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ABSTRACT. We study parabolic and elliptic equations of both
divergence and non-divergence form in the half space {xd > 0}
whose coefficients are the product of x³d , and uniformly nonde-
generate bounded measurable matrix-valued functions, where
³ * (21,>). As such, the coefficients are singular or degen-
erate near the boundary of the half space. For equations with
the conormal or Neumann boundary condition, we prove the
existence, uniqueness, and regularity of solutions in weighted
Sobolev spaces and mixed-norm weighted Sobolev spaces when
the coefficients are only measurable in the xd direction and have
small mean oscillation in the other directions in small cylinders.
Our results are new even in the special case when the coefficients
are constants.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we study the existence, uniqueness, and regularity estimates of solu-
tions in Sobolev spaces to a class of parabolic (and elliptic) equations in the upper
half space, whose coefficients can be singular or degenerate on the boundary of
the upper half space in a way which may not satisfy the classical Muckenhoupt A2

condition.
Throughout the paper, let 'T = (2>, T )×Rd+ be a space-time domain, where

T * (2>,+>], R+ = (0,>), and Rd+ = Rd21 × R+ is the upper-half space. Let
(aij) : 'T ³ R

d×d be a matrix of measurable coefficients, which satisfies the
following ellipticity and boundedness conditions: there is a constant » * (0,1)
such that

(1.1) »|¿|2 f aij(t, x)¿i¿j and |aij(t, x)| f »21
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for every ¿ = (¿1, ¿2, . . . , ¿d) * Rd and (t, x) = (t, x2, xd) * 'T . Here, we do
not impose the symmetry condition on (aij). Let ³ * (21,>) be a fixed number.
We investigate the conormal boundary value problem

(1.2)

ùüú
üû
x³d (ut + »u)2Di[x

³
d (aij(t, x)Dju2 Fi)] =

√
»x³df ,

lim
xd³0+

x³d (adj(t, x)Dju2 Fd) = 0

in 'T , where F = (F1, F2, . . . , Fd) : 'T ³ R
d and f : 'T ³ R are given measur-

able functions in suitable weighted Lebesgue spaces, and » g 0 is a parameter. It
is worth noting that the weight x³d satisfies the Muckenhoupt A2 condition only
if ³ * (21,1). As a special case of our main results, for the model equation

(1.3)

ùú
û
x³dut 2 div[x³d ('u2 F)] = x³df ,
lim
xd³0+

x³d (Ddu2 Fd) = 0

in the upper-half parabolic cylinder Q+2 and for ³ * (21,>), we obtain the local
boundary weighted estimate

(ˆ

Q+1

[|u|p + |Du|p]x³d dz

)1/p

f N
ˆ

Q+2

[|u| + |Du|]x³d dz +N
(ˆ

Q+2
|F|px³d dz

)1/p

+ N
(ˆ

Q+2
|f |p7x³d dz

)1/p7

for every p * (1,>), where p7 * [1, p) depending on ³, p, and d as in (2.3)–
(2.4) below andN > 0 is a constant depending ond, ³, p, and p7. Equation (1.3)
is related to the extension problem of the fractional heat operator (see, e.g., [1,32,
36]), and our result in this special case is already new.

We also consider the parabolic equation in non-divergence form
(1.4)

a0(t, x)ut 2 aij(t, x)Diju(t,x)2 ³

xd
adj(t, x)Dju(t,x)+ »c0(t, x)u = f

in 'T with the boundary condition

(1.5) lim
xd³0+

x³dadj(t, x)Dju(t,x
2, xd) = 0,

where a0, c0 : 'T ³ R are measurable functions satisfying

(1.6) » f a0(t, x), c0(t, x) f »21, (t, x) * 'T .
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In this case, we impose an additional structural condition on the leading coeffi-
cients aij:

(1.7) adj(t, x) = 0, j = 1,2, . . . , d2 1,

or adj = »jadd for j = 1,2, . . . , d 2 1 with constants »j , which can be reduced
to (1.7) after the change of variables yj = xj 2 »jxd for j = 1,2, . . . , d 2 1 and
yd = xd. We note that this condition is satisfied for a large class of equations (see,
e.g., [1, 3, 14, 16]). Unlike (1.2), the equation (1.4) has extra coefficients a0 and
c0. The main reason we introduce them in (1.4) is for convenience because in the
proofs of main results for (1.4)–(1.5), we divide both sides of (1.4) by add to use
the hidden divergence structure of the equation. Nevertheless, with a0 and c0 the
equation (1.4) is slightly more general. Of course, in view of (1.6), by dividing
both sides of (1.4) by a0 or c0, one can always assume one of them to be the
identity.

The interest of studying equations with singular or degenerate coefficients
comes from both pure mathematics and applied problems. As examples, we re-
fer the reader to [1, 3] for problems about fractional heat and fractional Laplace
equations, [14] for problems arising in mathematical finance, [16, 19, 31] for the
problems in geometric PDEs, and [5, 37] for problems from porous media. See
also [13, 26, 30, 33] for some other classical studies of equations with singular de-
generate coefficients. To put this work in perspectives, let us recall some known
related results. In [11], we considered a class of parabolic equations in divergence
form with a general weight

(1.8) a0(xd)ut 2 1
µ(xd)

Di[µ(xd)(aijDju2 Fi)]+ »u = f

in the half space {xd > 0} with conormal boundary condition:

(1.9) lim
xd³0+

µ(xd)(adjDju2 Fd) = 0.

Here, (aij) satisfies (1.1), a0 * [», »21], » g 0, and the weight µ satisfies the A2

condition and a relaxed A1-type condition away from the boundary. This, in par-
ticular, includes theA2 weights µ(xd) = x³d for any ³ * (21,1). We obtained the
local and global weighted Calderón-Zygmund type estimates for (1.8)–(1.9) with
respect to the weight µ, under the condition that the coefficients are only measur-
able in the xd direction and have small mean oscillation in the other directions in
small cylinders (partially VMO) with respect to the considered weight. The proofs
in [11] carry over to systems under the usual strong ellipticity condition. In [12],
we studied the corresponding non-divergence form scalar equations (1.4), where
³ * (21,1) and a0, c0 satisfy (1.6). Under the condition that a0, aij, and c0 are
partially VMO with respect to the weight x³d , we obtained weighted mixed-norm

W 1,2
p estimates and solvability. Among others, the results of this paper extend the
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results in [11, 12] to the full range of exponent ³ * (21,>) in which the weight
µ(xd) = x³d may no longer be in the class of the commonly used A2 weights. It
is worth noting that even for divergence-form equations, in contrast to [11], the
proofs below only work for scalar equations because the Moser iteration is used
(cf. Lemma 4.3). For other related work in this direction, we refer the reader to
the references in [11, 12]. More discussions can be found in Remark 2.9 below.

The class of partially VMO coefficients was first introduced by Kim and
Krylov [21, 22] for non-degenerate elliptic and parabolic equations that are in
non-divergence form. Divergence-form elliptic and parabolic equations with non-
degenerate partially VMO coefficients were later studied in [6, 7]. This type of
equations arises from the problems of linearly elastic laminates and composite ma-
terials, for example, in homogenization of layered materials (see, e.g., [4]). We also
refer the reader to [8–10] for extensions to second-order and higher-order systems
with or without weights.

We apply a mean oscillation argument, which was used in [27] for non-
degenerate parabolic equations with coefficients which are VMO in the space
variables. In the case of partially VMO coefficients, the main difficulty is that,
since they are merely measurable in xd, it is only possible to estimate the mean
oscillation of Dx2u, not the full gradient Du. Therefore, one needs to bound Ddu
by Dx2u. An idea in [6, 7] is to break the “symmetry” of the coordinates so that t
and xd are distinguished from x2 by using a delicate re-scaling argument. Another
idea is to estimate the mean oscillation of addDdu instead of Ddu, and apply a
generalized Fefferman-Stein theorem established in [28]. In [8], a new method
was developed, in which the key step is to estimate U := adjDju and Diu,
i = 1, . . . , d 2 1, instead of the full gradient of u. By using this argument, one
was able to bypass the scaling argument mentioned above and greatly simplified
the proof. In this paper, we adapt this method to singular/degenerate equations.

In our main results, Theorems 2.2, 2.4, and 2.7 below, we obtain the unique
solvability (1.2) and (1.4)–(1.5) in weighted Sobolev spaces and in mixed-norm
weighted Sobolev spaces. Local boundary estimates for solutions of these equa-
tions are also obtained in Corollaries 2.3 and 2.10. To the best of our knowledge,
these results are new even in the elliptic case and in the unmixed-norm case with
constant coefficients aij, a0, and c0.

The proofs of the main theorems are based on an idea in [8] mentioned above
and the perturbation technique. To implement the method, we first consider
equations whose coefficients depend only on xd, and prove various results on the
existence, uniqueness, and regularity of solutions to this class of equations. For
this, we establish the L> estimate of weak solutions by applying the Moser iter-
ation, and then derive Lipschitz- and Schauder-type estimates. In particular, to
estimate the L> norms of Ddu and U, we use a bootstrap argument. Schauder-
type estimates for elliptic equations similar to (2.8) were proved recently in [34]
when the matrix (aij) is symmetric, Hölder in all variables, and satisfies a struc-
tural condition that the hyperplane {xd = 0} is invariant with respect to (aij),
that is, ajd = ddj = 0 for j = 1, . . . , d21. The proof in [34] uses a Liouville-type
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theorem and a compactness argument. Our proof in Section 4 is more direct and
works for more general operators. For the local estimates Corollaries 2.3 and 2.10,
we prove a parabolic embedding (see Lemma 3.1) by using a generalized Hardy-
Littlewood-Sobolev inequality in [18], which seems to be new in the weighted
setting and is of independent interest. We also note that in contrast to the previ-
ous work such as [2, 11, 13] in which the A2 weights are commonly assumed as
the weighted Poincaré inequality is needed, we do not use the weighted Poincaré
inequality in the proof. In fact, as pointed out in [34], when ³ g 1, such an
inequality is not valid.

For simplicity, in this paper we choose not to consider lower-order terms. The
results still hold for equations

x³d (ut 2 biDiu2 cu+ »u)2Di[x
³
d (aijDju+ b̂iu2 Fi)] =

√
»x³df

and
a0ut 2 aijDiju2

(
³

xd
adj + bi

)
Dju(t,x)2 cu+ »c0u = f ,

where bi, b̂i, and c are bounded measurable functions. To see this, it suffices
to move the terms biDiu and cu to the righthand side of the equations, absorb

b̂iu to Fi, and take a sufficiently large ». (See, e.g., [27] for details.) By using
the weighted embedding results such as Lemma 3.1 below, it is also possible to
consider unbounded lower-order coefficients. We refer the reader to the recent
interesting work [20, 24, 25, 29] and the references therein.

The remaining part of the paper is organized as follows. In the next section,
we introduce some notation and state the main results of the paper. In Section 3,
we prove two weighted embedding results that are needed in the paper as well
as a result on the existence and uniqueness of L2-solutions. In Section 4, we
study equations whose coefficients depend only on xd. We prove the existence,
uniqueness, and regularity estimates of solutions in H 1

p('T , µ) after we obtain
the L>, Lipschitz-, and Schauder-type estimates for solutions to homogeneous
equations. Finally, in Section 5, we provide the proofs of Theorems 2.2 and 2.4,
and Corollaries 2.3 and 2.10.

2. NOTATION AND MAIN THEOREMS

2.1. Notation. For r > 0, z0 = (t0, x0) with x0 = (x20, x0d) * Rd21 × R
and t0 * R, we define Br (x0) to be the ball in Rd of radius r centered at x0,
Qr (z0) to be the parabolic cylinder of radius r centered at z0, that is,

Qr (z0) = (t0 2 r 2, t0)× Br (x0),

and B+r (x0) andQ+r (z0) to be the upper-half ball and cylinder of radius r centered
at x0 and z0, respectively:

B+r (x0) = {x = (xd, x2) * Rd : xd > 0, |x 2 x0| < r},
Q+r (z0) = (t0 2 r 2, t0)× B+r (x0).
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When x0 = 0 and t0 = 0, for simplicity of notation we drop x0, z0 and write Br ,
B+r , Qr , and Q+r , etc. We also define B2(x20) and Q2(z20) to be the ball and the
parabolic cylinder in Rd21 and Rd, where z20 = (t0, x20).

For p * (1,>), 2> f S < T f +>, and D ¢ Rd+, let Lp((S, T)×D, µ) be
the weighted Lebesgue space consisting of measurable functions g on (S, T)×D
such that its norm is as follows:

‖g‖Lp((S,T)×D,µ) =
(ˆ

(S,T)×D
|g(t, x)|p µ(dz)

)1/p

< >,

where µ(dz) = x³d dx dt. For p,q * (1,>), the weights Ë0 = Ë0(t), and
Ë1 =Ë1(x), we define Lq,p('T ,Ëdµ) to be the weighted mixed-norm Lebesgue
space on 'T equipped with the norm

‖f‖Lq,p('T ,Ëdµ) =
(ˆ T

0

(ˆ

R
d+
|f (t, x)|pË1(x)µ(dx)

)q/p
Ë0(t)dt

)1/q

,

where Ë(t,x) =Ë0(t)Ë1(x). We also define

H
21
q,p((S, T)×D,Ëdµ)

=
{
g : g = DiFi + F0/xd + f for some f * Lq,p((S, T)×D,Ëdµ),

F = (F0, . . . , Fd) * Lq,p((S, T)×D,Ëdµ)d+1
}

and

H 1
q,p((S, T)×D,Ëdµ) =
= {g : g,Dg * Lq,p((S, T)×D,Ëdµ), gt * H21

q,p((S, T)×D,Ëdµ)},

which are equipped with the norms

‖g‖H21
q,p((S,T)×D,Ëdµ) = inf

{
‖F‖Lq,p((S,T)×D,Ëdµ) + ‖f‖Lq,p((S,T)×D,Ëdµ) :

g = DiFi + F0/xd + f
}

and

‖g‖H 1
q,p((S,T)×D,Ëdµ) = ‖g‖Lq,p((S,T)×D,Ëdµ) + ‖Dg‖Lq,p((S,T)×D,Ëdµ)

+ ‖gt‖H21
q,p((S,T)×D,Ëdµ).

When p = q, we simply write H 1
p('T ,Ëdµ) = H 1

p,p('T ,Ëdµ). Similar no-
tation is also used for other spaces. When Ë c 1, we have Lq,p('T ,Ëdµ) =
Lq,p('T , µ), and similarly for other function spaces.
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We say u *H 1
q,p((S, T)×D,Ëdµ) is a weak solution of (1.2) in (S, T)×D

if
ˆ

(S,T)×D
(2u"t×+ »u×)µ(dz)+

ˆ

(S,T)×D
(aijDju2 Fi)Di×µ(dz)

= »1/2

ˆ

(S,T)×D
f (z)×(z)µ(dz)

for any × * C>0 ((S, T)× (D* (D̄ + "Rd))).
We use the notation a+ = max{a,0} and a2 = max{2a,0} for a * R so

that a = a+ 2 a2. Finally, for a set ' ¢ Rd+1 and any integrable function f on
' with respect to some Borel measureË, we write

 

'
fË(dz) = 1

Ë(')

ˆ

'
fË(dz), where Ë(') =

ˆ

'
Ë(dz).

2.2. Main theorems. As in [11, 12], we impose the following partially-
VMO condition on the leading coefficients.

Assumption 2.1 (³0, R0). For any r * (0, R0] and z0 = (z20, xd) * Rd× R̄+,
we have

sup
i,j

 

Q+r (z0)

∣∣aij(t, x)2 [aij]r ,z0(xd)
∣∣µ(dz) f ³0,

where µ(dz) = x³d dt dx, [aij]r ,z0(xd) is the average of aij with respect to
(t, x2) in Q2r (z

2
0):

[aij]r ,z0(xd) =
 

Q2r (z20)
aij(t, x

2, xd)dx2 dt.

In the special case that the coefficients (aij) only depend on the xd variable,
no regularity assumption is required on them, as Assumption 2.1 (³0, R0) is always
satisfied.

Our first main result is about the existence, uniqueness, and global regularity
estimates of solutions to the divergence-form equation (1.2).

Theorem 2.2. Let ³ * (21,>), » * (0,1), R0 * (0,>), and p * (1,>).
Then, there exist ³0 = ³0(d, »,³,p) * (0,1) and »0 = »0(d, »,³,p) g 0 such
that the following assertions hold. Suppose that (1.1) and Assumption 2.1 (³0, R0)
are satisfied. If u * H 1

p('T , µ) is a weak solution of (1.2) for some » g »0R
22
0 ,

f * Lp('T , µ), and F * Lp('T , µ)d, then we have

(2.1) ‖Du‖Lp('T ,µ) +
√
»‖u‖Lp('T ,µ) f N‖F‖Lp('T ,µ) +N‖f‖Lp('T ,µ),

where N = N(d, »,³,p) > 0. Moreover, for any » > »0R
22
0 , f * Lp('T , µ), and

F * Lp('T , µ)d, there exists a unique weak solution u *H 1
p('T , µ) to (1.2).
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In the next result, we give a local boundary estimate in a half cylinder. Con-
sider

ùú
û
x³dut 2Di(x

³
d (aijDju2 Fi)) = x³df ,

lim
xd³0+

x³d (adjDju2 Fd) = 0(2.2)

in Q+2 . Let p * [1,>) and p7 * [1, p) satisfy

ùüüüú
üüüû

d+ 2+³+
p7

f 1+ d+ 2+ ³+
p

when p7 > 1

d+ 2+³+
p7

< 1+ d+ 2+ ³+
p

when p7 = 1
(2.3)

if d g 2 or ³ = 0, and

ùüüüú
üüüû

4+³+
p7

f 1+ 4+ ³+
p

when p7 > 1

4+³+
p7

< 1+ 4+ ³+
p

when p7 = 1
(2.4)

if d = 1 and ³ ≠ 0. Note that the condition on p7 is used in a weighted parabolic
Sobolev embedding result. (See Lemma 3.1 below.)

Corollary 2.3. Let ³ * (21,>), » * (0,1), R0 * (0,>), 1 < p0 < p < >,
and p7 * [1, p) satisfy (2.3)–(2.4). Then, there is ³0 = ³0(d, »,³,p0, p) * (0,1)
such that the following assertion holds. Suppose (1.1) and Assumption 2.1 (³0, R0)
are satisfied. If u * H 1

p0
(Q+2 , µ) is a weak solution of (2.2), F * Lp(Q+2 , µ)d, and

f * Lp7(Q+2 , µ), then u *H 1
p(Q

+
1 , µ) and

‖u‖Lp(Q+1 ,µ) + ‖Du‖Lp(Q+1 ,µ)(2.5)

f N‖u‖L1(Q
+
2 ,µ) +N‖Du‖L1(Q

+
2 ,µ)

+ N‖F‖Lp(Q+2 ,µ) +N‖f‖Lp7(Q+2 ,µ),

where N = N(d, »,³,p0, p, p7, R0) > 0.
We conjecture that for any d g 1 and ³ * (21,>), the above corollary still

holds when p7 satisfies (2.3).
In this paper, we also show that Theorem 2.2 can be extended to the setting of

weighted mixed-norm spaces. The result is of interest because the inhomogeneous
terms F and f could behave anisotropically. For p * (1,>), a locally integrable
function Ë : Rd+ ³ R+ is said to be in the Ap(Rd+, µ) Muckenhoupt class of
weights if

[Ë]Ap(Rd+,µ) := sup
r>0, x*Rd+

( 

B+r (x)
Ë(y)µ(dy)

)
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×
( 

B+r (x)
Ë(y)1/(12p) µ(dy)

)p21

< >.

Similarly, a locally integrable function Ë : R ³ R+ is said to be in the Ap(R)
Muckenhoupt class of weights if

[Ë]Ap(R) := sup
r>0, t*R

( t+r 2

t2r 2
Ë(s)ds

)( t+r 2

t2r 2
Ë(s)1/(12p) ds

)p21

<>.

Theorem 2.4. Let ³ * (21,>), » * (0,1), R0 * (0,>), p,q,K * (1,>),
Ë0 * Aq(R),Ë1 * Ap(Rd+, µ), and Ë =Ë0(t)Ë1(x), such that

[Ë0]Aq(R) f K, [Ë1]Ap(Rd+,µ) f K.

Then, there exist

³0 = ³0(d, »,³,p, q,K) * (0,1) and »0 = »0(d, »,³,p, q,K) g 0,

such that the following assertions hold. Suppose that (1.1) and Assumption 2.1 (³0, R0)
are satisfied. If u *H 1

q,p('T ,Ëdµ) is a weak solution of (1.2) for some » g »0R
22
0 ,

f * Lq,p('T ,Ëdµ), and F * Lq,p('T ,Ëdµ)d, then we have

‖Du‖Lq,p('T ,Ëdµ) +
√
»‖u‖Lq,p('T ,Ëdµ)(2.6)

f N‖F‖Lq,p('T ,Ëdµ) +N‖f‖Lq,p('T ,Ëdµ),

where N = N(d, »,³,p, q,K) > 0.
Moreover, for any » > »0R

22
0 , f * Lq,p('T ,Ëdµ), and F * Lq,p('T ,Ëdµ)d,

there exists a unique weak solution u *H 1
q,p('T ,Ëdµ) to (1.2).

Next, we state the main results for non-divergence form equations. Besides
the regularity assumption on (aij) as in Assumption 2.1, we impose similar con-
ditions on the coefficients a0 and c0.

Assumption 2.5 (³0, R0). For any r * (0, R0] and z0 = (z20, xd) * R×Rd+,
we have

sup
i,j

 

Q+r (z0)

∣∣aij(t, x)2 [aij]r ,z0(xd)
∣∣µ(dz)

+
 

Q+r (z0)

(∣∣a0(t, x)2[a0]r ,z0(xd)
∣∣+
∣∣c0(t, x)2[c0]r ,z0(xd)

∣∣)µ(dz) f ³0,

where [aij]r ,z0(xd), [a0]r ,z0(xd), and [c0]r ,z0(xd) are, respectively, the average
of aij, a0, and c0 with respect to (t, x2) in Q2r (z

2
0) as defined in Assumption 2.1.
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We also need the following definition which is used in a weighted Hardy
inequality (cf. [12, Lemma 2.2]).

Definition 2.6. Let ³ * (21,>) and p * (1,>); we then say that the weight
Ë : R+ ³ R+ is in Mp(µ) if

[Ë]Mp(µ) = sup
r>0

(ˆ >

r
y2p(³+1)Ë(y)µ(dy)

)1/p

×
(ˆ r

0
Ë(y)21/(p21) µ(dy)

)121/p

<>,

where µ(dy) = y³ dy for y * R+.

Define W 1,2
q,p('T ,Ëdµ) to be the weighted mixed-norm Sobolev space e-

quipped with the norm

‖u‖W 1,2
q,p('T ,Ëdµ) = ‖u‖Lq,p('T ,Ëdµ) + ‖ut‖Lq,p('T ,Ëdµ)

+ ‖Du‖Lq,p('T ,Ëdµ) + ‖D2u‖Lq,p('T ,Ëdµ).

When p = q and Ë c 1, we can write W 1,2
p ('T , µ) = W 1,2

p,p('T ,dµ). A function

u * W 1,2
q,p('T ,Ëdµ) is said to be a strong solution to (1.4) if it satisfies the equa-

tion almost everywhere. Our main result for the non-divergence form equation
(1.4)–(1.5) is the following theorem.

Theorem 2.7. Let ³ * (21,>), » * (0,1), R0 * (0,>), p,q,K * (1,>).
Let Ë0 * Aq(R), Ë1 * Ap(Rd21), Ë2 * Ap(R+, µ) +Mp(µ), and Ë(t,x) =
Ë0(t)Ë1(x2)Ë2(xd), such that

[Ë0]Aq(R) f K, [Ë1]Ap(Rd21) f K, [Ë2]Ap(R+,µ) f K, [Ë2]Mp(µ) f K.

Then, there exist

³0 = ³0(d, »,³,p, q,K) * (0,1) and »0 = »0(d, »,³,p, q,K) g 0

such that the following assertions hold. Suppose hat (1.1), (1.6), (1.7), and Assump-
tion 2.5 (³0, R0) are satisfied. If u * W 1,2

q,p('T ,Ëdµ) is a strong solution of (1.4)–
(1.5) with f * Lq,p('T ,Ëdµ) and » g »0R

22
0 , then

‖ut‖Lq,p('T ,Ëdµ) + ‖D2u‖Lq,p('T ,Ëdµ) + ‖Ddu/xd‖Lq,p('T ,Ëdµ)

+
√
»‖Du‖Lq,p('T ,Ëdµ) + »‖u‖Lq,p('T ,Ëdµ) f N‖f‖Lq,p('T ,Ëdµ),

where N = N(d, »,³,p, q,K) > 0. Moreover, for any f * Lq,p('T ,Ëdµ) and
» > »0R

22
0 , there is a unique strong solution u * W 1,2

q,p('T ,Ëdµ) of (1.4)–(1.5).
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Remark 2.8. As a typical example, in Theorem 2.7 we can take the power

weightË2(xd) = x³d. It is easily seen that for any ³ * (2³2 1, (³+ 1)(p2 1)),
we have Ë2 * Ap(R+, µ) + Mp(µ). In the special case when we have ³ = 0
and ³ * (21, p 2 1), a similar result was proved in [23] when the coefficients
are measurable in the time variable and have small mean oscillations in the spatial
variables, by using a different argument.

Remark 2.9. It is worth highlighting that in [11] the authors studied (1.8)
with general µ * A2(R+), and the corresponding equations in non-divergence
form were also studied in [12] when µ = x³d with ³ * (21,1). Similar require-
ments of the A2-condition can be found in [2, 13], for example. Theorems 2.2,
2.4, and 2.7 cover the case when µ(xd) = x³d , which is not in A2(R+) when
³ * [1,>), and this seems to be the first time that the Lp-theory is developed
for equations with non-A2 coefficients. The key ingredient is our newly devel-
oped results on Lipschitz and Schauder estimates in Section 4.1 for solutions of
homogeneous equations. Specifically, motivated by [34], to obtain such results
we prove a weighted parabolic embedding theorem in Lemma 3.1 and apply it
with Moser’s iteration argument to establish the boundedness of the solutions (see
Lemma 4.3 below). Then, to derive the estimates of higher-order derivatives of
the solutions, we use an anisotropic Sobolev embedding theorem, a special struc-
ture of the weight, together with an iteration method (see Proposition 4.4 be-
low). Our method works for equations with coefficients that are measurable in
the xd-variable. Similar Schauder estimates were also obtained recently in [34]
for elliptic equations, the proof of which relies on Liouville-type theorems and
special invariant structure of the coefficients, and also requires that the coefficients
be sufficiently smooth.

Once Lipschitz and Schauder estimates in Section 4 and Theorem 2.2 are
proved, Theorem 2.7 can be proved by using the same argument as in [12]. To
keep the paper within a reasonable length, we skip the proof of Theorem 2.7 and
refer the reader to [12] for details.

Much as in Corollary 2.3, we also obtain the following local boundary esti-
mate for solutions of (1.4) in Q+2 .

Corollary 2.10. Let ³ * (21,>), » * (0,1), R0 * (0,>), and 1 < p0 <
p < >. Then, there exists ³0 = ³0(d, »,³,p0, p) * (0,1) such that the following
assertion holds. Suppose that (1.1), (1.6), (1.7), and Assumption 2.5 (³0, R0) are
satisfied. If u * W 1,2

p0 (Q
+
2 , µ) is a strong solution ofùüüú

üüû

a0ut 2 aijDiju2 ³

xd
addDdu+ c0u = f ,

lim
xd³0+

x³daddDu = 0

in Q+2 , and f * Lp(Q+2 , µ), then we have u * W 1,2
p (Q

+
1 , µ) and

(2.7) ‖u‖W 1,2
p (Q

+
1 ,µ)

f N‖u‖W 1,2
1 (Q+2 ,µ)

+N‖f‖Lp(Q+2 ,µ),

where N = N(d, »,³,p0, p, R0) > 0.
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Using the above results for parabolic equations, we can directly derive similar
results for elliptic equations by viewing solutions to elliptic equations as steady-
state solutions of the corresponding parabolic equations. (See, for example, the
proofs of [27, Theorem 2.6] and [12, Theorem 1.2].) We only present here a
result of the local boundary estimate for weak solutions. Consider

ùú
û
2Di(x³d [aij(x)Dju2 Fi]) = x³df ,
lim
xd³0+

x³d (adj(x)Dju2 Fd) = 0(2.8)

in B+2 , where aij : B+2 ³ R, F = (F1F2, . . . , Fd) : B+2 ³ R
d and f : B+2 ³ R are

given measurable functions. In this time-independent case, (1.1) and Assumption
2.1 can be stated similarly. For each p * (1,>), suppose that p̂ * [1, p) satisfies

ùüüüú
üüüû

d+³+
p̂

f 1+ d+³+
p

when p̂ > 1,

d+³+
p̂

< 1+ d+³+
p

when p̂ = 1.
(2.9)

For ' ¢ Rd, W 1
p(', µ) denotes the weighted Sobolev space consisting of all mea-

surable functions u : '³ R such that u,Du * Lp(', µ).
Corollary 2.11. Let ³ * (21,>), » * (0,1), R0 * (0,>), 1 < p0 < p < >,

and p̂ * [1, p) satisfy (2.9). Then, there exists ³0 = ³0(d, »,³,p0, p) * (0,1) such
that the following assertion holds. Suppose that (1.1) and Assumption 2.1 (³0, R0)
are satisfied. If u * W 1

p0
(B+2 , µ) is a weak solution of (2.8), F * Lp(B+2 , µ)d, and

f * Lp̂(B+2 , µ), then u * W 1
p(B

+
1 , µ) and

‖u‖W 1
p(B

+
1 ,µ)

f N‖u‖W 1
1 (B

+
2 ,µ)

+N‖F‖Lp(B+2 ,µ) +N‖f‖Lp̂(B+2 ,µ),

where N = N(d, »,³,p0, p, p̂, R0) > 0.

The proof of Corollary 2.11 is similar to that of Corollary 2.3 by using the
corresponding weighted embedding inequality (see Remark 3.2 (ii)). Therefore,
we also omit it.

3. WEIGHTED SOBOLEV INEQUALITIES AND L2-SOLUTIONS

Our first result in this section is a weighted parabolic embedding lemma which
will be used in the proof of Corollary 2.3. The range of q7 below is optimal when
d g 2. However, when d = 1, we impose a slightly stronger condition. In view
of the classical parabolic Sobolev embedding when ³ = 0, we conjecture that this
condition can be relaxed.
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Lemma 3.1 (Weighted parabolic embedding). Let ³ * (21,>) and let also
q, q7 * (1,>) satisfy

(3.1)

ùüüüú
üüüû

d+ 2+³+
q

f 1+ d+ 2+³+
q7

if d g 2,

4+ ³+
q

f 1+ 4+³+
q7

if d = 1.

Then, for any v *H 1
q (Q

+
2 , µ), we have

(3.2) ‖v‖Lq7 (Q+2 ,µ) f N‖v‖H 1
q (Q

+
2 ,µ)
,

where N = N(d,³, q, q7) > 0 is a constant. The result still holds when q7 = > and
the inequality in (3.1) is strict.

Proof. Note that the case when d = 1 follows by considering v(t, x1) =
v(t, x1, x2) with a dummy variable x2 and using the result when d = 2. Hence,
we only need to prove (3.2) when d g 2. It suffices to consider the case when
q7 > q. Without loss of generality, we may assume that

(3.3) vt = DiGi +G0/xd + g

in Q+2 in the weak sense and

‖v‖Lq(Q+2 ,µ) + ‖Dv‖Lq(Q+2 ,µ) + ‖G‖Lq(Q+2 ,µ) + ‖g‖Lq(Q+2 ,µ) f 1,

where G = (G0, G1, . . . , Gd). Let Q̃ = Q1/2(0,0, . . . ,0,
3
2) and Ë * C>0 (Q̃) with

unit integral. For any (t, x) * Q+2 , by the fundamental theorem of calculus,

(3.4) v(t, x)2 c

=
ˆ

Q̃

ˆ 1

0

(
vt(t(12 »2)+ s»2, x(12 »)+y»)2»(s 2 t)

+ (Dv)(t(12»2)+ s»2, x(12»)+y») · (y 2x)
)
Ë(s,y)d» ds dy

:= I1 + I2,

where

c =
ˆ

Q̃
v(s,y)Ë(s,y)ds dy.

Let x̂ = x(12 »)+y» and Ç = t(12 »2)+ s»2. Clearly,

(3.5) (|x̂ 2 x|2 + |Ç 2 t|)1/2 = (|x 2y|2 + |t 2 s|)1/2» f N».
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It then follows from (3.3) that
(3.6)

I1 = 2

ˆ

Q̃

ˆ 1

0

(
g(Ç, x̂)+ (DiGi)(Ç, x̂)+ G0(Ç, x̂)

x̂d

)
»(s 2 t)Ë(s,y)d» ds dy.

Since y * Q̃, we have yd g 1 and thus

(3.7) |x 2 x̂| = |x 2y|» f N»yd f Nx̂d and xd f Nx̂d.

Moreover,
(DiGi)(Ç, x̂) = DyiGi(Ç, x̂)»

21.

Therefore, from (3.6) and integration by parts, we deduce

|I1| f N
ˆ

Q̃

ˆ 1

0

(
|g(Ç, x̂)|» + |G(Ç, x̂)|(3.8)

+ |G0(Ç, x̂)| |x 2 x̂|21»
)
|s 2 t|d» ds dy.

Combining (3.4) and (3.8), we obtain

|v(t, x)2 c|

f N
ˆ

Q̃

ˆ 1

0

(|g(Ç, x̂)|»+|G(Ç, x̂)|+|G0(Ç, x̂)| |x2x̂|21»+|Dv(Ç, x̂)|)d» ds dy

f N
ˆ

Q+2

ˆ 1

0
»2d22

(
|g(Ç, x̂)|» + |G(Ç, x̂)| + |G0(Ç, x̂)| |x 2 x̂|21»

+ |Dv(Ç, x̂)|
)
Ç{(|x2x̂|2+|t2Ç|)1/2fN»,xdfNx̂d} d» dÇ dx̂

f N
ˆ

Q+2

(
|g(Ç, x̂)|(|x 2 x̂|2 + |t 2 Ç|)2d/2

+ |G0(Ç, x̂)| |x 2 x̂|21(|x 2 x̂|2 + |t 2 Ç|)2d/2

+ (|G(Ç, x̂)| + |Dv(Ç, x̂)|)(|x 2 x̂|2 + |t 2 Ç|)2(d+1)/2
)
Ç{xdfNx̂d} dÇ dx̂,

where we used dy = »2d dx̂, dÇ = »22 ds, (3.5), and (3.7) in the third inequality.
We apply Young’s inequality for convolutions with respect to the time variable

to get that, for any x * B+2 ,

‖v(·, x)2 c‖Lq7 ((24,0))(3.9)

f N
ˆ

B+2

(
‖g(·, x̂)‖Lq((24,0)) |x 2 x̂| + ‖G(·, x̂)‖Lq((24,0))

+ ‖Dv(·, x̂)‖Lq((24,0))

)
|x 2 x̂|2d21+2/3Ç{xdfNx̂d} dx̂,
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where 3 * (1,>) satisfies

(3.10)
1
3
+ 1
q
= 1+ 1

q7

and 3d > 2 which always holds because 3 > 1 and d g 2. Similarly, we use
Young’s inequality in x2 to get that for any xd * (0,2),

(3.11) ‖v(·, ·, xd)2 c‖Lq7 (Q22)

f N
ˆ 2

0

(
‖g(·, ·, x̂d)‖Lq(Q22) |xd 2 x̂d| + ‖G(·, ·, x̂d)‖Lq(Q22)

+ ‖Dv(·, ·, x̂d)‖Lq(Q22)
)
|xd 2 x̂d|2(d+1)(121/3)Ç{xdfNx̂d} dx̂d,

where we used (d+ 12 2/3)3 > d2 1 which holds true as 3 > 1. In the sequel,
we discuss two cases: ³ g 0 and ³ * (21,0).

Case I. ³ g 0. We first consider the case when q7 < >. Multiplying both sides

of (3.11) by x
³/q7
d , we get

x
³/q7
d ‖v(·, ·, xd)2 c‖Lq7 (Q22)

f Nx³/q7d

ˆ 2

0

(
‖g(·, ·, x̂d)‖Lq(Q22) |xd 2 x̂d| + ‖G(·, ·, x̂d)‖Lq(Q22)

+ ‖Dv(·, ·, x̂d)‖Lq(Q22)
)
|xd 2 x̂d|2(d+1)(121/3)Ç{xdfNx̂d} dx̂d

f N
ˆ 2

0

(
‖g(·, ·, x̂d)‖Lq(Q22) |xd 2 x̂d| + ‖G(·, ·, x̂d)‖Lq(Q22)

+ ‖Dv(·, ·, x̂d)‖Lq(Q22)
)
x̂
³/q
d |xd 2 x̂d|2(d+1)(121/3)+³/q72³/q

dx̂d.

Since both xd and x̂d are bounded, we can apply the Hardy-Littlewood-Sobolev
inequality for fractional integration in xd to obtain

‖v 2 c‖Lq7 (Q+2 ,µ) f N‖g‖Lq(Q+2 ,µ) +N‖G‖Lq(Q+2 ,µ)(3.12)

+ N‖Dv‖Lq(Q+2 ,µ),

provided that
d+ 1

12 1/3
2 ³

q7
+ ³
q
f 1+ 1

q7
2 1
q
.

From (3.10), we see that this condition is equivalent to (3.1).
When q7 = >, we have 3 = p = q/(q 2 1). Thus, if the inequality (3.1)

is strict, we also get (3.12) by using Hölder’s inequality. From (3.12) and the
definition of c, we easily get (3.2).
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Case II : ³ * (21,0). For the case q7 < >, we will apply the generalized Hardy-
Littlewood-Sobolev inequality (see [18, Theorem 6] or Theorem B of [35]) to
conclude (3.12), which gives (3.2). Indeed, in terms of the notation in Theorem 6
of [18], we choose

r = q, s = q7

q7 2 1
, h = ³

q7
, k = 2 ³

q7
, » = 22 1

s
2 1
r
.

Then, it is easily seen that the conditions in there are satisfied. Let

f (x̂d) =
(
‖g(·, ·, x̂d)‖Lq(Q22) + ‖G(·, ·, x̂d)‖Lq(Q22)
+ ‖Dv(·, ·, x̂d)‖Lq(Q22)

)
Ç(0,2)(x̂d).

As both xd and x̂d are bounded, if

(3.13) (d+ 1)(12 1/3) f »2 h2 k,

then by (3.11) we see that for any g * Ls((0,2)),
∣∣∣∣
ˆ 2

0
x
³/q7
d ‖v(·, ·, xd)2 c‖Lq7 (Q22)g(xd)dxd

∣∣∣∣

f N
ˆ 2

0

ˆ 2

0

f (x̂d)x̂
h
d |g(xd)|

x̂hd |xd 2 x̂d|»2h2kxkd
dx̂d dxd.

From this, we apply [18, Theorem 6] to get

∣∣∣∣
ˆ 2

0
x
³/q7
d ‖v(·, ·, xd)2 c‖Lq7 (Q22)g(xd)dxd

∣∣∣∣

f N
(ˆ 2

0
f q(x̂d)x̂

hq
d dx̂d

)1/q

‖g‖Ls((0,2))

f N
(ˆ 2

0
f q(x̂d)x̂

³
d dx̂d

)1/q

‖g‖Ls((0,2)),

where we used the fact that x̂
hq
d f Nx̂³d for any x̂d * (0,2) because ³ < 0. Then,

by the duality, we obtain (3.12) when q7 < >. Because of (3.10), the condition
(3.13) is equivalent to

(3.14)
d+ 2
q

f 1+ d+ 2
q

7
,

which is (3.1) when ³ < 0. When q7 = > and the inequality (3.14) is strict, we
also have (3.12) by using Hölder’s inequality. The lemma is proved. w
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Remark 3.2.

(i) In view of the additional factors in the g terms in (3.9) and (3.11), it is
possible to relax the integrability condition on g in Lemma 3.1: we only
need g * Lq̃(Q+2 , µ), where q̃ * (1, q) satisfies

d+ 2+ ³+
q̃

f 2+ d+ 2+³+
q7

when d g 2.

However, this will not be used in the proofs of our main results.
(ii) In the time-independent case, (3.9) is not needed. Therefore, with a mi-

nor modification of the proof, we also have the embedding

‖u‖Lq7(B+2 ,µ) f N‖u‖W 1
q(B

+
2 ,µ)

for all u * W 1
q(B

+
2 , µ)

with q, q7 * (1,>) satisfying

d+³+
q

f 1+ d+³+
q7

.

The result still holds when q > d+ ³+ and q7 = >. (See Theorem 6 in
[17] for a different proof in a more general setting.)

We also need a weighted parabolic embedding result for functions in the en-
ergy space, which will be used in the proof of Lemma 4.3 when we apply the
Moser iteration.

Lemma 3.3. Let ³ * (21,>), 30 = (d + ³+ + 2)/(d + ³+) if d + ³+ > 2
and 30 * (1,2) be any number if d + ³+ f 2. Then, there exists a constant N =
N(d, 30, ³) such that

( 

Q+r (z0)
|u(t,x)|230 µ(dz)

)1/l0

f N sup
t*(t02r 2,t0)

 

B+r (x0)
|u(t,x)|2 µ(dx)

+ Nr 2

 

Q+r (z0)
|Du(t,x)|2 µ(dz),

for every z0 = (t0, x0) * Rd+1+ , r > 0, and

u * L>((t0 2 r 2, t0);L2(B
+
r (x0), µ)) + L2((t0 2 r 2, t0);W

1
2 (B

+
r (x0), µ)).

Proof. Let � = (t0 2 r 2, t0), and let »0 = 2/(2 2 30) * (1,>). By Re-
mark 3.2 (ii) (see also [34, Theorem 2.4]) and after rescaling, we have the follow-
ing weighted Sobolev inequality:

( 

B+r (x0)
|u(t,x)|»0 µ(dx)

)1/»0

f Nr
( 

B+r (x0)
|Du(t,x)|2 µ(dx)

)1/2

+ N
( 

B+r (x0)
|u(t,x)|2 µ(dx)

)1/2

,
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where N = N(d, 30, ³) > 0. This together with Hölder’s inequality gives

 

B+r (x0)
|u(t,x)|230 µ(dx)

f
( 

B+r (x0)
|u(t,x)|2 µ(dx)

)122/»0
( 

B+r (x0)
|u(t,x)|»0 µ(dx)

)2/»0

f N
(

sup
t*�

 

B+r (x0)
|u(t,x)|2 µ(dx)

)122/»0

×
(
r 2

 

B+r (x0)
|Du(t,x)|2 µ(dx)+

 

B+r (x0)
|u(t,x)|2 µ(dx)

)
.

Now, by integrating with respect to t on � and using Young’s inequality, we obtain

 

Q+r (z0)
|u(t,x)|230 µ(dz) f N

(
sup
t*�

 

B+r (x0)
|u(t,x)|2 µ(dx)

)30

+ Nr
( 

Q+r (z0)
|Du(t,x)|2 µ(dz)

)30

.

The lemma is then proved. w

Finally, we conclude this section with the following useful result on the exis-
tence and uniqueness of L2-solutions of a class of equations that are slightly more
general than (1.2). The result is considered as a special case of Theorem 2.2 when
p = 2, but no regularity requirements are imposed on the coefficients.

Lemma 3.4. Let ³ * (21,>), » > 0, and let (aij), a0, and c0 be measur-
able functions defined on 'T such that (1.1) and (1.6) are satisfied. Then, for each
F * L2('T , µ)d and f * L2('T , µ), there exists a unique weak solution u *
H 1

2 ('T , µ) to

(3.15)

ùüüüú
üüüû

x³d (a0(t, x)ut + »c0(t, x)u)2
2 Di(x

³
d [aij(t, x)Dju2 Fi]) =

√
»x³df ,

lim
xd³0+

x³d (adj(t, x)Dju2 Fd) = 0

in 'T . Moreover,

(3.16) ‖Du‖L2('T ,µ) +
√
»‖u‖L2('T ,µ) f N‖F‖L2('T ,µ) +N‖f‖L2('T ,µ),

where N = N(»).
Proof. We first prove the a priori estimate (3.16). Let u * H 1

2 ('T , µ) be a
weak solution of (3.15). By multiplying the equation (3.15) with u and using
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integration by parts and (1.1), we obtain

sup
t*(2>,T)

ˆ

R
d+
|u(t,x)|2 µ(dx)+

ˆ

'T
|Du|2 µ(dz)+ »

ˆ

'T
|u(z)|2 µ(dz)

f N
ˆ

'T
|F(z)| |Du(z)|µ(dz) +N»1/2

ˆ

'T
|f (z)| |u(z)|µ(dz).

Then, by Young’s inequality, we obtain (3.16).
From (3.16), we see that the uniqueness follows. Now, to prove the existence

of solution, for each k * N, let

(3.17) Q̂k = (2k2,min{k2, T})× B+k .

We consider the equation

(3.18) x³d (a0ut + »c0u)2Di(x
³
d (aijDju2 Fi)) = »1/2x³df in Q̂k

with the boundary conditions

(3.19) u = 0 on "pQ̂k \ {xd = 0} and lim
xd³0+

x³d (adjDju2 Fd) = 0,

where "pQ̂k is the parabolic boundary of Q̂k. By Galerkin’s method, for each k,

there exists a unique weak solution uk *H 1
2 (Q̂k, µ) to (3.18)–(3.19). By taking

uk = 0 on 'T \ Q̂k, we also have

sup
t*(2>,T)

‖uk(t, ·)‖L2(R
d+,µ) + ‖Duk‖L2('T ,µ) + »1/2‖uk‖L2('T ,µ)

f N‖F‖L2('T ,µ) +N‖f‖L2('T ,µ).

By the weak compactness, there is a subsequence which is still denoted by {uk}
and u *H 1

2 ('T , µ) such that

uk á u, Duk á Du

weakly in L2('T , µ). By taking the limit in the weak formulation of solutions, it
is easily seen that u is a weak solution of (1.2). The lemma is thus proved. w

4. EQUATIONS WITH SIMPLE COEFFICIENTS

Throughout this section, let āij : R+ ³ R
d×d be measurable functions which

satisfy the ellipticity and boundedness conditions: there is a constant » * (0,1)
such that

(4.1) »|¿|2 f āij(xd)¿i¿j , and |āij(xd)| f »21, "¿ * Rd, xd * R+.



1480 HONGJIE DONG & TUOC PHAN

Let ā0, c̄0 : R+ ³ R be measurable functions satisfying

(4.2) » f ā0(xd), c̄0(xd) f »21 for xd * R+.

We study (1.2) in which the coefficients aij are replaced with āij. More precisely,
we consider

(4.3)

ùüüüú
üüüû

x³d (ā0(xd)ut + »c̄0(xd)u)2
2 Di(x

³
d (āij(xd)Dju2 Fi)) =

√
»x³df ,

lim
xd³0+

x³d (ādj(xd)Dju2 Fd) = 0

in 'T . The above equation is slightly different from (1.2) as there are coefficients
ā0 and c̄0 instead of the identity. We do not need this generality for the proofs
of our main results for the divergence-form equation (1.2). However, the results
below for (4.3) are needed in the proofs of the main results for the non-divergence
form equation (1.4) as in [12].

The main result of this section is the following theorem, which is a weak
version of Theorem 2.2.

Theorem 4.1. Let ³ * (21,>), p * (1,>), and » > 0. Suppose that (4.1)
and (4.2) are satisfied. Then, for each F * Lp('T , µ)d and f * Lp('T , µ), there
exists a unique solution u *H 1

p('T , µ) of (4.3). Moreover,

(4.4) ‖Du‖Lp('T ,µ) +
√
»‖u‖Lp('T ,µ) f N‖F‖Lp('T ,µ) +N‖f‖Lp('T ,µ),

where N = N(d,³, »,p).
The rest of the section is devoted to the proof of this theorem. We need some

preliminaries to prove it.

4.1. Lipschitz and Schauder estimates for homogeneous equations. Let

» g 0, z0 = (t0, x0) * Rd+1+ and r > 0. We study (4.3) in Q+r (z0) when F = 0,
f = 0, that is, the homogeneous parabolic equation

(4.5) 2 x³d (ā0(xd)ut + »c̄0(xd)u)+Di(x
³
d āij(xd)Dju) = 0

in Q+r (z0) with the homogeneous conormal boundary condition

(4.6) x³d ādj(xd)Dju = 0 if Br (x0)+ "Rd+ 6= '.

Our goal is to derive Lipschitz and Schauder estimates for (4.5)–(4.6). We begin
with the following lemma.
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Lemma 4.2 (Caccioppoli-type inequality). Let r > 0, z0 = (t0, x0) * Rd+1+ ,
and u *H 1

2 (Q
+
r (z0), µ) be a weak solution to (4.5)–(4.6). Then, we have

ˆ

Q+r/2(z0)
(|Du|2 + »|u|2)µ(dz) f Nr22

ˆ

Q+r (z0)
|u|2 µ(dz)

and
ˆ

Q+r/2(z0)
|ut|2 µ(dz) f Nr22

ˆ

Q+r (z0)
(|Du|2 + »|u|2)dµ(dz),

where N(d,³, ») > 0.

Proof. The proof is more or less standard. For the first inequality, we test the
equation with u·2, where · * C>0 is a smooth function, · = 1 in Qr/2(z0), and
· = 0 near the parabolic boundary "pQr (z0). For the second inequality, we test
the equation with ut·2, and then use the fact that ut satisfies the same equation
as u and the first inequality applied to ut. (See, e.g., the proof of [8, Lemma 3.3].)
We omit the details. w

Next, we prove the local boundedness of solutions of (4.5)–(4.6).

Lemma 4.3 (Local boundedness estimate). Let r > 0, z0 * R
d+1+ , and

u *H 1
2 (Q

+
r (z0), µ) be a weak solution to (4.5)–(4.6). Then, we have

‖u‖L>(Q+r/2(z0)) f N
( 

Q+r (z0)
|u(t,x)|2 µ(dz)

)1/2
,

where N = N(d,³, ») > 0.

Proof. We use the Moser iteration. For elliptic equations, a similar argument
was also used in [34]. By a scaling, we only need to prove the lemma when r = 1.
For each R,Ã * (0,1] with Ã < R, let Ç * C>0 ((t0 2R2, t0 +R2)× BR(x0)) be a
cut-off function satisfying

Ç = 1 in QÃ(z0),

0 f Ç f 1,

|DÇ|2 + |"tÇ| f N(d)

(R 2 Ã)2 in QR(z0).

Let w = u+. For ³ g 2, using Ç2w³21 as a test function for the equation (4.5)
and using (4.1), we obtain

d

dt

ˆ

B+R (x0)
ā0(xd)w

³Ç2 µ(dx)+ 4»(³2 1)
³

ˆ

B+R (x0)
|D(w³/2)|2Ç2 µ(dx)

f 2³

ˆ

B+R (x0)
ā0(xd)w

³Ç|Çt|µ(dx)

+ 4d»21

ˆ

B+R (x0)
|D(w³/2)| |DÇ|Çw³/2 µ(dx),
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where we used the fact that »c̄0(xd)uÇ2w³21 g 0. As ³ g 2, we have (³21)/³ g
1
2 . It then follows that

d

dt

ˆ

B+R (x0)
ā0(xd)w

³Ç2 µ(dx)+ 2»

ˆ

B+R (x0)
|D(w³/2)|2Ç2 µ(dx)

f 2³

ˆ

B+R (x0)
ā0(xd)w

³Ç|Çt|µ(dx)

+ 4d»21

ˆ

B+R (x0)
|Dw³/2| |DÇ|Çw³/2 µ(dx).

By applying Young’s inequality to the last term and then cancelling similar terms,
we have

d

dt

ˆ

B+R (x0)
ā0(xd)w

³Ç2 µ(dx)+
ˆ

B+R (x0)
|D(w³/2Ç)|2 µ(dx)

f N³
ˆ

B+R (x0)
w³(|Çt| + |DÇ|2)µ(dx),

where N = N(d, ») and we used (4.2). Integrating this estimate with respect to t
on (t0 2 R2, t0) and using (4.2) again, we find that

sup
t*(t02R2,t0)

 

B+R (x0)
w³Ç2 µ(dx)+ R2

 

Q+R (z0)
|D(w³/2Ç)|2 µ(dz)

f N(d, »)³
(R 2 Ã)2

 

Q+R (z0)
w³ µ(dz).

From this estimate and Lemma 3.3, it follows that

( 

Q+Ã (z0)
w³30 µ(dz)

)1/(³30)

(4.7)

f
(
N

R 2 Ã

)2/³

³1/³
( 

Q+R (z0)
w³ µ(dz)

)1/³

.

We now choose a sequence of radii

r0 = 1, rk+1 = rk + 1/2
2

,

and a sequence of exponents

³0 = 2, ³k+1 = ³k30, k = 0,1,2, . . . ,
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such that

lim
k³>

rk = 1
2
, lim
k³>

³k = >,

and

rk 2 rk+1 = 1
2k+2

, k = 0,1,2, . . . .

By applying (4.7) with R = rk, Ã = rk+1 < R, and ³ = ³k, we have

( 

Q+rk+1(z0)

w³k+1 µ(dz)

)1/³k+1

f (4N)2/³k22k/³k³
1/³k
k

( 

Qrk(z0)
w³k µ(dz)

)1/³k

.

By iterating this estimate, we obtain

( 

Q+rk+1
(z0)
w³k+1 µ(dz)

)1/³k+1

fMk
( 

Q+1 (z0)
w2 µ(dz)

)1/2

,(4.8)

where

Mk = (4N)
∑k
j=0 2/³j2

∑k
j=0 2j/³j

k∏

j=0

³
1/³j
j .

As
>∑

j=0

2
³j
< >,

>∑

j=0

2j
³j
< >, and

>∏

j=0

³
1/³j
j <>,

we conclude that {Mk}k is convergent. Therefore, by sending k ³ >, we deduce
from (4.8) that

‖u+‖L>(Q+1/2(z0)) f N
( 

Q+1 (z0)
u2
+(t, x)µ(dz)

)1/2

.

We can get a similar estimate for u2 = max{2u,0}, with the same argument.
Hence,

‖u‖L>(Q+1/2(z0)) f N
( 

Q+1 (z0)
|u(t,x)|2 µ(dz)

)1/2

.

The lemma is proved. w
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We recall that for ³ * (0,1] and each parabolic cylinder Q ¢ R
d+1, the

³-Hölder semi-norm of a function f in Q is defined as

[f ]C³/2,³(Q) = sup
(t,x),(s,y)*Q
(t,x)6=(s,y)

|f (t, x)2 f (s,y)|
|t 2 s|³/2 + |x 2 y|³ .

The following proposition is the key step of the proof.

Proposition 4.4. Let q * (1,2], r > 0, z0 * Rd+1+ , and u *H 1
2 (Q

+
r (z0), µ)

be a weak solution to (4.5)–(4.6). Then, we have

‖Du‖L>(Q+r/2(z0)) +
√
»‖u‖L>(Q+r/2(z0))(4.9)

f N
( 

Q+r (z0)
(|Du|q + »q/2|u|q)µ(dz)

)1/q

and

[Dx2u]C1/2,1(Q+r/2(z0)) + [U]C1/2,1(Q+r/2(z0)) +
√
»[u]C1/2,1(Q+r/2(z0))(4.10)

f Nr21
( 

Q+r (z0)
(|Du|q + »q/2|u|q)µ(dz)

)1/q

,

where U = ādj(xd)Dju and N = N(d,³, », q).

Proof. First of all, whenever the lemma is proved for q = 2, the case q * (1,2)
follows by a standard iteration (see, e.g., [15, pp. 80–82]). Therefore, we only
consider the case when q = 2. As before, we may assume r = 1. The bound
of ‖u‖L>(Q+r/2(z0)) follows from Lemma 4.3. Since Dx2u and ut satisfy the same
equation as u, from Lemmas 4.3 again we have

‖Dx2u‖L>(Q+1/2(z0)) f N
( 

Q+2/3(z0)
|Dx2u|2 µ(dz)

)1/2

and

‖ut‖L>(Q+1/2(z0)) f N
( 

Q+2/3(z0)
|ut|2 µ(dz)

)1/2

.

To make this rigorous, we need to use the finite-difference quotient and pass to
the limit. These together with Lemma 4.2 give

‖Dx2u‖L>(Q+1/2(z0)) + ‖ut‖L>(Q+1/2(z0))(4.11)

f N
( 

Q+1 (z0)
(|Du|2 + »|u|2)µ(dz)

)1/2

.
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Moreover, again from Lemma 4.2, we also have for any i, j = 0,1,2, . . . satisfying
i+ j g 1

ˆ

Q+1/2(z0)
(|"itDjx2u|2 + |"itDjx2Du|2)µ(dz)(4.12)

f N
ˆ

Q+1 (z0)
(|Du|2 + »|u|2)µ(dz),

where N = N(d, », i, j).
Next, we estimate Ddu. We first consider the boundary estimate and, without

loss of generality, we take z0 = 0. We use a bootstrap argument. Since U =
ādj(xd)Dju, from the equation we have

Dd(x
³
dU) = x³d

(
ā0(xd)ut + »c̄0(xd)u2

d21∑

i=1

Di(āijDju)
)
.

By using the boundary condition and Hölder’s inequality, we get for any z * Q+1

x³d |U| f N
ˆ xd

0
s³(|ut(z2, s)| + »|u(z2, s)| + |DDx2u(z

2, s)|)ds(4.13)

f N
(ˆ xd

0
s³
(
|ut(z2, s)|2 + »2|u(z2, s)|2

+ |DDx2u(z
2, s)|2

)
ds

)1/2(ˆ xd

0
s³ ds

)1/2

.

Thus, when xd * (0, 1
2], by the Sobolev embedding in the z2 variables, (4.12),

and Lemma 4.2, for an integer k g (d+ 1)/4,

x³d |U| f N
(ˆ 1/2

0
s³
(
|ut(z2, s)|2 + »2|u(z2, s)|2

+ |DDx2u(z
2, s)|2

)
ds

)1/2(ˆ xd

0
s³ ds

)1/2

f N
(ˆ 1/2

0
s³
(∥∥ut(·, s)

∥∥2
W
k,2k
2 (Q21/2)

+ »2
∥∥u(·, s)

∥∥2
W
k,2k
2 (Q21/2)

+
∥∥DDx2u(·, s)

∥∥2
W
k,2k
2 (Q21/2)

)
ds

)1/2(ˆ xd

0
s³ ds

)1/2

f N
(ˆ

Q+1
(|Du|2 + »|u|2)µ(dz)

)1/2

x(³+1)/2
d ,

which implies that

|U| f N
(ˆ

Q+1
(|Du|2 + »|u|2)µ(dz)

)1/2

x(12³)/2d in Q+1/2.(4.14)
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This together with (4.11) gives

|Du| f N
(ˆ

Q+1
(|Du|2 + »|u|2)µ(dz)

)1/2

x2(12³)2/2d in Q+1/2.

Since Dx2u satisfies the same equation, by a covering argument and Lemma 4.2
we have

|DDx2u| f N
(ˆ

Q+2/3
(|DDx2u|2+»|Dx2u|2)µ(dz)

)1/2

x2(12³)2/2d(4.15)

f N
(ˆ

Q+1
|Dx2u|2)µ(dz)

)1/2

x2(12³)2/2d in Q+1/2.

Now, we plug (4.11) and (4.15) into (4.13) and use Lemmas 4.3 and 4.2 to get

|U| f Nx2³d
ˆ xd

0
s³s2(12³)2/2 ds

(ˆ

Q+1
(|Du|2+»|u|2)µ(dz)

)1/2

f Nx12(12³)2/2
d

(ˆ

Q+1
(|Du|2 + »|u|2)µ(dz)

)1/2

in Q+1/2,

which improves (4.14). Repeating this procedure, in finitely many steps, we get

|U| f Nxd
(ˆ

Q+1
(|Du|2 + »|u|2)µ(dz)

)1/2

,(4.16)

and therefore

|Du| f N
(ˆ

Q+1
(|Du|2+»|u|2)µ(dz)

)1/2

in Q+1/2,

which gives (4.9) in this case.
In the interior case when x0d g 2r = 2, the coefficients ãij(xd) = x³d āij(xd)

are nondegenerate in Q2/3(z0) and independent of z2. By using the standard en-
ergy estimate (cf. [8, Lemma 3.5]), we also have

(4.17) |Du| f N
(ˆ

Q1(z0)
(|Du|2 + »|u|2)dz

)1/2

in Q1/2(z0).

Since in Q1(z0) we have xd > x0d so that µ(dz) > x³0d dz, we also obtain (4.9)
in the interior case. Moreover, (4.11) still holds in this case. When x0d * (0,2),
(4.9) follows from a covering argument and the doubling property of µ.

It remains to prove (4.10). By using (4.9) and (4.11), we obtain the bound of
the third term on the lefthand side of (4.10). Since Dx2u and ut satisfy the same
equation as u, from (4.9), (4.12), and Lemma 4.2, we have

‖DDx2u‖L>(Q+1/2(z0)) + ‖Dut‖L>(Q+1/2(z0))(4.18)
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f N
( 

Q+2/3(z0)
(|DDx2u|2 + »|Dx2u|2 + |Dut|2 + »|ut|2)µ(dz)

)1/2

f N
( 

Q+1 (z0)
(|Du|2 + »|u|2)µ(dz)

)1/2

,

which yields

[Dx2u]C1/2,1(Q+1/2(z0)) + ‖Ut‖L>(Q+1/2(z0)) + ‖Dx2U‖L>(Q+1/2(z0))

f N
( 

Q+1 (z0)
(|Du|2 + »|u|2)µ(dz)

)1/2

.

To estimate DdU, we again discuss two cases. In the boundary case when
z0 = 0, from the equation we have

DdU = ā0ut + »c̄0u2
d21∑

i=1

āijDiju2³x21
d U,(4.19)

which together with (4.11), (4.16), (4.18), and Lemma 4.3 gives

‖DdU‖L>(Q+1/2(z0)) f N
( 

Q+1 (z0)
(|Du|2 + »|u|2)µ(dz)

)1/2

.(4.20)

In the interior case (i.e., when x0d g 2), by (4.19), (4.11), (4.17), (4.18), and
Lemma 4.3, we still get (4.20). This completes the proof of (4.10) and thus the
proposition. w

From Lemma 3.4 and Proposition 4.4, we obtain the following solution de-
composition.

Proposition 4.5. Let z0 * 'T and r > 0. Suppose that F * L2(Q
+
2r (z0), µ)d,

f * L2(Q
+
2r (z0), µ), and u * H 1

2 (Q
+
2r (z0), µ) is a weak solution of (4.3) in

Q+2r (z0). Then, we can write u(t,x) = v(t, x) +w(t,x) in Q+2r (z0), where v
and w are functions in H 1

2 (Q
+
2r (z0), µ) and satisfy

 

Q+2r (z0)
|V |2 µ(dz) f N

 

Q+2r (z0)
(|F|2 + |f |2)µ(dz)(4.21)

and
∥∥W

∥∥2
L>(Q+r (z0))

f N
 

Q+2r (z0)
|U|2 µ(dz)(4.22)

+ N
 

Q+2r (z0)
(|F|2 + |f |2)µ(dz),

where N = N(d, »,³) and

V = |Dv| + »1/2|v|, W = |Dw| + »1/2|w|, U = |Du| + »1/2|u|.
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Proof. Let v *H 1
2 ('T , µ) be a weak solution of the equation

x³d (ā0(xd)vt + »c̄0(xd)v)

2 Di

(
x³d (āij(xd)Djv 2 Fi(z)ÇQ+2r (z0)

(z))
)

= »1/2x³df (z)ÇQ+2r (z0)
(z) in 'T

with the boundary condition

lim
xd³0+

x³d (ādj(xd)Djv 2 Fd(z)ÇQ+2r (z0)
(z)) = 0.

Then, (4.21) follows by Lemma 3.4. Now, letw = u2v sow *H 1
2 (Q

+
2r (z0), µ)

is a weak solution of

x³d (ā0(xd)wt + »c̄0(xd)w)2Di(x
³
d āij(xd)Djw) = 0 in Q+2r (z0)

with the boundary condition

lim
xd³0+

x³d ādj(xd)Djw = 0 if B2r (x0)+ "Rd+ 6= '.

By Proposition 4.4 and the triangle inequality, we get (4.22). The proof of the
proposition is completed. w

4.2. Proof of Theorem 4.1. We are now ready to give the proof of Theo-
rem 4.1.

Proof. When p = 2, Theorem 4.1 follows from Lemma 3.4. Therefore, we
only need to consider the cases when p * (2,>) and p * (1,2).
Case I. p * (2,>). Let u * H 1

2,loc('T , µ) be a weak solution of (4.3). It

follows from Proposition 4.5 that for every z0 * 'T and r > 0, we have the
decomposition

u = v +w in Q+2r (z0),

where v and w satisfy (4.21) and (4.22). Then (4.4) follows from the standard
real variable argument. (See, for example, [9].) We omit the details.

By (4.4), the uniqueness of solutions follows. Hence, it remains to prove
the existence of the solution. Recall the definition (3.17). For k = 1,2, . . . ,
let F (k) = F(z)ÇQ̂k(z). Then, F (k) * L2('T , µ)d + Lp('T , µ)d, and by the

dominated convergence theorem, F (k) ³ F in Lp('T , µ) as k ³ >. Similarly,
we define {f (k)} ¢ L2('T , µ) + Lp('T , µ). Let u(k) * H 1

2 ('T , µ) be the weak
solution of the equation (4.3) with F (k) and f (k) in place of F and f , respectively.
The existence of u(k) follows from Lemma 3.4. By the estimate (4.4), we have
u(k) * H 1

p('T , µ). Moreover, by the strong convergence of {F (k)} and {f (k)}
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in Lp('T , µ), we infer that {u(k)} is a Cauchy sequence in H 1
p('T , µ). Let

u *H 1
p('T , µ) be its limit. Then, by passing to the limit in the weak formulation

of solutions, it is easily seen that u is a solution to the equation (4.3).

Case II. p * (1,2). We use a duality argument. We first prove the estimate (4.4).
Let q = p/(p 2 1) * (2,>) and let G * Lq('T , µ)d and g * Lq('T , µ). We
consider the adjoint problem in R×Rd+

(4.23)

ùüüüú
üüüû

x³d (2ā0vt + »c̄0v)

2 Di(x
³
d (āji(xd)Djv 2GiÇ(2>,T))) = »1/2x³dgÇ(2>,T),

lim
xd³0+

x³d (ājdDjv 2GdÇ(2>,T)) = 0.

By Case 1, there exists a unique solution v * H 1
q (R×Rd+, µ) of the above equa-

tion, which satisfies

(4.24)

ˆ

R×Rd+
(|Dv|q + »q/2|v|q)µ(dz) f N

ˆ

'T
(|G|q + |g|q)µ(dz).

Moreover, by the uniqueness of solutions, we have v = 0 for t g T . It follows
from the equations (4.3) and (4.23) that

ˆ

'T
(G · 'u+ »1/2gu)µ(dz) =

ˆ

'T
(F · 'v + »1/2fv)µ(dz).

Therefore, by Hölder’s inequality and (4.24),

∣∣∣∣
ˆ

'T
(G · 'u+ »1/2gu)µ(dz)

∣∣∣∣

f ‖F‖Lp(',µ) ‖'v‖Lq('T ,µ) + »1/2‖f‖Lp('T ,µ) ‖v‖Lq('T ,µ)
f N(‖F‖Lp(',µ) + ‖f‖Lp('T ,µ))(‖G‖Lq('T ,µ) + ‖g‖Lq('T ,µ)).

From this last estimate, and as G and g are arbitrary, we obtain (4.4).
It now remains to prove the existence of solution u * H 1

p('T , µ). We pro-
ceed slightly differently from Case 1 and follow the argument in Section 8 of [10].
For i = 1,2, . . . , d and k = 1,2, . . . , let

F (k)i =max(2k,min(k, Fi))ÇQ̂k .

Then, F (k) * L2('T , µ)d + Lp('T , µ)d, and by the dominated convergence the-
orem, F (k) ³ F in Lp('T , µ) as k³>. Similarly, we define

{f (k)} ¢ L2('T , µ)+ Lp('T , µ).
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By Lemma 3.4, there is a unique weak solutionu(k) *H 1
2 ('T , µ) to the equation

(4.3) with F (k) and f (k) in place of F and f , respectively. As in Case 1, it suffices
to prove that u(k) * H 1

p('T , µ). Let us fix a k * N. Because µ is a doubling
measure, there exists N0 = N0(³,d) > 0 such that

(4.25) µ(Q̂2r ) f N0µ(Q̂r ), " r > 0.

Since u(k) *H 1
2 ('T , µ), by Hölder’s inequality,

(4.26) ‖u(k)‖Lp(Q̂2k,µ)
+ ‖Du(k)‖Lp(Q̂2k,µ)

< >.

Therefore, it remains to prove that ‖u(k)‖Lp('T \Q̂2k,µ)
< >. To this end, for j g 0,

let ·j be such that

·j c
{

0 in Q̂2jk,

1 outside Q̂2j+1k,

and |D·j| f C022j , |(·j)t| f C0222j , where C0 is independent of j. Observe that

the supports of F (k) and f (k) are in Q̂k, while the supports of ·j are all outside Q̂k.

Thus, ·jF
(k)
i c ·jf (k) c F (k)i Di·j c 0 for every i = 1,2, . . . , d and j = 0,1, . . . .

Because of this, a simple calculation reveals that w(k,3) := u(k)·3 * H 1
2 ('T , µ)

is a weak solution of
ùüüüú
üüüû

x³d (ā0w
(k,3)
t + »c̄0w(k,3))2

2 Di(x
³
d (āijDjw

(k,3) 2 F (k,3)i )) = »1/2x³df
(k,3),

limxd³0+ x
³
d (ādjDjw

(k,3) 2 F (k,3)d ) = 0

in 'T , where

F
(k,3)
i = u(k)āijDj·3, i = 1,2, . . . , d,

f (k,3) = »21/2(u(k)(·3)t 2 āijDju(k)Di·3).

Now, by applying the estimate (3.16) to the above equation of w(k,3), we have

‖Dw(k,3)‖L2('T ,µ) +
√
»‖w(k,3)‖L2('T ,µ)

f N‖F (k,j)‖L2('T ,µ) +N‖f (k,3)‖L2('T ,µ),

which implies that

‖Du(k)‖L2(Q̂2j+2k
\Q̂

2j+1k
,µ) +

√
»‖u(k)‖L2(Q̂2j+2k

\Q̂
2j+1k

,µ)

f N
(
22j‖u(k)‖L2(Q̂2j+1k

\Q̂
2jk
,µ) + »21/2222j‖u(k)‖L2(Q̂2j+1k

\Q̂
2jk
,µ)
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+ »21/222j‖Du(k)‖L2(Q̂2j+1k
\Q̂

2jk
,µ)

)

f C22j(‖Du(k)‖L2(Q̂2j+1k
\Q̂

2jk
,µ) +

√
»‖u(k)‖L2(Q̂2j+1k

\Q̂
2jk
,µ))

for every j g 1, where C also depends on », but is independent of j. By iterating
the last estimate, we obtain

‖Du(k)‖L2(Q̂2j+1k
\Q̂

2jk
,µ) +

√
»‖u(k)‖L2(Q̂2j+1k

\Q̂
2jk
,µ)(4.27)

f Cj22j(j21)/2(‖Du(k)‖L2(Q̂2k,µ)
+
√
»‖u(k)‖L2(Q̂2k,µ)

).

Finally, by Hölder’s inequality, (4.25), and (4.27), we have

‖Du(k)‖Lp(Q̂2j+1k
\Q̂

2jk
,µ) +

√
»‖u(k)‖Lp(Q̂2j+1k

\Q̂
2jk
,µ)

f (µ(Q̂2j+1k))
1/p21/2

(
‖Du(k)‖L2(Q̂2j+1k

\Q̂
2j k
,µ)

+
√
»‖u(k)‖L2(Q̂2j+1k

\Q̂
2jk
,µ)

)

f Nj(1/p21/2)
0 (µ(Q̂2k))

1/p21/2Cj22j(j21)/2×
× (‖Du(k)‖L2(Q̂2k,µ)

+
√
»‖u(k)‖L2(Q̂2k,µ)

).

Hence,

‖Du(k)‖Lp('T \Q̂2k,µ)
+
√
»‖u(k)‖Lp('T \Q̂2k,µ)

=
>∑

j=1

(‖Du(k)‖Lp(Q̂2j+1k
\Q̂

2jk
,µ) +

√
»‖u(k)‖Lp(Q̂2j+1k

\Q̂
2jk
,µ)

)

f N‖Du(k)‖L2(Q̂2k,µ)
+N

√
»‖u(k)‖L2(Q̂2k,µ)

< >.

Using this estimate and (4.26), we infer that u(k) * H 1
p('T , µ). The theorem is

thus proved. w

5. EQUATIONS WITH PARTIALLY VMO COEFFICIENTS

In this section, we give the proofs of Theorem 2.2, Corollary 2.3, Theorem 2.4,
and Corollary 2.10. We begin with the proof of Theorem 2.2.

5.1. Proof of Theorem 2.2. We need the following decomposition result for
our proof.

Proposition 5.1. Let ³0 * (0,1), ³ * (21,>), r * (0,>), z0 * 'T , and
q * (2,>). Suppose G = |F| + |f | * L2(Q

+
2r (z0), µ), and u * H 1

q (Q
+
2r (z0), µ)

is a weak solution of (1.2). If Assumption 2.1 (³0, R0) is satisfied and we have that
spt(u) ¢ (s 2 (R0r0)2, s + (R0r0)2)×Rd+ for some r0 > 0 and s * R, then

u(t,x) = v(t, x)+w(t,x) in Q+2r (z0),
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where v and w are functions in H 1
2 (Q

+
2r (z0), µ) that satisfy

 

Q+2r (z0)
|V |2 µ(dz) f N

 

Q+2r (z0)
|G|2 µ(dz)

(5.1)

+ N(³122/q
0 + r 224/q

0 )

( 

Q+2r (z0)
|Du|q µ(dz)

)2/q

and
∥∥W

∥∥2
L>(Q+r (z0))

f N
 

Q+2r (z0)
|U|2 µ(dz)+N

 

Q+2r (z0)
|G|2 µ(dz),(5.2)

where

V = |Dv| +
√
»|v|, W = |Dw| +

√
»|w|, U = |Du| +

√
»|u|,

and N = N(d,³, », q).
Proof. For i = 1,2, . . . , d, let

bi(t, x) = ÇQ+2r (z0)
(z)(aij(t, x)2 [aij]2r ,z0(xd))Dju(t,x)2 Fi(z)ÇQ+2r (z0)

(z),

where [aij]2r ,z0(xd) is defined in Assumption 2.1. Observe that bi * L2('T , µ).
In particular, if r * (0, R0/2), it follows from Hölder’s inequality and Assump-
tion 2.1 (³0, R0) that

 

Q+2r (z0)
|b(z)|2 µ(dz)

f
( 

Q+2r (z0)
|aij 2 [aij]2r ,z0|2q/(q22) µ(dz)

)(q22)/q

×
( 

Q+2r (z0)
|Du|q µ(dz)

)2/q

+
 

Q+2r (z0)
|F|2 µ(dz)

f N³(q22)/q
0

( 

Q+2r (z0)
|Du|q µ(dz)

)2/q

+
 

Q+2r (z0)
|F|2 µ(dz).

On the other hand, when r g R0/2, as

spt(u) ¢ (s 2 (R0r0)
2, s + (R0r0)

2)×Rd+,

and by the boundedness of (aij) in (1.1), we have

 

Q+2r (z0)
|b(z)|2 µ(dz)
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f N(»)
( 

Q+2r (z0)
Ç(s2(R0r0)

2,s+(R0r0))
2(t)µ(dz)

)(q22)/q

×
( 

Q+2r (z0)
|Du|q µ(dz)

)2/q

+N
 

Q+2r (z0)
|F|2 µ(dz)

f N
(
R0r0

r

)2(q22)/q ( 

Q+2r (z0)
|Du|q µ(dz)

)2/q

+N
 

Q+2r (z0)
|F|2 µ(dz)

f Nr 2(q22)/q
0

( 

Q+2r (z0)
|Du|q µ(dz)

)2/q

+N
 

Q+2r (z0)
|F|2 µ(dz).

Hence, for every r * (0,>) we have

 

Q+2r (z0)
|b(z)|2 µ(dz)(5.3)

f N(r 2(q22)/q
0 + ³(q22)/q

0 )

( 

Q+2r (z0)
|Du|q µ(dz)

)2/q

+ N
 

Q+2r (z0)
|F|2 µ(dz).

Now, let v *H 1
2 ('T , µ) be a weak solution in 'T of

ùüú
üû
x³d ("tv + »v)2Di(x

³
d ([aij]2r ,z0(xd)Djv + bi)) = »1/2x³dfÇQ+2r (z0)

,

lim
xd³0+

x³d ([adj]2r ,z0(xd)Djv + bd) = 0.

By Lemma 3.4 and (5.3), we have

 

Q+2r (z0)
|V |2 µ(dz) f N

 

Q+2r (z0)
(|b|2 + |f |2)µ(dz)(5.4)

f N(³122/q
0 + r 224/q

0 )

( 

Q+2r (z0)
|Du|q µ(dz)

)2/q

+ N
 

Q+2r (z0)
|G|2 µ(dz),

which yields (5.1). Let w = u2 v * H 1
2 (Q

+
2r (z0), µ), which is a weak solution

of
x³d (wt + »w)2Di(x

³
d [aij]2r ,z0(xd)Djw) = 0 in Q+2r (z0)

with the boundary condition

lim
xd³0+

x³d [adj]2r ,z0(xd)Djw = 0 if B2r (x0)+ "Rd+ 6= '.
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Then, we apply Proposition 4.4 to conclude that

‖W‖L>(Q+r (z0)) f N
( 

Q+2r (z0)
|W |2 µ(dz)

)1/2

f N
( 

Q+2r (z0)
|U|2 µ(dz)

)1/2

+N
( 

Q+2r (z0)
|V |2 µ(dz)

)1/2

.

From this and (5.4), we obtain (5.2). w

Proof of Theorem 2.2. It suffices to consider the case p * (2,>), as the case
p * (1,2) can be proved by using the duality argument as in the proof of Theo-
rem 4.1. We first prove the a priori estimate (2.1) for each weak solution
u *H 1

p('T , µ) of (1.2). We suppose » > 0. Assume for a moment that

spt(1t<Tu) ¢ (s 2 (R0r0)
2, s + (R0r0)

2)×Rd+
with some s * (2>, T ) and r0 * (0,1). We claim that (2.1) holds if ³0 and
r0 are sufficiently small depending on d, ³, », and p. Let q * (2, p) be fixed.
Applying Proposition 5.1, for each r > 0 and z0 * 'T , we can write u(t,x) =
v(t, x) +w(t,x) in Q+2r (z0), where v and w satisfy (5.1) and (5.2). Then, it
follows from the standard real variable argument (see, e.g., [9]) that

‖Du‖Lp('T ,µ) +
√
»‖u‖Lp('T ,µ) f N(³122/q

0 + r 224/q
0 )‖Du‖Lp('T ,µ)

+ N‖F‖Lp('T ,µ) +N‖f‖Lp('T ,µ)
for N = N(d,³, »,p). From this, and by choosing ³0 and r0 sufficiently small so

that N(³122/q
0 + r 224/q

0 ) < 1
2 , we obtain (2.1).

We now remove the additional assumption that

spt(1t<Tu) ¢ (s 2 (R0r0)
2, s + (R0r0)

2)×Rd+
by using a partition of unity argument. Let

¿ = ¿(t) * C>0 (2(R0r0)
2, (R0r0)

2)

be a standard non-negative cut-off function satisfying

(5.5)

ˆ

R

¿p(s)ds = 1,

ˆ

R

|¿2(s)|p ds f N

(R0r0)2p
.

For any s * (2>,>), let u(s)(z) = u(z)¿(t 2 s) for z = (t, x) * 'T . Then
u(s) *H 1

p('T , µ) is a weak solution of

ùüú
üû
x³d (u

(s)
t + »u(s))2Di(x

³
d (aijDju

(s) 2 F (s)i )) = »1/2x³df
(s),

lim
xd³0+

x³d (adjDju
(s) 2 F (s)d ) = 0



Regularity Estimates, Singular-degenerate Coefficients 1495

in 'T , where

F (s)(z) = ¿(t 2 s)F(z), f (s)(z) = ¿(t 2 s)f (z)+ »21/2¿2(t 2 s)u(z).

As spt(1t<Tu(s)) ¢ (s 2 (R0r0)2, s + (R0r0)2) × Rd+, we can apply the estimate
we just proved and infer that

‖Du(s)‖Lp('T ,µ) +
√
»‖u(s)‖Lp('T ,µ) f N‖F (s)‖Lp('T ,µ) +N‖f (s)‖Lp('T ,µ).

Integrating with respect to s, we get
ˆ

R

(∥∥Du(s)
∥∥p
Lp('T ,µ) + »p/2

∥∥u(s)
∥∥p
Lp('T ,µ)

)
ds(5.6)

f N
ˆ

R

(∥∥F (s)
∥∥p
Lp('T ,µ) +

∥∥f (s)
∥∥p
Lp('T ,µ)

)
ds.

It follows from the Fubini theorem and (5.5) that
ˆ

R

∥∥Du(s)
∥∥p
Lp('T ,µ) ds =

ˆ

'T

ˆ

R

|Du(z)|p¿p(t 2 s)ds µ(dz) =
∥∥Du

∥∥p
Lp('T ,µ).

Similarly,
ˆ

R

∥∥u(s)
∥∥p
Lp('T ,µ) ds =

∥∥u
∥∥p
Lp('T ,µ),

ˆ

R

∥∥F (s)
∥∥p
Lp('T ,µ) ds =

∥∥F
∥∥p
Lp('T ,µ).

Since r0 depends only on d, ³, », and p, from the definition of f (s), (5.5), and
the Fubini theorem, we have

(ˆ

R

∥∥f (s)
∥∥p
Lp(',µ) ds

)1/p

f N‖f‖Lp('T ,µ) +NR22
0 »

21/2‖u‖Lp('T ,µ)

for N = N(d,³, »,p). Collecting these estimates, we infer from (5.6) that

‖Du‖Lp('T ,µ) +
√
»‖u‖Lp('T ,µ)

f N‖F‖Lp('T ,µ) +N‖f‖Lp('T ,µ) +NR22
0 »

21/2‖u‖Lp('T ,µ)

with N = N(d,³, »,p). Now we choose »0 = 2N. For » g »0R
22
0 , we have

NR22
0 »

21/2 f
:
»/2, and therefore

‖Du‖Lp('T ,µ) +
√
»‖u‖Lp('T ,µ)

f N‖F‖Lp('T ,µ) +N‖f‖Lp('T ,µ) +
:
»

2
‖u‖Lp('T ,µ),

which yields (1.2).
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Finally, the solvability of solution u * H 1
p('T , µ) can be obtained by the

method of continuity using the solvability of the equation

ùú
û
xd(ut + »u)2Di(x

³
dDiu2 Fi) = »1/2x³df ,

lim
xd³0+

x³d (Ddu2 Fd) = 0

in 'T , which is proved in Theorem 4.1. The proof is now completed. w

5.2. Proof of Corollary 2.3. We adapt an idea in [24]. Let p1 > p0 satisfy

(5.7)

ùüüüú
üüüû

d+ 2+³+
p0

f 1+ d+ 2+³+
p1

d g 2,

4+³+
p0

f 1+ 4+³+
p1

d = 1.

Then, it follows from Lemma 3.1 that

(5.8) ‖u‖Lp1(Q
+
2 ,µ) f N‖u‖H 1

p0 (Q
+
2 ,µ)

< >.

We split the proof into two cases.

Case I : We have p f p1. Observe that we only need to consider the case p7 f p0,
because otherwise we can proceed with the proof with p0 in place of p7 and then
apply Hölder’s inequality (noting that in this case (2.3) and (2.4) still hold with
p0 in place of p7). Let · * C>0 ((24,4)× B2) be such that · c 1 on Q1. A direct
calculation yields that u· *H 1

p0
('0, µ) satisfies

(5.9)

ùüú
üû
x³d ((u·)t + »u·)2Di(x

³
d (aijDj(u·)2 F̃i)) = x³d f̃ ,

lim
xd³0+

x³d (adjDj(u·)2 F̃d) = 0

in (24,0)×Rd+, with the zero initial condition (u·)(24, ·) = 0, where

F̃i = Fi·2 aijuDj·, f̃ = f·+ »u·+u·t 2Di·(aijDju2 Fi),

and » > »0R
22
0 .

Let q = p/(p 2 1), q0 = p0/(p0 2 1), and G = (G1, . . . , Gd), g * C>0 (Q+1 )
satisfying

‖G‖Lq(Q+1 ,µ) = ‖g‖Lq(Q+1 ,µ) = 1.

By Theorem 2.2, there is a weak solution v *H 1
q0
((24,0)×Rd+, µ) to

(5.10)

ùüú
üû
2x³d (vt 2 »v)2Di(x

³
d (ajiDjv 2Gi)) =

√
»x³dg,

lim
xd³0+

(x³d (ajdDjv 2Gd)) = 0
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in (24,0) ×Rd+, with the zero terminal condition v(0, ·) = 0. Since q f q0 and
G and g are compactly supported, following the proof of Theorem 4.1 (Case 2),
we have v * H1

q((24,0)×Rd+, µ). Moreover, by Theorem 2.2, we have

(5.11)
√
»‖v‖Lq((24,0)×Rd+,µ) + ‖Dv‖Lq((24,0)×Rd+,µ) f N.

Testing (5.9) and (5.10) with v and u·, respectively, we get
ˆ

Q+1
('u ·G+

√
»ug)dµ(z) =

ˆ

Q+2
('v · F̃ + vf̃ )dµ(z),

which together with Hölder’s inequality gives
∣∣∣∣
ˆ

Q+1
('u ·G +

√
»ug)dµ(z)

∣∣∣∣ =(5.12)

f ‖Dv‖Lq(Q+2 ,µ) ‖F̃‖Lp(Q+2 ,µ) + ‖v‖Lq7 (Q+2 ,µ) ‖f̃‖Lp7(Q+2 ,µ),

where q7 = p7/(p7 2 1). From (5.10), we see that v *H 1
q (Q

+
2 , µ) satisfies

ùú
û
2x³dvt 2Di(x

³
d (ajiDjv 2Gi)) = x³d g̃,

lim
xd³0+

x³d (ajdDjv 2Gd) = 0

in Q2, where g̃ = 2»v +
:
»g. When ³ ≠ 0, by (2.3)–(2.4), q7 satisfies the

condition (3.1) in Lemma 3.1. Then, by using Lemma 3.1 and (5.11), we get

‖v‖Lq7 (Q+2 ,µ) f N‖v‖Lq(Q+2 ,µ) +N‖Dv‖Lq(Q+2 ,µ)(5.13)

+ N‖vt‖H21
q (Q

+
2 ,µ)

f N +N‖G‖Lq(Q+2 ,µ) +N‖g̃‖Lq(Q+2 ,µ)
f N

√
».

When ³ = 0, by the usual unweighted parabolic Sobolev embedding, we still get
(5.13). It then follows from (5.12), (5.11), (5.13), and the arbitrariness of G and
g that

‖Du‖Lp(Q+1 ,µ) +
√
»‖u‖Lp(Q+1 ,µ)(5.14)

f N‖F̃‖Lp(Q+2 ,µ) +N
√
»‖f̃‖Lp7(Q+2 ,µ)

f N(
√
»+ 1)‖F‖Lp(Q+2 ,µ) +N‖u‖Lp(Q+2 ,µ) +N

√
»‖f‖Lp7(Q+2 ,µ)

+ N
√
»(»+ 1)‖u‖Lp7(Q+2 ,µ) +N

√
»‖Du‖Lp7(Q+2 ,µ),

where N is independent of ». Now, as p7 f p0 and (5.8), the terms in the
righthand side of (5.14) are all finite, so as p7 < p, we conclude (2.5) from (5.14)
by using Hölder’s inequality and a standard iteration argument for a sufficiently
large » (see, e.g., [15, pp. 80–82]). The corollary is proved when p f p1.



1498 HONGJIE DONG & TUOC PHAN

Case II : p > p1. We use an iterative argument. Let p1 be as in (5.7). For each
k g 2, let pk > pk21 satisfy

ùüüüú
üüüû

d+ 2+³+
pk21

f 1+ d+ 2+³+
pk

d g 2,

4+³+
pk21

f 1+ 4+ ³+
pk

d = 1.

Using the result we just proved in Case 1, we obtain (2.5) with p replaced by
p1. From this and with some obvious modifications, we may assume now that
u * H 1

p1
(Q+2 , µ). If p f p2, we apply Case 1 with p1 in place of p0, and then

obtain (2.5). Otherwise, we use Case 1 with p1 in place of p0 to obtain (2.5) with
p2 in place of p. Then, we repeat the process. After a finite number of steps, we
reach (2.5). The proof is completed.

5.3. Proof of Theorem 2.4. It follows from Corollary 2.3 and Proposi-
tion 4.4 that, for any q0 * (1,2), if v * H 1

p0
(Q+r (z0), µ) is a weak solution of

(4.5)–(4.6), we have

[Dx2v]C1/2,1(Q+r/2(z0)) + [V ]C1/2,1(Q+r/2(z0)) +
√
»[v]C1/2,1(Q+r/2(z0))(5.15)

f Nr21
( 

Q+r (z0)
|Dv|q0 + »q0/2|v|q0 µ(dz)

)1/q0

,

where V = ādj(xd)Djv. By using (5.15), Theorem 2.2, and a decomposition
argument as in the proof of Proposition 5.1, we have the following mean oscilla-
tion estimate: if spt(1t<Tu) ¢ (s 2 (R0r0)2, s + (R0r0)2) × Rd+ for some s * R,
then, for any Ç f 1

30 and z0 * 'T ,

 

Q+Çr (z0)
|Dx2u2 (Dx2u)Q+Çr (z0)|

+ |U2 (U)Q+Çr (z0)| +
√
»|u2 (u)Q+Çr (z0)|µ(dz)

f NÇ2(d+2+³+)r 2(121/q0)
0

( 

Q+r (z0)
|Du|q0 µ(dz)

)1/q0

+ NÇ2(d+2+³+)/q0

( 

Q+r (z0)
(|F|q0 + |f |q0)µ(dz)

)1/q0

+ NÇ
( 

Q+r (z0)
|Du|q0 + »q0/2|u|q0 µ(dz)

)1/q0

+ NÇ2(d+2+³+)/q0³
1/(q0¿1)
0

( 

Q+r (z0)
|Du|q0¿2 µ(dz)

)1/(q0¿2)

,
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where ¿1 * (1,>), ¿2 = ¿1/(¿1 2 1), and U = adjDju. Here, we used the
notation

(g)Q+r (z0) =
 

Q+r (z0)
g(z)µ(dz)

for a function g defined in Q+r (z0). The a priori estimate (2.6) then follows
from the mean oscillation estimate, the reverse Hölder’s inequality for Ap weights,
the weighted mixed-norm Fefferman-Stein type theorems on sharp functions, and
the weighted mixed-norm Hardy-Littlewood maximal function theorem. (See,
e.g., Corollary 2.6, 2.7, and Section 7 of [10] for details.) The solvability in
weighted mixed-norm Sobolev spaces then follows from the estimate (2.6) and an
approximate argument by using the solvability result in Theorem 2.2. We omit
the details and refer the reader to [10, Section 8].

5.4. Proof of Corollary 2.10. We first assume

(5.16)
d+ 3+³+

p0
< 1+ d+ 3+³+

p
.

Let · * C>0 ((24,4)×B2) be an even function with respect to xd such that · c 1

on Q1. A direct calculation yields that w := u· * W 1,2
p0 ('0, µ) satisfies

(5.17)

ùüüú
üüû

a0wt 2 aijDijw 2 ³

xd
addDdw + »c0w = f̃ ,

lim
xd³0+

x³daddDdw = 0

in (24,0)×Rd+, with the zero initial condition w(24, ·) = 0, where

f̃ = f·+ (a0·t 2 aijDij·2³addDd·/xd + (»2 1)c0·)u

2 (aij + aji)Di·Dju,

» > »0R
22
0 is a fixed number, and »0 is the constant from Theorem 2.7 with

q = p and Ë c K = 1. It follows from Lemma 3.1 and (5.16) that

(5.18) ‖u‖Lp(Q+2 ,µ) + ‖Du‖Lp(Q+2 ,µ) f N‖u‖W 1,2
p0 (Q

+
2 ,µ)
.

By using Theorem 2.7 with q = p and Ë c K = 1, (5.17) has a unique solution

v * W 1,2
p ('0, µ). Since f̃ is compactly supported, as in Case 2 of the proof of

Theorem 4.1, we have v * W 1,2
p0 ('0, µ). Now by the uniqueness of W 1,2

p0 ('0, µ)-

solutions to (5.17), we conclude that u· = v * W 1,2
p ('0, µ). Furthermore, by

Theorem 2.7 and (5.18),

‖u‖W 1,2
p (Q

+
1 ,µ)

f N‖f̃‖W 1,2
p (Q

+
2 ,µ)

f N‖f‖W 1,2
p (Q

+
2 ,µ)

+N‖u‖W 1,2
p0 (Q

+
2 ,µ)
,
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which, together with Hölder’s inequality and a standard iteration argument, yields
(2.7) under the additional condition (5.16).

Finally, for general p * (p0,>), the result follows from an induction argu-
ment by taking a sequence of increasing exponents pj , j = 1, . . . , n, such that
pn = p and

(d+ 3+ ³+)
pj21

< 1+ (d+ 3+³+)
pj

for j = 1, . . . , n.
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