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Abstract

We present the unique solvability in Sobolev spaces of time fractional parabolic equations in divergence 

and non-divergence forms. The leading coefficients are merely measurable in (t, x1) for aij , 1 ≤ i, j ≤ d, 

(i, j) �= (1, 1). The coefficient a11 is merely measurable locally either in t or x1. As functions of the remain-

ing variables, the coefficients have small mean oscillations. We consider mixed norm Sobolev spaces with 

Muckenhoupt weights. Our results generalize previous work on parabolic equations with time fractional 

derivatives to a much larger class of coefficients and solution spaces.
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1. Introduction

We consider parabolic equations in divergence and non-divergence forms with time fractional 

derivatives. The equations are of the form

−∂α
t u + Di(a

ijDju + aiu) + biDiu + cu = Digi + f

and

−∂α
t u + aijDiju + biDiu + cu = f

in (0, T ) × R
d =: R

d
T , where ∂α

t u is the Caputo fractional time derivative of order α ∈ (0, 1)

defined by

∂α
t u(t, x) =

1

�(1 − α)

d

dt

t
ˆ

0

(t − s)−α [u(s, x) − u(0, x)] ds

for sufficiently smooth u(t, x).

In our previous paper [9], it was proved that there exist unique solutions to the above equa-

tions when gi, f ∈ Lp(Rd
T ) with p ∈ (1, ∞) and bi = c = 0. The solutions in [9] are such that 

u, Du ∈ Lp(Rd
T ) and ∂α

t u ∈ H
−1
p (Rd

T ) (see Section 2 for the definition of H−1
p ) for equations 

in divergence form, and u, Du, D2u, ∂α
t u ∈ Lp(Rd

T ) for equations in non-divergence form with 

zero initial conditions. The novelty of the paper [9] is that the coefficient matrix {aij }i,j=1,...,d is 

allowed to have no regularity assumptions as a function of the temporal and one spatial variable 

except one of the diagonal coefficients. Since the class of coefficients in this paper is the very gen-

eralization of [9], let us give a more detailed description of the coefficients there. The coefficients 

aij are functions of (t, x1) ∈ R ×R without any regularity assumptions (i.e., merely measurable), 

only satisfying the ellipticity and boundedness condition (see (2.8)) for all i, j = 1, . . . , d . The 

coefficient a11 has a restriction that it needs to be either a11 = a11(t) or a11 = a11(x1) with 

no regularity assumptions. Note that, in the parabolic case with the usual time derivative ut , if 

aij (t, x1) have no regularity assumptions for all i, j = 1, . . . , d , there is no unique solvability of 

parabolic equations in Sobolev spaces for p ∈ (1, 3/2) or p ∈ (3, ∞) even when d = 1. See [15]

for a counterexample. Thus, the coefficients in [9] are optimal in the sense that the aforemen-

tioned restriction on a11 cannot be removed.

In this paper, we generalize previous results on parabolic equations with time fractional 

derivatives to a much larger class of coefficients and solution spaces. As to solution spaces, 

we consider weighted Sobolev spaces with mixed norms. See (2.3). The weights are of the form 

w(t, x) = w1(t)w2(x), where w1(t) ∈ Ap(R) and w2(x) ∈ Aq(Rd). Here, Ap(·) means a collec-

tion of Muckenhoupt weights. See (2.2). Such weighted Sobolev spaces are also considered in 

[8] for non-divergence form equations, but the coefficients aij (t, x) therein are limited to those 

being measurable only in the temporal variable and having small mean oscillations with respect 

to all the spatial variables x ∈ R
d . In contrast, the coefficients aij = aij (t, x) in this paper are 

functions of (t, x1) ∈ R × R (a function of t or x1 for a11) with no regularity assumptions, 

and have small mean oscillations as functions of the remaining variables x′ ∈ R
d−1 (x ∈ R

d

or (t, x′) ∈ R × R
d−1 for a11), where x′ = (x2, . . . , xd) ∈ R

d−1 for d = 2, 3, . . .. See Assump-

tion 2.6. Note that if the coefficients aij , (i, j) �= (1, 1), are functions of only (t, x1), they are in 
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the same class of coefficients as in [9], but the coefficient a11 is more general than in [9] even if 

it is a function of only t or x1. We will further discuss the assumption on the coefficient a11 later. 

One advantage of considering such coefficients is that by using even/odd extensions, we imme-

diately obtain the corresponding results for equations in the half space {x1 > 0} with either the 

zero Dirichlet, conormal derivative, or Neumann boundary condition, which generalize the main 

result of [8]. By a partition of unity argument, the results can be further extended to cylindrical 

domains with appropriate conditions on aij . See Remark 2.10.

To establish the results for equations in weighted parabolic Sobolev spaces, we utilize so-

called Lp0
-mean oscillation estimates, p0 ∈ (1, ∞), for solutions to equations with coefficients 

considered in [9]. See Propositions 4.1 and 4.2, where no weights or mixed norms are involved. 

The Lp0
-mean oscillation estimates are derived from the unique solvability and a priori Lp-

estimates for equations in Sobolev spaces with unmixed norms and no weights. After obtaining 

Lp0
-mean oscillation estimates, especially for p0 that are sufficiently close to 1, we establish 

the unique solvability along with appropriate estimates in weighted Sobolev spaces with mixed 

norms. See the proofs of Theorems 2.8 and 2.9 below as well as [5] and the references therein. In 

this respect, the paper [9] can be considered a prequel to this paper. That is, we establish a chain 

of results

unmixed Lp estimates ⇒ Lp0
-mean oscillation estimates ⇒ weighted Lp,q -estimates,

where [9] takes care of the first result and this paper resolves the last two results. This chain of im-

plications also applies to the usual parabolic equations with the local time derivative ut . However, 

in the time fractional parabolic case, due to the presence of the non-local time derivative, the first 

implication of the above chain for p0 close to 1 is not possible if one follows the proofs for the 

usual parabolic case presented, for instance, in [5]. Specifically, one of the main steps to prove the 

first implication is improving the regularity of solutions to homogeneous equations. In the time 

fractional parabolic case, this regularity-improving process is limited due to the non-Markovian 

nature of the time fractional derivative. That is, the regularity of a function at the current moment 

is affected by the whole history of the function. To overcome this difficulty, we adapt the ap-

proach from [8], which involves decomposing solutions of equations in infinite cylinders of the 

form (−∞, t) ×BR(x) instead of the usual parabolic cylinders (t −R1, t) ×BR2
(x). Furthermore, 

we develop the approach with a refined decomposition of solutions to obtain mean oscillation es-

timates of D1u and D1ju, j = 2, . . . , d , (for equations in divergence and non-divergence forms, 

respectively), which have not appeared in the previous papers.

Let us provide further details on the mean oscillation estimates of D1u and D1ju, j =

2, . . . , d , and make a remark on the coefficient a11. We first recall that there are some previ-

ous results for parabolic equations with the usual local time derivative ut and coefficients aij

similar to those in this paper. Our results in this paper can be compared to those in [3] for the 

usual parabolic equations in divergence form and in [2] for the usual parabolic equations in non-

divergence form. However, these previous results are confined to unmixed Lp spaces with no 

weights. In [3,2], the desired results are derived from, for instance, in the divergence type equa-

tion case, the mean oscillation estimates of only Dju, j = 2, . . . , d , with D1u excluded due to 

the lack of regularity assumptions on the coefficients in (t, x1). These mean oscillation estimates 

imply the Lp-estimates of Dju, j = 2, . . . , d , which in turn prove the Lp-estimate of D1u by a 

sophisticated scaling argument (see, for instance, [3, Lemma 3.4] or [9, Lemma 3.4]).

For equations in weighted Sobolev spaces, the scaling argument is unavailable because it 

essentially relies on the scaling invariance (up to a multiple of a constant) of unweighted Lp-
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norms. Thus, we must deal with the mean oscillation estimates of D1u in the divergence case 

and D1ju, j = 2, . . . , d , in the non-divergence case. To obtain such estimates, we use a new 

approach based on, as mentioned above, a refined composition u = w + v = w + ṽ + v̂, where v

is a solution to a homogeneous equation and v̂ is a solution to a simpler homogeneous equation. 

See Lemma 3.9. The mean oscillation estimates for D1u and D1ju, j = 2, . . . , d , allow us to 

have a more general assumption on a11 than those in [3,2]. The difference is that the coefficient 

a11 in [3,2] can be measurable either in t or x1 globally in the whole domain, while in this paper 

a11 can be measurable in t or x1 locally. That is, a11 can be measurable in t in one region of the 

domain and measurable in x1 in another region of the domain. See Assumption 2.6. Applying 

the arguments and the assumption on a11 in this paper to equations with ut , we can get similar 

results for the usual parabolic equations, which are also new. It is also worth noting that we 

derive the necessary results for equations in non-divergence form from those for equations in 

divergence form so that we do not need to deal with equations in two different forms separately. 

The techniques developed in this paper might also be applicable to other types of equations with 

non-local operators.

To provide context for our work on time fractional parabolic equations and related results in 

the literature, we refer the reader to the paper [9] and the references therein. Also see [12], where 

the authors deal with equations similar to those in this paper but in a different type of weighted 

Sobolev spaces with α ∈ (0, 2) and continuous aij (t, x). Further, one can find related results on 

time fractional evolution equations in Hilbert space settings in [18,17,16,1].

The remainder of the paper is organized as follows. In the next section, we introduce necessary 

notation and state the main results of the paper. In Section 3, we derive estimates for equations 

in divergence form when the coefficients aij are functions of (t, x1) (a11 is a function of either t

or x1). We then use these results in Section 4 to prove mean oscillation estimates of Du for the 

divergence case and D2u (except D2
1u) for the non-divergence case. In Section 5, we prove our 

main theorems. Finally, in the Appendix, we present an inequality necessary to take care of the 

non-local property of time fractional derivatives.

2. Notation and main results

2.1. Notation

We define the parabolic cylinders

QR1,R2
(t, x) = (t − R

2/α

1 , t) × BR2
(x), QR(t, x) = QR,R(t, x).

For � ⊂ R
d and 0 < T < ∞, we denote �T = (0, T ) ×�. In particular, we have R

d
T = (0, T ) ×

R
d . We write

Dx′u = Dx�
u, � = 2, . . . , d.

We use the notation (u)D to denote the average of u over D, where D is a subset of Rd+1. That 

is,

(u)D = −

ˆ

D

u(t, x) dx dt =
1

|D|

ˆ

D

u(t, x) dx dt. (2.1)
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Let α ∈ (0, 1) and S ∈ R. We denote the α-th integral of u with origin S by

Iα
S u(t, x) =

1

�(1 − α)

t
ˆ

S

(t − s)α−1u(s, x) ds.

In particular, we write Iαu if S = 0. Set

∂α
t u(t, x) = ∂tI

1−α
S (u(·, x) − u(S, x))

=
1

�(1 − α)
∂t

t
ˆ

S

(t − s)−α (u(s, x) − u(S, x)) ds

for a sufficiently smooth u, which is called the Caputo fractional derivative of order α with 

respect to time at S (time fractional derivative of order α at S). If u further satisfies u(S, x) = 0, 

we see that

∂α
t u = ∂tI

1−α
S u.

Whenever we write ∂α
t u, the origin S is clear from the context or S = 0, that is,

∂α
t u = ∂tI

1−α
0 u = ∂tI

1−αu.

For the Hölder continuity of a function, we denote

[u]Cσ0,σ1 (D) = sup
(t,x),(s,y)∈D
(t,x)�=(s,y)

|u(t, x) − u(s, y)|

|t − s|σ0 + |x − y|σ1
,

where D ⊂ R
d+1 and σ0, σ1 ∈ (0, 1).

2.2. Function spaces

Here we introduce function spaces for solutions to the equations discussed in this paper. We 

fix p ∈ (1, ∞) and α ∈ (0, 1).

For p ∈ (1, ∞) and k ∈ {1, 2, . . .}, we let Ap(Rk, dx) be the set of all locally integrable non-

negative functions w on Rk such that

[w]Ap := sup
x0∈Rk,r>0

⎛
⎜⎝ −

ˆ

Br (x0)

w(x)dx

⎞
⎟⎠

⎛
⎜⎝ −

ˆ

Br (x0)

w(x)
− 1

p−1 dx

⎞
⎟⎠

p−1

< ∞, (2.2)

where Br(x0) = {x ∈ R
k : |x − x0| < r}. Recall that [w]Ap ≥ 1.

For w(t, x) = w1(t)w2(x), where (t, x) ∈ R × R
d , w1 ∈ Ap(R, dt), and w2 ∈ Aq(Rd , dx), 

we set Lp,q,w(Rd
T ) to be the set of all measurable functions f defined on R

d
T such that
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‖f ‖Lp,q,w(Rd
T ) :=

⎛
⎜⎝

T̂

0

⎛
⎜⎝
ˆ

Rd

|f (t, x)|qw2(x) dx

⎞
⎟⎠

p/q

w1(t) dt

⎞
⎟⎠

1/p

< ∞. (2.3)

Note that if f ∈ Lp,q,w(Rd
T ), by the reverse Hölder’s inequality for Ap weights (see, for in-

stance, Corollary 7.2.6 and Remark 7.2.3 in [11]), there exists p0 ∈ (1, ∞) such that f ∈

Lp0 ((0, T ) × BR) for any R > 0.

Definition 2.1. We say u ∈ H
α,0
p,q,w,0(�T ) if u ∈ Lp,q,w(�T ) and there exists f ∈ Lp,q,w(�T )

such that

ˆ

�T

I 1−αuϕt dx dt = −

ˆ

�T

f ϕ dx dt (2.4)

for all ϕ ∈ C∞
0 ([0, T ) × �). In this case, as a weak derivative, we have ∂tI

1−αu = f . We also 

have

∂α
t u = ∂tI

1−αu. (2.5)

See Remark 2.2. For solutions to non-divergence type equations, for a positive integer k, mostly 

k = 2, we set

H
α,k
p,q,w,0(�T ) = {u ∈ H

α,0
p,q,w,0(�T ) : Dju ∈ Lp,q,w(�T ), j = 1, . . . , k}

with the norm

‖u‖
H

α,k
p,q,w,0(�T )

=

k∑

j=0

‖Dju‖Lp,q,w(�T ) + ‖∂α
t u‖Lp,q,w,0(�T ).

Remark 2.2. Note that the test function ϕ in (2.4) belongs to C∞
0 ([0, T ) × �) so that ϕ(0, x) is 

not necessarily zero. The equality (2.4) for such test functions implies that the equality (2.5) holds 

for all u ∈ H
α,0
p,q,w,0(�T ). Precisely, as shown in [13], for any u ∈ H

α,0
p,q,w,0(�T ) (H

α,k
p,q,w,0(�T )

as well), there exists an approximating sequence {un} of u such that un ∈ C∞([0, T ] × �), un

vanishes for large |x| (when � is unbounded), and un(0, x) = 0. Thus, the equality (2.5) makes 

sense as

∂α
t u = lim

n→∞
∂α
t un = lim

n→∞
∂tI

1−αun(t, x),

where the limit is in the norm of Lp,q,w(�T ). If α ∈ (1/p, 1), for which the initial trace u(0, x)

makes sense, the equality (2.4) implies that u(0, x) is zero. Similarly, by (2.6) below, the equality 

(2.7) makes sense. Thus, one can say that (2.4) and (2.6) include a zero trace condition. For initial 

traces and other related results, see [13].
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To introduce function spaces for solutions to divergence type equations, we first define 

H
−1
p,q,w(�T ) as follows. A distribution v on �T satisfies v ∈ H

−1
p,q,w(�T ) if there exist Gi, F ∈

Lp,q,w(�T ) such that

v = DiGi + F

in the distribution sense. We define the norm of H−1
p,q,w(�T ) by

‖v‖
H

−1
p,q,w(�T )

= inf{‖F‖Lp,q,w(�T ) + ‖Gi‖Lp,q,w(�T ) : v = DiGi + F }.

Definition 2.3. We say u ∈H
α,0
p,q,w,0(�T ) if u ∈ Lp,q,w(�T ) and there exist gi, f ∈ Lp,q,w(�T )

such that

ˆ

�T

I 1−αuϕt dx dt =

ˆ

�T

(giDiϕ − f ϕ) dx dt (2.6)

for all ϕ ∈ C∞
0 ([0, T ) × �). That is, in the distributional sense,

∂tI
1−αu = Digi + f

and ∂tI
1−αu ∈ H

−1
p,q,w(�T ). As mentioned in Remark 2.2, we have

∂α
t u = ∂tI

1−αu. (2.7)

For solutions to divergence type equations, we set

H
α,1
p,q,w,0(�T ) = {u ∈H

α,0
p,q,w,0(�) : Du ∈ Lp,q,w(�T )}

with the norm

‖u‖
H

α,1
p,q,w,0(�T )

= ‖u‖Lp,q,w(�T ) + ‖Du‖Lp,q,w(�T ) + ‖∂α
t u‖

H
−1
p,q,w(�T )

.

As usual, when p = q and w(t, x) = 1, we denote

H
α,2
p,p,1,0(�T ) = H

α,2
p,0(�T ) and H

α,1
p,p,1,0(�T ) = H

α,1
p,0(�T ).

Remark 2.4. In our previous papers, in particular, when p = q and w = 1, we used spaces such 

as H̃
α,2
p (�T ), H

α,2
p (�T ), H

α,2
p,0(�T ) for non-divergence type equations (see, for instance, [6]), 

and H̃
α,1
p (�T ), H

α,1
p (�T ), H

α,1
p,0(�T ) for divergence type equations (see, for instance, [7]). In 

this paper even if we use the same notation, some of the spaces from [6] and [7] differ from 

those in this paper. Indeed, as mentioned in Remark 2.2, u ∈ H
α,k
p,0(�T ) can be approximated by 

infinitely differentiable functions with zero initial values. This means H
α,k
p,0(�T ) exactly corre-

sponds to the space using the same notation, for instance, in [6]. The same applies to H
α,1
p,0(�T )

defined, for instance, in [7]. However, the space H
α,k
p (�T ) in [6] turns out to be the same as 
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H
α,k
p,0(�T ). Similarly, H

α,1
p (�T ) in [7] is the same as H

α,1
p,0(�T ). We do not use H̃

α,k
p (�T ) and 

H̃
α,1
p (�T ) in this paper. It is worth pointing out that, by the definitions in [6], to verify that 

u ∈ H
α,k
p,0(�T ), one must find an approximating sequence {un} such that un ∈ C∞([0, T ] × �)

with un(0, x) = 0. However, by Definition 2.1, we now only need to check if the equality (2.4)

holds for all test functions from C∞
0 ([0, T ) × �). Similarly, to check that u ∈ H

α,1
p,0(�T ), we 

only need to verify (2.6) for all ϕ ∈ C∞
0 ([0, T ) × �).

2.3. Assumptions

Throughout the paper, we assume that there exists δ ∈ (0, 1) such that

aij (t, x)ξiξj ≥ δ|ξ |2, |aij (t, x)| ≤ δ−1 (2.8)

for any ξ ∈ R
d and (t, x) ∈ R × R

d .

To state our regularity assumptions on aij , we first introduce coefficients aij which are mea-

surable in (t, x1) except (i, j) = (1, 1). For a11, we have either a11 = a11(t) or a11 = a11(x1).

Assumption 2.5. The coefficient matrix {aij }i,j=1,...,d with the ellipticity (and boundedness) 

condition (2.8) satisfies either (i) or (ii) of the following.

(i) a11 = a11(t), aij = aij (t, x1) for (i, j) �= (1, 1).

(ii) a11 = a11(x1), a
ij = aij (t, x1) for (i, j) �= (1, 1).

Here are our assumptions for partially small mean oscillation (SMO) coefficients. As men-

tioned above, aij always satisfy (2.8). We also impose the boundedness assumption for lower-

order coefficients.

For x ∈ R
d , we write x = (x1, x

′), where x1 ∈ R and x′ ∈ R
d−1. We then denote

B ′
r(x

′) = {y′ ∈ R
d−1 : |x′ − y′| < r}, Q′

r(t, x
′) = (t − r2/α, t) × B ′

r(x
′).

Assumption 2.6 (γ0). There is a constant R0 ∈ (0, 1] satisfying the following.

(1) For each (t0, x0) ∈ R
d+1 and r ∈ (0, R0], the coefficients aij with (i, j) �= (1, 1) satisfy

−

ˆ

Qr (t0,x0)

|aij (t, x1, x
′) − āij (t, x1)|dx dt ≤ γ0,

where

āij (t, x1) = −

ˆ

B ′
r (x

′
0)

aij (t, x1, y
′) dy′. (2.9)

(2) For each (t0, x0) ∈ R
d+1, the coefficient a11 satisfies either (2.i) or (2.ii) of the following.
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(2.i) For (t1, x0) with t1 ∈ (t0 − 3R
2/α

0 , t0] and r ∈ (0, R0],

−

ˆ

Qr (t1,x0)

|a11(t, x1, x
′) − ā11(t)|dx dt ≤ γ0,

where

ā11(t) = −

ˆ

Br (x0)

a11(t, y) dy. (2.10)

(2.ii) For (t1, x0) with t1 ∈ (t0 − 3R
2/α

0 , t0] and r ∈ (0, 2α/2R0],

−

ˆ

Qr (t1,x0)

|a11(t, x1, x
′) − ā11(x1)|dx dt ≤ γ0,

where

ā11(x1) = −

ˆ

Q′
r (t1,x

′
0)

a11(s, x1, y
′) dy′ ds. (2.11)

For the lower-order coefficients ai , bi , and c, there exists K0 ≥ 0 such that

|ai | ≤ K0, |bi | ≤ K0, |c| ≤ K0.

Remark 2.7. Under Assumption 2.6, we observe that, for any R ∈ (r2/α, 2R
2/α

0 ] and r ≤ R0,

−

t0
ˆ

t0−R

−

ˆ

Br (x0)

|aij − āij |dx dt ≤ 2γ0

for aij with (i, j) �= (1, 1) and for a11 satisfying (2.i), where āij is in (2.9) for aij with (i, j) �=

(1, 1) and in (2.10) for a11. For a11 satisfying (2.ii), we have

−

t0
ˆ

t0−R

−

ˆ

Br (x0)

|a11 − ā11|dx dt ≤ N
R

r2/α
γ0,

where ā11 is in (2.11) and N = N(d, α). For the proofs of the above inequalities, see [6, Remark 

2.3] and [10, Lemma 2.14].
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2.4. Main results

Our first main theorem is for equations in divergence form. By a solution u to (2.12), we mean 

that u satisfies

T̂

0

ˆ

Rd

(
I 1−αuϕt dx dt − aijDjuDiϕ − aiuDiϕ + biDiuϕ + cuϕ

)
dx dt

=

T̂

0

ˆ

Rd

(f ϕ − giDiϕ)dx dt

for any ϕ ∈ C∞
0

(
[0, T ) × R

d
)
. As discussed in Remark 2.2, by the definition of H

α,1
p,q,w,0(R

d
T )

(the above formulation as well), (2.12) is an equation with the zero initial condition if the initial 

trace makes sense.

Theorem 2.8 (Divergence case). Let α ∈ (0, 1), T ∈ (0, ∞), p, q ∈ (1, ∞), K1 ∈ [1, ∞), and 

w(t, x) = w1(t)w2(x), where

w1(t) ∈ Ap(R, dt), w2(x) ∈ Aq(Rd , dx), [w1]Ap ≤ K1, [w2]Aq ≤ K1.

Then, there exists γ0 = γ0(d, δ, α, p, q, K1) ∈ (0, 1) such that, under Assumption 2.6 (γ0), the 

following hold.

For any u ∈H
α,1
p,q,w,0(R

d
T ) satisfying

−∂α
t u + Di(a

ijDju + aiu) + biDiu + cu = Digi + f (2.12)

in R
d
T , where gi, f ∈ Lp,q,w(Rd

T ), we have

‖u‖
H

α,1
p,q,w,0(R

d
T )

≤ N

d∑

i=1

‖gi‖Lp,q,w(Rd
T ) + N‖f ‖Lp,q,w(Rd

T ), (2.13)

where N = N(d, δ, α, p, q, K1, K0, R0, T ). Moreover, for gi, f ∈ Lp,q,w(Rd
T ), there exists a 

unique solution u ∈H
α,1
p,q,w,0(R

d
T ) satisfying (2.12).

Here is our main theorem for equations in non-divergence form. The equation (2.14) holds 

almost everywhere and, by the definition of H
α,2
p,q,w,0(R

d
T ), has the zero initial condition if the 

initial trace makes sense.

Theorem 2.9 (Non-divergence case). Let α, T , p, q , K1, and w be as in Theorem 2.8. Then, there 

exists γ0 = γ0(d, δ, α, p, q, K1) ∈ (0, 1) such that, under Assumption 2.6 (γ0), the following hold.

For any u ∈ H
α,2
p,q,w,0(R

d
T ) satisfying

−∂α
t u + aijDiju + biDiu + cu = f (2.14)
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in R
d
T , where f ∈ Lp,q,w(Rd

T ), we have

‖u‖
H

α,2
p,q,w,0(R

d
T )

≤ N‖f ‖Lp,q,w(Rd
T ), (2.15)

where N = N(d, δ, α, p, q, K1, K0, R0, T ). Moreover, for f ∈ Lp,q,w(Rd
T ), there exists a unique 

u ∈ H
α,2
p,q,w,0(R

d
T ) satisfying (2.14).

Remark 2.10. By using even/odd extensions, from Theorems 2.8 and 2.9, we can readily obtain 

the corresponding results in the half space {x1 > 0} with either the zero Dirichlet (for equa-

tions in divergence and non-divergence forms), conormal derivative (for equations in divergence 

form), or Neumann boundary condition (for equations in non-divergence form). We refer the 

reader to the proofs of [3, Theorems 2.4 and 2.5] for details. We remark that, as to equations on 

sufficiently regular domains other than the whole Euclidean space and a half space, one can deal 

with parabolic equations with aij measurable in t or in one spatial variable (not in both t and 

one spatial variable as those in this paper). In particular, near the boundary, the spatial direction 

in which aij are measurable has to be (almost) perpendicular to the boundary. Also, see [4] for 

parabolic equations (with ut ) in non-divergence form with a restricted range of p when aij are 

measurable in a tangential direction to the boundary.

3. Equations in divergence form with measurable coefficients

In this section we consider

∂α
t u + Di(a

ijDju) = Digi + f

with coefficients aij satisfying Assumption 2.5.

Proposition 3.1 (Right-hand side having less summability). Let α ∈ (0, 1), p ∈ (1, ∞), T ∈

(0, ∞), and aij satisfy Assumption 2.5. Then, for gi ∈ Lp(Rd
T ) and f ∈ Lq(Rd

T ), where 

q ∈ (1, ∞) and

1

d + 2/α
+

1

p
≥

1

q
≥

1

p
,

there exists a unique function u on R
d
T such that u, Du ∈ Lp(Rd

T ) and

−∂α
t u + Di

(
aijDju

)
= Digi + f (3.1)

in R
d
T with the estimate

‖u‖Lp(Rd
T ) + ‖Du‖Lp(Rd

T ) ≤ N‖gi‖Lp(Rd
T ) + N‖f ‖Lq (Rd

T ), (3.2)

where N0 = N0(d, δ, α, p, q, T ).
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Proof. Find a sequence {f k} such that f k ∈ Lp ∩Lq(Rd
T ) and fk → f in Lq(Rd

T ). By using [9, 

Theorem 2.2] we find uk ∈H
α,1
p,0(R

d
T ) satisfying

−∂α
t uk + Di

(
aijDju

k
)

= Digi + f k

in R
d
T . For φi, ψ ∈ C∞

0 (Rd
T ), i = 1, . . . , d , using [9, Theorem 2.2] again, find w ∈H

α,1
p′,0

((−T , 0)

× R
d), 1/p + 1/p′ = 1, satisfying

−∂α
t w + Di

(
aji(−t, x1)Djw

)
= Di (−φi(−t, x)) + ψ(−t, x)

in (−T , 0) × R
d , where ∂α

t = ∂tI
1−α
−T , with the estimate

‖w‖
H

α,1

p′,0

(
(−T ,0)×Rd

) ≤ N‖φi‖Lp′
(
(−T ,0)×Rd

) + N‖ψ‖Lp′
(
(−T ,0)×Rd

). (3.3)

Since

1 −
d + 2/α

p′
≥ −

d + 2/α

q ′
,

by [9, Theorem 7.5] it follows that

‖w‖Lq′
(
(−T ,0)×Rd

) ≤ N‖w‖
H

α,1

p′,0

(
(−T ,0)×Rd

), (3.4)

where N = N(d, α, p, q). Then, by proceeding as in the proof of [7, Theorem 2.1] we arrive at

T̂

0

ˆ

Rd

(
φiDiu

k + ψuk
)

dx dt

=

T̂

0

ˆ

Rd

(
f k(t, x)w(−t, x) − gi(t, x)Diw(−t, x)

)
dx dt

≤ ‖f k‖Lq ‖w‖Lq′ + ‖gi‖Lp‖Dw‖Lp′ ,

where Lq , Lp = Lq , Lp(Rd
T ) and Lq ′, Lp′ = Lq ′ , Lp′((−T , 0) × R

d). Combining the above in-

equality with (3.3) and (3.4) shows that

‖uk‖Lp(Rd
T ) + ‖Duk‖Lp(Rd

T ) ≤ N‖gi‖Lp(Rd
T ) + N‖f k‖Lq (Rd

T ).

By this inequality along with the fact that ‖I 1−α
0 uk‖Lp ≤ N‖uk‖Lp (see [6, Remark A.3]) and 

fk → f in Lq(Rd
T ), we see that there exists a function u on R

d
T such that u, Du ∈ Lp(Rd

T )

and u satisfies (3.1) as well as (3.2). For the uniqueness, we see that the difference of two solu-

tions belongs to H
α,1
p,0(R

d
T ). Thus, by [9, Theorem 2.2], the difference is zero. The proposition is 

proved. �
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Remark 3.2. In Proposition 3.1 if gi ∈ Lq ∩ Lp(Rd
T ), then we also have u ∈ H

α,1
q,0(R

d
T ) by [9, 

Theorem 2.2]. In particular, ∂α
t u ∈ H

−1
q (Rd

T ), but we do not necessarily have ∂α
t u ∈ H

−1
p (Rd

T )

because f ∈ Lq(Rd
T ).

The proof of Lemma 3.3 below employs a similar iteration argument as in the proof of [3, 

Lemma 4.2] for parabolic equations with the local time derivative. However, in each iteration step 

presented here we verify that the solution v belongs to H
α,1
pj ,0, as we need to apply an embedding 

result that holds only in this space. Specifically, if we follow the proof of [3, Lemma 4.2], we 

know that Dx′u, u ∈ Lp1
, but ‖D1u‖p1

can be controlled by ‖Dx′u‖p1
only when u ∈H

α,1
p1,0

is a 

priori known.

Recall that v ∈H
α,1
p,0 ((0, T ) × BR) is said to satisfy

−∂α
t v + Di

(
aijDjv

)
= Digi + f

in (0, T ) × BR if

T̂

0

ˆ

BR

(
I 1−αv ϕt − aijDjvDiϕ

)
dx dt =

T̂

0

ˆ

BR

(f ϕ − giDiϕ)dx dt

for any ϕ ∈ C∞
0 ([0, T ) × BR). In particular, ϕ(0, x) is not necessarily zero.

Lemma 3.3. Let α ∈ (0, 1), p0 ∈ (1, ∞), T ∈ (0, ∞), 0 < r < R < ∞, and aij satisfy Assump-

tion 2.5. Suppose that v ∈ H
α,1
p0,0

((0, T ) × BR) satisfies

−∂α
t v + Di

(
aijDjv

)
= 0 (3.5)

in (0, T ) × BR . Then, v ∈ H
α,1
p1,0

((0, T ) × Br ) for any p1 ∈ (1, ∞). Moreover, for any multi-

index β = (β2, . . . , βd) of the order |β| = 1, 2, . . ., the function vβ := D
β

x′v belongs to 

H
α,1
p1,0

((0, T ) × Br ) and satisfies

−∂α
t vβ + Di(a

ijDjvβ) = 0 (3.6)

in (0, T ) × Br . Furthermore, for any t0 ≤ T , 0 < ν < μ, and a sequence {sk} satisfying (A.3) in 

Appendix A, we have

‖Dvβ‖Lp1
((t0−ν,t0)×Br/2)

≤
N

r
‖vβ‖Lp1

((t0−μ,t0)×Br ) + Nr
μ1−α

μ − ν
‖vβ‖Lp1

((t0−2μ,t0−ν)×Br )

+ N1r

∞∑

k=1

s−α−1
k (sk+1 − sk)

1− 1
p1 μ

1
p1

⎛
⎜⎝

t0−sk
ˆ

t0−sk+1

ˆ

Br

|vβ(t, x)|p1 dx dt

⎞
⎟⎠

1/p1

,

(3.7)
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where N = N(d, δ, α, p1), N1 = N(d, δ, α, p1, N0) (recall N0 from (A.3)), and vβ denotes the 

zero extension of vβ for t ≤ 0.

Proof. To prove the first assertion in the lemma, it suffices to consider p1 ∈ (p0, ∞). Take p1 ∈

(p0, ∞) such that

1 −
d + 2/α

p0
≥ −

d + 2/α

p1
. (3.8)

Fix R1 and R2 such that 0 < r < R1 < R2 < R. Since v ∈ H
α,1
p0,0

((0, T ) × BR), by [9, Corollary 

7.6] we have v ∈ Lp1

(
(0, T ) × BR1

)
with the inequality

‖v‖Lp1
((0,T )×BR1

) ≤ N‖v‖
H

α,1
p0,0((0,T )×BR2

)
. (3.9)

Let φ(x) be an infinitely differentiable function defined on Rd such that φ(x) = 1 on Br and 

φ(x) = 0 on Rd \ BR1
. We see that φv belongs to H

α,1
p0,0

(Rd
T ) and satisfies

−∂α
t (φv) + Di

(
aijDj (φv)

)
= Di

(
aijvDjφ

)
+ aijDjvDiφ

in R
d
T , where aijvDjφ ∈ Lp0

∩ Lp1
(Rd

T ) and aijDjvDiφ ∈ Lp0
(Rd

T ). Then, by Proposition 3.1

(also see Remark 3.2) and (3.9) it follows that φv, D(φv) ∈ Lp1
(Rd

T ) with the estimate

‖|v| + |Dv|‖Lp1
((0,T )×Br ) ≤ ‖vDφ‖Lp1

(Rd
T ) + ‖DvDφ‖Lp0

(Rd
T )

≤ N‖v‖Lp1
((0,T )×BR1

) + N‖Dv‖Lp0
((0,T )×BR1

) ≤ N‖v‖
H

α,1
p0,0((0,T )×BR2

)

≤ N‖v‖Lp0
((0,T )×BR2

) + N‖Dv‖Lp0
((0,T )×BR2

) ≤ N‖v‖Lp0
((0,T )×BR),

(3.10)

where in the fourth inequality we used the equation (3.5) to bound ‖∂α
t v‖

H
−1
p0

((0,T )×BR2
)

by 

‖Dv‖Lp0
((0,T )×BR2

). The last inequality in (3.10) follows from [7, Lemma 4.3] along with [9, 

Theorem 2.2]. Hence, from (3.10) and the equation (3.5) we obtain that v ∈ H
α,1
p1,0

((0, T ) × Br)

and

‖v‖
H

α,1
p1,0((0,T )×Br )

≤ N‖v‖Lp0
((0,T )×BR).

Indeed, to check that v ∈ H
α,1
p1,0

((0, T ) × Br ), we use the equation (3.5) to see that v ∈

Lp1
((0, T ) × Br) satisfies the equality (2.6) with gi replaced with aijDjv and f = 0 for all 

ϕ ∈ C∞
0 ([0, T ) × Br).

We complete the proof of the first assertion for arbitrary p1 ∈ (p0, ∞) by repeating the above 

argument finitely many times to reach p1. In particular, in each step of the iteration it is re-

quired that u ∈H
α,1
pj ,0((0, T ) × Brj ), p0 < pj ≤ p1, r < rj < R, because the embedding (see [9, 

Corollary 7.6]) is for functions in such spaces.

The second assertion of the lemma is in fact a simplified version of [9, Lemma 4.1] with no 

cut-off function η and the zero right-hand side. To be more precise, we set
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��,hv(t, x) =
v(t, x + he�) − v(t, x)

h
, 0 < h <

R − r

2
,

where e� is the unit vector in the x�-direction. Using the first assertion proved above, we see 

that ��,hv(t, x) ∈ H
α,1
p1,0

(
(0, T ) × BR1

)
, where R1 ∈ (0, (R + r)/2). Because aij are functions 

of only (t, x1), we also see that

−∂α
t

(
��,hv

)
+ Di

(
aijDj

(
��,hv

))
= 0

in (0, T ) × BR1
for � = 2, . . . , d . Then, we obtain the assertion using the properties of ��,h and 

[9, Theorem 2.2] as in the proof of [9, Lemma 4.1].

Finally, we prove (3.7). By [7, Lemma 3.3] the extended function vβ , which is zero for t ≤ 0, 

belongs to H
α,1
p1,0

((S, t0) × Br) for any S ≤ 0. In addition, vβ satisfies (3.6) in (S, t0) ×Br , where 

∂α
t v = ∂tI

1−α
S v. Set S = min{t0 − μ, 0} and take η(t) from (A.1). Then by [7, Lemma 3.4], ηvβ

is in H
α,1
p1,0

((t0 − μ, t0) × Br ) and satisfies

−∂α
t (ηvβ) + Di

(
aijDj (ηvβ)

)
= Gβ(t, x) (3.11)

in (t0 − μ, t0) × Br , where Gβ is defined as in (A.2) with u replaced with vβ . By applying [7, 

Lemma 4.3] along with [9, Theorem 2.2] to (3.11), we have

‖D(ηvβ)‖Lp1

(
(t0−μ,t0)×Br/2

) ≤
N

r
‖vβ‖Lp1

((t0−μ,t0)×Br ) + Nr‖Gβ‖Lp1
((t0−μ,t0)×Br ), (3.12)

where N = N(d, δ, α, p1). To take care of the Lp1
-norm of Gβ , we use the argument, for instance, 

in the proof of [8, Lemma 4.1]. For the reader’s convenience and later usage, we present some 

details in Appendix A. That is, by Lemma A.1 with p = p1, � = Br , and u = vβ , we see that

‖Gβ‖Lp1
((t0−μ,t0)×Br ) ≤ N(α)

μ1−α

(μ − ν)
‖vβ‖Lp1

((t0−2μ,t0−ν)×Br )

+ N(α,N0)

∞∑

k=1

s−α−1
k (sk+1 − sk)

1−1/p1μ1/p1

⎛
⎜⎝

t0−sk
ˆ

t0−sk+1

ˆ

Br

|vβ(t, x)|p1 dx dt

⎞
⎟⎠

1/p1

.

Then, we obtain (3.7) from this and (3.12) with the inequality

‖Dvβ‖Lp1

(
(t0−ν,t0)×Br/2

) ≤ ‖D(ηvβ)‖Lp1

(
(t0−μ,t0)×Br/2

).

The lemma is proved. �

Recall the notation (u)D in (2.1) so that, for instance,

(|u|p)
1/p

Qr (t,x) =

⎛
⎜⎝ −

ˆ

Qr (t,x)

|u(t, x)|p dx dt

⎞
⎟⎠

1/p

.
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Lemma 3.4. Let α ∈ (0, 1), p0 ∈ (1, ∞), t0 ∈ (0, ∞), 0 < r < R < ∞, and aij satisfy Assump-

tion 2.5. If v ∈ H
α,1
p0,0

((0, t0) × BR) satisfies (3.5) in (0, t0) × BR , then for any p ∈ (p0, ∞) and 

t1 ≤ t0, we have

(
|Dx′v|p

)1/p

Qr/2(t1,0)
≤ N

∞∑

j=1

j−(1+α)
(
|Dx′v|p0

)1/p0

Qr (t1−(j−1)r2/α,0)
, (3.13)

where N = N(d, δ, α, p0, p) and v (here and below) denotes the zero extension of v for t ≤ 0. 

Moreover,

[Dx′v]Cσα/2,σ (Qr/2(t1,0)) ≤ Nr−σ

∞∑

j=1

j−(1+α)
(
|Dx′v|p0

)1/p0

Qr (t1−(j−1)r2/α,0)
, (3.14)

where σ = σ(d, α, p0) ∈ (0, 1) and N = N(d, δ, α, p0). If we additionally assume that aij =

aij (t) for all i, j = 1, . . . , d , then the inequalities (3.13) and (3.14) hold with Dv replacing Dx′v

on both sides of the inequalities.

Proof. Due to scaling, it suffices to consider r = 1. Since v ∈ H
α,1
p0,0

((0, t0) × BR), it is easy to 

see that the extension of v by zero for t ≤ 0 satisfies

−∂α
t v + Di

(
aijDjv

)
= 0 (3.15)

in (S, t0) × BR for any S ≤ 0, where ∂α
t v = ∂tI

1−α
S v. Indeed, the extended v satisfies (2.6) with 

�T replaced with (S, t0) × BR , gi = aijDjv, and f = 0 for any ϕ ∈ C∞
0 ([S, t0) × BR). Hence, 

the extended v belongs to H
α,1
p0,0

((S, t0) × BR) for any S ≤ 0. Moreover, by Lemma 3.3, we 

have v ∈ H
α,1
q,0 ((S, t0) × B1) for any q ∈ (1, ∞). Take η(t) from (A.1) with t0 replaced with t1

and μ = 1, ν = (1/2)2/α . Then, by choosing S ≤ t1 − 1 and using [9, Lemma 4.1] with t1 and 

t1 − 1 in places of T and t0, respectively, it follows that D�(ηv) ∈ H
α,1
q,0((t1 − 1, t1) × B3/4), 

� = 2, . . . , d , and

‖D�(ηv)‖
H

α,1
q,0((t1−1,t1)×B3/4)

≤ N‖D�(ηv)‖Lq (Q1(t1,0)) + N‖G�‖Lq (Q1(t1,0))

≤ N

∞∑

j=1

j−(1+α)
(
|D�v|q

)1/q

Q1(t1−(j−1),0)
,

(3.16)

where N = N(d, δ, α, q) and G� is defined as in (A.2) with u replaced with D�v. In particular, we 

obtain the second inequality in (3.16) using Lemma A.1 with p = q , � = B1, sk = k, u = D�v, 

N0 = 2, and μ = 1, ν = (1/2)2/α .

We now prove (3.13). Find p1 ∈ (p0, ∞) satisfying (3.8). Since D�(ηv) ∈ H
α,1
p0,0

((t1 −1, t1) ×

B3/4), by [9, Corollary 7.6] we have

‖D�v‖Lp1
(Q1/2(t1,0)) ≤ ‖D�(ηv)‖Lp1

((t1−1,t1)×B1/2)

≤ N‖D�(ηv)‖
H

α,1
p0,0((t1−1,t1)×B3/4)

,
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which combined with (3.16) with q = p0 proves

(
|Dx′v|p1

)1/p1

Q1/2(t1,0)
≤ N

∞∑

j=1

j−(1+α)
(
|Dx′v|p0

)1/p0

Q1(t1−(j−1),0)
.

If p1 ≥ p, we arrive at (3.13) with r = 1. If not, by performing the iteration process as in the 

proof of [8, Proposition 4.3], we eventually arrive at (3.13).

To prove (3.14), we first assume that 1 − (d + 2/α)/p0 =: σ > 0. By the fact that D�(ηv) ∈

H
α,1
p0,0

((t1 − 1, t1) × B3/4), [9, Corollary 7.4] shows that

[D�v]Cσα/2,σ (Q1/2(t1,0)) ≤ [D�(ηv)]Cσα/2,σ ((t1−1,t1)×B1/2)

≤ N‖D�(ηv)‖
H

α,1
p0,0((t1−1,t1)×B3/4)

.

From this and (3.16) with q = p0 we obtain (3.14) with r = 1. If 1 − (d + 2/α)/p0 ≤ 0, by 

repeating the above argument, we prove (3.14) with a sufficiently large p1 replacing p0 on the 

right-hand side so that 1 − (d + 2/α)/p1 > 0. Then, the right-hand side of (3.14) is estimated by 

that of (3.13) through the iteration process depicted in the proof of [8, Proposition 4.3].

If aij = aij (t), we repeat the above proof using the corresponding assertion in [9, Lemma 

4.1]. The lemma is proved. �

Denote

V =

d∑

j=1

a1jDjv.

To deal with equations whose coefficients satisfy Assumption 2.5 (ii), we need the following 

lemma for equations with coefficients aij = aij (x1). To utilize results from [7], we further as-

sume that aij (x1) are infinitely differentiable with bounded derivatives. However, this restriction 

is harmless because the estimates we obtain below are independent of the smoothness of aij as 

in [7]. Recall that all the coefficients aij in this paper satisfy the ellipticity condition (2.8), so do 

the coefficients aij in the lemma below.

Lemma 3.5 (aij = aij (x1) case). Let α ∈ (0, 1), p0 ∈ (1, ∞), t0 ∈ (0, ∞), 0 < r < R < ∞, and 

aij = aij (x1) be infinitely differentiable with bounded derivatives. If v ∈ H
α,1
p0,0

((0, t0) × BR)

satisfies (3.5) in (0, t0) × BR , then for any p ∈ (p0, ∞) and t1 ≤ t0, we have

(
|Dv|p

)1/p

Qr/2(t1,0)
≤ N

∞∑

j=1

j−(1+α)
(
|Dv|p0

)1/p0

Qr (t1−(j−1)r2/α,0)
, (3.17)

where N = N(d, δ, α, p0, p) and v (here and below) denotes the zero extension of v for t ≤ 0. 

Moreover,

[V ]Cσα/2,σ (Qr/2(t1,0)) ≤ Nr−σ

∞∑

j=1

j−(1+α)
(
|Dv|p0

)1/p0

Qr (t1−(j−1)r2/α,0)
, (3.18)
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where σ = σ(d, α, p0) ∈ (0, 1) and N = N(d, δ, α, p0).

Proof. As in the proof of Lemma 3.4, we consider r = 1. By the observation made at the 

beginning of the proof of Lemma 3.4, v satisfies (3.15) in (S, t0) × BR for any S ≤ 0 and 

v ∈ H
α,1
q,0((S, t0) × B1) for any q ∈ (1, ∞). Then, by [7, Lemma 4.9], for a q1 ∈ (q, ∞] satis-

fying

q1 ≥ q +
α

αd + 1 − α
, (3.19)

we have

‖D(ηv)‖Lq1

(
(t1−1,t1)×B1/2

) ≤ N‖D(ηv)‖Lq (Q1(t1,0)) + N‖G‖Lq (Q1(t1,0))

≤ N

∞∑

j=1

j−(1+α)
(
|Dv|q

)1/q

Q1(t1−(j−1),0)
,

(3.20)

where N = N(d, δ, α, q), η(t) is from (A.1) with t0 replaced with t1 and μ = 1, ν = (1/2)2/α , 

G = (G1, . . . , Gd), G� is as in (A.2) with u replaced with D�v for � = 1, 2, . . . , d , and the second 

inequality is obtained by Lemma A.1 with q in place of p, � = B1, sj = j , u = D�v, N0 = 2, 

and μ = 1, ν = (1/2)2/α .

Also note that the inequality (4.34) in the proof of [7, Lemma 4.9] (V in (4.34) of [7] equals 

to η(t)V here) shows that

‖ηV ‖
H

α,1
q,0

(
(t1−1,t1)×B1/2

) ≤ N‖D(ηv)‖Lq (Q1(t1,0)) + N‖G�‖Lq (Q1(t1,0))

≤ N

∞∑

j=1

j−(1+α)
(
|D�v|q

)1/q

Q1(t1−(j−1),0)
,

(3.21)

where N = N(d, δ, α, q). Indeed, even if not clearly articulated in [7, Lemma 4.9], we have

η(t)V ∈ H
α,2
q,0((t1 − 1, t1) × B1/2) ⊂ H

α,1
q,0((t1 − 1, t1) × B1/2)

because by Lemma 4.7 in [7] Dx(ηv) ∈ H
α,2
q,0((t1 − 1, t1) × B1/2) and aij are infinitely differen-

tiable with bounded derivatives.

To prove (3.17), find p1 ∈ (p0, ∞) satisfying (3.19) with p1 and p0 in places of q1 and q , 

respectively. Then, the inequalities in (3.20) with p1 and p0 imply (3.17) with r = 1, provided 

that p1 ≥ p. If p1 < p, we use the iteration process as in the proof of Lemma 3.4 (see also [8, 

Proposition 4.3]) to obtain (3.17) for p.

To show (3.18), we first assume that 1 − (d + 1/α)/p0 := σ > 0. Since ηV ∈ H
α,1
p0,0

((t1 −

1, t1) × B1/2), by the embedding [7, Corollary A.8], we have

[V ]Cσα/2,σ (Q1/2(t1,0)) ≤ [ηV ]Cσα/2,σ ((t1−1,t1)×B1/2)

≤ N‖ηV ‖
H

α,1
p0,0((t1−1,t1)×B1/2)

,
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which together with (3.21) with q = p0 proves (3.18) with r = 1. If 1 − (d + 1/α)/p0 ≤ 0, we 

proceed as in the last part of the proof of Lemma 3.4 by using (3.17). The lemma is proved. �

Denote

�r = {(x1, x
′) ∈ R

d : −r < x1 < r,x′ ∈ R
d−1}.

Lemma 3.6. Let α ∈ (0, 1), p0 ∈ (1, ∞), t0 ∈ (0, ∞), r ∈ (0, ∞), and aij satisfy Assumption 2.5. 

Suppose that w ∈H
α,1
p0,0

((0, t0) × �r) satisfies

−∂α
t w + Di

(
aijDjw

)
= Digi + f (3.22)

in (0, t0) × �r with w = 0 on (0, t0) × ∂�r , where gi, f ∈ Lp ((0, t0) × �r ). Then, we have

‖w‖Lp0
((0,t0)×�r ) ≤ Nr‖gi‖Lp0

((0,t0)×�r ) + Nr2‖f ‖Lp0
((0,t0)×�r ), (3.23)

where N = N(d, δ, p0) for p0 ≥ 2 and N = N(d, δ, α, p0) for p0 ∈ (1, 2), but independent of t0.

Proof. Thanks to scaling, we set r = 1.

For p0 ∈ [2, ∞), by applying |w|p0−2w as a test function to the equation (3.22) we have

t0
ˆ

0

ˆ

�1

(∂α
t w)|w|p0−2w dx dt +

t0
ˆ

0

ˆ

�1

aijDjwDi

(
|w|p0−2w

)
dx dt

=

t0
ˆ

0

ˆ

�1

giDi

(
|w|p0−2w

)
dx dt −

t0
ˆ

0

ˆ

�1

f |w|p0−2w dx dt. (3.24)

In fact, |w|p0−2w may not be qualified as a test function because, for instance,

|w(t0, x)|p0−2w(t0, x) may not be zero. However, upon considering an infinitely differentiable 

approximation sequence as in the proof of [7, Lemma 4.1], we obtain the above equality for 

sufficiently smooth w. As explained in the proof of [7, Lemma 4.1], the first term in (3.24) is 

non-negative. Indeed,

1

p0
∂tI

1−α
0 |w|p0(t, x) ≤

(
∂α
t w(t, x)

)
|w(t, x)|p0−2w(t, x)

for (t, x) ∈ (0, t0) × �1 and

t0
ˆ

0

ˆ

�1

∂tI
1−α
0 |w|p0(t, x) dx dt =

ˆ

�1

I 1−α
0 |w|p0(t0, x) dx ≥ 0,
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provided that w is sufficiently smooth. Also recall that (|x|p0−2x)′ = (p0 − 1)|x|p0−2 for p0 > 1

so that Di

(
|w|p0−2w

)
= (p0 − 1)|w|p0−2Diw. From these observations with the uniform ellip-

ticity condition, it follows that

t0
ˆ

0

ˆ

�1

|w|p0−2|Dw|2 dx dt ≤ N

t0
ˆ

0

ˆ

�1

aij |w|p0−2DjwDiw dx dt

= N

t0
ˆ

0

ˆ

�1

aijDjwDi

(
|w|p0−2w

)
dx dt

≤ N

t0
ˆ

0

ˆ

�1

giDi

(
|w|p0−2w

)
dx dt − N

t0
ˆ

0

ˆ

�1

f |w|p0−2w dx dt,

where N = N(d, δ, p0). Note that

t0
ˆ

0

ˆ

�1

giDi

(
|w|p0−2w

)
dx dt = (p0 − 1)

t0
ˆ

0

ˆ

�1

gi |w|p0−2Diw dx dt

≤ ε1

t0
ˆ

0

ˆ

�1

|w|p0−2|Dw|2 dx dt + ε2

t0
ˆ

0

ˆ

�1

|w|p0 dx dt + N

t0
ˆ

0

ˆ

�1

|g|p0 dx dt

for arbitrary ε1, ε2 > 0, where N = N(ε1, ε2, p0). More precisely, in the above inequality, 

Young’s inequality is used repeatedly so that

|gi |w|p0−2Diw| ≤ ε1|w|p0−2|Diw|2 + N(ε1)|w|p0−2|gi |
2

≤ ε1|w|p0−2|Diw|2 + ε2|w|p0 + N(ε1, ε2)|gi |
p0 ,

where in the second inequality we used the condition p0 ≥ 2. Also note that

t0
ˆ

0

ˆ

�1

f |w|p0−2w dx dt ≤ ε3

t0
ˆ

0

ˆ

�1

|w|p0 dx dt + N

t0
ˆ

0

ˆ

�1

|f |p0 dx dt

for arbitrary ε3 > 0, where N = N(ε3). Then, since w(t, −1, x′) = w(t, 1, x′) = 0, by the 

Poincaré inequality, we notice that

t0
ˆ

0

ˆ

�1

|w|p0 dx dt =

t0
ˆ

0

ˆ

�1

(
|w|p0/2

)2
dx dt ≤ p2

0

t0
ˆ

0

ˆ

�1

|w|p0−2|D1w|2 dx dt.

Combining the above inequalities with sufficiently small ε1, ε2, ε3 > 0, we arrive at (3.23) with 

r = 1 for p0 ≥ 2. In addition to (3.23), for the duality argument below, we also need
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‖Dw‖Lp0
((0,t0)×�1) ≤ N‖g‖Lp0

((0,t0)×�1) + N‖f ‖Lp0
((0,t0)×�1), (3.25)

where N = N(d, δ, α, p0), but independent of t0. To prove this, we write (3.22) as

−∂α
t w + Di(a

ijDjw) − w = Digi + f − w.

Then by [9, Proposition 6.2] with λ = 1, we have

‖Dw‖Lp0
((0,t0)×�1) ≤ N‖g‖Lp0

((0,t0)×�1) + N‖f ‖Lp0
((0,t0)×�1) + N‖w‖Lp0

((0,t0)×�1),

where N = N(d, δ, α, p0), but independent of t0. From this together with (3.23) we obtain (3.25).

For p0 ∈ (1, 2), we use the usual duality argument made possible by the existence result 

[9, Proposition 6.2] for the partially bounded domain (0, t0) × �1 and the estimates (3.23)

and (3.25) for p0 ≥ 2. For φ0 ∈ C∞
0 ((0, t0) × �), by utilizing [9, Proposition 6.2] we find 

v ∈H
α,1

p′
0,0

((0, t0) × �), 1/p0 + 1/p′
0 = 1, satisfying

−∂α
t v + Di

(
aji(t0 − t)Djv

)
= φ0(t0 − t, x) (3.26)

in (0, t0) × �1 with the Dirichlet boundary condition

v(t,−1, x′) = v(t,1, x′) = 0.

Apply v(t0 − t, x) and w(t0 − t, x) as test functions to (3.22) and (3.26), respectively, to get

t0
ˆ

0

ˆ

�1

(f (t, x)v(t0 − t, x) − gi(t, x)Div(t0 − t, x)) dx dt

=

t0
ˆ

0

ˆ

�1

φ0(t, x)w(t, x) dx dt.

This combined with the estimates (3.23) and (3.25) for v with p′
0 > 2 proves (3.23) for p0 ∈ (1, 2)

when r = 1. �

Lemma 3.7. Let α ∈ (0, 1), p0 ∈ (1, ∞), t0 ∈ (0, ∞), 0 < r < R < ∞, and aij satisfy Assump-

tion 2.5. Suppose that w ∈ H
α,1
p0,0

((0, t0) × �R) satisfies (3.22) in (0, t0) × �R with w = 0 on 

(0, t0) × ∂�R , where gi, f ∈ Lp ((0, t0) × �R). Then, for any t1 ≤ t0 and ρ > 0, we have

‖Dw‖Lp0
((t1−ρ,t1)×Br ) ≤ N

θ1/p0R

R − r

∞∑

j=0

2−αj

⎛
⎜⎝ −

t1−sj θ
ˆ

t1−sj+2θ

ˆ

�R

|gi |
p0 dx dt

⎞
⎟⎠

1/p0
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+ N
θ1/p0R2

R − r

∞∑

j=0

2−αj

⎛
⎜⎝ −

t1−sj θ
ˆ

t1−sj+2θ

ˆ

�R

|f |p0 dx dt

⎞
⎟⎠

1/p0

, (3.27)

where θ = R2/α if ρ < R2/α and θ = ρ if ρ ≥ R2/α ,

s0 = 0, sj = 2j , j = 1,2, . . . , (3.28)

N = N(d, δ, α, p0), and w, gi, f denote the zero extensions of them for t ≤ 0.

Remark 3.8. Note that since (t1 − sj+2θ, t1 − sj θ) ⊂ (t1 − sj+2θ, t1), we have

−

ˆ

(t1−sj+2θ,t1−sj θ)

≤
4

3
−

ˆ

(t1−sj+2θ,t1)

.

Thus, one can replace the integrals in (3.27) with those over (t1 − sj+2θ, t1), which can be 

further replaced with (t1 − sj θ, t1) with another constant N . Hence, for instance, instead of the 

last summation in (3.27), we may have

∞∑

j=1

2−αj

⎛
⎜⎝ −

t1
ˆ

t1−sj θ

ˆ

�R

|f |p0 dx dt

⎞
⎟⎠

1/p0

.

We employ such a replacement throughout the paper whenever the replacement is necessary or 

makes the exposition better.

Proof of Lemma 3.7. By scaling, we may assume that 0 < r < R = 1. We further assume that 

ρ ≥ 1, which will be removed later. Note that, for any S ≤ 0, we have w ∈ H
α,1
p0,0

((S, t1) × �1)

satisfying (3.22) in (S, t1) × �1, where ∂α
t = ∂tI

1−α
S . Thus, by taking η from (A.1) with t0

replaced with t1 and μ = 2ρ, ν = ρ, we see that ηw ∈H
α,1
p0,0

((t1 − 2ρ, t1) × �1) satisfies

−∂α
t (ηw) + Di

(
aijDj (ηw)

)
= Di(ηgi) + ηf + F

in (t1 −2ρ, t1) ×�1 and also in (t1 −2ρ, t1) ×B1, where ∂α
t = ∂tI

1−α
t1−2ρ and F(t, x) is defined as 

in (A.2) with u replaced with w. By [9, Proposition 6.2] (also see the proof of [7, Lemma 4.3]), 

it follows that

‖Dw‖Lp0
((t1−ρ,t1)×Br ) ≤ ‖D(ηw)‖Lp0

((t1−2ρ,t1)×Br )

≤
N

1 − r
‖w‖Lp0

((t1−2ρ,t1)×�1) + N‖gi‖Lp0
((t1−2ρ,t1)×�1)

+ N(1 − r)‖|f | + |F |‖Lp0
((t1−2ρ,t1)×�1),

(3.29)

where N = N(d, δ, α, p0). Set
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τ0 = 0, τj = 2jρ, j = 1,2, . . . . (3.30)

Note that the sequence {τj }
∞
k=1 satisfies (A.3). Then, by Lemma A.1 with p = p0, � = �1, 

u = w, N0 = 2, sj = τj from (3.30), μ = 2ρ, and ν = ρ,

‖F‖Lp0
((t1−2ρ,t1)×�1) ≤ Nρ−α

⎛
⎜⎝

t1−ρ
ˆ

t1−4ρ

ˆ

�1

|w(t, x)|p0 dx dt

⎞
⎟⎠

1/p0

+ Nρ−α+1/p0

∞∑

j=1

2−αj

⎛
⎜⎝ −

t1−τj
ˆ

t1−τj+1

ˆ

�1

|w(t, x)|p0 dx dt

⎞
⎟⎠

1/p0

, (3.31)

where N = N(α). Denote

Aj :=

⎛
⎜⎝ −

t1−τj
ˆ

t1−τj+1

ˆ

�1

|w|p0 dx dt

⎞
⎟⎠

1/p0

for j = 0, 1, 2, . . .. By combining (3.29) and (3.31), we have

‖Dw‖Lp0
((t1−ρ,t1)×Br ) ≤ N‖gi‖Lp0

((t1−2ρ,t1)×�1) + N(1 − r)‖f ‖Lp0
((t1−2ρ,t1)×�1)

+
N

1 − r

⎛
⎜⎝

t1
ˆ

t1−2ρ

ˆ

�1

|w|p0

⎞
⎟⎠

1/p0

+ N(1 − r)ρ−α

⎛
⎜⎝

t1−ρ
ˆ

t1−4ρ

ˆ

�1

|w|p0

⎞
⎟⎠

1/p0

+ N(1 − r)ρ−α+1/p0

∞∑

j=1

2−αjAj .

Note that

⎛
⎜⎝

t1
ˆ

t1−2ρ

ˆ

�1

|w|p0

⎞
⎟⎠

1/p0

= (2ρ)1/p0A0

and

⎛
⎜⎝

t1−ρ
ˆ

t1−4ρ

ˆ

�1

|w|p0

⎞
⎟⎠

1/p0

≤

⎛
⎜⎝

t1
ˆ

t1−τ1

ˆ

�1

|w|p0

⎞
⎟⎠

1/p0

+

⎛
⎜⎝

t1−τ1
ˆ

t1−τ2

ˆ

�1

|w|p0

⎞
⎟⎠

1/p0

= (2ρ)1/p0A0 + (2ρ)1/p0A1.

Hence,
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‖Dw‖Lp0
((t1−ρ,t1)×Br ) ≤ N‖gi‖Lp0

((t1−2ρ,t1)×�1) + N(1 − r)‖f ‖Lp0
((t1−2ρ,t1)×�1)

+Nρ1/p0

(
1

1 − r
+ (1 − r)ρ−α

)
A0 + N(1 − r)ρ−α+1/p0

∞∑

j=1

2−αjAj ,

where N = N(d, δ, α, p0). Due to the fact that r < 1, ρ ≥ 1, we have

‖Dw‖Lp0
((t1−ρ,t1)×Br ) ≤ N‖gi‖Lp0

((t1−2ρ,t1)×�1) + N‖f ‖Lp0
((t1−2ρ,t1)×�1)

+ Nρ1/p0
1

1 − r
A0 + Nρ−α/2+1/p0

∞∑

j=1

2−αjAj . (3.32)

To estimate Aj , for each j = 0, 1, 2, . . ., we take ηj as η in (A.1) with t0 = t1 − τj , μ =

τj+2 − τj , and ν = τj+1 − τj . That is,

ηj (t) =

{
1 if t ≥ t1 − τj+1,

0 if t ≤ t1 − τj+2,

|η′
j (t)| ≤

2

τj+2 − τj+1
= 2−jρ−1, j = 0,1,2, . . . .

Then, ηjw ∈H
α,1
p0,0

(
(t1 − τj+2, t1 − τj ) × �1

)
satisfies

−∂α
t (ηjw) + Di

(
aijDj (ηjw)

)
= Di(ηjgi) + ηjf + Fj (3.33)

in (t1 − τj+2, t1 − τj ) × �1, where Fj (t, x) is as in (A.2) with u and η replaced with w and ηj , 

respectively. By Lemma 3.6 applied to (3.33) it follows that

‖w‖Lp0

(
(t1−τj+1,t1−τj )×�1

) ≤ ‖(ηjw)‖Lp0

(
(t1−τj+2,t1−τj )×�1

)

≤ N‖|gi | + |f | + |Fj |‖Lp0

(
(t1−τj+2,t1−τj )×�1

), (3.34)

where N = N(d, δ, α, p0). For Fj above, we set

s̃k = τj+k+1 − τj , k = 1,2, . . . ,

and use Lemma A.1 with {s̃k}. That is, by Lemma A.1 with p = p0, t0 = t1 − τj , � = �1, s̃k , 

u = w, N0 = 3, and μ = τj+2 − τj , ν = τj+1 − τj , we obtain that

‖Fj‖Lp0

(
(t1−τj+2,t1−τj )×�1

) ≤ Nρ−α2−αj

⎛
⎜⎝

t1−τj −(τj+1−τj )
ˆ

t1−τj −2(τj+2−τj )

ˆ

�1

|w|p0 dx dt

⎞
⎟⎠

1/p0

782



H. Dong and D. Kim Journal of Differential Equations 377 (2023) 759–808

+Nρ−α+1/p02j/p0

∞∑

k=1

2−α(j+k)

⎛
⎜⎝ −

t1−τj+k+1
ˆ

t1−τj+k+2

ˆ

�1

|w(s, x)|p0 dx ds

⎞
⎟⎠

1/p0

≤ Nρ−α+1/p02j/p0

(
2−αjAj+1 + 2−αjAj+2 +

∞∑

k=1

2−α(j+k)Aj+k+1

)
,

where N = N(α) and the right-hand side is independent of Aj . See Remark A.2. From the above 

inequality and (3.34) we have

Aj ≤ NGj + Nρ−α

∞∑

k=j+1

2−αkAk (3.35)

for j = 0, 1, . . ., where

Gj =

⎛
⎜⎝ −

t1−τj
ˆ

t1−τj+2

ˆ

�1

(
|gi |

p0 + |f |p0
)

dx dt

⎞
⎟⎠

1/p0

.

We then fix a positive integer k0 depending only on d , δ, α, and p0 such that

N
2α

2α − 1
2−αk0 < 1/2,

where N is the constant in front of the summation in (3.35). By multiplying both sides of (3.35)

by 2−αj and summing for j = k0, k0 + 1, . . ., we have

∞∑

j=k0

2−αjAj ≤ N

∞∑

j=k0

2−αjGj + Nρ−α

∞∑

j=k0

2−αj

∞∑

k=j+1

2−αkAk. (3.36)

By the choice of k0, one can bound the last double summation in (3.36) as

N

∞∑

k=k0+1

2−αkAk

k−1∑

j=k0

2−αj ≤ N
2α2−αk0

2α − 1

∞∑

k=k0+1

2−αkAk <
1

2

∞∑

k=k0+1

2−αkAk,

from which, (3.36), and the fact that ρ ≥ 1, it follows that

∞∑

j=k0

2−αjAj ≤ N

∞∑

j=k0

2−αjGj ,

where (N, k0) = (N, k0)(d, δ, α, p0). For Aj with j = 0, 1, . . . , k0 −1, we use the above estimate 

as well as (3.35) with backward induction so that we have
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∞∑

j=0

2−αjAj ≤ N

∞∑

j=0

2−αjGj ,

where N = N(d, δ, α, p0). From this and (3.32) along with the definition of Gj , in particu-

lar, ‖gi‖Lp0
((t1−2ρ,t1)×�1) +‖f ‖Lp0

((t1−2ρ,t1)×�1) ≤ N(p0)G0, and the inequality ρ−α/2+1/p0 ≤

ρ1/p0/(1 − r) (recall that r < 1 and ρ ≥ 1), we arrive at

‖Dw‖Lp0
((t1−ρ,t1)×Br ) ≤ N

ρ1/p0

1 − r

∞∑

j=0

2−αjGj .

Then, for ρ ≥ R2/α , by using scaling, we obtain (3.27). For ρ < R2/α , we see that

‖Dw‖Lp0
((t1−ρ,t1)×Br ) ≤ ‖Dw‖Lp0

(
(t1−R2/α,t1)×Br

),

the right-hand side of which is bounded by that of (3.27) thanks to the case ρ ≥ R2/α proved 

above with θ = R2/α . This finishes the proof. �

In the estimate (3.37) below it is essential that no D1v appears on the right-hand side of the 

inequality.

Lemma 3.9. Let α ∈ (0, 1), p0 ∈ (1, ∞), t0 ∈ (0, ∞), r, R ∈ (0, ∞) such that 2r < R, and aij

satisfy Assumption 2.5. Also let a11 be infinitely differentiable with bounded derivatives if a11 =

a11(x1). Suppose that v ∈ H
α,1
p0,0

((0, t0) × BR) satisfies (3.5) in (0, t0) × BR . Then, there exist 

ṽ, v̂ ∈ H
α,1
p,0 ((0, t0) × Br ) with v = ṽ + v̂ in (0, t0) ×Br such that, for any t1 ≤ t0, ṽ and v̂ satisfy 

the following.

For ṽ, we have

(
|Dṽ|p0

)1/p0

Qr/2(t1,0)
≤ N

∞∑

k=0

2−αk
(
|Dx′v|p0

)1/p0

(t1−sk+1r
2/α,t1−skr

2/α)×B2r
, (3.37)

where {sk}
∞
k=0 is the sequence in (3.28).

For v̂, when a11 = a11(t),

[D1v̂]Cσα/2,σ
(
Qr/4(t1,0)

) ≤ Nr−σ

∞∑

k=0

2−αk
(
|Dv|p0

)1/p0

(t1−2kr2/α,t1)×B2r
(3.38)

and, when a11 = a11(x1),

[a11(x1)D1v̂]Cσα/2,σ (Qr/4(t1,0)) ≤ Nr−σ
∞∑

k=0

2−αk
(
|Dv|p0

)1/p0

(t1−2kr2/α,t1)×B2r
. (3.39)

In these statements, v, ṽ, and v̂ denote the zero extension of them for t ≤ 0, σ = σ(d, α, p0) ∈

(0, 1), and N = N(d, δ, α, p0).
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Proof. As before we only consider r = 1. In this case 2 < R. By Lemma 3.3 Dx′v ∈

H
α,1
p0,0

((0, t0) × B2). In particular, DDx′v ∈ Lp0
((0, t0) × B2). Thus, if we set

g1 = −

d∑

j=2

1B1
a1jDjv, f = 1B1

�x′v −

d∑

i=2

d∑

j=1

1B1
aijDijv,

where 1B1
is an indicator function of x, then g1, f ∈ Lp0 ((0, t0) × �1) and by [9, Proposition 

6.2], there exists a unique ṽ ∈H
α,1
p,0 ((0, t0) × �1) satisfying

−∂α
t ṽ + D1(a

11D1ṽ) + �x′ ṽ = D1g1 + f (3.40)

in (0, t0) × �1 with ṽ = 0 on (0, t0) × ∂�1.

Set v̂ = v − ṽ, which belongs to H
α,1
p0,0

((0, t0) × B1). Since aij are independent of x′ ∈ R
d−1

and DDx′v ∈ Lp0
((0, t0) × B2), v satisfies

−∂α
t v + D1(a

11D1v) + �x′v = D1g1 + f

in (0, t0) × B1, which means that v̂ satisfies

−∂α
t v̂ + D1

(
a11D1v̂

)
+ �x′ v̂ = 0 (3.41)

in (0, t0) × B1. These ṽ and v̂ are the desired decomposition of v.

We now prove that ṽ and v̂ satisfy the inequalities in the lemma. For each t1 ≤ t0, by 

Lemma 3.7 with (R, r, ρ) = (1, 1/2, 2−2/α) applied to ṽ satisfying (3.40) with the boundary 

condition ṽ = 0 on (0, t0) × ∂�1, we get

(
|Dṽ|p0

)1/p0

Q1/2(t1,0)
≤ N

∞∑

j=0

2−αj

⎛
⎜⎝ −

t1−sj
ˆ

t1−sj+2

ˆ

�1

|g1|
p0 dx dt

⎞
⎟⎠

1/p0

+ N

∞∑

j=0

2−αj

⎛
⎜⎝ −

t1−sj
ˆ

t1−sj+2

ˆ

�1

|f |p0 dx dt

⎞
⎟⎠

1/p0

, (3.42)

where {sj }
∞
j=0 is the sequence in (3.28) and N = N(d, δ, α, p0). Note that, for each j =

0, 1, 2, . . .,

⎛
⎜⎝ −

t1−sj
ˆ

t1−sj+2

ˆ

�1

|g1|
p0 dx dt

⎞
⎟⎠

1/p0

≤ N
(
|Dx′v|p0

)1/p0

(t1−sj+2,t1−sj )×B1
(3.43)

and
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⎛
⎜⎝ −

t1−sj
ˆ

t1−sj+2

ˆ

�1

|f |p0 dx dt

⎞
⎟⎠

1/p0

≤ N
(
|DDx′v|p0

)1/p0

(t1−sj+2,t1−sj )×B1
, (3.44)

where N = N(d, δ, p0). To estimate DDx′v on the right-hand side of (3.44), for each j =

0, 1, . . ., we apply Lemma 3.3, in particular, (3.7) with

(p1, t0, ν,μ, r) = (p0, t1 − sj , sj+2 − sj , sj+3 − sj ,2)

and sk in (3.7) replaced with

s̃k = sj+k+2 − sj

so that N0 = 3. Thus, we have

‖DDx′v‖Lp0

(
(t1−sj+2,t1−sj )×B1

) ≤ N‖Dx′v‖Lp0

(
(t1−sj+3,t1−sj )×B2

)

+ N2−αj‖Dx′v‖Lp0

(
(t1+sj −2sj+3,t1−sj+2)×B2

)

+ N

∞∑

k=1

2−α(j+k)−k/p0

⎛
⎜⎝

t1−sj+k+2
ˆ

t1−sj+k+3

ˆ

B2

|Dx′v(t, x)|p0 dx dt

⎞
⎟⎠

1/p0

,

where N = N(d, δ, α, p0). This inequality can be turned into

(
|DDx′v|p0

)1/p0

(t1−sj+2,t1−sj )×B1
≤ N

(
|Dx′v|p0

)1/p0

(t1−sj+3,t1−sj )×B2

+N

∞∑

k=0

2−α(j+k)
(
|Dx′v|p0

)1/p0

(t1−sj+k+3,t1−sj+k+2)×B2
.

This together with (3.42), (3.43), and (3.44) implies (3.37) for r = 1.

For the proof of (3.38) and (3.39), we first consider the case a11 = a11(t). Since v̂ satisfies 

(3.41), the coefficients of which are aij = aij (t), by Lemma 3.4 (the second assertion of the 

lemma) with (r, R) = (1/2, 1), we have (recall that v̂ = v − ṽ)

[D1v̂]Cσα/2,σ (Q1/4(t1,0)) ≤ N

∞∑

j=1

j−(1+α)
(
|Dv̂|p0

)1/p0

Q1/2(t1−(j−1)2−2/α,0)

= N

∞∑

j=1

j−(1+α)
(
|Dv − Dṽ|p0

)1/p0

Q1/2(t1−(j−1)2−2/α ,0)

≤ N

∞∑

j=1

j−(1+α)
[(

|Dv|p0
)1/p0

Q1/2(t1−(j−1)2−2/α,0)
+

(
|Dṽ|p0

)1/p0

Q1/2(t1−(j−1)2−2/α ,0)

]
, (3.45)
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where σ = σ(d, α, p0) ∈ (0, 1) and N = N(d, δ, α, p0). By (3.37) with r = 1, the terms involv-

ing Dṽ on the far right-hand side of (3.45) are estimated as

(
|Dṽ|p0

)1/p0

Q1/2(t1−(j−1)2−2/α ,0)

≤ N

∞∑

k=0

2−αk
(
|Dx′v|p0

)1/p0

(t1−(j−1)2−2/α−sk+1,t1−(j−1)2−2/α−sk)×B2

for j = 1, 2, . . .. Combining this with (3.45), we have

[D1v̂]Cσα/2,σ (Q1/4(t1,0)) ≤ N

∞∑

j=1

j−(1+α)

∞∑

k=0

2−αk
(
|Dv|p0

)1/p0

(t1−s
j
k+1,t1−s

j
k )×B2

, (3.46)

where s
j

k = (j − 1)2−2/α + sk . We then proceed as in the proof of [8, Proposition 4.7] with 

slightly different details as follows. The double summation in (3.46) equals

∞∑

k=0

2−αk

∞∑

j=1

j−(1+α)
(
|Dv|p0

)1/p0

(t1−s
j
k+1,t1−s

j
k )×B2

:= I1 + I2,

where

I1 =

∞∑

k=0

2−αk
∑

j∈N

(j−1)2−2/α<2k+1

j−(1+α)
(
|Dv|p0

)1/p0

(t1−s
j
k+1,t1−s

j
k )×B2

,

I2 =

∞∑

k=0

2−αk
∑

j∈N

(j−1)2−2/α≥2k+1

j−(1+α)
(
|Dv|p0

)1/p0

(t1−s
j
k+1,t1−s

j
k )×B2

.

For each k = 0, 1, 2, . . ., if j ∈ N and (j − 1)2−2/α < 2k+1, then

(t1 − s
j

k+1, t1 − s
j
k ) ⊂ (t1 − sk+2, t1),

which implies that

(
|Dv|p0

)1/p0

(t1−s
j
k+1,t1−s

j
k )×B2

≤ 41/p0
(
|Dv|p0

)1/p0

(t1−sk+2,t1)×B2
.

Hence, using

∑

j∈N

(j−1)2−2/α<2k+1

j−(1+α) ≤

∞∑

j=1

j−(1+α) < ∞,

we obtain that
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I1 ≤ N

∞∑

k=0

2−αk
(
|Dv|p0

)1/p0

(t1−sk+2,t1)×B2
. (3.47)

To estimate I2, we write

I2 =

∞∑

k=0

2−αk

∞∑

m=k+1

∑

j∈N

2m≤(j−1)2−2/α<2m+1

j−(1+α)
(
|Dv|p0

)1/p0

(t1−s
j
k+1,t1−s

j
k )×B2

≤ N

∞∑

k=0

2−αk

∞∑

m=k+1

2−m(1+α)
∑

j∈N

2m≤(j−1)2−2/α<2m+1

(
|Dv|p0

)1/p0

(t1−s
j
k+1,t1−s

j
k )×B2

,

where N = N(α). By Hölder’s inequality

∑

j∈N

2m≤(j−1)2−2/α<2m+1

(
|Dv|p0

)1/p0

(t1−s
j
k+1,t1−s

j
k )×B2

≤ N2m−m/p0

⎛
⎜⎜⎜⎝

∑

j∈N

2m≤(j−1)2−2/α<2m+1

(
|Dv|p0

)
(t1−s

j
k+1,t1−s

j
k )×B2

⎞
⎟⎟⎟⎠

1/p0

,

where N = N(α, p0). For each k = 0, 1, 2, . . ., find a positive integer N (k) such that

22/α(sk+1 − sk) ≤ N (k) < 22/α(sk+1 − sk) + 1.

Then, we have

(
|Dv|p0

)
(t1−s

j
k+1,t1−s

j
k )×B2

≤ 2−k

N (k)∑

�=1

t1−s
j
k −(�−1)2−2/α
ˆ

t1−s
j
k −�2−2/α

−

ˆ

B2

|Dv|p0 dx dt,

from which and a change of summation order, it follows that

∑

j∈N

2m≤(j−1)2−2/α<2m+1

(
|Dv|p0

)
(t1−s

j
k+1,t1−s

j
k )×B2

≤ 2−k

N (k)∑

�=1

∑

j∈N

2m≤(j−1)2−2/α<2m+1

t1−sk−(j+�−2)2−2/α
ˆ

t1−sk−(j+�−1)2−2/α

−

ˆ

B2

|Dv|p0 dx dt
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≤ 2−k

N (k)∑

�=1

t1
ˆ

t1−sk−2m+1−�2−2/α

−

ˆ

B2

|Dv|p0 dx dt

≤ 2−k(22/α2k+1 + 1)

t1
ˆ

t1−2k+1−2m+1−2−2/α

−

ˆ

B2

|Dv|p0 dx dt

≤ N(α)(2k+1 + 2m+1 + 1) −

t1
ˆ

t1−2k+1−2m+1−1

−

ˆ

B2

|Dv|p0 dx dt.

Note that in the second inequality above it is important that the intervals (t1 − sk − (j + � −

1)2−2/α, t1 − sk − (j + � − 2)2−2/α) are non-overlapping as j increases. Hence, using the fact 

that m ≥ k + 1, we have

I2 ≤ N

∞∑

k=0

2−αk

∞∑

m=k+1

2−αm
(
|Dv|p0

)1/p0

(t1−2m+2,t1)×B2

≤ N

∞∑

m=1

m−1∑

k=0

2−αk2−αm
(
|Dv|p0

)1/p0

(t1−2m+2,t1)×B2

≤ N

∞∑

m=0

2−αm
(
|Dv|p0

)1/p0

(t1−2m+2,t1)×B2
,

where N = N(d, δ, α, p0). This together with the estimate (3.47) for I1 and the inequality (3.46)

proves (3.38) for r = 1, where we have 2k instead of 2k+2. See Remark 3.8.

When a11 = a11(x1), we obtain (3.39) by following the same steps as above for the case 

a11 = a11(t). The only difference is that we use Lemma 3.5 instead of Lemma 3.4. Also note 

that when applying Lemma 3.5 to the equation (3.41), we have V = a11D1v̂. The lemma is 

proved. �

4. Mean oscillation estimates

We are now ready to present mean oscillation estimates of solutions to equations.

Below by u ∈ H
α,1
p0,0,loc(R

d
T ) and u ∈ H

α,2
p0,0,loc(R

d
T ) we mean that, for each R > 0, u ∈

H
α,1
p0,0

((0, T ) × BR) and u ∈ H
α,2
p0,0

((0, T ) × BR), respectively. We define Lp0,loc(R
d
T ) similarly.

We first obtain mean oscillation estimates for solutions to divergence type equations.

Proposition 4.1. Let p0 ∈ (1, ∞), T ∈ (0, ∞), and aij satisfy Assumption 2.5. Also let a11 be in-

finitely differentiable with bounded derivatives if a11 = a11(x1). Suppose that u ∈H
α,1
p0,0,loc(R

d
T )

satisfies

−∂α
t u + Di(a

ijDju) = Digi

in R
d
T , where gi ∈ Lp,loc(R

d
T ). Then, for any (t0, x0) ∈ (0, T ] × R

d , r ∈ (0, ∞), and κ ∈

(0, 1/16), we have the following.
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(1) For Dx′u,

(
|Dx′u − (Dx′u)Qκr (t0,x0)|

)
Qκr (t0,x0)

≤ Nκσ

∞∑

j=0

2−αj
(
|Dx′u|p0

)1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj/2
(
|gi |

p0
)1/p0

(t0−2j r2/α,t0)×Br (x0)
.

(4.1)

(2) For D1u, when a11 = a11(x1),

(
|a11D1u − (a11D1u)Qκr (t0,0)|

)
Qκr (t0,x0)

≤ Nκσ

∞∑

j=0

2−αj (|Du|p0)
1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj (|Dx′u|p0)
1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj/2
(
|gi |

p0
)1/p0

(t0−2j r2/α,t0)×Br (x0)
,

(4.2)

and, when a11 = a11(t), we have (4.2) with a11D1u replaced with D1u on the left-hand side 

of the inequality.

In these estimates, σ = σ(d, α, p0) ∈ (0, 1), N = N(d, δ, α, p0), and, as in the previous section, 

all the functions are extended to be zero for t ≤ 0.

Proof. Because of translation and dilation, we assume that x0 = 0 and r = 1. Since gi1B1
∈

Lp0
(Rd

T ), by [9, Proposition 6.2], there exists w ∈ H
α,1
p0,0

((0, t0) × �1) satisfying

−∂α
t w + Di(a

ijDjw) = Di(gi1B1
) (4.3)

in (0, t0) ×�1 and w = 0 on (0, t0) × ∂�1. Set v = u −w, which belongs to H
α,1
p0,0

((0, t0) ×B1)

and satisfies

−∂α
t v + Di(a

ijDjv) = 0

in (0, t0) × B1.

We first prove (4.1). Write

(
|Dx′u − (Dx′u)Qκ (t0,0)|

)
Qκ (t0,0)

≤
(
|Dx′v − (Dx′v)Qκ (t0,0)|

)
Qκ (t0,0)

+ 2 (|Dx′w|)Qκ (t0,0) := J1 + J2.
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Since κ < 1/16, it follows that

J1 ≤ 3κσ [Dx′v]Cσα/2,σ (Q1/4(t0,0))

for σ ∈ (0, 1) in Lemma 3.4, from which with (R, r) = (1, 1/2) we get

[Dx′v]Cσα/2,σ (Q1/4(t0,0)) ≤ N

∞∑

j=1

j−(1+α)
(
|Dx′v|p0

)1/p0

Q1/2(t0−(j−1)2−2/α ,0)

≤ N

∞∑

j=0

2−αj
(
|Dx′v|p0

)1/p0

(t0−2j ,t0)×B1/2
,

where, for the last inequality, see [8, Remark 4.4]. We then use the fact that u = w + v to get

[Dx′v]Cσα/2,σ (Q1/4(t0,0)) ≤N

∞∑

j=0

2−αj
(
|Dx′u|p0

)1/p0

(t0−2j ,t0)×B1/2

+N

∞∑

j=0

2−αj
(
|Dx′w|p0

)1/p0

(t0−2j ,t0)×B1/2
. (4.4)

For the Dx′w terms in (4.4), by Lemma 3.7 (and Remark 3.8) with (R, r, ρ) = (1, 1/2, 2j ) ap-

plied to w satisfying (4.3), for each j = 0, 1, 2, . . ., we have

(
|Dw|p0

)1/p0

(t0−2j ,t0)×B1/2
≤ N

∞∑

k=0

2−αk
(
|gi |

p0
)1/p0

(t0−2k+j+2,t0)×B1
, (4.5)

which shows that

∞∑

j=0

2−αj
(
|Dx′w|p0

)1/p0

(t0−2j ,t0)×B1/2
≤ N

∞∑

j=0

∞∑

k=0

2−α(j+k)
(
|gi |

p0
)1/p0

(t0−2k+j+2,t0)×B1

≤ N

∞∑

k=0

2−αk/2
(
|gi |

p0
)1/p0

(t0−2k ,t0)×B1
.

Hence,

J1 ≤ Nκσ

∞∑

j=0

2−αj
(
|Dx′u|p0

)1/p0

(t0−2j ,t0)×B1/2
+ Nκσ

∞∑

k=0

2−αk/2
(
|gi |

p0
)1/p0

(t0−2k,t0)×B1
.

To estimate J2, since w satisfies (4.3) in (0, t0) ×�1, we use again Lemma 3.7 (and Remark 3.8) 

with (R, r, ρ) = (1, κ, κ2/α) and Hölder’s inequality to get

(|Dw|)Qκ (t0,0) ≤
(
|Dw|p0

)1/p0

Qκ (t0,0)
≤ Nκ−(d+ 2

α
)/p0

∞∑

j=0

2−αj
(
|gi |

p0
)1/p0

(t0−2j ,t0)×B1
. (4.6)
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Collecting the estimates for J1 and J2 as well as noting that κσ ≤ κ−(d+ 2
α
)/p0 , we arrive at (4.1)

for r = 1.

For the mean oscillation estimates for a11D1u if a11 = a11(x1) or for D1u if a11 = a11(t), we 

first write

v = ṽ + v̂

in (0, t0) × B1/4, which is due to Lemma 3.9 with (R, r) = (1, 1/4). Hence, u = w + ṽ + v̂ in 

(0, t0) × B1/4.

For a11 = a11(x1), we write

(
|a11D1u − (a11D1u)Qκ (t0,0)|

)
Qκ (t0,0)

≤
(
|a11D1v̂ − (a11D1v̂)Qκ (t0,0)|

)
Qκ (t0,0)

+N(|D1ṽ|)Qκ (t0,0) + N(|D1w|)Qκ (t0,0) =: J3 + J4 + J5.

For J3, as for J1 we have

J3 ≤ 3κσ [a11D1v̂]Cσα/2,σ (Q1/16(t0,0)).

By (3.39) with r = 1/4,

[
a11D1v̂

]
Cσα/2,σ (Q1/16(t0,0))

≤ N

∞∑

j=0

2−αj
(
|Dv|p0

)1/p0

(t0−2j−4/α,t0)×B1/2

≤ N

∞∑

j=0

2−αj
(
|Dv|p0

)1/p0

(t0−2j ,t0)×B1/2
.

Using the relation u = w + v in (0, t0) × B1, for each j = 0, 1, 2, . . .,

(
|Dv|p0

)1/p0

(t0−2j ,t0)×B1/2
≤

(
|Du|p0

)1/p0

(t0−2j ,t0)×B1/2
+

(
|Dw|p0

)1/p0

(t0−2j ,t0)×B1/2
,

where the last term is estimated as in (4.5). Hence,

∞∑

j=0

2−αj (|Dw|p0)
1/p0

(t0−2j ,t0)×B1/2
≤ N

∞∑

j=0

2−αj

∞∑

k=0

2−αk
(
|gi |

p0
)1/p0

(t0−2k+j+2,t0)×B1

≤ N

∞∑

j=0

2−αj/2
(
|gi |

p0
)1/p0

(t0−2j ,t0)×B1
. (4.7)

From the above inequalities, we see that

J3 ≤ Nκσ

∞∑

j=0

2−αj (|Du|p0)
1/p0

(t0−2j ,t0)×B1/2
+ Nκσ

∞∑

j=0

2−αj/2(|gi |
p0)

1/p0

(t0−2j ,t0)×B1
.

For J4, we notice that from Hölder’s inequality
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(|D1ṽ|)Qκ (t0,0) ≤ κ−(d+ 2
α
)/p0(|D1ṽ|p0)

1/p0

Q1/8(t0,0),

where by (3.37) with r = 1/4, we get

(|Dṽ|p0)
1/p0

Q1/8(t0,0) ≤ N

∞∑

j=0

2−αj (|Dx′v|p0)
1/p0

(t0−sj+12−4/α,t0−sj 2−4/α)×B1/2

≤ N

∞∑

j=0

2−αj (|Dx′v|p0)
1/p0

(t0−2j ,t0)×B1/2
.

Then, using u = w + v,

(|D1ṽ|p0)
1/p0

Q1/8(t0,0) ≤ N

∞∑

j=0

2−αj (|Dx′u|p0)
1/p0

(t0−2j ,t0)×B1/2

+ N

∞∑

j=0

2−αj (|Dx′w|p0)
1/p0

(t0−2j ,t0)×B1/2
.

This inequality along with (4.7) gives

J4 ≤ κ−(d+ 2
α
)/p0

∞∑

j=0

[
2−αj (|Dx′u|p0)

1/p0

(t0−2j ,t0)×B1/2
+ 2−αj/2(|gi |

p0)
1/p0

(t0−2j ,t0)×B1

]
.

For J5, we use (4.6). Collecting the estimates for J3, J4, and J5, we arrive at (4.2).

For a11 = a11(t), we proceed as above with a11D1u and a11D1v̂ replaced with D1u and D1v̂, 

respectively. In particular, we use (3.38) for the Hölder semi-norm of D1v̂. The proposition is 

proved. �

The next proposition presents mean oscillation estimates for non-divergence type equations, 

which are derived almost directly from the corresponding ones (Proposition 4.1) for equations in 

divergence form. To do this, we first differentiate both sides of the equation in x�, � = 2, . . . , d , 

and then rewrite the equation in divergence form. Note that we do not differentiate the equation 

in x1 because the coefficients satisfying Assumption 2.5 are not independent of x1.

Proposition 4.2. Let p0 ∈ (1, ∞), T ∈ (0, ∞), and aij satisfy Assumption 2.5. Also let a11 be in-

finitely differentiable with bounded derivatives if a11 = a11(x1). Suppose that u ∈ H
α,2
p0,0,loc(R

d
T )

satisfies

−∂α
t u + aijDiju = f

in R
d
T , where f ∈ Lp,loc(R

d
T ). Then, for any (t0, x0) ∈ (0, T ] × R

d , r ∈ (0, ∞), and κ ∈

(0, δ2/16), we have the following.
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(1) For D2
x′u,

(
|D2

x′u − (D2
x′u)Qκr (t0,x0)|

)
Qκr (t0,x0)

≤ Nκσ

∞∑

j=0

2−αj
(
|D2

x′u|p0

)1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj/2
(
|f |p0

)1/p0

(t0−2j r2/α,t0)×Br (x0)
,

(4.8)

(2) For D1D�u, � = 2, . . . , d ,

(
|D1D�u − (D1D�u)Qκr (t0,0)|

)
Qκr (t0,0)

≤ Nκσ

∞∑

j=0

2−αj (|DD�u|p0)
1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj (|D2
x′u|p0)

1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj/2
(
|f |p0

)1/p0

(t0−2j r2/α,t0)×Br (x0)
.

(4.9)

In these estimates, σ = σ(d, α, p0) ∈ (0, 1), N = N(d, δ, α, p0), and all the functions are ex-

tended to be zero for t ≤ 0.

Proof. For the case a11 = a11(t), we set U� = D�u for � = 2, . . . , d . By [9, Lemma 3.2], U� ∈

H
α,1
p0,0,loc(R

d
T ). Moreover, U� satisfies the divergence type equation

−∂α
t U� + Di

(
ãijDjU�

)
= D�f

in R
d
T , where ãij are defined as

ã11 = a11, ãij = aij , i, j = 2, . . . , d,

ã1j = 0, j = 2, . . . , d, ãi1 = a1i + ai1, i = 2, . . . , d.

Indeed, for a test function ϕ ∈ C∞
0 ([0, T ) × R

d),

ˆ

R
d
T

(
I 1−αU�ϕt − ãijDjU�Diϕ

)
dx dt =

ˆ

R
d
T

(
∂α
t uD�ϕ − Di

(
ãijDju

)
D�ϕ

)
dx dt
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=

ˆ

R
d
T

(
∂α
t uD�ϕ − aijDijuD�ϕ

)
dx dt = −

T̂

0

ˆ

Rd

f D�ϕ dx dt,

where, in particular, Di(ã
i1D1u) = (a1i + ai1)Di1u and D1(ã

1jDju) = 0 for i, j > 1. We see 

that the coefficient matrix {ãij }i,j=1,...,d satisfies Assumption 2.5 (i). Then, by applying Propo-

sition 4.1 to U�, we get (4.8) and (4.9).

For the case a11 = a11(x1), as in the proof of Proposition 4.1, we assume that x0 = 0 and 

r = 1. We then use the following change of variables:

y1 = χ(x1) =

x1
ˆ

0

1

a11(r)
dr, yi = xi, i = 2, . . . , d.

From the fact that δ ≤ a11 ≤ δ−1, we see that the inverse χ−1(y1) exists and

|χ(x1)| ≤ δ−1|x1|, |χ−1(y1)| ≤ δ−1|y1|. (4.10)

Set

U�(t, y1, y
′) = D�u(t,χ−1(y1), y

′), � = 2, . . . , d.

Then, U� belongs to H
α,1
p0,0,loc(R

d
T ), and as above, one can verify that U� satisfies the divergence 

type equation

−∂α
t U� + Di

(
âijDjU�

)
= D�F

in R
d
T , where F(t, y1, y

′) = f (t, χ−1(y1), y
′) and âij are defined as

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

â11(y1) =
1

a11(χ−1(y1))
, â1j = 0, j = 2, . . . , d,

âi1(t, y1) = â11(y1)
(
a1i(t, χ−1(y1)) + ai1(t, χ−1(y1))

)
, i = 2, . . . , d,

âij (t, y1) = aij (t, χ−1(y1)), i, j = 2, . . . , d.

(4.11)

Note that {âij }i,j=1,...,d satisfies Assumption 2.5 (ii). For a constant C, using the first inequality 

in (4.10), we have

(|Dx′D�u − C|)Qκ (t0,0) = Nκ−2/α−d

t0
ˆ

t0−κ2/α

ˆ

Bκ

|Dx′U�(t, χ(x1), x
′) − C|dx dt

≤ Nκ−2/α−d

t0
ˆ

t0−κ2/α

ˆ

|χ(x1)|2+|x′|2≤(δ−1κ)2

|Dx′U�(t, χ(x1), x
′) − C|dx dt
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≤ Nκ−2/α−d

t0
ˆ

t0−κ2/α

ˆ

B
δ−1κ

|Dx′U�(t, y1, y
′) − C|dy dt

≤ N (|Dx′U� − C|)Q
δ−1κ

(t0,0) = N (|Dx′U� − C|)Qκ1δ(t0,0) ,

where N = N(d, δ) and κ1 := δ−2κ . Note that κ1 < 1/16 because κ < δ2/16. Then, by Proposi-

tion 4.1 with κ1 and r = δ as well as C = (Dx′U�)Qκ1δ(t0,0), we have

(
|Dx′U� − (Dx′U�)Qκ1δ(t0,0)|

)
Qκ1δ(t0,0)

≤ Nκσ
1

∞∑

j=0

2−αj
(
|Dx′U�|

p0
)1/p0

(t0−2j δ2/α,t0)×Bδ/2

+ Nκ
−(d+ 2

α
)/p0

1

∞∑

j=0

2−αj/2
(
|F |p0

)1/p0

(t0−2j δ2/α,t0)×Bδ
,

(4.12)

where we note that, due to the second inequality in (4.10), for instance,

(
|F |p0

)1/p0

(t0−2j δ2/α,t0)×Bδ
≤ N

(
|f |p0

)1/p0

(t0−2j ,t0)×B1
.

Therefore, from (4.12) with the observation

(
|Dx′D�u − (Dx′D�u)Qκ (t0,0)|

)
Qκ (t0,0)

≤ 2 (|Dx′D�u − C|)Qκ (t0,0) ,

we arrive at (4.8) for r = 1. To obtain (4.9), we proceed similarly as above upon noting that

(|D1D�u − C|)Qκ (t0,0)

≤ Nκ−2/α−d

t0
ˆ

t0−κ2/α

ˆ

B
δ−1κ

∣∣∣∣
1

a11(χ−1(y1))
D1U�(t, y1, y

′) − C

∣∣∣∣a
11(χ−1(y1)) dy dt

≤ N
(
|â11D1U� − C|

)
Q

δ−1κ
(t0,0)

,

where â11 is from (4.11). The proposition is proved. �

5. Proofs of Theorems 2.8 and 2.9

Lemma 5.1. Let α ∈ (0, 1), T ∈ (0, ∞), p, q ∈ (1, ∞), K1 ≥ 1, w = w1(t)w2(x), where

w1(t) ∈ Ap(R, dt), w2(x) ∈ Aq(Rd , dx), [w1]Ap ≤ K1, [w2]Aq ≤ K1.

Then, there exist p0 = p0(d, p, q, K1) ∈ (1, ∞) and μ = μ(d, α, p, q, K1) ∈ (1, ∞), 1/μ +

1/ν = 1, such that
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p0 < p0μ < min{p,q},
1

p0ν
<

α

2
, (5.1)

and the following holds. If u ∈H
α,1
p,q,w,0(R

d
T ) has compact support in QR0

(t1, 0) for t1 ∈ [0, T ], 

where R0 is from Assumption 2.6, and satisfies

−∂α
t u + Di(a

ijDju) = Digi

in R
d
T , where aij satisfy Assumption 2.6 (γ0) and gi ∈ Lp,q,w(Rd

T ), then for any (t0, x0) ∈

(0, T ] × R
d , r ∈ (0, ∞), κ ∈ (0, 1/16), we have the following.

(1) For Dx′u,

(
|Dx′u − (Dx′u)Qκr (t0,x0)|

)
Qκr (t0,x0)

≤ Nκσ

∞∑

j=0

2−αj
(
|Dx′u|p0

)1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0γ

1/(νp0)

0

∞∑

j=0

2
j
(

1
p0ν

− α
2

) (
|Dxu|μp0

)1/(μp0)

(t0−2j r2/α,t0)×Br (x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj/2
(
|gi |

p0
)1/p0

(t0−2j r2/α,t0)×Br (x0)
.

(5.2)

(2) For D1u, there exists a function U1 on Qκr(t0, x0) such that

N1(δ)|D1u| ≤ U1 ≤ N2(δ)|D1u| (5.3)

in Qκr(t0, x0) and

(
|U1 − (U1)Qκr (t0,0)|

)
Qκr (t0,x0)

≤ Nκσ

∞∑

j=0

2−αj (|Du|p0)
1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj (|Dx′u|p0)
1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0γ

1/(νp0)

0

∞∑

j=0

2
j
(

1
p0ν

− α
2

) (
|Dxu|μp0

)1/(μp0)

(t0−2j r2/α,t0)×Br (x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj/2
(
|gi |

p0
)1/p0

(t0−2j r2/α,t0)×Br (x0)
.

(5.4)

In these statements, σ = σ(d, α, p, q, K1) ∈ (0, 1), N = N(d, δ, α, p, q, K1), and all the func-

tions are extended to be zero for t ≤ 0.
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Proof. For the given w1 ∈ Ap(R, dt) and w2 ∈ Aq(Rd , dx), using the reverse Hölder’s inequal-

ity for Ap weights, we find

σ1 = σ1(p,K1), σ2 = σ2(d, q,K1)

such that p − σ1 > 1, q − σ2 > 1, and

w1 ∈ Ap−σ1
(R, dt), w2 ∈ Aq−σ2

(Rd , dx).

We then find p0 ∈ (1, ∞) such that

p0 <
p

p − σ1
and p0 <

q

q − σ2
.

Using the above σ1, σ2, and p0, we set μ ∈ (1, ∞) so that

1

μ
> 1 −

αp0

2
, p0μ ≤

p

p − σ1
, p0μ ≤

q

q − σ2
.

We see that p0 and μ satisfy (5.1). Note that

w1 ∈ Ap−σ1
⊂ A p

p0μ
⊂ A p

p0

(R, dt),

w2 ∈ Aq−σ2
⊂ A q

p0μ
⊂ A q

p0

(Rd , dt).

From these inclusions and the fact that u ∈ H
α,1
p,q,w,0(R

d
T ), it follows that (see the proof of [5, 

Lemma 5.10])

u ∈H
α,1
p0μ,0,loc(R

d
T ).

To prove the estimates in the lemma, we now fix (t0, x0) ∈ R
d
T , r ∈ (0, ∞), and κ ∈ (0, 1/16). 

Then, it is enough to consider the case

Qκr(t0, x0) ∩ QR0
(t1,0) �= ∅. (5.5)

Otherwise, the estimates hold trivially. In the case of (5.5), we have

t0 − (κr)2/α < t1 and t1 − R
2/α

0 < t0, (5.6)

which imply that u(t, x) = 0 if t ≤ t0 − 2R
2/α

0 , provided that r < R0. For the fixed (t0, x0) and 

r ∈ (0, ∞), we define āij which are measurable functions of only t , x1, or (t, x1) as follows.

(1) If r < R0,

(a) for (i, j) �= (1, 1), we set

āij (t, x1) = −

ˆ

B ′
r (x

′
0)

aij (t, x1, y
′) dy′,
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(b) for (i, j) = (1, 1) with

(i) a11 satisfying Assumption 2.6 (2.i) at (t0, x0), we set

ā11(t) = −

ˆ

Br (x0)

a11(t, y) dy,

(ii) a11 satisfying Assumption 2.6 (2.ii) at (t0, x0), we set

ā11(x1) = −

ˆ

Q′
r (t0,x

′
0)

a11(s, x1, y
′) dy′ ds.

(2) If r ≥ R0,

(a) for (i, j) �= (1, 1), we set

āij (t, x1) = −

ˆ

B ′
R0

aij (t, x1, y
′) dy′,

(b) for (i, j) = (1, 1) with

(i) a11 satisfying Assumption 2.6 (2.i) at (t1, 0), we set

ā11(t) = −

ˆ

BR0

a11(t, y) dy,

(ii) a11 satisfying Assumption 2.6 (2.ii) at (t0, 0), we set

ā11(x1) = −

ˆ

Q′
R0

(t1,0)

a11(s, x1, y
′) dy′ ds.

Using āij defined above, we write

−∂α
t u + Di(ā

ijDju) = Di ḡi

in R
d
T , where

ḡi = (āij − aij )Dju + gi .

Since āij satisfy Assumption 2.5, upon replacing gi with ḡi , by Proposition 4.1 we obtain (4.1), 

(4.2) when ā11 = ā11(x1), and a version of (4.2) with a11D1u replaced with D1u on the left-

hand side of the inequality when ā11 = ā11(t). Regarding the terms involving ḡi , because u has 

compact support in QR0
(t1, 0), we have

∞∑

j=0

2−αj/2
(
|ḡi |

p0
)1/p0

(t0−2j r2/α,t0)×Br (x0)
≤

∞∑

j=0

2−αj/2
(
|gi |

p0
)1/p0

(t0−2j r2/α,t0)×Br (x0)
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+

∞∑

j=0

2−αj/2
(
|aij − āij |p0 |Du|p0 1QR0

(t1,0)

)1/p0

(t0−2j r2/α,t0)×Br (x0)
:= J1 + J2,

where by Hölder’s inequality,

(
|aij − āij |p0 |Du|p0 1QR0

(t1,0)

)1/p0

(t0−2j r2/α,t0)×Br (x0)

≤
(
|aij − āij |p0ν1QR0

(t1,0)

)1/(p0ν)

(t0−2j r2/α,t0)×Br (x0)

(
|Du|p0μ

)1/(p0μ)

(t0−2j r2/α,t0)×Br (x0)
.

Set

J2,j :=
(
|aij − āij |p0ν1QR0

(t1,0)

)
(t0−2j r2/α,t0)×Br (x0)

for j = 0, 1, . . .. We claim that

J2,j ≤ N2jγ0 j = 0,1,2, . . . , (5.7)

where N = N(d, α). To see this, we distinguish the two cases r < R0 and r ≥ R0. In the latter 

case, by the definition of āij and the boundedness of aij by δ−1 it follows that

J2,j ≤ N
(
|aij − āij |

)
(t1−R

2/α
0 ,t1)×BR0

≤ Nγ0

for all j = 0, 1, 2, . . ..

For r < R0, we see that

|aij − āij |1QR0
(t1,0) = 0 for t < t0 − 2R

2/α

0 (5.8)

because by (5.6), for such t , we have

t < t0 − 2R
2/α

0 ≤ t0 − (κr)2/α − R
2/α

0 < t1 − R
2/α

0 .

Using the boundedness of aij by δ−1 and (5.8),

J2,j ≤ N(δ)
(
|aij − āij |1QR0

(t1,0)

)
(t0−2j r2/α,t0)×Br (x0)

≤

⎧
⎪⎪⎨
⎪⎪⎩

N
(
|aij − āij |

)
(t0−2j r2/α,t0)×Br (x0)

if 2j r2/α < 2R
2/α

0 ,

N
(
|aij − āij |

)
(t0−2R

2/α
0 ,t0)×Br (x0)

if 2j r2/α ≥ 2R
2/α

0 .

Then, from Remark 2.7 we see that (5.7) holds. Hence,
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J2 ≤ N

∞∑

j=0

2−αj/2J
1/(p0ν)

2,j

(
|Du|p0μ

)1/(p0μ)

(t0−2j r2/α,t0)×Br (x0)

≤ Nγ
1/(p0ν)

0

∞∑

j=0

2

(
1

p0ν
− α

2

)
j (

|Du|p0μ
)1/(p0μ)

(t0−2j r2/α,t0)×Br (x0)
.

By combining this estimate with Proposition 4.1, we obtain (5.2) and (5.4). In particular, U1 =

D1u if ā11 = ā11(t) and U1 = ā11D1u if ā11 = ā11(x1). �

Similarly, using Proposition 4.2, we obtain the following lemma.

Lemma 5.2. Let α ∈ (0, 1), T ∈ (0, ∞), p, q ∈ (1, ∞), K1 ≥ 1, w = w1(t)w2(x), where

w1(t) ∈ Ap(R, dt), w2(x) ∈ Aq(Rd , dx), [w1]Ap ≤ K1, [w2]Aq ≤ K1.

Then, there exist p0 = p0(d, p, q, K1) ∈ (1, ∞) and μ = μ(d, α, p, q, K1) ∈ (1, ∞), 1/μ +

1/ν = 1, such that

p0 < p0μ < min{p,q},
1

p0ν
<

α

2
,

and the following holds. If u ∈ H
α,2
p,q,w,0(R

d
T ) has compact support in (t1 − R

2/α

0 , t1) × BR0
for 

t1 ∈ [0, T ], where R0 is from Assumption 2.6, and satisfies

−∂α
t u + aijDiju = f

in R
d
T , where aij satisfy Assumption 2.6 (γ0) and f ∈ Lp,q,w(Rd

T ), then for any (t0, x0) ∈

(0, T ] × R
d , r ∈ (0, ∞), κ ∈ (0, 1/16), we have the following.

(1) For D2
x′u,

(
|D2

x′u − (D2
x′u)Qκr (t0,x0)|

)
Qκr (t0,x0)

≤ Nκσ

∞∑

j=0

2−αj
(
|D2

x′u|p0

)1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0γ

1/(νp0)

0

∞∑

j=0

2
j
(

1
p0ν

− α
2

) (
|D2u|μp0

)1/(μp0)

(t0−2j r2/α,t0)×Br (x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj/2
(
|f |p0

)1/p0

(t0−2j r2/α,t0)×Br (x0)
. (5.9)
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(2) For D1D�u, � = 2, . . . , d ,

(
|D1D�u − (D1D�u)Qκr (t0,0)|

)
Qκr (t0,x0)

≤ Nκσ

∞∑

j=0

2−αj (|DD�u|p0)
1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj (|D2
x′u|p0)

1/p0

(t0−2j r2/α,t0)×Br/2(x0)

+ Nκ−(d+ 2
α
)/p0γ

1/(νp0)

0

∞∑

j=0

2
j
(

1
p0ν

− α
2

) (
|D2u|μp0

)1/(μp0)

(t0−2j r2/α,t0)×Br (x0)

+ Nκ−(d+ 2
α
)/p0

∞∑

j=0

2−αj/2
(
|f |p0

)1/p0

(t0−2j r2/α,t0)×Br (x0)
. (5.10)

In these statements, σ = σ(d, α, p, q, K1) ∈ (0, 1), N = N(d, δ, α, p, q, K1), and all the func-

tions are extended to be zero for t ≤ 0.

Remark 5.3. Lemma 5.2 is analogous to [8, Lemma 5.1], where aij (t, x) are merely measurable 

in t and have small mean oscillations in x ∈ R
d . However, the inequality (5.2) in [8] must be 

expressed with infinite summations on the right-hand side, as in (5.9) and (5.10) instead of the 

strong maximal functions. Although the inequality (5.2) in [8] is correct, using the mean oscil-

lation estimates with a perturbation argument to derive Lp-estimates requires an inequality with 

infinite summations. The proof of [8, Lemma 5.1] actually establishes such an estimate.

To prove our main theorems, we use the following maximal and strong maximal functions. 

For (t0, x0) ∈ (−∞, T ) × R
d with T ∈ (−∞, ∞] and a function f defined on (−∞, T ) × R

d , 

we set

Mf (t0, x0) = sup
QR(t,x)�(t0,x0)

−

ˆ

QR(t,x)

|f (s, y)|dy ds

and

SMf (t0, x0) = sup
QR1,R2

(t,x)�(t0,x0)

−

ˆ

QR1,R2
(t,x)

|f (s, y)|dy ds,

where the supremums are taken over all QR(t, x) and QR1,R2
(t, x) such that (t, x) ∈ (−∞, T ] ×

R
d . We also use sharp functions defined as follows in the proofs:

f #(t0, x0) = sup
QR(t,x)�(t0,x0)

−

ˆ

QR(t,x)

|f (s, y) − (f )QR(t,x)|dy ds,

where the supremum is taken as above.
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Proof of Theorem 2.8. We first prove

‖Du‖Lp,q,w(Rd
T ) ≤ N‖gi‖Lp,q,w(Rd

T ) (5.11)

for u ∈ H
α,1
p,q,w,0(R

d
T ) having a compact support in QR0

(t1, 0) and satisfying (2.12) with

ai = bi = c = f = 0. (5.12)

It follows from Lemma 5.1 (1) that for any (t, x) ∈ (−∞, T ) × R
d and κ ∈ (0, 1/16), we have

(Dx′u)#(t, x) ≤ Nκσ
(
SM|Dx′u|p0(t, x)

)1/p0

+ Nκ−(d+ 2
α
)/p0γ

1/(νp0)

0

(
SM|Du|μp0(t, x)

)1/(μp0)

+ Nκ−(d+ 2
α
)/p0

(
SM|gi |

p0(t, x)
)1/p0 ,

where all the functions are extended as zero for t ≤ 0. Then by the weighted mixed-norm Hardy-

Littlewood maximal function theorem (see, for instance, [8, Theorem 5.2]) and the weighted 

mixed-norm Fefferman-Stein sharp function theorem (see [5, Corollary 2.7 and (2.4)]), we get

‖Dx′u‖ ≤ Nκσ ‖Dx′u‖ + Nκ−(d+ 2
α
)/p0γ

1/(νp0)

0 ‖Du‖ + Nκ−(d+ 2
α
)/p0‖gi‖, (5.13)

where ‖ · ‖ = ‖ · ‖Lp,q,w(Rd
T ) and the constant N is independent of κ . To estimate D1u, we see 

that Lemma 5.1 (2) implies the following. For each Qκr(t0, x0), where (t0, x0) ∈ (0, T ] × R
d , 

r ∈ (0, ∞), and κ ∈ (0, 1/16), there exists a function U1 on Qκr(t0, x0) such that (5.3) holds and

(
|U1 − (U1)Qκr (t0,x0)|

)
Qκr (t0,x0)

≤ Nκσ
(
SM|Du|p0(t, x)

)1/p0

+ Nκ−(d+ 2
α
)/p0

(
SM|Dx′u|p0(t, x)

)1/p0

+ Nκ−(d+ 2
α
)/p0γ

1/(νp0)

0

(
SM|Du|μp0(t, x)

)1/(μp0)

+ Nκ−(d+ 2
α
)/p0

(
SM|gi |

p0(t, x)
)1/p0

for all (t, x) ∈ Qκr(t0, x0). We now use the weighted mixed-norm Hardy-Littlewood maximal 

function theorem as above and [5, Corollary 2.8] along with the inequality (5.3) to get

‖D1u‖ ≤ Nκσ ‖Du‖ + Nκ−(d+ 2
α
)/p0‖Dx′u‖

+ Nκ−(d+ 2
α
)/p0γ

1/(νp0)

0 ‖Du‖ + Nκ−(d+ 2
α
)/p0‖gi‖,

(5.14)

where, again, ‖ · ‖ = ‖ · ‖Lp,q,w(Rd
T ) and the constant N is independent of κ . Combining (5.13)

and (5.14) gives

‖Dx′u‖ + (2N)−1κ(d+ 2
α
)/p0‖D1u‖ ≤ (Nκσ + 1/2)‖Dx′u‖

+ N(κ−(d+ 2
α
)/p0γ

1/(νp0)

0 + κσ+(d+ 2
α
)/p0)‖Du‖ + Nκ−(d+ 2

α
)/p0‖gi‖.
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By first choosing κ sufficiently small and then γ0 small, we absorb the first two terms on the 

right-hand side above and reach (5.11).

Now we remove the small support condition on u and (5.12) as in the proofs of [7, Lemmas 

6.4 and 6.5]. By using a partition of unity argument and S. Agmon’s idea (see also [14, Lemma 

5.5]), we obtain

‖u‖
H

α,1
p,q,w,0(R

d
T )

≤ N‖gi‖Lp,q,w(Rd
T ) + N‖f ‖Lp,q,w(Rd

T ) + N‖u‖Lp,q,w(Rd
T ), (5.15)

where N = N(d, δ, α, p, q, K1, K0, R0). More precisely, we prove (5.15) for p = q using the 

aforementioned arguments. We then obtain the mixed norm version of (5.15) by applying the 

extrapolation theorem (see, for instance, [5, Theorem 2.5]). To get rid of the u term on the right-

hand side of (5.15) and conclude the estimate (2.13), we use the same time-partition argument as 

in the proof of [7, Theorem 2.4]. Finally, the solvability of the equation follows from the a priori 

estimate (2.13) and the method of continuity. �

Proof of Theorem 2.9. As before, we first prove

‖D2u‖Lp,q,w(Rd
T ) ≤ N‖f ‖Lp,q,w(Rd

T ) (5.16)

for u ∈ H
α,2
p,q,w,0(R

d
T ) having compact support in QR0

(t1, 0) and satisfying (2.14) with bi = c =

0. Using Lemma 5.2 as in the proof of Theorem 2.8, we have

‖DDx′u‖Lp,q,w(Rd
T ) ≤ N‖f ‖Lp,q,w(Rd

T ) + Nγ
1/(νp0)

0 ‖D2u‖Lp,q,w(Rd
T ). (5.17)

To complete the proof, that is, to have an estimate for D2
1u, we write the equation as

−∂α
t u + a11D11u + �x′u = �x′u −

∑

(i,j)�=(1,1)

aijDiju + f.

Set u1 = D1u, which satisfies the divergence type equation

−∂α
t u1 + D1

(
a11D1u1

)
+ �x′u1 = D1g1, (5.18)

where

g1 = �x′u −
∑

(i,j) �=(1,1)

aijDiju + f.

By applying Theorem 2.8 to (5.18), we get

‖D2
1u‖Lp,q,w(Rd

T ) = ‖D1u1‖Lp,q,w(Rd
T ) ≤ N‖g1‖Lp,q,w(Rd

T )

≤ N‖DDx′u‖Lp,q,w(Rd
T ) + N‖f ‖Lp,q,w(Rd

T ).

This combined with (5.17) proves (5.16) with a sufficiently small γ0.
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Now we remove the small support condition on u and the condition bi = c = 0 by using a 

partition of unity argument as in [8, Corollary 5.4]. We then get

‖u‖
H

α,2
p,q,w,0(R

d
T )

≤ N‖f ‖Lp,q,w(Rd
T ) + N‖u‖Lp,q,w(Rd

T ), (5.19)

where N = N(d, δ, α, p, q, K1, K0, R0). As in the proof of Theorem 2.8 above, we first prove 

(5.19) for p = q and then use the extrapolation theorem. To get rid of the u term on the right-

hand side of (5.19) and conclude the estimate (2.15), we use the same time-partition argument as 

in the proof of [8, Theorem 2.2]. Finally, the solvability of the equation follows from the a priori 

estimate (2.15) and the method of continuity. �
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Appendix A

Let t0 ∈ R, 0 < ν < μ, u ∈ Lp ((−∞, t0) × �), 1 < p < ∞, and

η(t) =

{
1 if t ≥ t0 − ν,

0 if t ≤ t0 − μ,
|η′(t)| ≤

2

μ − ν
. (A.1)

Set

G(t, x) =
α

�(1 − α)

t
ˆ

−∞

(t − s)−α−1 (η(s) − η(t))u(s, x) ds. (A.2)

Also set {sk} to be a sequence such that

s1 = μ, sk + μ ≤ sk+1,
sk+1

N0
≤ sk, (A.3)

where N0 > 0.

Lemma A.1. For G defined in (A.2) with {sk} above, we have

‖G‖Lp((t0−μ,t0)×�) ≤
2αμ1−α

(1 − α)�(1 − α)(μ − ν)

⎛
⎜⎝

t0−ν
ˆ

t0−2μ

ˆ

�

|u(t, x)|p dx dt

⎞
⎟⎠

1/p
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+
α(Nα+1

0 + 1)

�(1 − α)

∞∑

k=1

s−α−1
k (sk+1 − sk)

1−1/pμ1/p

⎛
⎜⎝

t0−sk
ˆ

t0−sk+1

ˆ

�

|u(s, x)|p dx ds

⎞
⎟⎠

1/p

. (A.4)

Remark A.2. It is worth noting that the right-hand side of the inequality (A.4) does not contain 

the integral of u with respect to t on (t0 − ν, t0) because η(t) = 1 for t ≥ t0 − ν.

Proof of Lemma A.1. Note that

�(1 − α)

α
G(t, x) =

t
ˆ

−∞

(t − s)−α−1 (η(s) − η(t))u(s, x)1s≤t0−ν ds

because η(s) − η(t) = 0 for s ∈ (t0 − ν, t0) and t ≥ s. We then write

�(1 − α)

α
G(t, x) =

⎛
⎝

t
ˆ

t−μ

+

t−μ
ˆ

−∞

⎞
⎠ (t − s)−α−1 (η(s) − η(t))u(s, x)1s≤t0−ν ds

=: I1(t, x) + I2(t, x). (A.5)

Since

|I1(t, x)| ≤
2

μ − ν

t
ˆ

t−μ

(t − s)−α|u(s, x)|1s≤t0−ν ds

=
2

μ − ν

μ̂

0

s−α|u(t − s, x)|1t−s≤t0−ν ds,

by the Minkowski inequality, we have

‖I1‖Lp((t0−μ,t0)×�) ≤
2μ1−α

(1 − α)(μ − ν)

⎛
⎜⎝

t0−ν
ˆ

t0−2μ

ˆ

�

|u(t, x)|p dx dt

⎞
⎟⎠

1/p

. (A.6)

To estimate I2, we note that η(s) = 0 for s ≤ t − μ = t − s1 and t ∈ (t0 − μ, t0), which implies 

that, for t ∈ (t0 − μ, t0),

|I2(t, x)| ≤

t−s1
ˆ

−∞

(t − s)−α−1|u(s, x)|ds

=

∞∑

k=1

t−sk
ˆ

t−sk+1

(t − s)−α−1|u(s, x)|ds ≤

∞∑

k=1

s−α−1
k

t−sk
ˆ

t−sk+1

|u(s, x)|ds
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≤

∞∑

k=1

s−α−1
k

t0−sk
ˆ

t0−μ−sk+1

|u(s, x)|ds ≤

∞∑

k=1

s−α−1
k

t0−sk
ˆ

t0−sk+2

|u(s, x)|ds

≤ (Nα+1
0 + 1)

∞∑

k=1

s−α−1
k

t0−sk
ˆ

t0−sk+1

|u(s, x)|ds,

where in the last inequality we used the condition sk+1 ≤ N0sk in (A.3). Thus, by Hölder’s 

inequality and the Fubini theorem,

‖I2‖Lp((t0−μ,t0)×�)

≤ (Nα+1
0 + 1)

∞∑

k=1

s−α−1
k (sk+1 − sk)

1−1/pμ1/p

⎛
⎜⎝

t0−sk
ˆ

t0−sk+1

ˆ

�

|u(s, x)|p dx ds

⎞
⎟⎠

1/p

.

We obtain the inequality in the lemma from this inequality, (A.5), and (A.6). �
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