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1. Introduction

We consider parabolic equations in divergence and non-divergence forms with time fractional
derivatives. The equations are of the form

—3fu + Dl-(aiiju +a'u) +b' Diju+cu=Digi+ f
and
-3 u +aijDiju +bDiu+cu=f

in (0,7) x R =: R‘%, where 97u is the Caputo fractional time derivative of order « € (0, 1)
defined by

'
ru(t,x) = ﬁ% /(t — )" “[uls,x) —u(0,x)] ds
0

for sufficiently smooth u(¢, x).

In our previous paper [9], it was proved that there exist unique solutions to the above equa-
tions when g;, f € Lp(RdT) with p € (1, 00) and b* = ¢ = 0. The solutions in [9] are such that
u,Du e LP(R‘%) and dfu € H;l (]R‘%) (see Section 2 for the definition of H;l) for equations

in divergence form, and u, Du, D?%u, ofuelL, (R‘%) for equations in non-divergence form with
zero initial conditions. The novelty of the paper [9] is that the coefficient matrix {a'/}; j—1, ...,
allowed to have no regularity assumptions as a function of the temporal and one spatial variable
except one of the diagonal coefficients. Since the class of coefficients in this paper is the very gen-
eralization of [9], let us give a more detailed description of the coefficients there. The coefficients
a'/ are functions of (, x1) € R x R without any regularity assumptions (i.e., merely measurable),
only satisfying the ellipticity and boundedness condition (see (2.8)) for all i, j =1, ...,d. The
coefficient a'! has a restriction that it needs to be either a'! = a'l(¢) or a!' = a''(x}) with
no regularity assumptions. Note that, in the parabolic case with the usual time derivative u;, if
a' (¢, x1) have no regularity assumptions for all i, j =1, ..., d, there is no unique solvability of
parabolic equations in Sobolev spaces for p € (1,3/2) or p € (3, 00) even when d = 1. See [15]
for a counterexample. Thus, the coefficients in [9] are optimal in the sense that the aforemen-
tioned restriction on a!! cannot be removed.

In this paper, we generalize previous results on parabolic equations with time fractional
derivatives to a much larger class of coefficients and solution spaces. As to solution spaces,
we consider weighted Sobolev spaces with mixed norms. See (2.3). The weights are of the form
w(t, x) =w (Hwa(x), where w(t) € A,(R) and wa(x) € A, (R%). Here, A, (-) means a collec-
tion of Muckenhoupt weights. See (2.2). Such weighted Sobolev spaces are also considered in
[8] for non-divergence form equations, but the coefficients a'/ (¢, x) therein are limited to those
being measurable only in the temporal variable and having small mean oscillations with respect
to all the spatial variables x € R?. In contrast, the coefficients a’/ = a%/ (¢, x) in this paper are
functions of (r,x1) € R x R (a function of ¢ or x; for a'!) with no regularity assumptions,
and have small mean oscillations as functions of the remaining variables x’ € R4~! (x € R?
or (t,x) e R x R4 for a“), where x' = (x2,...,xq) € R4 ford =2,3,.... See Assump-
tion 2.6. Note that if the coefficients a'/, (i, j) # (1, 1), are functions of only (¢, x1), they are in

760



H. Dong and D. Kim Journal of Differential Equations 377 (2023) 759-808

the same class of coefficients as in [9], but the coefficient a!! is more general than in [9] even if
it is a function of only ¢ or x1. We will further discuss the assumption on the coefficient a!! later.
One advantage of considering such coefficients is that by using even/odd extensions, we imme-
diately obtain the corresponding results for equations in the half space {x; > 0} with either the
zero Dirichlet, conormal derivative, or Neumann boundary condition, which generalize the main
result of [8]. By a partition of unity argument, the results can be further extended to cylindrical
domains with appropriate conditions on a'/. See Remark 2.10.

To establish the results for equations in weighted parabolic Sobolev spaces, we utilize so-
called L ,,-mean oscillation estimates, pg € (1, 00), for solutions to equations with coefficients
considered in [9]. See Propositions 4.1 and 4.2, where no weights or mixed norms are involved.
The L j,-mean oscillation estimates are derived from the unique solvability and a priori L -
estimates for equations in Sobolev spaces with unmixed norms and no weights. After obtaining
L p,-mean oscillation estimates, especially for pg that are sufficiently close to 1, we establish
the unique solvability along with appropriate estimates in weighted Sobolev spaces with mixed
norms. See the proofs of Theorems 2.8 and 2.9 below as well as [5] and the references therein. In
this respect, the paper [9] can be considered a prequel to this paper. That is, we establish a chain
of results

unmixed L, estimates = L ,,-mean oscillation estimates = weighted L, ,-estimates,

where [9] takes care of the first result and this paper resolves the last two results. This chain of im-
plications also applies to the usual parabolic equations with the local time derivative u;. However,
in the time fractional parabolic case, due to the presence of the non-local time derivative, the first
implication of the above chain for pg close to 1 is not possible if one follows the proofs for the
usual parabolic case presented, for instance, in [5]. Specifically, one of the main steps to prove the
first implication is improving the regularity of solutions to homogeneous equations. In the time
fractional parabolic case, this regularity-improving process is limited due to the non-Markovian
nature of the time fractional derivative. That is, the regularity of a function at the current moment
is affected by the whole history of the function. To overcome this difficulty, we adapt the ap-
proach from [8], which involves decomposing solutions of equations in infinite cylinders of the
form (—o0, t) x Bg(x) instead of the usual parabolic cylinders (t — Ry, t) X Bg, (x). Furthermore,
we develop the approach with a refined decomposition of solutions to obtain mean oscillation es-
timates of Diu and Dyju, j =2,...,d, (for equations in divergence and non-divergence forms,
respectively), which have not appeared in the previous papers.

Let us provide further details on the mean oscillation estimates of Diu and Diju, j =
2,...,d, and make a remark on the coefficient a'!. We first recall that there are some previ-
ous results for parabolic equations with the usual local time derivative u, and coefficients a’/
similar to those in this paper. Our results in this paper can be compared to those in [3] for the
usual parabolic equations in divergence form and in [2] for the usual parabolic equations in non-
divergence form. However, these previous results are confined to unmixed L, spaces with no
weights. In [3,2], the desired results are derived from, for instance, in the divergence type equa-
tion case, the mean oscillation estimates of only Dju, j =2,...,d, with Diu excluded due to
the lack of regularity assumptions on the coefficients in (z, x1). These mean oscillation estimates
imply the L ,-estimates of Dju, j =2,...,d, which in turn prove the L ,-estimate of Diu by a
sophisticated scaling argument (see, for instance, [3, Lemma 3.4] or [9, Lemma 3.4]).

For equations in weighted Sobolev spaces, the scaling argument is unavailable because it
essentially relies on the scaling invariance (up to a multiple of a constant) of unweighted L -
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norms. Thus, we must deal with the mean oscillation estimates of Dju in the divergence case
and Diju, j=2,...,d, in the non-divergence case. To obtain such estimates, we use a new
approach based on, as mentioned above, a refined composition u = w + v =w + ¥ + 0, where v
is a solution to a homogeneous equation and ¥ is a solution to a simpler homogeneous equation.
See Lemma 3.9. The mean oscillation estimates for Dju and Dyju, j =2,...,d, allow us to
have a more general assumption on a'! than those in [3,2]. The difference is that the coefficient
a'l in [3,2] can be measurable either in 7 or x| globally in the whole domain, while in this paper
a'! can be measurable in ¢ or x1 locally. That is, a'l can be measurable in ¢ in one region of the
domain and measurable in x; in another region of the domain. See Assumption 2.6. Applying
the arguments and the assumption on a'! in this paper to equations with u;, we can get similar
results for the usual parabolic equations, which are also new. It is also worth noting that we
derive the necessary results for equations in non-divergence form from those for equations in
divergence form so that we do not need to deal with equations in two different forms separately.
The techniques developed in this paper might also be applicable to other types of equations with
non-local operators.

To provide context for our work on time fractional parabolic equations and related results in
the literature, we refer the reader to the paper [9] and the references therein. Also see [12], where
the authors deal with equations similar to those in this paper but in a different type of weighted
Sobolev spaces with @ € (0, 2) and continuous a'/ (¢, x). Further, one can find related results on
time fractional evolution equations in Hilbert space settings in [18,17,16,1].

The remainder of the paper is organized as follows. In the next section, we introduce necessary
notation and state the main results of the paper. In Section 3, we derive estimates for equations
in divergence form when the coefficients a' are functions of (¢, x;) (a'! is a function of either ¢
or x1). We then use these results in Section 4 to prove mean oscillation estimates of Du for the
divergence case and D?u (except Dlzu) for the non-divergence case. In Section 5, we prove our
main theorems. Finally, in the Appendix, we present an inequality necessary to take care of the
non-local property of time fractional derivatives.

2. Notation and main results
2.1. Notation

We define the parabolic cylinders

O,k (1, %) = (t — RY/®, 1) x Br,(x), Qg(t,x)= Qg g(t,x).

For Q c R? and 0 < T < oo, we denote Q7 = (0, T) x . In particular, we have RY =(0,T) x
R<. We write

Dx/l/t:DxEI/t, £=2,...,d.

We use the notation (u)p to denote the average of u over D, where D is a subset of R4+ That
is,

(w)p = ][u(t,x) dxdt = % /u(t,x) dxdt. 2.1)
D D
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Leta € (0, 1) and S € R. We denote the a-th integral of u with origin S by

t
1
I¢u(t,x) = o /(t — )% u(s, x)ds.
S

In particular, we write /%u if S =0. Set

O u(t,x) =I5~ (u(-, x) — u(S, x))

t
=y [ 9 s s, as
S

for a sufficiently smooth u, which is called the Caputo fractional derivative of order o with
respect to time at S (time fractional derivative of order « at S). If u further satisfies u(S, x) =0,
we see that

1_
Ofu =0 1g “u.
Whenever we write 9/ u, the origin S is clear from the context or § =0, that is,
Ou =81y “u=2d1I"""u.

For the Holder continuity of a function, we denote

[u] " sup lu(t, x) —u(s, y)l
CUO,Gl = ,
® (1), (s,0)eD |t = $170 + [x — y|7
(t,x)#(s,y)

where D C R4*! and 09, 01 € (0, 1).
2.2. Function spaces

Here we introduce function spaces for solutions to the equations discussed in this paper. We
fix pe (1,00) and @ € (0, 1).

For pe (1,00) and k € {1,2,...}, we let AP(RI‘, dx) be the set of all locally integrable non-
negative functions w on R¥ such that

p—1
[wla, == sup ][ w(x)dx ][ w(x)_l’%dx < 00, 2.2)

xoeR¥ r>0
r(x0) B/ (x0)

where B (xo) = {x € R*: |x — xo| < r}. Recall that [w]4, > 1.
For w(t, x) = w (H)wa(x), where (£, x) € R x RY, wy € A,(R,dt), and wp € A,(R?, dx),
we set Lp 4., (R%) to be the set of all measurable functions f defined on R% such that
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pla 1/p

T
”f”Lp,q,w(R‘%) = / /|f(t,x)|‘1w2(x)dx w1 (?) dt < 00. (2.3)
0

d

Note that if f € L, 4, w(]R ), by the reverse Holder’s inequality for A, weights (see, for in-
stance, Corollary 7.2.6 and Remark 7.2.3 in [11]), there exists pg € (1 oo) such that f €
Lp, ((0,T) x Bg) for any R > 0.

Definition 2.1. We say u € ]HI q w. o(Qr) if u € Ly 4.4 (R27) and there exists f € Ly 4w (227)
such that

/11—“u<p,dxdt=—/f<pdxdt (2.4)

Qr

for all ¢ € Cgo ([0, T) x 2). In this case, as a weak derivative, we have 8t11""u = f. We also
have

%u=0,1""u. (2.5)

See Remark 2.2. For solutions to non-divergence type equations, for a positive integer k, mostly
k=2, we set

HY Q7)) = {u e H*

.0 (Qr):D/uelygwQr).j=1,....k}

pqu

with the norm

lllges o) Z||Dfu||L,,qu<szT>+||a ULy g wo@r)-
Jj=0

Remark 2.2. Note that the test function ¢ in (2.4) belongs to C3°([0, T') x £2) so that ¢ (0, x) is
not necessarily zero. The equality (2.4) for such test functions implies that the equality (2.5) holds
for all u € Ha -0 0.0(Q7). Precisely, as shown in [13], for any u € Hp g.0.0(8@7) (H“ k .0(27)
as well), there ex1sts an approximating sequence {u,} of u such that u, € C*°([0, T] X SZ) Up
vanishes for large |x| (when €2 is unbounded), and u, (0, x) = 0. Thus, the equality (2.5) makes
sense as

3%u = lim 8%, = lim 81" %u,(z,x),
n— 00 n—od
where the limit is in the norm of L 4 ., (27). If a € (1/p, 1), for which the initial trace u(0, x)
makes sense, the equality (2.4) implies that u (0, x) is zero. Similarly, by (2.6) below, the equality
(2.7) makes sense. Thus, one can say that (2.4) and (2.6) include a zero trace condition. For initial

traces and other related results, see [13].
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To introduce function spaces for solutions to divergence type equations, we first define

H,‘,’Iq!w(QT) as follows. A distribution v on Q7 satisfies v € H;’lq,w(QT) if there exist G;, F €

Ly 4,w(S27) such that
v=D;G;+ F

in the distribution sense. We define the norm of H;lqw (Q7) by

llers o =I0IFIL, @ +1Gill Ly, @ i v = DiGi + F}.

Def}ilni;ion 23.Wesayu € H;’,g,w,o(QT) ifuelL, w(Rr) and there exist g;, f € Lp 4,w(271)
such that

/Il_“ugptdxdt=/(g,-D,-<p—fg0) dxdt (2.6)
Qr Qr

for all ¢ € Cg° ([0, T) x 2). That is, in the distributional sense,
W' “u=Digi+ f

and 3,1 %u e H!

poq.w(827). As mentioned in Remark 2.2, we have

O%u = 3,1 u. Q2.7)
For solutions to divergence type equations, we set

HZ’,}],UJ,O(QT) ={ue H‘;":g’w’o(Q) :DuelLy, g w(r)}

with the norm
J— o
IIMIIH«;,‘;MO(QT) =lullr,,,n +1DullL,, @ + 19 MIIH;_IW(QT)~
As usual, when p = ¢ and w(¢, x) = 1, we denote

Hgii,l’o(thg:g(m) and HZ:L,LO(QT)zHZ:})(QT).

Remark 2.4. In our previous papers, in particular, when p = g and w = 1, we used spaces such
as H%Z(QT), H‘;J (Q7), HZ%(QT) for non-divergence type equations (see, for instance, [6]),

and ﬁ‘;’l(QT), H%’I(QT), Hf,:(l)(QT) for divergence type equations (see, for instance, [7]). In
this paper even if we use the same notation, some of the spaces from [6] and [7] differ from
those in this paper. Indeed, as mentioned in Remark 2.2, u € H‘;‘,”E(QT) can be approximated by

infinitely differentiable functions with zero initial values. This means H‘;”B(QT) exactly corre-
sponds to the space using the same notation, for instance, in [6]. The same applies to ’H‘;’(l)(QT)

defined, for instance, in [7]. However, the space H‘,",’k(QT) in [6] turns out to be the same as
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H‘;i’(;(QT). Similarly, %% (Q7) in [7] is the same as H‘jji})(szT). We do not use H%* (Qr) and
N% ](SZT) in this paper. It is worth pointing out that, by the definitions in [6], to verify that
u e H“ 0(827), one must find an approximating sequence {u,} such that u, € C®([0,T] x )
with u,,(O x) = 0. However, by Definition 2.1, we now only need to check if the equahty 2.4)
holds for all test functions from Cgo([O, T) x 2). Similarly, to check that u € ”Hp’O(QT), we
only need to verify (2.6) for all ¢ € C3°([0, T) x Q).

2.3. Assumptions

Throughout the paper, we assume that there exists § € (0, 1) such that

ij 2 ij -1
a’ (1, x)§i&; = 81§17, laV(t,x)| <8 (2.8)
for any & € R? and (7, x) € R x R<.
To state our regularity assumptions on a*/, we first introduce coefficients a'/ which are mea-

surable in (¢, x1) except (i, j) = (1, 1). For a'', we have either a'' = a''(¢) or a'' = a'l (x}).

Assumption 2.5. The coefficient matrix {a¥ }i,j=1,...a with the ellipticity (and boundedness)
condition (2.8) satisfies either (i) or (ii) of the following.

() a'' =a' (1), aV =a' (¢, x)) for (i, j) # (1, 1).
() a'' =a'l'(xy), a =a' (¢, xy) for (i, j) # (1, 1).

Here are our assumptions for partially small mean oscillation (SMO) coefficients. As men-
tioned above, a'/ always satisfy (2.8). We also impose the boundedness assumption for lower-

order coefficients.
For x € R4, we write x = (x;, x'), where x; € R and x’ € R?~!. We then denote

Bi(x)={y eRI" X =yl <r), Qut.x)=(—r¥* 1) x B/(x).
Assumption 2.6 (yy). There is a constant Ry € (0, 1] satisfying the following.

(1) For each (9, xo) € R?*T! and r € (0, Ro], the coefficients a’/ with (i, j) # (1, 1) satisfy

la' (¢, x1, x") = @' (¢, x1)| dx dt <y,
0Oy (to,x0)

where

alt,x)) = ][ al (e, x1,y)dy'. (2.9)

BJ.(xp)
(2) For each (19, xo) € R9*!| the coefficient a!! satisfies either (2.i) or (2.ii) of the following.
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(2.i) For (1, x0) with #; € (fg — 3R’*, fo] and r € (0, Rol,

la'l (¢, x1,x") —a' (1) dx dt < yp,
0O (t1,x0)

where

all(t) = ][ a'l(t, y)dy. (2.10)

Br(x())
(2.ii) For (11, xo) with 11 € (fo — 3R>, 1o] and r € (0, 2%/2Ry],
0

la' (2, x1,x") —a' (x| dx dt <y,
0Oy (t1,x0)

where

all(xp) = ][ a'l(s, x1,y)dy' ds. (2.11)
Q) (t1.x)

For the lower-order coefficients a’, b’ , and c, there exists Ky > 0 such that

la'| < Ko, |b'| <Ko, |c| < Ko.

Remark 2.7. Under Assumption 2.6, we observe that, for any R € (r?/¢, ZRg/ “land r < Ry,

10
][ ][ lat/ — &' | dx dt <2y

fo—R By (xo)

for a/ with (i, j) # (1, 1) and for a'! satisfying (2.i), where @'/ is in (2.9) for a'/ with (i, j) #
(1, 1) and in (2.10) for a''. For a!! satisfying (2.ii), we have

10
— R
|CZ11 —a“|dxdt < Nm)/(),

fo—R By (xo)

where @' isin (2.11) and N = N(d, ). For the proofs of the above inequalities, see [6, Remark
2.3] and [10, Lemma 2.14].
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2.4. Main results

Our first main theorem is for equations in divergence form. By a solution « to (2.12), we mean
that u satisfies

T
//(Il_augotdxdt—aiijqu—aiuDi<p+biDiu<p+cug0) dxdt
0

R4
T
=//(f<p—g,-D,-g0)dxdt

0 Rd

for any ¢ € Cg° ([0 T) x ]Rd) As discussed in Remark 2.2, by the definition of 7-[“ ! . O(R
(the above formulatlon as well), (2.12) is an equation with the zero initial condition 1f the initial
trace makes sense.

Theorem 2.8 (Divergence case). Let « € (0,1), T € (0,00), p,q € (1,00), K1 € [1, 00), and
w(t, x) = wi(H)war(x), where

wi(t) € Ap(R,dr), wa(x) € Ay(R?, dx), [wila, = K1, [w2la, =K.
Then, there exists yo = yo(d, 8, «, p,q, K1) € (0, 1) such that, under Assumption 2.6 (yp), the

following hold.
For anyu € Hz’,lq,w,o(R?) satisfying

—8%u + D; (@’ Dju+a'u) +b' Dju+cu=Digi + f (2.12)

in R‘%, where g;, f € Lp,q,w(R‘%), we have

il e (Rd)_NZug,nL J&F NS, we), 2.13)

p.q,w,0

where N = N(d, §, «, p q, K1, Ko, Ry, T). Moreover, for g, f € Lp,q’w(]Ri‘%), there exists a
unique solution u € 7—[ q w. O(R‘%) satisfying (2.12).

Here is our main theorem for equations in non-divergence form. The equation (2.14) holds
almost everywhere and, by the definition of Ha b, O(RT) has the zero initial condition if the
initial trace makes sense.

Theorem 2.9 (Non-divergence case). Let «, T, p, q, K1, and w be as in Theorem 2.8. Then, there

exists yo = yo(d, 6, &, p, q, K1) € (0, 1) such that, under Assumption 2.6 (yy), the following hold.
Foranyu e H‘;’;,w’o(ﬂi{‘%) satisfying

—8f‘u+aijDiju+biDiu+cu=f (2.14)
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in R‘%, where [ € Lp,q,w(]R‘%), we have
u <N 2.15
Iullgee gy <N, (2.15)

where N=N(, d,«, p,q, K1, Ko, Ry, T). Moreover, for f € Lp,q,w(IR”%), there exists a unique
weHS? | ((RE) satisfying (2.14).

Remark 2.10. By using even/odd extensions, from Theorems 2.8 and 2.9, we can readily obtain
the corresponding results in the half space {x; > 0} with either the zero Dirichlet (for equa-
tions in divergence and non-divergence forms), conormal derivative (for equations in divergence
form), or Neumann boundary condition (for equations in non-divergence form). We refer the
reader to the proofs of [3, Theorems 2.4 and 2.5] for details. We remark that, as to equations on
sufficiently regular domains other than the whole Euclidean space and a half space, one can deal
with parabolic equations with @’/ measurable in ¢ or in one spatial variable (not in both ¢ and
one spatial variable as those in this paper). In particular, near the boundary, the spatial direction
in which @'/ are measurable has to be (almost) perpendicular to the boundary. Also, see [4] for
parabolic equations (with u;) in non-divergence form with a restricted range of p when a%/ are
measurable in a tangential direction to the boundary.

3. Equations in divergence form with measurable coefficients
In this section we consider
3%u+ Di(a" Dju) = Digi + f
with coefficients a'/ satisfying Assumption 2.5.
Proposition 3.1 (Right-hand side having less summability). Let o € (0,1), p € (1,00), T €
(0,00), and a'l satisfy Assumption 2.5. Then, for g; € LP(R‘%) and [ € Lq(R‘%), where

q € (1,00) and

1
d+2/a

1 1 1
+-—=—=>—,
P 4q9 P
there exists a unique function u on R‘% such that u, Du € L p(R‘%) and
—8%u + D; (aiijLt):Digi—i-f 3.1)
in R‘; with the estimate

”u”LP(]R’%) + ”Du”LP(R‘%) < N|gi ”LP(R’;) + N”f”[‘q(Rf;)’ (3.2)
where No = No(d, 8,a, p,q,T).
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Proof. Find a sequence { f¥} such that f¥ e L,NL, (R‘;) and fr — fin L, (]R{f}). By using [9,
Theorem 2.2] we find u* € HZ:B(R%) satisfying

—3%u* + D; (aijD,/uk) =D;gi + f*

inR%. For ¢, ¥ € C°(RY),i =1, ..., d, using [9, Theorem 2.2] again, find w € H;;}O((—T, 0)
xR, 1/p+1/p’ =1, satisfying

—3%w + D; (aji(—t, xl)Djw) =D; (—¢;(—t,x)) + ¥ (—t,x)

in (—T7,0) x RY, where of =0 Ii}“, with the estimate

||w||H77>?0((_T70)XRd) < N||¢i “Lp/((—T,O)de) + N”WHLP/((_T,O)X]Rd)- (3-3)
Since
|- d+?/ot . _d+/2/0l’
p q
by [9, Theorem 7.5] it follows that
”w”Lq/((—T,O)de) = N”w”HZ;?O((—T,O)de)’ (3.4)

where N = N(d, o, p, q). Then, by proceeding as in the proof of [7, Theorem 2.1] we arrive at

/T/<¢,-D,-uk+tﬁuk) dxdi

0 Rd

T
=//(fk(t,x)w(—t,x)—gi(t,x)Diw(—t,x)) dx dt

0 RY
k
=W g lwliz, +lgille, IDwlz,,

where Ly, L, = Ly, LP(R‘%) and Ly, Ly =Ly, Ly ((=T,0) x RY). Combining the above in-
equality with (3.3) and (3.4) shows that

k k k
[|ue ”L,,(R‘%) + | Du ”L,,(]R‘%) = N”gi”Lp(]Rf%) + NI f ”Lq(R‘%)‘

By this inequality along with the fact that ||101_°‘uk||Lp < N||uk||Lp (see [6, Remark A.3]) and
fe— fin L, (R‘}), we see that there exists a function u on R‘% such that u, Du € Lp(RdT)
and u satisfies (3.1) as well as (3.2). For the uniqueness, we see that the difference of two solu-
tions belongs to H%ZE(R‘}). Thus, by [9, Theorem 2.2], the difference is zero. The proposition is
proved. O
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Remark 3.2. In Proposition 3.1 if g; € Ly N LP(R‘%), then we also have u € ’H,Z’(l)(]R{‘;) by [9,
Theorem 2.2]. In particular, 0)u € Hq_l (R‘%), but we do not necessarily have 9u € H;I(R‘;)
because f € Lq(R‘;).

The proof of Lemma 3.3 below employs a similar iteration argument as in the proof of [3,
Lemma 4.2] for parabolic equations with the local time derivative. However, in each iteration step
presented here we verify that the solution v belongs to ’H‘;’jl‘o,
result that holds only in this space. Specifically, if we follow the proof of [3, Lemma 4.2], we
know that Dy/u, u € Lp,, but || Diul|», can be controlled by || D, u]| », only when u € ’HZ’I{O isa
priori known.

Recall that v € Hizé ((0, T) x Bg) is said to satisfy

as we need to apply an embedding

~9v+ D; (a1 Djv) = Digi + f
in (0, T) x B if

T

T
//(Il_“th—aiijvDi(p> dxdt://(ﬂp—giDiga)dxdt

0 Bg 0 Bgr

for any ¢ € C3° ([0, T) x Bg). In particular, ¢(0, x) is not necessarily zero.

Lemma 3.3. Let « € (0, 1), po € (1,00), T € (0,00), 0 <r < R < 00, and at satisfy Assump-
tion 2.5. Suppose that v € H%]O ((0, T) x Bpr) satisfies

—8%v+ D; (aiijv) —0 (3.5)

in (0,T) x Br. Then, v € 7—[:{0 (0, T) x By) for any py € (1, 00). Moreover, for any multi-
index B = (B2,...,B4) of the order |B| = 1,2,..., the function vg := Df,v belongs to
Ho!) (0, T) x By) and satisfies

—3%vg + Di(a” Djvg) =0 (3.6)

in (0, T) x B,. Furthermore, for any ty < T, 0 <v < u, and a sequence {si} satisfying (A.3) in
Appendix A, we have

I1DvgllL,, (to—v.t0)x B, o)

N l—a
< —llvgllL,, (to—pn.t0)xB,) + Nr lvgllz,, (to—24.t0—v)x By
r n—v
. 3.7
- fo—sk /p1
—a—1 1--L L 14
FNI Y s T et =) T g, 0P dxdr |
k=1 [0—Sk+1 B,
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where N=N(d,§,a, p1), N1 =N(d,$§,a, p1, No) (recall Ny from (A.3)), and vg denotes the
zero extension of vg fort <0.

Proof. To prove the first assertion in the lemma, it suffices to consider p; € (pg, 00). Take p; €
(po, 00) such that

d+2/a _ d+2/a

Po P1

1

(3.8)

Fix Ry and Ry suchthat 0 <r < Ry < Ry < R. Since v € H‘;;)I,O ((0,T) x Bg), by [9, Corollary
7.6] we have v € Lp, ((0, T) x Bg,) with the inequality

”U”Lpl((o,T)XBRl) S N”v”H‘;Ol’O((OyT)XBRZ)' (39)

Let ¢ (x) be an infinitely differentiable function defined on R¢ such that ¢(x) = 1 on B, and
$(x)=00nR?\ Bpg,. We see that ¢v belongs to HZ;O(R‘;) and satisfies

~37@v) + Di (a1 D;(¢v)) = Di (a/vD;0) +a" DjvD;e

in ]R‘%, where aiijj¢ €Ly, NLy, (R‘;) and a'/ DjvD;¢ € L, (R‘%). Then, by Proposition 3.1
(also see Remark 3.2) and (3.9) it follows that ¢pv, D(¢pv) € L, (R‘%) with the estimate

ol + 1Dvlllz,, 0. 1)x8,) = VDS, ey + IDVDPI L, ®e)

= Nlvllz,, «.1)xBry) T NIDVIL,, 0.1)xBr) = NVl (o T)xBry) (3.10)
ro» !

= NIVIL,,.7)xBgy) + NIIDVIIL, (0,7)xBr,) < NIVIL,, (0.7)xBg)

where in the fourth inequality we used the equation (3.5) to bound |9/ 1)||]H[71((0 TYx Bg,) by
Po ’ 2

||Dv||Lp0((0,T)XBR2). The last inequality in (3.10) follows from [7, Lemma 4.3] along with [9,

Theorem 2.2]. Hence, from (3.10) and the equation (3.5) we obtain that v € HZ]I,O ((0,T) x By)

and
llv ”H‘;’]l_o((o,T)xB,) = NlvliL,,.1)xBg)-

Indeed, to check that v € IH’Z}{O ((0,T) x By), we use the equation (3.5) to see that v €
L, ((0,T) x B,) satisfies the equality (2.6) with g; replaced with a”/ Djv and f = 0 for all
¢ Cy°([0,T) x By).

We complete the proof of the first assertion for arbitrary p; € (po, ©0) by repeating the above
argument finitely many times to reach pj. In particular, in each step of the iteration it is re-
quired that u € HZ}I,O((O’ T) x By;), po < pj < pi,r <rj < R, because the embedding (see [9,
Corollary 7.6]) is for functions in such spaces.

The second assertion of the lemma is in fact a simplified version of [9, Lemma 4.1] with no
cut-off function 1 and the zero right-hand side. To be more precise, we set
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v(t, x + hey) — v(t, x) R—r

A tx)= , O<h ,
¢,nv(t, x) p <h<—

where e, is the unit vector in the x-direction. Using the first assertion proved above, we see
that Ag pv(t, x) € ’H‘;’llo ((0, T) x BRI), where Ry € (0, (R + r)/2). Because a*/ are functions
of only (¢, x1), we also see that

0 (Aev) + Dy (a1 D; (Mg ) =0

in (0, T) x Bg, for £ =2,...,d. Then, we obtain the assertion using the properties of Ay, and
[9, Theorem 2.2] as in the proof of [9, Lemma 4.1].
Finally, we prove (3.7). By [7, Lemma 3.3] the extended function vg, which is zero for t <0,

belongs to ’H(;’]lo ((S, 1) x B,) forany S < 0. In addition, vg satisfies (3.6) in (S, fp) x B, where
ofv =10 ISI_“v. Set S =min{ty — u, 0} and take n(¢) from (A.1). Then by [7, Lemma 3.4], nvg
is in 7—[;1{0 ((to — m, to) X B,) and satisfies

—3% (nvg) + D (aiij(nvﬁ)) = Gp(t.x) G.11)

in (fo — u, to) x B,, where Gg is defined as in (A.2) with u replaced with vg. By applying [7,
Lemma 4.3] along with [9, Theorem 2.2] to (3.11), we have

N
IDOVRL, (to—p.10)%B,12) = 7”Uﬁ”Lpl((to—u,to)xB,-) + NriiGglle,, (o—p.xB),  (3.12)

where N = N(d, 6, a, p1). To take care of the L ,, -norm of Gg, we use the argument, for instance,
in the proof of [8, Lemma 4.1]. For the reader’s convenience and later usage, we present some
details in Appendix A. That is, by Lemma A.1 with p = p1, Q = B,, and u = vg, we see that

l—o

n
1G8IIL,,, (to—pn.10)x B,y < N () g llL,, (to—21,10—v) % B)

(w—=v)
- fo—5k 1/p1
+ N @ No) Y s sr — s TP pt/p / /Ivﬁ(t,X)l”' dx dt
k=1 f0—Sk+1 By

Then, we obtain (3.7) from this and (3.12) with the inequality

IDvg ”Lp] ((to=v.10)x B;12) = ”D(nvﬁ)”Lp] ((to—12,10)x Brj2)*
The lemma is proved. O

Recall the notation (u#)p in (2.1) so that, for instance,
1/p

(Pl = ][ (e, 0P dx di

r(1,x)
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Lemma 3.4. Let o € (0, 1), po € (1,00), tg € (0,00), 0 <r < R < 00, and a'/ satisfy Assump-
tion 2.5. If v € 7—[‘;2}10 ((0, t9) x BR) satisfies (3.5) in (0, tg) x Bg, then for any p € (pg, 00) and
1 < to, we have

oo
p 1/p c—(14+a) 4 1/po
(1Dx01") g0 SN DI (IDI™) g, 1yr20e,0) (.13
j=1

where N = N(d, 8, o, po, p) and v (here and below) denotes the zero extension of v fort <0.
Moreover,

o0
- . —(14a) 1/po
[Dx’U]C‘TO‘/Z"’(Q,/z(n,0)) <Nr 7 Z] * (le,v|p0)Qr(l‘l—(j—l)rz/",()) s (314)
j=1

wﬁere o=o0(d,a,py) €(0,1)and N =N(,$,a, po). If we additionally assume that all =
a’ () foralli,j=1,...,d, then the inequalities (3.13) and (3.14) hold with Dv replacing D, v
on both sides of the inequalities.

Proof. Due to scaling, it suffices to consider r = 1. Since v € 7—[;;}10((0, to) X BR), it is easy to
see that the extension of v by zero for ¢ < O satisfies

—8%v+ Dy (aiijv) —0 (3.15)

in (S, #9) x Bg for any S <0, where 97 v = o; Ié_“v. Indeed, the extended v satisfies (2.6) with
Qr replaced with (S, ) x Bg, gi =a"/ Djv, and f =0 for any ¢ € C3°([S, to) x Bg). Hence,
the extended v belongs to /HZ;:O ((S, t9) x Bg) for any § < 0. Moreover, by Lemma 3.3, we
have v € ’Hg:é ((S,19) x By) for any g € (1, 00). Take n(¢) from (A.1) with #y replaced with #;
and u=1,v= (1/2)2/"‘. Then, by choosing S < f; — 1 and using [9, Lemma 4.1] with #; and

t; — 1 in places of T and ¢y, respectively, it follows that D, (nv) € HZ’(I)((tl —1,1) x B34),
£=2,...,d,and

1DeOM gt (11,10 B3y) = NIPOLg 211,00 + NUGellLy 0110

(3.16)

o0
. —(1+a) q\1/4
<N (IDevl) g —(-1.0)
j=1

where N = N(d, 8, «, q) and G, is defined as in (A.2) with u replaced with D,v. In particular, we
obtain the second inequality in (3.16) using Lemma A.1 with p =¢q, Q2 = By, sy =k, u = Dyv,
No=2,and u =1, v=(1/2)¥“.

We now prove (3.13). Find p; € (po, 00) satisfying (3.8). Since D¢ (nv) € H‘;);){O((tl —1,1) x
Bj3,4), by [9, Corollary 7.6] we have

IDevllL,, (0121.00) < IDeIIL,, ((11—1.0)x By )
< N||D¢(nv) ”szlﬁ(m —1,11)xB3/4)’
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which combined with (3.16) with g = pg proves

o]

, pl 1/p1 (1+Ot) po\L/po
(IDxv1™) o1 .0y = Z (IDx01™) ot —(i=11.0)

If p1 > p, we arrive at (3.13) with » = 1. If not, by performing the iteration process as in the
proof of [8, Proposition 4.3], we eventually arrive at (3.13).

To prove (3.14), we first assume that 1 — (d 4+ 2/«a)/po =: o > 0. By the fact that D, (nv) €
HZE}{O(U] —1,11) X B34), [9, Corollary 7.4] shows that

[Devicoarzo(g,)yay,00) < [Pe(mv)lcoarzo (1 —1.6)xBy )

= N||DE(TYU)||Ha 1 (tlfl 11)xB34)”
From this and (3.16) with ¢ = pg we obtain (3.14) with r = 1. If 1 — (d + 2/a)/po < 0, by
repeating the above argument, we prove (3.14) with a sufficiently large p; replacing po on the
right-hand side so that 1 — (d +2/«)/p1 > 0. Then, the right-hand side of (3.14) is estimated by
that of (3.13) through the iteration process depicted in the proof of [8, Proposition 4.3].

If a'/ = a' (1), we repeat the above proof using the corresponding assertion in [9, Lemma
4.1]. The lemma is proved. O

Denote

d
V= Zalijv.
j=1

To deal with equations whose coefficients satisfy Assumption 2.5 (ii), we need the following
lemma for equations with coefficients a = a(x;). To utilize results from [7], we further as-
sume that a'/ (x1) are infinitely differentiable with bounded derivatives. However, this restriction
is harmless because the estimates we obtain below are independent of the smoothness of a'/ as
in [7]. Recall that all the coefficients @'/ in this paper satisfy the ellipticity condition (2.8), so do
the coefficients a'/ in the lemma below.

Lemma 3.5 (a"/ = a"/ (x1) case). Let a € (0, 1), po € (1,00), g € (0,00), 0 < r < R < 00, and
a’ = a" (x1) be infinitely differentiable with bounded derivatives. If v € ’H‘;;)l’o (0, t9) x BR)
satisfies (3.5) in (0, ty) X Bg, then for any p € (pg, 00) and t| < to, we have

o0

1/p —(1+a) 1/po
(IDvI") o) 1.0 <N Y O (IDuIP) ooy G.17)
j=l

where N = N(d, 8, o, po, p) and v (here and below) denotes the zero extension of v fort <0.
Moreover,

oo
- i—(1+0) poy1/po
[V]C”a/z’”(Qr/z(tl,O)) < Nr 2;_] (|D‘U| O)Qr(ll—(j—l)rz/”,o) s (318)
]=
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where 0 =o(d,a, po) € (0,1) and N=N(d, $§, a, po).

Proof. As in the proof of Lemma 3.4, we consider r = 1. By the observation made at the
beginning of the proof of Lemma 3.4, v satisfies (3.15) in (S, #y) x Bg for any S < 0 and
v E HZ:(I)((S, tp) x Bp) for any g € (1, 00). Then, by [7, Lemma 4.9], for a g1 € (g, oc] satis-
fying

) (3.19)

we have

1Dz, (11-1.0)%B1 ) = NIP 0Ly 011,00 + NGl Ly (011.0)

o 3.20)
1+ l/q (
Z e |D“|q)Q1(t1—<j—1),0)’

where N = N(d, 8, a, q), n(t) is from (A.1) with 9 replaced with 7; and u =1, v = (1/2)%/¢,
G=(G1,...,G4), Ge is as in (A.2) with u replaced with Dyv for £ = 1,2, ..., d, and the second
inequality is obtained by Lemma A.1 with g in place of p, Q = By, s; = j, u = Dyv, No =2,
and u=1,v = (1/2)%*.

Also note that the inequality (4.34) in the proof of [7, Lemma 4.9] (V in (4.34) of [7] equals
to n(¢)V here) shows that

IITIVIIchxj(l)((,l_m)XBl/z) SNIDMV L, 1,00 + NNGellL, 011,00

i (1+a) Dy 1/q (32D
| ol )Ql(ll—(j—l)v0)7

where N = N(d, §, «, g). Indeed, even if not clearly articulated in [7, Lemma 4.9], we have
N6V € Hig((n —1,01) x Bija) CHEg((n = 1,01) % Bijo)

because by Lemma 4.7 in [7] D, (qv) € HZ%((Q —1,11) x By)2) and a'/ are infinitely differen-
tiable with bounded derivatives.

To prove (3.17), find p; € (po, 00) satisfying (3.19) with p; and pg in places of ¢; and g,
respectively. Then, the inequalities in (3.20) with p; and pg imply (3.17) with » = 1, provided
that p; > p. If p; < p, we use the iteration process as in the proof of Lemma 3.4 (see also [8,
Proposition 4.3]) to obtain (3.17) for p.

To show (3.18), we first assume that 1 — (d + 1/«)/po := o > 0. Since nV € H‘;;)l’o((tl -
1,11) x B1,2), by the embedding [7, Corollary A.8], we have

[Vicowno (@, p,0) = MV ]coare (@ —1,0)xB1 )

= N”’?V||Ht;6"0((tl,1’,1))(31/2)7
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which together with (3.21) with ¢ = pg proves (3.18) withr = 1. If 1 — (d + 1/a)/po <0, we
proceed as in the last part of the proof of Lemma 3.4 by using (3.17). The lemma is proved. O

Denote
I, ={(x1,x) eRY: —r <x; <r,x' e R4}

Lemma 3.6. Let o € (0, 1), po € (1, 00), 1y € (0, 00), r € (0, 00), and a'/ satisfy Assumption 2.5.
Suppose that w € ’HZ;)lO((O, to) x I1,) satisfies

—8%w + D (aiijw) —Digi+f (3.22)
in (0, to) x I, with w =0 on (0, tp) x 9I1,, where g;, f € L, ((0, to) x I1,). Then, we have
WL, (0,10)x11) < NFI&llL,, (0.10)x11,) + NV2||f||Lp0((0,z0)xn,.), (3.23)

where N = N(d, 8, po) for po >2and N = N(d, 6, a, po) for po € (1, 2), but independent of to.

Proof. Thanks to scaling, we set r = 1.
For py € [2, 00), by applying |w|?°~2w as a test function to the equation (3.22) we have

Iy

0]
//(ataw)lw|p°72wdxdt+//aiijwD,- (|w|p°72w) dx dt

0 Iy 0 IT4
fo to
z//giDi <|w|p°72w> dxdt—//f|w|p°72wdxdt. (3.24)
0 Iy 0 II;

In fact, |w|1’0’2w may not be qualified as a test function because, for instance,
lw (19, x) |70 2w(tg, x) may not be zero. However, upon considering an infinitely differentiable
approximation sequence as in the proof of [7, Lemma 4.1], we obtain the above equality for
sufficiently smooth w. As explained in the proof of [7, Lemma 4.1], the first term in (3.24) is
non-negative. Indeed,

1
— 0 Iy~ |w|P (1, x) < (3 w(t, x)) [w(t, )P w(t, x)
Po

for (¢, x) € (0, tp) x IT; and

fo
//allg—“|w|1’0(z,x)dxdt=/101—“|w|P0(z0,x)dxzo,

0 Iy I
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provided that w is sufficiently smooth. Also recall that (|x|”0_2x)’ = (po— 1)|)c|”0_2 for pg > 1
so that D; (|w|1’°_2w) = (po — 1)|w|P~2D;w. From these observations with the uniform ellip-
ticity condition, it follows that

fo

10
//|w|P0—2|Dw|2dxdr5N//aff|w|P0—szwD,-wdxdz

0 I, 0 I
19
:N//aiijwDi <|w|p0_2w) dxdt
0 I
1) 0]
§N//g,-D,- (|w|1’0—2w) dxdt—N//f|w|p°_2wdxdt,
0 I 0 I

where N = N(d, 8, po). Note that

to 0]
//g,-D,- (|w|p°_2w) dxdt:(po—1)//g,-|w|”°_2D,-wdxdt

0 I 0 Iy

fo fo fo

581//|w|p°_2|Dw|2dxdt+82//|w|p°dxdt+N//|g|p0dxdt

0 I 0 ITy 0 M

for arbitrary e1,¢, > 0, where N = N(eq, €2, po). More precisely, in the above inequality,
Young’s inequality is used repeatedly so that

|ilwl? =2 Dyw] < e1|w|~?| Djw] + N (en)|w]™ 2 [g; |
<er|w™ 2 Diwl? + e2|w|™ + N(e1. £2)|g: 1™,
where in the second inequality we used the condition pg > 2. Also note that

10 (0]

19
//f|w|P0*2wdxdtge3//|w|P0dxdt+N//|f|P0dxdt

0 I 0 ITy 0 Iy

for arbitrary 3 > 0, where N = N(e3). Then, since w(t, —1,x") = w(, 1,x’) = 0, by the
Poincaré inequality, we notice that

fo to fo
2
//|w|1’°dxdt=//(|w|p°/2) dxdr5p%//|w|1’0—2|D1w|2dxdz.

0 I 0 I 0 114

Combining the above inequalities with sufficiently small €1, &2, €3 > 0, we arrive at (3.23) with
r =1 for pg > 2. In addition to (3.23), for the duality argument below, we also need
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IDWIIL, (0.10)x11) = NIGNL,, (0,100 + NI IL (0,00 %111 (3.25)

where N = N(d, 8, «, po), but independent of #y. To prove this, we write (3.22) as
—3%w + Di(a" Djw) —w = D;gi + f — w.

Then by [9, Proposition 6.2] with A = 1, we have

IDWIIL, 0.10)x111) = NIGNL,, (0,001 + NI IL 00,000 x111) + NIW L, (00,0011

where N = N(d, §, o, po), but independent of 7y. From this together with (3.23) we obtain (3.25).

For pp € (1,2), we use the usual duality argument made possible by the existence result
[9, Proposition 6.2] for the partially bounded domain (0, zp) x I[1; and the estimates (3.23)
and (3.25) for pg > 2. For ¢9 € Cé’o (0, t9) x IT), by utilizing [9, Proposition 6.2] we find
ve HZ;,){O (0, 10) x TI), 1/ po + 1/p}) = 1, satisfying

—~9v+ D; (a7 1y — DD;v) = olto — 1,) (3.26)
in (0, #p) x I1; with the Dirichlet boundary condition

v(t,—1,x)=v(, 1,x")=0.
Apply v(tg — t, x) and w(fg — t, x) as test functions to (3.22) and (3.26), respectively, to get

0]

//(f(t,x)v(to—t,x)—gi(t,x)D,-v(to—t,x)) dxdt
0 IT4

fo

://¢0(t,x)w(t,x)dxdt.

0 I

This combined with the estimates (3.23) and (3.25) for v with p{) > 2 proves (3.23) for pg € (1,2)
whenr=1. O

Lemma 3.7. Let o € (0, 1), po € (1,00), 1 € (0,00), 0 <r < R < 00, and a' satisfy Assump-
tion 2.5. Suppose that w € 7—[;;)10 ((0, 1) x IIR) satisfies (3.22) in (0, tp) x I1g with w =0 on
(0, 20) x 9I1g, where g;, f € L, ((0,t9) x I1g). Then, for any t; < ty and p > 0, we have

s 1/po
00 1—s;

0
gl/ro R o
I DWI L (1—p.0)x8) <N > 27 ][ /|gl~|f’°dxdr
Jj=0

t1—sj4+20 T
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1/po

tl,y}.g
ol/PR2 =
—ay P
+N—— Zz ][ /|f| 0 dx dt . (327
j=0 11—sj+20 TIg
where 0 = R*® if p < R** and 6 = p if p > R*/?,
so=0, s;=2/, j=1,2,..., (3.28)

N=N(,$,a, pg), and w, gi, f denote the zero extensions of them for t <.
Remark 3.8. Note that since (t; — 520,11 — 5;60) C (f1 — 5420, 11), we have
4
S —
3
(t1—5j4+20,t1—5;0) (f1—s5j+20,11)

Thus, one can replace the integrals in (3.27) with those over (f; — s;420,t1), which can be
further replaced with (#; — 56, t1) with another constant N. Hence, for instance, instead of the
last summation in (3.27), we may have

f 1/po

OO .
Zz*“f ][ /|f|p° dx dt
j=1

tlfsjel_lR

We employ such a replacement throughout the paper whenever the replacement is necessary or
makes the exposition better.

Proof of Lemma 3.7. By scaling, we may assume that 0 < » < R = 1. We further assume that
p > 1, which will be removed later. Note that, for any S < 0, we have w € 'Hz;)lo ((S,1) x )

satisfying (3.22) in (S, 1) x I1y, where 9 = 8,151_“. Thus, by taking n from (A.l) with 7y
replaced with #; and u =2p, v = p, we see that nw € H;}lo ((t; — 2p, 1) x I1y) satisfies

3¢ Grw) + D; (@' D;(rw) ) = Ding) +nf + F
in (t; —2p, 1) x I11 and also in (t; —2p, t1) x By, where 9/ = 8t1111:%p and F (¢, x) is defined as
in (A.2) with u replaced with w. By [9, Proposition 6.2] (also see the proof of [7, Lemma 4.3]),
it follows that
IDWIL,, (t1—p.yx By < ID@W)IIL, ((1-2p.11)xB,)
N
< m”w”LPO((ﬁ—Zp,tl)xl—h) + N&illL (12000 x11) (3.29)
+ NA =D+ FI L, 1—20.00 x>
where N = N(d, §, «, po). Set
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10=0 1;=2p, j=1,2,.... (3.30)

Note that the sequence {z;}7, satisfies (A.3). Then, by Lemma A.1 with p = py, 2 = Iy,
u=w, No=2,s; =1; from (3.30), u =2p,and v = p,

1/po
”F”Lpo((fl—Z,O,fl)XHl) SN,O_O[ / /|W(I,X)|p0dxdt
1—4p I
1—1; 1/[7()
““/P022 o ][ /lw(t x)|P0 dx dt . (331
1N—=Tj4+1 Iy
where N = N («). Denote
f]—‘[_]' l/p(J
][ /|w|p°dxdt
1=7j+1 Iy

for j =0,1,2,.... By combining (3.29) and (3.31), we have

IDWI L, (ti—p.yxB) = NI&illL,, (1=2p,0)x111) + N =D fllL,, (i—20,0)x111)

1/po t—p 1/po

e //|w|”° +N(=r)p™ //|w|”°

—2p I t1—4p Iy

o
FNA—r)p @Y 0mig

j=1
Note that
f 1/po
//|w|f’0 =(2p)"/7 Ag
t1—2p Iy
and
t—p 1/po f 1/po P 1/po
//|w|f'0 < //|w|"° + //|w|P°
t1—4p I n—r I n—1n I
=(20)/P Ao+ 20)V/P0 Ay
Hence,
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IDWII L, (t1-p.)x By < NISIllLyy (11-20,0)x11) + NA =P FllL 0 (120,00 <111

1 oA i
+Np'/Po <—1 +1 - r)p—“> Ag+ N —r)p @ty "o iy,
—r
j=

where N = N(d, 8, a, po). Due to the fact that r < 1, p > 1, we have

IDWIL,, t1—p.)xB) = NIgillL,, (t1—20.0)x111) + NIFIL,, (t1-20.0)x111)

o0
Ao+ Np~@/2H1/P X "0=aiA; (332)
j=1

1
+ Npl/Pol

—r

To estimate A;, for each j =0,1,2,..., we take n; as n in (A.1) with fp =1t; — 7j, u =
Tjiyo —1j,and v =14 — 7;. That s,

1 if r>1 —Tj+1,
nj(t) = ,
0 if r<n —Tj42,

2 — —_ .
;)< ————=277p7", j=0,1,2,....
Tji42 — Tj+1

Then, n;w € HZ;O ((r = Tj42. 11 — 7)) x I} satisfies

=35 (nyw) + Di (' D (nw)) = Dir80) + 0, + F (3.33)
in (i — tj42,t — 1;) x I11, where F; (¢, x) is as in (A.2) with u and n replaced with w and 7,

respectively. By Lemma 3.6 applied to (3.33) it follows that

”w”LPO((l] 7rj+1,t|7t_,~)><l'l|) = ||(7]/U)) ”LPO((Z‘]*Tj+2,t|7‘[j)><l_[1)

< Nllgil + 1 F1+1Fjlll L (—ceain—epxm) 3:34)

where N = N(d, 8, a, po). For F; above, we set
gszj+k+l_fj7 k=1,2,...,

and use Lemma A.1 with {5x}. That is, by Lemma A.1 with p = pg, to =t — t;, Q =TT, 5,
u=w,No=3,and u =742 — 7j, V=141 — T;, We obtain that
1 —=7j—(Tj41—-T}) 1/po
||Fj ||Lp0 ((t177j+2;t|7tj)><nl) S N,O_O[Z_a] / |u)|pO dx dt
tlffj72(‘[j+szj)nl
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1
H—Tjtk+1 /po

o
+Np—a+1/p02j/po Zz—ﬂt(j"‘k) ][ /|w(s,x)|p0dxds

k=1 t—Tji+2 Iy

o
< Np~t1/pogilpo (2‘“jA,~+1 +27% A0+ 22—“0+")A,-+k+1) :
k=1

where N = N («) and the right-hand side is independent of A ;. See Remark A.2. From the above
inequality and (3.34) we have

o
Aj<NGj+Np™ > 274, (3.35)
k=j+1
for j =0,1,..., where

h—t; 1/po

][ /(|gi|f’° +1f1M) dx dr

1 —Tj42 Iy
We then fix a positive integer ko depending only on d, 8, «, and pg such that

2(X
N g2 sl

where N is the constant in front of the summation in (3.35). By multiplying both sides of (3.35)
by 2% and summing for j = kg, ko + 1, ..., we have

o0 o0 o o0
D 2YASNY UG N Y 27 Y 27 A (3.36)
j=ko j=ko Jj=ko k=j+1

By the choice of kg, one can bound the last double summation in (3.36) as

204 —ako o

N Z 2_""‘Ak22 @ < Z 2—“’<Ak<— Z 27k A,

k=ko+1 j=ko k=ko+1 k ko+1

from which, (3.36), and the fact that p > 1, it follows that
Y RERTIETS SESIN
Jj=ko Jj=ko

where (N, ko) = (N, ko)(d, 8, a, po). For Aj with j =0, 1, ..., ko — 1, we use the above estimate
as well as (3.35) with backward induction so that we have
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DRV St
j=0 j=0

where N = N(d, 8, o, pp). From this and (3.32) along with the definition of G}, in particu-
1at, 1gill 2, (1 ~20,0)x110) + I F Ly (@11 ~20.00xT11) < N (p0)Go, and the inequality p~¢/>+1/70 <
,01/”0/(1 —r) (recall that r < 1 and p > 1), we arrive at

1/P0

Zz 4G

DL, (t1—p.)xB) <

Then, for p > R%/e, by using scaling, we obtain (3.27). For p < R%/®_ we see that
”Dw||Lp0((t1—p,t1)><B,-) < ||Dw||Lp0((t1_R2/a,t1)><Br),

the right-hand side of which is bounded by that of (3.27) thanks to the case p > R*/* proved
above with & = R*/®. This finishes the proof. [

In the estimate (3.37) below it is essential that no Djv appears on the right-hand side of the
inequality.

Lemma 3.9. Let « € (0, 1), po € (1,00), to € (0,00), r, R € (0, 00) such that 2r < R, and a'/

satisfy Assumption 2.5. Also let a'' be infinitely differentiable with bounded derivatives if a'! =
a''(x1). Suppose that v € ’H‘;;}{O ((0, o) x BR) satisfies (3.5) in (0, ty) X Bg. Then, there exist

7,0 € 7—[(;’%) (0, o) x By) withv =10+ in (0, to) X B, such that, for any t| < to, 0 and v satisfy
the following.
For v, we have

(|Dv|P0)””° NZZ_“" (IDyrv|P0) /70 , (3.37)

Or2(11,0) — (11 —Skg172/% 1y —s5r?/%) x Boy
k=0

where {s}72, is the sequence in (3.28).
For 0, when a'' = a'l (1),

ak po\1/po
[D10]coare (0, /4(,0)) 22 (IDI7°) 1 "ot2ie 1) sy (3.38)
and, when a'! = all(x)),
- k
[a"! (1) D101 ourzo (g, un.0n < N7~ Zz ok (1 py|P0)V/ | AT (3.39)

In these statements, v, U, and U denote the zero extension of them fort <0, o =o(d, a, py) €
0,1), and N=N(d, 8, a, py).
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Proof. As before we only consider » = 1. In this case 2 < R. By Lemma 3.3 Dyv €
Hi;}{o((O, fo) x Bp). In particular, DD,v € L, ((0, fo) x Bz). Thus, if we set

d d d
=Y 1pa Dy, f=1pAsv—Y > lga’Dyv,
j=2 i=2 j=1

where 1p, is an indicator function of x, then gy, f € L, ((0, 79) x I11) and by [9, Proposition
6.2], there exists a unique v € Hz”(l) ((0, 1) x ITy) satisfying

—3%0+ D1 (a''D10) + AyT=Dig1 + f (3.40)
in (0, #p) x IT{ with b =0 on (0, fy) x 9IT;.

Set © = v — ¥, which belongs to 7—[‘;;:0 ((0, 19) x By). Since a'/ are independent of x’ € R¢~!
and DD,v € Lp,((0,1%) x By), v satisfies

—0% + Di(a"'Djv) + Ayv=Dig1 + f
in (0, o) x B1, which means that v satisfies
—3%% + Dy (a“Dlﬁ)—i-Ax/ﬁ:O (3.41)

in (0, fo) x Bj1. These ¥ and ¥ are the desired decomposition of v.

We now prove that ¥ and 0 satisfy the inequalities in the lemma. For each #; < #, by
Lemma 3.7 with (R, r, p) = (1, 1/2,27%/%) applied to v satisfying (3.40) with the boundary
condition v =0 on (0, fp) x 911, we get

t—s; 1/po
(DF™)3 %0 NZz | f [reimasa
t—sjy2 Iy
- f—s; 1/po
+NY 27 ][ /|f|P0dxdt . (3.42)
Jj=0 t1—sj+2 I

where {S.i}?io is the sequence in (3.28) and N = N(d, §, @, po). Note that, for each j =
0,1,2,...,

f—s; 1/po

L/p
][ /|g1|”0 dxdi = N(|Dx/v|p0)(t1:)Sj+2,t17.8'j)><31 (3.43)

t—sj42 I
and
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-5 1/po

][/|f|1’0dxdt <N (IDDyv|?)/7 o (3.44)

(f1—sj4+2,t1—5;) X B}
f=sj+2 I

where N = N(d, 8, po). To estimate DD,/v on the right-hand side of (3.44), for each j =
0,1, ..., we apply Lemma 3.3, in particular, (3.7) with

(p1,t0, v, 0, 7) =(po. t1 — Sj,8j42 — 8j,Sj43 — 8, 2)

and s in (3.7) replaced with

Ek =Sjtk+2 — S
so that Ny = 3. Thus, we have

”DDx/U”LPO((zl —5j42,11—S;)x By)

< NIDvllp, (

po(L1—=sj43.11 —5j)xB)

+ N2 ”DX/U”L,,O ((l] +s172sj+3,t1 7sj+2)><82)

1
1—Sj+k+2 /po

o0
+ Ny 27Utk / /|Dx/v(t,x)|”0dxdt ,
k=1 1—Sj+k+3 By

where N = N(d, 3, «, po). This inequality can be turned into

(|DDx/U|pO)]/p0 <N(|Dva|p0)l/p0

(t1—sj+2.11—5;)x Bl — (t1—sj+3,11—5) X By

+N iz—“ﬁ“‘) (IDyv|P0) /70

(t1 =58 j k43,11 =8 j+k+2) X B2
k=0

This together with (3.42), (3.43), and (3.44) implies (3.37) for r = 1.

For the proof of (3.38) and (3.39), we first consider the case a' = a''(r). Since ¥ satisfies
(3.41), the coefficients of which are a'/ = a'/(z), by Lemma 3.4 (the second assertion of the
lemma) with (r, R) = (1/2, 1), we have (recall that b = v — D)

oo
N —(1+a) ~1p0\1/Po
[DIU]CGQ/Z*U(Q1/4(Z‘1,O)) =< NZ] “ (|DU|p0)Ql/z(tli(j71>2—2/u)0)
j=1
Z —(1+0t) |Dv 5|p0)1/1’0
01/2(t1—(j—1)272/%,0)

o0

—(14a) P 1/po ~1 D 1/po
SNZJ [(|D”| O)Q1/2<z1—<j—1)2*2/°',0>+(|D”| O)Quz(rl—u—lﬂ*z/“ﬂ)]’ (345)
j=1
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where 0 =0 (d,a, pp) € (0,1) and N =N(d, §, a, po). By (3.37) with r = 1, the terms involv-
ing Dv on the far right-hand side of (3.45) are estimated as

~1P0 1/po
(ID?] )Ql/zm—(j—l)z%/a,O)

o
—ak po\1/po
=N 22 (|Dx,v| )(Ilf(j*1)2_2/"‘*5k+1,t1*(j*1)2_2/°‘*sk)><32
k=0

for j =1,2,.... Combining this with (3.45), we have

oo o0
~ - — 1
[D18crornangyuion <N D5~ Y 27k (1pupr) /70 (3.46)

= P (tl_S){Jrlvtl_S){/)XBZ

where s,{ = (j — 1)27%/% 4+ 5;. We then proceed as in the proof of [8, Proposition 4.7] with
slightly different details as follows. The double summation in (3.46) equals

(00] o
Zz—ak Zj—(l"r()l) (|Dv|p())1/p0 ) _ Il + 12’

(1 SkJrl 131 Sk)XB

where

I = iz—ak Z ]—(1+0t) (|Dv|p0)1/170 ,
k=0

(t— s! JH —S; )><Bz
jEN k+1° k

(j_l)zfz/ot <pk+1

00
I = 2—Otk c—(1+a) Du|Po 1/170.
’ 1; Z / (l | )(’1 Shy et Yk)XBZ
= jeN

(j_1)272/0122k+1

Foreachk=0,1,2,...,if j € N and (j — 1)27%/% < 2k*1 then

(1 —S;H,tl —s,f) C (t1 — Sk+2, 1),

which implies that

(|D |p0)]/p0 ) <41/p() (|D |p0)1/l70

(1 Sk+l 131 Sk)XBZ (f1—sk+2,11)x By
Hence, using

[e¢]

Z *(1+ot) Z i—(4e)

jeN j=1
(j— 1)2—2/01 <2k+1

we obtain that

787



H. Dong and D. Kim Journal of Differential Equations 377 (2023) 759-808

o0
I <N Y27 (|Dy|r) /7 . (3.47)

(t1—Sk+2,11) X B2
k=0

To estimate 1>, we write

o0 o0
_ —ak c—(14a) po\1/po
L= 2" ) ) DR Al (LD VAT
k=0 m=k+1 jeN *

2m5<j7 1 )272/0( <2m+l

. (1+a) 1/po
<NZZ o Z p—m(l+a Z (le|p0)(11 51;+1 t sk)sz

m=k+1 jeN
2111§(j_1)2—2/a<2m+]

where N = N(«). By Holder’s inequality

X o,

N (tl—Yk_H 1 Sk)XBz
zms(j_1)272/ot<2m+l

1/po
< N2™=m/po Z (|Dv|p°)

jeN
om S(j71)2—2/ot <2m+1

(t1=s 41 11—=s)x B2

where N = N(«a, po). Foreach k =0, 1,2, ..., find a positive integer A (k) such that

22% (51 — 51) SN (k) < 22 (st — s10) + 1.
Then, we have

oy —2/a
N s —(E=12

Po —k Z Po
(|Dv| )([l Sk+1 =] By <2 ][|Dv| dxdt,
= .
1 —S,{ —02-2/a By

from which and a change of summation order, it follows that

E Dv Po . .
(| | )(tl—sliJrl,tl—Si(/)XBz
jeN
2m5(1_1)272/u <2m+1

NG 1 —sp—(j+€—2)27%/%

<27*)° > / ][|Dv|l’0dxdz
=1 jeN . _
o<y g1 S U2 B
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N (k) i
<27k ][|Dv|p0 dx dt
4

=1 t—sp—2m+1—g2-2/a By

131
<27 k@¥ gkt 4 1) / ][le|p° dx dt
f|—2k+1 —gm+1_2-2/a By
1
< N(@)@H +2m+1 4 1) ][ ][|Dv|p°dxdt.

=2kt —om+l_1 By

Note that in the second inequality above it is important that the intervals (f; — sy — (j + £ —
1)272/% 1 —sx — (j + £ — 2)27%/%) are non-overlapping as j increases. Hence, using the fact
that m > k 4+ 1, we have

00 00

—ak —am po\1/po

L= sz Z 27" (1D O)(zﬁzmﬂ,z.)sz
k=0 m=k+1

oo m—1

=N Z Z 2-ekgmem (|Dv|p0)zt/llﬁ)2m+2,t|)><32
m=1 k=0

o
<N Z y—am (|Dv|po)l/p0

(1 —2"+211)x By’
m=0

where N = N(d, 8, «, po). This together with the estimate (3.47) for I; and the inequality (3.46)
proves (3.38) for r = 1, where we have 2% instead of 2K*2. See Remark 3.8.

When a'! = a'l(x}), we obtain (3.39) by following the same steps as above for the case
a' = a''(¢). The only difference is that we use Lemma 3.5 instead of Lemma 3.4. Also note
that when applying Lemma 3.5 to the equation (3.41), we have V = a'!D9. The lemma is

proved. 0O
4. Mean oscillation estimates

We are now ready to present mean oscillation estimates of solutions to equations.

Below by u € H‘;;)IO‘]OC(R”%) and u € HZ&ZO‘]OC(R% we mean that, for each R > 0, u €

7-[?610((0, T)x Bg)and u € HZ;}ZO((O, T) x Bg), respectively. We define L p 1oc (R‘;) similarly.
We first obtain mean oscillation estimates for solutions to divergence type equations.

Proposition 4.1. Let py € (1, 00), T € (0, 00), and a' satisfy Assumption 2.5. Also let a'! be in-
ﬁnite]éy differentiable with bounded derivatives if a'' = a''(x1). Suppose that u € H‘;Z)I’OJOC (R‘%)
satisfies

—3fu + D; (a’-jD.,'u) = D;g;

in R‘%, where g; € prloc(]R‘%). Then, for any (to,xo) € (0, T] x RY, r € (0,00), and k €

(0, 1/16), we have the following.
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(1) For Dyu,
(|Dx’“ — (D) 91 (19.x0) |) Qwr (10,30)

o
< NKO’ Zz—o{j (le/u|pO)1/p0

(t0—27r2/* 19) x B2 (x0)

pri @.1)

)
—@d+2)/p /2 (|g|P0) PO
+ Nk 0 Zz (|g1| 0)(t0_2jr2/°‘,t())><Br(X0) ’
j=0

(2) For Dyu, when all =a“(x1),

" Dy — (@ D1 g, 1,01
( Q (t() ) Ql(r(t()vXO)

o0
o —aj poy1/pPo
=Nk 22 (|1 Dul )(10*2jr2/"‘,lo)XBr/2(XO)
j=0

4.2)

o0
—(d+2)/po —aj (1 D,y P01/ PO
+ Nk Zoz ADxul™) ™ 2/ 1) B )
=

oo
—<d+§>/poz —j/2 (| g.P0)/P0
+ Nk 2 (|gl| )(to—2fr2/°‘,t0)><Br(xo)’
j=0

and, when a'! = a'l(t), we have (4.2) with al' Dju replaced with Diu on the left-hand side

of the inequality.

In these estimates, 0 = o (d, o, po) € (0,1), N=N(d, §, «, po), and, as in the previous section,
all the functions are extended to be zero fort <0.

Proof. Because of translation and dilation, we assume that xo = 0 and r = 1. Since g;15, €
L p, (]R{‘%), by [9, Proposition 6.2], there exists w € H‘;;}{O((O, tg) x I1p) satisfying

—8%w + D;(a” Djw) = D;(gi1p,) 4.3)

in (0, 7o) x I1; and w =0 on (0, #p) x dI1;. Set v = u — w, which belongs to 7'[?,;)10((0, o) X By)
and satisfies

—Bf‘v—i-Di(aiijv) =0

in (0, 19) x Bj.
We first prove (4.1). Write

(|Dx/u - (DX/M)Q‘((IO’O)DQ,((&),O)
< (IDyv — (DX,U)QK(,0,0)|)QK(IO,O) +2(DvwD g, 19.0) = J1 + 2.
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Since k < 1/16, it follows that
o
Jl < 3k [DX,U]CUO‘/Z’J(Q]/4(l‘(),0))

for o € (0, 1) in Lemma 3.4, from which with (R, r) = (1, 1/2) we get

o0
—(1+a) po\1/Po
[Devlosra gy s <N D J (IDx1) .7ty —1y2-21e 0
j=1

o
—aj 1/po
) Po
= NZZ (le/U| )(to—2j,l‘())><Bl/2 ’
=0

where, for the last inequality, see [8, Remark 4.4]. We then use the fact that u = w + v to get

o0
—aj po\1/po
[Dxrvlcoarzo (g a0 <N D27 (IDeul™) (" s,

j=0
oo T
—aj Di po
+N ;2 (1Dl s (4.4)
]=

For the D,yw terms in (4.4), by Lemma 3.7 (and Remark 3.8) with (R, r, p) = (1, 1/2, 27) ap-
plied to w satisfying (4.3), for each j =0, 1,2, ..., we have

o
po\1/po —ak po\1/po
(IDwIP) " ey <N D27 (18i17) ki 1y, - 4.5)
k=0

which shows that

o0 [o.olNe )
—ai 1/po —a(j+k) 1/po
) Po J .| PO
ZZ (le/U)| )(1072-i,t0)><31/2 = szz (|g’| )(1072k+-/'+2,t0)x31
j=0 Jj=0£k=0

o0
—ak/2 ({,.1p0}1/Po
< NZZ (Igll O)(to—zkva)XB' .

k=0
Hence,
o0 o0
Ji < Nk° 2)2—a,/ (|Dx,u|po)étglf>2j,to)x&/z + Nk? kX(:)zwk/z (|gi|p0)it{)[f)2k,to)><81 ]
= =

To estimate J;, since w satisfies (4.3) in (0, #9) x 11, we use again Lemma 3.7 (and Remark 3.8)
with (R, r, p) = (1, k, «2/*) and Holder’s inequality to get

o
1/po —(d+2) —aj (). 1/po
(IDwD g, .0) < (IDWIP) 510 o) < NicmUH@IP0N "0 (jg;|P0) 170,y (46)

J=0
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2
Collecting the estimates for J; and J> as well as noting that «? < @t/ Powe arrive at (4.1)
forr =1.

For the mean oscillation estimates for a!! Dyu if a'! = a'' (x}) or for Dyu if a'! = a'l(z), we
first write

v=0+10

in (0, 79) x By/4, which is due to Lemma 3.9 with (R,7) = (1,1/4). Hence, u = w + v + V in
(0, 29) x Byy4.
For al! = a'l(x;), we write

(Ia“Dlu - (a“Dlu)Qkao,O)I)Q o = (Ia“Dlﬁ - (a“Dlﬁ)QK(to,Oﬂ)
«\10,

+N(D19]) g, (1,00 + N(ID1wl) g, (19,0) =: J3 + Ja + J5.

Ok (0,0)

For J3, as for J; we have

11 ~
J3 < 3/(0[61 DlU]Coa/z'”(Ql/m(l‘(),O))'

By (3.39) with r = 1/4,

o0
11 A —aj 1/po
a Dv] < NS 27% (|pyjpo)/Po
[ ' Co/29(Q116(10,0)) jz:(:) (l | )(’0_21 4/%,10)x B

o0
< szfa] (|Dv|p0)l/p0

(t0=27,t0)x Byy2 *
Jj=0

Using the relation u = w + v in (0, 7o) x By, foreach j =0,1,2,...,

1/po 1/po 1/po
Po Po Po
(|DU| )(t072./,t0)><31/2 = (|D”| )(tofz./,to)xBl/z + (|Dw| )(tofz.i,zo)xBl/z J

where the last term is estimated as in (4.5). Hence,

00 00 [
—aj poy1/Po —aj —ak . 1PO 1/po
22 (IDw] )(IO*Z-i,IO)XBl/Z = NZZ 22 (|g‘| )(to—Z"”*z,to)XBl
=0 j=0 k=0

oo
—aj/2 1/p
5N§ :2 ! (|gi|po)(;o—02j,z0)x31' “.7)
j=0

From the above inequalities, we see that

oo o
o —aj poy1/Po o —aj/2),.1P0\ /PO
J3 =Nk ZZ (I1Du| )(t0—2j,l())><Bl/2 + Nk 22 (Isil )(to—Zj,to)XBl'
j=0 =0

For J4, we notice that from Holder’s inequality
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~ —(d+2 ~ 1
(D131 0, 10,09 < 1~ T/ Po(1Dy 7)1

01/3(t0,0)°

where by (3.37) with r = 1/4, we get

00
~ 1/po 2 : —aj 1/po
Po < ] Po
(1Dv] )Ql/s(to,O) =N ‘ 02 (IDyv] )(l‘()*sj-%—]2_4/‘1,[07S.,'2_4/")><B|/2
]:

o0
—aj Lp|Poy1/Po
= NZZ (IDxv] )(to—2j,lo)><31/2'
Jj=0

Then, using u = w + v,

o
~ po~1/p0 —aj L1 |1P0Y1/Po
(I1D1v] )Ql/s(to,o)SNX:2 (| Dyrul )(to—2j,to)><Bl/2
j=0

o
+N Y2 (Dl )"

(to—27,10)xB12"

j=0
This inequality along with (4.7) gives
) oo
—(d+3)/po —aj Ly [P0y L/ Po —0j/2(|o.|P0y1/P0
Ja =« Z [2 (IDyrul )(to—2j,to)XB1/2 +2 (sl 0)(10—2j,fo)><31] ’
Jj=0

For Js5, we use (4.6). Collecting the estimates for J3, J4, and J5, we arrive at (4.2).

Forall = 4! (1), we proceed as above with a'Dyu and a"' D9 replaced with Dju and D0,
respectively. In particular, we use (3.38) for the Holder semi-norm of D;0. The proposition is
proved. O

The next proposition presents mean oscillation estimates for non-divergence type equations,
which are derived almost directly from the corresponding ones (Proposition 4.1) for equations in
divergence form. To do this, we first differentiate both sides of the equation in xy, £ =2, ...,d,
and then rewrite the equation in divergence form. Note that we do not differentiate the equation
in x1 because the coefficients satisfying Assumption 2.5 are not independent of x.

Proposition 4.2. Let pg € (1, 00), T € (0, 00), and a' satisfy Assumption 2.5. Also let a'! be in-

nitely differentiable with bounded derivatives if a'' = a'' (x1). Suppose that u € H%2 (RZ)
P0,0,loc T
satisfies

—Bf‘u+aijD,'ju =f

in R‘%, where f € Lp,loc(R‘%). Then, for any (ty,xo) € (0,T] x R4, r € (0,00), and k €
(0, 82/16), we have the following.
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(1) For D)zc,u,

<|fo“ - (Df/u)Qwo,xo)l)

Qier (t0,X0)

> ; 1/po
<Nik® Y 27 <|D2/u|p0> _
s * (to—27r2/ 1) x B2 (x0) (4.8)

o
4+ Ni—@+3)/po Y 2l (1 £170) 170

(t0—27r2/%,10) By (x0) °
J=0

(2) For D1Dyu, £ =2, ...,d,

(ID1Deu = (D1De) 9, 10.0)1) g, 10.0)

o
o —aj poy 1/ Po
=Nk Zz (|DD[M| )(t()—zjrz/”,to)><B,</2(x0)
j=0

(4.9)

00
—(d+%)/po —aj 2 1poy1/po
+ Nk 22 (1 Dyul )(to—Zfrz/“,to)xBr/z(Xo)

Jj=0

+ NK—(é“‘%)/Po iz—wﬁ (|f|ﬂo)1/l’0

(t0—27r?/% 19) x B, (x0) *
j=0

In these estimates, o0 = o(d,«, po) € (0,1), N =N, $,a, po), and all the functions are ex-
tended to be zero fort <0.

Proof. For the case a!l = a“(t), we set Uy = Dou for £ =2,...,d. By [9, Lemma 3.2], U, €

’H%{O’IOC (R”}). Moreover, U, satisfies the divergence type equation

—0°Uy + Dy (al‘f D ,uz) =Dy f
in ]R[%, where G/ are defined as

a'=a, a’=dv, i,j=2,...,d,

al=0, j=2,....d, a'=d"+d', i=2,....d.

Indeed, for a test function ¢ € C(‘)’O([O, T) x R4 ),

/ <Il_aue<ﬂt - 5i'/DjU£Di(p> dxdt = / <8,“uDg(p —Di (&i-/Dju> DM)) dxdt
R R7
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T

:3/@ma@—wuwnw%umz—//fmwmm,
RY 0 R4
where, in particular, D; (Zl“D_lu) = (a" +a'"YD;ju and Dl(dliju) =0fori, j> 1. We see
that the coefficient matrix {a'/}; j—1 .« satisfies Assumption 2.5 (i). Then, by applying Propo-
sition 4.1 to Uy, we get (4.8) and (4.9).

For the case a'' = a''(x}), as in the proof of Proposition 4.1, we assume that xg = 0 and
r = 1. We then use the following change of variables:

X1

1
y1=X(x1)=/aT(r)dr, yvi=xi, i=2,...,d.
0

From the fact that § < a!! <81, we see that the inverse X_l (y1) exists and

Xl <8 Nl Ix 7 onl <8yl (4.10)

Set

Up(t,y1,Y") = Deult, x (1), ¥), €=2,....d.

Then, U, belongs to ”HZ;)lo loc (R‘%), and as above, one can verify that U, satisfies the divergence
type equation

37Uy + D; (a7 DjUy ) = DF
in R4, where F(t, y1, ) = f(t, x'(y1), ") and @'/ are defined as

1
al'(x='(y))’

@'ayn=a"o0 (e om at T o), i=2.d,

a'l(t, yp =a’ @, x o), ij=2....d.

a'yn = ali =o, j=2,....d,

Note that {a"}; j—
in (4.10), we have

4 satisfies Assumption 2.5 (ii). For a constant C, using the first inequality

.....

0]
(IDy Deu = C g, 1.0y = N2/~ / / DUy (1, x(x1), x') — Cldx dt
to—K2/e By

0]
< N2 / / Dol (t, 3 (x1), %) — Cldxdt

to— 2/ [ (D)2 +x' 2 < (87 k)2
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to
SNK_Z/a_d / / | DUy (t, y1,Y) — Cldydt

to—«2/* Bs_1,

< N (|Dx/u€ - C|)Q6,1K(Io,0) = N(|D)C/u@ - C|)QK15(ZO,O) ’

where N = N(d, $) and k1 := 8 2k. Note that k] < 1/16 because k < 82/16. Then, by Proposi-
tion 4.1 with k' and r = § as well as C = (DxUe) g, 5(19,0)> We have

DUy — (DU, )
(I wUe — (Dyle) 9, 5(10,0) Ory5(10.0)

o
o —aj P 1/po
= NKI 22 (le/ud 0)(Io—2j52/°‘,t0)><35 2
o / (4.12)
]:

o
—(d+2)/po —aj/2 po\1/Po
+ Ny 22 (7] 0)(t0—2j62/‘7‘,t0)><35’
=0

where we note that, due to the second inequality in (4.10), for instance,

1/po 1/po
P P
(|}—| 0)(10*2-f52/“,l0)><35 =N (|f| 0)(10*2-"’to)><31 ’

Therefore, from (4.12) with the observation
(1D Deu = (D Dett) 9, 1,0)1) g, 1.0y = 2 (IDx Dert = CD g, (10.0) »
we arrive at (4.8) for r = 1. To obtain (4.9), we proceed similarly as above upon noting that

(ID1Deu — C) g, (19,0)

0}
S NK—2/0l—d / /

t()—KZ/O‘ Ba—l,(

1
— DiU(t,y1, V)= Cla' (7! dydt
AT O WUt y1,y) a (x~ O1))dy

=N (1a" e - C1) :
Qs-1,(10,0)

where a'! is from (4.11). The proposition is proved. O

5. Proofs of Theorems 2.8 and 2.9

Lemma 5.1. Let x € (0, 1), T € (0,00), p,qg € (1,00), K1 > 1, w = w(t)wr(x), where
wi(t) € Ap(R,dt), wy(x) € Ay(R?,dx), [wila, <Ki, [wla, < Ki.

Then, there exist po = po(d, p,q, K1) € (1,00) and u = nd,a, p,q, K1) € (1,00), 1/u +
1/v =1, such that
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) 1
po < pop <min{p,q}, — < 5.D
pov

o
2 )

and the following holds. If u € H?:L’W’O(R‘%) has compact support in Qg,(t1,0) for t; € [0, T],

where Ry is from Assumption 2.6, and satisfies
—0j'u + D;(a" Dju) = Dig

in R‘%, where a' satisfy Assumption 2.6 (yo) and g; € Lp,q,w(R‘%), then for any (tg, x9) €
0, T1 x R4, r € (0, 00), k € (0, 1/16), we have the following.

(1) For Dyu,
(lDX/u - (D)C/M)Qw(lo,xo) |)er(t0»x())

o0
—aj 1/po
o aj Po
=Nk 22 (IDxul )(t0—2fr2/°‘,t0)><Br/2(x0)

j=0
4 N @+2)/po, /0P izf(ﬁ—%) (D) 0 (5.2)
« Yo ) (1929 72/ 1) x By (x0)
j=0
2 > 1/
—d+%)/p —aj/2 (1 5.1P Po
+ Nk 022 (|gl| O)(to—erz/”,to)XBr(xo) :
=0
(2) For D1u, there exists a function Uy on Q. (to, xo) such that
N1(8)|D1u| < Uy < Na(8)|D1ul (5.3)
in Qur(to, x0) and
o0
. o —aj poy1/Po
(101 = WD 00000 gy .50 = N7 D27 AU G s 15,00
j=0
) o0
—(d+2)/p —aj L1 |Poy1/Po
+NK 022 (|Dx u| 0)([0—2jr2/a,fO)XBr/z(XO)
j=0

5.4)

o
—(d+2) 1/(vpo) il -4% 1/(wpo)
+ Nk a /Poy0 Zz (Po 2) (|Dxu|Iup0)(t072jr2/“,to)xB,~(Xo)
j=0

o0
—d+2)/p —aj/2 (| 5. 1P0\ /PO
+ Nk 0 Zz (lgll 0)(t072fr2/”‘,t0)><3,-(x0) :
Jj=0

In these statements, 0 =o(d, o, p,q,K1) € (0,1), N=N(,d,«, p,q, K1), and all the func-
tions are extended to be zero fort <0.
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Proof. For the given wy € A, (R, dt) and ws € A, (Rd ,dx), using the reverse Holder’s inequal-
ity for A, weights, we find

o1 =o01(p, K1), o2=o02(d,q,K1)
suchthat p — oy > 1,g — 03 > 1, and
Wi € Ap_gy (R, d1), wy € Ay_g,(R?, dx).

We then find pg € (1, 00) such that

and pg <

Po < .
p—o0o1 q—02

Using the above o1, 02, and pg, we set u € (1, 0o) so that

14
> s DPOM = s POM = .
u 2 p—oi q—o02

We see that py and p satisfy (5.1). Note that

Wi €Ay 5 CAr CAr(R,dt),

pom Po

wr €Ay, CAg CAg (RY dr).
pom PO

From these inclusions and the fact that u € 7—[‘;’(11, w O(R?), it follows that (see the proof of [5,
Lemma 5.10])

a,l d
ue Hpou,O,loc(RT)'

To prove the estimates in the lemma, we now fix (¢, xo) € R‘%, r € (0,00),and k € (0, 1/16).
Then, it is enough to consider the case

Qxer (o, X0) N QRy(11,0) # 0. (5.5)
Otherwise, the estimates hold trivially. In the case of (5.5), we have
to—wr)* <n and 1 —RY* <10, (5.6)

which imply that u(z,x) =0if t <1y — 2R(2)/a, provided that r < Ry. For the fixed (#9, xo) and
r € (0, 00), we define a'/ which are measurable functions of only #, x1, or (¢, x1) as follows.

(1) If r < Ry,
(a) for (i, j) # (1, 1), we set

al(t, x)) = ][ a(t,xy,y)dy',
B (x))
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(b) for (i, j) = (1, 1) with
(i) a'l satisfying Assumption 2.6 (2.1) at (g, xo), we set

(1) = ][ a1, y)dy,
By (x0)

(ii) a'! satisfying Assumption 2.6 (2.ii) at (fo, xg), we set

allx) = ][ a'l(s, x1,y)dy' ds.
Q;.(t0.x{))

(2) If r > Ro,
(a) for (i, j) # (1, 1), we set
a’(t, x) = ][ a’(t,x1,y")dy',
3;30
(b) for (i, j) = (1, 1) with

(i) a'! satisfying Assumption 2.6 (2.i) at (¢1, 0), we set

RO fa”(t,y)dy,

B,

(i) a'! satisfying Assumption 2.6 (2.ii) at (fg, 0), we set

al(xy) = ][ a'l(s, x1,y) dy' ds.
0}, (11,0)

Using a'/ defined above, we write
—3%u + D;(@" Dju) = D;g;
in R‘%, where
g = (@ —a")Dju + gi.

Since @'/ satisfy Assumption 2.5, upon replacing g; with g;, by Proposition 4.1 we obtain (4.1),
(4.2) when all = &“(xl) and a version of (4.2) with a'Dyu replaced with Diu on the left-
hand side of the inequality when a'! = a'!(¢). Regarding the terms involving g;, because u has
compact support in Qg (t1, 0), we have

[e¢]

ZZ aj/2 |po 1/po ) Z O[j/2 |p0 1/po )
(f0—2fr2/‘”,lo)><3r(XO (to—2fr2/",to)><3r(XO)
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© . y y 1/po
+Zz—aj/2 <|al] _ C_llj|p0|DM|p01QRo(tl,0)> =J1+
=0

(t0—27r2/% 19) X By (x0)

where by Holder’s inequality,

[T 1/po
(107 = @171 Dul™ 1 g 0.0)
05 (10=27r/% 19) X By (x0)

.. . 1/(pov) 1/( )
o _ Zltj|pov Pop PoH
S <|(l a | lQRO(tl’0))(lofzjrz/a,lo)xB,(xo) (|Dl/l| )(10—2/”2/“y10)><3,(x0) .

Set

D,j = (10" =@ g 1,0))
K | P 10k 0.0 (10—27 2/, 1) x By (x0)

for j =0,1,.... We claim that

Jj<N2yy j=0,1,2,..., (5.7

where N = N(d, @). To see this, we distinguish the two cases r < Ro and r > Ry. In the latter
case, by the definition of @'/ and the boundedness of a’/ by §~! it follows that

D =N (la¥ —ail|) <Ny

2,
(1—Ry/* 1) x Br,

forall j =0,1,2,....
For r < Ry, we see that

ja = a1 g, 0y =0 fort <19 — 2R (5.8)

because by (5.6), for such ¢, we have

2/a

t<ty— ZRS/“ <to— (kr)** — Ry <11 — Ré/o‘.

Using the boundedness of a’/ by 87! and (5.8),

J2,j < N(@) (Iaij - aij“QRo(tlaO))

(t0—27r2/% t9) x By (x0)

N (|aij _ —z‘jl) it 2/r2* < 2R
(to—27 r2/% 13) x B, (x0) o

2/a

if 2/r%% > 2R,

N (|aif - a"f'|)
(t0—2RJ'™ 10) x B, (x0)

Then, from Remark 2.7 we see that (5.7) holds. Hence,
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00
—aj/2 71/(pov) por\1/(Pop)
J2 = sz JZ,J' (|Du| ’ )(to—ZjVZ/"ylo)XBr(XO)
j=0

y /) 22(,%7%) (Do) /00

(t0—27r2/%,10) x By (x0) *

By combining this estimate with Proposition 4.1, we obtain (5.2) and (5.4). In particular, U
Diuifa''=a"'(t) and Uy =a''Dyuifa'' =a''(x)). O

Similarly, using Proposition 4.2, we obtain the following lemma
Lemma 5.2. Letx € (0, 1), T € (0,00), p,q € (1,00), K1 > 1, w = w1 (t)wa(x), where

wi(t) € Ap(R,dt), wy(x) € Ay(R?, dx), [wila, <Ki, [w2la, < Ki.

Then, there exist po = po(d, p,q, K1) € (1,00) and p = u(d,a, p,q, K1) € (1,00), 1/u +
1/v =1, such that

Po < pop < min{p, g}, <

1 o
pov 2’

and the following holds. If u € Hp P 0(IR“T’I) has compact support in (t; — R(z)/a, t1) X Bg, for
t1 € [0, T, where Ry is from Assumptton 2.6, and satisfies

-3 u +aijD,~ju =f
in Rd, where a'/ satisfy Assumption 2.6 (yo) and f € L,,,q’w(R‘}) then for any (tg, xo) €
0, T] x R4, r € (0, 00), k € (0, 1/16), we have the following.
(1) For D*u,

<|fo” = (D310) 0,1 1.0 |)

Orr(to,x0)
o~ (12 1/po
<Nk"Y 2 f<|Dx,u|p°> _
0 (t0—27r2/* t9) X By./2(x0)
j:

e 1/(1po)
+ Nk~ @d+2)/po 1/("”(’)22](” 2) (|D2u|ﬂp0) 2ip2/a B
j=0 (10=27 72110 By (x)

oo
—(d+2)/p —aj/2 (1 £1p0\1/P0
+ Nk O 2 (A1) s B, (e (5.9)
j=0
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(2) For D1Dyu, £ =2, ...,d,

Qr (0, X0)

oo
o —aj poyl/po
SNK ZZ (|DD(M| )(t072-/r2/”,t0)><B,/z(xo)
j=0

o0
—d+2)/po —aj | p2 ,,1poyl/Po
+ Nk 22 (|Dx/u| )(t0*2jr2/"‘,fo)><3r/2(m)
j=0

o0
" NKf(dJr%)/pOyl/(Wo) Zzi(ﬁf%) (|D2u|HP0)l/(W°)
0 ~ (t0—27 2/, 19) x By (x0)
J=

o
—d+2)/ —aj/2 1/po
+ Nk Po 22 aj (|f|p0)(t072.fr2/°‘,lo)XBr(xo) . (5.10)
j=0

In these statements, c =o(d,®, p,q, K1) € (0,1), N=N({,$,, p,q, K1), and all the func-
tions are extended to be zero fort <0.

Remark 5.3. Lemma 5.2 is analogous to [8, Lemma 5.1], where all (z, x) are merely measurable
in ¢ and have small mean oscillations in x € R?. However, the inequality (5.2) in [8] must be
expressed with infinite summations on the right-hand side, as in (5.9) and (5.10) instead of the
strong maximal functions. Although the inequality (5.2) in [8] is correct, using the mean oscil-
lation estimates with a perturbation argument to derive L ,-estimates requires an inequality with
infinite summations. The proof of [8, Lemma 5.1] actually establishes such an estimate.

To prove our main theorems, we use the following maximal and strong maximal functions.
For (19, x9) € (—00, T) % R4 with T € (—o0, 0o] and a function f defined on (—o0, T) x R,
we set

Mflox0)=  sup ][ £ (s.y) dyds
QR (t,x)3(10,x0)
ORr(t,x)

and

SM (1o, x0) = sup ][ |f (s, y)ldyds,
ORy, Ry (1,X)3(10,X0)
Ry.R, (1,X)

where the supremums are taken over all Qg (¢, x) and Qg, g, (f, x) such that (¢, x) € (—oo, T] x
R?. We also use sharp functions defined as follows in the proofs:

o, x0)= sup ][ |f (s, %) = (F)ore,xldyds,
ORr(t,x)>(19,x0)
ORr(t,x)

where the supremum is taken as above.
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Proof of Theorem 2.8. We first prove
” DM ” Lp,q.w (R?) S N ”gl ” Lp,q.w (R?‘) (51 1)

foru e ’Hi; w,o(RdT) having a compact support in Q g, (1, 0) and satisfying (2.12) with

ad=b=c=f=0. (5.12)
It follows from Lemma 5.1 (1) that for any (¢, x) € (—oo, T) x R? and « € (0, 1/16), we have

(Dywy* (1, x) < Nk (SMIDyul? @, x)) "7
+ NK—(d‘F%)/POyOl/(VPO)(SM'DMWPO(I’x))l/(ﬂpo)

+ Ne DI (S Mgi| 2, 0))

where all the functions are extended as zero for ¢ < 0. Then by the weighted mixed-norm Hardy-
Littlewood maximal function theorem (see, for instance, [8, Theorem 5.2]) and the weighted
mixed-norm Fefferman-Stein sharp function theorem (see [5, Corollary 2.7 and (2.4)]), we get

2
IDyu]| < Nic® | Dyuel| + Nie™ @+ poy VPO Dy o Nie= @D po g, (5.13)

where || - || = - |l Lpguw(RY) and the constant N is independent of x. To estimate Dju, we see
g, w T

that Lemma 5.1 (2) implies the following. For each Q,,(fo, xo), where (fg, xo) € (0, T] x R,
r € (0,00), and k € (0, 1/16), there exists a function U; on Q. (%o, xo) such that (5.3) holds and

1
(10, - (UI)Q,(,(to‘xg)|)Q”(t0’x0) < Nk?(SM|Du|P(t, x)) /o
+ N @D (SMIDul 1, )) 7
4 NK—(d+%)/poy01/(VP0) (SM|DM|MPO (t, x))l/(I/«PO)

+ Nie—@+2)/po (3M|gi PO (s, x))l/po

for all (¢, x) € Qr(f0, x0). We now use the weighted mixed-norm Hardy-Littlewood maximal
function theorem as above and [5, Corollary 2.8] along with the inequality (5.3) to get

2
IDyull < Nk || Dul| + Nk~ @&/ Po| Dy
5 L opo) 5 (5.14)
+ Nie = @0y TP D 4 N =@ 0 gy ),

where, again, || - || = - || Lpguw®E) and the constant N is independent of x. Combining (5.13)
and (5.14) gives

_ 2
IDyull 4+ 2N) e “@T/ P Dyul| < (Nk 4 1/2) | Dyru

+ N(K*(d+%)/170y01/(”l’0) +K“+(d+§)/p0)||Du|| + NK*(d+%)/P0||gl. I
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By first choosing « sufficiently small and then y small, we absorb the first two terms on the
right-hand side above and reach (5.11).

Now we remove the small support condition on u# and (5.12) as in the proofs of [7, Lemmas
6.4 and 6.5]. By using a partition of unity argument and S. Agmon’s idea (see also [14, Lemma
5.5]), we obtain

lellper gy <Nl @y + NIFIL,, mey+ Ny, @), (5.15)
where N = N(d, d,a, p,q, K1, Ko, Ro). More precisely, we prove (5.15) for p = g using the
aforementioned arguments. We then obtain the mixed norm version of (5.15) by applying the
extrapolation theorem (see, for instance, [5, Theorem 2.5]). To get rid of the u term on the right-
hand side of (5.15) and conclude the estimate (2.13), we use the same time-partition argument as
in the proof of [7, Theorem 2.4]. Finally, the solvability of the equation follows from the a priori

estimate (2.13) and the method of continuity. O

Proof of Theorem 2.9. As before, we first prove
2
1D%ll,, @y < NI, @) (5.16)

foru € HZ:?W,O(R‘%) having compact support in Qg (1, 0) and satisfying (2.14) with b=c=

0. Using Lemma 5.2 as in the proof of Theorem 2.8, we have
1/(vpo) | 2
IDDwully,  @ey <NIFL,, @y + Ny T ID, | e (5.17)
To complete the proof, that is, to have an estimate for D%u, we write the equation as

—8f‘u+a“D“u+Ax/u:Axru— Z aijDiju—i—f.
@, ))#(,1)

Set u; = Dju, which satisfies the divergence type equation
—d/uy + Dy (allDlul)+Ax’ul = D1g1, (5.13)

where

g1=Avu— Z aijDiju+f.
@, ))#,1)

By applying Theorem 2.8 to (5.18), we get

2 _
1D7ull,,, gy =1Pvall,, ey = Nlgill., , @)
< N”DDx’u”Lp,q,w(Ra%) + N”f”Lp’q,w(R”%)'
This combined with (5.17) proves (5.16) with a sufficiently small yg.
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Now we remove the small support condition on # and the condition b’ = ¢ = 0 by using a

partition of unity argument as in [8, Corollary 5.4]. We then get

<
”u”Hij,o(R‘;) - N”f”LP,q,w(R?) + N”u”LP,q,w(R?)’

(5.19)

where N =N, $,«, p,q, K1, Ko, Rg). As in the proof of Theorem 2.8 above, we first prove
(5.19) for p = g and then use the extrapolation theorem. To get rid of the u term on the right-
hand side of (5.19) and conclude the estimate (2.15), we use the same time-partition argument as
in the proof of [8, Theorem 2.2]. Finally, the solvability of the equation follows from the a priori

estimate (2.15) and the method of continuity. O
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Appendix A

LettoeR,0<v<pu,ueL,((—o0,t) x Q),1 < p<oo,and

1 if t>t—v, , 2
n(t) = , @ <—-.
0 if t<ty—pu, n—v

Set

t
G(r,x)=ﬁ /(r—s)*“*l(n(s)—n(t))u(s,x>ds.

Also set {si} to be a sequence such that
Sk+1
St =M, Sk+ U= Skt pas = 5k,
No
where Ng > 0.
Lemma A.1. For G defined in (A.2) with {s} above, we have

fo— 1/p

v
20[,&170(
G _ < t,x)|P dxdt
1GIlL, w0 = T T ) (= ) / /Iu( x)|"dx

to—2un Q
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10—s, 1/p
a(NGl-Fl 1) 0™ Sk
Td e Zs‘“ Hstr —s0) 71 PplP / /|u<s,x)|deds . (A4
10—Sk+1 Q

Remark A.2. It is worth noting that the right-hand side of the inequality (A.4) does not contain
the integral of u with respect to ¢ on (ty — v, f9) because n(¢) =1 fort >ty — v.

Proof of Lemma A.1. Note that

t
' —
T G = / (t =)™ (1(s) = 1) (s, X) Lympy v ds

because n(s) — n(t) =0 for s € (fp — v, fp) and t > 5. We then write

rd—a . _ P o
—G(t,x) = + (t—s) M) —n@®)uls, x)1s<—vds

t—p  —0o

=:1(t,x)+ Ir(t,x). (A.S)

Since

t
- / (= ) Ju(s, 1) Ly<yv ds

—u

2
[11(t,x)] <
" —

i

2 —a

=—— [ s %ult =5, )| l—s<—v ds,

nu—v
0

by the Minkowski inequality, we have

fo—v 1/p

2Ml—a
1 —_ t,x)|P dxdt . A.6
Il L (0 /LtO)XQ)_(l (=) / /|M( x)|” dx (A.6)
to—2un Q

To estimate />, we note that n(s) =0 fors <t —u =t — sy and ¢ € (fo — u, ty), which implies
that, for ¢ € (to — u, tp),

t—s1

Bt 2)] < /(z—s)—“—‘|u<s,x>|ds

t—Sk

_Z / (t — )" Nugs, x)|ds<Z —o-l / lu(s, x)| ds

ke=1; Sk+1 =S4l
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00 fo—Sk 00 fo—Sk
<> 5! / u(s, x)lds <y s / lu(s, x)|ds
k=1 lo—p—Sk+1 k=1 10—Sk+2
00 10—Sk
a+1 1 —a—1
S(NO + ) sk |u(s’x)|ds7
k=1 10=Sk+1

where in the last inequality we used the condition si+; < Nosx in (A.3). Thus, by Holder’s
inequality and the Fubini theorem,

11211 L, (to—pa.t0) x )

f— 1/p
o0 0—Sk
<N D Y s T e — 0! PP / / lu(s, x)|” dx ds

k=1 00—Sk+1 Q

We obtain the inequality in the lemma from this inequality, (A.5), and (A.6). O
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