp € (1,00),8>0,v> —-1,1 <4< d%‘lp, and 6 = %(14— g — %). Assume
that H satisfies (6.2). The following interpolation inequalities hold for every uw € C§° ()
and f(z) = x;amin{xg, 1} Dult,

(i) If¢=1and 8 > 1,

~ —a 1/2 2 11/2
Hf”Lp(QT@} dz) < N”M au”LP(QT,m; dZ)HD UHLP(QT,x;{ dz)

+ NHM_QUHLP(QT,Q:J dz)»
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where N = N(d,p, 8,7v) > 0.
(ii) If ¢ =2, p_2,andﬁ>max{7+62l‘;‘ ;—1-24-———} then

F - 2(1-0) 2
||fHLp(QT,ar:;Y dz) < N”M au”Lp(QT@’J dz) ||D uHLP(QT z) dz)

+ NHM_auH%p(QT@;’ dz)’

where N = N(d,p,3,7) >0

Proof. For m € Z, set Q,, = {z € Qp : 27™71 < x4, < 27™}. By the Gagliado-
Nirenberg interpolation inequality, for m € Z,

1DullL, .0, < N (lully (o ID%ull] .y + 22 lullL, @) ) -
p( m) P

Hence, for m > 0,

—a / B—a)+

”Mﬁ |Du|[”12p(ﬂm,zd dz) = /xs( ) 7|Du|P€dz
Qm
< me(p(ﬁfa)Jr”/) / |Du|p€ dz
925
£(1-0) L0
< N2—mp(B—a)+7) /MPdZ /|D2 [P dz
4

+N2—m(p(,8—a)+’}’+d—i’e—d€) /|u|;D dz

< No—m(p(B=a)+r+pla(l=60)—ty) |\ f-a Hpe(l %) | D2 |2

Ly (Qmyz)) dz)| Ly(Qmz) dz)

_ _ d—pl—dl+plo—L -
+ N2~ m(p(B-e)tytd-ploditpla—ty)|\f—oy Pt p (-2 dz)’

By performing similar computations, we get that, for m < 0,
- ‘
||M O‘|Du| ||Z£p(gzmm;/)

< N2—m(—pa+’y+P€a(l—9)—e’Y)||M_O‘u||zl)i((1§;j?xz 42) ||D2u||’£i‘9mm,$d d2)

+N27m(7pa+'y+d7pﬁfdé+pﬁa7€'y)”M UHL @ Y ey
m,T, dz

Then, if { =1 and 8 > 1, we have
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p(B—a)+y+pla(l —0) =Ly =p(B—5) >0,
p(B—a)+y+d—pl—dl+pla—Ly=pB—1) >0,
—pa+ v+ pla(l —0) — by = -5 <0,
—pa+y+d—pl—dl+pla—Lly=—p<O0.

We thus obtain (i). Similarly, the above four inequalities hold true when ¢ = 2, p > %,

and 8 > max{% g—z, % +2+ 9 — %0‘ , which yield (ii). O
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