On Parabolic and Elliptic Equations with
Singular or Degenerate Coefficients

HONGJIE DONG ¢ TUOC PHAN

ABSTRACT. We study parabolic and elliptic equations of both
divergence and non-divergence form in the half space {x4 > 0}
whose coefficients are the product of x§, and uniformly nonde-
generate bounded measurable matrix-valued functions, where
& € (—1,0). As such, the coefficients are singular or degen-
erate near the boundary of the half space. For equations with
the conormal or Neumann boundary condition, we prove the
existence, uniqueness, and regularity of solutions in weighted
Sobolev spaces and mixed-norm weighted Sobolev spaces when
the coeflicients are only measurable in the x4 direction and have
small mean oscillation in the other directions in small cylinders.
Odur results are new even in the special case when the coefficients
are constants.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we study the existence, uniqueness, and regularity estimates of solu-
tions in Sobolev spaces to a class of parabolic (and elliptic) equations in the upper
half space, whose coeflicients can be singular or degenerate on the boundary of
the upper half space in a way which may not satisfy the classical Muckenhoupt A,
condition.

Throughout the paper, let Q7 = (=0, T) x R4 bea space-time domain, where
T € (—,+x], Ry = (0,0), and RY = R4"! x R, is the upper-half space. Let
(aij) : Qr — R4%4 be a matrix of measurable coefficients, which satisfies the
following ellipticity and boundedness conditions: there is a constant k € (0,1)
such that

(1.1) K|§|2Saij(t,x)§i§j and |6Lij(l',x)|SK71
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for every & = (§1,82,...,84) € R% and (t,x) = (t,x’,x4) € Qr. Here, we do
not impose the symmetry condition on (a;;). Let « € (=1, ) be a fixed number.
We investigate the conormal boundary value problem

x§(us + Au) — Di[x§ (aij(t,x)Dju — F;)] = ﬁng,
(1.2) Jim X (aq; (£, x)Dju — Fa) = 0

in Qr, where F = (F1,F»,...,F3) : Qr — R%and f: Qr — R are given measur-
able functions in suitable weighted Lebesgue spaces, and A > 0 is a parameter. It
is worth noting that the weight x§ satisfies the Muckenhoupt A; condition only
if x € (=1,1). As a special case of our main results, for the model equation

xguy —div[x§(Vu - F)] = xJ f,
(1.3) {

lim xg‘(Ddu —F;) =0
xXq4—0"

in the upper-half parabolic cylinder Q3 and for @ € (-1, ), we obtain the local
boundary weighted estimate

1/p
</ [lulP + IDulp]xg‘dz>
Qf

<N [|u|+|Du|]x§‘dz+N</
03 Q3

. 1/p*
+N(/ LfIP xﬁ‘dz)
Q;

for every p € (1, ), where p* € [1, p) depending on «, p, and d as in (2.3)—
(2.4) below and N > 0 is a constant depending on d, &, p, and p*. Equation (1.3)
is related to the extension problem of the fractional heat operator (see, e.g., [1,32,
36]), and our result in this special case is already new.

We also consider the parabolic equation in non-divergence form

(1.4)
ao(t,x)ur —aij(t,x)Djju(t,x) — X%adj(t,X)Dju(t,x) +Aco(t,x)u = f

1/p
|F|"’x§‘dz>

in Qr with the boundary condition
(1.5) lirré xGaaj(t,x)Dju(t,x’,xq) =0,
xXq—0%

where ag, ¢y : Qr — R are measurable functions satisfying

(1.6) K < ao(t,x), co(t,x) <k™, (t,x)eQr.



Regularity Estimates, Singular-degenerate Coefficients 1463

In this case, we impose an additional structural condition on the leading coeffi-
cients a;:

(1.7) aqj(t,x)=0, j=12,...,d-1,

oragj = Ajaga for j = 1,2,...,d — 1 with constants A, which can be reduced
to (1.7) after the change of variables y; = xj — Ajxq for j = 1,2,...,d — 1 and
¥a = x4. We note that this condition is satisfied for a large class of equations (see,
e.g., [1,3,14,16]). Unlike (1.2), the equation (1.4) has extra coefhicients ag and
¢o. The main reason we introduce them in (1.4) is for convenience because in the
proofs of main results for (1.4)—(1.5), we divide both sides of (1.4) by aaa to use
the hidden divergence structure of the equation. Nevertheless, with a¢ and ¢ the
equation (1.4) is slightly more general. Of course, in view of (1.6), by dividing
both sides of (1.4) by ao or co, one can always assume one of them to be the
identity.

The interest of studying equations with singular or degenerate coefficients
comes from both pure mathematics and applied problems. As examples, we re-
fer the reader to [1, 3] for problems about fractional heat and fractional Laplace
equations, [14] for problems arising in mathematical finance, [16,19,31] for the
problems in geometric PDEs, and [5, 37] for problems from porous media. See
also [13,26,30,33] for some other classical studies of equations with singular de-
generate coeflicients. To put this work in perspectives, let us recall some known
related results. In [11], we considered a class of parabolic equations in divergence
form with a general weight

1
(1.8) ao(xq)us — mDi[H(Xd)(aiiju -F)l+Au=f

in the half space {x4 > 0} with conormal boundary condition:

(1.9) lim H(xg)(aqgjDju —Fa) = 0.
xX4—0F

Here, (a;;j) satisfies (1.1), ag € [k, k1], A = 0, and the weight p satisfies the A
condition and a relaxed A;-type condition away from the boundary. This, in par-
ticular, includes the A, weights pu(x4) = x§ forany & € (-1, 1). We obtained the
local and global weighted Calder6n-Zygmund type estimates for (1.8)—(1.9) with
respect to the weight p, under the condition that the coefficients are only measur-
able in the x4 direction and have small mean oscillation in the other directions in
small cylinders (partially VMO) with respect to the considered weight. The proofs
in [11] carry over to systems under the usual strong ellipticity condition. In [12],
we studied the corresponding non-divergence form scalar equations (1.4), where
« € (—1,1) and ay, ¢ satisfy (1.6). Under the condition that ag, a;j, and ¢y are
partially VMO with respect to the weight x§J, we obtained weighted mixed-norm

Wp* estimates and solvability. Among others, the results of this paper extend the
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results in [11, 12] to the full range of exponent & € (-1, ®) in which the weight
p(xq) = x§ may no longer be in the class of the commonly used A, weights. It
is worth noting that even for divergence-form equations, in contrast to [11], the
proofs below only work for scalar equations because the Moser iteration is used
(cf. Lemma 4.3). For other related work in this direction, we refer the reader to
the references in [11, 12]. More discussions can be found in Remark 2.9 below.

The class of partially VMO coefficients was first introduced by Kim and
Krylov [21, 22] for non-degenerate elliptic and parabolic equations that are in
non-divergence form. Divergence-form elliptic and parabolic equations with non-
degenerate partially VMO coefhicients were later studied in [6,7]. This type of
equations arises from the problems of linearly elastic laminates and composite ma-
terials, for example, in homogenization of layered materials (see, e.g., [4]). We also
refer the reader to [8—10] for extensions to second-order and higher-order systems
with or without weights.

We apply a mean oscillation argument, which was used in [27] for non-
degenerate parabolic equations with coeflicients which are VMO in the space
variables. In the case of partially VMO coefficients, the main difficulty is that,
since they are merely measurable in x4, it is only possible to estimate the mean
oscillation of D+ u, not the full gradient Du. Therefore, one needs to bound Dyu
by Dy-u. An idea in [6,7] is to break the “symmetry” of the coordinates so that ¢
and x4 are distinguished from x’ by using a delicate re-scaling argument. Another
idea is to estimate the mean oscillation of agaDqu instead of Dgu, and apply a
generalized Fefferman-Stein theorem established in [28]. In [8], a new method
was developed, in which the key step is to estimate ‘U := aq4;jDju and Diu,
i=1,...,d — 1, instead of the full gradient of u. By using this argument, one
was able to bypass the scaling argument mentioned above and greatly simplified
the proof. In this paper, we adapt this method to singular/degenerate equations.

In our main results, Theorems 2.2, 2.4, and 2.7 below, we obtain the unique
solvability (1.2) and (1.4)—(1.5) in weighted Sobolev spaces and in mixed-norm
weighted Sobolev spaces. Local boundary estimates for solutions of these equa-
tions are also obtained in Corollaries 2.3 and 2.10. To the best of our knowledge,
these results are new even in the elliptic case and in the unmixed-norm case with
constant coefficients aij, ao, and co.

The proofs of the main theorems are based on an idea in [8] mentioned above
and the perturbation technique. To implement the method, we first consider
equations whose coefficients depend only on x4, and prove various results on the
existence, uniqueness, and regularity of solutions to this class of equations. For
this, we establish the Lo, estimate of weak solutions by applying the Moser iter-
ation, and then derive Lipschitz- and Schauder-type estimates. In particular, to
estimate the L, norms of Dgu and U, we use a bootstrap argument. Schauder-
type estimates for elliptic equations similar to (2.8) were proved recently in [34]
when the matrix (a;;) is symmetric, Holder in all variables, and satisfies a struc-
tural condition that the hyperplane {x; = 0} is invariant with respect to (a;j),
thatis, ajq = daj = 0for j =1,...,d—1. The proofin [34] uses a Liouville-type
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theorem and a compactness argument. Our proof in Section 4 is more direct and
works for more general operators. For the local estimates Corollaries 2.3 and 2.10,
we prove a parabolic embedding (see Lemma 3.1) by using a generalized Hardy-
Littlewood-Sobolev inequality in [18], which seems to be new in the weighted
setting and is of independent interest. We also note that in contrast to the previ-
ous work such as [2, 11, 13] in which the A, weights are commonly assumed as
the weighted Poincaré inequality is needed, we do not use the weighted Poincaré
inequality in the proof. In fact, as pointed out in [34], when « > 1, such an
inequality is not valid.

For simplicity, in this paper we choose not to consider lower-order terms. The
results still hold for equations

x$(ur — bDiu — cu + Au) — Di[x$(a;;Dju + biu — F)] = VAxSf

and
x
aour — aijDiju — (X_adj + bi> Dju(t,x) —cu + Acou = f,
d

where b;, b;, and ¢ are bounded measurable functions. To see this, it suffices
to move the terms b;D;u and cu to the righthand side of the equations, absorb

A

biu to F;, and take a sufficiently large A. (See, e.g., [27] for details.) By using
the weighted embedding results such as Lemma 3.1 below, it is also possible to
consider unbounded lower-order coefficients. We refer the reader to the recent
interesting work [20,24,25,29] and the references therein.

The remaining part of the paper is organized as follows. In the next section,
we introduce some notation and state the main results of the paper. In Section 3,
we prove two weighted embedding results that are needed in the paper as well
as a result on the existence and uniqueness of Ly-solutions. In Section 4, we
study equations whose coefficients depend only on x4. We prove the existence,
uniqueness, and regularity estimates of solutions in H, r} (Qr, pu) after we obtain
the Lo, Lipschitz-, and Schauder-type estimates for solutions to homogeneous
equations. Finally, in Section 5, we provide the proofs of Theorems 2.2 and 2.4,
and Corollaries 2.3 and 2.10.

2. NOTATION AND MAIN THEOREMS

2.1. Notation. Forr > 0, zy = (to,Xo) with xo = (X, X0q) € R4 x R
and ty € R, we define B, (x() to be the ball in R? of radius v centered at xo,
Q+(z0) to be the parabolic cylinder of radius 7 centered at zy, that is,

Qr(29) = (to — %, to) X By (x0p),

and B} (x¢) and Q; (z¢) to be the upper-half ball and cylinder of radius » centered
at xo and z, respectively:

Bf (x0) = {x = (xa,x") € R : x4 > 0, |x — x0| <7},

Q) (zo) = (to — 1%, to) X B} (xp).
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When x¢ = 0 and t( = 0, for simplicity of notation we drop X9, zg and write By,
B, Qr, and Q;, etc. We also define B'(x) and Q’(z{) to be the ball and the
parabolic cylinder in R4~! and R%, where z{, = (to, X{).

Forp € (1,00), —00 < S < T < +o0,and D C R4, let L, ((S,T) X D, i) be
the weighted Lebesgue space consisting of measurable functions g on (§,T) X D
such that its norm is as follows:

1/p
NgllL, (s, myxDu = (/ |g(t,X)|le(dZ)> < o0,
(S,T)XD

where p(dz) = x§dxdt. For p,q € (1, ), the weights wo = wq(t), and
w1 = w;(x), wedefine Ly, (Qr, w du) to be the weighted mixed-norm Lebesgue
space on Qr equipped with the norm

T alp 1/q
I f1 Ly @1 wdp) = (/0 (/[Rd |f(t,X)IVw1(X)IJ(dx)> wo(t)dt> ,

where w (t,x) = wo(t)w;(x). We also define

H, L (S, T) X D, wdp)
={9:9 = DiFi + Fo/xa + f for some f € Ly p((S,T) x D, w dp),
F = (Fo,....,Fa) € Lgp((S,T) x D, w du)**1}
and
Hy, (S, T) x D, wdu) =
={9:9,Dg €Lqp((S,T)xD,wdy), gr € H;,,((S,T) x D, wdu)},

which are equipped with the norms

19111, ((s,1)% D0 dp) = inf{||F||Lq,,,((5,T)xD,wdu) + 1 Ly (5, 1)xD0 dpa)
g =DiF; + Fo/xa + ]
and
19135}, (s, 1) xD,0aw) = 19NILg, (8, 1)xD,0ap) + 1DGllLg, ((5,7)xD,0 ap)
+ 19ellug), (5,7)%D,0 dp) -
When p = q, we simply write H, (Qr, w du) = H}, ,(Qr, w dy). Similar no-

tation is also used for other spaces. When w = 1, we have Ly, (Qr, wdu) =
Lg,p(Qr, 1), and similarly for other function spaces.
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We say u € H, ,((S,T) X D, w dp) is a weak solution of (1.2) in (S, T) x D
if

/ (—uUot@ + Au) u(dz) +/ (aijDju — F;)D;p u(dz)
(S,T)xD (S,T)XD
= A”Z/ f(2)@(2) u(dz)
(S, T)xD

forany @ € C§° (S, T) x (D U (D n oR4))).

We use the notation a; = max{a,0} and a- = max{—a,0} fora € R so
that a = a, — a_. Finally, for a set Q ¢ R4*! and any integrable function f on
Q with respect to some Borel measure w, we write

1
]éfw(dz) = m/gfw(dz), where w (Q) —/Qw(dz).

2.2. Main theorems. As in [11, 12], we impose the following partially-
VMO condition on the leading coefficients.
Assumption 2.1 (Yo, Ro). Forany v € (0,Ro] and zo = (2, x4) € R4 xR,
we have
sup laij(t,x) — [aijlrz(xa)| u(dz) < yo,
i,j /QF(z0)
where p(dz) = x§dtdx, [aijlyz(xa) is the average of a;; with respect to
(t,x") in Qy(zg):

[aijlrz (xa) = ][ Caqj(t,x’, xq) dx" dt.

QY(ZO)

In the special case that the coefficients (a;;) only depend on the x4 variable,
no regularity assumption is required on them, as Assumption 2.1 (yo, Ro) is always
satisfied.

Our first main result is about the existence, uniqueness, and global regularity
estimates of solutions to the divergence-form equation (1.2).

Theorem 2.2. Let x € (—1,), k € (0,1), Ry € (0,00), and p € (1, ).
Then, there exist yo = yo(d,k,x,p) € (0,1) and Ay = Ao(d, Kk, o, p) = 0 such
that the following assertions hold. Suppose that (1.1) and Assumption 2.1 (yo, Ro)
are satisfied. If u € Hy(Qr,p) is a weak solution of (1.2) for some A = AoRy2,
feLl,(Qr,n), and F € Lp(QT,u)d, then we have

2.1) DUl @ + VAUl @ < NIFIL @0 + NIFIL @)

where N = N(d, k,, p) > 0. Moreover, for any A > AoRy?%, f € Ly (Qr, 1), and
F e L,(Qr, W2, there exists a unique weak solution u € 5—[,; (Q7, 1) to (1.2).
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In the next result, we give a local boundary estimate in a half cylinder. Con-
sider

xjur —Di(x§(aijDju - F;)) = x3 f,
(2.2)

lim x§(aa;jDju—Fa) =0
xX4—0F

in Q5. Let p € [1,0) and p* € [1, p) satisfy

+2+ +2+
dr2ict g 4280 >

p* B p
(2.3) d+2+ oy d+2+ oy X

ifd=2or«=0,and

4+:(+ s1+4+0(+ when p* > 1
24) 4f¢x 4+
T <1+ * whenp* =1
p*

ifd = 1 and & # 0. Note that the condition on p* is used in a weighted parabolic
Sobolev embedding result. (See Lemma 3.1 below.)

Corollary 2.3. Letr x € (—1,0), k € (0,1), Ry € (0,0), 1 < pg < p < oo,
and p* € [1,p) satisfy (2.3)—(2.4). Then, there is yo = yo(d, Kk, &, po,p) € (0,1)
such that the following assertion holds. Suppose (1.1) and Assumption 2.1 (yo, Ro)
are satisfied. If u € Hy (Q3, 1) is a weak solution of (2.2), F € Lp(Q3, W2, and
feLy(Q3, 1), thenu € H)(QY, u) and

(2.5) lullr, @t w + IDUllL, @t
< Nllull, s m + NIDullL, i

+ NIFllz, @t + NIt >

where N = N(d, K, &, po, p, p*,Ro) > 0.

We conjecture that for any d > 1 and & € (—1, ®), the above corollary still
holds when p* satisfies (2.3).

In this paper, we also show that Theorem 2.2 can be extended to the setting of
weighted mixed-norm spaces. The result is of interest because the inhomogeneous
terms F and f could behave anisotropically. For p € (1, ), a locally integrable
function w : R4 — R, is said to be in the Ap([Rﬁir,u) Muckenhoupt class of
weights if

(W= swp_(f,  woIuy)

>0, xeR%
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p-1
% (f w(y)l/(lflﬂ)u(dy)> < o0,
B} (x)

Similarly, a locally integrable function w : R — Ry is said to be in the A, (R)
Muckenhoupt class of weights if

t+r? t+r? p-1
[w]a,®) := sup (][ w(s)ds)(f w(s)”“‘"”ds) < 0.
t t

r>0,teR ~r? -r?

Theorem 2.4. Let x € (—1,0), k € (0,1), Ry € (0,), p,q,K € (1,x),
wo € Ag(R), w1 € Ap(R%, 1), and w = wo(t)wi(x), such that

[wola,m) <K, [wily, g =K.
Then, there exist
Yo =yo(d,k,0,p,q,K) €(0,1) and Ag=2A0(d, K, & p,q,K) =0,

such that the following assertions hold. Suppose that (1.1) and Assumption 2.1 (yo, Ro)
are satisfied. Ifu € H] ,(Qr, w dp) is a weak solution of (1.2) for some A = AoRy2,
f€LgpQr,wdu), and F € Ly, (Qr, w du)4, then we have

(2.6) DU, , @ waw + VAlUlL,, @rwd
< NlIFllLy,@rwdw + NIfllLy, @rwdp,

where N = N(d,k,x,p,q,K) > 0.

Moreover, for any A > AoRy?, f € Lgp(Qr,wdp), andF € Ly, (Qr, wdu)?,
there exists a unique weak solution u € 3—[(11‘,[, (Q7, wdu) to (1.2).

Next, we state the main results for non-divergence form equations. Besides
the regularity assumption on (a;;) as in Assumption 2.1, we impose similar con-
ditions on the coefficients a¢ and cy.

Assumption 2.5 (yo, Ro). Forany r € (0,Ro] and zo = (2}, x4) € R x R,
we have

sup laij(t,x) —[aijlrz(xa)| u(dz)
i,j JQr(20)

+ ][Q+( ) (lao(t,x)=[aolyzy(xa) | +|co(t,x)—[colrz (xa)|) u(dz) < yo,

where [@ijlr,z,(Xa), [@olr z,(xa), and [coly 2z, (X4) are, respectively, the average
of aij, ag, and ¢ with respect to (t,x") in Q}(z;) as defined in Assumption 2.1.
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We also need the following definition which is used in a weighted Hardy
inequality (cf. [12, Lemma 2.2]).

Definition 2.6. Let x € (—1, ) and p € (1, ©0); we then say that the weight
w:Ry — Ry isin My (p) if

[eY] 1/p
[w]m,w) = sup (/ y‘““*”tx)(y)u(dy))

>0

v 1-1/p
% (/ w(y)—l/(nfl) lJ(dy)) < 00,
0

where pu(dy) = y*dy for y € R,.

Define Wé,’,z,(QT,wdu) to be the weighted mixed-norm Sobolev space e-
quipped with the norm

Itz orwaw = 1WlLg, @rwap + Ul @r.0am

+ [IDUllL,, @7 wapw + ID* ULy, ©@rwdp-

When p = g and w = 1, we can write W,;’Z(QT,u) = Wéj%,(QT,du). A function
u € Wgip(Qr, w dp) is said to be a strong solution to (1.4) if it satisfies the equa-

tion almost everywhere. Our main result for the non-divergence form equation
(1.4)—(1.5) is the following theorem.

Theorem 2.7. Let x € (—1,%), k € (0,1), Ry € (0,), p,q,K € (1,00).
Let wy € Ag(R), w; € Ay (R4, wy € Ap(R, ) N My (1), and w(t,x) =
wo(H)wi(x")wa(xq), such that

[wola,m) =K,  [wila,ra-1) =K, [wala, @, =K, [wW2lm,w =K.
Then, there exist

Yo =Yo(ld,k,0t,p,q,K) € (0,1) and Ag=2A¢(d,k,,p,q,K) =0

such that the following assertions hold. Suppose har (1.1), (1.6), (1.7), and Assump-
tion 2.5 (yo, Ro) are satisfied. If u € W;,’rz,(QT, w dp) is a strong solution of (1.4)—
(1.5) with f € Lap(Qr,w dp) and A = AgRy?, then

2
luellLy, @rwdp + 1D UL, @rwdw + 1Datt/XallL,, ©rwdp

+ \/X”Du”Lq,p(QT,wdu) + A”u”Lq,p(Qr,wdu) = N”f”Lq,,,,(QT,wdu),

where N = N(d,k, o, p,q,K) > 0. Moreover, for any f € Lygp(Qr,w du) and
A > AgRg?, there is a unique strong solution w € WL;,’,%(QT, wdu) of (1.4)—(1.5).
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Remark 2.8. As a typical example, in Theorem 2.7 we can take the power
weight w3 (xg) = Xg. It is easily seen that forany g € (—ax—1,(x+ 1)(p — 1)),
we have w; € Ap(Ry,u) N My(u). In the special case when we have & = 0
and B € (—1,p — 1), a similar result was proved in [23] when the coefficients
are measurable in the time variable and have small mean oscillations in the spatial
variables, by using a different argument.

Remark 2.9. It is worth highlighting that in [11] the authors studied (1.8)
with general u € A>(R;), and the corresponding equations in non-divergence
form were also studied in [12] when y = x§ with « € (=1,1). Similar require-
ments of the Az-condition can be found in [2, 13], for example. Theorems 2.2,
2.4, and 2.7 cover the case when p(xq) = x5, which is not in A>(R;) when
« € [1,00), and this seems to be the first time that the Lj-theory is developed
for equations with non-A; coefficients. The key ingredient is our newly devel-
oped results on Lipschitz and Schauder estimates in Section 4.1 for solutions of
homogeneous equations. Specifically, motivated by [34], to obtain such results
we prove a weighted parabolic embedding theorem in Lemma 3.1 and apply it
with Moser’s iteration argument to establish the boundedness of the solutions (see
Lemma 4.3 below). Then, to derive the estimates of higher-order derivatives of
the solutions, we use an anisotropic Sobolev embedding theorem, a special struc-
ture of the weight, together with an iteration method (see Proposition 4.4 be-
low). Our method works for equations with coeficients that are measurable in
the x4-variable. Similar Schauder estimates were also obtained recently in [34]
for elliptic equations, the proof of which relies on Liouville-type theorems and
special invariant structure of the coeflicients, and also requires that the coefficients
be sufficiently smooth.

Once Lipschitz and Schauder estimates in Section 4 and Theorem 2.2 are
proved, Theorem 2.7 can be proved by using the same argument as in [12]. To
keep the paper within a reasonable length, we skip the proof of Theorem 2.7 and
refer the reader to [12] for details.

Much as in Corollary 2.3, we also obtain the following local boundary esti-
mate for solutions of (1.4) in Q3.

Corollary 2.10. Let x € (—1,0), k € (0,1), Ry € (0,), and 1 < py <
p < oo. Then, there exists Yo = Yo(d, K, &, po, p) € (0, 1) such that the following
assertion holds. Suppose that (1.1), (1.6), (1.7), and Assumption 2.5 (yo, Ro) are

satisfied. Ifu € WpP(Q3, 1) is a strong solution of
I
aour — a;jDiju — X—addDdu +cou = f,
d
lim x5ag4Dy =0
Xg 0+ dcddPu
inQy, and f € L,(Q3, 1), then we have u € W,;‘Z(Qf,u) and
(2.7) ”u”Wé'Z(QT,u) = NHuHWILZ(Q;‘H) + N||f||Lp(Q2+!u)’

where N = N(d, K, &, po, p,Rg) > 0.
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Using the above results for parabolic equations, we can directly derive similar
results for elliptic equations by viewing solutions to elliptic equations as steady-
state solutions of the corresponding parabolic equations. (See, for example, the
proofs of [27, Theorem 2.6] and [12, Theorem 1.2].) We only present here a
result of the local boundary estimate for weak solutions. Consider

-Di(xglaij(x)Dju — F;]) = xjf,
2.8)

lim xg‘(adj(x)Dju —Fd) =0
xXq4—07%

in By, where aij : By — R, F = (F1Fy,...,F3) : By — R%and f: Bf — R are
given measurable functions. In this time-independent case, (1.1) and Assumption
2.1 can be stated similarly. For each p € (1, o), suppose that p € [1, p) satisfies

ad+ oy ad+ oy

— <1+ when p > 1,
(2.9) d+po< ad+ o
]27+<1+ * whenp =1.

For Q c R4, W; (Q, u) denotes the weighted Sobolev space consisting of all mea-
surable functions u : Q — R such that u,Du € L, (Q, ).

Corollary 2.11. Letx € (-1,%), k € (0,1), Ry € (0,0), 1 <pyg < p < oo,
and p € [1,p) satisfy (2.9). Then, there exists Yo = yo(d, k, &, po, p) € (0,1) such
that the following assertion holds. Suppose that (1.1) and Assumption 2.1 (yo, Ro)
are satisfied. If w € Wy (B3, 1) is a weak solution of (2.8), F € Ly (B3, )4, and
f €Ly(B;y, 1), thenu € W)(By, ) and

lullwy s < Nl s w + NIFIlL, 350 + NI, 350,

where N = N(d, k, &, po, P, P, Ro) > 0.

The proof of Corollary 2.11 is similar to that of Corollary 2.3 by using the
corresponding weighted embedding inequality (see Remark 3.2 (ii)). Therefore,

we also omit it.

3. WEIGHTED SOBOLEV INEQUALITIES AND L,-SOLUTIONS

Our first result in this section is a weighted parabolic embedding lemma which
will be used in the proof of Corollary 2.3. The range of g* below is optimal when
d = 2. However, when d = 1, we impose a slightly stronger condition. In view
of the classical parabolic Sobolev embedding when & = 0, we conjecture that this
condition can be relaxed.
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Lemma 3.1 (Weighted parabolic embedding). Ler o € (—1, ) and let also
a,a* € (1, ) satisfy

d+2q+ X 214 d+z: X+ ifd > 2,
. 4+q°‘* s1+% ifd = 1.
Then, for any v € Hj(Q3, 1), we have
(3.2) VL@t = NIVIsg 50

where N = N(d, o, q,q*) > 0 is a constant. The result still holds when q* = o and
the inequality in (3.1) is strict.

Proof- Note that the case when d = 1 follows by considering v (t,x1) =
v (t, x1, X2) with a dummy variable x; and using the result when d = 2. Hence,
we only need to prove (3.2) when d = 2. It suffices to consider the case when
a* > q. Without loss of generality, we may assume that
(3.3) Vv =DiGi+ Go/xa+ 9
in Q7 in the weak sense and

Vi, @im + 1DV i + Gt + 19l 05m <1,

where G = (Go, G1,...,Gq). Let Q = Q1,2(0,0,...,0,2) and ¢ € C(Q) with
unit integral. For any (¢, x) € Q3, by the fundamental theorem of calculus,

(3.4) v(t,x)—c

1
=// (Ut(t(l—92)+592,X(1—9)+y9)29(s—t)
QJo

+ (DV)(E(1 = 0%) +50%,x(1-0) + ¥0) - (¥ —x))@(s,¥) dOds dy
=1 + 1,

where

c=/(_2v(s,y)(p(s,y)dsdy.
Letx =x(1-0)+y0and T =t(1 - 0?) + s0%. Clearly,

(3.5) (1% = x>+ T —th"2 = (Ix — ¥ + |t — s|)"/20 < No6.
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It then follows from (3.3) that
(3.6)

1
I =2/,/ (Q(T,ﬁ)ﬁL(DiGi)(T,ﬁ)vL
0Jo

Since ¥ € Q, we have y4 > 1 and thus

M) O(s —t)y(s,y)dodsdy.
Xd

(3.7) Ix —X|=|x—-y|0 <NOy; <NX; and x4 <NZX,.

Moreover,
(DiGi)(T, %) = Dini(T,DAC)Q_l-

Therefore, from (3.6) and integration by parts, we deduce

1
(3.8) I sN/Q/O (19(r,%)10 + 1G(7,%)]

+1Go(T, %) Ix — X1710) |s — t| dOds dy.
Combining (3.4) and (3.8), we obtain

lv(t,x) —cl

1
SN/_/(|g(T,9A€)|9+|G(T,9?)|+|G0(T,)%)||x—9%|*19+|Dv(T,)2)|)d9dsdy
aJo

1
<N[ [0 (lgtr, 010 + 1G0T, 0] + Go(r, 1) |x - %1710
Q;/0
+ |D‘U(T’5€)|)X{(|X75H2+|tf‘r\)l/2SN9,deN)%d} d@de)AC
<N[ (lg(r,)l(lx =51+ e = )42
Q3
+1Go (T, R) | 1x = %M (Ix = %> + |t —T)742

+ (IG(T, %) | + DU (T, %)) (Ix = %12+ [t = T)"@D2) x  yedTdX,

where we used dy = 04 d%, dT = 072ds, (3.5), and (3.7) in the third inequality.
We apply Young’s inequality for convolutions with respect to the time variable
to get that, for any x € By,

(3.9) v (-, x) = cllL g« (-4,0)
<N [ (1960 1y a0n 15 = £+ 16,2 a0
2

+ 1DV ()l (a0 ) X = X742 0 ek,
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where £ € (1, ) satisfies

1 1
3.10) +-=1+—
( a a*

=

and ¥d > 2 which always holds because £ > 1 and d = 2. Similarly, we use
Young’s inequality in x” to get that for any x4 € (0, 2),

B.11) v (-, -, xa) —C||Lq*(Q§)

2
< N/ (19, - %) lycap) 1%a — al + 1G (-, -, %)l
0

a+1)(1-1/4

+ 1DV (-, %a) 1,05 ) 1Xa — Xal™ 'Xixg=nsg) 4Xd,

where we used (d + 1 —2/€)¢ > d — 1 which holds true as £ > 1. In the sequel,

we discuss two cases: X = 0 and x € (-1,0).

Case I. o« = 0. We first consider the case when g* < 0. Multiplying both sides
/q*

of (3.11) by x;'"", we get

*
xg' vy xa) = el oy

2
< ng/q*/ (llg(-, X)Ly 1%Xa — Xal + 1G (s -, Xa) L,y
0

|7(d+1)(171/€)

+ IIDv(-,-,ﬁ?d)lqu(Q;)>lxd - X4 Xix,<N%} dXd

2
<N [ (19,50l 1xa = %l + 160, %) @
0

A A/ A= —1/4 *_ A
+ 1DV, -, &) Iy ) X5 Ixa — g~ D OO et —la gz

Since both x4 and X4 are bounded, we can apply the Hardy-Littlewood-Sobolev
inequality for fractional integration in x4 to obtain

(3.12) v = clir« @i = NIgllL, i + NIGI Lt
+ NIIDVIz,Qz 400

provided that
d+1 X 1 1

e T e T
From (3.10), we see that this condition is equivalent to (3.1).

When g* = oo, we have £ = p = q/(q — 1). Thus, if the inequality (3.1)
is strict, we also get (3.12) by using Holder’s inequality. From (3.12) and the
definition of ¢, we easily get (3.2).
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Case II: o € (—1,0). For the case g* < oo, we will apply the generalized Hardy-
Littlewood-Sobolev inequality (see [18, Theorem 6] or Theorem B of [35]) to
conclude (3.12), which gives (3.2). Indeed, in terms of the notation in Theorem 6
of [18], we choose

__ar no X o« 11
_q*_l, q*, q*’ Ky 1/'.

Y =4dq, S
Then, it is easily seen that the conditions in there are satisfied. Let

F&a) = (119¢, - &) lL,@p + 1G G X)Ly
+ 1DV (-, - %) I3 ) X0, (Ka)-
As both x4 and % are bounded, if
(3.13) d+1)1-1/) <A-h -k,

then by (3.11) we see that for any g € L((0,2)),

2
\/ XN (-, xa) — el 09 (xa) dxa
0

> fGaRY
A)Xg1g(xa)l .
SN/ ~ = dxgdxg.
o Jo XMxg - Xa|A-h-kxk

From this, we apply [18, Theorem 6] to get

2

[ ) = el 9k x|
2 . 1/a

SN(/O fq(fcd)fcdqdfcd> 191l Ls0,2))

2 1/q
SN(/O fq(de)fC,‘}‘dde> IgNlLs0,2))s

where we used the fact that )%Zq < Nx§ forany X4 € (0,2) because & < 0. Then,
by the duality, we obtain (3.12) when g* < oo. Because of (3.10), the condition
(3.13) is equivalent to

d+2 d+2*
<1+ ,
a a

(3.14)

which is (3.1) when & < 0. When g* = o and the inequality (3.14) is strict, we
also have (3.12) by using Holder’s inequality. The lemma is proved. O
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Remark 3.2.

(i) In view of the additional factors in the g terms in (3.9) and (3.11), it is
possible to relax the integrability condition on g in Lemma 3.1: we only
need g € Lz(Q3, 1), where g € (1, q) satisfies

ad+2+ o <2+d+2+o<+

qa q*
However, this will not be used in the proofs of our main results.

(ii) In the time-independent case, (3.9) is not needed. Therefore, with a mi-
nor modification of the proof, we also have the embedding

when d = 2.

||u||Lq*(BZ+,,J) < NIIuIIqu(B;,u) forallu € qu (By, 1)
with q,g* € (1, o) satisfying
d+ oy sl+d+a+.
q q*

The result still holds when g > d + &, and g* = . (See Theorem 6 in
[17] for a different proof in a more general setting.)

We also need a weighted parabolic embedding result for functions in the en-
ergy space, which will be used in the proof of Lemma 4.3 when we apply the
Moser iteration.

Lemma 3.3. Let x € (—1,00), ¥y = (d + x5 +2)/(d + &) ifd + &y > 2
and Ly € (1,2) be any number if d + &, < 2. Then, there exists a constant N =
N(d, Ly, &) such that

171
(£ wxPhuan) <N sp xR p)
Qi (20) B (x0)

te(to—r2,ty)

+N72]{2+( )IDu(t,x)Izu(dZ),
r (2o

Jor every zg = (to,x0) € R v > 0, and
U € Loo((to — 72, 0); L2 (Byf (x0), 1)) N La((Eo — 72, t0); W3 (B (x0), 1))-

Proof- Let T = (to — r2,t9), and let kg = 2/(2 — y) € (1,0). By Re-
mark 3.2 (ii) (see also [34, Theorem 2.4]) and after rescaling, we have the follow-
ing weighted Sobolev inequality:

1/ko
(][ Iu(t,X)I“Ou(dx)> sNT(f IDu(t,X)Izu(dx)>
B (x0) Bif (x0)

1/2
. N(][ it P px)
B (xp)

1/2
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where N = N(d, €y, «) > 0. This together with Hélder’s inequality gives

][ lu(t,x) > u(dx)
B (xp)

1-2/Ko 2/Ko
< (][ (e, ) p(ax) ) (][ (e, )% (dx) )
B;’(Xo) B;(XO)

1-2/Ko
< N(sup |u(t,x)|2u(dx))
terl J Bf (xo0)

X (1’2][ IDu(t, x)|? p(dx) +][ Iu(t,x)lzu(dx)>.
Bif (x0) B (x0)

Now, by integrating with respect to t on I' and using Young’s inequality, we obtain

£
Fo 0Pz <N(supf a0 P )
Q¥ (20) ter JBi (xo)

£
+NT<][ IDu(t,x)Izu(dz)> )
Qi (z0)

The lemma is then proved. O

Finally, we conclude this section with the following useful result on the exis-
tence and uniqueness of Ly-solutions of a class of equations that are slightly more
general than (1.2). The result is considered as a special case of Theorem 2.2 when
p = 2, but no regularity requirements are imposed on the coefficients.

Lemma 3.4. Let x € (—1,0), A > 0, and let (aij), ao, and co be measur-
able functions defined on Qr such that (1.1) and (1.6) are satisfied. Then, for each
F € Ly(Qr, 1) and f € Ly(Qr, 1), there exists a unique weak solution u €
H}(Qr, p) to

xg(ao(t,x)us + Aco(t, x)u)—
(3.15) — Di(x$laij(t,x)Dju — Fi]) = VAXS S,
lirré x(aqj(t,x)Dju —Fgz) =0
xXq—0%

in Q. Moreover,

(3.16) DU, @ + VAU L @ < NIFILyru + NI L@

where N = N(K).

Proof We first prove the a priori estimate (3.16). Let u € H}) (Qr, ) be a
weak solution of (3.15). By multiplying the equation (3.15) with u and using
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integration by parts and (1.1), we obtain

sup [ttt 0P utax) + [ puluaz) +4 [ )P )
te(-oo,T) JRY Qr Qr

<N , |F<z>||Du<z>|u<dz>+NA”2/Q If(2)| lu(z)| u(dz).

Then, by Young’s inequality, we obtain (3.16).
From (3.16), we see that the uniqueness follows. Now, to prove the existence
of solution, for each k € N, let

(3.17) Qk = (—k*, min{k?, T}) x B{.

We consider the equation

(3.18) x¥(aoue + Acou) — Di(x§(aiDju — Fy)) = A2x3f in Qx
with the boundary conditions

(3190  u=00nd,Q\ {xs=0} and lim xg(aa;Dju = Fa) =0,
xXq—0"

where 9,Qy is the parabolic boundary of Qk. By Galerkin's method, for each k,
there exists a unique weak solution uyx € H; (O, 1) to (3.18)—(3.19). By taking
Ur = 0on Q7 \ Qk, we also have

sup  lluk(t, )l gd p + IDUKI L@ + AUk L @)
te(=o,T)

< NIFllL,crm + NIF @ m-

By the weak compactness, there is a subsequence which is still denoted by {uy}
and u € H; (Qr, ) such that

U — U, Duy — Du

weakly in L, (Qr, 4). By taking the limit in the weak formulation of solutions, it
is easily seen that u is a weak solution of (1.2). The lemma is thus proved. O

4. EQUATIONS WITH SIMPLE COEFFICIENTS

Throughout this section, let @;; : Ry — R%*4 be measurable functions which
satisfy the ellipticity and boundedness conditions: there is a constant k € (0,1)
such that

(4.1)  kIE? < aij(xa)&Ej, and |aij(xa)l < k7!, VEe€RY x4 €R,.
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Let do, o : R4 — R be measurable functions satisfying

1

(4.2) K < do(xg), Co(xq) <k ! forxsgcR,.

We study (1.2) in which the coefficients a;; are replaced with d;j. More precisely,
we consider

xg(@o(xq)ur + Ao (xqa)u)—
(4.3) - Di(x§(dij(xa)Dju — Fy)) = VAx§f,
xlz,i%+ x3(daj(xq)Dju —Fq) =0

in Qr. The above equation is slightly different from (1.2) as there are coefficients
do and ¢y instead of the identity. We do not need this generality for the proofs
of our main results for the divergence-form equation (1.2). However, the results
below for (4.3) are needed in the proofs of the main results for the non-divergence
form equation (1.4) as in [12].

The main result of this section is the following theorem, which is a weak
version of Theorem 2.2.

Theorem 4.1. Let x € (—1,0), p € (1,0), and A > 0. Suppose thar (4.1)
and (4.2) are satisfied. Then, for each F € Lp(QT,u)d and f € L, (Qr, 1), there
exists a unique solution u € 5—[,; (Qr, 1) of (4.3). Moreover,

4.4) DUl ©@rp + VAUl @ < NIFl, @ + NIFIL @,

where N = N(d, x, Kk, p).

The rest of the section is devoted to the proof of this theorem. We need some
preliminaries to prove it.

4.1. Lipschitz and Schauder estimates for homogeneous equations. Let

A>0, 2z = (to,x0) € R¥ ' and » > 0. We study (4.3) in Q; (z9) when F = 0,
f =0, that is, the homogeneous parabolic equation

(4.5) — x$(@o(xa)ur + Ao(xq)u) + Di(x5d;j(xa)Dju) =0
in Q; (z9) with the homogeneous conormal boundary condition
(4.6) x§daj(xa)Dju =0 if By(xp) N ORE + @.

Our goal is to derive Lipschitz and Schauder estimates for (4.5)—(4.6). We begin
with the following lemma.
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Lemma 4.2 (Caccioppoli-type inequality). Lerv > 0, zo = (to, X¢) € R4
andu € H; (Q;(20), 1) be a weak solution to (4.5)—(4.6). Then, we have

Q¥ (z0)

/ (IDu|? + Alul?) pu(dz) sNr‘z/ lul? u(dz)
Q:/z(Zo)
and

/ e 12 p(dz) sNr-z/ (IDuf? + AJuf?) du(dz),
Q;/2(20) Q¥ (z9)

where N(d, &, k) > 0.

Proof- The proof is more or less standard. For the first inequality, we test the
equation with uZ?, where € C{° is a smooth function, € = 1 in Qy/2(2), and
C = 0 near the parabolic boundary 0,Q, (z¢). For the second inequality, we test
the equation with 1;C?, and then use the fact that u; satisfies the same equation
as u and the first inequality applied to u;. (See, e.g., the proof of [8, Lemma 3.3].)
We omit the details. O

Next, we prove the local boundedness of solutions of (4.5)—(4.6).

Lemma 4.3 (Local boundedness estimate). Let v > 0, zo € R, and
u € Hy (Qi(20), 1) be a weak solution to (4.5)—(4.6). Then, we have

1/2
el <N( F ,

u(t, %) u(dz))
Q¥ (20)

where N = N(d, «, k) > 0.

Proof. We use the Moser iteration. For elliptic equations, a similar argument
was also used in [34]. By a scaling, we only need to prove the lemma when » = 1.
Foreach R, p € (0,1] with p < R, let ¢ € C$((to — R?, to + R?) X Br(xo)) be a
cut-off function satisfying

d) = 1 ln Qp (ZO)J
0=<¢p =<1,

N(d)
DpI* + 0Pl < ——=
IDp|” + [0 P R - p)?

Let w = u,. For B > 2, using p>wPh~! as a test function for the equation (4.5)
and using (4.1), we obtain

in Qr(zo).

4 do(xa)wh? u(dx) + 2KB=D ID(wPB2) 22 (dx)
dt B (x0) B Bj (x0)
<2B do(xa)wPlel p(dx)

Bj (x0)

T dd / IDWA?)| Dl wh? u(dx),
B (x0)



1482 HONGJIE DONG ¢ TUOC PHAN

where we used the fact that Ay (xg)up?wh=1 = 0. As B = 2, we have (B—1)/8 =
%. It then follows that

4 ao(xd)wﬁqbzu(dx)ux/ ID(Wh2) 22 p(dx)
dt JBg (xo) B (x0)
<2B do(xa)wPlepel p(dx)

Bg (x0)

+ 4d;<-1/ IDwA’?| |IDp|Ppwh’? u(dx).
Bg (x0)

By applying Young’s inequality to the last term and then cancelling similar terms,
we have

d

dt Bg (x0)

< NB wh (] + IDPI?) p(dx),

By (x0)

do(xa)wPp? u(dx) + /

BR (XO

ID(wh2 )| u(dx)
)

where N = N(d, k) and we used (4.2). Integrating this estimate with respect to t
on (ty — R?,tp) and using (4.2) again, we find that

sup w2 D) ()
te(ty—R2,ty) ¥ Bg (x0) Qi (z0)

< — wP u(dz).
®—p)? Jogzn "
From this estimate and Lemma 3.3, it follows that

1/(BY)
(4.7) (][ whb u(dz))
Q4 (z0)

2/B 1/B
< <L> B”B(][ wBu(dz)> )
R-p Qi (20)

We now choose a sequence of radii

Y+ 1/2

TO = 11 Tk+l = 2 ’

and a sequence of exponents

30:2’ Bk+1:Bk€0’ k:0,1,2,...,
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such that

1
limry = =, li = 00,
klf?ok ZkLI?oBk ®
and

1
Yk — Vik+1 = Sk k=0,1,2,....

By applying (4.7) with R = 7, p = 7k+1 < R, and B = Bk, we have

1/Bk+1
(f ka+1 u(dz))
Q+

Tk+1(20)

< (4N)2/Bk22k/5k311</.3k ( f

1/Bx
whk u(dz)) )
Qrk(zo)

By iterating this estimate, we obtain

1/Bi+1 1/2
(4.8) (][ whin u(dz)) < Mk(][ w? u(dz)) ,
Q¥ (20) Qf (20)

where

k
_ Sk 02/BinSk 52118, 1/B;
My = (4N)2i=02/Bi2j-0 JH)BJ. )
j=

oo 2 00 J 00 /ﬁj
Z B_ 00, z B— oo, and n B} < 0
j=0 j=0 J=0

we conclude that {My} is convergent. Therefore, by sending k — oo, we deduce

from (4.8) that

sl o sN(][
+ (Ql/z(zo)) Q+(Z )

1 0

1/2
ui(t,x)mdz)) .

We can get a similar estimate for u_ = max{—u, 0}, with the same argument.
Hence,

1/2
lullL. @t 20 SN(][ |u(t,x)|2u(d2)> .
Q7 (z0)

The lemma is proved. O
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We recall that for B € (0,1] and each parabolic cylinder Q C RA+1 the
B-Holder semi-norm of a function f in Q is defined as

Lf(t,x) = f(s,2)]
It —s|B12+ |x — y|B°

[flcsreg) =
(t,x),(s,y)eQ
(t,x)#(s,y)

The following proposition is the key step of the proof.
Proposition 4.4. Letq € (1,21, v > 0, zg € R4™, andu € H; (Qf (z0), p)
be a weak solution to (4.5)—(4.6). Then, we have

(4.9) IDullr. 5,z + \/Xllulle@;/z(zo))

1/q
< N(][ (IDuf? + AV ul) u(d2) )
Q;(Zo)

and
(410) [Dx'u]cl/z,l(Q;/z(ZO)) + [U]CI/Z’I(Q:/Z(Z(})) + \/X[u]cuz,l(Q:/z(Zo))

1/q
< Nr*l(][ (IDuf + AT ul) u(dz))
Q5 (z9)

where U = Aqj(xq)Dju and N = N(d, «, K, q).

Proof- First of all, whenever the lemma is proved for g = 2, the case g € (1,2)
follows by a standard iteration (see, e.g., [15, pp. 80-82]). Therefore, we only
consider the case when q = 2. As before, we may assume ¥ = 1. The bound
of [ullL.(qf,(zy)) follows from Lemma 4.3. Since Dyx-u and u; satisfy the same
equation as U, from Lemmas 4.3 again we have

1/2
||Dx’u||Lm( T2(20)) = N(][ |Dx’u|zﬂ(dz))

Q;B(ZO)

and

1/2
luelle, @,z < N(][ Iutlzu(d2)> .

Q;B(ZO)

To make this rigorous, we need to use the finite-difference quotient and pass to
the limit. These together with Lemma 4.2 give

(4.11) Dl @t zon + 1UellLg i, z00)

1/2
< N(][ (IDul? + Alul?) u(dz)) )
Qi (zo)
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Moreover, again from Lemma 4.2, we also have forany i, j = 0,1, 2,... satisfying
i+j=1
(4.12) [ Gainlur + oinlDul) uaz)
Qf)(z0
<N (IDul* + Alul?) pu(dz),
Q7 (20)

where N = N(d, k, i, j).

Next, we estimate Dgu. We first consider the boundary estimate and, without
loss of generality, we take zg = 0. We use a bootstrap argument. Since U =
adj(xa)Dju, from the equation we have

d-1
Da(x§U) = x§(@o(Xa)ur + Ao(xa)u — 3. Di(d@;Dju)).
i=1
By using the boundary condition and Hélder’s inequality, we get for any z € Qf
Xa
(4.13) x§lUl = N/ s*¥(ue(2’, )| + Alu(z’,s)| + |DDyu(z’,s)|) ds
0
xa
< N(/ s"‘(lut(z’,s)l2 + A u(z,s))?
0
1/2 Xd 1/2
+ IDDxfu(z’,s)Iz) ds) (/ s"‘ds) )
0

Thus, when x4 € (0, %], by the Sobolev embedding in the z’ variables, (4.12),
and Lemma 4.2, for an integer k > (d + 1) /4,

1/2
xg Ul sN(/O s*(lue (2, 9) 12 + A2u(z', )12
12, [Xa 1/2
+|DDxru(z’,s)|2)ds> </ s"‘ds)
0
172 x 2 2 2
sN([ s (||ut(.,s>||wzk,2k(Q;/2)+A||u(.,s)||wzk,2k(Q

, 12, rXa 1/2
+||DDx'u(',S)||W2k,zk(Q,1/2)>dS) (/0 s“ds)

1/2
<N( [ Dl + APy ) X,
Qf

12)

which implies that

1/2
(4.14) IUIsN(/Q+(|Du|2+A|u|2)u(dz)> x{Y% i Q).
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This together with (4.11) gives

1/2
IDuISN(/Q+(|Du|2+A|u|2)y(dz)> x; 170 i Q.
1

Since Dy u satisfies the same equation, by a covering argument and Lemma 4.2
we have

1/2
(4.15) IDDx/ulsN(/ (IDDx/u|2+A|Dxru|2)u(dz)) x, 1712

2/3

1/2
sN(/Q+ IDx/ulz)u(dz)> x; 170 i Q.
1

Now, we plug (4.11) and (4.15) into (4.13) and use Lemmas 4.3 and 4.2 to get
Xd 1/2
Ul sNx;“/ 5“5’(1’“)-/2d5(/ (|Du|2+2\|u|2)u(dz)>
0 Qf

1/2
sij;“-“”z(/ (IDu|2+A|u|2)u(dZ)> in Q)
QY

which improves (4.14). Repeating this procedure, in finitely many steps, we get

1/2
4.16) I’UISNxd</ (IDul + Aul) uaz))
Qf
and therefore

1/2
Dul < N(/ (IDul+Alu u(@z))  in Qi
Qf

which gives (4.9) in this case.

In the interior case when xoq > 27 = 2, the coefhcients a;;(x4) = x5ai;j(xa)
are nondegenerate in Q2/3(2¢) and independent of z’. By using the standard en-
ergy estimate (cf. [8, Lemma 3.5]), we also have

1/2
(4.17) |Du|sN</ (|Du|2+/\|u|2)dz) in Q1/2(20).
Q1(29)

Since in Q1(20) we have x4 ~ Xxoq so that u(dz) ~ x§; dz, we also obtain (4.9)
in the interior case. Moreover, (4.11) still holds in this case. When x¢4 € (0,2),
(4.9) follows from a covering argument and the doubling property of p.

It remains to prove (4.10). By using (4.9) and (4.11), we obtain the bound of
the third term on the lefthand side of (4.10). Since Dyx-u and u; satisfy the same
equation as U, from (4.9), (4.12), and Lemma 4.2, we have

(4.18) IDDx UL @i, (200 + IDULIL.QF, (200
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IA

1/2
N(][ (DDl + NDul® + [Du | + Al ) (d2) )
Q;B(ZO)

IA

1/2
N apup s pa)
Q7 (z0)
which yields
[Dx e,z + 1MUeliL @i, zon + IDx UllLo@y), 2o

1/2
SN(][ (IDu|2+?\|u|2)u(dz)> )
Q7 (z9)

To estimate D4 U, we again discuss two cases. In the boundary case when
zp = 0, from the equation we have

a-1
(4.19) DaU = aous + Acou — Z aijDiju — ax;lfu,

i=1

which together with (4.11), (4.16), (4.18), and Lemma 4.3 gives

1/2
(4.20) DUl L 01,200 < N(][ (IDuf? + Alul?) u(dz)) .

QT(ZO)
In the interior case (i.e., when xoq4 > 2), by (4.19), (4.11), (4.17), (4.18), and
Lemma 4.3, we still get (4.20). This completes the proof of (4.10) and thus the
proposition. O

From Lemma 3.4 and Proposition 4.4, we obtain the following solution de-
composition.

Proposition 4.5. Let zg € Qr andr > 0. Suppose that F € L,(Q3,(2), e,
f € La(Q3,(20), 1), and u € H}(Q3,(z0), 1) is a weak solution of (4.3) in
Q3,(20). Then, we can write u(t,x) = v(t,x) + w(t,x) in Q3,(20), where v
and w are functions in H}(Q3,(z0), p) and satisfy

(4.21) ][ V|2 u(dz) sN][ (IFI* + |f1*) p(dz)
Q3,(20) Q3,(20)
and
2

(422) Wl g <N F,.  1UPutdz)

QZV(ZO)

+N (IFI? + |f1*) u(dz),

Q3 (20)

where N = N(d, Kk, X) and

V = |Dv|+AY2 v, W= |Dw|+AY2w]|, U = |Dul|+ AY?ul.
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Proof. Letv € 3, (Qr, 1) be a weak solution of the equation

xg(ao(xq)ve + Aco(xq)V)
= Di(xg(aij(xa)Djv = Fi(2)X g3 (2, (2)))
= Al/zng(z)Xszy(ZO)(z) in Qr

with the boundary condition

xldii%+ xg‘(ddj(xd)Djv - Fd(Z)XQ;y(ZO)(Z)) =0.

Then, (4.21) follows by Lemma 3.4. Now, let w = u—v sow € 3, (Q3,(z0), 1)
is a weak solution of

x§(a@o(xa)we + Ao (xq)w) — Di(xFadij(xa)Djw) =0 in Q3,(z0)

with the boundary condition
lim x{dqjCca)Djw =0 if By (x0) 0 oRY £ .
xXq—0%

By Proposition 4.4 and the triangle inequality, we get (4.22). The proof of the
proposition is completed. O

4.2. Proof of Theorem 4.1. We are now ready to give the proof of Theo-
rem 4.1.

Proof: When p = 2, Theorem 4.1 follows from Lemma 3.4. Therefore, we
only need to consider the cases when p € (2, ) and p € (1,2).
Case I. p € (2,0). Letu € 5—[21 (Q7, 1) be a weak solution of (4.3). It

follows from Proposition 4.5 that for every zg € Qr and ¥ > 0, we have the
decomposition

loc

u=v+w inQ3(2p),

where v and w satisfy (4.21) and (4.22). Then (4.4) follows from the standard
real variable argument. (See, for example, [9].) We omit the details.

By (4.4), the uniqueness of solutions follows. Hence, it remains to prove
the existence of the solution. Recall the definition (3.17). For k = 1,2,...,
let F® = F(2)x4,(2). Then, F® e Ly Qr,m)% n L,(Qr, )%, and by the
dominated convergence theorem, F ®) — Fin Ly(Qr,p) as k — co. Similarly,
we define {f®} ¢ Ly(Qr, 1) N Ly,(Qr, ). Let uh e Hzl(QT,u) be the weak
solution of the equation (4.3) with F®¥) and ¥ in place of F and f, respectively.
The existence of u® follows from Lemma 3.4. By the estimate (4.4), we have
uk) e HZ}(QT,IJ). Moreover, by the strong convergence of {F®1} and {f®)}
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in L,(Qr,u), we infer that {u®} is a Cauchy sequence in 5—[,;((27,[1). Let
u € H,(Qr, ) be its limit. Then, by passing to the limit in the weak formulation
of solutions, it is easily seen that u is a solution to the equation (4.3).

Case II. p € (1,2). We use a duality argument. We first prove the estimate (4.4).
Letq =p/(p—1) € (2,o) and let G € Lq(QT,u)d and g € Ly(Qr,u). We
consider the adjoint problem in R x R4

xg(=aovt + Acov)

(4.23) = Di(x§(aji(xa)Djv = GiX(_w1))) = A 2XFIX (o1
Xii_[?é+ Xg(ddijv - GdX(foo,T)) =0.

By Case 1, there exists a unique solution v € H, ql (R x R4, i) of the above equa-
tion, which satisfies

(4.24) / (1D |4 + A2 [y ) y(dz) < N/ (G + 1g1%) u(dz).
RxR% Qr

Moreover, by the uniqueness of solutions, we have v = 0 for t > T. It follows

from the equations (4.3) and (4.23) that

(G-Vu+A"?gu)u(dz) = | (F- Vv +AY2fv)u(dz).
Qr Qr

Therefore, by Hélder’s inequality and (4.24),

‘ , (G-Vu+/\”2gu)u(dz)'
T

< IFllL,um 1V @m0 + A2 1 Ly @0 1V Ly @m0
< NUIFllL, @ + I1f L, @rm) UGl L @rm + 191y @rm)-
From this last estimate, and as G and g are arbitrary, we obtain (4.4).
It now remains to prove the existence of solution u € # ) (Qr, u). We pro-

ceed slightly differently from Case 1 and follow the argument in Section 8 of [10].
Fori=1,2,...,dand k =1,2,..., let

F,(k) = max(—k, min(k, Fl))XQk

1

Then, F® € Ly(Qr, )% N Ly (Qr, )4, and by the dominated convergence the-
orem, F®®) — Fin L, (Qr,p) as k — co. Similarly, we define

{f®} € Ly(Qr, w) N Ly (Qr, p).



1490 HONGJIE DONG ¢ TUOC PHAN

By Lemma 3.4, there is a unique weak solution u® e 3 (Qr, n) to the equation
(4.3) with F® and f® in place of F and f, respectively. As in Case 1, it suffices
to prove that uk) e HZ}(QT,IJ). Let us fix a k € N. Because p is a doubling
measure, there exists Ny = No(&,d) > 0 such that

(4.25) #(Qar) < Nop(Qy), V7 >0.
Since u® € 33 (Qr, 1), by Holder’s inequality,

(4.26) ””(k)”Lp(c“zm,m + ”D”(k)”Lp(QZk,u) < 0o,

Therefore, it remains to prove that [l ||Lp(Qr\sz,u) < o0, To this end, for j = 0,
let nj be such that
~ (0 in Qui,
i = {1 outside Q 1y,
and [Dnj| < Co277, [(nj)¢| < Co27%, where Cy is independent of j. Observe that
the supports of F®) and f® are in Q, while the supports of n are all outside Q.
Thus, r]jFl-(k) = r]jf(k) = Fl-(k)Dir[j =0foreveryi=1,2,...,dand j =0,1,... .

Because of this, a simple calculation reveals that wkd .= 4y ®n, e 1 (Qr, )
is a weak solution of
xg(aowék"") + Adow kD) —
— Di(xg‘(diijw(k'% — Fi(k,ﬁ))) = AI/Zng(k,é’),
limy,—o- X§ (@a;Djw k0 — F{D) = 0
in Q7, where
FR —u®a;pin, i=1,2,....d,
FED =272 ® (ng)e = @i DjuPDing).

Now, by applying the estimate (3.16) to the above equation of w &b we have

10w 0 s, @ + VAW SO

< NIIF® |, @rm + NIF%O N, @,

which implies that

(k) (k
w1, o F VAl

) A ~
||Lz(sz+zk\sz+1k,H)
+ A"129-2) ”u(k) ||LZ((A2

(Q2j+2k\ézj+1

T R
< N2 00000 e\ Dy)
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V2271 Du®, 5 4
+ A 2 ||Du ||L2(Q2j+1k\szk’u))

-J ©y oy
= C27/(IDu ||L2(sz+1k\szk,u)+\/X||u 1120, 0000

for every j = 1, where C also depends on A, but is independent of j. By iterating
the last estimate, we obtain

(k) ~ A (k) N N
(4.27) DU, 6,000, T VAllu IL,(0,501,00, 00
Jy—Jj(j-1)/2 (k) ~ (k) ~
=2 (IDu ”Lz(sz,H) + \/XHM ”Lz(szyH))'
Finally, by Hélder’s inequality, (4.25), and (4.27), we have
(k) ~ ~ (k) N N
IDUY 000,00 + VAOL, 0 00
A 1/p-1/2 (k) ~ ~
= (H(Qari)) (IDu 1@, 00

®p
+VAllu ||L2(sz+1k\szk,u>>

2 kH)

i(1/p—1/2 A - jy—Jj(j—
< NPTV (u( Qi) VPRI 2
X (DUl o, 0 + VAU 6. )

Hence,

(k) . (k) .
IDu ||L,,<QT\Q2k,u)+\/X”” L, @\

_ ®y . ® . .
= Zl (DU L@, 00,0 T VAllu ”L,,(Qz,-ﬂk\szk,u))
J=
® . TR
< NIDU™ L, (6 + NVAJlu Ly (@) < -

Using this estimate and (4.26), we infer that u®) 5—[,} (Q7, ). The theorem is
thus proved. O

5. EQUATIONS WITH PARTIALLY VMO COEFFICIENTS

In this section, we give the proofs of Theorem 2.2, Corollary 2.3, Theorem 2.4,
and Corollary 2.10. We begin with the proof of Theorem 2.2.

5.1. Proof of Theorem 2.2. We need the following decomposition result for
our proof.

Proposition 5.1. Let yy € (0,1), x € (=1,0), ¥ € (0,0), zg € Qr, and
q € (2,0). Suppose G = |F| + | f| € Ly(Q3,(20), 1), and u € H;(Q3,(20), 1)
is a weak solution of (1.2). If Assumption 2.1 (yo,Ro) s satisfied and we have that
spt(u) C (s — (Ro70)?, s + (Rorp)?) x R4 Jfor some vy > 0 and s € R, then

u(t,x) =v(t,x)+w(t,x) inQ3,(20),
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where V and w are functions in H}(Q3, (zo), 1) that satisfy

(5.1)

][ IVlzu(dZ)sN][ G u(dz2)
Q3 (z0) Q3 (20)

1-2/q , _2-4/q 2a
+ Ny, "+ )< IDuI"u(dZ))
Q2+T(ZO)
and

(5.2 Wl o = N][ U u(dz2) + N GI? u(da),
Q3 (20) Q3 (20)

where
V= |Dv|+VAlvl, W= |Dw|+VAlw|, U= |Dul+vAlul,

and N = N(d, &, K, q).

Proof- Fori=1,2,...,d, let
bi(t,X) = Xqj3, (2 (2)(@ij(t, %) = [@ijlar zy (Xa))Djult, x) = Fi(2) X3, () (2),
where [@;jlor 2z, (xa) is defined in Assumption 2.1. Observe that b; € Ly(Qr, ).

In particular, if ¥ € (0,R0/2), it follows from Hélder’s inequality and Assump-
tion 2.1 (Yo, Ro) that

][ b(2) 2 u(dz)
Q;T(ZO)

< <][ |@ij = [@ijlar,z 72 p(dz)
Q3 (20)

2/q
» (7[ |Du|"u(dz)> +][ IF12 u(dz)
Q3 (20) Q3,(z0)

(a-2)/a 2a >
< Ny, <][ IDuI"u(dz)> +][ |F|? u(dz).
Q3 (20) Q3 (zo)

>(q2)/q

On the other hand, when ¥ = Ry /2, as
spt(u) C (s — (Ro79)%, s + (Ro19)?) x RY,

and by the boundedness of (a;;) in (1.1), we have

][ b(2)2 u(dz)
Q;V(ZO)
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@-2/a
= N(K)(][+ X (5= (Ror)? s+ (Roro)? (E) Mdz))
Q3,(20)

2/q
x (][ Dultuz) +N IFI2 u(dz)
Q3 (z0) Q3 (zo)

R 2(q-2)/q 2/q
sN(O—TO) (][ IDulqu(dz)) +N][ FI2 u(dz)
r Q;Y(ZO) Q;V(ZO)

2/q
< Nroz(q’z”q(][ IDulqu(dz)> +N IFI2 u(dz).
Q3,(zo) Q3 (20)

Hence, for every ¥ € (0, ) we have
(5.3) ][ |b(2)]* u(dz)
Q2+T(ZO)

N yéq—zwq)(][

2/q
[Du|? u(dZ))
err(z())

+N |FI? u(dz).
Q;V(ZO)

Now, let v € H; (Qr, 1) be a weak solution in Q7 of

x3(0rv + Av) = Di(xg ([aijlar z, (xa)Djv + by)) = Al/zngXQ;y(zo),
Jim xg([aajlar z (Xa)Djv + ba) = 0.
o

By Lemma 3.4 and (5.3), we have
(5.4) ][ VI u(dz) < N][ (Ib1* + |f1*) u(dz)
Q3 (20) Q3 (20)
1-2/q _ 2-4/a 2/
< N(y, + 7 )(][ IDuI"u(dZ)>
Q3 (20)

N N][ GI? u(dz),
Q3 (29)

which yields (5.1). Let w = u — v € H;(Q3,(20), 1), which is a weak solution
of
xF(we + Aw) — Di(x§[aijlor z,(xa)Djw) =0 in Q3,(2z0)

with the boundary condition

lim x§aa;lorz, (xa)Djw = 0 if Boy(x0) N 0RE 4 2.
lin
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Then, we apply Proposition 4.4 to conclude that

1/2
WL,z SN(][ IlelJ(dZ)>

ny(zo)
1/2 1/2
SN(][ |U|2H(d2)> +N<][ |V|2u(dz)>
Q3 (20) Q3 (20)
From this and (5.4), we obtain (5.2). O

Proof of Theorem 2.2. It suflices to consider the case p € (2, ), as the case
p € (1,2) can be proved by using the duality argument as in the proof of Theo-
rem 4.1. We first prove the a priori estimate (2.1) for each weak solution
ue ,’1-[,} (Qr, 1) of (1.2). We suppose A > 0. Assume for a moment that
spe(le<rtt) C (s = (Ro70)%, s + (Ror9)?) X RY

with some s € (=, T) and 1y € (0,1). We claim that (2.1) holds if yy and
7y are sufficiently small depending on d, &, k, and p. Let q € (2,p) be fixed.
Applying Proposition 5.1, for each ¥ > 0 and zg € Qr, we can write u(t,x) =
v(t,x) + w(t,x) in Q3,(20), where v and w satisfy (5.1) and (5.2). Then, it
follows from the standard real variable argument (see, e.g., [9]) that

1-2/ 2—-4/
DUl + VAUl @ < N(yo 2"+ 15 " DIIDullL, 0
+ NIIFlL, @ + NIflL,@rm

for N = N(d, «, k, p). From this, and by choosing yy and 7y sufficiently small so

that N(yé_z/q + 1,02—4/51) < %, we obtain (2.1).
We now remove the additional assumption that

spt(le<ru) C (s = (Ro70)?, s + (Ro70)?) X RY
by using a partition of unity argument. Let
E=E(t) € CF(—(Ro10)?, (RoT9)?)

be a standard non-negative cut-off function satisfying

, N
(55) /[REP(S)dS =1, /R;|§ (S)|pd5 < W

For any s € (-0, ), let u'9(z) = u(z)&(t —s) for z = (t,x) € Qr. Then
us e .’]—[,}(QT,;J) is a weak solution of

{xg(uis) +Au®) = Di(x$(aiDju® - F&)) = A12x$FO),

Jim X (aqDju - Fi) =0
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in Qr, where
FS(z) =E(t - $)F(2), fY(z) =8t -s)f(z)+A12E (- s)u(z).

As spt(1e<ru®) C (s — (Ro9)?, s + (Ro7p)?) X R%, we can apply the estimate
we just proved and infer that

D) L, ©@rum + \/XHM(S)”L,,(QT,;J) < NJ|IF® L, @ + NI £ L, .-

Integrating with respect to s, we get
5.6 L UPUIE 0+ N2 ) s

<N [ UFOE p 0 + IF O 0y ) 05

It follows from the Fubini theorem and (5.5) that

©)||P _ _ p
/[RHDu L, 0 48 = /QT/R|Du(z)|P§V(t —8)dsp(dz) = [[Dullr, -

Similarly,
IR s = 1l 0

LUFOU s = IFIE, -

Since 7y depends only on d, &, k, and p, from the definition of £, (5.5), and
the Fubini theorem, we have

1/p
(/uza Hf(S)Hf,,(Q,u) dS) < NI lLy@rp + NReZAV 2l @

for N = N(d, &, k, p). Collecting these estimates, we infer from (5.6) that

IDUllL, (@7 + VAUl @70
< NIIFliL,@ru + NIF L, @rgn + NRGZA 2wl @p 0

with N = N(d, o, k,p). Now we choose Ag = 2N. For A > A¢R;?, we have
NR;?A~12 < /A/2, and therefore

IDUllL, @ + VAUl L 00
JA
< NIIFllL, @7 + NI fllL, @ + 7||u||L,,(QT,u),

which yields (1.2).
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Finally, the solvability of solution u € ﬂé(QT, M) can be obtained by the
method of continuity using the solvability of the equation

lim x5 (Dgu —Fgq) =0
Xq—0F

{Xd(ut +Au) — Di(xg‘Diu —F;) = Al/zng,

in Qr, which is proved in Theorem 4.1. The proof is now completed. O
5.2. Proof of Corollary 2.3. We adapt an idea in [24]. Let p1 > po satisfy

d+fo+o<+ S1+d+fo+(x+ d=2,
(5.7) 0 !
4+‘X+s1+74+0(+ d=1.
Po pP1
Then, it follows from Lemma 3.1 that
(5.8) lullL,, i = Nlulsg s < -

We split the proof into two cases.

Case I: We have p < p;. Observe that we only need to consider the case p* < py,
because otherwise we can proceed with the proof with py in place of p* and then
apply Holder’s inequality (noting that in this case (2.3) and (2.4) still hold with
Ppo in place of p*). Let n € Cy°((—4,4) x By) be such that n = 1 on Q;. A direct
calculation yields that un € 5—[,}0 (Qo, 1) satisfies

xS ((un)e + Aun) - Di(x$(aiDj(un) — F)) = x5 F,
(59) lin& xg‘(adej(un) — Fd) =0
Xqa—

in (—4,0) x R4, with the zero initial condition (un)(—4, -) = 0, where
Fi=Fn—ajuDjn, f=fn+Aun+un —Din(a;Dju—F),

and A > A()Raz.
Letq =p/(p —1),q0 = po/(po— 1), and G = (Gy,...,Ga), g € C(Q})
satisfying
Gl w0 = 191l 0f ) = 1-

By Theorem 2.2, there is a weak solution v € 5—[,110((—4, 0) x R4, ) to

—x§ (v = Av) = Di(x§(a;Djv — Gi)) = VAx§g,
(5.10) lirré (xF(ajaDjv —Ga)) =0
xX4—07%
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in (—4,0) x R4, with the zero terminal condition v (0, -) = 0. Since g < gy and
G and g are compactly supported, following the proof of Theorem 4.1 (Case 2),
we have v € H,;((—4, 0) x R4, u). Moreover, by Theorem 2.2, we have

(5.11) VAV L Ch0)xmd ) + DV, (—40)xmd < N-

Testing (5.9) and (5.10) with v and un, respectively, we get

(Vu - G +Aug) du(z) = / (Vv - F+vf)du(z),
ol Q3

which together with Holder’s inequality gives
(5.12) '/ (Vu-G+JXug)du(z)' =
Qf

< 1DV Iy 0540 1FllL, @ + 1V ILe @3 0 PN, ()
where g* = p*/(p* — 1). From (5.10), we see that v € .’]—[;(Q;,u) satisfies
-x§v: - Di(x§(a;iDjv — Gi)) = x5,
lim xg‘(adijv —Ggq)=0
xXq—0%

in Qz, where § = —Av + VAg. When « # 0, by (2.3)—(2.4), q* satisfies the
condition (3.1) in Lemma 3.1. Then, by using Lemma 3.1 and (5.11), we get

(5.13) IVl @t = NIV i m + NIDVIL @z m
+ Nllvellar; 5.0
<N+ NGl @i m + NIgllL, @t m

sN\/X.

When « = 0, by the usual unweighted parabolic Sobolev embedding, we still get
(5.13). It then follows from (5.12), (5.11), (5.13), and the arbitrariness of G and
g that

(5.14)  IDullr, @ 0 + VAlIlUllL, @
< NIIEllL, s + NVAILFIIL, . 01 0
< NWA+ DIFlL, 08w + Nlulz, oz m + NVAIFIL, - 0f )
+ NVAQ + D llullp,. o 40 + NVAIDUlL, . 03 40,

where N is independent of A. Now, as p* < pg and (5.8), the terms in the
righthand side of (5.14) are all finite, so as p* < p, we conclude (2.5) from (5.14)
by using Hélder’s inequality and a standard iteration argument for a sufficiently
large A (see, e.g., [15, pp. 80-82]). The corollary is proved when p < p;.
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Case II: p > pi. We use an iterative argument. Let p; be as in (5.7). For each
k > 2, let px > pi-1 satisfy

d+2+ oy Sl+d+2+¢x+ d=2,

Pk-1 Pk
4+‘X+51+74+0(+ d=1.
Pk-1 Pk

Using the result we just proved in Case 1, we obtain (2.5) with p replaced by
p1. From this and with some obvious modifications, we may assume now that
u e 5—[!}1 (Qy, ). If p < pa, we apply Case 1 with p; in place of po, and then
obtain (2.5). Otherwise, we use Case 1 with p; in place of p to obtain (2.5) with
p2 in place of p. Then, we repeat the process. After a finite number of steps, we
reach (2.5). The proof is completed.

5.3. Proof of Theorem 2.4. It follows from Corollary 2.3 and Proposi-
tion 4.4 that, for any qo € (1,2), if v € H, (Q] (20), u) is a weak solution of
(4.5)—(4.6), we have

(5.15) [Dx v etz + [V1c1210z 20 + VAIVIc12102 200

1/a0
sNr-l(][ |Dv|q°+2\q°/2|v|q°u(dz)> ,
Q5 (20)

where V = dgj(xq)D;v. By using (5.15), Theorem 2.2, and a decomposition
argument as in the proof of Proposition 5.1, we have the following mean oscilla-
tion estimate: if spt(1e<7u) C (s — (Ro70)%, S + (Rotp)?) X R4 for some s € R,
then, for any T < 3% and zg € Qr,

][ Dyt — (D) gy (o)
Q;r(zo)

+ U= (Wt 2| + VAU = (W) g3, () | 1(d2)

(d+2+0,),.2(1-1/q0) 1/40
<Nt~ 7, ( IDulqou(dz)>
Q;(Zo)

+ NT—(d+2+o<+)/q0 (][

1/40
(|F|% + | f]4) u(dz))
Q;(Zo)

1/40
+NT(][ |Du|‘10+2\‘10/2|u|‘10u(dz)>
Q¥ (20)

)1/(110\/2)

4+ N1~ (@d+2+ai)/do yol/(‘Wl) <][ [Du |2 y(dz)
Q7 (20)



Regularity Estimates, Singular-degenerate Coefficients 1499

where vi € (1,0), v = vi/(vi — 1), and ‘U = ag4jDju. Here, we used the
notation

(9)af(z) = ][ g(z) u(dz)
Q5 (zo)

for a function g defined in Q; (z9). The a priori estimate (2.6) then follows
from the mean oscillation estimate, the reverse Holder’s inequality for A, weights,
the weighted mixed-norm Fefferman-Stein type theorems on sharp functions, and
the weighted mixed-norm Hardy-Littlewood maximal function theorem. (See,
e.g., Corollary 2.6, 2.7, and Section 7 of [10] for details.) The solvability in
weighted mixed-norm Sobolev spaces then follows from the estimate (2.6) and an
approximate argument by using the solvability result in Theorem 2.2. We omit
the details and refer the reader to [10, Section 8].

5.4. Proof of Corollary 2.10. We first assume

d+3+ o <1+d+3+o<+'

5.16
( ) Po p

Let n € Cy ((—4,4) X B) be an even function with respect to x4 such thatn = 1
on Q. A direct calculation yields that w := un € W,;(’)Z(Qo, U) satisfies

(x —-

aowt — aijDijjw — —agaDaw + Acow = f,

(5.17) . Xd

lim XgaqiDgw =0
xXq—0*

in (—4,0) x R4, with the zero initial condition w(—4, -) = 0, where

f = fn+(aon: — aijDijn — ®agaDan/xa + (A — 1)con)u
- (aij + aji)DinDju,

A > AgRy? is a fixed number, and Ag is the constant from Theorem 2.7 with
q =p and w = K = 1. It follows from Lemma 3.1 and (5.16) that

(5.18) 1l (0500 + IDUIL, 03 10 < Nttllyiz s -

By using Theorem 2.7 with ¢ = p and w = K = 1, (5.17) has a unique solution
v € Wp*(Qo,u). Since f is compactly supported, as in Case 2 of the proof of
Theorem 4.1, we have v € W,;(’)Z(QO, (). Now by the uniqueness of W,;(’)Z(QO, NE

solutions to (5.17), we conclude that un = v € W,;‘Z(Q(),u). Furthermore, by
Theorem 2.7 and (5.18),

Il w = NI w2 = NIF w2z m + NIz gz ms
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which, together with Hélder’s inequality and a standard iteration argument, yields
(2.7) under the additional condition (5.16).

Finally, for general p € (po, ), the result follows from an induction argu-
ment by taking a sequence of increasing exponents p;j, j = 1,...,n, such that

Pn =p and

(d+3+ «oy) <1+(d+3+o<+)

forj=1,...,n.
Pj-1 pj
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