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Abstract. We present a priori estimates and unique solvability results in the mixed-norm
Lebesgue spaces for the kinetic Kolmogorov--Fokker--Planck (KFP) equation in divergence form.
The leading coefficients are bounded uniformly nondegenerate with respect to the velocity variable v
and satisfy a vanishing mean oscillation (VMO) type condition. We consider the L2 case separately
and treat more general equations, which include the relativistic KFP equation. This paper is a
continuation of our previous work on Lp estimates for KFP equations in nondivergence form.
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1. Introduction and main results. For any integer d\geq 1, let \BbbR d be a Euclid-
ean space of points (x1, . . . , xd), and for T \in ( - \infty ,\infty ], we set \BbbR d

T = ( - \infty , T )\times \BbbR d - 1.
Throughout the paper, z is the triple (t, x, v), where t\in \BbbR , and x, v \in \BbbR d.

The goal of this paper is to prove the a priori estimates and unique solvability
results for the kinetic Kolmogorov--Fokker--Planck (KFP) equation in divergence form
given by

\partial tu - v \cdot Dxu - Dvi(a
ij(z)Dvju) + divv(bu) + b \cdot Dvu+ cu+ \lambda u=divv \vec{}f + g.(1.1)

1.1. Notation and assumptions. For x0 \in \BbbR d, z0 \in \BbbR 1+2d, and r,R > 0, we
introduce

Br(x0) = \{ \xi \in \BbbR d : | \xi  - x0| < r\} ,
Qr,R(z0) = \{ z : - r2 < t - t0 < 0, | v - v0| < r, | x - x0 + (t - t0)v0| 1/3 <R\} ,\widetilde Qr,R(z0) = \{ z : | t - t0| 1/2 < r, | v - v0| < r, | x - x0 + (t - t0)v0| 1/3 <R\} ,
Qr(z0) =Qr,r(z0), \widetilde Qr(z0) = \widetilde Qr,r(z0), Qr =Qr(0), \widetilde Qr = \widetilde Qr(0).

For f \in L1,loc(\BbbR d) and a Lebesgue measurable set, we denote by (f)A or
ffl
A
f dx the

average of f over A. Furthermore, for c > 0, T \in ( - \infty ,\infty ], and f \in L1,loc(\BbbR 1+2d
T ), we

introduce variants of maximal and sharp functions
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1224 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

\BbbM c,T f(z0) = sup
r>0,z1\in \BbbR 1+2d

T :z0\in Qr,cr(z1)

 
Qr,cr(z1)

| f(z)| dz, \scrM T f :=\BbbM 1,T f,

f\#
T (z0) = sup

r>0,z1\in \BbbR 1+2d
T :z0\in Qr(z1)

 
Qr(z1)

| f(z) - (f)Qr(z1)| dz.
(1.2)

We impose the following assumption on the coefficients.

Assumption 1.1. The coefficients a(z) = (aij(z), i, j = 1, . . . , d) are bounded mea-
surable functions such that for some \delta \in (0,1),

\delta | \xi | 2 \leq aij(z)\xi i\xi j , | aij(z)| \leq \delta  - 1 \forall \xi \in \BbbR d, z \in \BbbR 1+2d.

The next assumption can be viewed as a kinetic VMOx,v (vanishing mean oscil-
lation) assumption with respect to

\rho (z, z0) =max\{ | t - t0| 1/2, | x - x0 + (t - t0)v0| 1/3, | v - v0| \} ,(1.3)

which satisfies all the properties of the quasi-metric except the symmetry. It is anal-
ogous to the VMOx condition from the theory of nondegenerate parabolic equations
with rough coefficients (see Chapter 6 of [24]).

Assumption 1.2. (\gamma 0) There exists R0 \in (0,1) such that for any z0 and r \in (0,R0],

oscx,v(a,Qr(z0))\leq \gamma 0,

where

oscx,v(a,Qr(z0))

=

 
(t0 - r2,t0)

 
Dr(z0,t)\times Dr(z0,t)

| a(t, x, v) - a(t, x\prime , v\prime )| dxdvdx\prime dv\prime dt,

and

Dr(z0, t) = \{ (x, v) : | x - x0 + (t - t0)v0| 1/3 < r, | v - v0| < r\} .

Remark 1.3. In this remark, we give examples of when Assumption 1.2 is satis-
fied. Throughout the remark, \omega : [0,\infty )\rightarrow [0,\infty ) is an increasing function such that
\omega (0+) = 0.

Anisotropic VMOx,v condition:

osc\prime x,v(a, r) := sup
t,x,v

r - 8d

\times 
\int 
x,x\prime \in Br3 (x)

\int 
v,v\prime \in Br(v)

| a(t, x, v) - a(t, x\prime , v\prime )| dxdx\prime dvdv\prime \leq \omega (r).
(1.4)

Since oscx,v(a,Qr(z0))\leq osc\prime x,v(a, r), if the anisotropic VMOx,v condition holds, then
for any \gamma 0 \in (0,1), Assumption 1.2 (\gamma 0) holds.

Continuity with respect to the anisotropic distance dist((x, v), (x\prime , v\prime )) := | x  - 
x\prime | 1/3 + | v - v\prime | : For any t, x,x\prime , v, v\prime ,

| a(t, x, v) - a(t, x\prime , v\prime )| \leq \omega 
\bigl( 
dist((x, v), (x\prime , v\prime ))

\bigr) 
.

Note that if this condition holds, then (1.4) is true, and therefore, for any \gamma 0 \in (0,1),
Assumption 1.2 (\gamma 0) is satisfied.
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Lp ESTIMATES FOR KFP EQUATIONS 1225

Assumption 1.4. The functions b= (bi, i= 1, . . . , d), b= (b
i
, i= 1, . . . , d), and c are

bounded measurable on \BbbR 1+2d, and they satisfy the condition

| b| + | b| + | c| \leq L

for some constant L> 0.

1.2. Function spaces. Below we define the mixed-norm Lebesgue and Sobolev
spaces. In all these definitions, G \subset \BbbR 1+2d is an open set, and p, r1, . . . , rd, q > 1 are
numbers.

Definition 1.5. We say that w is a weight on \BbbR d if w is a locally integrable
function that is positive almost everywhere. Let wi, i = 0,1, . . . , d, be weights on \BbbR .
By Lp,r1,...,rd,q(G,w) with

w=w(t, v) =w0(t)w1(v1) \cdot \cdot \cdot wd(vd),(1.5)

we denote the space of all Lebesgue measurable functions on \BbbR 1+2d such that

\| f\| Lp,r1,...,rd,q(G,w)

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbR 

\bigm| \bigm| \bigm| \bigm| \bigm| . . .
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbR 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbR d

| f | p(z)1G(z)dx
\bigm| \bigm| r1p w1(v1)dv1

\bigm| \bigm| r2r1 . . .wd(vd)dvd
\bigm| \bigm| q
rd w0(t)dt

\bigm| \bigm| 1q ,
and for \alpha \in ( - 1, p - 1), we set Lp;r1,...,rd(\BbbR 

1+2d
T , | x| \alpha 

\prod d
i=1wi(vi)) to be the weighted

mixed-norm Lebesgue space with the norm

\| f\| Lp;r1,...,rd
(G,| x| \alpha 

\prod d
i=1 wi(vi))

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbR 
. . .

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbR 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbR d+1

| f | p(z)1G(z)| x| \alpha dxdt
\bigm| \bigm| r1p w1(v1)dv1

\bigm| \bigm| r2r1 . . .wd(vd)dvd

\bigm| \bigm| \bigm| \bigm| \bigm| 
1
rd

.
(1.6)

Furthermore, for a vector-valued function \vec{}f = (f1, . . . , fd), we write

\vec{}f \in Lp,r1,...,rd,q(G,w)

\biggl( 
or Lp;r1,...,rd(G, | x| \alpha 

d\prod 
i=1

wi(vi))

\biggr) 
if each component fi is in Lp,r1,...,rd,q(G,w)

\bigl( 
or Lp;r1,...,rd(G, | x| \alpha 

\prod d
i=1wi(vi))

\bigr) 
.

Throughout this paper, w=w(t, v) is a weight on \BbbR 1+d.

Definition 1.6. By \BbbH  - 1
p,r1,...,rd,q

(G,w) we denote the set of all functions u on G

such that there exist \vec{}f, g \in Lp,r1,...,rd,q(G,w) satisfying

u= divv \vec{}f + g.(1.7)

The norm is given by

\| u\| \BbbH  - 1
p,r1,...,rd,q(G,w) = inf

\bigl( 
\| \vec{}f\| Lp,r1,...,rd,q(G,w) + \| g\| Lp,r1,...,rd,q(G,w)

\bigr) 
,

where the infimum is taken over all \vec{}f and g satisfying (1.7).

Here is the definition of the kinetic (ultraparabolic) Sobolev spaces. The first one
is designed to treat the divergence form equations, whereas the second works with the
KFP equations in nondivergence form.
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1226 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

Definition 1.7. By \BbbS p,r1,...,rd,q(G,w) we denote the Banach space of all functions
u such that u,Dvu \in Lp,r1,...,rd,q(G,w), and (\partial t  - v \cdot Dx)u \in \BbbH  - 1

p,r1,...,rd,q
(G,w). The

norm is defined as follows:

\| u\| \BbbS p,r1,...,rd,q(G,w) = \| u\| + \| Dvu\| + \| \partial tu - v \cdot Dxu\| \BbbH  - 1
p,r1,...,rd,q(G,w),

where \| \cdot \| = \| \cdot \| Lp,r1,...,rd,q(G,w).

Definition 1.8. Let Sp,r1,...,rd,q(G,w) be the Banach space of functions u such
that u, Dvu, D

2
vu, (\partial t  - v \cdot Dx)u\in Lp,r1,...,rd,q(G,w), and the norm is given by

\| u\| Sp,r1,...,rd,q(G,w) = \| | u| + | Dvu| + | D2
vu| + | \partial tu - v \cdot Dxu| \| Lp,r1,...,rd,q(G,w).

If w \equiv 1 or p = q = r1 = r2 = \cdot \cdot \cdot = rd, we drop w or q, r1, . . . , rd from the above
notation.

We define the spaces

\BbbH  - 1
p;r1,...,rd

\Biggl( 
G, | x| \alpha 

d\prod 
i=1

wi(vi)

\Biggr) 
, \BbbS p;r1,...,rd

\Biggl( 
G, | x| \alpha 

d\prod 
i=1

wi(vi)

\Biggr) 
,

and Sp;r1,...,rd

\Biggl( 
G, | x| \alpha 

d\prod 
i=1

wi(vi)

\Biggr) 
in the same way.

By \scrS (\BbbR d) we denote the set of Schwartz functions and by C\infty 
0 (\BbbR d) denote the set

of all smooth compactly supported functions on \BbbR d.

Definition 1.9. We write u\in C0(\BbbR d) if u is a continuous function vanishing at
infinity. For k \in \{ 1,2, . . .\} , by Ck

0 (\BbbR d), we mean the subspace of C0(\BbbR d) of functions
such that Dju\in C0(\BbbR d), j = 1, . . . , k.

1.3. Main results.

1.3.1. \bfitL \bfitp theory for KFP equations with VMO coefficients. Denote

\scrP = \partial t  - v \cdot Dx  - Dvi(a
ijDvj

).(1.8)

Definition 1.10. For T \in ( - \infty ,\infty ], we say that u \in \BbbS p,r1,...,rd,q(\BbbR 
1+2d
T ,w) is a

solution to (1.1) if the identity (1.1) holds in the space \BbbH  - 1
p,r1,...,rd,q

(\BbbR 1+2d
T ,w), that

is, both sides of (1.1) belong to \BbbH  - 1
p,r1,...,rd,q

(\BbbR 1+2d
T ,w) and coincide as distributions.

Furthermore, for  - \infty <S <T \leq \infty ,

u\in \BbbS p,r1,...,rd,q((S,T )\times \BbbR 2d,w)

is a solution to the Cauchy problem

\scrP u+ divv(bu) + biDviu+ cu= divv \vec{}f + g, u(S, \cdot ) = 0(1.9)

if there exists \widetilde u \in \BbbS p,r1,...,rd,q(\BbbR 
1+2d
T ,w) such that \widetilde u = u on (S,T ) \times \BbbR 2d, \widetilde u = 0 on

( - \infty , S)\times \BbbR 2d, and the equality

\scrP u+ divv(bu) + biDviu+ cu= divv \vec{}f + g

holds in \BbbH  - 1
p,r1,...,rd,q

((S,T ) \times \BbbR 2d,w). Similarly, we define a solution in the space

\BbbS p;r1,...,rd((S,T )\times \BbbR 2d, | x| \alpha 
\prod d

i=1wi(vi)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Lp ESTIMATES FOR KFP EQUATIONS 1227

Remark 1.11. Testing the identity (1.1) with a function \phi \in C\infty 
0 (\BbbR 1+2d

T ), one
obtains the following standard weak formulation of the KFP equation (1.1) (cf. [5],
[27]):

 - 
\int 
(\partial t\phi  - v \cdot Dx\phi )udz +

\int 
(aijDvj\phi + bi)Dviudz

+

\int 
( - \=b \cdot Dv\phi + c+ \lambda )udz =

\int 
( - \vec{}f \cdot Dv\phi + g\phi )dz.

Definition 1.12 (Ap-weight). For a number p > 1, we write w \in Ap(\BbbR d) if w is
a weight on \BbbR d such that

[w]Ap(\BbbR d) := sup
x0\in \BbbR d,r>0

\Biggl(  
Br(x0)

w(x)dx

\Biggr) 
(1.10)

\times 

\Biggl(  
Br(x0)

w - 1/(p - 1)(x)dx

\Biggr) p - 1

<\infty .

Remark 1.13. An example of an Ap(\BbbR d)-weight is w(x) = | x| \alpha , \alpha \in ( - d, d(p - 1))
(see, for instance, [17, Example 7.1.7]).

Definition 1.14. For s \in \BbbR , the fractional Laplacian ( - \Delta x)
s is defined as a

Fourier multiplier with the symbol | \xi | 2s. Furthermore, when s \in (0,1/2), for any
Lipschitz function u\in \cup p\in [1,\infty ]Lp(\BbbR d), the following pointwise formula is valid:

( - \Delta x)
su(x) = cd,s

\int 
\BbbR d

u(x) - u(x+ y)

| y| d+2s
dy,(1.11)

where cd,s is a constant depending only on d and s. When s\in [1/2,1) and u is bounded
and C1,1, the formula still holds provided that the integral is understood as the principal
value. For s \in (0,1) and u \in Lp(\BbbR d), ( - \Delta x)

su is understood as a distribution given
by

(( - \Delta x)
su,\phi ) = (u, ( - \Delta x)

s\phi ), \phi \in C\infty 
0 (\BbbR d).(1.12)

To prove that (1.12) defines a distribution, one needs to use the fact that

| ( - \Delta x)
s\phi (z)| \leq N(d,\phi )(1 + | x| ) - d - 2s, \phi \in C\infty 

0 (\BbbR d).(1.13)

Furthermore, by (1.13), for any \alpha \in ( - d - 2sp, d(p - 1)),

( - \Delta x)
s\phi \in Lp/(p - 1)(\BbbR d, | x|  - \alpha /(p - 1)),

so that (1.12) defines the distribution ( - \Delta x)
su for any u\in Lp(\BbbR d, | x| \alpha ). For a detailed

discussion of the fractional Laplacians, we refer the reader to [37].

Convention. By N = N(\cdot \cdot \cdot ), we denote a constant depending only on the
parameters inside the parentheses. A constant N might change from line to line.
Sometimes, when it is clear what parameters N depends on, we omit them.

Theorem 1.15. Let
-- p, r1, . . . , rd, q > 1, K \geq 1 be numbers, T \in ( - \infty ,\infty ];
-- wi, i= 0, . . . , d, be weights on \BbbR such that

[w0]Aq(\BbbR ), [wi]Ari
(\BbbR ) \leq K, i= 1, . . . , d;(1.14)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1228 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

-- w be defined by (1.5);
-- Assumptions 1.1 and 1.4 hold.

There exists a constant

\gamma 0 = \gamma 0(d, \delta , p, r1, . . . , rd, q,K)> 0

such that if Assumption 1.2 (\gamma 0) holds, then, the following assertions are valid:
(i) There exists a constant

\lambda 0 = \lambda 0(d, \delta , p, r1, . . . , rd, q,K,L,R0)> 1

such that for any \lambda \geq \lambda 0, u \in \BbbS p,r1,...,rd,q(\BbbR 
1+2d
T ,w), and g, \vec{}f \in Lp,r1,...,rd,q(\BbbR 

1+2d
T ,w)

satisfying (1.1), one has

\lambda 1/2\| u\| + \| Dvu\| + \| ( - \Delta x)
1/6u\| \leq N\lambda  - 1/2\| g\| +N\| \vec{}f\| ,(1.15)

where R0 \in (0,1) is the constant in Assumption 1.2 (\gamma 0),

\| \cdot \| = \| \cdot \| Lp,r1,...,rd,q(\BbbR 1+2d
T ,w), and N =N(d, \delta , p, r1, . . . , rd, q,K).

(ii) For any \lambda \geq \lambda 0, \vec{}f, g \in Lp,r1,...,rd,q(\BbbR 
1+2d
T ,w), (1.1) has a solution u \in 

\BbbS p,r1,...,rd,q(\BbbR 
1+2d
T ,w) (see Definition 1.10), and the uniqueness holds in the class of

\BbbS p,r1,...,rd,q(\BbbR 
1+2d
T ,w)-solutions (see also Remark 1.18). Here \lambda 0 is the constant from

the assertion (i).
(iii) For any numbers  - \infty < S < T <\infty and \vec{}f, g \in Lp,r1,...,rd,q((S,T )\times \BbbR 2d,w),

(1.9) has a unique solution u\in \BbbS p,r1,...,rd,q((S,T )\times \BbbR 2d,w). In addition,

\| u\| + \| Dvu\| + \| ( - \Delta x)
1/6u\| \leq N\| \vec{}f\| +N\| g\| ,

where

\| \cdot \| = \| \cdot \| Lp,r1,...,rd,q((S,T )\times \BbbR 2d,w) and N =N(d, \delta , p, r1, . . . , rd, q,K,L,R0, T  - S).

(iv) Let \alpha \in ( - 1, p - 1). The assertions (i) - (iii) also hold in the case when

\vec{}f, g \in Lp;r1,...,rd

\Biggl( 
\BbbR 1+2d

T , | x| \alpha 
d\prod 

i=1

wi(vi)

\Biggr) 
,

u\in \BbbS p;r1,...,rd

\Biggl( 
\BbbR 1+2d

T , | x| \alpha 
d\prod 

i=1

wi(vi)

\Biggr) 
.

Furthermore, one needs to take into account the dependence of constants \gamma 0, \lambda 0,N on
\alpha and remove the dependence on q.

Remark 1.16. The assertion (iii) is derived from (ii) by using an exponential
multiplier (see, for example, [24, Theorem 2.5.3]).

Remark 1.17. By viewing an elliptic equation as a steady state parabolic equation,
we can obtain the corresponding results for elliptic equations when the coefficients
and data are independent of the temporal variable. See, for example, the proof of [23,
Theorem 2.6].

Remark 1.18. It is an interesting problem to investigate Liouville-type results for
KFP equations in divergence form. See, for example, [13], [21], and the survey papers
[4], [22], which contain references to other relevant articles.
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Lp ESTIMATES FOR KFP EQUATIONS 1229

Remark 1.19. It would be interesting to see if the method of the present paper
and [15] can be used to extend the weighted mixed-norm estimates (1.15) and (2.8) in
[15] to more general degenerate Kolmogorov equations studied in the articles [4], [5],
[6], [7], [9], [11], [26], and others. We point out that in [11], the Lp estimate similar to
(2.8) of [15] was established for the degenerate Kolmogorov equation with the leading
coefficients depending only on the temporal variable. We also mention the papers [6]
and [26], where the properties of the fundamental solution and the Schauder estimates
are studied for the degenerate Kolmogorov equation with variable coefficients aij that
are merely measurable in t.

To the best of our knowledge, Theorem 1.15 provides the first global a priori Lp

estimate with p \not = 2 for kinetic KFP equations in divergence form with nonsmooth
coefficients (see section 1.6). We also prove the first unique solvability result in \BbbS p
space for (1.1) in the case of the variable coefficients aij . To the best of our knowledge,
the imposed assumption on the leading coefficients aij (see Assumption 1.2) is weaker
than assumptions in the existing literature (see section 1.6).

To prove Theorem 1.15, we use the results and techniques of [15], which are
based on Krylov's kernel-free approach to nondegenerate parabolic equations (see [24,
Chapters 4--7]). The main part of the argument is the mean oscillation estimates of
( - \Delta x)

1/6u, \lambda 1/2u, and Dvu in the case when the coefficients aij are independent of
the x and v variables. Our proof of these inequalities does not involve the fundamen-
tal solution of the KFP operator. Instead, we use the scaling properties of the KFP
equation combined with localized Lp estimates and a pointwise formula for fractional
Laplacians in order to get mean oscillation estimates of solutions. By using the method
of frozen coefficients, we generalize the aforementioned mean oscillation estimates to
the case when aij also depend on x and v. Once such inequalities are established, the
a priori estimates are obtained by using the variants Hardy--Littlewood and Fefferman--
Stein theorems (see Theorem A.3).

1.4. \bfitL \bftwo theory for the kinetic equations with bounded measurable co-
efficients. Let x\in \BbbR d and \sansv \in \BbbR d1 for some d1 = \{ 1,2, . . .\} , let \alpha be a mapping from
\BbbR d1 to \BbbR d, and let a, b,\=b, c, \vec{}f, g be functions of t, x, \sansv .

We consider the equation

\scrP \alpha u+div\sansv (\=bu) + b \cdot D\sansv u+ (c+ \lambda )u=div\sansv \vec{}f + g,(1.16)

where

\scrP \alpha u= \partial tu+ \alpha (\sansv ) \cdot Dxu - D\sansv i(a
ijD\sansv ju).

Assumption 1.20. The function \alpha is such that for some \theta \in (0,1],

sup
\sansv \not =\sansv \prime 

| \alpha (\sansv ) - \alpha (\sansv \prime )| 
| \sansv  - \sansv \prime | \theta 

<\infty .

Remark 1.21. Here we give examples of the equations of type (1.16) that appear
in the existing literature.

Kinetic equations: d1 = d and \alpha (\sansv ) = \pm \sansv or \alpha = \pm \sansv 
(1+| \sansv | 2)1/2 . In the second case,

(1.16) with such \alpha can be viewed as a relativistic counterpart of (1.1).
The Mumford equation. Another example comes from computer vision. In [30],

Mumford considered the operator

\partial tu+ cos(\sansv )Dx1
u+ sin(\sansv )Dx2

u - D2
\sansv u, t, \sansv , x1, x2 \in \BbbR ,
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1230 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

which is an operator of the KFP type. For the discussion of certain PDE aspects of
this operator, see [21].

Definition 1.22. For \alpha : \BbbR d1 \rightarrow \BbbR d and an open set G \subset \BbbR 1+d+d1 , we say that
u\in S2(G,\alpha ) if u,D\sansv u\in L2(G), and \partial tu+ \alpha (\sansv ) \cdot Dxu\in \BbbH  - 1

2 (G).

Here is the S2(\BbbR 1+d+d1

T , \alpha ) unique solvability result for (1.16).

Theorem 1.23. Let T \in ( - \infty ,\infty ], let a, b, \=b be functions satisfying Assump-
tions 1.1 and 1.4 (with \BbbR 1+2d replaced with \BbbR 1+d+d1), and let \alpha : \BbbR d1 \rightarrow \BbbR d satisfy
Assumption 1.20. Then,

(i) there exists \lambda 0 = \lambda 0(d, d1, \delta ,L) > 0 such that for any \lambda \geq \lambda 0, and functions
u\in S2(\BbbR 1+d+d1

T , \alpha ), \vec{}f, g \in L2(\BbbR 1+d+d1

T ) satisfying (1.16), we have

\lambda 1/2\| u\| + \| D\sansv u\| \leq N\| \vec{}f\| +N\lambda  - 1/2\| g\| ,(1.17)

where

N =N(d, d1, \delta ), \| \cdot \| = \| \cdot \| 
L2(\BbbR 

1+d+d1
T )

.

In addition, for any \vec{}f, g \in L2(\BbbR 1+d+d1

T ) and \lambda \geq \lambda 0, (1.16) has a unique solution
u\in S2(\BbbR 1+d+d1

T , \alpha ).

(ii) For any numbers S < T and \vec{}f, g \in L2((S,T )\times \BbbR d+d1), the Cauchy problem

\scrP \alpha u+ div \sansv (\=bu) + b \cdot D\sansv u+ cu= div \sansv 
\vec{}f + g, u(S, \cdot ) = 0,

has a unique solution u\in S2((S,T )\times \BbbR d+d1 , \alpha ); furthermore,

\| u\| + \| Dvu\| \leq N\| \vec{}f\| +N\| g\| ,

where

N =N(d, d1, \delta ,L,T  - S), \| \cdot \| = \| \cdot \| L2((S,T )\times \BbbR d+d1 ).

Corollary 1.24. In the case when d1 = d and \alpha = - \sansv , which corresponds to the
kinetic KFP equation, in addition to (1.17), we have

\| ( - \Delta x)
1/6u\| L2(\BbbR 1+2d

T ) \leq N\| \vec{}f\| L2(\BbbR 1+2d
T ) +N\lambda  - 1/2\| g\| L2(\BbbR 1+2d

T ),

where N =N(d, \delta ).

Proof. Note that the identity

\partial tu - \sansv \cdot Dxu - \Delta \sansv u+div\sansv (\=bu) + b \cdot D\sansv u+ (c+ \lambda )u

=D\sansv i((a
ij  - \delta ij)D\sansv ju) + div\sansv \vec{}f + g

is true. Here \Delta \sansv is the Laplacian in the \sansv variable. Then, by Theorem 1.15,

\| ( - \Delta x)
1/6u\| L2(\BbbR 1+2d

T )

\leq N\| (aij  - \delta ij)D\sansv ju\| L2(\BbbR 1+2d
T ) +N\| \vec{}f\| L2(\BbbR 1+2d

T ) +N\lambda  - 1/2\| g\| L2(\BbbR 1+2d
T ).

This, combined with Assumption 1.1 and (1.17), gives the desired estimate.

The results of Theorem 1.23 and Corollary 1.24 are not surprising; however, the
present authors have not seen such assertions in their full generality in the existing
literature.
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Lp ESTIMATES FOR KFP EQUATIONS 1231

1.5. Motivations.
Filtering. Stochastic partial differential equation (SPDEs) in divergence form

appear naturally in the theory of partially observable diffusion processes. In particu-
lar, the unnormalized conditional probability density of the unobservable component
of the diffusion process with respect to the observable one satisfies a linear SPDE
called the Dunkan--Mortensen--Zakai equation (see, for example, [35]). In [25], Krylov
showed that the Lp theory of SPDEs can be used to deduce certain regularity prop-
erties of the unnormalized density. For the Langevin-type diffusion processes, such a
program was carried out in [38] (see also [32]). In particular, the authors developed
the Besov regularity theory for the equation

du= [v \cdot Dxu - aijDvivju+ b \cdot Dvu+ f ]dt+ [\sigma k \cdot Dvu+ gk]dwk,

where wk, k\geq 1, is a sequence of independent standard Wiener processes. In the same
paper [38], they used that regularity theory to show that the unnormalized conditional
probability density is a continuous function. We believe that Theorem 1.15 is useful
in developing the theory of stochastically forced KFP equations in divergence form
in the case when the forcing term g belongs to the Lp space with respect to the
probability measure and t, x, v.

Kinetic theory. The nonlinear Landau equation is an important model of col-
lisional plasma which has been studied extensively (see, for example, [3], [29], [16],
[20]). A linearized version of this equation has the form of (1.1). Recently, there has
been an interest in developing the Lp theory of KFP equations with rough coefficients.
Such results are useful for establishing the well-posedness of diffusive kinetic equations
in bounded domains with the specular reflection boundary condition (see [14]) and
for the conditional regularity problem (see [16]).

1.6. Related works.
Divergence form equations. Many articles on KFP equations in divergence

form are concerned with the local boundedness, Harnack inequality (including a non-
homogeneous version), and H\"older continuity of solutions to (1.1) (see [5], [33], [39],
[16], [29], [18], [19], [40]). See also the references in [4].

It seems that there are very few works on the Sobolev space theory of (1.1).
Previously, an interior Lp estimate of Dvu for (1.1) was established in [27] under the

assumption that u, \vec{}f \in Lp,loc, u,Dvu, (\partial t  - v \cdot Dx)u \in L2,loc, and g \equiv 0 by using the
explicit representation of the fundamental solution of the operator \scrP (see (1.8)) and
singular-integral techniques. In addition, in the same work, it was showed that if
p is large enough, then u is locally H\"older continuous with respect to \rho (see (1.3)).
The authors of [27] imposed the VMO condition with respect to \rho on the coefficients
aij , which is stronger than Assumption 1.2. It can be seen from (1.3) that such an
assumption might not be satisfied even when the coefficients aij = aij(x, v) are smooth,
bounded, and independent of t. A similar result in the ultraparabolic Morrey spaces
was proved in [34]. We point out that the papers [27] and [34] are concerned with
the operators that are more general than \scrP . We also mention a recent paper [2]
which studies the L2-regularity theory, the trend toward equilibrium, and enhanced
dissipation for the KFP equation in divergence form with aij = \delta ij .

Nondivergence form equations. For a thorough review of the classical theory
for the generalized KFP equations, we refer the reader to [4]. An overview of the
literature on the Sobolev theory for KFP equations in nondivergence form can be
found in the recent paper [15]. We also mention briefly the following papers:

\bullet The article [7] on the interior Sp estimate with leading coefficients of class
VMO with respect to \rho ;
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1232 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

\bullet the articles [8], [11], [9], [31] where the global Sp estimate is proved under
the following assumptions: either the leading coefficients are constant or in-
dependent of x, v, or they are continuous with respect to \rho ;

\bullet the article [15], where the present authors proved the global Sp estimate and
unique solvability results with the coefficients satisfying Assumption 1.2.

Ultra-analyticity and Gevrey regularity. Finally, we would like to mention
the works [12], [10], [28] on the ultra-analyticity and Gevrey regularity for the KFP
and Landau equations.

1.7. Organization of the paper. In section 2 , we prove the main result in the
\BbbS p space in the case when the coefficients aij are independent of x and v. We then
extend the a priori estimate to the weighted mixed-norm kinetic spaces in section 3
so that the reader interested only in the constant coefficient case need only read the
sections 1, 2, and 3. We prove the main results for the equations with the variable
coefficients aij = aij(z) in section 4.

2. \BbbS \bfitp estimate for the model equation. Denote

P0 = \partial t  - v \cdot Dx  - aij(t)Dvivj ,

where the coefficients aij satisfy Assumption 1.1.
The goal of this section is to prove Theorem 1.15 with Lp in place of the weighted

mixed-norm Lebesgue space, \scrP = P0 (see (1.8)), and without the lower-order terms
(see Theorem 2.1). We do this by using the duality argument and the Sp estimate
taken from [15], which we state below (see Theorem 2.3).

Theorem 2.1. Let p > 1 be a number, and let T \in ( - \infty ,\infty ]. Then, the following
assertions hold.

(i) For any number \lambda > 0, u\in \BbbS p(\BbbR 1+2d
T ), and \vec{}f, g \in Lp(\BbbR 1+2d

T ), the equation

P0u+ \lambda u= divv \vec{}f + g(2.1)

has a unique solution u\in \BbbS p(\BbbR 1+2d
T ), and, in addition,

\lambda 1/2\| u\| Lp(\BbbR 1+2d
T ) + \| Dvu\| Lp(\BbbR 1+2d

T ) + \| ( - \Delta x)
1/6u\| Lp(\BbbR 1+2d

T )

\leq N(d, \delta , p)(\| \vec{}f\| Lp(\BbbR 1+2d
T ) + \lambda  - 1/2\| g\| Lp(\BbbR 1+2d

T )).
(2.2)

(ii) For any finite numbers \lambda \geq 0, S < T , and \vec{}f, g \in Lp((S,T )\times \BbbR 2d), the Cauchy
problem

P0u+ \lambda u= divv \vec{}f + g, u(S, \cdot )\equiv 0,

has a unique solution u\in \BbbS p((S,T )\times \BbbR 2d) (see Definition 1.10); furthermore,

(1 + \lambda 1/2)\| u\| Lp((S,T )\times \BbbR 2d) + \| Dvu\| Lp((S,T )\times \BbbR 2d) + \| ( - \Delta x)
1/6u\| Lp((S,T )\times \BbbR 2d)

\leq N(\| \vec{}f\| Lp((S,T )\times \BbbR 2d) + \lambda  - 1/2\| g\| Lp((S,T )\times \BbbR 2d)),

where N =N(d, \delta , p,T  - S).

Corollary 2.2. For any u \in \BbbS p(\BbbR 1+2d
T ), one has ( - \Delta x)

1/6u \in Lp(\BbbR 1+2d
T ), and,

in addition,

\| ( - \Delta x)
1/6u\| Lp(\BbbR 1+2d

T ) \leq N\| u\| \BbbS p(\BbbR 1+2d
T ),

where N =N(d, p)> 0.
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Lp ESTIMATES FOR KFP EQUATIONS 1233

Proof. To prove the result, we set aij = \delta ij , find \vec{}f and g in Lp(\BbbR 1+2d
T ) such that

\partial tu - v \cdot Dxu - \Delta vu+ u=divv \vec{}f + g

in \BbbH  - 1
p (\BbbR 1+2d

T ), and apply Theorem 2.1.

Here is the main result of [15] in the case when \scrP = P0, which will also be used
in the next section.

Theorem 2.3. Let p > 1 be a number. Then, the following assertions hold.
(i) For any number \lambda \geq 0, T \in ( - \infty ,\infty ], and u\in Sp(\BbbR 1+2d

T ), one has

\lambda \| u\| + \lambda 1/2\| Dvu\| + \| D2
vu\| 

+ \| ( - \Delta x)
1/3u\| + \| Dv( - \Delta x)

1/6u\| \leq N(d, p, \delta )\| P0u+ \lambda u\| ,

where \| \cdot \| = \| \cdot \| Lp(\BbbR 1+2d
T ).

(ii) For any \lambda > 0, T \in ( - \infty ,\infty ], and f \in Lp(\BbbR 1+2d
T ), the equation

P0u+ \lambda u= f

has a unique solution u\in Sp(\BbbR 1+2d
T ).

(iii) For any finite numbers S < T and f \in Lp((S,T )\times \BbbR 2d), the Cauchy problem

P0u= f, u(S, \cdot )\equiv 0,

has a unique solution u\in Sp((S,T )\times \BbbR 2d). In addition,

\| u\| + \| Dvu\| + \| D2
vu\| + \| ( - \Delta x)

1/3u\| + \| Dv( - \Delta x)
1/6u\| \leq N\| f\| ,

where

\| \cdot \| = \| \cdot \| Lp((S,T )\times \BbbR 2d), N =N(d, \delta , p,T  - S).

Remark 2.4. The above theorem follows from [15, Theorem 2.6] and the scaling
property of the operator P0 (see Lemma 3.10).

The following lemma implies the uniqueness part of Theorem 2.1 (ii).

Lemma 2.5. Let p > 1, \lambda > 0 be numbers, let T \in ( - \infty ,\infty ], and let u\in \BbbS p(\BbbR 1+2d
T )

satisfy P0u+ \lambda u= 0. Then, u\equiv 0.

Proof. Let \eta = \eta (x, v) \in C\infty 
0 (B1 \times B1) be a function with the unit integral. For

h\in L1,loc(\BbbR 2d), we denote

h(\varepsilon )(x, v) = \varepsilon  - (3/2)d

\int 
h(x\prime , v\prime )\eta ((x - x\prime )/\varepsilon 1/2, (v - v\prime )/\varepsilon )dx\prime dv\prime .

Then, u satisfies the equation

P0u(\varepsilon ) + \lambda u(\varepsilon ) = g\varepsilon ,(2.3)

where

g\varepsilon (z) = \varepsilon 1/2
\int 

u(t, x - \varepsilon 1/2x\prime , v - \varepsilon v\prime )v\prime \cdot Dx\eta (x
\prime , v\prime )dx\prime dv\prime .
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1234 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

Note that by the Minkowski inequality,

\| g\varepsilon \| Lp(\BbbR 1+2d
T ) \leq N\varepsilon 1/2\| u\| Lp(\BbbR 1+2d

T ).(2.4)

Then, it follows from (2.3) that (\partial t  - v \cdot Dx)u(\varepsilon ) \in Lp(\BbbR 1+2d
T ), and therefore, u(\varepsilon ) \in 

Sp(\BbbR 1+2d
T ). Hence, by Theorem 2.3 and (2.4),

\lambda \| u(\varepsilon )\| Lp(\BbbR 1+2d
T ) \leq N\| g\varepsilon \| Lp(\BbbR 1+2d

T ) \leq N\varepsilon 1/2\| u\| Lp(\BbbR 1+2d
T ).

Taking the limit as \varepsilon \rightarrow 0 in the above inequality, we prove the assertion.

The following result is needed for the duality argument in the proof of Theorem
2.1. For the proof, see Lemma 5.12 of [15].

Lemma 2.6. For any numbers \lambda \geq 0 and p > 1, the set (P0 + \lambda )C\infty 
0 (\BbbR 1+2d) is

dense in Lp(\BbbR 1+2d).

Here is the a priori estimate (2.2) in the case when g \equiv 0 and \vec{}f is smooth and
compactly supported.

Lemma 2.7. Let \lambda > 0, p > 1 be numbers, and let \vec{}f \in C\infty 
0 (\BbbR 1+2d). Let u be the

unique solution in Sp(\BbbR 1+2d) to (2.1) with g\equiv 0. Then, one has

\lambda 1/2\| u\| Lp(\BbbR 1+2d) + \| ( - \Delta x)
1/6u\| Lp(\BbbR 1+2d)

+ \| Dvu\| Lp(\BbbR 1+2d) \leq N(d, \delta , p)\| \vec{}f\| Lp(\BbbR 1+2d).

Proof. The proof is by a duality argument. We denote q= p/(p - 1) and fix some
U \in C\infty 

0 (\BbbR 1+2d).
Estimate of ( - \Delta x)

1/6u. Note that for any multi-index \alpha , one has P0D
\alpha 
xu =

divvD
\alpha 
x
\vec{}f , and hence by Theorem 2.3, D\alpha 

xu \in Lp(\BbbR 1+2d). In addition, note that by
(1.13) for any U \in C\infty 

0 (\BbbR 1+2d), ( - \Delta x)
1/6U \in C\infty 

loc(\BbbR 1+2d)\cap L1(\BbbR 1+2d). Then, by this
and integration by parts, we have

I =

\int \bigl( 
( - \Delta x)

1/6u
\bigr) 
( - \partial tU + v \cdot DxU  - aij(t)DvivjU + \lambda U)dz

=

\int \bigl( 
(\partial t  - v \cdot Dx  - aij(t)Dvivj + \lambda )u

\bigr) 
(( - \Delta x)

1/6U)dz

=

\int 
(divv \vec{}f)(( - \Delta x)

1/6U)dz = - 
\int 

\vec{}f \cdot Dv( - \Delta x)
1/6U dz.

By H\"older's inequality, Theorem 2.3, and the change of variables t\rightarrow  - t, x\rightarrow  - x,

| I| \leq N\| \vec{}f\| Lp(\BbbR 1+2d)\|  - \partial tU + v \cdot DxU  - aijDvivjU + \lambda U\| Lq(\BbbR 1+2d).(2.5)

Furthermore, by Lemma 2.6 and the aforementioned change of variables, ( - \partial t + v \cdot 
Dx  - aijDvivj + \lambda )C\infty 

0 (\BbbR 1+2d) is dense in Lq(\BbbR 1+2d). This, combined with (2.5),
implies the desired estimate for ( - \Delta x)

1/6u.
Estimate of Dvu. Integrating by parts gives\int 

(Dvu)( - \partial tU + v \cdot DxU  - aij(t)DvivjU + \lambda U)dz

=

\int 
(D2

vU)\vec{}f dz  - 
\int 

uDxU dz =: J1 + J2.
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Lp ESTIMATES FOR KFP EQUATIONS 1235

As before, it suffices to show that | J1| + | J2| is dominated by the right-hand side of
(2.5). By H\"older's inequality, Theorem 2.3, and the same change of variables, we get

| J1| \leq \| \vec{}f\| Lp(\BbbR 1+2d)\| D2
vU\| Lq(\BbbR 1+2d)

\leq N\| \vec{}f\| Lp(\BbbR 1+2d)\|  - \partial tU + v \cdot DxU  - aij(t)DvivjU + \lambda U\| Lq(\BbbR 1+2d).

Next, note that

J2 = - 
\int 
(( - \Delta x)

1/6u)\scrR x( - \Delta x)
1/3U dz,

where \scrR x is the Riesz transform in the x variable. Then, by the Lp estimate of
( - \Delta x)

1/6u, the Lq boundedness of the Riesz transform, and Theorem 2.3, we obtain

| J2| \leq N\| ( - \Delta x)
1/6u\| Lp(\BbbR 1+2d)\| ( - \Delta x)

1/3U\| Lq(\BbbR 1+2d)

\leq N\| \vec{}f\| Lp(\BbbR 1+2d)\|  - \partial tU + v \cdot DxU  - aijDvivjU + \lambda U\| Lq(\BbbR 1+2d).

The estimate is proved.
Estimate of u. As above, we consider

\scrI :=

\int 
u( - \partial tU + v \cdot DxU  - aijDvivj

U + \lambda U)dz = - 
\int 

\vec{}f \cdot DvU dz.

Then, by H\"older's inequality and Theorem 2.3,

| \scrI | \leq \| \vec{}f\| Lp(\BbbR 1+2d)\| DvU\| Lq(\BbbR 1+2d)

\leq N\lambda  - 1/2\| \vec{}f\| Lp(\BbbR 1+2d)\|  - \partial tU + v \cdot DxU  - aijDvivjU + \lambda U\| Lq(\BbbR 1+2d).

This implies the desired estimate.

Proof of Theorem 2.1. By Remark 1.16, we only need to prove assertion (i).
(i) The uniqueness follows from Lemma 2.5. To prove the existence, let u1 \in 

Sp(\BbbR 1+2d
T ) be the unique solution to the equation (see Theorem 2.3)

P0u1 + \lambda u1 = g.(2.6)

By the same theorem and the interpolation inequality (see Lemma A.5),

\lambda \| u1\| Lp(\BbbR 1+2d
T ) + \lambda 1/2\| Dvu1\| Lp(\BbbR 1+2d

T ) + \lambda 1/2\| ( - \Delta x)
1/6u1\| Lp(\BbbR 1+2d

T )

\leq N\| g\| Lp(\BbbR 1+2d
T ).

Subtracting (2.6) from (2.1), we may assume that g \equiv 0. We will consider the cases
T =\infty and T <\infty separately.

Case T =\infty . We take a sequence of functions \vec{}fn \in C\infty 
0 (\BbbR 1+2d) such that fn \rightarrow f

in Lp(\BbbR 1+2d). By Theorem 2.3, there exists a unique solution un \in Sp(\BbbR 1+2d) to the
equation

(P0 + \lambda )un =divv \vec{}fn.(2.7)

By Lemma 2.7, we have

\lambda 1/2\| un\| Lp(\BbbR 1+2d) + \| Dvun\| Lp(\BbbR 1+2d) + \| ( - \Delta x)
1/6un\| Lp(\BbbR 1+2d)(2.8)

\leq N(d, \delta , p)\| \vec{}fn\| Lp(\BbbR 1+2d),

\| \partial tun  - v \cdot Dxun\| \BbbH  - 1
p (\BbbR 1+2d) \leq N(d, \delta , p,\lambda )\| \vec{}fn\| Lp(\BbbR 1+2d).
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1236 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

Furthermore, by the same lemma,

un, n\geq 1, ( - \Delta x)
1/6un, n\geq 1,

are Cauchy sequences in \BbbS p(\BbbR 1+2d) and Lp(\BbbR 1+2d), respectively. Hence, there exists
a function u \in \BbbS p(\BbbR 1+2d) such that un, ( - \Delta x)

1/6un converge to u and ( - \Delta x)
1/6u,

respectively. Passing to the limit in (2.7) and (2.8), we prove the existence and the
inequality (2.2).

Case T <\infty . Let \widetilde u\in \BbbS p(\BbbR 1+2d) be the unique solution to the equation

P0\widetilde u+ \lambda \widetilde u=divv \vec{}f1t<T .

We conclude that u := \widetilde u is a solution of class \BbbS p(\BbbR 1+2d
T ) to (2.1), and the estimate

(2.2) holds. The theorem is proved.

3. Mixed-norm estimate for the model equation. In this section, we con-
sider the case when the coefficients aij are independent of x, v, and the lower-order
terms are absent. The goal is to prove the a priori estimates in the weighted mixed-
norm spaces by establishing a mean oscillation estimate of ( - \Delta x)

1/6u, \lambda 1/2u, and
Dvu for u\in \BbbS p(\BbbR 1+2d

T ) solving (2.1). To this end, we split u into a P0+\lambda -caloric part
and the remainder. To bound the former, we use the method of section 5 of [15]. The
remainder is handled by using a localized version of the \BbbS p estimate in Theorem 2.1
(see Lemma 3.3).

Theorem 3.1. Invoke the assumptions of Theorem 1.15 and assume, additionally,
b \equiv 0 \equiv b, c \equiv 0. Let u \in \BbbS p,r1,...,rd,q(\BbbR 

1+2d
T ,w), \vec{}f, g \in Lp,r1,...,rd,q(\BbbR 

1+2d
T ,w) be

functions such that

P0u+ \lambda u= divv \vec{}f + g.

Then, for any \lambda > 0, the estimate (1.15) is valid. Furthermore, in the case when
g \equiv 0 and \lambda \equiv 0, (1.15) also holds. In addition, the same inequalities hold with
\BbbS p;r1,...,rd(\BbbR 

1+2d
T , | x| \alpha 

\prod d
i=1wi(vi)), Lp;r1,...,rd(\BbbR 

1+2d
T , | x| \alpha 

\prod d
i=1wi(vi)) in place of

\BbbS p,r1,...,rd,q(\BbbR 
1+2d
T ,w), Lp,r1,...,rd,q(\BbbR 

1+2d
T ,w), respectively, and with N = N(d, \delta , p,

r1, . . . , rd, \alpha ,K).

The next result is derived from the above theorem in the same way as Corollary 2.2
from Theorem 2.1.

Corollary 3.2 (cf. Corollary 2.2). For any u \in \BbbS p,r1,...,rd,q(\BbbR 
1+2d
T ,w), one has

( - \Delta x)
1/6u\in Lp,r1,...,rd,q(\BbbR 

1+2d
T ,w), and, in addition,

\| ( - \Delta x)
1/6u\| Lp,r1,...,rd,q(\BbbR 1+2d

T ,w) \leq N\| u\| \BbbS p,r1,...,rd,q(\BbbR 1+2d
T ,w),

where N = N(d, p, r1, . . . , rd, q,K) > 0. A similar assertion holds for u \in \BbbS p;r1,...,rd
(\BbbR 1+2d

T , | x| \alpha 
\prod d

i=1wi(vi)).

In the next lemma, we establish the estimate of the aforementioned ``remainder
term.""

Lemma 3.3. Let \lambda \geq 0 be a number, and let \vec{}f \in Lp(\BbbR 1+2d
0 ) be a function vanishing

outside ( - 1,0) \times \BbbR d \times B1. Let u \in \BbbS p(( - 1,0) \times \BbbR 2d) be the unique solution to the
equation (see Theorem 2.1 (ii))

P0u+ \lambda u= divv \vec{}f + g, u( - 1, \cdot ) = 0.(3.1)
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Lp ESTIMATES FOR KFP EQUATIONS 1237

Then, for any R\geq 1, one has

\| (1 + \lambda 1/2)| u| + | Dvu| \| Lp(( - 1,0)\times BR3\times BR)

(3.2)

\leq N(d, \delta , p)

\infty \sum 
k=0

2 - k(k - 1)/4R - k\| | \vec{}f | + \lambda  - 1/2| g| \| Lp(Q1,2k+1R
),

\Bigl( 
| ( - \Delta x)

1/6u| p
\Bigr) 1/p
Q1,R

\leq N(d, \delta , p)

\infty \sum 
k=0

2 - k
\Bigl( 
(| \vec{}f | p)1/pQ

1,2k+1R
+ \lambda  - 1/2(| g| p)1/pQ

1,2k+1R

\Bigr) 
.

(3.3)

Proof. We follow the proof of Lemma 5.2 of [15] very closely. By considering the
equation satisfied by U := ue - t, without loss of generality, we may assume that \lambda \geq 1.

Estimate of u,Dvu. We denote

\vec{}f0 := \vec{}f1x\in B(2R)3
, \vec{}fk := \vec{}f1x\in B

(2k+1R)3
\setminus B

(2kR)3
, k \in \{ 1,2, . . .\} , so that \vec{}f =

\infty \sum 
k=0

\vec{}fk,

and we define gk, k \geq 0, in a similar way. By Theorem 2.1 (ii), there exists a unique
solution uk \in \BbbS p(( - 1,0)\times \BbbR 2d) to (3.1) with \vec{}fk and gk in place of \vec{}f and g, respectively,
and, in addition, one has

\| \lambda 1/2| uk| + | Dvuk| \| Lp(( - 1,0)\times \BbbR 2d) \leq N\| | \vec{}fk| + \lambda  - 1/2| gk| \| Lp(( - 1,0)\times \BbbR 2d).(3.4)

In addition, by Theorem 2.1 (ii),

u= lim
n\rightarrow \infty 

n\sum 
k=0

uk in Lp(( - 1,0)\times \BbbR 2d),

and a similar identity holds for Dvu.
Next, let \zeta j = \zeta j(x, v) \in C\infty 

0 (B(2j+1R)3 \times B2j+1R), j = 0,1,2, . . . , be a sequence of
functions such that \zeta j = 1 on B(2j+1/2R)3 \times B2j+1/2R and

| \zeta j | \leq 1, | Dv\zeta j | \leq N2 - jR - 1,

| D2
v\zeta j | \leq N2 - 2jR - 2, | Dx\zeta j | \leq N2 - 3jR - 3.

For k\geq 1 and j = 0,1, . . . , k - 1, we set uk,j = uk\zeta j , which satisfies

P0uk,j + \lambda uk,j = ukP0\zeta j +divv(\vec{}fk\zeta j) - \vec{}fk \cdot Dv\zeta j + gk\zeta j  - 2(aDv\zeta j) \cdot Dvuk.(3.5)

Observe that for such j, \vec{}fk\zeta j \equiv 0, \vec{}fk \cdot Dv\zeta j \equiv 0, and gk\zeta j = 0. Then, by Theorem 2.1
(ii) and the fact that \lambda \geq 1,

\| \lambda 1/2| uk| + | Dvuk| \| Lp(( - 1,0)\times B(2jR)3\times B2jR)

\leq N\lambda  - 1/22 - jR - 1\| | uk| + | Dvuk| \| Lp(( - 1,0)\times B(2j+1R)3\times B2j+1R)

\leq N2 - jR - 1\| \lambda 1/2| uk| + | Dvuk| \| Lp(( - 1,0)\times B(2j+1R)3\times B2j+1R).

By using induction, the above inequality, and (3.4), we obtain

\| \lambda 1/2| uk| + | Dvuk| \| Lp(( - 1,0)\times BR3\times BR)

\leq Nk2 - k(k - 1)/2R - k\| | \vec{}fk| + \lambda  - 1/2| gk| \| Lp(( - 1,0)\times \BbbR 2d)

\leq N2 - k(k - 1)/4R - k\| | \vec{}f | + \lambda  - 1/2| g| \| Lp(Q1,2k+1R
).

This, combined with (3.4) with k= 0, gives (3.2).
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1238 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

Estimate of ( - \Delta x)
1/6u. Recall that u\zeta 0 satisfies (3.5) with k = 0. Then, by

Theorem 2.1 (ii) and (3.2) with 2R in place of R, one has

\| ( - \Delta x)
1/6(u\zeta 0)\| Lp(( - 1,0)\times \BbbR 2d)

\leq N

\infty \sum 
k=0

2 - k(k - 1)/4(2R) - k\| | \vec{}f | + \lambda  - 1/2| g| \| Lp(Q1,2k+1(2R)
).

(3.6)

Now we only need to bound the commutator term. Let u\varepsilon be a mollification of u in
the x variable. Then, ( - \Delta x)

1/6u\varepsilon is given by (1.11) with s = 1/6. Due to the fact
that \zeta 0 = 1 in B(21/2R)3 \times B21/2R, for any z \in Q1,R,

| \zeta 0( - \Delta x)
1/6u\varepsilon  - ( - \Delta x)

1/6(u\varepsilon \zeta 0)| (z)

\leq N(d)

\int 
| y| >(23/2 - 1)R3

| u\varepsilon | (t, x+ y, v)| y|  - d - 1/3 dy.

Then, by Lemma A.1, we get

\| \zeta 0( - \Delta x)
1/6u\varepsilon  - ( - \Delta x)

1/6(u\varepsilon \zeta 0)\| Lp(Q1,R)

\leq N(d)R - 1
\infty \sum 
k=0

2 - k - 3dk/p\| u\varepsilon \| Lp(Q1,2kR
).

Passing to the limit as \varepsilon \rightarrow 0, we may replace u\varepsilon with u in the above inequality.
Furthermore, by (3.2), the right-hand side is less than

N(d, \delta , p)R - 1
\infty \sum 
j=0

2 - k - 3dk/p
\infty \sum 
k=0

2 - j(j - 1)/4(2kR) - j\| | \vec{}f | + \lambda  - 1/2| g| \| Lp(Q1,2k+j+1R
).

Switching the order of summation and changing the index k\rightarrow k+ j, we may replace
the double sum with

\infty \sum 
k=0

2 - k - 3dk/p\| | \vec{}f | + \lambda  - 1/2| g| \| Lp(Q1,2k+1R
).

This, combined with (3.6), gives the desired estimate (3.3).

Here is the mean oscillation estimate of a P0 + \lambda -caloric part.

Proposition 3.4. Let p > 1, \lambda \geq 0, r > 0, \nu \geq 2 be numbers, let z0 \in \BbbR 1+2d
T ,

and let u \in \BbbS p((t0  - (2\nu r)2, t0)\times \BbbR 2d) be a function such that P0u+ \lambda u = 0 in (t0  - 
(\nu r)2, t0)\times \BbbR d \times B\nu r(v0). Then, one has

J1 :=

\biggl( 
| ( - \Delta x)

1/6u - (( - \Delta x)
1/6u)Qr(z0)| 

p

\biggr) 1/p

Qr(z0)

\leq N\nu  - 1(| ( - \Delta x)
1/6u| p)1/pQ\nu r(z0)

,

J2 := \lambda 1/2

\biggl( 
| u - (u)Qr(z0)| 

p

\biggr) 1/p

Qr(z0)

+

\biggl( 
| Dvu - (Dvu)Qr(z0)| 

p

\biggr) 1/p

Qr(z0)

\leq N\nu  - 1\lambda 1/2(| u| p)1/pQ\nu r(z0)
+N\nu  - 1(| Dvu| p)1/pQ\nu r(z0)

+N\nu  - 1
\infty \sum 
k=0

2 - 2k(| ( - \Delta x)
1/6u| p)1/pQ

\nu r,2k\nu r
(z0)

,

where N =N(d, \delta , p).
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Lp ESTIMATES FOR KFP EQUATIONS 1239

3.1. Proof of Proposition 3.4. The next two lemmas are taken from [15].
The first one, Lemma 3.5, is proved by localizing Theorem 2.3 (i). The second lemma
follows from the global Lp estimate of ( - \Delta x)

1/3u in Theorem 2.3 (i) and the local
estimate of Dvu in Lemma 3.5.

Lemma 3.5 (interior Sp estimate; see Lemma 6.4 of [15]). Let p > 1, \lambda \geq 0, and
r1, r2,R1,R2 > 0 be numbers such that r1 < r2 and R1 < R2. Let u \in Sp,loc(\BbbR 1+2d

0 ),
and denote f = P0u+ \lambda u. Then, there exists a constant N =N(d, \delta , p)> 0 such that

\lambda \| u\| Lp(Qr1,R1
) + (r2  - r1)

 - 1\| Dvu\| Lp(Qr1,R1
)

+ \| D2
vu\| Lp(Qr1,R1

) + \| \partial tu - v \cdot Dxu\| Lp(Qr1,R1
)

\leq N\| f\| Lp(Qr2,R2
) +N((r2  - r1)

 - 2 + r2(R2  - R1)
 - 3)\| u\| Lp(Qr2,R2

).

Lemma 3.6 (Caccioppoli-type inequality; see Lemma 6.5 of [15]). Let \lambda \geq 0,
0< r <R\leq 1, and p > 1 be numbers, and let u\in Sp,loc(\BbbR 1+2d

0 ) be a function such that
P0u+ \lambda u= 0 in Q1. Then, there exists a constant N =N(d, \delta , p, r,R) such that

\| Dxu\| Lp(Qr) \leq N\| u\| Lp(QR).(3.7)

Remark 3.7. In the interior estimates in the aforementioned [15, Lemma 6.4],
there are no terms involving \lambda u and \partial tu  - v \cdot Dxu. By following the proof of that
lemma and using the global Sp estimate (see Theorem 2.3), one can, indeed, add these
terms to the left-hand sides of the a priori estimates.

Furthermore, the Caccioppoli inequality in [15, Lemma 6.5] is stated only in the
case when \lambda = 0. Nevertheless, the same argument yields (3.7) in the case when \lambda > 0.

The next lemma is a key ingredient of the proof of Proposition 3.4.

Lemma 3.8 (cf. Lemma 6.6 of [15]). Let p\in (1,\infty ), and let u\in \BbbS p(( - 4,0)\times \BbbR d\times 
B2) be a function such that P0u+ \lambda u = 0 in ( - 1,0)\times \BbbR d \times B1. Then, the following
assertions hold.

(i) The functions u, ( - \Delta x)
1/6u\in Sp,loc(( - 1,0)\times \BbbR d \times B1). Furthermore,

(P0 + \lambda )u= 0, (P0 + \lambda )( - \Delta x)
1/6u= 0 a.e. in ( - 1,0)\times \BbbR d \times B1.(3.8)

(ii) For any r \in (0,1), we have

\| Dxu\| Lp(Qr) \leq N

\infty \sum 
k=0

2 - 2k(| ( - \Delta x)
1/6u| p)1/pQ

1,2k
,(3.9)

where N =N(d, \delta , p, r).

Proof. Multiplying u\in \BbbS p(( - 4,0)\times \BbbR d \times B2) by a cutoff function \phi = \phi (t, v) and
using Corollary 2.2, we conclude that ( - \Delta x)

1/6u\in Lp(( - 1,0)\times \BbbR d\times B1), so that the
series on the right-hand side of (3.9) converges.

(i) Let u\varepsilon be the mollification of u in the x variable. First, we will show that u\varepsilon 

is sufficiently regular. We fix some r0 \in (0,1). We claim that for any k= \{ 0,1,2, . . .\} ,

Dk
x\xi \in Lp(( - r20,0)\times \BbbR d \times Br0) for \xi = u\varepsilon , \partial tu\varepsilon ,D

2
vu\varepsilon .(3.10)

To show this, we note that

P0u\varepsilon + \lambda u\varepsilon = 0 in ( - 1,0)\times \BbbR d \times B1.
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1240 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

We fix x\in \BbbR d and write

\partial tu\varepsilon  - aijDvivju\varepsilon + \lambda u\varepsilon = v \cdot Dxu\varepsilon =: \sansf in ( - 1,0)\times B1.

For f \in L1,loc(\BbbR d), let f\varkappa be a mollification of f in the v variable. Then, u\varkappa 
\varepsilon satisfies

\partial tu
\varkappa 
\varepsilon  - aijDvivju

\varkappa 
\varepsilon + \lambda u\varkappa 

\varepsilon = \sansf \varkappa in ( - r20,0)\times Br0 , \varkappa \in (0,1 - r0).

Note that (t, v) \rightarrow \sansf \in Lp(( - 1,0) \times B1), and then \partial tu
\varkappa 
\varepsilon ,D

2
vu

\varkappa 
\varepsilon \in Lp(( - r20,0) \times Br0).

By the interior estimate for nondegenerate parabolic equations (cf. Lemma 2.4.4 in
[24]), for any r1 \in (0, r0),

\| \lambda | u\varkappa 
\varepsilon (\cdot , x, \cdot )| + | \partial tu\varkappa 

\varepsilon (\cdot , x, \cdot )| + | D2
vu

\varkappa 
\varepsilon (\cdot , x, \cdot )| \| Lp(( - r21 ,0)\times Br1

)

\leq N(d, \delta , p, r0, r1)\| | \sansf \varkappa (\cdot , x, \cdot )| + | u\varkappa 
\varepsilon (\cdot , x, \cdot )| \| Lp(( - r20 ,0)\times Br0 )

.

Raising the above inequality to the power p and integrating over x\in \BbbR d, we get

\| \lambda | u\varkappa 
\varepsilon | + | \partial tu\varkappa 

\varepsilon | + | D2
vu

\varkappa 
\varepsilon | \| Lp(( - r21 ,0)\times \BbbR d\times Br1 )

\leq N\| | \sansf \varkappa | + | u\varkappa 
\varepsilon | \| Lp(( - r20 ,0)\times \BbbR d\times Br0 )

\leq N\| | u\varepsilon | + | Dxu\varepsilon | \| Lp(( - 1,0)\times \BbbR d\times B1),

where N = N(d, \delta , p, r0, r1). Passing to the limit as \varkappa \rightarrow 0, we conclude that (3.10)
holds with k = 0. In the case when k \geq 1, we use the method of finite-difference
quotients combined with the above argument.

Next, by (3.10) with k = 0, u\varepsilon \in Sp(( - r20,0)\times \BbbR d \times Br0). Then, by the interior
Sp estimate (see Lemma 3.5), for any r1 \in (0, r0) and x0 \in \BbbR d,

\| | \partial tu\varepsilon  - v \cdot Dxu\varepsilon | + | D2
vu\varepsilon | \| Lp(Qr1

(0,x0,0)) \leq N\| u\| Lp(Qr0
(0,x0,0)),

whereN =N(d, \delta , r1, r0). Passing to the limit as \varepsilon \rightarrow 0, we prove that u\in Sp,loc(( - 1,0)\times 
\BbbR d \times B1) and that (P0 + \lambda )u= 0 a.e. in ( - 1,0)\times \BbbR d \times B1.

To prove the second part of assertion (i), we note that by (3.10) and the Sobolev
embedding theorem, for a.e. t, v \in (( - r20,0)\times Br0) and the same \xi ,

\xi (t, \cdot , v)\in Ck
0 (\BbbR d), k\geq 1(3.11)

(see Definition 1.9). Therefore, by the pointwise formula (1.11),

( - \Delta x)
1/6\xi (t, \cdot , v)\in Ck

0 (\BbbR d)

is a well-defined function, and

( - \Delta x)
1/6Au\varepsilon (t, \cdot , v) =A( - \Delta x)

1/6u\varepsilon (t, \cdot , v), A= \partial t,D
2
v.

Then, (P0 + \lambda )( - \Delta x)
1/6u\varepsilon = 0 a.e. in ( - r20,0) \times \BbbR d \times Br0 . As above, by using the

interior Sp estimate and a limiting argument, we prove the part of assertion (i) about
( - \Delta x)

1/6u.
(ii) In what follows, we follow the argument of Lemma 6.6 of [15]. Let r0 \in (r,1),

and let \zeta \in C\infty 
0 ( \widetilde Qr0) be a function taking values in [0,1] such that \zeta = 1 on \widetilde Qr. We

split Dxu\varepsilon as follows:

\zeta 2Dxu\varepsilon = \zeta (\scrL u\varepsilon +Comm),
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Lp ESTIMATES FOR KFP EQUATIONS 1241

where

\scrL u\varepsilon =\scrR x( - \Delta x)
1/3(\zeta ( - \Delta x)

1/6u\varepsilon ),

Comm= \zeta Dxu\varepsilon  - \scrR x( - \Delta x)
1/3(\zeta ( - \Delta x)

1/6u\varepsilon ),

and \scrR x is the Riesz transform.
Estimate of \scrL u. Denote h= ( - \Delta x)

1/6u\varepsilon . Then, by assertion (i), \zeta h \in Sp(\BbbR 1+2d
0 )

satisfies the identity

(P0 + \lambda )(\zeta h) = hP0\zeta  - 2(aDv\zeta ) \cdot Dvh in \BbbR 1+2d
0 .(3.12)

By the Lp-boundedness of the Riesz transform and Theorem 2.3 applied to (3.12),

\| \scrL u\varepsilon \| Lp(\BbbR 1+2d
0 ) \leq N(d, p)\| ( - \Delta x)

1/3(\zeta h)\| Lp(\BbbR 1+2d
0 )

\leq N(d, p, \delta )\| | hP0\zeta | + | (aDv\zeta ) \cdot Dvh| \| Lp(\BbbR 1+2d
0 ).

(3.13)

Furthermore, by (3.8) and the interior gradient estimate in Lemma 3.5, we get

\| (aDv\zeta ) \cdot Dvh\| Lp(\BbbR 1+2d
0 ) \leq N\| h\| Lp(Qr0 )

,(3.14)

where N =N(d, \delta , p, r, r0).
Commutator estimate. We denote

\scrA =Dx( - \Delta x)
 - 1/6.

By Lemma A.2, this operator can be extended to C1
0 (\BbbR d) functions as follows:

\scrA \phi (x) = p.v.

\int 
\phi (x - y)

y

| y| d+5/3
dy.

Furthermore, by the same lemma, for any \phi \in C2
0 (\BbbR d), one has A( - \Delta x)

1/6\phi \equiv Dx\phi .
Then, since u\varepsilon (t, \cdot , v)\in C2

0 (\BbbR d) (see (3.11)), for a.e (t, v)\in ( - 1,0)\times B1,

Comm(z) = \zeta \scrA h(z) - \scrA (\zeta h)(z)

= p.v.

\int 
h(t, x - y, v)

\bigl( 
\zeta (t, x, v) - \zeta (t, x - y, v)

\bigr) y

| y| d+5/3
dy

=

\biggl( \int 
| y| \leq 1

\cdot \cdot \cdot +
\int 
| y| >1

\cdot \cdot \cdot 
\biggr) 
=: I1(z) + I2(z).

By the mean-value theorem and the Minkowski inequality,

\| I1\| Lp(Qr) \leq N(d, p)\| h\| Lp(Q1,2).(3.15)

Next, for any z \in Qr, we have

| I2| (z)\leq 2

\int 
| y| >1

| h(t, x - y, v)| dy

| y| d+2/3
.

Then, by Lemma A.1,

\| I2\| Lp(Qr) \leq N(d, p)

\infty \sum 
k=0

2 - 2k(| h| p)1/pQ
1,2k

.(3.16)

Combining (3.13)--(3.16) and passing to the limit as \varepsilon \rightarrow 0, we prove assertion (ii).

The next lemma is about estimates for P0 + \lambda -caloric functions.
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1242 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

Lemma 3.9. Let p\in (1,\infty ), and let u\in \BbbS p,loc(( - 4,0)\times \BbbR d\times B2) (or Sp,loc(( - 1,0)\times 
\BbbR d \times B1)) be a function such that P0u+ \lambda u= 0 in ( - 1,0)\times \BbbR d \times B1. Then, for any
j \in \{ 0,1\} , l,m\in \{ 0,1, . . .\} , the following assertions hold.

(i) For any 1/2\leq r <R\leq 1,

(1 + \lambda )\| \partial j
tD

l
xD

m
v u\| Lp(Qr) \leq N(d, \delta , p, j, l,m, r,R)\| u\| Lp(QR).(3.17)

Furthermore,

(1 + \lambda )\| \partial j
tD

l
xD

m
v u\| L\infty (Qr) \leq N(d, \delta , p, j, l,m, r,R)\| u\| Lp(QR).(3.18)

(ii) If, additionally, u\in \BbbS p(( - 4,0)\times \BbbR d \times B1) and j + l+m\geq 1, then

\| \partial j
tD

l
xD

m
v u\| Lp(Q1/2)

\leq N(d, \delta , p, j, l,m)

\Biggl( 
\| | Dvu| + \lambda 1/2| u| \| Lp(Q1) +

\infty \sum 
k=0

2 - 2k
\Bigl( 
| ( - \Delta x)

1/6u| p
\Bigr) 1/p
Q

1,2k

\Biggr) 
.

(3.19)

As in assertion (i), we may replace the left-hand side of (3.19) with

\| \partial j
tD

l
xD

m
v u\| L\infty (Q1/2).

Proof. (i) By Lemma 3.8 (i), u \in Sp,loc(( - 1,0)\times \BbbR d \times B1). In what follows, we
follow the argument of Lemma 5.6 (i) in [15].

Case l, j = 0. First, we prove that for any r \in (1/2,R) and m= \{ 0,1,2, . . .\} ,

\lambda \| Dm
v u\| Lp(Qr) + \| Dm+1

v u\| Lp(Qr) \leq N(d, \delta , p, r,m)\| u\| Lp(QR).(3.20)

To prove this, we use an induction argument. Note that (3.20) with m = 0 follows
directly from Lemma 3.5. In the rest of the argument, we do some formal calculations.
To make the argument rigorous, one needs to use the method of finite-difference
quotient. For m > 0, we fix some multi-index \alpha of order m. Then, by the product
rule,

(P0 + \lambda )(D\alpha 
v u) =

\sum 
\widetilde \alpha : \widetilde \alpha <\alpha ,| \widetilde \alpha | =m - 1

c\widetilde \alpha D\widetilde \alpha 
vD

\alpha  - \widetilde \alpha 
x u,(3.21)

where c\widetilde \alpha is a constant. Next, for any r1 \in (r,R), by Lemma 3.5, we have

\lambda \| Dm
v u\| Lp(Qr) + \| Dm+1

v u\| Lp(Qr)

\leq N\| Dm - 1
v Dxu\| Lp(Qr1

) +N\| Dm
v u\| Lp(Qr1

).
(3.22)

Observe that for any multi-index \beta ,

(P0 + \lambda )(D\beta 
xu) = 0 in ( - 1,0)\times \BbbR d \times B1.(3.23)

Then, by the induction hypothesis and Lemma 3.6, for any r2 \in (r1,R), we have

\| Dm - 1
v Dxu\| Lp(Qr1

) \leq N\| Dxu\| Lp(Qr2
) \leq N\| u\| Lp(QR).

This, combined with (3.22) and the induction hypothesis, implies (3.20).
Case j = 0. Combining (3.23), (3.20), and Lemma 3.6, we obtain (3.17) with

j = 0.
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Lp ESTIMATES FOR KFP EQUATIONS 1243

Case j = 1. By (3.21) and (3.23), for any multi-indexes \alpha \not = 0 and \beta , the function

U =D\alpha 
vD

\beta 
xu(3.24)

satisfies the identity

P0U + \lambda U =
\sum 

\widetilde \alpha : \widetilde \alpha <\alpha ,| \widetilde \alpha | =| \alpha |  - 1

c\widetilde \alpha D\widetilde \alpha 
vD

\alpha +\beta  - \widetilde \alpha 
x u in ( - 1,0)\times \BbbR d \times B1.(3.25)

Then, by Lemma 3.5 and (3.17) with j = 0, we conclude that

(1 + \lambda )\| \partial tU\| Lp(Qr) \leq (1 + \lambda )
\bigl( 
\| \partial tU  - v \cdot DxU\| Lp(Qr) + r\| DxU\| Lp(Qr)

\bigr) 
\leq N(1 + \lambda )(\| U\| Lp(Qr1 )

+ \| D| \alpha |  - 1
v D1+| \beta | 

x u\| Lp(Qr1
)

+ \| DxU\| Lp(Qr))\leq N\| u\| Lp(QR),

(3.26)

where N = N(d, \delta , | \alpha | , | \beta | , p, r,R). In the case \alpha = 0, the above argument yields the
same bound (1 + \lambda )\| \partial tU\| Lp(Qr) \leq N\| u\| Lp(QR). Thus, (3.17) with j = 1 is also valid.

Next, note that the second assertion with j = 0 follows from (3.17) and the
Sobolev embedding theorem. To prove the estimate with j = 1, we use (3.25), (3.18)
with j = 0, and Lemma 3.5:

(1 + \lambda )\| \partial tU\| L\infty (Qr) \leq (1 + \lambda )\| | DxU | + | D2
vU | + \lambda | U | \| L\infty (Qr)

\leq N(1 + \lambda )\| u\| Lp(QR/2+1/4) \leq N\| u\| Lp(QR).(3.27)

(ii) It suffices to show the validity of the estimate

\| \partial j
tD

l
xD

m
v u\| Lp(Q1/2)

\leq N(d, \delta ,R, j, l,m)(\| | Dxu| + | Dvu| + \lambda 1/2| u| \| Lp(QR)),R \in (1/2,1],
(3.28)

because the desired assertion follows from (3.28) and Lemma 3.8 (ii). To prove (3.28),
we will consider four cases.

Case 1: l\geq 1. Note that by (3.17) and (3.23), one has for 1/2< r < r1 <R,

\| \partial j
tD

l
xD

m
v u\| Lp(Qr) \leq N\| Dl

xu\| Lp(Qr1
).

Hence, (3.28) holds in the case l= 1. If l\geq 2, we use Lemma 3.6.
Case 2: l = 0,m \geq 1, j = 0. By using an induction argument (see (3.22)) and

Lemma 3.6 as in the proof of assertion (i), one can show that

\| Dm
v u\| Lp(Qr) \leq N\| | Dxu| + | Dvu| \| Lp(QR).(3.29)

Case 3: l= 0,m\geq 1, j = 1. By (3.26) with | \alpha | =m and \beta = 0,

\| \partial tDm
v u\| \leq N\| | Dm

v u| + | Dm - 1
v Dxu| + | Dxu| \| Lp(Qr1 )

.

Now (3.28) follows from (3.29) and (3.28) with l= 1 (see Case 1).
Case 4: l = 0,m = 0, j = 1. Since \partial tu = v \cdot Dxu+ aij(t)Dvivju - \lambda u in ( - 1,0)\times 

\BbbR d \times B1, by using (3.29) with m= 2, we get

\| \partial tu\| Lp(Qr) \leq N\| | Dxu| + | Dvu| + \lambda | u| \| Lp(QR1
), R1 \in (R,1).(3.30)

LetR2 \in (R1,1). By (3.17), we may replace the term \lambda \| u\| Lp(QR1
) with \lambda 1/2\| u\| Lp(QR2

)

on the right-hand side of (3.30), and, thus, (3.28) holds.
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1244 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

Finally, the second part of the assertion in the case when j = 0 follows from (3.19)
and the Sobolev embedding theorem.

In the case when j = 1, we invoke (3.24)--(3.25). By (3.27) and the L\infty (Q1/2)
estimate of DxU and D2

vU proved in the previous paragraph, we get

\| \partial tU\| L\infty (Q1/2) \leq \| | DxU | + | D2
vU | + \lambda | U | \| L\infty (Q1/2)

\leq N\| | Dxu| + | Dvu| + \lambda 1/2| u| \| Lp(Q1) + \lambda \| U\| L\infty (Q1/2).

By (3.18), we replace the last term with \lambda 1/2\| u\| Lp(Q1). The assertion is proved.

The next result follows from direct computations.

Lemma 3.10 (scaling property of P0). Let p \in [1,\infty ], T \in ( - \infty ,\infty ], and u \in 
\BbbS p,loc(\BbbR 1+2d

T ). For any z0 \in \BbbR 1+2d
T , denote\widetilde z = (r2t+ t0, r
3x+ x0  - r2tv0, rv+ v0), \widetilde u(z) = u(\widetilde z),(3.31)

Y = \partial t  - v \cdot Dx, \widetilde P0 = \partial t  - v \cdot Dx  - aij(r2t+ t0)Dvivj .

Then,

Y \widetilde u(z) = r2(Y u)(\widetilde z), \widetilde P0\widetilde u(z) = r2(Pu)(\widetilde z).
Proof of Proposition 3.4. Let \widetilde u and \widetilde P0 be the function and the operator from

Lemma 3.10 defined with \nu r in place of r. Then, by the same lemma,\widetilde P0\widetilde u+ \lambda (\nu r)2\widetilde u= 0 in ( - 1,0)\times \BbbR d \times B1,

and for any c > 0, and A= ( - \Delta x)
1/6 or Dv,

(| Au| p)1/pQ\nu r,c\nu r(z0)
= (\nu r) - 1(| A\widetilde u| p)1/pQ1,c

,\biggl( 
| Au - (Au)Qr(z0)| 

p

\biggr) 1/p

Qr(z0)

= (\nu r) - 1

\biggl( 
| A\widetilde u - (A\widetilde u)Q1/\nu 

| p
\biggr) 1/p

Q1/\nu 

.
(3.32)

Next, by Lemma 3.8 (i), ( - \Delta x)
1/6\widetilde u\in Sp,loc(( - 1,0)\times \BbbR d \times B1), and

( \widetilde P0 + \lambda (\nu r)2)( - \Delta x)
1/6\widetilde u= 0 a.e. in ( - 1,0)\times \BbbR d \times B1,

and then, by Lemma 3.9 (i) with u replaced with ( - \Delta x)
1/6\widetilde u, for any \nu \geq 2, we get\biggl( 

| ( - \Delta x)
1/6\widetilde u - (( - \Delta x)

1/6\widetilde u)Q1/\nu 
| p
\biggr) 1/p

Q1/\nu 

\leq sup
z1,z2\in Q1/\nu 

| ( - \Delta x)
1/6\widetilde u(z1) - ( - \Delta x)

1/6\widetilde u(z2)| 
\leq N(d, \delta , p)\nu  - 1

\biggl(  
Q1

| ( - \Delta x)
1/6\widetilde u| p dz\biggr) 1/p

.

Combining this with (3.32), we prove the estimate for ( - \Delta x)
1/6u.

Arguing as above and using Lemma 3.9 (ii), for any \nu \geq 2, we obtain

\lambda 1/2\nu r
\bigl( 
| \widetilde u - (\widetilde u)Q1/\nu 

| p
\bigr) 1/p
Q1/\nu 

+
\bigl( 
| Dv\widetilde u - (Dv\widetilde u)Q1/\nu 

| p
\bigr) 1/p
Q1/\nu 

\leq N\nu  - 1

\biggl( 
\lambda 1/2\nu r (| \widetilde u| p)1/pQ1

+ (| Dv\widetilde u| p)1/pQ1
+

\infty \sum 
k=0

2 - 2k(| ( - \Delta x)
1/6\widetilde u| p)1/pQ

1,2k

\biggr) 
.

Dividing both sides of the above inequality by \nu r and using (3.32) yield the desired
estimate.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

1/
24

 to
 1

28
.1

48
.2

54
.5

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Lp ESTIMATES FOR KFP EQUATIONS 1245

3.2. Proof of Theorem 3.1. The following mean oscillation estimate plays a
crucial role in the proofs of Theorems 3.1 and 1.15.

Proposition 3.11. Let p > 1, r > 0, \nu \geq 2 be numbers, T \in ( - \infty ,\infty ], z0 \in \BbbR 1+2d
T ,

and let u\in \BbbS p(\BbbR 1+2d
T ), \vec{}f, g \in Lp(\BbbR 1+2d

T ) be functions such that

P0u+ \lambda u= divv \vec{}f + g.

Then, there exists a constant N =N(d, \delta , p)> 0 such that

I1 :=

\biggl( 
| ( - \Delta x)

1/6u - (( - \Delta x)
1/6u)Qr(z0)| 

p

\biggr) 1/p

Qr(z0)

\leq N\nu  - 1(| ( - \Delta x)
1/6u| p)1/pQ\nu r(z0)

+N\nu (4d+2)/p
\infty \sum 
k=0

2 - k
\bigl( 
(| \vec{}f | p)1/pQ

2\nu r,2k+1(2\nu r)
(z0)

+ \lambda  - 1/2(| g| p)1/pQ
2\nu r,2k+1(2\nu r)

(z0)

\bigr) 
,

I2 := \lambda 1/2

\biggl( 
| u - (u)Qr(z0)| 

p

\biggr) 1/p

Qr(z0)

+

\biggl( 
| Dvu - (Dvu)Qr(z0)| 

p

\biggr) 1/p

Qr(z0)

\leq N\nu  - 1\lambda 1/2(| u| p)1/pQ\nu r(z0)
+N\nu  - 1(| Dvu| p)1/pQ\nu r(z0)

+N\nu  - 1
\infty \sum 
k=0

2 - 2k(| ( - \Delta x)
1/6u| p)1/pQ

\nu r,2k\nu r
(z0)

+N\nu (4d+2)/p
\infty \sum 
k=0

2 - k
\bigl( 
(| \vec{}f | p)1/pQ

2\nu r,2k+1(2\nu r)
(z0)

+ \lambda  - 1/2(| g| p)1/pQ
2\nu r,2k+1(2\nu r)

(z0)

\bigr) 
,

Proof. Estimate of I1. We fix some function \phi = \phi (t, v) \in C\infty 
0 ((t0  - (2\nu r)2, t0 +

(2\nu r)2)\times B2\nu r(v0)) such that \phi = 1 on (t0 - (\nu r)2, t0)\times B\nu r(v0). By Theorem 2.1 (ii),
the Cauchy problem (see Definition 1.10)

P0u0 =divv(\vec{}f\phi ) + g\phi , u0(t0  - (2\nu r)2, \cdot )\equiv 0,

has a unique solution u0 \in \BbbS p((t0  - (4\nu r)2, t0)\times \BbbR 2d). To obtain a mean oscillation

estimate of ( - \Delta x)
1/6u0, we use the argument of Proposition 3.4. Let \widetilde u0 and \widetilde P0 be

the function and the operator from Lemma 3.10 defined with 2\nu r in place of r and
with u0 replaced by u. We define the functions \widetilde fi, i= 1, . . . , d and \widetilde g by (3.31). Then,
we have

\widetilde P0\widetilde u0 + \lambda (2\nu r)2\widetilde u0 = (2\nu r)Dvi
\widetilde fi + (2\nu r)2\widetilde g in ( - 1,0)\times \BbbR d \times B1.

By Lemma 3.3 with
-- (2\nu r)2\lambda in place of \lambda ,
-- 2\nu r \widetilde fi in place of fi, i= 1, . . . , d,
-- (2\nu r)2\widetilde g in place of g,

for any R\geq 1,

(| ( - \Delta x)
1/6\widetilde u0| p)1/pQ1,R

\leq N(d, p, \delta )(2\nu r)

\infty \sum 
k=0

2 - k

\Biggl( 
d\sum 

i=1

(| \widetilde fi| p)1/pQ
1,2k+1R

+ \lambda  - 1/2(| \widetilde g| p)1/pQ
1,2k+1R

\Biggr) 
.
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1246 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

By dividing both sides of the above inequality by 2\nu r and using (3.32) with \nu r
replaced by 2\nu r, for any R\geq 1, we obtain

(| ( - \Delta x)
1/6u0| p)1/pQ\nu r,R\nu r(z0)

\leq N

\infty \sum 
k=0

2 - kFk(R),(3.33)

(| ( - \Delta x)
1/6u0| p)1/pQr,Rr(z0)

\leq N\nu (4d+2)/p
\infty \sum 
k=0

2 - kFk(R),(3.34)

where

Fk(R) = (| \vec{}f | p)1/pQ
2\nu r,2k+1R(2\nu r)

(z0)
+ \lambda  - 1/2(| g| p)1/pQ

2\nu r,2k+1R(2\nu r)
(z0)

.

Next, note that the function uh := u - u0 \in \BbbS p((t0  - (2\nu r)2)\times \BbbR 2d) satisfies

P0uh =divv(\vec{}f(1 - \phi )) + g(1 - \phi ) in (t0  - (2\nu r)2, t0)\times \BbbR 2d.

Since \vec{}f(1 - \phi ) and g(1 - \phi ) vanish inside (t0  - (\nu r)2, t0)\times \BbbR d \times B\nu r, by Proposition
3.4 and (3.33) with R= 1,\biggl( 

| ( - \Delta x)
1/6uh  - (( - \Delta x)

1/6uh)Qr(z0)| 
p

\biggr) 1/p

Qr(z0)

\leq N\nu  - 1(| ( - \Delta x)
1/6uh| p)1/pQ\nu r(z0)

\leq N\nu  - 1(| ( - \Delta x)
1/6u| p)1/pQ\nu r(z0)

+N\nu  - 1
\infty \sum 
k=0

2 - kFk(1).

Finally, the mean oscillation estimate of ( - \Delta x)
1/6u follows from the above inequality

and (3.34) with R= 1.
Estimate of I2. First, by Lemma 3.3 and the scaling argument presented above,

\lambda 1/2(| u0| p)1/pQ\nu r(z0)
+ (| Dvu0| p)1/pQ\nu r(z0)

\leq N

\infty \sum 
k=0

2 - k2/8Fk(1),(3.35)

\lambda 1/2(| u0| p)1/pQr(z0)
+ (| Dvu0| p)1/pQr(z0)

\leq N\nu (4d+2)/p
\infty \sum 
k=0

2 - k2/8Fk(1).(3.36)

Hence, as above, by (3.36), it remains to estimate I2 with u replaced by uh.
Next, by Proposition 3.4, we get

\lambda 1/2

\biggl( 
| uh  - (uh)Qr(z0)| 

p

\biggr) 1/p

Qr(z0)

+

\biggl( 
| Dvuh  - (Dvuh)Qr(z0)| 

p

\biggr) 1/p

Qr(z0)

\leq N\nu  - 1\lambda 1/2(| u| p)1/pQ\nu r(z0)
+N\nu  - 1(| Dvu| p)1/pQ\nu r(z0)

+N\nu  - 1
\infty \sum 
j=0

2 - 2j(| ( - \Delta x)
1/6u| p)1/pQ\nu r,2j\nu r(z0)

+N\nu  - 1(A1 +A2),

where

A1 =

\infty \sum 
j=0

2 - 2j(| ( - \Delta x)
1/6u0| p)1/pQ\nu r,2j\nu r(z0)

,

A2 = \lambda 1/2(| u0| p)1/pQ\nu r(z0)
+ (| Dvu0| p)1/pQ\nu r(z0)

.
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Lp ESTIMATES FOR KFP EQUATIONS 1247

By (3.33) with R= 2j , we get

A1 \leq N

\infty \sum 
j=0

2 - 2j
\infty \sum 
k=0

2 - kFk(2
j).

Using the fact that Fk(2
j) = Fk+j(1) and changing the index of summation k\rightarrow k+ j

yield

A1 \leq N

\infty \sum 
j=0

2 - jFj(1).

Finally, note that the term A2 is estimated in (3.35). The lemma is proved.

Proof of Theorem 3.1. In the first two steps below, we assume, additionally, that

( - \Delta x)
1/6u\in Lp,r1,...,rd,q(\BbbR 

1+2d
T ,w).(3.37)

We will remove this assumption in Step 3.
Step 1: Estimate of a localized function. By Lemma A.4 and the self-improving

property of the Ap-weights (see, for instance, Corollary 7.2.6 of [17]), there exists a
number

p0 = p0(d, p, r1, . . . , rd, q,K), 1< p0 <min\{ p, r1, . . . , rd, q\} ,

such that

Lp,r1,...,rd,q(\BbbR 
1+2d
T ,w)\subset Lp0,loc(\BbbR 

1+2d
T ),(3.38)

w0 \in Aq/p0
(\BbbR ), wi \in Ari/p0

(\BbbR ), i= 1, . . . , d.(3.39)

Let \phi \in C\infty 
0 (\BbbR 1+2d) be a function such that \phi = 1 on \widetilde Q1, and denote

\phi n(z) = \phi (t/n2, x/n3, v/n), un = u\phi n, \vec{}fn = \vec{}f\phi n.(3.40)

Observe that un satisfies

P0un + \lambda un =divv(\vec{}fn) + gn,

where

gn = g\phi n  - \vec{}f \cdot Dv\phi n + uP0\phi n  - 2(aDv\phi n) \cdot Dvu.(3.41)

Note that

\vec{}fn, gn \in Lp0(\BbbR 
1+2d
T ), un \in \BbbS p0(\BbbR 

1+2d
T ).

We now use Proposition 3.11 and conclude that for any z0 \in \BbbR 1+2d
T ,

(( - \Delta x)
1/6un)

\#
T (z0)\leq N\nu  - 1\scrM 1/p0

T | ( - \Delta x)
1/6un| p0(z0)(3.42)

+N\nu (4d+2)/p0

\infty \sum 
k=0

2 - k
\bigl( 
\BbbM 1/p0

2k+1,T
| \vec{}fn| p0(z0) + \lambda  - 1/2\BbbM 1/p0

2k+1,T
| gn| p0(z0)

\bigr) 
,
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1248 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

\lambda 1/2(un)
\#
T (z0) + (Dvun)

\#
T (z0)(3.43)

\leq N\nu  - 1\lambda 1/2\scrM 1/p0

T | un| p0(z0) +N\nu  - 1\scrM 1/p0

T | Dvun| p0(z0)

+N\nu  - 1
\infty \sum 
k=0

2 - 2k\BbbM 1/p0

2k,T
| ( - \Delta x)

1/6un| p0(z0)

+N\nu (4d+2)/p0

\infty \sum 
k=0

2 - k
\bigl( 
\BbbM 1/p0

2k+1,T
| \vec{}fn| p0(z0) + \lambda  - 1/2\BbbM 1/p0

2k+1,T
| gn| p0(z0)

\bigr) 
,

where \BbbM c,T f and \scrM T f are defined as in (1.2). We take the \| \cdot \| -norm on both sides
of (3.42)--(3.43). Then we use Theorem A.3 with p/p0, q/p0, ri/p0 > 1, i = 1, . . . , d,
combined with (3.39). By this and the Minkowski inequality, we obtain

\| ( - \Delta x)
1/6un\| \leq N\nu  - 1\| ( - \Delta x)

1/6un\| (3.44)

+N\nu (4d+2)/p0(\| \vec{}fn\| + \lambda  - 1/2\| gn\| ),
\lambda 1/2\| un\| + \| Dvun\| \leq N\nu  - 1(\lambda 1/2\| un\| + \| Dvun\| )(3.45)

+N\nu  - 1\| ( - \Delta x)
1/6un\| +N\nu (4d+2)/p0(\| \vec{}fn\| + \lambda  - 1/2\| gn\| ).

Taking \nu \geq 2+4N , we cancel the term \| ( - \Delta x)
1/6un\| on the right-hand side of (3.44)

and obtain

\| ( - \Delta x)
1/6un\| \leq N(\| \vec{}fn\| + \lambda  - 1/2\| gn\| ).(3.46)

By using the last inequality, (3.45), and our choice of \nu , we prove

\lambda 1/2\| un\| + \| Dvun\| \leq N(\| \vec{}fn\| + \lambda  - 1/2\| gn\| ).(3.47)

Step 2: Limiting argument. By (3.47), (3.41), and the construction of \phi n (see
(3.40)), we have

\| \lambda 1/2| u| + | Dvu| \| Lp,r1,...,rd,q( \widetilde Qn\cap \BbbR 1+2d
T )

\leq N\| \vec{}f\| +N\lambda  - 1/2\| g\| +Nn - 1\lambda  - 1/2(\| \vec{}f\| + \| Dvu\| + \| u\| ).

Passing to the limit as n\rightarrow \infty , we prove the estimate (1.15) for u and Dvu.
Next, note that due to (1.13), and H\"older's inequality for any \eta \in C\infty 

0 (\BbbR 1+2d
T ),

( - \Delta x)
1/6\eta \in L\ast :=Lp\ast ,r\ast 1 ,...,r

\ast 
d,q

\ast (\BbbR 1+2d
T ,w\ast ),

where p\ast , r\ast 1 , . . . , r
\ast 
d, q

\ast are H\"older's conjugates relative to p, r1, . . . , rd, q and

w\ast (t, v) =w
 - 1/(q - 1)
0 (t)

d\prod 
i=1

w
 - 1/(ri - 1)
i (vi).

Then, by this and the convergence un \rightarrow u in Lp,r1,...,rd,q(\BbbR 
1+2d
T ,w), we have\bigm| \bigm| \bigm| \bigm| \int 

\BbbR 1+2d
T

(( - \Delta x)
1/6u)\eta dz

\bigm| \bigm| \bigm| \bigm| \leq \| \eta \| L\ast lim
n\rightarrow \infty 

\| ( - \Delta x)
1/6un\| .

The above inequality combined with (3.46) gives (1.15) for ( - \Delta x)
1/6u.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

1/
24

 to
 1

28
.1

48
.2

54
.5

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Lp ESTIMATES FOR KFP EQUATIONS 1249

Step 3: removing the assumption (3.37). Let u\varepsilon be the convolution of u in the x
variable with \varepsilon  - d\zeta (\cdot /\varepsilon ), where \zeta is a smooth cutoff function with the unit integral.
We note that

P0u\varepsilon + \lambda u\varepsilon =divv \vec{}f\varepsilon + g\varepsilon .

Furthermore, by (1.13), ( - \Delta x)
1/6\zeta (\cdot /\varepsilon ) satisfies the condition of Lemma A.7. Hence,

due to the identity

( - \Delta x)
1/6u\varepsilon = \varepsilon  - du \ast ( - \Delta x)

1/6\zeta (\cdot /\varepsilon )

and Lemma A.7, the condition (3.37) holds with u replaced by u\varepsilon . Then, by what
was proved above and Lemma A.7,

\| \lambda 1/2| u\varepsilon | + | Dvu\varepsilon | + | ( - \Delta x)
1/6u\varepsilon | \| 

\leq N\| | \vec{}f\varepsilon | + \lambda  - 1/2| g\varepsilon | \| \leq N\| | \vec{}f | + \lambda  - 1/2| g| \| .
(3.48)

By using a duality argument as in Step 2 and (3.48), we conclude that (3.37) and
(1.15) hold for \lambda > 0.

Step 4: case g\equiv 0, \lambda = 0. For any \lambda > 0, we have

P0u+ \lambda u=divv \vec{}f + \lambda u.

Then, by (1.15) with \lambda > 0, and \lambda u in place of g,

\| \lambda 1/2| u| + | Dvu| + | ( - \Delta x)
1/6u| \| \leq N\| f\| + \lambda 1/2\| u\| .

Taking the limit as \lambda \downarrow 0, we prove the desired bound.
To prove the assertion for the space Lp;r1,...,rd(\BbbR 

1+2d
T , | x| \alpha 

\prod d
i=1wi(vi)), we follow

the above argument, only modifying the proof of the estimate for ( - \Delta x)
1/6u. In

particular, in Steps 2--3, due to (1.13), for any \alpha \in ( - 1, p - 1) and any \eta \in C\infty 
0 (\BbbR 1+2d

T ),
one has

( - \Delta x)
1/6\eta \in Lp\ast ;r\ast 1 ,...,r

\ast 
d

\Biggl( 
\BbbR 1+2d

T , | x|  - \alpha /(p - 1)
d\prod 

i=1

w
 - 1/(ri - 1)
i (vi)

\Biggr) 
,

where the latter is defined by (1.6) with

p\ast , r\ast 1 , . . . , r
\ast 
d,  - \alpha /(p - 1), w

 - 1/(r1 - 1)
1 , . . . ,w

 - 1/(rd - 1)
d

in place of p, r1, . . . , rd, \alpha , w1, . . . ,wd, respectively. The theorem is proved.

4. Proof of Theorem 1.15.

4.1. Proof of assertion (i). In this section, we prove the main result for the
KFP equation in the space \BbbS p,r1,...,rd,q(\BbbR 

1+2d
T ,w). The assertion (iv) of Theorem 1.15

is proved along the lines of this section (see Remark 4.3). We start by proving a mean
oscillation estimate, which generalizes the one in Proposition 3.11.

Lemma 4.1. Let \lambda \geq 0, \gamma 0 > 0, \nu \geq 2, p1 \in (1,\infty ), \alpha \in (1,3/2) be numbers,
T \in ( - \infty ,\infty ], and let R0 be the constant in Assumption 1.2 (\gamma 0). Let u\in \BbbS p1

(\BbbR 1+2d
T ),

\vec{}f, g \in Lp1(\BbbR 
1+2d
T ) be functions such that

\scrP u+ \lambda u= divv \vec{}f + g.(4.1)
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1250 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

Then, under Assumptions 1.1--1.2 (\gamma 0), there exists a sequence of positive numbers
\{ ck, k\geq 0\} such that

\infty \sum 
k=0

ck \leq N0(d, p1, \alpha ),

and for any z0 \in \BbbR 1+2d
T and r \in (0,R0/(4\nu )),

\lambda 1/2

\biggl( 
| u - (u)Qr(z0)| 

p1

\biggr) 1/p1

Qr(z0)

+

\biggl( 
| Dvu - (Dvu)Qr(z0)| 

p1

\biggr) 1/p1

Qr(z0)

\leq N\nu  - 1\lambda 1/2(| u| p1)
1/p1

Q\nu r(z0)
+N\nu  - 1(| Dvu| p1)

1/p1

Q\nu r(z0)

+N\nu  - 1
\infty \sum 
k=0

2 - 2k(| ( - \Delta x)
1/6u| p1)

1/p1

Q
\nu r,2k\nu r

(z0)

+N\nu (4d+2)/p1

\infty \sum 
k=0

2 - k
\bigl( 
(| \vec{}f | p1)

1/p1

Q
2\nu r,2k+1(2\nu r)

(z0)
+ \lambda  - 1/2(| g| p1)

1/p1

Q
2\nu r,2k+1(2\nu r)

(z0)

\bigr) 
+N\nu (4d+2)/p1\gamma 

(\alpha  - 1)/(\alpha p1)
0

\infty \sum 
k=0

ck(| Dvu| p1\alpha )
1/(p1\alpha )
Q

2\nu r,2k+1(2\nu r)
(z0)

,

\biggl( 
| ( - \Delta x)

1/6u - (( - \Delta x)
1/6u)Qr(z0)| 

p1

\biggr) 1/p1

Qr(z0)

\leq N\nu  - 1(| ( - \Delta x)
1/6u| p1)

1/p1

Q\nu r(z0)

+N\nu (4d+2)/p1

\infty \sum 
k=0

2 - k
\bigl( 
(| \vec{}f | p1)

1/p1

Q
2\nu r,2k+1(2\nu r)

(z0)
+ \lambda  - 1/2(| g| p1)

1/p1

Q
2\nu r,2k+1(2\nu r)

(z0)

\bigr) 
+N\nu (4d+2)/p1\gamma 

(\alpha  - 1)/(\alpha p1)
0

\infty \sum 
k=0

ck(| Dvu| p1\alpha )
1/(p1\alpha )
Q

2\nu r,2k+1(2\nu r)
(z0)

,

where N =N(d, \delta , p1, \alpha ).

Proof. Clearly, we may assume that Dvu\in Lp1\alpha (Q2\nu r,2k+1(2\nu r)(z0)) for any k\geq 0.
Thanks to Lemma 3.10, we may also assume that z0 = 0.

We introduce

\=a(t) = (a(t, \cdot , \cdot ))B(2\nu r)3\times B2\nu r and \=P0 = \partial t  - v \cdot Dx  - \=aijDvivj .

Observe that u satisfies \=P0u+\lambda u=divv(\vec{}f+(a - \=a)Dvu)+g. By this and Proposition
3.11,

\lambda 1/2

\biggl( 
| u - (u)Qr(z0)| 

p1

\biggr) 1/p1

Qr

+

\biggl( 
| Dvu - (Dvu)Qr(z0)| 

p1

\biggr) 1/p1

Qr

\leq N\nu  - 1(| Dvu| p1)
1/p1

Q\nu r
+N\nu  - 1

\infty \sum 
k=0

2 - 2k(| ( - \Delta x)
1/6u| p1)

1/p1

Q
\nu r,2k\nu r

+N\nu (4d+2)/p1

\infty \sum 
k=0

2 - k
\bigl( 
(| \vec{}f | p1)

1/p1

Q
2\nu r,2k+1(2\nu r)

+ \lambda  - 1/2(| g| p1)
1/p1

Q
2\nu r,2k+1(2\nu r)

\bigr) 
+N\nu (4d+2)/p1

\infty \sum 
k=0

2 - k(| a - \=a| p1 | Dvu| p1)
1/p1

Q
2\nu r,2k+1(2\nu r)

.
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Lp ESTIMATES FOR KFP EQUATIONS 1251

Using H\"older's inequality with \alpha and \alpha 1 := \alpha /(\alpha  - 1) gives

I := (| a - \=a| p1 | Dvu| p1)
1/p1

Q
2\nu r,2k+1(2\nu r)

\leq (| a - \=a| p1\alpha 1)
1/(p1\alpha 1)
Q

2\nu r,2k+1(2\nu r)
(| Dvu| p1\alpha )

1/(p1\alpha )
Q

2\nu r,2k+1(2\nu r)
=: I

1/(p1\alpha 1)
1 I

1/(p1\alpha )
2 .

Due to the boundedness of the function a, we have

I1 \leq N(| a - \=a| )Q
2\nu r,2k+1(2\nu r)

.

Furthermore, since 2\nu r\leq R0/2, by Lemma A.6 with c= 2k+1,

I1 \leq N23k\gamma 0,

and then,

2 - kI
1/(p1\alpha 1)
1 \leq N2 - k+3k/(p1\alpha 1)\gamma 

1/(p1\alpha 1)
0 .

We set ck = 2 - k+3k/(p1\alpha 1), k\geq 0, and note that
\sum 

k ck <\infty , since \alpha 1 > 3. The estimate
for ( - \Delta x)

1/6u is established in the same way. The lemma is proved.

In the next lemma, we prove the a priori estimate (1.15) with b \equiv \=b \equiv 0, c \equiv 0,
and compactly supported u\in \BbbS p,r1,...,rd,q(\BbbR 

1+2d
T ,w), \vec{}f , g \in Lp,r1,...,rd,q(\BbbR 

1+2d
T ,w).

Lemma 4.2. Let
-- \lambda > 0, p, r1, . . . , rd, q > 1,K \geq 1 be numbers, T \in ( - \infty ,\infty ];
-- wi, i= 0,1, . . . , d, be weights on \BbbR satisfying (1.14);
-- Assumption 1.1 be satisfied;
-- the functions u \in \BbbS p,r1,...,rd,q(\BbbR 

1+2d
T ,w), \vec{}f, g \in Lp,r1,...,rd,q(\BbbR 

1+2d
T ,w) have

compact supports and satisfy (4.1).
Then, there exists a number \gamma 0 = \gamma 0(d, \delta , p, r1, . . . , rd, q,K) > 0 such that, under As-
sumption 1.2 (\gamma 0), we have

\lambda 1/2\| u\| + \| Dvu\| + \| ( - \Delta x)
1/6u\| \leq N\| \vec{}f\| +N\lambda  - 1/2\| g\| +N\lambda  - 1/2R - 2

0 \| u\| ,(4.2)

where \| \cdot \| = \| \cdot \| Lp,r1,...,rd,q(\BbbR 1+2d
T ,w), N =N(d, \delta , p, r1, . . . , rd, q,K), and R0 \in (0,1) is

the constant in Assumption 1.2 (\gamma 0).

Proof. Step 1: estimate of a function with a small support in t. Let R1, \gamma 0 > 0 be
numbers which we will choose later. We assume, additionally, that u vanishes outside
(s - (R0R1)

2, s)\times \BbbR 2d for some s \in \BbbR . The small support in time restriction will be
removed in Step 2.

Let p0 be the number satisfying (3.38)--(3.39). Then, since u, \vec{}f, g have compact
supports, we have u,Dvu, \vec{}f, g \in Lp0

(\BbbR 1+2d
T ), and then by (4.1), \partial tu  - v \cdot Dxu \in 

\BbbH  - 1
p0

(\BbbR 1+2d
T ), so that u\in \BbbS p0

(\BbbR 1+2d
T ). By Corollary 2.2, ( - \Delta x)

1/6u\in Lp0
(\BbbR 1+2d

T ).
We fix some \nu \geq 2, \alpha \in (1,min\{ 3/2, p0\} ), and denote p1 = p0/\alpha , so that p0 = \alpha p1.

If 4\nu r\geq R0, then by H\"older's inequality with \alpha and \alpha 1 = \alpha /(\alpha  - 1), for any function

h\in L\alpha p1,loc(\BbbR 
1+2d
T ) vanishing outside (s - (R0R1)

2, s)\times \BbbR 2d and z \in \BbbR 1+2d
T ,

(| h - (h)Qr(z)| 
p1)

1/p1

Qr(z)
\leq 2(| h| p1)

1/p1

Qr(z)

\leq 2(I(s - (R0R1)2,s))
1/(p1\alpha 1)
Qr(z)

(| h| p1\alpha )
1/(p1\alpha )
Qr(z)

\leq 2(R0R1r
 - 1)2/(p1\alpha 1)\scrM 1/(p1\alpha )

T | h| p1\alpha (z)

\leq N\nu 2/(p1\alpha 1)R
2/(p1\alpha 1)
1 \scrM 1/(p1\alpha )

T | h| p1\alpha (z).
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1252 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

In the case when 4\nu r < R0, we use Lemma 4.1, which is applicable, since \vec{}f, g \in 
Lp1

(\BbbR 1+2d
T ), and u\in \BbbS p1

(\BbbR 1+2d
T ). Combining these cases, we get, in \BbbR 1+2d

T ,

\lambda 1/2(u)\#T + (Dvu)
\#
T

\leq N\nu 2/(p1\alpha 1)R
2/(p1\alpha 1)
1 (\lambda 1/2\scrM 1/(p1\alpha )

T | u| p1\alpha +\scrM 1/(p1\alpha )
T | Dvu| p1\alpha )

+N\nu  - 1(\lambda 1/2\scrM 1/p1

T | u| p1 +\scrM 1/p1

T | Dvu| p1)

+N\nu  - 1
\infty \sum 
k=0

2 - 2k\BbbM 1/p1

2k,T
| ( - \Delta x)

1/6u| p1

+N\nu (4d+2)/p1\gamma 
1/(p1\alpha 1)
0

\infty \sum 
k=0

ck\BbbM 1/(p1\alpha )

2k+1,T
| Dvu| p1\alpha 

+N\nu (4d+2)/p1

\infty \sum 
k=0

2 - k(\BbbM 1/p1

2k+1,T
| \vec{}f | p1 + \lambda  - 1/2\BbbM 1/p1

2k+1,T
| g| p1),

and

(( - \Delta x)
1/6u)\#T

\leq N\nu 2/(p1\alpha 1)R
2/(p1\alpha 1)
1 \scrM 1/(p1\alpha )

T | ( - \Delta x)
1/6u| p1\alpha 

+N\nu  - 1\scrM 1/p1

T | ( - \Delta x)
1/6u| p1

+N\nu (4d+2)/p1\gamma 
1/(p1\alpha 1)
0

\infty \sum 
k=0

ck\BbbM 1/(p1\alpha )

2k+1,T
| Dvu| p1\alpha 

+N\nu (4d+2)/p1

\infty \sum 
k=0

2 - k(\BbbM 1/p1

2k+1,T
| \vec{}f | p1 + \lambda  - 1/2\BbbM 1/p1

2k+1,T
| g| p1),

where (f)\#T , \BbbM c,T f , and \scrM T f are defined as in (1.2). We take the \| \cdot \| -norm of both
sides of the above inequalities and use the Minkowski inequality. Then, by (3.39) with
p0 = p1\alpha and Theorem A.3 with

p/(p1\alpha ), r1/(p1\alpha ), . . . rd/(p1\alpha ), q/(p1\alpha )> 1,

we obtain

\lambda 1/2\| u\| + \| Dvu\| \leq N(\nu  - 1 + \nu 2/(p1\alpha 1)R
2/(p1\alpha 1)
1 )(\lambda 1/2\| u\| + \| Dvu\| )(4.3)

+N\nu  - 1\| ( - \Delta x)
1/6u\| +N\nu (4d+2)/p1\gamma 

1/(p1\alpha 1)
0 \| Dvu\| 

+N\nu (4d+2)/p1(\| \vec{}f\| + \lambda  - 1/2\| g\| ),
\| ( - \Delta x)

1/6u\| \leq N(\nu  - 1 + \nu 2/(p1\alpha 1)R
2/(p1\alpha 1)
1 )\| ( - \Delta x)

1/6u\| (4.4)

+N\nu (4d+2)/p1\gamma 
1/(p1\alpha 1)
0 \| Dvu\| +N\nu (4d+2)/p1(\| \vec{}f\| + \lambda  - 1/2\| g\| ).

Taking \nu \geq 2 + 4N first, then choosing R1, \gamma 0 > 0 sufficiently small such that

N\nu (4d+2)/p1\gamma 
1/(p1\alpha 1)
0 +N\nu 2/(p1\alpha 1)R

2/(p1\alpha 1)
1 < 1/4,

and using the fact that ( - \Delta x)
1/6u \in Lp,r1,...,rd,q(\BbbR 

1+2d
T ,w) (see Corollary 3.2), we

obtain from (4.4) that

\| ( - \Delta x)
1/6u\| \leq (1/2)\| Dvu\| +N\nu (4d+2)/p1(\| \vec{}f\| + \lambda  - 1/2\| g\| ).(4.5)
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Lp ESTIMATES FOR KFP EQUATIONS 1253

By this, (4.3), and our choice of \nu ,R1, and \gamma 0, we get

\lambda 1/2\| u\| + \| Dvu\| \leq (5/8)(\lambda 1/2\| u\| + \| Dvu\| ) +N\nu (4d+2)/p1(\| \vec{}f\| + \lambda  - 1/2\| g\| ),

which implies

\lambda 1/2\| u\| + \| Dvu\| \leq N(\| \vec{}f\| + \lambda  - 1/2\| g\| ).(4.6)

This, combined with (4.5), gives

\| ( - \Delta x)
1/6u\| \leq N(\| \vec{}f\| + \lambda  - 1/2\| g\| ).(4.7)

Step 2: partition of unity. Let \zeta \in C\infty 
0 (( - (R0R1)

2,0)) be a nonnegative function
such that \int 

\zeta q(t)dt= 1, | \zeta \prime | \leq N0(R0R1)
 - 2 - 2/q.(4.8)

Observe that for any t\in \BbbR T and U \in Lp,r1,...,rd,q(\BbbR 
1+2d
T ,w), by (4.8),

\| U(t, \cdot )\| q
Lp,r1,...,rd

(\BbbR 2d,\Pi d
i=1wi)

=

\int 
\BbbR 
\| U(t, \cdot )\| q

Lp,r1,...,rd
(\BbbR 2d,\Pi d

i=1wi)
\zeta q(t - s)ds.

Multiplying the above identity by w0 and integrating over ( - \infty , T ], we get

\| U\| q =
\int 
\BbbR 
\| U\zeta (\cdot  - s)\| q ds.(4.9)

Next, note that for any s\in \BbbR , the function us(z) := u(z)\zeta (t - s) vanishes outside
(s - (R0R1)

2, s) and satisfies the equation

\scrP us(z) + \lambda us(z) = divv(\vec{}f(z)\zeta (t - s)) + g(z)\zeta (t - s) + u\zeta \prime (t - s).

By (4.6) and (4.7) proved in Step 1,

\lambda 1/2\| us\| + \| Dvus\| + \| ( - \Delta x)
1/6us\| 

\leq N\| \vec{}f\zeta (\cdot  - s)\| +N\lambda  - 1/2\| g\zeta (\cdot  - s)\| +N(R0R1)
 - 2 - 2/q\lambda  - 1/2\| u\xi (\cdot  - s)\| ,

where \xi \in C\infty 
0 (\BbbR ) is a nonnegative function such that \xi = 1 on the support of \zeta , and\int 

\xi q(t)dt=N1(R0R1)
2. Raising the above inequality to the power q, integrating over

s\in \BbbR , and using (4.9) and our choice of R1, we prove (4.2).

Remark 4.3. A version of Lemma 4.2 holds in the case when

u\in \BbbS p;r1,...,rd

\Biggl( 
\BbbR 1+2d

T , | x| \alpha 
d\prod 

i=1

wi(vi)

\Biggr) 
,

\vec{}f , g \in Lp;r1,...,rd

\Biggl( 
\BbbR 1+2d

T , | x| \alpha 
d\prod 

i=1

wi(vi)

\Biggr) 
,

and these functions have compact supports. To prove the result, one needs to follow
the proof of Lemma 4.2 but use the partition of unity in vd instead of t. We give a
few details. First, repeating the argument of Step 1, we prove the estimate (4.2) for
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1254 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

u satisfying (4.1) and vanishing outside \BbbR t \times \BbbR d
x \times \BbbR d - 1

v1,...,vd
\times (s - R0R1, s) for some

s\in \BbbR . Furthermore, we fix a nonnegative function \zeta \in C\infty 
0 (( - R0R1,0)) such that\int 

\zeta rd dvd = 1, | \zeta \prime | <N(R0R1)
 - 1 - 1/rd

and denote us(z) = u(z)\zeta (vd  - s). The function us satisfies the identity

\scrP us(z) + \lambda us(z) =Dvi [f
i(z)\zeta (vd  - s) - aid(z)\zeta \prime (vd  - s)u(z)]

 - fd(z)\zeta 
\prime (vd  - s) + g\zeta (vd  - s) - adj(z)\zeta \prime (vd  - s)Dvju(z).

As in the proof of Lemma 4.2, we obtain

\lambda 1/2\| u\| + \| Dvu\| + \| ( - \Delta x)
1/6u\| 

\leq N\| | \vec{}f | +R - 1
0 | u| + \lambda  - 1/2| g| \| +N\lambda  - 1/2R - 1

0 \| | Dvu| + | fd| \| .

Taking \lambda sufficiently large, we may erase the terms involving u from the right-hand
side of the above inequality.

Proof of Theorem 1.15 (i). First, we consider the case when b\equiv b\equiv 0 and c\equiv 0.
We will focus on the case when the weight is independent of the x variable, since in
the remaining case, the proof is the same. Let \phi n, un be the functions defined by
(3.40). Note that

\scrP un + \lambda un =divv\sansf n + \sansg \sansn ,

where

\sansf n = \vec{}f\phi n  - (aDv\phi n)u,

\sansg n = g\phi n  - \vec{}f \cdot Dv\phi n + u(\partial t\phi n  - v \cdot Dx\phi n) - (aDv\phi n) \cdot Dvu,

and, furthermore, the functions \sansf n,\sansg n, un are compactly supported, and

\sansf n,\sansg n, un \in Lp,r1,...,rd,q(\BbbR 
1+2d
T ,w).

Then, by Lemma 4.2, there exist \gamma 0 = \gamma 0(d, \delta , p, r1, . . . , rd, q,K) > 0 such that if
Assumption 1.2 (\gamma 0) holds, then for any \lambda > 0,

\| \lambda 1/2| un| + | Dvun| + | ( - \Delta x)
1/6un| \| 

\leq N\| \sansf n\| +N\lambda  - 1/2\| | \sansg n| +R - 2
0 | un| \| ,

\leq \| \vec{}f\| +N\lambda  - 1/2(\| g\| +R - 2
0 \| u\| ) +Nn - 1(1 + \lambda  - 1/2)\| u\| 

+Nn - 1\lambda  - 1/2\| | Dvu| + | \vec{}f | \| ,

where N =N(d, \delta , p, r1, . . . , rd, q,K), and R0 \in (0,1) is the number in Assumption 1.2
(\gamma 0). Using a limiting argument as in Step 2 of the proof of Theorem 3.1, we conclude
that

\| \lambda 1/2| u| + | Dvu| + | ( - \Delta x)
1/6u| \| \leq N\| f\| +N\lambda  - 1/2\| g\| +N\lambda  - 1/2R - 2

0 \| u\| .

Taking \lambda > 2NR - 2
0 so that \lambda 1/2  - N\lambda  - 1/2R - 2

0 >\lambda 1/2/2, we prove (1.15).
In the general case, we rewrite (1.1) as

\scrP u+ \lambda u=G+divvF, G= g - b \cdot Dvu - cu, F = \vec{}f  - bu.
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Lp ESTIMATES FOR KFP EQUATIONS 1255

Then, by (1.15) with F and G in place of \vec{}f and g, we get

\lambda 1/2\| u\| + \| Dvu\| + \| ( - \Delta x)
1/6u\| 

\leq N\lambda  - 1/2\| g\| +NL\lambda  - 1/2(\| Dvu\| + \| u\| ) +N\| \vec{}f\| +NL\| u\| .

Taking \lambda \geq 1+ 4(NL)2, we may drop the terms involving u on the right-hand side of
the above inequality. The assertion (i) is proved.

4.2. Proof of Theorem 1.15 (ii) and (iii). As we pointed out in Remark 1.16,
the assertion (iii) follows directly from (ii). To prove the latter, we first establish the
unique solvability result in Lp(\BbbR 1+2d) spaces.

Proposition 4.4. Theorem 1.15 (ii) is satisfied in the case when p = r1 = \cdot \cdot \cdot =
rd = q, w\equiv 1, and T =\infty .

Proof. The assertion follows from the method of continuity, Theorem 1.15 (i),
and Theorem 2.1 (i).

The following is a decay estimate for the solution to (1.1) with the compactly
supported right-hand side, which is analogous to Lemma 3.3. This result is needed
for establishing the existence part in Theorem 1.15 (ii).

Lemma 4.5. Invoke the assumptions of Proposition 4.4, and let \lambda 0 = \lambda 0(d, \delta , p,L)>
1 be the constant from the statement of this result. Assume, additionally, that \vec{}f and
g vanish outside \widetilde QR for some R \geq 1, and let u \in \BbbS p(\BbbR 1+2d) be the solution to (1.1),
which exists and is unique due to the aforementioned proposition. Then, for any
\lambda \geq \lambda 0 and j \in \{ 0,1,2, . . .\} ,

\lambda 1/2\| u\| Lp( \widetilde Q2j+1R\setminus \widetilde Q2jR) + \| Dvu\| Lp( \widetilde Q2j+1R\setminus \widetilde Q2jR)

\leq N2 - j(j - 1)/4R - j
\bigl( 
\| \vec{}f\| Lp(\BbbR 1+2d) + \lambda  - 1/2\| g\| Lp(\BbbR 1+2d)),

where N =N(d, \delta , p,L).

Proof. The proof is similar to that of Lemma 7.4 in [15]. First, by Theorem 1.15
(i), we have

\lambda 1/2\| u\| Lp(\BbbR 1+2d) + \| Dvu\| Lp(\BbbR 1+2d) \leq N\| \vec{}f\| Lp(\BbbR 1+2d) +N\lambda  - 1/2\| g\| Lp(\BbbR 1+2d).(4.10)

Let \eta j , j \in \{ 0,1,2, . . .\} , be a sequence of smooth functions such that \eta j = 0 in \widetilde Q2jR,

\eta j = 1 outside \widetilde Q2j+1R,

| \eta j | \leq 1, | Dv\eta j | \leq N2 - jR - 1, | D2
v\eta j | \leq N2 - 2jR - 2,

| Dx\eta j | \leq N2 - 3jR - 3, | \partial t\eta j | \leq N2 - 2jR - 2.
(4.11)

Note that uj = u\eta j satisfies the equation

\scrP uj +divv(buj) + biDviuj + cuj + \lambda uj =divv[ - u (aDv\eta j)]

 - (aDv\eta j) \cdot Dvu+ u(\partial t\eta j  - v \cdot Dx\eta j + b \cdot Dv\eta j + b \cdot Dv\eta j)

because \vec{}f and g vanish outside \widetilde QR. Then, by the a priori estimate in Theorem 1.15
(i), (4.11), and the fact that \lambda > 1, we get

\| \lambda 1/2| u| + | Dvu| \| Lp( \widetilde Q2j+2R\setminus \widetilde Q2j+1R)

\leq N\| u (aDv\eta j)\| Lp(\BbbR 1+2d) +N\lambda  - 1/2\| (aDv\eta j) \cdot Dvu\| Lp(\BbbR 1+2d)

+N\lambda  - 1/2\| u(\partial t\eta j  - v \cdot Dx\eta j + (b+ b) \cdot Dv\eta j)\| Lp(\BbbR 1+2d)

\leq N2 - jR - 1\| \lambda 1/2| u| + | Dvu| \| Lp( \widetilde Q2j+1R\setminus \widetilde Q2jR).

Iterating the above estimate and using (4.10), we prove the assertion.
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1256 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

Proof of Theorem 1.15 (ii). The uniqueness follows from Theorem 1.15 (i). To
prove the existence part, we follow the proof of Theorem 2.5 of [15]. Next, we delineate
the argument.

First, we consider the case T = \infty . By using the reverse H\"older inequality
for the Ap-weights and the scaling property of the Ap-weights (see, for instance,
Chapter 7 in [17]), one can show that there exists a sufficiently large number p1 =
p1(d, p, r1, . . . , rd, q,K)\in (1,\infty ) such that, for any h\in Lp1,loc(\BbbR 1+2d), one has

\| h\| Lp,r1,...,rd,q( \widetilde QR,w) \leq NR\kappa \| h\| Lp1
( \widetilde QR),(4.12)

where \kappa ,N > 0 are independent of R and h. In addition, the above inequality also
holds with \widetilde Q2R \setminus \widetilde QR in place of \widetilde QR.

Next, let \vec{}fn, gn, n \geq 1, be sequences of C\infty 
0 (\BbbR 1+2d) functions converging to \vec{}f

and g in Lp,r1,...,rd,q(\BbbR 1+2d,w), respectively. Then, by Proposition 4.4, for any n, the
equation

\scrP un +divv(bun) + b \cdot Dvun + (c+ \lambda )un =divv \vec{}fn + gn(4.13)

has a unique solution un \in \BbbS p1
(\BbbR 1+2d). Fix any n, and let R=Rn \geq 1 be a constant

such that \vec{}fn and gn vanish outside \widetilde QR. Then, by (4.12) combined with Lemma 4.5,
for any j \in \{ 0,1,2, . . .\} ,

\| \lambda 1/2| un| + | Dvun| \| Lp,r1,...,rd,q( \widetilde Q2j+1R\setminus \widetilde Q2jR,w)

\leq N(2jR)\kappa \| \lambda 1/2| un| + | Dvun| \| Lp1
( \widetilde Q2j+1R\setminus \widetilde Q2jR)

\leq N(2jR)\kappa 2 - j(j - 1)/4R - j
\bigl( 
\| \vec{}fn\| Lp1

(\BbbR 1+2d) + \lambda  - 1/2\| gn\| Lp1
(\BbbR 1+2d)

\bigr) 
.

The above inequality implies that un \in \BbbS p,r1,...,rd,q(\BbbR 1+2d,w). Hence, by Theorem
1.15 (i), un, n \geq 1, is a Cauchy sequence in \BbbS p,r1,...,rd,q(\BbbR 1+2d,w) and has a limit u.
Passing to the limit in (4.13), we conclude the existence of the unique solution to
(1.1).

The case T <\infty is treated as in the proof of Theorem 2.1 (i).

5. Proof of Theorem 1.23. In the next two lemmas, we prove energy identities
for the operator

Y u := \partial tu+ \alpha (\sansv ) \cdot Dxu.

For T \in ( - \infty ,\infty ], let H1
2 (\BbbR 

1+d+d1

T ) be the space of functions u \in L2(\BbbR 1+d+d1

T ) such
that D\sansv u\in L2(\BbbR 1+d+d1

T ), and let \langle \cdot , \cdot \rangle T be the duality pairing between \BbbH  - 1
2 (\BbbR 1+d+d1

T )
and H1

2 (\BbbR 
1+d+d1

T ) given by

\langle f, g\rangle T =

\int T

 - \infty 

\int 
\BbbR d

[f(t, x, \cdot ), g(t, x, \cdot )]dxdt,(5.1)

where

[f, g] =

\int 
\BbbR d1

\bigl( 
(1 - \Delta \sansv )

 - 1/2f
\bigr) \bigl( 

(1 - \Delta \sansv )
1/2g

\bigr) 
d\sansv .

Lemma 5.1. Let u \in H1
2 (\BbbR 1+d+d1) be a function such that Y u \in \BbbH  - 1

2 (\BbbR 1+d+d1).
Then,

\langle Y u,u\rangle \infty = 0.
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Lp ESTIMATES FOR KFP EQUATIONS 1257

Proof. For a distribution h on \BbbR 1+d+d1 , a cutoff function \eta \in C\infty 
0 (\BbbR 1+d+d1) with

the unit integral, and \varepsilon > 0, we denote

h\varepsilon (t, x, \sansv ) = \varepsilon  - (1+\theta d/2+d1)(h, \eta ((t - \cdot )/\varepsilon , (x - \cdot )/\varepsilon \theta /2, (\sansv  - \cdot )/\varepsilon )),(5.2)

where (h, \eta ) is the action of h on \eta . For the sake of convenience, we omit \BbbR 1+d+d1 in
the notation of functional spaces and write \langle \cdot , \cdot \rangle = \langle \cdot , \cdot \rangle \infty . First, we split \langle Y u,u\rangle as
follows:

\langle Y u,u\rangle = \langle Y u\varepsilon , u\varepsilon \rangle + \langle Y u - (Y u)\varepsilon , u\rangle 
+ \langle (Y u)\varepsilon  - Y u\varepsilon , u\rangle + \langle Y u\varepsilon , u - u\varepsilon \rangle 

=: I1 + I2 + I3 + I4.

Since u\varepsilon is a smooth function vanishing at infinity, one has I1 = 0. Furthermore, by
the properties of Bessel potential spaces (see, for example, Theorem 13.9.2 in [24]),

| I2| \leq \| Y u - (Y u)\varepsilon \| \BbbH  - 1
2
\| u\| H1

2
\rightarrow 0 as \varepsilon \rightarrow 0.

Next, note that\bigl( 
(Y u)\varepsilon  - Y u\varepsilon 

\bigr) 
(t, x, \sansv )

= \varepsilon  - \theta /2

\int 
(\alpha (\sansv  - \varepsilon \sansv \prime ) - \alpha (\sansv )) \cdot Dx\eta (t

\prime , x\prime , \sansv \prime )u(t - \varepsilon t\prime , x - \varepsilon \theta /2x\prime , \sansv  - \varepsilon \sansv \prime )dx\prime d\sansv \prime dt\prime ,

and, then, by the Minkowski inequality and Assumption 1.20, we have

\| (Y u)\varepsilon  - Y u\varepsilon \| L2
\leq \varepsilon \theta /2\| u\| L2

\rightarrow 0(5.3)

as \varepsilon \rightarrow 0, which gives

I3 \rightarrow 0 as \varepsilon \rightarrow 0.

Next, by duality,

I4 \leq \| Y u\varepsilon \| \BbbH  - 1
2
\| u - u\varepsilon \| H1

2
.

By (5.3), for sufficiently small \varepsilon > 0, the first factor on the right-hand side is bounded
by

\| (Y u)\varepsilon \| \BbbH  - 1
2

+ \| (Y u)\varepsilon  - Y u\varepsilon \| \BbbH  - 1
2

\leq \| Y u\| \BbbH  - 1
2

+ \| u\| L2 .

Thus, by this and the fact that

\| u - u\varepsilon \| H1
2
\rightarrow 0 as \varepsilon \rightarrow 0,

we conclude that I4 \rightarrow 0 as \varepsilon \rightarrow 0. The lemma is proved.

Lemma 5.2. Let T \in \BbbR , u \in H1
2 (\BbbR 

1+d+d1

T ), and Y u \in \BbbH  - 1
2 (\BbbR 1+d+d1

T ). Then, for
a.e. s\in ( - \infty , T ],

\langle Y u,u\rangle s = (1/2)\| u(s, \cdot )\| 2L2(\BbbR d+d1 ),

where \langle \cdot , \cdot \rangle s is defined as in (5.1).
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1258 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

Proof. We extend u by 0 for t > T . Let \xi be a smooth function on \BbbR defined by\left\{     
\xi (t) = 0, t\leq 1,

\xi (t)\in (0,1), t\in (1,2),

\xi (t) = 1, t\geq 2.

We fix some s \in ( - \infty , T ] and denote \xi \varepsilon (\cdot ) = \xi ((s  - \cdot )/\varepsilon ), u\varepsilon = u\xi \varepsilon . It follows that
u\varepsilon \in H1

2 (\BbbR 1+d+d1) and Y u\varepsilon = \xi \varepsilon (Y u) + u\xi \prime \varepsilon \in \BbbH  - 1
2 (\BbbR 1+d+d1). Then, by Lemma 5.1,

\langle Y u\varepsilon , u\varepsilon \rangle s = 0,

which gives

\langle (Y u)\xi \varepsilon , u\varepsilon \rangle s = - (1/2)

\int 
\BbbR 1+d+d1

s

u2(\xi 2\varepsilon )
\prime dxd\sansv dt.(5.4)

The integral on the left-hand side of (5.4) equals\int 
\BbbR 1+d

s

[(Y u)(t, x, \cdot ), u(t, x, \cdot )]\xi 2\varepsilon (t)dxdt\rightarrow 
\int 
\BbbR 1+d

s

[(Y u)(t, x, \cdot ), u(t, x, \cdot )]dxdt

as \varepsilon \rightarrow 0 by the dominated convergence theorem.
Note that

\int s

 - \infty (\xi 2\varepsilon )
\prime dt= - 1. Then, the right-hand side of (5.4) is equal to

1

2
\| u(s, \cdot , \cdot )\| 2L2(\BbbR d+d1 )  - 

1

2

\int s

 - \infty 
(\| u(t, \cdot , \cdot )\| 2L2(\BbbR d+d1 )  - \| u(s, \cdot , \cdot )\| 2L2(\BbbR d+d1 ))(\xi 

2
\varepsilon (t))

\prime dt.

The last term is bounded by

N\varepsilon  - 1

\int s - \varepsilon 

s - 2\varepsilon 

\bigm| \bigm| \| u(t, \cdot , \cdot )\| 2L2(\BbbR d+d1 )  - \| u(s, \cdot , \cdot )\| 2L2(\BbbR d+d1 )

\bigm| \bigm| dt.
By the Lebesgue differentiation theorem, the above expression converges to 0 as \varepsilon \rightarrow 0
for a.e. s\in ( - \infty , T ].

Proof of Theorem 1.23. First, note that by Remark 1.16, we only need to prove
the assertion (i).

(i) By pairing both sides of (1.16) with 2u and using Lemma 5.2, the Cauchy--
Schwarz inequality, and Assumptions 1.1 and 1.4, for a.e. s\in ( - \infty , T ], we obtain

\| u(s, \cdot , \cdot )\| 2L2(\BbbR d+d1 ) + \delta \| D\sansv u\| 2L2(\BbbR 
1+d+d1
s )

+ (\lambda  - N1)\| u\| 2L2(\BbbR 
1+d+d1
s )

\leq N\| \vec{}f\| 2
L2(\BbbR 

1+d+d1
s )

+N\lambda  - 1\| g\| 2
L2(\BbbR 

1+d+d1
s )

,
(5.5)

where N1 = N1(d, d1, \delta ,L) and N = N(d, d1, \delta ). Taking \lambda \geq 2N1, we may re-
place \lambda  - N1 with \lambda /2. Finally, by this and the fact that (5.5) holds for a.e. s \in 
( - \infty , T ], the desired estimate (1.17) is valid, which also implies the uniqueness part of
assertion (i).

To prove the existence, due to the method of continuity and the a priori estimate
(1.17), we only need to prove that (Y  - \Delta \sansv +\lambda )C\infty (\BbbR 1+d+d1) is dense in \BbbH  - 1

2 (\BbbR 1+d+d1)
for \lambda > 0. Assume the opposite is true. Then, by duality, there exists a nonzero
u\in H1

2 (\BbbR 1+d+d1) such that the equality

 - Y u - \Delta \sansv u+ \lambda u= 0
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Lp ESTIMATES FOR KFP EQUATIONS 1259

holds in the sense of distributions. Mollifying the above equation with the mollifier
defined in (5.2) gives

 - Y u\varepsilon  - \Delta \sansv u\varepsilon + \lambda u\varepsilon = (Y u)\varepsilon  - Y u\varepsilon .

Then, replacing t with  - t in the a priori estimate (1.17) and using (5.3), we get

\lambda \| u\varepsilon \| L2(\BbbR 1+d+d1 ) \leq N\varepsilon \theta /2\| u\| L2(\BbbR 1+d+d1 ).

Passing to the limit as \varepsilon \rightarrow 0 in the above inequality, we conclude u\equiv 0, which gives
a contradiction. The theorem is proved.

Appendix A.

Lemma A.1 (Lemma A.1 in [15]). Let \sigma > 0, R > 0, p \geq 1 be numbers, and let
f \in Lp,loc(\BbbR d). Denote

g(x) =

\int 
| y| >R3

f(x+ y)| y|  - (d+\sigma ) dy.

Then,

(| g| p)1/pBR3
\leq N(d,\sigma )R - 3\sigma 

\infty \sum 
k=0

2 - 3k\sigma (| f | p)1/pB
(2kR)3

.

Lemma A.2. Let s\in (0,1/2). Then, the following assertions hold.
(i) One has

Dx( - \Delta x)
 - su(x) =N(d, s)p.v.

\int 
u(x - y)

y

| y| d - 2s+2
dy, u\in \scrS (\BbbR d).(A.1)

This formula also holds for u\in C1
0 (\BbbR d) (see Definition 1.9).

(ii) For any u\in C2
0 (\BbbR d),\bigl( 

Dx( - \Delta x)
 - s
\bigr) \bigl( 
( - \Delta x)

su
\bigr) 
\equiv Dxu.(A.2)

Proof. It is well known that for any u \in \scrS (\BbbR d) (see, for example, Chapter 5 of
[36]),

( - \Delta x)
 - su(x) =N0(d, s)

\int 
u(x - y)

1

| y| d - 2s
dy.

Differentiating under the integral's sign and integrating by parts, we obtain

N - 1
0 Dx( - \Delta x)

 - su(x) =

\int 
Dxu(x - y)

1

| y| d - 2s
dy

= - lim
\varepsilon \downarrow 0

\int 
| y| >\varepsilon 

Dyu(x - y)
1

| y| d - 2s
dy= - (d - 2s) lim

\varepsilon \downarrow 0

\int 
| y| >\varepsilon 

u(x - y)
y

| y| d - 2s+2
dy,

which proves the first part of assertion (i).
Next, since y| y|  - d+2s - 2 is an odd function, we have\bigm| \bigm| \bigm| \bigm| \int 

| y| >\varepsilon 

u(x - y)
y

| y| d - 2s+2
dy

\bigm| \bigm| \bigm| \bigm| \leq \int 
| y| >1

| u(x - y)| dy

| y| d - 2s+1
dy

+

\int 
\varepsilon <| y| <1

| u(x - y) - u(x)| | y| 
| y| d - 2s+2

dy\leq N(d, s)\| u\| C1(\BbbR d).

(A.3)
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1260 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

This bound combined with a limiting argument enables us to extend the formula (A.1)
for u\in C1

0 (\BbbR d).
(ii) First, for any u\in C2

0 (\BbbR d), by (A.3) and (1.11),

\| Dx( - \Delta x)
 - s
\bigl( 
( - \Delta x)

su
\bigr) 
\| L\infty (\BbbR d)

\leq N(d, s)\| ( - \Delta x)
su\| C1(\BbbR d) \leq N(d, s)\| u\| C2(\BbbR d),

(A.4)

so that the left-hand side of (A.2) is well defined. Furthermore, note that (A.2)
holds if u \in \scrS (\BbbR d). Then, the desired assertion follows from (A.4) and a limiting
argument.

Theorem A.3 (Corollaries 3.2 and 3.5 of [15]). Let c\geq 1, K \geq 1, p, q, r1, . . . , rd >
1 be numbers, T \in ( - \infty ,\infty ], and f \in Lp,r1,...,rd,q(\BbbR 

1+2d
T ,w), where w is given by (1.5),

and wi, i= 0,1, . . . , d satisfy (1.14). Then, the following assertions hold.
(i) (Hardy--Littlewood type theorem)

\| \BbbM c,T f\| Lp,r1,...,rd,q(\BbbR 1+2d
T ,w) \leq N(d, p, q, r1, . . . , rd,K)\| f\| Lp,r1,...,rd,q(\BbbR 1+2d

T ,w).

(ii) (Fefferman--Stein type theorem)

\| f\| Lp,r1,...,rd,q(\BbbR 1+2d
T ,w) \leq N(d, p, q, r1, . . . , rd,K)\| f\#

c,T \| Lp,r1,...,rd,q(\BbbR 1+2d
T ,w).

(iii) For \alpha \in ( - 1, p - 1), the above inequalities also hold in the space

Lp;r1,...,rd

\Biggl( 
\BbbR 1+2d

T , | x| \alpha 
d\prod 

i=1

wi(vi)

\Biggr) 
with N =N(d, p, r1, . . . , rd,K,\alpha ).

Lemma A.4 (Lemma A.2 in [15]). Let p > 1,K \geq 1 be numbers, w \in Ap(\BbbR d)
be such that [w]Ap(\BbbR d) \leq K, and f \in Lp(\BbbR d,w). Then, there exists a number p0 =
p0(d, p,K)> 1 such that f \in Lp0,loc(\BbbR d).

Lemma A.5. Let p \in (1,\infty ) and u \in Lp(\BbbR d) be a function such that ( - \Delta )1/3u \in 
Lp(\BbbR d). Then, for any \varepsilon > 0,

\| ( - \Delta x)
1/6u\| Lp(\BbbR d) \leq N\varepsilon \| ( - \Delta x)

1/3u\| Lp(\BbbR d) +N\varepsilon  - 1\| u\| Lp(\BbbR d),

where N =N(d, p).

Proof. It follows from the Hormander--Mikhlin multiplier theorem that u \in H
1/3
p

(\BbbR d), where the latter is the Bessel potential space (see the definition, for example,
in Chapter 13 of [24]). Then, by the Hormander--Mikhlin multiplier theorem and the
properties of the Bessel potential space (see, for example, [24]),

\| ( - \Delta x)
1/6u\| Lp(\BbbR d) \leq N\| (1 - \Delta x)

1/6u\| Lp(\BbbR d) \leq N\| (1 - \Delta x)
1/3u\| Lp(\BbbR d)

\leq N\| ( - \Delta x)
1/3u\| Lp(\BbbR d) +N\| u\| Lp(\BbbR d).

Now the desired assertion follows from the scaling argument.

Lemma A.6 (Lemma 7.2 in [15]). Let \gamma 0 > 0 be a number and R0 be the constant
in Assumption 1.2 (\gamma 0). Let r \in (0,R0/2), c > 0 be numbers. Then, one has

I :=

 
Qr,cr

| a(t, x, v) - (a(t, \cdot , \cdot ))Br3\times Br | dz \leq N(d)c3\gamma 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

1/
24

 to
 1

28
.1

48
.2

54
.5

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Lp ESTIMATES FOR KFP EQUATIONS 1261

Lemma A.7. Let p \in (1,\infty ), \alpha \in ( - d, d(p - 1)) be numbers, u \in Lp(\BbbR d, | x| \alpha ), and
\xi be a measurable function satisfying the bound

| \xi (y)| \leq N0(1 + | y| ) - d - \beta , y \in \BbbR d,

for some \beta > 0. Let \xi \varepsilon = \varepsilon  - d\xi (\cdot /\varepsilon ). Then, u \ast \xi \varepsilon \in Lp(\BbbR d, | x| \alpha ), and

\| u \ast \xi \varepsilon \| Lp(\BbbR d,| x| \alpha ) \leq N(d, p,\alpha ,\beta ,N0)\| u\| Lp(\BbbR d,| x| \alpha ).(A.5)

Furthermore, if we assume, additionally, that \xi \in C\infty 
0 (\BbbR d) is a function with the unit

integral, then u \ast \xi \varepsilon \rightarrow u in Lp(\BbbR d, | x| \alpha ).
Proof. Note that for any x\in \BbbR d,

| u \ast \xi \varepsilon (x)| \leq N

 
| y| <1

| u(x - \varepsilon y)| dy

+N
\infty \sum 
k=0

2 - \beta k

 
2k<| y| <2k+1

| u(x - \varepsilon y)| dy\leq NMu(x),(A.6)

where N = N(d,N0, \beta ), and M is the usual Hardy--Littlewood maximal function.
Since | x| \alpha , \alpha \in ( - d, d(p  - 1)) is an Ap(\BbbR d)-weight (see Remark 1.13), (A.5) follows
from a version of the Hardy--Littlewood maximal inequality in weighted Lebesgue
spaces (see [1]).

To prove the second assertion, we note that u\ast \xi \varepsilon converges to u as \varepsilon \rightarrow 0 a.e. due
to Lemma A.4 and the Lebesgue differentiation theorem. Now the claim follows from
(A.6) and the dominated convergence theorem.
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