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Abstract. We present a priori estimates and unique solvability results in the mixed-norm
Lebesgue spaces for the kinetic Kolmogorov—Fokker—Planck (KFP) equation in divergence form.
The leading coefficients are bounded uniformly nondegenerate with respect to the velocity variable v
and satisfy a vanishing mean oscillation (VMO) type condition. We consider the L2 case separately
and treat more general equations, which include the relativistic KFP equation. This paper is a
continuation of our previous work on L, estimates for KFP equations in nondivergence form.
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1. Introduction and main results. For any integer d > 1, let R? be a Euclid-
ean space of points (z1,...,4), and for T € (—o0,00], we set R%: = (—o0,T) x RI~1,
Throughout the paper, z is the triple (¢,z,v), where t € R, and z,v € R%.

The goal of this paper is to prove the a priori estimates and unique solvability
results for the kinetic Kolmogorov—Fokker—Planck (KFP) equation in divergence form
given by

(1.1) Qyu—v-Dyu— Dy, (a”(2)Dy,u) + divy(bu) + b+ Dyu+ cu+ du = div, f+g.

1.1. Notation and assumptions. For 2y € R¢, zg € R™2¢ and r,R > 0, we
introduce

Br(zg) ={£ €R?: ¢ —zo| <7},
Qr.r(z0) ={z: —r? <t—ty<0, v —wvo| <7 |z —a0+ (t— to)vo|1/3 < R},
@r,R(Zo) ={z:|t— to\l/Q <rjv—u| <r|x—120+ (t— to)v0|1/3 <R},
QT‘(ZO) = Qr,r(z0)7 ér(ZO) = @r,r(30)7 Qr = QT(O)7 ér = @7‘(0)

For f € L1 10c(R?) and a Lebesgue measurable set, we denote by (f)4 or f, fdz the
average of f over A. Furthermore, for ¢ >0, T € (—o0,00], and f € L1710C(R1T+2d), we
introduce variants of maximal and sharp functions
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1224 HONGJIE DONG AND TIMUR YASTRZHEMBSKIY

Mo f(z0) = sup f o @lds Mef=Migf,
(1.2) T>OvzlER;+2L1:ZOEQT,CT(21) Qr,cr(zl)
1 (z0) = sup ][ F(2) — (Do, oy dz.
r>0,21 ERY220€Q, (21) Qr(z1)

We impose the following assumption on the coefficients.

Assumption 1.1. The coefficients a(z) = (a(2),i,j =1,...,d) are bounded mea-
surable functions such that for some ¢ € (0,1),

SlE2 < a¥(2)€&, |a¥(2)| <67 VEERY ze RV

The next assumption can be viewed as a kinetic VMO, ,, (vanishing mean oscil-
lation) assumption with respect to

(1.3) p(z, 20) = max{|t — to|/2, |z — zo + (t — to)vo|/?, |v — vol},

which satisfies all the properties of the quasi-metric except the symmetry. It is anal-
ogous to the VMO, condition from the theory of nondegenerate parabolic equations
with rough coeflicients (see Chapter 6 of [24]).

Assumption 1.2. (o) There exists Ry € (0,1) such that for any zo and r € (0, Ro],

0SCg,v ((l, QT’(ZO)) S Y0,

where
0scz v (a, Qr(20))
:][ ][ la(t,z,v) — a(t,z’,v")| dedvdz’dv’ dt,
(t07T2,t0) DV,V(ZQ,t) XDT(Z(),t)
and

Dy (20,t) = {(2,0) : |z — 20 + (t — to)vo| /> <r v —vo| <7}

Remark 1.3. In this remark, we give examples of when Assumption 1.2 is satis-
fied. Throughout the remark, w : [0,00) — [0,00) is an increasing function such that
w(0+)=0.

Anisotropic VMO, , condition:

0sc, ,(a,r) = sup r~ ¢

t,x,v

(1.4)
X / / la(t,z,v) — a(t,z’,v")|dzds’dvdv’ < w(r).
z,x’'€B, 3(x) Jv,v' €By(v)

Since osc; (@, @Qr(20)) < oscl, , (a,7), if the anisotropic VMO, , condition holds, then
for any 7o € (0,1), Assumption 1.2 () holds.

Continuity with respect to the anisotropic distance dist((x,v), (2',v")) = |z —
2|3 4+ |v —'|: For any t,z,2',v,/,

la(t,z,v) —a(t, 2’ ,v")| S w (dist((z,v), (2", 0"))).

Note that if this condition holds, then (1.4) is true, and therefore, for any o € (0,1),
Assumption 1.2 () is satisfied.
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Assumption 1.4. The functions b= (b*,i=1,...,d), b= (Bi,i =1,...,d), and c are
bounded measurable on R'*2? and they satisfy the condition

o] + 16| +|c| < L

for some constant L > 0.

2. Function spaces. Below we define the mixed-norm Lebesgue and Sobolev
spaces. In all these definitions, G € R'*2¢ is an open set, and p,r1,...,7q,q > 1 are
numbers.

DEFINITION 1.5. We say that w is a weight on R% if w is a locally integrable
function that is positive almost everywhere. Let w;,i = 0,1,...,d, be weights on R.
By Lpr....raq(G,w) with

(1.5) w=w(t,v) =wo(t)wi(v1) - wq(va),
we denote the space of all Lebesque measurable functions on R™2¢ such that

[ F—

|-

and for o € (—1,p — 1), we set Ly, ., (RE2 |x\aHZ Lw;(v;)) to be the weighted
mixed-norm Lebesgue space with the norm

s (Gw)

wd(vd)dvd | % wo(t)dt| % )

If\p( Vg (2)dz| ™ wi(vy)

I 2y (Gl TTE i (00))

Furthermore, for a vector-valued function f: (f1,.--, fa), we write

(1.6)

2

/Rd+1 [fIP(2)1a(z )|$|°‘dxdt| wy (v1 dv1’ o wg(vg)dug

d
f€Lpp,..raq(G w) (OT Lpiry,..ra (G 2] sz(vz)))

i=1
if each component fi is in Ly, . ruq(Gow) (or Ly, vy (G, || Hl Lwi(v7))).
Throughout this paper, w = w(t,v) is a weight on R1*4.

DEFINITION 1.6. By Ho b raa
such that there exist f,g €Ly, raq(G,w) satisfying

G,w) we denote the set of all functions u on G

(1.7) u=div, f + g.
The norm is given by

[

DsT1s---s Td-4q ’ sTLaeees B ’ o

where the infimum is taken over all f and g satisfying (1.7).

Here is the definition of the kinetic (ultraparabolic) Sobolev spaces. The first one
is designed to treat the divergence form equations, whereas the second works with the
KFP equations in nondivergence form.
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DEFINITION 1.7. By S, r,....rs,q¢(G,w) we denote the Banach space of all functions
u such that u,Dyu € Ly, ....r4.q(G w), and (9 —v-Dy)u e H L (G,w). The
norm is defined as follows:

[ells, vy, g (@) = llull + ([ Doull + (1850 = v - Dyuflg

DT Td,q(Gaw),

where || -1 =1z, . oG-

DEFINITION 1.8. Let Sp 1y, ru.q(G,w) be the Banach space of functions u such
that u, Dyu, D2u, (0; —v-Dy)u € Ly ... ra.q(G,w), and the norm is given by

ullsy .. ..rgra(G) = Il + [Dotel + [DJul + 100w = v - Dol |, (G-

Ifw=lorp=q=ri=ry=---=ry4, we drop w or ¢,r1,...,74 from the above
notation.
We define the spaces

d d
L I (G,|x°‘Hw¢(vi)> s Spire,ra (G,|x|anwi(vi)> ,
=1 i=1
d
and Spr, .. rg (G» || sz(Uz)>
i=1

in the same way.
By S(R4) we denote the set of Schwartz functions and by C§°(R?) denote the set
of all smooth compactly supported functions on R?.

DEFINITION 1.9. We write u € Co(R?) if u is a continuous function vanishing at
infinity. For k € {1,2,...}, by CE(R?), we mean the subspace of Co(R?) of functions
such that Diu € Cy(R?),5=1,...,k.

1.3. Main results.

1.3.1. L, theory for KFP equations with VMO coefficients. Denote
(1.8) P=0,—v-Dy— Dy, (a”Dy,).

DEFINITION 1.10. For T € (—o0,00|, we say that u € Spry . ry.q(REZ w) is a
solution to (1.1) if the identity (1.1) holds in the space H, . Tdyq(RlTHd,w), that

is, both sides of (1.1) belong to H;’},hm’rd’q(RlTHd,w) and coincide as distributions.

Furthermore, for —oo < S <T < o0,

ueSPﬂ”l Tdvq((SvT) X devw)

1s a solution to the Cauchy problem
(1.9) Pu+ div,(bu) + b' Dy, u+ cu= div, f + g, u(S,-)=0

if there exists U € Spyy . ry.q(RE2? w) such that & = u on (S,T) x R*, & =0 on
(—00,8) x R%?, and the equality

Pu + divy(bu) + b Dy, u 4 cu = divvf—i— g

holds in H 1L ((S,T) x R?® w). Similarly, we define a solution in the space

PsT15--5Td 49

Sp;rl,mn'd((sa T) x R2d7 |z[® H;‘i:1 w; (v;))-
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Remark 1.11. Testing the identity (1.1) with a function ¢ € CSO(R%Fer), one
obtains the following standard weak formulation of the KFP equation (1.1) (cf. [5],
[27]):

—/(8t¢—v-ngb)udz—i—/(aijvaqH-bi)Dviudz
—l—/(—B-DUqb—l—c—i—)\)udz:/(—f-qu§+g¢)dz.

DEFINITION 1.12 (A,-weight). For a number p > 1, we write w € A,(R?) if w is
a weight on R* such that

(1.10) (W] 4, ®re) = sup (7[ w(z) da:)
x0€R, >0 B(z0)

p—1
X f w™ VP (1) da < 00.
Br(wo)

Remark 1.13. An example of an A,(R%)-weight is w(z) = |z|* a € (—d,d(p — 1))
(see, for instance, [17, Example 7.1.7]).
DEFINITION 1.14. For s € R, the fractional Laplacian (—A,)® is defined as a

Fourier multiplier with the symbol |£|?S. Furthermore, when s € (0,1/2), for any
Lipschitz function u € Upe[1,o0] L,(R%), the following pointwise formula is valid:

u(r) —u(r +y)

[y|d+2s dy,

(1.11) (—AL)%u(x) :Cd7s/

Rd

where cq s 15 a constant depending only on d and s. When s € [1/2,1) and u is bounded
and CY', the formula still holds provided that the integral is understood as the principal
value. For s € (0,1) and u € Ly(RY), (—=A,)%u is understood as a distribution given

by
(1.12) (A0)*u,0) = (u,(=A;)°0), ¢ € C5o(RY).
To prove that (1.12) defines a distribution, one needs to use the fact that
(1.13) (—A2)°6(2) S N(d, @)1+ |z) "7, ¢ € CF°(RY).
Furthermore, by (1.13), for any o € (—d — 2sp,d(p — 1)),

(—A2)°¢ € Lyyp-1y (R, [~/ ®D),

so that (1.12) defines the distribution (—A,)*u for any u € L,(R%, |z|*). For a detailed
discussion of the fractional Laplacians, we refer the reader to [37].

Convention. By N = N(---), we denote a constant depending only on the
parameters inside the parentheses. A constant N might change from line to line.
Sometimes, when it is clear what parameters N depends on, we omit them.

THEOREM 1.15. Let
- D, 1y y7q, ¢>1, K >1 be numbers, T € (—oo, o0];
- w;,1=0,...,d, be weights on R such that

(114) [wO]Aq(R)a[wi}A”(R) SK, iil,...,d;

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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— w be defined by (1.5);
— Assumptions 1.1 and 1.4 hold.
There exists a constant

’70:70(d767p7r1a"'7rd7QaK) >0

such that if Assumption 1.2 (o) holds, then, the following assertions are valid:
(i) There exists a constant

)\O:)\0<d767parl7"-7rd7q7K7LaR0) >1

SUCh that fOT any )\ Z )\07 u € Sp,rl,...,rd7q(R%[“+2d,w>, and g, fe LP,T1,...,Td;Q(R’§"+2daw)
satisfying (1.1), one has

(1.15) N2l + | Dol +11(=A0)Cull < NATV2( gl + NI I,
where Ry € (0,1) is the constant in Assumption 1.2 (o),

1=l - HLWV1 ,,,,, g (R ) and N=N(d,d,p,r1,...,74,q, K).

(i) For any A > Xo, f,g € Ly vy.a(RE2 0), (1.1) has a solution u €
Sp,n,.._,rd,q(RlTHd,w) (see Definition 1.10), and the uniqueness holds in the class of
Sp)T17,,,,Td7q(R%F+2d,w)-solutions (see also Remark 1.18). Here Ao is the constant from
the assertion (i).

(iii) For any numbers —o0o < 8 <T < 00 and f,9 € Ly ry.q((S,T) x R4 w),
(1.9) has a unique solution w €Sy ... r,.q((S,T) X R24 w). In addition,

ull + | Dol + [[(=20) " ull < NI+ Nllgl,

H . H = || : ||Lp,,.1 ,,,,, rg.q((S,T)xR2d,w) a’ndN:N(daéaparla"'ardquKaLvROaT_S)'

(iv) Let ao€ (—1,p—1). The assertions (i)—(iil) also hold in the case when

d
f’g € LP;Thmﬂ“d <R%+2d7 |x|a le(v1)> )

i=1
d
UE Spiry,.yrg (R%‘+2d’ |2|* Hw1<vl)> :
i=1

Furthermore, one needs to take into account the dependence of constants vy, Ao, N on
a and remove the dependence on q.

Remark 1.16. The assertion (iii) is derived from (ii) by using an exponential
multiplier (see, for example, [24, Theorem 2.5.3)]).

Remark 1.17. By viewing an elliptic equation as a steady state parabolic equation,
we can obtain the corresponding results for elliptic equations when the coefficients
and data are independent of the temporal variable. See, for example, the proof of [23,
Theorem 2.6].

Remark 1.18. Tt is an interesting problem to investigate Liouville-type results for
KFP equations in divergence form. See, for example, [13], [21], and the survey papers
[4], [22], which contain references to other relevant articles.
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Remark 1.19. It would be interesting to see if the method of the present paper
and [15] can be used to extend the weighted mixed-norm estimates (1.15) and (2.8) in
[15] to more general degenerate Kolmogorov equations studied in the articles [4], [5],
6], [7], [9], [11], [26], and others. We point out that in [11], the L, estimate similar to
(2.8) of [15] was established for the degenerate Kolmogorov equation with the leading
coefficients depending only on the temporal variable. We also mention the papers [6]
and [26], where the properties of the fundamental solution and the Schauder estimates
are studied for the degenerate Kolmogorov equation with variable coefficients a®/ that
are merely measurable in t.

To the best of our knowledge, Theorem 1.15 provides the first global a priori L,
estimate with p # 2 for kinetic KFP equations in divergence form with nonsmooth
coefficients (see section 1.6). We also prove the first unique solvability result in S,
space for (1.1) in the case of the variable coefficients a®/. To the best of our knowledge,
the imposed assumption on the leading coefficients a*/ (see Assumption 1.2) is weaker
than assumptions in the existing literature (see section 1.6).

To prove Theorem 1.15, we use the results and techniques of [15], which are
based on Krylov’s kernel-free approach to nondegenerate parabolic equations (see [24,
Chapters 4-7]). The main part of the argument is the mean oscillation estimates of
(—=A)Y6u, \'/2u, and D,u in the case when the coefficients ¢ are independent of
the x and v variables. Our proof of these inequalities does not involve the fundamen-
tal solution of the KFP operator. Instead, we use the scaling properties of the KFP
equation combined with localized L, estimates and a pointwise formula for fractional
Laplacians in order to get mean oscillation estimates of solutions. By using the method
of frozen coefficients, we generalize the aforementioned mean oscillation estimates to
the case when a% also depend on z and v. Once such inequalities are established, the
a priori estimates are obtained by using the variants Hardy—Littlewood and Fefferman—
Stein theorems (see Theorem A.3).

1.4. L, theory for the kinetic equations with bounded measurable co-
efficients. Let 2 € R and v € R% for some d; = {1,2,...}, let a be a mapping from
R% to R?, and let a,b,B,c,ﬁg be functions of ¢, z,v.

We consider the equation

(1.16) Pot 4 divy (bu) + b - Dyu+ (¢ + Nu = div, f + g,
where
Pou=0yu+ a(v) - Dyu— Dy, (" Dy, u).
Assumption 1.20. The function « is such that for some 6 € (0,1],

aup 20 = av)

< o0
v |V7V"0

Remark 1.21. Here we give examples of the equations of type (1.16) that appear
in the existing literature.

Kinetic equations: dy = d and a(v) = £v or a = In the second case,

+
TV
(1.16) with such o can be viewed as a relativistic counterpart of (1.1).

The Mumford equation. Another example comes from computer vision. In [30],

Mumford considered the operator

Oru 4 cos(V) Dy, u 4 sin(v) Dy, u — D2u, t,v, 21,20 € R,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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which is an operator of the KFP type. For the discussion of certain PDE aspects of
this operator, see [21].

DEFINITION 1.22. For o : R® — R? and an open set G C R4+ 4  we say that
u € Go(G, ) if u, Dyu € Ly(G), and dyu+ a(v) - Dyu € Hy H(G).

Here is the G (R o) unique solvability result for (1.16).

THEOREM 1.23. Let T € (—o00,00], let a, b, b be functions satisfying Assump-
tions 1.1 and 1.4 (with R**2? replaced with R 44 ) and let o : R% — RY satisfy
Assumption 1.20. Then,

(i) there exists Ao = Ao(d,d1,0,L) > 0 such that for any A > Ao, and functions
ue Gy(RLFITH o), fig€ Ly (REFHNY satisfying (1.16), we have

(1.17) A2 [l + | Dyull < NI f]l + NAY2|jg],
where
N=N(d,dy,8), |-I=|" ||L2(R1T+d+d1).

In addition, for any f,g € Lg(R?‘Hdl) and X > Ao, (1.16) has a unique solution
u € Gy(RETHH a).
(ii) For any numbers S <T and f,g € La((S,T) x R¥*41) the Cauchy problem

Pot+ divy(bu) +b- Dyu+ cu=div, f +g, u(S,-)=0,
has a unique solution u € So((S,T) x R¥*T4 q); furthermore,
lull + | Dyull < NIIF]l + Nligll,
where
N=N(d,d1,6,L, T =S), |-[I=1"llp,sm)xrd+ar)-

COROLLARY 1.24. In the case when di =d and o = —v, which corresponds to the
kinetic KFP equation, in addition to (1.17), we have

H(_Aw)l/GUHLQ(RlT”d) < N||ﬂ|L2(R1T+2d) + N)‘_l/ZHQHLQ(RlT“d)’
where N = N (d,0).
Proof. Note that the identity
Oy — v - Dyu — Ayu + divy (bu) + b+ Dyu+ (c+ Nu
= Dy, ((a" — 8;j)Dy,u) +div, f + g
is true. Here A, is the Laplacian in the v variable. Then, by Theorem 1.15,
||(*Aa:)1/6UHL2(R1T+2d)
< V(0 = 83y) Doyl sy + NIl yqarsany + NA2]lgll . o
This, combined with Assumption 1.1 and (1.17), gives the desired estimate. |

The results of Theorem 1.23 and Corollary 1.24 are not surprising; however, the
present authors have not seen such assertions in their full generality in the existing
literature.
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1.5. Motivations.

Filtering. Stochastic partial differential equation (SPDEs) in divergence form
appear naturally in the theory of partially observable diffusion processes. In particu-
lar, the unnormalized conditional probability density of the unobservable component
of the diffusion process with respect to the observable one satisfies a linear SPDE
called the Dunkan-Mortensen—Zakai equation (see, for example, [35]). In [25], Krylov
showed that the L, theory of SPDEs can be used to deduce certain regularity prop-
erties of the unnormalized density. For the Langevin-type diffusion processes, such a
program was carried out in [38] (see also [32]). In particular, the authors developed
the Besov regularity theory for the equation

du=[v-Dyu—a"“ Dy, u+b- Dyu+ fldt + [o" - Dyu+ g¥] dw*,

where wg, k > 1, is a sequence of independent standard Wiener processes. In the same
paper [38], they used that regularity theory to show that the unnormalized conditional
probability density is a continuous function. We believe that Theorem 1.15 is useful
in developing the theory of stochastically forced KFP equations in divergence form
in the case when the forcing term g belongs to the L, space with respect to the
probability measure and ¢, z,v.

Kinetic theory. The nonlinear Landau equation is an important model of col-
lisional plasma which has been studied extensively (see, for example, [3], [29], [16],
[20]). A linearized version of this equation has the form of (1.1). Recently, there has
been an interest in developing the L, theory of KFP equations with rough coefficients.
Such results are useful for establishing the well-posedness of diffusive kinetic equations
in bounded domains with the specular reflection boundary condition (see [14]) and
for the conditional regularity problem (see [16]).

1.6. Related works.

Divergence form equations. Many articles on KFP equations in divergence
form are concerned with the local boundedness, Harnack inequality (including a non-
homogeneous version), and Holder continuity of solutions to (1.1) (see [5], [33], [39],
[16], [29], [18], [19], [40]). See also the references in [4].

It seems that there are very few works on the Sobolev space theory of (1.1).
Previously, an interior L, estimate of D,u for (1.1) was established in [27] under the
assumption that u,fe Ly ioc, U, Dy, (0p — v - D)t € Lo joe, and g =0 by using the
explicit representation of the fundamental solution of the operator P (see (1.8)) and
singular-integral techniques. In addition, in the same work, it was showed that if
p is large enough, then u is locally Holder continuous with respect to p (see (1.3)).
The authors of [27] imposed the VMO condition with respect to p on the coefficients
a®, which is stronger than Assumption 1.2. It can be seen from (1.3) that such an
assumption might not be satisfied even when the coefficients a* = a* (x,v) are smooth,
bounded, and independent of t. A similar result in the ultraparabolic Morrey spaces
was proved in [34]. We point out that the papers [27] and [34] are concerned with
the operators that are more general than P. We also mention a recent paper [2]
which studies the Ls-regularity theory, the trend toward equilibrium, and enhanced
dissipation for the KFP equation in divergence form with a* = §;;.

Nondivergence form equations. For a thorough review of the classical theory
for the generalized KFP equations, we refer the reader to [4]. An overview of the
literature on the Sobolev theory for KFP equations in nondivergence form can be
found in the recent paper [15]. We also mention briefly the following papers:

e The article [7] on the interior S, estimate with leading coefficients of class
V MO with respect to p;
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e the articles [8], [11], [9], [31] where the global S, estimate is proved under
the following assumptions: either the leading coefficients are constant or in-
dependent of x,v, or they are continuous with respect to p;

e the article [15], where the present authors proved the global S, estimate and
unique solvability results with the coefficients satisfying Assumption 1.2.

Ultra-analyticity and Gevrey regularity. Finally, we would like to mention
the works [12], [10], [28] on the ultra-analyticity and Gevrey regularity for the KFP
and Landau equations.

1.7. Organization of the paper. In section 2, we prove the main result in the
S, space in the case when the coefficients a*/ are independent of z and v. We then
extend the a priori estimate to the weighted mixed-norm kinetic spaces in section 3
so that the reader interested only in the constant coefficient case need only read the
sections 1, 2, and 3. We prove the main results for the equations with the variable
coefficients a*/ = a%(z) in section 4.

2. S, estimate for the model equation. Denote
PO = 8,5 — V- D_L — Cl,ij (t)DUin,

where the coefficients a* satisfy Assumption 1.1.

The goal of this section is to prove Theorem 1.15 with L, in place of the weighted
mixed-norm Lebesgue space, P = Py (see (1.8)), and without the lower-order terms
(see Theorem 2.1). We do this by using the duality argument and the S, estimate
taken from [15], which we state below (see Theorem 2.3).

THEOREM 2.1. Let p>1 be a number, and let T € (—oo,00]. Then, the following

assertions hold. .
(i) For any number A >0, u € S,(RL2Y), and f,g € L,(RLT?Y), the equation

(2.1) Pou—l—)\u:divvf—i—g
has a unique solution u € SP(R1T+2d), and, in addition,

)\1/2||u||Lp(R1T+zd) + HDUUHLP(RlTMd) + H(_Az)l/(suHLp(RlT”‘l)

(2.2) ~ 12
< N(d7 67p)(||f||Lp(R;+2d) +A HgHLP(R;ﬁ'?d))-

(ii) For any finite numbers A>0, S <T, and f,g € L,((S,T) x R2®), the Cauchy
problem

Pou+ du= dz’vvf+ g, u(S,)=0,
has a unique solution u € S,((S,T) x R??) (see Definition 1.10); furthermore,
L+ N2 ull (5.7 xmeay + | Dotll (5.7 xr2ay + [ (—A2)Cull L (57 xm2a)
SNz, (s, xr2dy + )‘_1/2HgHLp((S,T)xRM))a
where N =N(d,d,p,T — S).

COROLLARY 2.2. For any u € S,(RL™2%), one has (—A,)Y%u € L,(RL™Y), and,
i addition,

| (_Ar)l/GU”Lp(RlT“d) = NHUHSZ,(RIT*“)’

where N = N(d,p) > 0.
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Proof. To prove the result, we set a™ = §;;, find f and ¢ in LP(R?%) such that

¥R
8tu—v-Dl.u—Al,u+u:diVUf—|—g
in Hgl(R?Qd), and apply Theorem 2.1. 0

Here is the main result of [15] in the case when P = Py, which will also be used
in the next section.

THEOREM 2.3. Let p>1 be a number. Then, the following assertions hold.
(i) For any number A>0, T € (—o0,0], and u € S,(REL?%), one has

Ml + X2 Dyl + || D} ull
+11(=A2)ull + [ Do (=20)Pull < N(d, p, 6) || Pou + Nul,

where |- =] - ”Lp(RlT“d)'
(ii) For any A >0, T € (—00,00|, and f € L,(RL™2%), the equation

Pou+ u=f

has a unique solution u € S,(RLT?4).
(iii) For any finite numbers S <T and f € L,((S,T) x R?), the Cauchy problem

Pou=f, u(S,)=0,
has a unique solution u € S,((S,T) x R??). In addition,
[ull + [ Dol + | D3ull + [[(=A2)Pull + | Dy (—A2)Cull < N £]],
where
I-I1=1llz,s,r)xr2ay, N =N(d,8,p, T —5).

Remark 2.4. The above theorem follows from [15, Theorem 2.6] and the scaling
property of the operator Py (see Lemma 3.10).

The following lemma implies the uniqueness part of Theorem 2.1 (ii).

LEMMA 2.5. Let p>1, A >0 be numbers, let T € (—o0,0], and let u € SP(RITJ“Qd)
satisfy Pou+ Au=0. Then, u=0.

Proof. Let n=n(z,v) € C§°(By X By) be a function with the unit integral. For
h € L1 10c(R??), we denote

he)(z,v) = 57(3/2)d/h(x'7v’)77(($ —a)[e'?, (v = v') [e) da'dv.
Then, u satisfies the equation
(2.3) PoU(E) + )\U(E) = e,
where

ge(2) =€'/? / u(t,x — 'z’ v —ev ) - Dyn(a’,v') da’dv’.
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Note that by the Minkowski inequality,

1/2
(2.4) Hgalle(RlT”d) < Ne¢ / HU”LP(RlT“d)'

Then, it follows from (2.3) that (0; —v - Dy)u() € L,(REF%), and therefore, Uy €
S,(RLF?4). Hence, by Theorem 2.3 and (2.4),

)‘”u(e) ||LP(R;+2d) < N”g‘fHLP(RlT“d) < NEI/QHUHLP(R?M).

Taking the limit as € — 0 in the above inequality, we prove the assertion. 0

The following result is needed for the duality argument in the proof of Theorem
2.1. For the proof, see Lemma 5.12 of [15].

LEMMA 2.6. For any numbers A > 0 and p > 1, the set (Py + \)C§°(R124) s
dense in L,(R'*2d).

Here is the a priori estimate (2.2) in the case when g =0 and fis smooth and
compactly supported.

LEMMA 2.7. Let A > 0,p > 1 be numbers, and let f € CSo(RY24). Let u be the
unique solution in S,(R'*24) to (2.1) with g=0. Then, one has

M2l g, riveay + 1(=Ag)Oul 1, 1+2ay

+ | Dvull 1, m1+2ay < N(d, 8, p)|| fll L, w1+24)-

Proof. The proof is by a duality argument. We denote ¢ =p/(p — 1) and fix some
U € C5eo(RIF24),

Estimate of (—A,)Y%u. Note that for any multi-index a, one has PyD%u =
div, D2 f, and hence by Theorem 2.3, D%u € L,(R'*24). In addition, note that by
(1.13) for any U € C§°(R'24) (—A,)Y/0U € C2 (R1+24) N Ly (R1F24). Then, by this
and integration by parts, we have

I= / ((=22)Y5) (=8,U + v - DU — a" (t) Dy, U + AU ) dz
= / ((0r — v+ Dy — " (t) Dy, + Nu) ((—A2)YU) dz
— [, (-2, 00y de =~ [ F-Du(-A0) U dz,
By Holder’s inequality, Theorem 2.3, and the change of variables t - —t, z — —z,
(2.5) 11| < N fllz, mivzay | = 0U +v - DoU — a* Dy, U + AU || 1, r1-+24).
Furthermore, by Lemma 2.6 and the aforementioned change of variables, (—0; + v -
Dy — a Dy, + A)CG°(R™29) is dense in Ly(R'™2?). This, combined with (2.5),

implies the desired estimate for (—A,)"/%u.
Estimate of D,u. Integrating by parts gives

/(Dvu)(—atU +v- DU — a” (t) Dy, U + AU ) dz

:/(DﬁU)fdz—/uDszz::Jl+J2.
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As before, it suffices to show that |Ji| 4 |J2| is dominated by the right-hand side of
(2.5). By Holder’s inequality, Theorem 2.3, and the same change of variables, we get

| J1| < 1Fll 2, @ir2ay [ D2U ||, (rr+2a)
<N, @i+2a)ll = U + v DU — a () Dy, U + AU || 1, (1420

Next, note that
Ty = —/((—Am)l/ﬁu) Ro(=A,)/30 dz,

where R, is the Riesz transform in the a variable. Then, by the L, estimate of
(—Ax)l/ 6u, the L, boundedness of the Riesz transform, and Theorem 2.3, we obtain

| Jo| < N|(=A2)"0ull p mi+2a)|[(—A2) V32U ||, m1+20y
S NHﬂ|Lp(R1+2d) || - atU +v- DwU - a’ijDUi’UjU + AUv”Lq(]RlJer)'

The estimate is proved.
Estimate of u. As above, we consider

I::/u(—atU—i—v . DwU—aijDijU—l—)\U)dz: —/f D,Udz.
Then, by Holder’s inequality and Theorem 2.3,
121 < I F 12y g2y [ DU 1, 20y
< N)‘_1/2||.f_]|Lp(R1+2d) || - oU+v-D,U — G,ijDijU + /\U||Lq(R1+2d)~

This implies the desired estimate. ]

Proof of Theorem 2.1. By Remark 1.16, we only need to prove assertion (i).
(i) The uniqueness follows from Lemma 2.5. To prove the existence, let u; €
S,(RLF24) be the unique solution to the equation (see Theorem 2.3)

(26) P0u1 + )\Ul =4g.
By the same theorem and the interpolation inequality (see Lemma A.5),
Murlly, gi2a) + A2 Dy I, ®ireey + A [[CAS AT I, L2ty
< N||g||Lp(R1T+2d)~

Subtracting (2.6) from (2.1), we may assume that g = 0. We will consider the cases
T =00 and T < oo separately.

Case T'=co. We take a sequence of functions fT;L € Cg°(R'*24) guch that f,, — f
in L,(R'*24). By Theorem 2.3, there exists a unique solution u,, € S,(R'*2) to the
equation

(2.7) (Po + Ny, = divy, fr.
By Lemma 2.7, we have
(2.8) )\1/2||un||Lp(R1+2d) + HDvunHLP(RH“) + ||(—Am)1/6un|‘Lp(R1+2d)

< N(d, 5,p)anHLP(R1+2d),
Hatun —v- DmunHH;l(Ruzd) < N(d,d,p, )‘)anHLp(]RH?d)o
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Furthermore, by the same lemma,
unn 21, (=80)Y up, n > 1,

are Cauchy sequences in S,(R*29) and L,(R!*2%), respectively. Hence, there exists
a function u € S,(R'24) such that u,, (—A.)"%u, converge to u and (—A,)Y%u,
respectively. Passing to the limit in (2.7) and (2.8), we prove the existence and the
inequality (2.2).

Case T < oo. Let u € S,(R'*29) be the unique solution to the equation

Pyt + Mi = divy flicr.

We conclude that u := @ is a solution of class S,(R%-"7) to (2.1), and the estimate
(2.2) holds. The theorem is proved. ]

3. Mixed-norm estimate for the model equation. In this section, we con-
sider the case when the coefficients a® are independent of z,v, and the lower-order
terms are absent. The goal is to prove the a priori estimates in the weighted mixed-
norm spaces by establishing a mean oscillation estimate of (—A,)Y%u, A'/?u, and
Dyu for u € S, (RL™%) solving (2.1). To this end, we split u into a Py + M-caloric part
and the remainder. To bound the former, we use the method of section 5 of [15]. The
remainder is handled by using a localized version of the S, estimate in Theorem 2.1
(see Lemma 3.3).

THEOREM 3.1. Invoke the assumptions of Theorem 1.15 and assume, additionally,
b=0=b,¢c=0. LetuecSy,, . ,«d,q(R%de,w), f,9 € Lpy,,... rd,q(RlTHd,w) be
functions such that

Pou+ \u= divvf+ g.

Then, for any A > 0, the estimate (1.15) is valid. Furthermore, in the case when
g =0 and A =0, (1.15) also holds. In addition, the same inequalities hold with
Sp;h,--.,m(RlTHda|$|QH?:1 w;(v;)), Lp;rl,...,rd(R%[ﬂ+2d7|x|a 1—[;1:1 wi(v;)) in place of
Spiriorag REZE ), Ly o g(RET 4 w), respectively, and with N = N(d,é,p,
rl,...,rd,a,K).

The next result is derived from the above theorem in the same way as Corollary 2.2
from Theorem 2.1.

COROLLARY 3.2 (cf. Corollary 2.2). For any u € Sy, ....ry.qa(RE 2% w), one has
(=A)YOUE Ly ryg(REZ w0), and, in addition,

B ol SVl s
where N = N(d,p,r1,...,74,¢, K) > 0. A similar assertion holds for u € Sy, r,
(R, [ [Ty wi(vi)-

In the next lemma, we establish the estimate of the aforementioned “remainder
term.”

LEMMA 3.3. Let A >0 be a number, and let f € Ly (RE2%) be a function vanishing
outside (—1,0) x R? x By. Let u € Sp((—1,0) x R??) be the unique solution to the
equation (see Theorem 2.1 (ii))

(31) P0U+)\u=dZUUf+g7 u(_l?):O
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Then, for any R>1, one has
(3.2)
11+ XY2) ul 4+ [ Dyl £y ((—1,0) % Bys x Br)

< N(d,6,p) ) 2 M ARTFY | FT 4+ A2 gL
k=0

p(Qq ok+15)?
(3.3)

1/p >° .
. 1/6 -k 1/p -1/2 1/p
(\( Ag) ul”)QLR < N(d,4,p) ;?_0:2 ((|f|p)Q1 g A (|g|p)Q1,2k+lR) :

Proof. We follow the proof of Lemma 5.2 of [15] very closely. By considering the
equation satisfied by U := ue™*, without loss of generality, we may assume that A > 1.
Estimate of u, D,u. We denote

oo
fO = flzeB(zR)Sv fk = f1163(2k+1R)3\B(2kR)37 ke {172a .- '}7 so that f = ka7
k=0

and we define g,k > 0, in a similar way. By Theorem 2.1 (ii), there exists a unique
solution uy, € S,((—1,0) x R?9) to (3.1) with fi, and gy, in place of f and g, respectively,
and, in addition, one has

(3.4) IN2[we] + | Dounlll 1, (—1,0)xr2a) < N el + X729l 1, ((=1,0) xR24) -

In addition, by Theorem 2.1 (ii),

1 : _ 2d
U—HILII;OZUk in L,((—1,0) x R*¢),
k=0
and a similar identity holds for D,u.
Next, let (; = (j(z,v) € C§°(B(2i+1r)s X Bait1g), j=0,1,2,..., be a sequence of
functions such that ¢; =1 on B(2j+1/2R)3 X Bojt1/2p and
GI<1, |DuGl< N2/ R,
|D2¢;| < N27%R™2, |D,(j| < N2 % R™3,
For k>1and j=0,1,...,k — 1, we set uy ; = ur(;, which satisfies
(3.5)  Pourj + Munj = uxPoCj + dive(filj) — fio - DoCj + gGj — 2(aDyC;) - Dy,
Observe that for such 7, ﬁgj =0, f;; -D,(; =0, and grp(; =0. Then, by Theorem 2.1
(ii) and the fact that A > 1,

A2 ]+ [ Dotun] |2, (1,0 By s % Bas )
< NATY227I R[] + 1Dyt (1,00 % B gy 1 pys % B )

< N2 RN k] 4+ Dyt | £,y ((-1,0)% B gy 41 pys % By o1 )
By using induction, the above inequality, and (3.4), we obtain
N2 k| + 1Dyl 2, ((~1,0)% B s x Br)
< NF2 HE=DRR=F| | fi| + X712 gy 2, ((=1,0)xR24)
< N2 DR A+ A 219l @, e -

This, combined with (3.4) with k=0, gives (3.2).
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Estimate of (—A;)Y/5u. Recall that u(y satisfies (3.5) with k& = 0. Then, by
Theorem 2.1 (ii) and (3.2) with 2R in place of R, one has

[ <_A90)1/6(UC0)||Lp((71,0)><R2d)

< NS 2 DR F A+ A 2lgll 1,0, e o)
k=0

(3.6)

Now we only need to bound the commutator term. Let u. be a mollification of u in
the x variable. Then, (—A,)Y5u, is given by (1.11) with s = 1/6. Due to the fact
that (o =1 in B(21/2R)3 X Bai/2, for any z € Q1 g,

KO(_Ax)l/ﬁue - (_Aa:)l/6(us<0)|(z)
<N@ | et + )y~ dy.
ly|>(23/2-1)R3
Then, by Lemma A.1, we get
HCO(_AJE)UGUE - (_AI)1/6(U’€<0)”LP(Q1,R)

o0
SN@RY 2753 uc 1,0, -
k=0

Passing to the limit as ¢ — 0, we may replace u. with u in the above inequality.
Furthermore, by (3.2), the right-hand side is less than

N(d,8,p)R™1 Y 27K=30/ 391G/ R) (| Fl 4+ A gl 0, oy )
j=0 k=0

Switching the order of summation and changing the index k — k + j, we may replace
the double sum with

o0
3 2 RS 74 X2l 1, e -
k=0

This, combined with (3.6), gives the desired estimate (3.3). 0

Here is the mean oscillation estimate of a Py + A-caloric part.

PROPOSITION 3.4. Let p> 1, A >0, r > 0, v > 2 be numbers, let zy € RL™4
and let u € Sp((to — (2vr)2,t0) x R*) be a function such that Pyu+ Au =0 in (to —
(vr)2,tp) x RY x B,,,.(vo). Then, one has

1/p
Ty = (|<—Ax>1/6u - ((—Awl/ﬁu)czr(zoﬂ)

B 1
< N (=20 Cu) P

1/p
Jy = A1/ <|“ — (W)Q,(x0) |p> " <D”u ~ (Pean) p)
Qr(20)

< NV_1A1/2(|u‘p)é2/i(zo) + NV_1(|Dvu|p)i?/zi(Z0)

Qr(20)

1/p

Qr(z0)

N Y2 ((—A0) Pl g

vry2kur(20)
k=0

where N = N(d,d,p).
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3.1. Proof of Proposition 3.4. The next two lemmas are taken from [15].
The first one, Lemma 3.5, is proved by localizing Theorem 2.3 (i). The second lemma
follows from the global L, estimate of (—A,)'/3u in Theorem 2.3 (i) and the local
estimate of D,u in Lemma 3.5.

LEMMA 3.5 (interior S, estimate; see Lemma 6.4 of [15]). Let p>1, A >0, and
r1,79, R1, Ro > 0 be numbers such that r1 < ro and Ry < Ry. Let u € Sp,lOc(Ré"‘Qd),
and denote f = Pou+ Au. Then, there exists a constant N = N(d,d,p) >0 such that

Ml @y ny) + (r2 =) "HIDwtll L, ny)
+ ||D12;U||LP(Q“,R1) + 10w —v - Dyullr, (@, &)
SNNFLp(@ryony) + N((r2 =) +72(Re — R) ™) ullz, vy ny)-
LEMMA 3.6 (Caccioppoli-type inequality; see Lemma 6.5 of [15]). Let A > 0,

0<r<R<1, and p>1 be numbers, and let u € Sp,loc(Rtlﬁzd) be a function such that
Pyu+Au=0 in Q1. Then, there exists a constant N = N(d,d,p,r, R) such that

(3.7) IDsullr, @, < Nllullz,@n)-

Remark 3.7. In the interior estimates in the aforementioned [15, Lemma 6.4],
there are no terms involving Au and d;u — v - Dyu. By following the proof of that
lemma and using the global S, estimate (see Theorem 2.3), one can, indeed, add these
terms to the left-hand sides of the a priori estimates.

Furthermore, the Caccioppoli inequality in [15, Lemma 6.5] is stated only in the
case when A =0. Nevertheless, the same argument yields (3.7) in the case when A > 0.

The next lemma is a key ingredient of the proof of Proposition 3.4.

LEMMA 3.8 (cf. Lemma 6.6 of [15]). Let p € (1,00), and let u € S,((—4,0) x R% x
By) be a function such that Pyu+ M u=0 in (—1,0) x R? x By. Then, the following
assertions hold.

(i) The functions u,(—Az)"/%u € S, 10.((—1,0) x R x By). Furthermore,

(3.8) (Po4+Nu=0, (Po+A)(=A)Yu=0 a.e in(—1,0)xR:x By.
(ii) For any r € (0,1), we have
(3.9) I Dl i@ <N D27 (1(=20) Y ul)g"
k=0

where N =N(d,d,p,r).

Proof. Multiplying u € S,((—4,0) x R? x By) by a cutoff function ¢ = ¢(t,v) and
using Corollary 2.2, we conclude that (—A,)"/%u € L,((—1,0) x R? x B;), so that the
series on the right-hand side of (3.9) converges.

(i) Let u. be the mollification of u in the x variable. First, we will show that u.
is sufficiently regular. We fix some rg € (0,1). We claim that for any k= {0,1,2,...},

(3.10) D¢ e L,((—r2,0) xR x B,,) for & =u.,du., D?u..
To show this, we note that

Pouc + M. =0 in  (—1,0) x R x By.
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We fix 2 € R? and write
Oy — a"jDviﬂju8 + M =v-Dyu. =:f in (-1,0) x By.
For f e Ll,loc(Rd), let f* be a mollification of f in the v variable. Then, u? satisfies
OpuZ — a" Dy uf +MuZ =% in (—13,0) x By, € (0,1—r0).

Note that (t,v) = f € L,((—1,0) x By), and then dyu, D>u* € L,((—1,0) x By,).
By the interior estimate for nondegenerate parabolic equations (cf. Lemma 2.4.4 in
[24)), for any 74 € (0, 7o),
||)‘|u:('7xa )‘ + ‘atu?("xv )| + |Dgu?(axa ')|||Lp((frf,0)><Brl)
< N(d, 6, p,ro, ) IIF* (o )|+ [uZ (o, ML (=20 % Brg ) -

Raising the above inequality to the power p and integrating over = € R?, we get
INuZ] + |0suZ | + [ D3uZ || L, ((=r2 0)xRix B, )
< N|||f%| + |u?|HLP((7r[2),O)><Rd><BTO) < N|||us| + |Dmue‘||Lp((—1,0)><]Rd><Bl)a

where N = N(d,d,p,r9,71). Passing to the limit as s — 0, we conclude that (3.10)
holds with £ = 0. In the case when k£ > 1, we use the method of finite-difference
quotients combined with the above argument.

Next, by (3.10) with k=0, u. € S,((—=r2,0) x R? x B,,). Then, by the interior
S, estimate (see Lemma 3.5), for any 71 € (0,79) and z¢ € R%,

[10¢ue — v+ Dyue| + |DqQ;U»s|||Lp(QT1 (0,20,0)) = NHU”LP(QTO(o,zO,o)),

where N = N(d, 6,71,70). Passing to the limit as € — 0, we prove that u € Sp, 10 ((—1,0) x
R? x By) and that (Py+ A\)u=0 a.e. in (—1,0) x R% x B.

To prove the second part of assertion (i), we note that by (3.10) and the Sobolev
embedding theorem, for a.e. t,v € ((—=r3,0) x B,,) and the same ¢,

(3.11) £(t,-,v) €CHRY), k>1
(see Definition 1.9). Therefore, by the pointwise formula (1.11),
(=) 0¢(t,-,v) € CE(RY)
is a well-defined function, and
(—Ag) S Auc(t,,v) = A(—=Ds)Ouc(t,-,v), A=0,,D}.
Then, (Py + \)(—=A,)Y5u. = 0 ae. in (—r3,0) x R? x B,,. As above, by using the
in_terim; /%Z estimate and a limiting argument, we prove the part of assertion (i) about
( A(ai1)) In ;vvhat follows, we follow the argument of Lemma 6.6 of [15]. Let ro € (1,1),

and let ¢ € C5°(Q,,) be a function taking values in [0,1] such that ¢ =1 on Q,. We
split D, u. as follows:

¢?*Dyu. = ¢(Lu. + Comm),
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where
Lue = Rx(_Ax)l/B (C(_Ax)l/GUs)v
Comm = (Dytie — Ro(—A2) 3 (C(—AL) Y 0us),

and R, is the Riesz transform.
Estimate of Lu. Denote h = (—A,)"/%u.. Then, by assertion (i), Ch € S, (RyT2%)
satisfies the identity

(3.12) (Po 4 \)(Ch) = hPy¢ — 2(aDyC) - Db in R4,
By the L,-boundedness of the Riesz transform and Theorem 2.3 applied to (3.12),

H£u€|‘LP(Ré+2d) < N(d,p) ||(_Ar)1/3(4h)||L,,(R(1)+2d)

(3.13)
S N(dvpa 5)|||hP0<| + |(G‘DU<) ! Dvh‘”LP(RéJer

)
Furthermore, by (3.8) and the interior gradient estimate in Lemma 3.5, we get

(3.14) 1(@DyC) - Dyhlly, gi+eay < NAIL, (@)

where N = N(d,d,p,r,70).
Commutator estimate. We denote

A=D,(—A,)" VS,

By Lemma A.2, this operator can be extended to C}(R?) functions as follows:

=pv /‘75 | |d+5/3 dy.

Furthermore, by the same lemma, for any ¢ € C2(R?), one has A(~A,)Y%¢ = D,¢.
Then, since ug( ,v) € C2(R?) (see (3.11)), for a.e (¢t,v) € (—1,0) x By,

Comm(z) = CAh(z) — A(Ch)(2)
= p.V./h(t,x — y,v)(C(t,x,v) —((t,x — y,v)) W%/g dy

_ </|y<1...+/yl>1...> — 1 (2) + In(2).

By the mean-value theorem and the Minkowski inequality,

(3.15) 1111l @.) < N(dp) Il L, @ .)-
Next, for any z € Q,., we have

dy
|12|<z>s2/ h(t,z— y,v)| —2__
lyl>1 |y|d+2/3

Then, by Lemma A.1,

_ 1
(3.16) 2], @) < N(d,p Zz 2k (|h|P) /f’zk.
k=0

Combining (3.13)—(3.16) and passing to the limit as € — 0, we prove assertion (ii). O

The next lemma is about estimates for Py + A-caloric functions.
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LEMMA 3.9. Letp € (1,00), and let u € S joc((—4,0)xR4x By) (01 Sy 10c((—1,0) x
R? x By)) be a function such that Pyu+ Au=0 in (—1,0) x R? x By. Then, for any
j€{0,1}, I,me{0,1,...}, the following assertions hold.

(i) For any 1/2<r<R<1,

Furthermore,
(318) (1 + )‘)Hﬁt]DerTu”Loo(Qw) < N(d7 57p7j5 l,m,r, R)HUHLP(QR)

(ii) If, additionally, u € S,((—4,0) x R x By) and j +1+m > 1, then
(3.19)
”agDﬁcDTu”Lp(Quz)

> 1/p
< N(d,d,p, j.1,m) (leu| Nl g+ D027 (180 oul) ) -
k=0 12k

As in assertion (1), we may replace the left-hand side of (3.19) with
HangmDZLuHLoo(Quz)‘

Proof. (i) By Lemma 3.8 (i), u € Sp10c((—=1,0) x R? x By). In what follows, we
follow the argument of Lemma 5.6 (i) in [15].
Case l,j = 0. First, we prove that for any r € (1/2, R) and m={0,1,2,...},

(3.20) MDullz,q.) + 107 ulln, @) < N(d, 6, p,r,m)||ull L, @r)-

To prove this, we use an induction argument. Note that (3.20) with m = 0 follows
directly from Lemma 3.5. In the rest of the argument, we do some formal calculations.
To make the argument rigorous, one needs to use the method of finite-difference
quotient. For m > 0, we fix some multi-index « of order m. Then, by the product
rule,

(3.21) (Po 4 \)(D%u) = > caDYDY %y,

a:a<a,|al=m-—1
where cg is a constant. Next, for any r1 € (r, R), by Lemma 3.5, we have

(3.22) /\”DZLUHLP(CETI) + D7 1, o)
< N[DJ" " Daullr, @, + NIDT vz, @.,)-

Observe that for any multi-index 3,

(3.23) (Po+A)(DPu)=0 in(~1,0) x R x By.

Then, by the induction hypothesis and Lemma 3.6, for any r2 € (r1, R), we have
1Dy ' Daullz,q,,) < NIIDzullL,,,) < NlullL,@n)-

This, combined with (3.22) and the induction hypothesis, implies (3.20).
Case j = 0. Combining (3.23), (3.20), and Lemma 3.6, we obtain (3.17) with
j=0.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/01/24 to 128.148.254.57 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

L, ESTIMATES FOR KFP EQUATIONS 1243

Case j=1. By (3.21) and (3.23), for any multi-indexes o # 0 and 3, the function
(3.24) U= DDy
satisfies the identity

(3.25) PyU + AU = > cgDED2P=% in (—1,0) x R? x By.
& a<a,|a|=lal-1

Then, by Lemma 3.5 and (3.17) with j =0, we conclude that

(1 +N0UlIL, @) <A+ )(10U = v- DUl 1y00 + 71 D:UllL, @)
(3260) < NO+N(Ulz, ., + DS DI | L, .,
+ D2l @) < Nlullz,@n)-

where N = N(d, 4, |al,|5|,p,r, R). In the case o = 0, the above argument yields the
same bound (1+\)[|0:U ||z, (q,) < Nllullz,(@g)- Thus, (3.17) with j =1 is also valid.

Next, note that the second assertion with j = 0 follows from (3.17) and the
Sobolev embedding theorem. To prove the estimate with j =1, we use (3.25), (3.18)
with 7 =0, and Lemma 3.5:

L+ M0V | o) < A+ NDLU| + [DIU]+ AU L (@)
(3:27) <N+ )\)HUHLW(QR/2+1/4) < NHu”Lp(QR)'

(ii) It suffices to show the validity of the estimate

HagD.Echmu”Lp(Quz)

(3.28) . 2
S N(d, 6, R, j, [, m)([| Dol + | Dyul + X Z[ulllL,@r)), R € (1/2,1],

because the desired assertion follows from (3.28) and Lemma 3.8 (ii). To prove (3.28),
we will consider four cases.
Case 1: 1> 1. Note that by (3.17) and (3.23), one has for 1/2<r <r; <R,

18] D Diull 1,y < NIIDhullz,q.,)-

Hence, (3.28) holds in the case [ =1. If [ > 2, we use Lemma 3.6.
Case 2: 1 =0,m > 1,57 = 0. By using an induction argument (see (3.22)) and
Lemma 3.6 as in the proof of assertion (i), one can show that

(3:29) D5 ullL, (@) < N[ Deul + [DyulllL,@r)-
Case 3: |=0,m>1,j=1. By (3.26) with |a|] =m and =0,
18: Dy ull < N[ Dy ul + D~ Dyl + | Daull|z, (@, )-
Now (3.28) follows from (3.29) and (3.28) with [ =1 (see Case 1).
Case 4: 1 =0,m =0, =1. Since dyu=v- Dyu + aij(t)Diju —Au in (—1,0) x
R? x By, by using (3.29) with m = 2, we get
(3.30) [0ullz, @,y < Nll[Daul + [Dyul + Alulll, @r, ) Br € (R,1).

Let Rz € (Rq,1). By (3.17), we may replace the term Al[ul 1, (qy,) With )\1/2||u||Lp(QR2)
on the right-hand side of (3.30), and, thus, (3.28) holds.
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Finally, the second part of the assertion in the case when j = 0 follows from (3.19)
and the Sobolev embedding theorem.

In the case when j = 1, we invoke (3.24)-(3.25). By (3.27) and the Lo (Q1/2)
estimate of D, U and D2U proved in the previous paragraph, we get

10:U Loc(@1 ) S DU+ DU+ AU L (@1 2)
< N||[Dzul + Dot + X2l 1, @1) + MUl @1 2)-
By (3.18), we replace the last term with A\'/2[|u]|; (o,). The assertion is proved. 0O
The next result follows from direct computations.

LEMMA 3.10 (scaling property of Py). Let p € [1,00], T € (—00,¢], and u €
Sp,loc(Réj'Zd). For any zg € R;"'Q‘d, denote

(3.31) Z=(r’t +to,m3x + xo — r’tvg, TV + o), U(2) =u(2),
Y=0;—v-Dy, Py=0,—v-Dy — aij(TQt—i—to)Dij.
Then,
Yiu(z)=r2(Yu)(2), Pou(z)=r*(Pu)(3).

Proof of Proposition 3.4. Let u and P, be the function and the operator from
Lemma 3.10 defined with vr in place of r. Then, by the same lemma,

Py + A(wr)?i=0 in (=1,0) x R x By,
and for any ¢ >0, and A = (—A,)'% or D,,

1 _ ~ 1
(|AuP)g? oy =n) APyl
1/p

<|Au — (AU)QT(Z()) |p)
Qr(20) Qi/v

Next, by Lemma 3.8 (i), (—A,)Y5% € S, 10¢((—1,0) x R? x By), and
(Po+ A(wr)?) (=A% =0 a.e. in (—1,0) x R? x By,

(3.32) 1/p

— ) (147 - (4 . 7

and then, by Lemma 3.9 (i) with u replaced with (—A,)'/%, for any v > 2, we get

1/p
((—AW% (A g, |P)
Qi/v

< suwp [(=00)Y0(21) — (—20)Y%u(z2)]

21,22€Q1

1/p
<N@so (1)

Combining this with (3.32), we prove the estimate for (—A,)"/%u.
Arguing as above and using Lemma 3.9 (ii), for any v > 2, we obtain

~ 1/p ” U L/p
N P2ur([i = @)a,, )7+ (D= (Di)a, )L
<Ny (Al/%r ([P)g! + (D) g+ 2 2’“<|(—Aw>1/6“|p>c2/f;k) '
k=0
Dividing both sides of the above inequality by vr and using (3.32) yield the desired
estimate. ’
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3.2. Proof of Theorem 3.1. The following mean oscillation estimate plays a
crucial role in the proofs of Theorems 3.1 and 1.15.

PROPOSITION 3.11. Letp>1, r >0, v>2 be numbers, T € (—o0, 0], zg € R%F*'Qd,
and let u € S,(RE2Y), £, g€ L,(REY) be functions such that

Pou+ A u= divvf+ g.

Then, there exists a constant N = N(d,§,p) >0 such that

1/p
L= (I(—Az)”ﬁu - ((—Az>1/%)@r<zo>|p>

- 1
< N (=20 Vou) 7

Qr (ZO)

+NV(4d+2)/pZZ_k((\ﬂp)l/p +)\—1/2(|g|p)1/p ),

ng,szrl(gw)(ZO) Q2w,2k+1(2w)(20)
k=0

1/p 1/p

I :=A1/2<|U_(U>QT(ZO)|I)> ( )+(IDUU—(DvU)QT(zo)|p>
Qr(zo

_ 1 - 1
<N (i) g! L+ Ne T (IDwl) gl )

Qr (ZO)

_ _ 1
+ Ny 2 (A o)y
k=0

NV S 2 (1)) AT (1)) )

sz,szrl(zw)(ZO Q2w,2k+1(2w)(20)
k=0

Proof. Estimate of I;. We fix some function ¢ = ¢(¢,v) € C5°((to — (2vr)%,to +
(2vr)?) X By, (v9)) such that ¢ =1 on (tg — (vr)?,to) X Byr(vg). By Theorem 2.1 (ii),
the Cauchy problem (see Definition 1.10)

Poug = div, (f¢) + gb, uolto — (2vr)?,-) =0,

has a unique solution ug € S,((to — (4vr)?,to) x R??). To obtain a mean oscillation
estimate of (—A,)%ug, we use the argument of Proposition 3.4. Let @y and Py be
the function and the operator from Lemma 3.10 defined with 2vr in place of r and
with ug replaced by u. We define the functions f;,i=1,...,d and g by (3.31). Then,
we have

Pyiio + A(2vr) %ty = (2vr) Dy, fi + (2vr)?§  in (—1,0) x R? x By.

By Lemma 3.3 with
~ (2vr)?X in place of A,
— 2urf; in place of f;,i=1,...,d,
— (2vr)?g in place of g,

for any R>1,

(1(=22) %% |?) g7,

< N(d,p,6)(2vr)

NE

d
—k 7o\ 1/p —1/2¢=p\1/P
2 <Z(|fi|p)Q1,2k+1R +A / (|g|p)Q1,2k+1R> )

=1

~
Il

0
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By dividing both sides of the above inequality by 2vr and using (3.32) with vr
replaced by 2vr, for any R > 1, we obtain

1 _
(3.33) (=20 00") ] ey SN D2 Fr(R
1 _
(3.34) ((=80)Cul?)? (o) < NP3 0k Fy (),
k=0
where
_ (1 fip\L/p —1/2 1/p
Fe(B) = (F17)0,,, st pianmy o) TA UG, i i ()

Next, note that the function uj, :=u —ug € Sp((to — (2v1)?) x R??) satisfies
Poup, = div, (f(1—¢)) +g(1—¢) in (to — (2vr)?,to) x R
¢)

Since f(1—¢) and g(1 —
3.4 and (3.33) with R=1,

vanish inside (to — (v7)%,t9) x R? x B,,,., by Proposition

1/p
(I(—Ax)”%h - ((—Ax)”"'uh)czr(zwp) < Nv (=20 YSunP)g?
QT(ZO)
oo
_ 1 _ _
<NvH(|(=20)Y0uP)g? L+ N 27 R().
k=0

Finally, the mean oscillation estimate of (—A,)/6

and (3.34) with R=1.
Estimate of I5. First, by Lemma 3.3 and the scaling argument presented above,

u follows from the above inequality

1 1 - — k2
(835) Aol )+ (DouoP)G ) SN Y27 SE(),
k=0
1 1 - k2
(3.36) N2 (o)1 + (IDutol?) g,y < NpH2/0 3 707K B (1),
k=0

Hence, as above, by (3.36), it remains to estimate Iy with u replaced by uy,.
Next, by Proposition 3.4, we get

1/p
N (m - <uh>Q7,<ZO>P) n (|Dvuh - <Dvuh>Qr(zo>P)
Qr(z0)

<NvTIN2(uf)g? L+ Nu T (D) g s

1/p

Qr(z0)

+Nv! 22*21<|<—Ax>1/6u|p>1“’

vr,2d r(%0)
Jj=0

+ NVﬁl(Al + AQ),

where

22 2] 1/6u |p)1/P

Qo 25 (20)?

A2:>\1/2(|U0|p)1/p (|1 Dyuol?) g

Qur(zo) T Qur(z0)"
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By (3.33) with R =27, we get
A < NZQ‘Qj Z 2R F(29).
=0 k=0

Using the fact that Fj(27) = Fj4;(1) and changing the index of summation k — k+ j
yield

o0
A <N 277 F;(1).
§=0
Finally, note that the term As is estimated in (3.35). The lemma is proved. |
Proof of Theorem 3.1. In the first two steps below, we assume, additionally, that

(3.37) (—A)YOUE Ly iy g(REF2 1),

We will remove this assumption in Step 3.

Step 1: Estimate of a localized function. By Lemma A.4 and the self-improving
property of the A,-weights (see, for instance, Corollary 7.2.6 of [17]), there exists a
number

Do :p()(daparla' i ard’(LK), 1 <po < min{parlv' i 7Td7Q}7

such that
(3'38) Lpﬂ”l ,,,,, Td,q (R%’_ﬂd’ w) c L;DOJOC (R%‘Jﬂd)a
(339) wo EAq/pO(R), w; EA”/:DO(R), 1=1,...,d.

Let ¢ € C5°(R**24) be a function such that ¢ =1 on @1, and denote
(3.40) bn(2) = (t/n* /0’ v/n), up=udn, fo="Fon.
Observe that u,, satisfies

Pyt + Mty = divy () + g,
where
(3.41) Gn =900 — [+ Dot +uPoy — 2(aDyy) - Dyu.
Note that
FrsGn € Lo (REF2) iy, €S, (REF2D),
We now use Proposition 3.11 and conclude that for any 2o € W,
(342)  ((—A2)Y0u,)E(20) < No~ MEP|(~A0)ou, 7 (20)

+ Np4d+2)/po ZQ—k (Ml/po \ﬁ|p°(z0)+A_1/2M1/p“ |gn|p°(20))’

2k+1,T 2k+1,T
k=0
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(3:43) A2 (un)F(20) + (Dyun)F (20)
< Nu= A 2MEP0 [ [P0 (20) + Nv™ MY D yun [P (20)

NV 2 M (<A P (20)
k=0

NV 5T 0T (MRS 1Tl (20) + AT PMGER Lol (20),
k=0

where M. 7 f and My f are defined as in (1.2). We take the || - [|-norm on both sides
of (3.42)—(3.43). Then we use Theorem A.3 with p/po, q/po, ri/po > 1,1 =1,...,d,
combined with (3.39). By this and the Minkowski inequality, we obtain

(B44)  (~A)YOu, ]| < Nv|(=A0) YO, |
+ NP0 (| 7|+ A2 g, ),
(845)  AV2lunll+ [ Dyunll < N~ W2 fug]| + [ Do)

+ N (= A2) Y Oun | + NV (| f ]| 4+ A2 g ).

Taking v > 2+ 4N, we cancel the term ||(—A,)"%u,|| on the right-hand side of (3.44)
and obtain

(3.46) I(=20) ]l < N[ Fall + 272 llgnll).
By using the last inequality, (3.45), and our choice of v, we prove
(3.47) A2 [t | + [ Duttnl| < N(|fll + A2 gnl))-

Step 2: Limiting argument. By (3.47), (3.41), and the construction of ¢,, (see
(3.40)), we have

IAY2|u) + [Dyullly,

1o a (@R

< NIFI+ NAT2llgll+ No T ATVl [ Dyl + [lal)-

Passing to the limit as n — oo, we prove the estimate (1.15) for u and D,u.
Next, note that due to (1.13), and Holder’s inequality for any n € C5°(RL24),

(_Am)1/677 €L, := Lp*,rf,m,rz,q* (R1T+2d7 wy),

where p*,r7,...,r},¢" are Holder’s conjugates relative to p,r1,...,7rq,q and

d
Wy (t,v) = wo—l/(q—l) (t) Hwi—l/(ﬁ'—l) (v7).

i=1

Then, by this and the convergence u, = uin Ly, r,q (RlTHd,w), we have

/ (~Ag)Pu)y dz
R;—{—Qd

The above inequality combined with (3.46) gives (1.15) for (—A,)Y6u.

< T /A \1/6
< lle. T 1(~A0)"%un]l

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/01/24 to 128.148.254.57 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

L, ESTIMATES FOR KFP EQUATIONS 1249

Step 3: removing the assumption (3.37). Let u. be the convolution of u in the x
variable with e~9¢(-/¢), where ¢ is a smooth cutoff function with the unit integral.
We note that

Poue + Aug = divvf_; + ge.

Furthermore, by (1.13), (—=A,)Y5((-/¢) satisfies the condition of Lemma A.7. Hence,
due to the identity

(_A:v)l/ﬁue =e hux (_Az)1/6C('/5)

and Lemma A.7, the condition (3.37) holds with u replaced by u.. Then, by what
was proved above and Lemma A.7,
||)\1/2|u€| + |Dyue| + |(_Ax)1/6us|”

(3.48) S =
< NJfel + A2 1gel Il < N+ A2l

By using a duality argument as in Step 2 and (3.48), we conclude that (3.37) and
(1.15) hold for A > 0.
Step 4: case g =0, A=0. For any X\ >0, we have

Pou+ M= divy f + Au.
Then, by (1.15) with A > 0, and Au in place of g,
INY2Jul + | Dyl + (= 22) Y Cul | < N £+ A2 ful]-

Taking the limit as A | 0, we prove the desired bound.

To prove the assertion for the space Ly, ., (REF2 |z Hle w;(v;)), we follow
the above argument, only modifying the proof of the estimate for (—A,)Y%u. In
particular, in Steps 2-3, due to (1.13), for any o € (—1,p—1) and any n € C§° (R%ﬁ'zd),
one has

d
(_Am)l/ﬁn c Lp*;rf ..... v <R;+2d, |x‘704/(1771) Hwi—l/(m—l)(vi)> ’
i=1

where the latter is defined by (1.6) with

pr oy, oy, —a/(p—1), wfl/(rlfl),...,w;I/(Tdfl)

in place of p,ry,...,rq, @, wy,...,wy, respectively. The theorem is proved. 0
4. Proof of Theorem 1.15.

4.1. Proof of assertion (i). In this section, we prove the main result for the
KFP equation in the space S, ., r,.q(RE 2% w). The assertion (iv) of Theorem 1.15
is proved along the lines of this section (see Remark 4.3). We start by proving a mean
oscillation estimate, which generalizes the one in Proposition 3.11.

LEMMA 4.1. Let A >0, 79 >0, v > 2, p1 € (1,00), a € (1,3/2) be numbers,
T € (—o00,00], and let Ry be the constant in Assumption 1.2 (o). Let u € S, (RE2%),
f,9 € Ly, (REF2) be functions such that

(4.1) Pu+ = div, f + g.
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Then, under Assumptions 1.1-1.2 (o), there exists a sequence of positive numbers
{ck,k >0} such that

oo
ch < NO(dvplaa)y

k=0

and for any 2o € RE™2 and r € (0, Ro/(4v)),
1/p1 1/p1
AL/2 (|u - (u)QT(ZU)|p1> + <|Dvu — (Dvu)QT(ZO)V”l)

Qr(20) Qr(20)
_ 1 _ 1
< NNl N Dl

_ _ok !

+Nv 1;2 2k (| (= Ay )/ SulPr) /ilzkw(zw
=0

(4d+2)/p1 - —k (| fip1\1/P1 —1/2/|,p1\1/P1

+ Nv 22 (] )szr,2k+1<2m(zo)+>‘ (gl )QQVT’2,C+1(2VT)(ZO))

k=0
(4d+2)/p1 (a—1)/(ap1) X ay1/(pra)
+ Nv plfyo kz |D u|P1 Q2yry2k+1(2ur)(zo)’

1/p1

(I(—Aw)l/ﬁu - ((—A$)1/GU)QT(ZO)|1)1>

< NV71(|(7A£)1/6U“DI)1/1)1

Qur(z0)

Qr(20)

+ Np(d+2)/p ZQ—k((mm)l/m A 1/2(|g|p1)1/p1 )

QZIIT,2k+1(2V7‘)(ZO) Qs 2k+1(2u7‘)(20)
k=0

+Ny(4d+2)/p1 (a—1)/(ap1) ch D, u|p1a 1/(191&)

2w,2k+1(2w)(20)’
k=0

where N = N(d,0,p1,q).

Proof. Clearly, we may assume that D,u € Ly, o (Qayr,25+1(20r)(20)) for any k > 0.
Thanks to Lemma 3.10, we may also assume that zo = 0.
We introduce

El(t) = (a’(tv K '))3(2,”)3 X Bayr and ]50 = 8t —v-Dy— dijDvivj«
Observe that u satisfies Pyu+ Au = divy, (f+ (a— @) Dyu) +g. By this and Proposition
3.11,

1/p1

1/P1
NE (|u - <u>QT<ZU>|p1> n (|Dvu - <Dvu>Qr(%>|pl)

Qr Q-
< Nu=H(|DyulP ) g Pt + Nu=t 37 2725 (|(=A,) Y oulr) g™

vr, 2kur
k=0
00
4d+2 —k (¢ Flp1\L/p -1/2 1/p
+ NV( )/pl Z 2 ((|f‘pl)Q2u1rr',2k+1(2u'r') + / (|g|p1) 21/17 2k+1(2w))

k=0

o0
+ NpMdt2)/m Z 27 (|a — al* |D1,u|p1)1/p1

Q2w,2’€+1 (2vr)
k=0
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Using Holder’s inequality with o and oy := /(v — 1) gives
— (g — glP1 p1\L/P1
I= (la a‘ |D ul )ng,zkﬂ(gw)
<(la a|p1a1)1/(1)16¥1) (|D. u|p1a)1/(P10t) —. [il/(mal)[;/(ma)_

2ur,2k+1(2u7) Qs 2k+1(2ur)

Due to the boundedness of the function a, we have

I <N(la—al)

Q21/r72k+1(21/7‘) :
Furthermore, since 2vr < Ry/2, by Lemma A.6 with ¢= ok+1
I < N2%y,

and then,

27/6]11/(1’10‘1) < N27k+3’€/(171a1),yé/(1”1(¥1).
We set ¢, = 2*’“*3’“/@10‘1), k >0, and note that Zk cr < 00, since a; > 3. The estimate
for (—A,)Y/5u is established in the same way. The lemma is proved. |

In the next lemma, we prove the a priori estimate (1.15) with b=b=0, ¢ =0,
and compactly supported u € Sp,T17,,_,Td7q(R1T+2d,w), f.g€ Lp,rl7___7m7q(R%p+2d,w).

LEMMA 4.2. Let

- A>0,p,71,...,74,q>1,K >1 be numbers, T € (—o0,0];

- w;,i=0,1,...,d, be weights on R satisfying (1.14);

— Assumption 1.1 be satisfied;

— the functions u € Spry.. rya(RE2 W), Flg € Ly ruqRE24 0) have

compact supports and satisfy (4.1).

Then, there exists a number vo = vo(d,d,p,71,...,7d,q,K) > 0 such that, under As-
sumption 1.2 (yo), we have

(4.2)  A2[lull + [ Dyull + [[(=A2) Y ull < NYFIl+ NA2|lgl| + NATV2 R ull,

where || ’ || - H : ||Lp - r,i,q(]R;j%LﬂU)’ N:N(d757p,’l”1,...77’d,q,K), and RO € (071) is

the constant in Assumption 1.2 (o).

Proof. Step 1: estimate of a function with a small supportint. Let Ry,~vy >0 be
numbers which we will choose later. We assume, additionally, that v vanishes outside
(s — (RoR1)?%,5) x R2? for some s € R. The small support in time restriction will be
removed in Step 2.

Let po be the number satisfying (3.38)—(3.39). Then, since u, f: g have compact
supports, we have u, D,u f g € LPO(RH’M), and then by (4.1), dyu — v - Dyu €
H H(R3F??), so that u € Sp, (REFY). By Corollary 2.2, (—A,)YSu € Ly, (RFF9).

We fix some v > 2, a € (1,min{3/2,po}), and denote p; = pgy/c, so that pg = ap;.
If 4vr > Ry, then by Holder’s inequality with a and a1 = a/(a — 1), for any function
h € Lap, 10c(RET24) vanishing outside (s — (RoR1)?,s) x R?¢ and z € RL™2%,

(Ih = (h)q, =) PG, < 2(RIP)g R

a 1oyl @
< 2T )2 (P >Q/f§’;> )
< 2(RoRyr ™12 oo Myl 1) pjere(z)

< NZ/Q/(”““)Rf/(mal)/\/@/(mo‘)|h|p1a(z)_
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In the case when 4vr < Ry, we use Lemma 4.1, which is applicable, since f,g €
Ly, (REF24) and u € S, (RLF24). Combining these cases, we get, in R,

A2 (w)F + (Dyu)f
§Nl/z/(plal)Rf/(mal)()\1/2/\/1;/(”1&)|u|p1a +M%F/(P104)|Dvu|p1a)
+ szl(/\l/QMl/pl [ul?* + My Dyul?)

+NV71 22 2kM1/P1 ( A£)1/6u|p1
k=0

(oo}
_~_N,,(4d+2)/p173/(p1a1) ZCkM;IC+Z)11; |DyulPre
k=0

oo
+ NP TR (MR AP+ AT MG Zlgl™),
k=0

and

((—Ay)You)Z
< Nyz/(plal)Rf/(plo‘l)MlT/(pla)|(_Ax)1/6u|p1a

+ N MG (= A ) Ol

" Ny(4d+2)/p1’}/é/(plal) Z Cle/ (pr1ov) |D u|P1a

2k+1T
k=0
+ Ny N o=k (/B | FP -+ A2V g,

k=0

where (f)#, M. rf, and Mrf are defined as in (1.2). We take the || - ||-norm of both
sides of the above inequalities and use the Minkowski inequality. Then, by (3.39) with
po = pra and Theorem A.3 with

p/(pra),r1/(p1c),...1rq/ (1), q/(Prcx) > 1,

we obtain
(4.3) A2l + | Dyul| < N (vt + 2 @ren) Y010y G2 [y || 4 || D,ull)

+NV_1||(_Az)1/6U|| +NV(4d+2)/p1,yé/(P1a1)||Dvu||

+ NP (| £l 4 X712 g]),
(4.4) ||(—Am)1/6u|| < N(V—l + VQ/(le)R?/(PlOél))H(_Am)lmu”

+ NyUd+D o e byl o Ny U2/ (| 7l 4 A= 12 g])).

Taking v > 2+ 4N first, then choosing Ry, > 0 sufficiently small such that

NU(4d+2)/p1,yé/(P1a1) + NVQ/(le)Rf/(mm) <1/4,

and using the fact that (—A,)Y%u € Ly, .qo(RE2% w) (see Corollary 3.2), we
obtain from (4.4) that

(4.5) 1(=22)"%u]| < (1/2)| Dyul| + NvOHED1 (| £+ 272 lg])).
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By this, (4.3), and our choice of v, Ry, and 7, we get
A2l + [ Dyul| < (5/8) (A2 [ful| + [ Dyul)) + Ny @272 £l + A1 lg])),
which implies
(4.6) A2 ull + | Dol < N(IFI + A2 ]gl)-
This, combined with (4.5), gives
(4.7) [(=2:)"Cul < N(IF+ X2l

Step 2: partition of unity. Let ¢ € C§°((—(RoR1)?,0)) be a nonnegative function
such that

(4.8) / Clt)dt=1, |¢’| < No(RoRy)~27%/1,

Observe that for any t € Ry and U € Lp,rlw,,,d’q(Réfzd,w)7 by (4.8),

Multiplying the above identity by wq and integrating over (—oo,T], we get

(4.9) U] = / |UC(-— 5[ ds.

Next, note that for any s € R, the function us(z) :=u(2){(t — s) vanishes outside
(s — (RoR1)?,s) and satisfies the equation

Pug(2) + Mg (2) = div, (f(2)¢( = 5)) + 9(2)¢(E = 5) +ul’ (t = s).
By (4.6) and (4.7) proved in Step 1,

)\1/2””5” + [ Dyus|| + ”(_Az)l/ﬁusu
SNIFCC =)+ NAT2gC(- = )| + N(RoRy) 27> N2 |lug(- - 5),
where & € C§°(R) is a nonnegative function such that £ =1 on the support of ¢, and

[€4(t)dt = N1 (RoR1)?. Raising the above inequality to the power ¢, integrating over
s € R, and using (4.9) and our choice of Ry, we prove (4.2). O

Remark 4.3. A version of Lemma 4.2 holds in the case when

d
WE Spiry,...ra <R1T+2da || HW(%)) ,

=1
d
f’g € Lpi,ﬁy-uﬂ“d <R%+2d7 |x|a le(v1)> )
i=1

and these functions have compact supports. To prove the result, one needs to follow
the proof of Lemma 4.2 but use the partition of unity in vy instead of t. We give a
few details. First, repeating the argument of Step 1, we prove the estimate (4.2) for
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u satisfying (4.1) and vanishing outside R; x RS x RI~! ' (s — RoRy,s) for some
s € R. Furthermore, we fix a nonnegative function ¢ € C§°((—RyR1,0)) such that

/g’"d dvg=1, |¢'| <N(RoRy) '~'/"
and denote us(z) = u(z)((vg — s). The function ug satisfies the identity
Pus(2) + Aus(2) = Dy, [f(2)¢ (va — 8) — a'(2)¢" (va — s)u(2)]
— fa(2)¢ (va = 8) + g¢(va — s) — a¥ (2)¢" (va — 5) Dy, u(2).
As in the proof of Lemma 4.2, we obtain
A2 |lull + [ Dyl + [[(=20) " Cul
< NIf1+ Rg lul + A7 2|glll + NATYV2RG | Doul + | fal Il

Taking A sufficiently large, we may erase the terms involving u from the right-hand
side of the above inequality.

Proof of Theorem 1.15 (i). First, we consider the case when b=5b=0 and ¢ = 0.
We will focus on the case when the weight is independent of the = variable, since in

the remaining case, the proof is the same. Let ¢,,u, be the functions defined by
(3.40). Note that

Puy + Auy, = divyf, + gn,
where
o= fén — (aDuin)u,
80 =90 — [ - Db+ u(@bn —v- Duodn) — (aDudy) - Dy,
and, furthermore, the functions f,,,g,,u, are compactly supported, and
Ty &nyUn € Lp,rh.__,rd,q(RlT“d,w).

Then, by Lemma 4.2, there exist vo = vo(d,,p,71,-..,74,q, K) > 0 such that if
Assumption 1.2 (7yp) holds, then for any A > 0,

”/\1/2‘“71‘ + ‘Dvunl + |(_Aw)1/6unH|
<Nl + NATY2||gn] + Ry 2 Juall,
<[+ NAT2(llgll + R 2 llull) + N (1 4+ A7) |lul
+ Nn T ATY2) Dyl + | £,

where N =N(d,d,p,r1,...,74,q, K), and Rg € (0,1) is the number in Assumption 1.2
(70). Using a limiting argument as in Step 2 of the proof of Theorem 3.1, we conclude
that

N2l + Dyl 4+ [(=22)YOull| < NI+ NAT2 gl + NATY2Rg? |u].

Taking A > 2N R;? so that A'/2 — NA7Y/2R;? > A\'/2 /2, we prove (1.15).
In the general case, we rewrite (1.1) as

Pu+ A u=G+div,F, G=g—b-Dyu—cu, F=f—bu.
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Then, by (1.15) with F and G in place of fand g, we get
A2 |ull + | Dyl + | (=A2)Ou
< NATY2|gll + NLATY2(|| Dyl + [[ull) + N £l + NL|Ju].
Taking A > 1+ 4(NL)?, we may drop the terms involving u on the right-hand side of
the above inequality. The assertion (i) is proved. |

4.2. Proof of Theorem 1.15 (ii) and (iii). As we pointed out in Remark 1.16,
the assertion (iii) follows directly from (ii). To prove the latter, we first establish the
unique solvability result in L,(R'*29) spaces.

PROPOSITION 4.4. Theorem 1.15 (ii) is satisfied in the case whenp=r; =---=
ra=q, w=1, and T = 0.

Proof. The assertion follows from the method of continuity, Theorem 1.15 (i),
and Theorem 2.1 (i). o

The following is a decay estimate for the solution to (1.1) with the compactly
supported right-hand side, which is analogous to Lemma 3.3. This result is needed
for establishing the existence part in Theorem 1.15 (ii).

LEMMA 4.5. Invoke the assumptions of Proposition 4.4, and let \g = Ao(d, d,p, L) >
1 be the constant from the statement of this result. Assume, additionally, that f and
g vanish outside Qg for some R>1, and let u € S,(R**24) be the solution to (1.1),
which exists and is unique due to the aforementioned proposition. Then, for any
A> X and j€{0,1,2,...},

1/2 _ N _ -
>\ Hu||Lp(Q2j+1R\Q2jR) + HDUU||LP(Q2]'+1R\Q23'R)

< N27U-D/AR (”ﬂ|LP(]R1+2d) + /\71/2”9”LP(R1+2‘1))a
where N =N (d,d,p,L).

Proof. The proof is similar to that of Lemma 7.4 in [15]. First, by Theorem 1.15
(i), we have

(4.10) A2 |ully, @i+2a) + | Dytl|z, riveay < N fllz, @ivza) + N2 gl zi+2a)-
Let n;,7 € {0, L,2,.. .}, be a sequence of smooth functions such that 7; =0 in éij,
n; =1 outside Qqi+1 R,

mil <1, [Dumj| S N277R™, |Din;| < N272R72,

|Dym;| < N273R™3, |O9ym;| < N2~ R™2,

Note that u; = un; satisfies the equation

(4.11)

Pu; + div, (buj) + 0" Dy,uj + cuj + duj = div, [—u (aDyn;)]
— (aDyn;) - Dyu+u(0m; —v - Dynj+b- Dynj +b- Dynj)
because f and g vanish outside @ r. Then, by the a priori estimate in Theorem 1.15
(i), (4.11), and the fact that A > 1, we get
1/2 _ _
INY2lul + Dol 5, 0 \Gorer
< Nlu(aDuny)llp, @i+2a) + NATV2 | (aDyny) - Dyul , mi+20)
+ NATV2[u(@m; — v - Danj + (b+b) - Dynj)l| 1, riv2ey
—ip—1y)\1/2 ~ ~
SN2 RTVIAY P ul + |D’Uu|||LP(Q2j+1R\Q2jR)'
Tterating the above estimate and using (4.10), we prove the assertion. O
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Proof of Theorem 1.15 (ii). The uniqueness follows from Theorem 1.15 (i). To
prove the existence part, we follow the proof of Theorem 2.5 of [15]. Next, we delineate
the argument.

First, we consider the case T = oco. By using the reverse Hoélder inequality
for the Ap,-weights and the scaling property of the A,-weights (see, for instance,
Chapter 7 in [17]), one can show that there exists a sufficiently large number p; =
p1(d,p,71,...,74,q,K) € (1,00) such that, for any h € L,, 1oc(R**2%), one has

(4.12) 17, < NE"[All,

L(@Qr)

P T, q(QR w)

where s, N > 0 are independent of R and h. In addition, the above inequality also
holds with Qap A Qg in place of Q.

Next, let fn7 gnsn > 1, be sequences of C§°(R!*24) functions converging to f
and g in Lp,rl7,__7Td7q(R1+2d w) respectively. Then, by Proposition 4.4, for any n, the
equation

(4.13) Puy, + divy, (buy) + b+ Doy, + (¢4 Nu, = divvf:L + gn

has a unique solution u, € S, (R'*2?). Fix any n, and let R = R, >1 be a constant
such that f, and g, vanish outside @Qg. Then, by (4.12) combined with Lemma 4.5,
for any j€{0,1,2,...},

N2 un] + 1Dyunlll,
< N<2jR)K||/\1/2 (Qpit1 5\ @i g)
< N(2/R)r2 90-N/AR™ (||f:L||L1[,1 (R1+2d) + Afl/zHgnHLm (R1+2d) )

..... rana(@ait1 g \Qoj )

The above inequality implies that u, € Sy, . ryq(R*24, w). Hence, by Theorem
1.15 (i), un,n > 1, is a Cauchy sequence in S, .+, .q(R*™2% w) and has a limit w.
Passing to the limit in (4.13), we conclude the existence of the unique solution to

(1.1).

The case T < oo is treated as in the proof of Theorem 2.1 (i). 0

5. Proof of Theorem 1.23. In the next two lemmas, we prove energy identities
for the operator

Yu:=0wu+ a(v) - Dyu.

For T € (—00,00], let H3(RLT¥T91) be the space of functions u € Ly(RET%) such
that Dyu € Ly(RETT9) and let (-,-)r be the duality pairing between Hj ! (RL:4+1)
and H}(REF4T9) given by

T
(51) = [ [ 12 ot ) daat

where

fal= [ (=8)7720) (1= 8 2g) .

LEMMA 5.1. Let u € H}(RY4+d1) pe a function such that Yu € Hy ' (RIFd+d),
Then,

(Yu,u)oo =0.
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Proof. For a distribution h on R4+ g cutoff function n € C§°(R14+4) with
the unit integral, and € > 0, we denote

(52) hs(tvxvv) = 6_(1+9d/2+d1)(ha77((t - ')/57 (.’E - ')/50/27 (V - )/5))7

where (h,n) is the action of h on 7. For the sake of convenience, we omit R4+t in
the notation of functional spaces and write (-,-) = (-,")co. First, we split (Yu,u) as
follows:

Yu,u) =(Yuc,ue) + (Yu— (Yu)e,u)
+{Yu)e — Yue,u) + (Yue,u—u.)
=1 +Ir + I3+ Iy.

Since u, is a smooth function vanishing at infinity, one has I; = 0. Furthermore, by
the properties of Bessel potential spaces (see, for example, Theorem 13.9.2 in [24]),

(L] < |[Yu— (Yu)e|grllullgy =0 ase—0.
Next, note that
(Yu)e — Yue)(t,z,v)

=02 /(a(v —ev') —av)) - Den(t', 2’ VY)u(t —et',x — 22" v —ev') da’dv'dt’,
and, then, by the Minkowski inequality and Assumption 1.20, we have
(5.3) I(Yw)e = Yue| L, <e”?ullz, =0
as € — 0, which gives

Is—0 ase—0.
Next, by duality,
L < [V g e — ey

By (5.3), for sufficiently small € > 0, the first factor on the right-hand side is bounded
by

[Yw)ellpsr + 1 (Yu)e = Yuelly—r <[[Yullg-r + [Jull L,
Thus, by this and the fact that
[u—ucllgr =0 ase—0,

we conclude that I, — 0 as € - 0. The lemma is proved. ]

LEMMA 5.2. Let T € R, u € HYy(RL™ ) and Yu € Hy '(REFT4). Then, for
a.e. s€(—00,T7,

(Yu,u)s = (1/2)lluls, )L, gora);

where (-,-)s is defined as in (5.1).
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Proof. We extend u by 0 for ¢t >T. Let £ be a smooth function on R defined by

£t)y=0, t<1,
£(t) € (0,1), te(1,2),
=1, t>2

We fix some s € (—o0,T] and denote &.(-) = &((s — ) /e), ue = u&. It follows that
u. € Hy (R™4441) and Yu, =€, (Yu) 4+ ug’ € Hy 'R 4+d), Then, by Lemma 5.1,

<Yu57 u6>8 =0,

which gives

(54) (V) ==(1/2) [, (&) dodvit.

The integral on the left-hand side of (5.4) equals

/RIM[(Yu)(t,:C, Yoult,x,)]E24(t) dedt — R&d[(Yu)(t,m, D, u(t,x, )] dedt

as € = 0 by the dominated convergence theorem.
Note that [°_(£2)'dt = —1. Then, the right-hand side of (5.4) is equal to

1 1 [°
S, gy — 5 / (It Y2, gersany — s, I sy (E2() .

— 00

The last term is bounded by

S§—¢€

Ne ! / 2 Mt s M2, erary = (s, )2, garar | dt.
S§—zE

By the Lebesgue differentiation theorem, the above expression converges to 0 as e — 0

for a.e. s € (—o0,T]. O

Proof of Theorem 1.23. First, note that by Remark 1.16, we only need to prove
the assertion (i).

(i) By pairing both sides of (1.16) with 2u and using Lemma 5.2, the Cauchy—
Schwarz inequality, and Assumptions 1.1 and 1.4, for a.e. s € (—oo,T], we obtain

a5, M, ey + SN DV rvarar, + (= Na) fu]

< N”f”iz(R}jd*dl) + N)\_ngHi2(Ré+d+d1)7

2
Lg(Ri+d+d1)

where Ny = Ny(d,dy,6,L) and N = N(d,d;,6). Taking A > 2N;, we may re-
place A — N7 with A\/2. Finally, by this and the fact that (5.5) holds for a.e. s €
(=00, T1, the desired estimate (1.17) is valid, which also implies the uniqueness part of
assertion (i).

To prove the existence, due to the method of continuity and the a priori estimate
(1.17), we only need to prove that (Y — A, +\)C>(R'*4+d1) is dense in H ' (R} Td+d)
for A > 0. Assume the opposite is true. Then, by duality, there exists a nonzero
u € H} (RY*4+d1) such that the equality

—Yu—Ayu+Au=0
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holds in the sense of distributions. Mollifying the above equation with the mollifier
defined in (5.2) gives

—Yu. — Ayue + due = (Yu)e — Yue.
Then, replacing ¢ with —¢ in the a priori estimate (1.17) and using (5.3), we get
/\||u€||L2(R1+d+d1) < N59/2 ||’U,||L2(R1+d+d1).

Passing to the limit as € — 0 in the above inequality, we conclude v = 0, which gives
a contradiction. The theorem is proved. 0

Appendix A.

LEMMA A.1 (Lemma A.1 in [15]). Let 0 >0, R >0, p > 1 be numbers, and let
f € Lp.10c(RY). Denote

g(x)= / F + )yl =@+ dy.
ly|>R3

Then,

p\1/p —30 —3ka P) 1/p
(191") 5, <N(d,0) R kzoz (VB s

LEMMA A.2. Let s €(0,1/2). Then, the following assertions hold.
(i) One has

(A.1) D, (—A,) Pu(x)=N(d,s) p.v./u(w - y)ly\d*%“ dy, ue S(RY).

This formula also holds for u € CY(R?) (see Definition 1.9).
(i) For any u € C3(R?),

(A.Z) (Dz(*Az)is) ((7AI)SU) EDIU'

Proof. Tt is well known that for any u € S(R?) (see, for example, Chapter 5 of
[36]),

(—A,) " Pu(z) = No(d, s)/u(x — y)w%zs dy.

Differentiating under the integral’s sign and integrating by parts, we obtain

1
1
Ny Di(—A /D u |d on dy
Y
= —lim Dyu(x y)id —(d —2s)lim u(x — y) —— dy,
S0 Jly|>e |y|d—2s e0 Jiy>e |y[d—2s+2

which proves the first part of assertion (i).
Next, since y|y|~9725~2 is an odd function, we have

y dy
‘/ To1d—2s12 dy‘ S/ u(@ — )l W
y\>s | | ly|>1 |y|

(A.3) ]
/ e 0) @ ey dy <N )l e
<|y|I<
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This bound combined with a limiting argument enables us to extend the formula (A.1)
for u e C§(RY).

(ii) First, for any u € C3(R?), by (A.3) and (1.11),
[Da(=Ag)~* (<_Aw)su> HLOC(]Rd)

(A.4)
<N(d, s)[[(=Az)*ullcr(ray < N (d, 5)||ull 2 ray

so that the left-hand side of (A.2) is well defined. Furthermore, note that (A.2)
holds if u € S(R?). Then, the desired assertion follows from (A.4) and a limiting
argument. ]

THEOREM A.3 (Corollaries 3.2 and 3.5 of [15]). Letc¢>1, K > 1, p,q,r1,...,7q >
1 be numbers, T € (—o0, 0], and f € Lp,n’.__,rdyq(R?'m,w), where w is given by (1.5),
and w;,1=0,1,...,d satisfy (1.14). Then, the following assertions hold.

(i) (Hardy-Littlewood type theorem,)

M,z f1|
(ii) (Fefferman—Stein type theorem)

1f1l

(iii) For a € (—1,p— 1), the above inequalities also hold in the space

d
Lpiry,...ra (R%+2d7 ||* H wl(vl)>

i=1

7'daq(R;+2d,w) < N(d7p7Qalr17 e 7rdaK)||fHL

PyTLseees P71 T'daQ( T

RLF24 o) < N(d,p,q,71,...,74, K) HijHL%” YYYYY g (REF2E 00y

p,rlwu,m,q(

with N =N(d,p,r1,...,7q4, K, ).

LEMMA A.4 (Lemma A.2 in [15]). Let p > 1,K > 1 be numbers, w € A,(R?)
be such that [w]y ey < K, and f € L,(R% w). Then, there exists a number py =
po(d,p, K)>1 such that f € Ly, j0c(R?).

LEMMA A.5. Let p € (1,00) and u € L,(R%) be a function such that (—A)Y3u €
L,(RY). Then, for any e >0,
(= 22)Sully, @) < Nell(—A2) 2ull ey + Ne™Hul 1, ray,
where N = N(d,p).

Proof. Tt follows from the Hormander—Mikhlin multiplier theorem that u € H;/ 3
(R%), where the latter is the Bessel potential space (see the definition, for example,
in Chapter 13 of [24]). Then, by the Hormander-Mikhlin multiplier theorem and the
properties of the Bessel potential space (see, for example, [24]),

1(=22)" %l 1, ey < NII(1 = A2)Oull, @y < N (1= Az) 20l 1, ge)
< N(=Aa)3ullp, may + Nllull, (ra)-

Now the desired assertion follows from the scaling argument. |

LEMMA A.6 (Lemma 7.2 in [15]). Let vo > 0 be a number and Ry be the constant
in Assumption 1.2 (o). Let r € (0, Ro/2), ¢ >0 be numbers. Then, one has

= ][ lat, 2, 0) — (a(t, ) 5o x5, | dz < N(d)c7o.

r,cr
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LEMMA A.7. Let p € (1,00),a € (—d,d(p — 1)) be numbers, u € L,(R%, |z|*), and
& be a measurable function satisfying the bound

[€(y)| < No(1+[y))~*",y eRY,
for some B>0. Let & =&~ 9(-/e). Then, ux&. € L,(RY,|z|*), and
(A.5) |ux &, ®a,|z)e) < N(d,p, o, B, No)||ull L, w,|z|)-

Furthermore, if we assume, additionally, that & € C°(R?) is a function with the unit
integral, then ux* & — u in L,(RY, |z]®).

Proof. Note that for any € RY,

url(@ <N Jule )l dy
lyl<1
(A.6) +NZQ*B’“][ lu(z — ey)| dy < NMu(x),
= 2k < |y <2h+1

where N = N(d, Ny, ), and M is the usual Hardy-Littlewood maximal function.
Since |z|*,a € (=d,d(p — 1)) is an A,(R?)-weight (see Remark 1.13), (A.5) follows
from a version of the Hardy-Littlewood maximal inequality in weighted Lebesgue
spaces (see [1]).

To prove the second assertion, we note that u*&. converges to u as € — 0 a.e. due
to Lemma A.4 and the Lebesgue differentiation theorem. Now the claim follows from
(A.6) and the dominated convergence theorem. 0
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