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Abstract. We show scalar-mean curvature rigidity of warped products of round spheres
of dimension at least 2 over compact intervals equipped with strictly log-concave warping
functions. This generalizes earlier results of Cecchini—Zeidler to all dimensions. Moreover,
we show scalar curvature rigidity of round spheres of dimension at least 3 with two antipodal
points removed. This resolves a problem in Gromov’s “Four Lectures” in all dimensions.
Our arguments are based on spin geometry.
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1 Introduction

In this paper, we study rigidity results for metrics with lower scalar curvature bounds. One of
the first results of this kind is the famous rigidity theorem of Llarull [14]. Let gg» denote the
standard round metric on S™ with scalar curvature n(n—1). Llarull showed that, if ¢ is a metric
on S™ with g > gg» and Ry > n(n — 1), then g = gg». The proof of Llarull’s theorem uses Dirac
operator techniques in an ingenious way, and is inspired by the fundamental work of Gromov
and Lawson [8, 9].

In an important paper, Cecchini and Zeidler extended this line of thought and proved scalar
and mean curvature rigidity results for odd-dimensional manifolds with boundary where the
comparison metric is not the round metric, but a warped product metric (see [5, Section 10]).
In the first part of the present paper we will remove the dimension parity assumption in some
of their results.

Given a Riemannian manifold (M, g) with boundary, we denote by R, the scalar curvature
of g. Moreover, we denote by v, the outward unit normal with respect to g. We denote by H,
the mean curvature of M with respect to g, defined as the sum of the principal curvatures.
The sign convention for Hy is such that the mean curvature vector is given by —H v,.

This paper is a contribution to the Special Issue on Differential Geometry Inspired by Mathemati-
cal Physics in honor of Jean-Pierre Bourguignon for his 75th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA /Bourguignon.html



2 C. Bér, S. Brendle, B. Hanke and Y. Wang

Let n > 2, let §_ < 64 and let p: [f_,0,] — R be a positive smooth function. We consider
the warped product metric

go = df ®df + p*(0)ggn- (1.1)
on S"71 x [0_,0,]. The scalar curvature of go is given by
#'(6) - p’<0>2)
Ry =(n—1) (-2 T n—2)—— LY 1.2
o= (n-1) (=220 1 (-2 (12
while the boundary mean curvature of gg is given by
. pl(9i> n—1
Hy =+(n—-1) along S" x {6+} (1.3)
p(0+)

(cf. [3, Example 4.1]).
Our first result says that warped product metrics satisfy a scalar-mean curvature rigidity
property, provided that the warping function is strictly logarithmically concave.

Theorem A. Letn > 2, let p: [0—,0+] — R be a positive smooth function such that (log p)” < 0.
Let go denote the warped product metric in (1.1). Let M be a compact, connected spin manifold of
dimension n with boundary OM . Let g be a Riemannian metric on M. Suppose that ®: (M, g) —
(S”*1 x [6—, 0+],go) is a smooth map with the following properties:

O(OM) C S" 1 x {0,,0_},

e ® has non-zero degree,

o ® is 1-Lipschitz,

e Ry > Ry, 0P at each point in M, compare (1.2),
e Hy > Hgy, o ® at each point in OM, compare (1.3).
Then ® is a Riemannian isometry.

We note that R, in this theorem is not required to be non-negative. For n odd, Theorem A
is implied by results of Cecchini—Zeidler, see [5, Theorem 10.2].

Applying this discussion to annuli in simply-connected space forms as in [5, Section 10], this
removes the parity restriction in [5, Corollaries 10.4 and 10.5].

Example 1.1. If 0 < 0_ < ;. < 7 and p(#) = sin §, then the warped product metric g in (1.1)
has constant scalar curvature Ry, = n(n —1). If §_ < 64 and p(#) = sinh 6, then the warped
product metric go in (1.1) has constant scalar curvature Ry, = —n(n — 1).

Example 1.2. The spatial Schwarzschild-de Sitter metrics on S"~! x [§_,60,] are rotation-
ally symmetric and have scalar curvature equal to a positive constant. Similarly, the spatial
Schwarzschild-anti-de Sitter metrics on S"~! x [f_,0,] are rotationally symmetric and have
scalar curvature equal to a negative constant. These metrics can be expressed as warped prod-
ucts of the form go = df ® df + p(0)ggn-1, see, e.g., [13, p. 64]. If we restrict to an interval
where log p is strictly concave, then we obtain the rigidity property in Theorem A.

The second theme of our paper is a rigidity result for metrics on the sphere S™ with two
antipodal points removed. This can be viewed as a limiting case of the band rigidity results
treated in the first part of our paper. This is related to a conjecture of Gromov [7]. He
conjectured that Llarull’s theorem holds for metrics that are defined on the sphere S™ with
finitely many points removed. In the special case of two antipodal punctures, Gromov sketched
an argument based on p-bubbles (see [7, Sections 5.5 and 5.7]). In the three-dimensional case,
a detailed proof based on p-bubbles was given by Hu, Liu, and Shi [11]. An alternative proof in
the three-dimensional case was given by Hirsch, Kazaras, Khuri, and Zhang [10]. Using Dirac
operator techniques, we generalize these results to all dimensions:
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Theorem B. Let n > 2. We consider the warped product metric gy = df @ df + sin? fggn-1
on S"1 x (0,7). Let Q be a non-compact, connected spin manifold of dimension n with-
out boundary. Let g be a (possibly incomplete) Riemannian metric on Q with scalar curva-
ture Rg > n(n —1). Suppose that ®: (2,9) — (S"‘l X (0,71'),90) s a smooth map with the
following properties:

e O is proper,
o & has non-zero degree,

e O is 1-Lipschitz.
Then ® is a Riemannian isometry.

Remark 1.3. Theorems A and B do not hold for n = 2. To see this, we choose A > 1 and
consider the metrics ¢ = df ® df + Asin?(6)gs1 and go = df ® df + sin?(0)gg: on S x (0, 7).
Then R; = Ry, = 2, and the identity map from (Sl x (0, ﬂ),g) to (51 x (0, Tr),go) is 1-Lipschitz,
but not an isometry.

Our argument relies on the spin geometric approach to scalar curvature rigidity as introduced
in [14] and further developed in [5]. A new feature of the present work is the construction
of non-zero harmonic spinor fields for which the right-hand side of the integral Schrodinger—
Lichnerowicz—Weitzenbock formula has a favorable sign, but which cannot be generated directly
by index-theoretic arguments. This construction uses limits of sequences of non-zero harmonic
spinor fields whose existence follows from index theory, cf. Corollaries 2.7 and 3.5.

In contrast to [5], our index calculations take place exclusively on compact manifolds. The
corresponding “holographic” index theorem for compact manifolds with boundary is formulated
and proved in Appendix B, which may be of independent interest.

After this paper was written, we learned of a preprint by Wang and Xie [15] announcing
similar results.

2 Proof of Theorem A

2.1 Proof of Theorem A for n even

We first prove Theorem A for even n, which is not treated in [5]. The necessary changes in the
odd-dimensional case will be explained in the next section.

Fix an even integer n > 2 and a warping function p: [#_,0,] — R such that (logp)” < 0.
Let go denote the warped product metric in (1.1). Let M be a compact, connected spin man-
ifold of dimension n with boundary OM. Let g be a Riemannian metric on M. Suppose
that ®: (M, g) — (S”_l X [9_,0+],go) is a smooth map satisfying the assumptions of Theo-
rem A.

Let ¢: M — S™ ! denote the projection of ® to the first factor, and let ©: M — [0_,6,]
denote the projection of ® to the second factor. Since ® = (p, ©) is 1-Lipschitz, we obtain

g>dO ®dO + p*(0)p*ggn-1. (2.1)
Lemma 2.1. We have |VO| < 1, and the inequality is strict unless dp(VO) = 0.
Proof. Evaluating the inequality (2.1) at the vector VO gives

VOP > VOl + #(O)dp(VO)

From this, the assertion follows easily. |
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We write OM = 0 M U J_M, where
O M :=0oMNnO~{6,}), O_M:=0MnO*({6_}).

Lemma 2.2. Let p|s_p: O-M — S"~! denote the restriction of ¢ to O_M. Then deg(®) =
+ deg(plo_n)-

Proof. We can find a smooth function ©: M — [f_,0,] such that ©~'({,}) = 9. M,
O-1({_}) = 8_M, and dO© # 0 at each point on &M UH_M. Let us define a map &: M —
S % [0_,04] by & = (ap,(:)). Clearly, deg (i)) = +deg(¢lo_nr). Since @ is homotopic to @
relative to OM, the assertion follows. |

For even n, the boundary OM is odd-dimensional which is inconvenient for the index calcu-
lations. As in [14], we remedy the situation by considering products with circles of large radius
and sending the radius to infinity. Let r be a positive real number. We consider the prod-
uct M = M x S equipped with the product metric § = g+r2gq1. We write OM = ;. MUI_M,
where

Oy M =80, M xS,  O_M:=0_M x S*.
Lemma 2.3. There exists a smooth map

h: 8"t x St — gm
of degree £1 with the property that h*ggsn < ggn—1 + 4gg1.

Proof. Fix a smooth 2-Lipschitz function : [—7, 7] — [—m, 7| such that 3(t) = —x for t €
[—, —%“], B(t)=0fort e [-%, %], and B(t) =7 for t € [%’r,w]. Moreover, let us fix a point
a € S 1. We consider the map

. f B

S a8 (ot BB coSB0) ot € [-m.0]
(sin B(t)a,cos B(t)) for t € [0, 7].

This gives a map h: S~ x ST — S" of degree +1. Moreover, h*ggn = sin? B(t)ggn-1 + 3'(t)%gs:

for t € [~m,0] and h*gsn = B'(t)%2gs: for t € [0, 7]. [ |

In the following, we assume that h: S"~! x §' — S™ is chosen as in Lemma 2.3. We define
a smooth map f: M = M x S' — 8", f(z,t) = h(p(z),t) for z € M and t € S,

Choose a spin structure on M and let .S denote the spinor bundle over M. Furthermore,
let S denote the spinor bundle over M = M x S, where S! is equipped with the trivial spin
structure S x Spin(1) — S x SO(1). Note that with this choice, S is the pull-back of S, as
a Clifford-module bundle, under the projection from M = M x S* to M.

Let Fy denote the spinor bundle of the round sphere S™. The bundle Ej is equipped with
a preferred bundle metric and connection. Since n is even, we may decompose Fjy in the usual
way as Fg = Ear @ Ej , where E(J{ and £, are the 1-eigenbundles of the complex volume form.

Next we need an index computation.

Proposition 2.4 (cf. Cecchini-Zeidler [5]). Consider the indices of the following operators:

e Let indy denote the index of the Dirac operator on S® f*Ear with boundary conditions
u=—iv-u on 0+M and u=1iv-u on O_M.

e Let indy denote the index of the Dirac operator on S® f*Egr with boundary conditions
u=1iv-u on 0+M and u= —iv-u on O_M.
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e Let ind3 denote the index of the Dirac operator on S® f Ey with boundary conditions
w=—iv-u on &4 M and u=1iv-u on &_M

e Let indy denote the index of the Dirac opgrator on S® f*EO_ with boundary conditions
u=1iv-u on 0+M and u= —iv-u on O_M.

Then ind; + indy = 0, inds 4 indg = 0, and max{indy, inds, inds,indy} > 0.

Proof. Since the boundary conditions are adjoint to each other, we obtain ind; + indy = 0
and inds + indgy = 0.

It remains to show that max{ind,inds,inds,inds} > 0. Suppose that this is false. Then
ind; = indy = inds = ind4 = 0. We will apply the holographic index theorem in Appendix B
and the Atiyah—Singer index theorem to show that the assumption ind; = inds = 0 already
leads to a contradiction.

The restriction S |57 can be identified with the spinor bundle on 9_ M. We may write
S| o7 =ST®S™, where ST and S~ denote the eigenbundles of the volume form on 9 M.
Equivalently, ST and S~ can be characterized as the eigenbundles of iv. This gives the splitting

(S®FEN) g in= (ST (floy) BS) ® (S~ @ (Flo_i) EF)-
Similarly,
(S Ey)lo = (ST ® (floy) Ey) ® (5™ @ (Flg_xt) Ey )-

Since ind; = 0, Corollary B.3 tells us that the boundary Dirac operator which maps sections
of ST ® (f\(9 M) E to sections of S~ ® (f|a M) E has index 0. S1m11arly, since inds = 0,
the boundary Dlrac operator which maps sections of StT® ( f o M) E, to sections of S™®
(f|a M) Ey has index 0.

To obtam a contradiction, we compute the index of the boundary Dirac operators using the
Atiyah-Singer index theorem. Denote the total A-class of _ M by A(a M ) The Chern charac-
ter of the bundle (f]a M) E0 is given by the pull-back of ch (E+) under f|, ;. In particular,
the Chern character of the bundle ( f lo. M) EJr only contains terms in the 0-th and n-th coho-
mology groups. Since the boundary Dirac operator which maps sections of S* ® ( f o M) E'(')|r
to sections of ST ® ( f o M) Ej has index 0, the Atiyah-Singer index theorem gives

0= (A(0-M) Ueh((flo_ ) Ed). [0-M])
= dim B - (A(0-M), [0-M]) + {ch((fl,_y7)"E). [0-M])
= dim Ef - (A(0-M), [0-M]) + deg (f|, 1) - (ch(Eg).[S™]). (2.2)
Working with E; instead of Ear , we similarly obtain
0= (A(0-M) Uch((flo ) Eq), [0-M])
= dim By - (A(0-M), [0-M]) + {ch((fl, 1) Ey ). [0-M])
= dim Ey - (A(0-M), [0-M]) + deg (f|5 ;) - (ch(Eg),[S™]). (2.3)
In the next step, we subtract (2.3) from (2.2). Using the fact that dim Ej = dim E, , we obtain
0 =deg (fl, ;1) (ch(E) — ch(Ey), [S™]).

It follows from [12, Proposition 11.24, Chapter III] that (ch(Ey) — ch(Ey),[S"]) = £x(5") =
+2 # 0 since n is even. Thus deg (f|a,M) =0.
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By assumption, the map ®: M — S™"! x [f_,60,] has non-zero degree. Hence, it follows
from Lemma 2.2 that the map ¢lg_ar: O-M — S™ ! has non-zero degree. Consequently,
the map @lg_y x id: O_M x St — S"71 x S! has non-zero degree. By Lemma 2.3, the
map h: 8" ! x S1 — S™ has non-zero degree. Since f|(9 7 = ho(pla_n xid), we conclude
that the map f lo izt O- M — S™ has non-zero degree. This is a contradiction. |

By Proposition 2.4, we know that max{ind;,inds,inds,inds} > 0. After switching the bun-
dles Ear and E if necessary, we may assume that max{ind,inds} > 0. In the remainder of
this section, we focus on the case ind; > 0. (The case inds > 0 can be treated analogously)

Let E denote the pull-back of E+ under the map f The bundle metric on E gives us
a bundle metric on E. Moreover, the connection on E(J{ induces a connection on E. We denote
by VS®E the tensor product connection on S ® E. We denote by DS®F the Dirac operator
acting on sections of S ® E,

n+1
DS®EU _ Z ek - vS@E
k=1
where {ej,...,e,4+1} is a local orthonormal frame on M. Finally, we define the boundary Dirac

operator by

u—ZV ek - VS®Eu—|— Hu

where {e1,...,e,} is a local orthonormal frame on M. The boundary Dirac operator is self-
adjoint and anti-commutes with Clifford multiplication by v.
Recall the Weitzenbock formula (see [12, Theorem 8.17, Chapter II}),

(DSEE)2u = (V9F) wSePy, 4 iRu + R,

where R¥ is a section of the endomorphism bundle of S ® E which depends on the curvature of
the bundle E.

We define a vector field T on M by T = 8t7 where ¢ — (cost,sint) is the canonical local
coordinate on S'. Note that 7T is parallel and has unit length with respect to the metric g. In
the following, ¥ will denote a smooth function on M which will be specified later. We may
extend ¥ to a smooth function on M satisfying T'(¥) = 0. If u is a section of the bundle S ® E
and X is a vector field on M, we define

- Sei i
Pxu= V32 pypu+ 5V (X = (X, T)T) -u. (2.4)

Our argument is based on the following integral formula which links several geometric quantities
on M and OM.

Proposition 2.5. Let u € C* (M, S® E) Then

: 2
o ~ o 1
—/~ ‘DS®EU— Ty +/~ ’Pu}Z—F/~ ‘V;®Eu’2+/~ R|ul?
7} 2 N 7 4 J
: 1 i(n — 1
+/~ <REu,u>+”(”4)/~ \112|u]2—1(n2)/~<(v\11)~u,u>
7 N N

:1/ <D3Mu,u—|—iu-u>+1/ <u+iu-u,DaMu>
2 Jo. mr 2 Jo.nr
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1 -1
/ (H— (n—1)®)u> - " / Uu+ iv - u, u)
2 Jo, nr 2 Joomr

+1/ <D8Mu,u—iy-u>+1/ <u—iu-u,DaMu>
2 Jo 17 2 Jo_nt

_M
1 n—1

= n— ul?
3| - ne

U(u —iv - u,u).
o_M

Proof. Integrating the Weitzenbdck formula and using the divergence theorem gives

Y Y 4 ) i
:/~ <V'D§®EU,U>+/~ <V§®Eu,u>.
oM oM

Note that v - DI®Ey 4+ VS®Ey, = DMy, $Hu. This gives

/ \DSM \ +/ \VS®E | + = / R|u|2+/~ <REu,u>
M
OM
1 - 1
_ - DMy, ) + = / , DMy / Hlul>.
2/59M< u> 2 aM< 2 Jowr o

Since DM is self-adjoint and anti-commutes with v, we find
/ <D8Mu, iv- u> = / <u, ’DaM(il/ . u)> =— / <u, iv - ’DaMu>
8+ M 8+ M 8+ M

:—/ <il/-u,DaMu>.
8+ M

Therefore,

—/ ‘D§®Eu‘2+/ ‘V§®Eu|2+1/ R\u!2+/ <REu,u>
Y4 hvs 4 Jur Y4

:1/ <D3Mu,u—|—iu-u>+l/ <u+iy-u,DaMu>
2 Jo, 1 2 Jo, 1

1 Y 1 y 1
+/ <D8Mu7u—iy-u>—l—/ <u—iuou,DaMu>—/ H|ul?. (2.5)
2 Jo_nt 2 Jo_nr 2 Jom

Using the definition of Pu and a local orthonormal frame ey, ..., e,, T on M, we compute

n 2

[Pul’ ="
k=1
= }VS®EU‘2 — }V§~®Eu‘2 + %\112]142

foéu + %\I!ek X

+ %\I/<DS®EU _T. V§®Eu, u> _ %\D<u,D§®Eu _T. V§®Eu>
= [V5Fuf’ — [Vl 4

+ %\I/<DS®Eu,u> - %\I/<U,DS®EU> - %@T((T Cu,u)). (2.6)
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Using the divergence theorem, we find

/~ UT((T - u,u)) = /aMwT.u,u><T,u>

M
— /~ U(T - u,u)divl — / T(U)(T - u,u) =0. (2.7)

M M

We integrate (2.6) over M and insert (2.7) and obtain

J L e e L I e
M M M 4 M

i $9E, ) _ L SOE
+ 5 /M U(D>* u, u) 5 /M\II<U,D u). (2.8)

Substituting (2.8) into (2.5), we obtain

. _ L - 1 ~
—/~ ‘DS®EU‘2+/N ‘Pu|2—|-/~ }V§~®Eu‘2+4/N R]u|2+/~ <REu,u>
M M N M N
— Z/M W2 || — % /M W<D§®Eu,u> + ;/M \I’<U,D§®EU>
1 v 1 .
:/ <D3Mu,u—|—iy-u>+/ <u+iu-u,D‘9Mu>
2 Jo, i1 2 Jo, i1
1 Y 1 _ 1
—I—/ <D8Mu,u—i1/-u>+/ <u—iu-u,DaMu>—/ Hlul?. (2.9)
2 Jo_n1 2 Jo_n1 2 Jont
Using the divergence theorem, we obtain
i 1 o 1 o 1
— i(n—1) / \II<DS®EU,U> + M \Ij<u’DS®Eu> _ i(n—1) / (V) - u,u)
2 7 2 b7} 2 i
i 1 o 1 o
_ _1(n2 )/N (DSF (W), ) + 1(n2 )/~ (Wu, D3Py
N M
i(n—1
_ =) / (- (Tu),u). (2.10)
2 ant

Adding (2.9) and (2.10) gives
—/ ‘DS®EU‘2+/ ‘Puf—i—/ ‘V?‘@Eu‘z—i-l/ R]u\Q—i-/ <REu,u>
N Y i 4 )5 i
_n/ \112|u\2—1(n_1)/ ((V\If)-u,u>—m/ Q/<D§®Eu,u>+m/ \If<u,D§®Eu>
s 2 s 2 Jir 2 Jwr

4
:1/ <D8Mu,u+iy-u>+1/ <u+iu-u,DaMu>
84 2 Jo,m

2 Jo,nr Y
1 -1

_/ (H = (n— 1)W)[ul2 =" / U+ iv -, )
2 Jo, i1 2 Jo,mt
1 Y 1 Y

—I—/ <D8Mu,u—i1/-u>+/ <u—iy-u,DaMu>
2 Jo_n1 2 Jo_n1
1 —1

—/ ~(H+(n—1)\1’)|u|2+n / Wy —iv-u,u).
2 Jo_n1 2 Jom

This completes the proof of Proposition 2.5.
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At this point, we specify our choice of the function W. We define a function ¢: [0_,60,] — R

by () = %. Since (logp)” < 0, we know that —¢' > 0 on [#_,0,]. Using (1.2), the

inequality R > Ry, o ® gives

R>(n—1) (-2¢/(e) — np?(8) + ::2(_@2)) . (2.11)

We define ¥: M - R by ¥V = o00.

Proposition 2.6. Assume that r > 2supjy_g.1p. Then we can find an element ty € St and
a section u € C* (M, S® E) such that

/ ! | |2 =1
—|u|” =
Mx{to} p(©)

/ }ﬁ’uf < n- 1.
MX{to} r

Proof. Recall that we are assuming ind; > 0. In view of the deformation invariance of the
index, we can find a section v € C° (M, S® E) such that

and

e u does not vanish identically,
o DSOEy %\I/u =0 on ]\Z/,
o u=—iv-uondyMand u=iv-uon d_M.

Using Proposition 2.5, we obtain

[+ [ ] [ e
+ /M <REu,U> + n(n4_1) /M \1;2|u’2 _ 1(”2_1) /M<(v\1;) TR

1

= —= —(n — ’LLQ—E n — u2
- 2/8+M(H (n = 1))]u| 2/8M(H+( D)D)|ul?. (2.12)

By assumption and using (1.3),

He (-1 =H—(n-1)20) 5 g

p(04)
on 94 M and
H—|—(n—1)\I'2H—|—(n—1)';/((g_)) >0

on d_M. Consequently, the right-hand side in (2.12) is non-positive.

We next analyze the term R¥. To that end, we fix a point (z,t) € M. Let fi1,..., fing1 >0
denote the singular values of the differential d f(%t) : (T (w,t)M , g) — (Tf(ﬂa " S™ ggn), arranged in
decreasing order. Since the differential df; ;) has rank at most n, it follows that u,4+1 = 0. The
eigenvalues of the symmetric bilinear form f*gg» with respect to the metric § = g 4+ r2g¢1 are
given by p3,..., u2,0.

Using (2.1), we obtain, on the one hand,

G=g+1gs1 > p*(0)p*ggn-1 + g1
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On the other hand, the inequality h*ggn < ggn—1 + 4gg1 implies

Frgsn <@ ggn-1 +4gg1.

By assumption, r > 2p(0) at the point (z,t). Hence, the min-max characterization of the

eigenvalues implies that p?, ... ,,u,%_l < % and p2 < %. Together with Proposition A.1, this
implies
3 1 n—=2)(n—-1) 1 n—1 1
(REuu)y>—= 3 pypluf2 > - uf? = 22—,
V)= = 2
g 4 p*(©) r p(©)
J#k

Recall that |VO| < 1 by Lemma 2.1. Since —¢’ > 0 on [0_, 6], it follows that |[V¥| < —¢/(O).
Using (2.11), we obtain the pointwise estimate

—1 -1
=D gz

) R ()

POl + "Ly @)

2

n(n —1)

-1 1
.

SC)

Putting these facts together, we conclude that

[ < [

Hence, we can find an element tg € S* such that

~ 2 n — 1 1
L B
Mx{to} r Jaxqeo) P(O)

and fo{to} ﬁ|u!2 > 0. From this, the assertion follows. |

Corollary 2.7. There exists an element tg € S with the following property. Let f: M — S™
be defined by

f(@) = f(x,t0) = h(p(x), t0).

Let E denote the pull-back ofEar under the map f. Then there exists a section s € C°(M,SQFE)
such that

[ 1s =1
M
d

Vs SUX s =0

an

for every vector field X.
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Proof. Let us consider a sequence 1y — co. For each ¢, Proposition 2.6 implies the existence
of an element t, € S! and a section ul¥) € C>® (M, S® E) such that

1
N W (TP 1
/Mx{tg} p(©) [

/ Pu@P <1
Mx{ts} oo

After passing to a subsequence, we may assume that the sequence ¢, converges to an element
to € S'. We define maps f: M — S™ and f©: M — S™ by
fx) = Jlato) = (@), to),  fO(x) = fla,te) = ho(x), t)

for x € M. Let E denote the pull-back of Ear under f, and let E® denote the pull-back of Ear
under £ . The restriction of u(® to M x {t;} gives a section s() € O (M,S® E(f)) such that

1
= @)% =
/M P(@)‘S ‘ !

/M

For each /¢, we define a bundle map o®: E() — E as follows. For each point € M, the map

ag(f) : E( ) = (E+) O@) ™ E, (E ) is defined as the parallel transport along the shortest

geodesic from f( dl € S" to f(x) € S21 It is easy to see that o(® is a bundle isometry for

each ¢. It follows that the map (1d ® O'(Z)) :S® E®W — S® F is a bundle isometry for each .
We may write

and

2

n-1 (2.13)

.,
k=1 ¢

VSEE ((id @ 00)s®) = (id ® 0®) (VS®E<‘>S(Z) + AO O, (2.14)

where A® is a 1-form taking values in the endomorphism bundle End (S ® E(E)). Since ty — tg,
the maps fy COHVGI‘%G to f smoothly. From this, we deduce that ‘A( )‘ — 0 uniformly.

By (2.13), Vo®F ’s® is bounded in L2. Using (2.14), we conclude that V59F ((id ® 0(3))5(@)
is bounded in L?. So, the sequence (id ® ot )) ) € C>°(M, S ® E) is bounded in H*(M, S® E).
After passing to a subsequence, the sequence (id ® O'(Z))S(Z) € C®(M,S ® E) converges, in the
weak topology of H'(M,S ® E), to a section s. Since weak H'-convergence implies strong
L?-convergence, the limit s € H'(M, S ® E) satisfies

e
I

The inequality (2.13) implies that
VIPs 4 SUX s =0 (2.15)

for every smooth vector field X on M, where (2.15) is understood in the sense of distributions.
Since (2.15) holds for every smooth vector field X on M, it follows that s is a weak solution of
an overdetermined elliptic system. By elliptic regularity, s is smooth and (2.15) holds classically.
Rescaling s concludes the proof. |
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Definition 2.8. Let ty € S!, f: M — S", and E be defined as in Corollary 2.7. We define the
modified connection V¥ on S ® E by

Vs =Vi®Es 4 %\I/X s, (2.16)

where V9®F denotes the connection on S ® E induced by the ones on S and FE.

Lemma 2.9. The curvature tensor RY of the connection VY defined in (2.16) satisfies:
i 1
RYys = R$8Es + %(d\I/(X)Y —dU(Y)X) s — JUHX Y —Y - X) s (2.17)

Here RS®F denotes the curvature tensor of VS©F . Moreover, the curvature term in the Weitzen-
bock formula satisfies

1 1 i(n—1) n(n —1)
3 Z ej-ek-R;I'jyeks: <4R+RE>8—2V\I/-8+4\IJ2$, (2.18)
1<j,k<n
J#k
where e1, ..., e, is a local orthonormal frame.

Proof. We check (2.17) at a fixed point on M. Let X and Y be vector fields defined in
a neighborhood of that point whose covariant derivatives vanish at the point. We compute at
that point:

. . . 1
VEVYs = VPVl 4 ZaW(X)Y o5 4+ S0V Vs 4 S0X- Vs - 0Ny s,

Anti-symmetrizing with respect to X and Y yields (2.17).
As to (2.18), we use formula (8.8) in [12, Chapter II] and (2.17) and we find

1 1
<4R+RE> s=3 Zej ey Rfﬁfs
7k
1 . i 1,
=3 Zej ep | Rejes — i(d\I’(ej)ek —d¥(eg)e;) - s+ 1\11 (ej-ex—eg-ej)-s
J#k
1 i(n—1) n(n —1)
ZQ%Gj'ek‘R;Pj,ekSJr 2 V\Il-sz‘lﬂs. |
J

After these preparations, we now complete the proof of Theorem A for even n. Let tg € S?,
f: M — 8™ and E be defined as in Corollary 2.7 and let V¥ denote the connection defined
in (2.16). By Corollary 2.7, there exists a section s € C*(M,S ® E) such that [, |s]* =1
and V¥s = 0. Since M is connected and s is V¥-parallel, we have that s # 0 at each point
in M. Using (2.18) and the fact that RY annihilates s, we find

1 i(n—1) n(n —1)
E,_ _* Lo 2
R%s = 4R3+ 5 \AURN 1 Ps
1 i(n—1 -1
=—-Rs+ MW(@)V@ s — Mzﬁ(@)s.
4 2 4
By Lemma 2.1, |[VO| < 1. Since —¢’ > 0 on [f_, 0], it follows that
1 -1 -1
(REs.s) <~ LRis? - " Lyre)s - M= Wz o)
n—=2)(n—-1) 1 9
— . 2.19
e e (219)
In the last step, we have again used (2.11).
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Let us fix an arbitrary point © € M. We consider the singular values pq,...,u, > 0 of
dfe: (TuM,g) = (Tf(z)S", gsn), arranged in decreasing order. Since f factors through Sn—t
the differential df, has rank at most n — 1, and we obtain u, = 0. The eigenvalues of the
symmetric bilinear form f*ggn with respect to the metric g are given by p?, ..., M%—p 0.

Using (2.1) together with the inequality A(-,tp)*gsn < ggn-1, we obtain

9> p*(©)¢ ggn—1 > p*(©)f gsn
1

at the point x. Therefore, u?,...,u2 | < 2@y Using Proposition A.1 in Appendix A, we
deduce that

(== 1

<RE373> > — 1 ,02(@)’8

at the point x. Having established the reverse inequality in (2.19), this inequality must be an
equality. In particular all the inequalities in (2.19) are equalities. Since n > 2 and s # 0 at the
point x and )’ # 0, we can draw the following conclusion:

e The singular values of df,: (T:M,g) — (Tf)S™, gsn) are given by ﬁ, cee ﬁ,o. In
other words, the eigenvalues of f*ggn with respect to g at the point z are given by
1 1
#e) ey
e |VO| =1 at the point z.

Since |VO| = 1 at the point z, Lemma 2.1 implies that dp,(VO) = 0, hence df;(VO) = 0.
Consequently, VO lies in the nullspace of f*ggn. Putting these facts together, we obtain

1
*ggn = —dowd
hence
g=dO ®dO + p*(0)f*gsn (2.20)

at the point x. On the other hand, using (2.1) together with the inequality h(-,t9)*gsn < ggn-1,
we obtain

g>dO®dO + p*(0)p*ggn-1 > dO ® dO + p*(O) f*ggn (2.21)
at the point x. Combining (2.20) and (2.21), we conclude that
g=dO ®dO + p*(O)p*ggn

at the point x. Since z is arbitrary, we conclude that g = ®*(gp). This means that ® is a local
isometry. Since the target of ® is simply connected and the domain is connected, it follows
that ® is a global Riemannian isometry. The proof of Theorem A for even n is complete.

2.2 Proof of Theorem A for n odd

When n is odd, the proof of Theorem A is simpler, and we just indicate the necessary changes.
Instead of working with M = M x S', we work with M. Furthermore, instead of the map
f=nho (p x id): M — S™, we directly work with ¢: M — S™ 1. Let S denote the spinor
bundle over M, and let Ey denote the spinor bundle over the round sphere S"~!. Since n — 1 is
even, we may decompose Fy = Ear @ E, , where E(T and E; denote the £1-eigenbundles of the
complex volume form.
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Proposition 2.10 (cf. Cecchini-Zeidler [5]). Consider the indices of the following operators:

e Let indy denote the index of the Dirac operator on S ® gD*E(J{ with boundary conditions
s=—iv-sondyM and s=1iv-s on O_M.

e Let indy denote the index of the Dirac operator on S ® gp*Ear with boundary conditions
s=iv-sondsM and s = —iv-s on O_M.

e Let ind3 denote the index of the Dirac operator on S ® p*E, with boundary conditions
s=—-iv-sondiM and s=iv-s on O_M.

e Let indy denote the index of the Dirac operator on S ® ¢*Ey with boundary conditions
s=iv-sondsM and s =—iv-s on O_M.

Then ind; + inde = 0, inds + ind4 = 0, and max{ind;, inds, inds,inds} > 0.

The proof of Proposition 2.10 is analogous to the proof of Proposition 2.4 and uses the
holographic index theorem.

After switching the bundles Ey and Ej if necessary, we may assume that max{ind;,inds} > 0.
As above, we focus on the case ind; > 0. (The case indy > 0 can be handled analogously.)

Let E denote the pull-back of Ear under ¢. Let D5®F denote the Dirac operator on sections
of S ® E, and let DM denote the boundary Dirac operator.

Let ¥ be a smooth function on M that will be specified later. If s is section of the bun-
dle S ® FE and X is a vector field on M, we define a perturbed covariant derivative of s by the
formula

Pxs = V_‘?(@Es + %\IIX - S.

Proposition 2.11. Let s € C*°(M,S ® E). Then

. 2
1
—/ ‘DS®E5—m\Ps +/ |P32+/ R|s|?
M 2 M 4 Jm

n(n —1) i(n—1)
4 /M (RPs,s)+ ") /M wr)sp? - N /M<(v\1/) . 5,5)

:1/ <D8Ms,s+iu-s>+1/ <s+iu-s,D8Ms>
2 Jo,.m 2 Jo,m

1 -1

—/ (H — (n—1)®)|s]>2 =" / U(s+iv - s, s)
2 Jo,m 2 Jo,m

1

—i—/ <D8Ms,s—iu-s>+/ <s—iu-s,D8Ms>
2 oM 2 o_M

1 -1

—/ (H + (n— 1)0)|s]> + = / U(s —iv - s, ).
2 Jo_m 2 Jo_m

The proof of Proposition 2.11 is analogous to Proposition 2.5.
As above, we define a function ¢: [0_, 6] — R by ¢(0) = %. The assumption R > Ry, o ®
gives

R>(n—1) (—2¢’(@) — mp?(O) + %) . (2.22)

We define V: M — R by ¥ =1 00.
At this point, we use the assumption that ind; > 0. In view of the deformation invariance of

the index, we find a section s of S ® E such that
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e s does not vanish identically,
o D®Eg _Inys=0on M,

e s=—iv-sond+M and s =irv-son 0_M.

Using Proposition 2.11, we obtain

/ Ps|? + / Rls? + / oy 3>+n(n4_1)/M\112]s]2—i(nz_l)/M«V\I/)-s,s)

2 1 2
_ 2/8+M(H (n— 1)0)[s[2 2/8M(H—|—(n—1)\11)|s|. (2.23)

By assumption, H — (n — 1)U > 0 on 0+ M and H + (n — 1)¥ > 0 on 0_M. Therefore, the
right-hand side in (2.23) is non-positive.

Fix a point x € M, and let p1,...,u, > 0 denote the singular values of the differential
doys: (TpoM,g) — (Tf(m)sn_l,gSn—l), arranged in decreasing order. Since the differential dp,
has rank at most n — 1, it follows that u, = 0.

Since ¢ is 1-Lipschitz by assumption, we obtain

9> p*(0)p*ggn-1.

Consequently, p2, ..., u2 ; < %. In view of Proposition A.1, this implies
1 ( —2)(n—-1) 1 9
(Rs T > s> a8l
4 1<j5,k<n 4 P (@)
J#k

Since [VO| < 1 and |VV¥| < —¢/(0), this gives the pointwise estimate

%RISP + (RPs,s) + ”(”4_ 1)\1’2\s|2 _n-d IVE||s|?
1 s (n—=2)(n—-1) 1 o nn—=1) 9, n—1, 2
Z —_— - _ > 0.
4R| s — 1 pz(@)]s] 1 Vv (O)]s|” + 5 P'(O)|s|* >0

In the last step, we have used (2.22). Putting these facts together, we conclude that

[ 1psp -
M

hence
VEEs + %w(@)X -s=0

for every vector field X. This is the analogue of Corollary 2.7. From here on, the proof of
Theorem A in the odd-dimensional case proceeds in the same way as in the even-dimensional
case.

3 Proof of Theorem B

3.1 Proof of Theorem B for n even

We first prove Theorem B for even n. The necessary adaptations in the odd-dimensional case
will be explained at the end of this section.
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Fix an even integer n > 2. Consider the warped product metric go = df ® df + sin® fggn—1
on S"7! x (0,7). Let Q be a non-compact, connected spin manifold of dimension n with-
out boundary. Let g be a (possibly incomplete) Riemannian metric on €2 with scalar curva-
ture R > n(n — 1). Suppose that ®: (€, g) — (5"~ x (0,7), go) is a smooth map satisfying the
assumptions of Theorem B.

Let ¢: Q — S™! denote the projection of ® to the first factor, and let ©: Q — (0, )
denote the projection of ® to the second factor. Since @ is proper, it follows that © is proper.
Since ¢ = (¢, ©) is 1-Lipschitz, we obtain

g >dO ® dO + sin? Op*ggn-1. (3.1)

As in Lemma 2.1, (3.1) implies that |[VO| < 1, and the inequality is strict unless dp(VO) = 0.

Throughout this section, we fix a point z € S*1 x [g, 2?”] with the property that z is
a regular value of ®. Since ® is proper, ®~!({z}) is a finite subset of Q. Let us fix a real
number & € (0, F) with the property that the set ®({z}) is contained in a single connected

component of the set ©~1([6y, 7 — dp]).

Definition 3.1. We denote by A the set of all real numbers § € (0,dp) such that 6 and 7 — ¢
are regular values of the function ©: Q — (0, 7).

By Sard’s theorem, A is an open and dense subset of (0,dp). In the following, we assume
that 6 € A. Since © is proper and 6 and 7 — § are regular values of O, the set ©~1([d, 7 — §])
is a compact domain in €2 with smooth boundary. We denote by My the connected component
of ©71([§, 7 — 4]) that contains the set ®~({z}). Then M; is a compact, connected manifold
with boundary. As above, we may write OMs = 94 My U 0_ My, where

0y Ms :=0MsN O ({r —6}),  0_Ms:=0M;nO*({s}).
We first show that the restriction ®|pz,: Ms — S"~! x [§, 7 — §] has non-zero degree.

Lemma 3.2. For each § € A, the restriction ®|p;,: Ms — S~ x [6, 7 — ] has the same degree
as the map ®: Q — S~ x (0,7).

Proof. The degree of ® is obtained by counting the elements of the set ®~1({z}) with suitable
signs. Since ®71({z}) is contained in Mj, the degree of ®|y, coincides with the degree of ®. W

We consider the product Q= Q~>< St equipped with the product metric g = g + r2gg1.
Let Ms = Ms x S* C Q. We write OMs = 0, Ms U 0_ My, where

Oy Ms := 0, Ms x S*,  O_Ms:= 0_M;s x S*.

By Lemma 2.3, we can find a smooth map h: S"~! x S' — S™ of degree +1 such that h*ggn <
ggn—1 +4gg1. We define a smooth map f: Q = Q x ST — 5™ by f(z,t) = h(e(x),t) for 2 € Q
and t € St

Choose a spin structure on € and let S denote the spinor bundle over Q. Let S denote
the spinor bundle over the product Q. Note that S is the pull-back of S under the canonical
projection from Q = Q x S* to Q.

Let Ey denote the spinor bundle of the round sphere S™. The bundle E; is equipped with
a natural bundle metric and connection. Since n is even, we may decompose Ej in the usual
way as Fy = E(J{ @ L , where E(J{ and E; are the eigenbundles of the complex volume form.

For each § € A, we define indy, inds, inds, indy4 as in Proposition 2.4, working on M instead
of M. Let

A} = {6 € A:ind; > 0}, Ay = {6 € A:indy > 0},
A3:{5€A:ind3>0}, A4:{5€A:ind4>0}.
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sz

Figure 1. The function ;5.

By Proposition 2.4, we know that
A=A UAUA3UA,.

In particular, at least one of the sets Aj, Ay, Az, Ay must contain 0 in its closure. After
switching the bundles E(J{ and Ej if necessary, we may assume that one of the sets Aj, As must
contain 0 in its closure. In the remainder of this section, we assume that the set A; contains 0
in its closure. (The case when the set Ag contains 0 in its closure can be handled analogously.)

In the following, we consider a real number § € Aj. In other words, ind;y is positive. Let E
denote the pull-back of Ear under the map f The bundle metric on Ear gives us a bundle
metric on E. Moreover, the connection on E induces a connection on E. As above, we denote
by ~VS®? the connection on S ® E. We denote by D°®F the Dirac operator acting on sections
of S®E.

Given § € (0,%) and € € (0,6), we can find a smooth function ¢s.: [§,7 — §] — R with the
following properties:

P5e(0) =cot(§ —d +¢) for 6 € [5, %]

° wé,e(Q)zcot(Q—i—é—s) for 0 € [ 7r—5]7
o |¢5:(0) —cotd| < Kd for 6 € [T, 2],
o | (thse(0) — cot0)] < K6 for 6 € [Z, 2],

see Figure 1. Here K is a positive constant that does not depend on ¢ and . This choice of the
function s is inspired in part by the work of Hirsch, Kazaras, Khuri, and Zhang [10].

Similarly as in Section 2, we define a vector field T on My = Ms x S' by T = %%,
where ¢t — (cost,sint) is the canonical local coordinate on S'. We define a function Use: Ms— R
by s, =15 0 © and extend ¥s. to a smooth function on My satisfying T(Vs.) = 0. Finally,
we define an operator P as in (2.4), working with W, instead of W.
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Proposition 3.3. Suppose that § € Ay and suppose that ¢ € (0,0) is chosen so that H >
—(n — 1) cote at each point on the boundary OMsy. Moreover, we assume that r > 2. Then we
can find an element to € ST and a section u € C*® (M5, S® E) such that

2 / ! | |2 / 1 | |2 =1
. U m 2ny |U
Kor Jprsxftoy Sin © Mjsx{to} {0l 51

and

n—1

K.

[ jpal<
MgX{to}

Proof. By assumption, é € Ay, so that ind; > 0. In view of the deformation invariance of the
index, we can find a section v € C'° (M(g, S® E) such that

e u does not vanish identically,
o DYy — s 4 =0on M,
° u:—iu-uon&J\% and v = iv - u on O_ Mj.

As above, it follows from Proposition 2.5 that

T L T
M§ M(S 4 M(S

b [ RPuy+ M g gD

M M;

(VUs.) - u,u)

— 5 [ -0l - [ (H - )P 32
84 M; &_ N
Note that 1)5.(m—6) = cot(m—e) = — cot € and 15 .(0) = cot e by our choice of 1)5.. This implies
H—(n—1)Ws.=H+(n—1)cote >0o0n dyMs and H+ (n —1)Ws. = H + (n — 1) cote >0
on d_Mjs. Therefore, the right-hand side in (3.2) is non-positive.
By assumption, > 2sin ©. Arguing as in Section 2, we can bound

4 sin2 © r sin®

n—2)(n—-1) 1 uf? n—1 1

<REu,u> > — |U’2

Moreover, using the inequality |VO| < 1, we obtain

1
sin?(@ — § + ¢)

IVWse| < [¥5.(0)] =

on the set @_1([5, g]),

1

Vel < [15:(0)] =
(VUse| < [h5.(0)] sin?(© + 0 — ¢)

on the set @_1([%”,77 — 5]), and

1
V5| < [¢5.(0)] < —5= + Kb
sin“ ©

on the set @,1([% %ﬂ]) Using these facts together with the inequality R > n(n — 1), we
conclude that

n—1
2

1 > nn—1
ZR]uP + <REu,u> + %\Pg’slu\z — ’V\P&EHUF
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>n(n—1)|u|2_(n—2)(n—1) 1 ful? n—1 1 2

- 4 4 sin? © o sin®|u
nn—1) s n—1 1 9
————=cot? (@ -9 -

LI ( +e)lul 2 sin2(@—5+€)|u|
(n—2)(n—-1) 1 1 9 m—1 1 9

= ) - . 2 ’u‘ - - ’u‘

4 Sin“(©@ —d +¢) sin“O r sin®
n—1 1 9
> _ _—
- r sin®|u|

on the set @_1([5, %]),

n—1
2

1 > n(n —1
J Rl + (R%u,u) + (4)\If§,glu\2 = 5 Vs |uf?

nn—1), o (M—2)(n-1) 1 s m—1 1 9

> — — _

- 4 [l 4 sinQG‘u| r Sin®|u|
nn—1) s n—1 1 9
———~cot*(®@+ 4§ — —

+ 4 cot™(6 + e)lul 2 sin2(®+6—€)|u|
(n—2)(n—-1) 1 1 9 mn—1 1 9
= — -~ ) lul - —ul
4 sin“(©@ +0 —¢) sin“ O r sin®
n—1 1 9
> _
- r sin@|u|
on the set @_1([%”,77 — 5]), and
1 % nn—1 n—1
SR+ (RPu ) + "D g g u?
nn—1), o (n—2)(n—-1) 1 9 n—1 1 9

> — — _

2 ———lul 1 ze — 6
———~cot* O — — Kb

* 4 0 [ 2 sin2®‘u| lu
n—1 1 5 mn—1 9
=— - Kb
r sin@|u| 2 [ul

on the set 9*1(%, %’r]) Putting these facts together, we obtain

- 9 n—1 1 5 n—1 9
/]\7[ [Pul <= /m sme T3 Ka/mle-lug,@)‘“"

Hence, we can find an element tg € S* such that

n —

~ —1 1 1
Msx{to} r Msx{to} sin © 2 Msx{to} 373

and
2 / 1 9 / )
Kor i ul” + lg-1(ix 2zpy|ul® > 0.
Kor Jarsxio} sm@‘ M x{to} e-1([%,3)) |
From this, the assertion follows. =

Corollary 3.4. Suppose that 6 € Ay and suppose that € € (0,6) is chosen so that H >
—(n—1)cote at each point on OMs. Then there exists an element ty € St with the follow-
ing property. Let f: Q — S™ be defined by f(z) := f(x,to) = h(p(x),to) for x € Q. Let E
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denote the pull-back of ES' under the map f. Then there exists a section s € H'(Ms,S ® E)
such that

2 _
/Ma lo-1z,zplsl” =1
2

Here, V°®F denotes the connection on S ® E.

and

. 2
1 n—1
D |VEEEs + S¥se(@)er 5| < —— K.

k=1

Proof. Let us consider a sequence ¢ — oo. For each ¢, we can find an element ¢, € S and
a section ul¥ € 0> (Mg, S® E) such that

2 / 1 0P / (0|2
—|u + log—1/x 2n7y |0 =1
K(;T‘g Mgsx{t,} Sln(")| ’ Msx{t;} © 1([3:23})’ ‘

and

/ 1Pu®P <"~ 1xs
Msx{te} 2

After passing to a subsequence, we may assume that the sequence ¢, converges to an element
to € S'. As in Section 2, we define maps f: Q — S™ and f: Q — S™ by

f(2) = fla,to) = hp(x),to),  fO(@):= fla,te) = hlp(@), tr)

for x € Q. Let E denote the pull-back of EJ under f, and let E® denote the pull-back of Ear
under the map (). The restriction of u(®) to Mz x {t,} gives a section s) € C'*® (Mg, S® E(e))
such that

2
Y ok
K<5w/M5 sm@‘s |+/M51®1<[§72;1>\3 |

/>

Since Mj is connected, we may estimate

and

L |

< K.

vf}fwws(@ T %wa,g(@)ek N0

k=1

2
VSQ@EZ) O 4 wéa( O)ey, - sV

(see [2]). This implies | ) !s ‘ < C(d,e). Analogously to Section 2, we consider a sequence
of bundle maps ¢©: E) — E. After passing to a subsequence, the sequence (1d ® U(Z))S(Z)
C*>(Ms, S ® E) converges, in the weak topology of H'(M;z, S ® E), to a section s. The section

s € H'(Ms, S ® E) has all the desired properties. |
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Corollary 3.5. There exists an element to € St with the following property. Let f: Q — S™ be
defined by f(z) == f(z,t0) = h(p(x),to) for z € Q. Let E denote the pull-back of Ef under the
map f. Then there exists a section s € C*(),S ® E) such that

2 __
/Ql@lqg,?])'s' =1

and

V§(®Es+%cot@X-s:O

for every vector field X. Here, VS®F denotes the connection on S ® E.

Proof. Recall that we are assuming that the set A; contains 0 in its closure. In other words, we
can find a sequence of real numbers 6y € A1 converging to 0. After passing to a subsequence, we
may assume that the sequence J; is monotonically decreasing. Consequently, Mg, is an increasing
sequence of compact domains in €, and (J; Ms, = .

We choose a sequence ¢ € (0,d¢) such that H > —(n — 1) cote, at each point on 9Ms,.
By Corollary 3.4, we can find a sequence of elements t, € S with the following property.
Let f: Q — S™ be defined by f(z) := f(z,t;) = h(p(x),t;) for z € Q. Let E© denote the
pull-back of Ear under the map f®. Then there exists a section s®) ¢ H* (M(gz, S® E(e)) such

that
02z _
/M 1671(%’23”})‘8 ‘ 1

¢

/>

Ms, j—1

and

2

i -1

K.

Since 2 is connected, results in [2] imply that the sequence s® is bounded in Hﬁ)c.

After passing to a subsequence, we may assume that the sequence t; converges to an ele-
ment to € S'. We define a map f: Q — S™ by f(x) := f(x,to) = h(p(z),to) for & € Q. Let E
denote the pull-back of Ear under f. As in Section 2, we consider a sequence of bundle maps
o EO — E. After passing to a subsequence, the sequence (id ® J(é))s(e) € Hl(M(;e, S®F)
converges weakly in H|. _ to a section s € H\ (2, S ® E). The section s satisfies

2 _
/Qlelqg,?nfs’ =1

and
VEEs + % cotOX -s=0 (3.3)
for every vector field X, where (3.3) is understood in the sense of distributions. Since s is a weak

solution of an overdetermined elliptic system, we conclude that s is smooth and (3.3) holds in
the classical sense. |

Having established Corollary 3.5, the proof of Theorem B now proceeds as in Section 2, with
the choice p(f) = sinf and (0) = cotd. As in Section 2, we conclude that g = ®*(go). In
other words, @ is a local Riemannian isometry. Since ® is proper, the domain is connected, and
the target is simply connected, ® is a global Riemannian isometry. This completes the proof of
Theorem B for n even.
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3.2 Proof of Theorem B for n odd

When n is odd, the proof of Theorem B is simpler, as we can work with Q and M; directly, and
we do not need to consider the Cartesian product with S'. We omit the details.

A The curvature term in the Weitzenbock formula

In this section, we recall a well-known estimate for the curvature term in the Weitzenbock
formula. Let us fix integers n, N > 2. Let (M, g) be a Riemannian spin manifold of dimension n,
and let f: (M,g) — (SN,gSN) be a smooth map to the round unit sphere of dimension V.
Let S — M denote the spinor bundle of M, let Ey — SV denote the spinor bundle of SV and
set E = f*Ey. Let R denote the curvature term appearing in the Weitzenbdck formula for the
square of the twisted Dirac operator on S ® F, so that

S f doi 1
(DY®F)"s = (VS=F)"'Vo=F 4 TRys + RYs.
The following estimate for the curvature term R is well known.

Proposition A.1 (cf. Llarull [14]). Let x € M and let p1,. .., u, > 0 denote the singular values
of the differential df,: (T, M, g,) — (Tf(z)SN, gSN). Then

REs| < S el
1<j,k<n
Ik

foralls € S, ® E,.
Proof. Let m denote the rank of the differential df,. Clearly, m < min{n, N}. We assume that
the singular values are arranged so that pup > 0for 1 <k <mand pup =0form+1 <k < N. We
can find an orthonormal basis {e1,...,e,} of (T, M, g,) and an orthonormal basis {e1,...,en}
of (Tt(z)SN, gsnv) such that dfy(ex) = prep for 1 <k <m and dfz(e) =0for m+1 <k <n.

Let FFo € Q2(SN,End(Ep)) denote the curvature of Ey, and let F¥ € Q?(M,End(E)) denote
the curvature of E. For each s € S, ® Ey = S; ® (Ep) f(y), formula (8.22) in [12, Chapter II]
gives

1 1
R"s = 2 L<i k< ((ej ep) ® Fej,ek) B 1<ih< ((ej “er) @ Fdf(l(ej)vdfr(ek)) o
<jk<n D
SR 7k
1
T2 Y wim((ejen) @ FLL) s,
1<j,k<m

#k
Since the curvature operator of SV acts as the identity on 2-forms, we obtain by formula (4.37)
in [12, Chapter II] (also compare [14, Lemma 4.3]) that Fg?ekn = %sk g5 -n for all j # k and

all n € (Eo)f(y). Putting everything together, it follows that

1
E
R¥s =7 Z ik (€ - ex) @ (ex - €5)) - 5.
1<jk<m
J7#k
For each pair j # k, Clifford multiplication by (e; - ex) ® (ex - €5) on Sy @ By = S ® (Eo) f(a)
is a self-adjoint involution, hence an isometry. Therefore, |((e; - ex) ® (ex - €5)) - s| = |s| for all
1 < j,k < m. This finally implies
1
E
[RPs| <7 > mamnlsl: u
1<j,k<m

2k
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B A holographic index theorem

We prove a theorem which relates the index on a manifold with boundary with that of the bound-
ary. We only need it for twisted spinorial Dirac operators but since it may be of independent
interest, we show it for the larger class of self-adjoint Dirac-type operators.

Let M be a compact Riemannian manifold with boundary dM with outward unit normal
vector field v. Let S — M be a Hermitian vector bundle. Let D be a differential operator of
first order. Its principal symbol is characterized by D(fs) = fDs + op(df)s. We say that D is
of Dirac type if its principal symbol satisfies the Clifford relations

op(§)op(n) +op(nop(§) = —29(&,n)

for all &,m € TyM and x € M. In particular, if D is of Dirac type, then D is elliptic. All
generalized Dirac operators in the sense of Gromov and Lawson are of Dirac type.

We assume that the restriction of S to the boundary OM splits into two orthogonal subbun-
dles, S|onr = ST @ S~. A first-order differential operator D?: C*(9M,S) — C>(9M, S) is
called adapted to D if the principal symbols are related by

opo(€) = —op (1) lop(€) (B.1)

for all & € T*dM. Here 1 is the 1-form metrically related to v.! If D is of Dirac type then so
is DY,

If D? interchanges the subbundles, i.c., D?: C® (8M, Si) — C*® (3M, SJF), then we call D?
an odd operator. We denote by C°(M, S) the space of all sections s of S which are smooth up
to the boundary and satisfy s(z) € S for all x € OM.

Theorem B.1. Let D be a formally self-adjoint Dirac-type operator and let D° be a for-
mally self-adjoint odd operator adapted to D. Assume that op (Vb) preserves the bundles ST
and S~ and anti-commutes with D?. Then the operators D: CL(M,S) — C=(M,S) and
D?: C® (8M, Si) — O (8]\/[, Sﬂ are Fredholm and their indices satisfy

ind(D: C¥(M,S) = C*(M,S))

= —ind(D: C®(M, S) — C>®(M, S)) (B.2)
_ %ind(Da: C>(0M, 5*) = C(9M, 5)) (B.3)
= —%ind(Daz C®(OM,S™) — C*(0M,S™)). (B.4)

Proof. The Fredholm property of D: C(M,S) — C*(M,S) follows from Corollary 7.23,
Proposition 7.24, and Theorem 7.17 combined with Corollary 8.6 in [1]. Note that the com-
pleteness and coercivity at infinity required in [1] is automatic in our situation as M is compact.

Since op (Vb) preserves the bundles ST and S~ the boundary conditions s € ST and s € S~
are adjoint to each other. Corollary 8.6 in [1] implies

ind(D: C(M,S) — C*(M,S)) = dimker(D: CT(M,S) — C>*(M,S5))
—dimker(D: CF (M, S) = C*(M,S)).
In particular, this proves (B.2).

Elliptic operators on compact manifolds without boundary are always Fredholm. Since D?
is elliptic and formally self-adjoint, its L?-closure is self-adjoint. Since the L?-closures of the

n [1] and many other references one works with the inward unit normal rather than the outward pointing
one. Then there is no — sign in (B.1) and the roles of V< and V-~ in the proof of Theorem B.1 get interchanged.
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restrictions C'*° (8M, Si) — C* (8M, SJF) are adjoints of each other, we obtain (B.4). It remains
to prove (B.3).

Let V5 and V. denote the subspaces of the Sobolev space H 3 (OM, S) spanned by the
eigenspaces of D? corresponding to the positive or negative eigenvalues, respectively. Let
H C C*®(0M, S) denote the kernel of D?. Since D? interchanges ST and S~, we may decompose
H=H'@®H", where H* :== HNC>® (8M, Si). This gives an L?-orthogonal decomposition

Hz(OM,S)=Vo @ HY @ H™ @ V..

Let o denote the self-adjoint bundle involution on S with the property that S* are the eigen-
spaces to the eigenvalues 1. Since D? interchanges S and S~ it anti-commutes with ¢. Thus,
o maps the eigenspace of D? for the eigenvalue ) isomorphically onto that of —\.

Novlv any s € V5 ® V< can be expanded into eigensections, s = ), 20 SA- If furthermore
se€ H2 (3M,S+), then

E SN —=8=0S8 = E gS)

A#£0 A#0

and therefore os) = s_). Thus, (V= @V.)N H3 (8M, S*) is the graph of the map o: Vs — V.
We introduce a deformation parameter ¢ € [0, 1] and consider the graph of to. More precisely,
we put By := HT @ {s+tos: s € Vs }. Each B; is an oo-regular elliptic boundary condition for D
in the sense of [1]. By deformation invariance of the index, ind(D, B;) = ind(D, By). In other
words, ind(D: C3°(M, S) = C*(M, S)) coincides with the index of D subject to the boundary
condition H+ @ V4.

We observe that H™ @ V4 is a finite-dimensional modification of the Atiyah—Patodi-Singer
boundary condition V5. Since a(yb) anti-commutes with D?, the adjoint boundary condi-
tion of V& is (O‘(I/b)V>)J_ = V<l = H @ Vo where L denotes the L?-orthogonal complement in
H? (0M,S). Therefore,

ind(D,Vs) = —ind(D, H & V). (B.5)
By [1, Corollary 8.8],
ind(D, H & V-) = ind(D, V&) + dim(H). (B.6)
Combining (B.5) and (B.6) gives
ind(D, 12 ) = —% dim(H).
Using [1, Corollary 8.8] again, we obtain
ind(D: C(M,S) = C*(M,S)) =ind(D,H" & V5) = ind(D, V>) + dim (H ™)
= %(dim (H") — dim(H "))
= %(dimker (Daz C>(0M,S*) — C>*(0M,S7))
— dimker (D?: C®(0M,S™) — C*(0M,S™)))
= %ind(Da: C>®(0M,S%) — C™(0M,S7)).
This concludes the proof. |

The following consequence is known as cobordism invariance of the index:
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Corollary B.2. In addition to the assumptions in Theorem B.1 assume that S* are the eigen-
subbundles of S|on of the involution iop (u") for the eigenvalues +1. Then S|gpr = ST & S~
and the indices occurring in Theorem B.1 vanish.

Proof. Without loss of generality we can assume that M is connected. If OM = &, then the
assertion is obvious. Therefore, we assume OM # &.

We claim that the operators D: C°(M,S) — C*°(M,S) have trivial kernel. To see this,
suppose that s € C°(M,S) — C*>(M, S) satisfies Ds = 0. Since D is formally self-adjoint, we
obtain

O:/M<Ds,s>/M(s,Ds>:/aM <UD(Vb)s,s>::|Zi/aM|s|2.

Hence, s|grr = 0.

We show that this implies s = 0 on all of M. By adding a small collar neighborhood to M
along OM we embed M into an open manifold M. We extend the bundle S and the Dirac-type
operator D to M. We extend s by zero to M and obtain a continuous section . Let ¢ be
a compactly support test section on M. Then

[ 600 = [ .00 = [ (Do)« [ (son()e) =0,

This shows Ds = 0 in the weak sense. By elliptic regularity theory, § is smooth and Ds = 0 holds
classically. Now § vanishes on a nonempty open subset of M, M is connected and Dirac-type
operators have the unique continuation property, see, e.g., [4, Theorem 8.2]. Thus, § = 0 on all
of M. |

We generalize Freed’s Theorem B in [6] to Dirac-type operators.

Corollary B.3. Let D, D?, S, M, and v be as in Theorem B.1. Let Ny,..., N} denote the
connected components of OM. Suppose that €1,...,e is a collection of integers in {1,—1}.
We define a bundle ST over OM so that the fiber of St at a point x € Nj is the eigenspace
of iocp (Vb) with eigenvalue €;. Similarly, we define a bundle S~ over M so that the fiber of S~
at a point x € OM 1is the eigenspace of iop (V") with eigenvalue —;. Then S|opy = ST & S~
Moreover,

ind(D: C°(M, S) — C™(M,S)) = Y ind(D?: C*(N;,S) — C®(N;,57)).

ej=1
Proof. By Corollary B.2,
0= Y ind(D?: C®(N;,S) = C®(N;,57))
8j=1
+ Y ind(D?: C(N;,87) = C®(N;,81)),
6]':—1
hence
0= Y ind(D?: C®(N;,S) = C®(N;,57))
8j:1

— ) ind(D?: C™(N;, S1) = C®(N;,87)).

Ej:—l
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Therefore,

ind(D?: C™(0M, S*) — C®(0M,S7)) = > _ind(D?: C®(N;,ST) = C®(N;, 7))
J

2) " ind(D?: C®(Ny,8T) — C*°(N;,57)).

ej=1

The result now follows from Theorem B.1. [ |
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