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Abstract

We study the insulated conductivity problem with closely spaced insulators
embedded in a homogeneous matrix where the current-electric field relation is the
power law J = | E|P~2E. The gradient of solutions may blow up as ¢, the distance
between insulators, approaches to 0. We prove an upper bound of the gradient to
be of order 7%, where « = 1/2 when p € (I,n+ 1] and any a > n/(2(p — 1))
when p > n+ 1. We provide examples to show that this exponent is almost optimal
in 2D. Additionally, in dimensions n = 3, for any p > 1, we prove another upper
bound of order £ ~!/2*# for some B > 0, and show that 8 7 1/2 as n — oc.
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1. Introduction and Main results

We investigate the phenomenon of electric field concentration in high-contrast
composites. Such a phenomenon can occur when two approaching inclusions pos-
sess material properties that differ significantly from the background matrix (seee.g.
[8,21,28]). The study of this area originated from [4], where the problem with in-
clusions closely located in a linear background medium was studied numerically. In
this paper, we study the scenario in which the inclusions are insulators, and the back-
ground matrix follows the current-electric field relation described by the power law

J=c|E|P?E, p>1, (1.1)

where J, E, and o denote current, electric field, and conductivity, respectively.
Physically, such power law can occur in various materials, including dielectrics,
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plastic moulding, plasticity phenomena, viscous flows in glaciology, electro-rheological
and thermo-rheological fluids; see, e.g., [3,17,20,23,29,30], the second paragraph
of [7] and the references therein.

Let us describe the mathematical setup: let n = 2, Q C R" be a bounded
domain with C!-! boundary containing two C!-! open sets D; and D, with dist(D; U
D;,,0R2) > ¢ > 0. Let

¢ = dist(Dq, Dy),

Q= Q\(D1 UD»), and 0 = 1. The voltage potential u satisfies the p-Laplace
equation with p > 1

—div(|Dul’2Du) =0 inQ,

0
M0 ondDy, i=1,2, (12)
av
u=¢ onoas2,
where ¢ € C11(0Q) is given, and v = (vy, ..., v,) denotes the inner normal

vector on Dy U 9D,.

Our goal is to quantitatively analyze the concentration of the electric field
E = —Du between the inclusions, and this is a challenging problem even in the
linear case when p = 2. While the optimal blow-up rate for the linear case in two
dimensions was captured about two decades ago in [1,2], the optimal rate in dimen-
sions n = 3 was only recently identified in [12,13]. This optimal rate is linked to
the first non-zero eigenvalue of an elliptic operator on S"*~2, which is determined by
the principal curvatures of the inclusions. This phenomenon is completely different
from the perfect conductivity problem, where the optimal blow-up rates do not de-
pend on the curvatures of the inclusions (see [1,2,5]). For other earlier work on the
linear insulated conductivity problem, we refer the reader to [6,24,25,34,35]. In
the case when the current-electric field relation is given by (1.1), Gorb and Novikov
in [18] and Ciraolo and Sciammetta in [10] studied the field concentration when
D, and D; are perfect conductors. They proved that, for n = 2,

. n+1
Ce 20D ,

p = )
_ i n+1
”V””Loc@j) < | Ce 1|10g8|1—l’ p= —
n+1

C -1
& p < 3

These bounds were shown to be optimal in their respective papers. However, the
phenomenon of electric field concentration between insulators has not been studied
before.

Before stating our main results, let us introduce some notation. We denote
x = (x’, x,,), where x’ € R"~!. By choosing a coordinate system properly, we can
assume that near the origin, the part of 9D and dD;, denoted by ' and I'_, are
respectively the graphs of two C!! functions in terms of x’. That is,

r,— {xn - % Fhi(), x| < 1}, r = {xn = —g Fha(x)), x| < 1},
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where A1 and hy are C1! functions satisfying

hi(0) = ha(0) =0, Dyhi(0) = Dyhy(0)) =0, (1.3)
X' P < hi(x) — ha(x)) for 0 < |x'| <1, (1.4)
Iatllcin = 2, Nh2llcir = e, (1.5)

with some positive constants cy, ¢3. For xo € EZ, 0 < r <1, we denote
/ S & / & / / /
Quor =1, x,) €21 — §+h2(x) <x, < §+h1(x ), X' —xpl <rp,

and 2, := Qo . We use B, (xp) to denote the open ball of radius r centered at xg
and we set

B, = B,(0), ,(x0) = 20N B, (x0).

By classical C!-¢ estimates for the p-Laplace equation and the maximum principle
(see e.g. [26,33]), the solution u € WP (Q) of (1.2) satisfies

llull Lo ey + ||u||cl-a(§\91/2) = Cllellcri e (1.6)

for some constants « = «a(n, p) € (0, 1) and C > 0 independent of ¢, ¢, and u.
As such, we focus on the following problem near the origin:

—div(|DulP™?Du) =0 in Q,
du (1.7)

— =0 onT"';L UT_.
av

For any domain D, we denote the oscillation of # in D by

osc u := supu — inf u.

D D D
Our first main result is the following pointwise gradient estimate of order ¢ ~1/2
forany p > landn = 2:

Theorem 1.1. Let hy, hy be CY! functions satisfying (1.3)~(1.5), p > 1, n = 2,
e €(0,1), andu € W-P()) be a solution of (1.7). Then there exists a constant
C > 0 depending only on n, p, c1, and ¢, such that for any x € Qi and

1
n =g+ 172,
|Du(x)| < C(s + |x’|2)7%8sc u. (1.8)
X0
When n = 3, we improve the upper bound in Theorem 1.1 to the order of

e~ 1/2+B for some B > 0.

Theorem 1.2. Let hy, hy be CV! functions satisfying (1.3)~(1.5), p > 1, n = 3,
e € (0,1), and u € W“P(Q4) be a solution of (1.7). Then there exist positive
constants C and B depending only on n, p, c1, and ¢, such that for any x € Q1 2,

|Du(x)| < C(e + |x’|2)*‘/2+ﬂ%sc u. (1.9)
1
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When p > n + 1, we derive a more explicit upper bound, under an additional
assumption that 41 and h are C? strictly convex and strictly concave, respectively.
That is, for some positive constants k1 and k>,

Kilio1 < D*hi(x)) S kalyey, k1li—1 £ —D?ha(x)) S kaly—y for 0 S x| < 1.
(1.10)

Our pointwise gradient estimate of order — 5420~ forany § > 0 when p > n + 1,

X 2(p—1)°
is as follows:

Theorem 1.3. Lern = 2, p > n + 1, hy, hy be C? functions satisfying (1.3) and
(1.10), and let u € WP (Qy) be a solution of (1.7). Then for any § > 0 and
e € (0, 1), we have

n+28
|[Du(x)| < C(e + |x’|2)_2<l'*1) %SC u for x € Qq2, (1.11)
1

where C is a positive constant depending on n, p, 8, k1, k2, and the modulus of
continuity for D*hy(x") and D*h>(x') at x' = 0.

Furthermore, we show that when n = 2, the blow-up exponents —1/2 for p < 3
and —1/(p — 1) for p > 3 obtained in Theorems 1.1 and 1.3 are critical in the
following sense:

Theorem 14. Forn = 2, p > 1, ¢ € (0, 1), let Q = Bs, and D1, D, be the
unit balls center at (0, 1 4+ ¢/2) and (0, —1 — €/2), respectively. Let ¢ = x| and
u € WhP(Q) be the solution of (1.2). Then for any § > 0, there exists a positive
constant C depending only on p and §, such that, when p € (1, 3],

1 -1

1Dl Gy ) 2 G

and when p > 3,

> L 3%
||DM||Loo(s~2038M) =
Finally, we also establish a blow-up rate of ¢~!/>*# for the gradient, for any
p > 1 and sufficiently large n, with more explicit constant g € [0, 1/2). For this,
we impose a further assumption that ; and h, are C>PIM strictly convex and
strictly concave respectively, satisfying (1.10) for some positive constants «; and
K2.

Theorem 1.5. Let hy, hy be C>P™ functions satisfying (1.3) and (1.10), p > 1,
B el0,1/2),e € (0,1), andu € WLP(Q)) be a solution of 1.7). If n, p, and B
satisfy either

b2 n>5(p—1)<p+1—2ﬂ(p—1) K2

2 ) e 0

or

5/3-2
1<p<2,n§§( b, __x >+3—p, (1.13)
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then there exist a positive constant C depending only on n, p, B, k1, and k>, such
that

_1
|Du(x)| < Cllullzo@y (e + X727 for x € Q). (1.14)

Remark 1.6. By (1.12) and (1.13), when n — o0, B can be chosen arbitrarily
close to 1/2. In view of (1.14), the singularity of Du diminishes as the dimension
n increases. We also note that by refining the inequalities in the proof of Theorem
1.5 further, it is possible to improve the lower bounds of 7 in both (1.12) and (1.13).
However, we have decided not to pursue this in the current paper.

The rest of the paper is organized as follows: in the next section, we give the
proof of Theorem 1.1 using mean oscillation estimates. In Section 3, we demonstrate
the proof of Theorem 1.2 by utilizing a delicate change of variables, an extension
argument, and the Krylov—Safonov Harnack inequality. Sections 4 and 5 are devoted
to the proofs of Theorems 1.3 and 1.4, respectively, for which we construct suitable
sub- and super-solutions. In Section 6, we employ a Bernstein type argument to
prove Theorem 1.5. Here we use the fact that for any ¢ = p, | Du|? is a subsolution
to the normalized p-Laplace equation, as originally observed by Uhlenbeck [32].
Finally, we provide an alternative proof of the gradient estimates of order ¢ ~!/2 in
the Appendix by also using the Bernstein type argument.

2. Mean oscillation estimates

In this section, we give the proof of Theorem 1.1 using mean oscillation esti-
mates. We fix a point xo € €212 and prove (1.8) at x = xo. Note that we can always
assume &+ |x) |> < ¢, where ¢ = c(n, p, c1, ¢2) > 0could be any sufficiently small
constant depending only on 7, p, c1, and c3. Otherwise, by classical estimates (see
[26,33]), (1.8) directly follows. Next, we derive some mean oscillation estimates
of Du on a ball B, (xq) for different radii r.

2.1. Mean oscillation estimates for small r

We recall a classical interior mean oscillation estimate when B, (xg) C €.
Estimates of this type, with different exponents involved, were developed in [11,
15,27].

Lemma 2.1. Let u € WP (1) be a solution to (1.7). There exist constants C > 1
and o € (0, 1) depending only on n and p, such that u € C*(2\) and for every
B (x0) C Q1 and p € (0, r], we have

1 1

’ P\ »
f |Du — (Du)g,p)|” | =C (—) (7[ |Du — (D”)B,(xo)|p> .
B, (x0) r B (x0)
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‘We denote

1
P

¢ (xp,r) = <][ IDM—(DM)B,(XO)I‘")
By (x0)

Then Lemma 2.1 also implies

Corollary 2.2. Under the assumptions of Lemma 2.1, there exists a constant j1| €
(0, 1) depending only on n and p, such that for any u € (0, u1], Br(x9) C 1,
and K € N, it holds that

K+1

Y o, 1) £ 20 (x0, 7). @1

k=0

Proof. We take u; € (0, 1) such that Cu‘f = %, where C and « are the same
constants as in Lemma 2.1. Replacing r with ¥ and setting p = uf*1r, we get

1
¢ (xo, 1) < ¢ o, 1kry.

Summing the above inequality over k =0, 1, ..., K, we obtain (2.1). O

2.2. Mean oscillation estimates for intermediate r

Next, we consider the case when B, (x) intersects with only one of ' and
I'_. In this case, we choose Xy € I'; UT'_ such that dist(xg, T+ UT_) = |X¢ — x|
and we derive mean oscillation estimates around Xy. Note that we can assume
&+ cz|x6|2 < 1/4 and thus by (1.5) and the triangle inequality, |Xy| < 3/4.
Without loss of generality, we assume X9 € I'_. Then by (1.4) and (1.5), there
exists a constant ¢ = ¢(n, ¢y, ¢z) € (0, 1/4), such that B(xg, r) N ' = ¢ for any
r € (0, c(e +1%5%)).

We first choose a coordinate y = (y’, y,) such that y(x) = 0, the direction of
axis y, is the upper normal vector at o € I'—, and Qg,(X0) = {y € Bg, : yn >
x ()}, where Ry = C3(s+|)20|2) € (0, 1/4) for some constantc3 = c3(n, c1, ¢3) €
(0,1/8)and x : {y/ e R*"! : |y/| < Ry} — Risa C"! function in the coordinate
system depending on Xg such that

x(©0) =0, Dyx(0)=0, lxlcut £ Clhaler. (2.2)
Then we let
=AM =" ya—xO.

SinceI'_ is Cl’l,by (2.2) there exist constants C = C(n, ¢y, ¢2),c4 = c4(n, c1, ¢2)
€ (0,¢3) C (0,1/8),and Ry = ca(e + | %)) such that

IDy xS Cly'| =172 if Y| = 2Ry, (2.3)
Q2(%0) € ATN(BH) € Qor(Ro) Vr € (0,2Ry], 2.4)
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and thus
IDA(y) — L, S Cly'| £ 1/2 if [y'| S 2Ry, (2.5)

Therefore, there exist positive constants ¢(n) and ¢’(n) depending only on n, such
that for any £p € (M UT_)N{x € R" : [x'| < 3/4}and 0 < r < cale + |R)1%),

c(mr’" < 1Q2-(%o)| < ' (m)r". (2.6)
Note that
det(DA) = 1. 2.7)

Then u (z) := u(A~!(z)) satisfies the following equation with conormal boundary
condition

— div, <|ATDZu] |"’_2AATDZu]) =0 in B,
2.8)
(|ATDZu1|P*2AATDzu1)n =0 on Bg, NIR",

where we denote
A= A(2) = (aij () == DA(AT ().

Next we extend u; and the coefficient matrix A to the whole ball Bg,. We take the
even extension of uy, ay,, and a;;,i, j = 1,2,...,n — 1, with respect to z, = 0,
and take the odd extension of a;, and a,;,i = 1,2,...,n — 1, with respect to
zn = 0. We still denote these functions by u; and A after the extension. Because
of the conormal boundary condition, u satisfies

—div; (A(z, D;u1)) = 0 in Bg,, (2.9)
where the nonlinear operator A is defined as

Az, &) = |ATg|P2AATE  for z € Bg,, & €R".

Lemma 2.3. There exists a constant C = C(n, p, c1,cz) > 0, such that for any
z € Bg,and§ e R”,

IA(z, &) — 1721 S C I g1P (2.10)

Proof. We recall a well-known inequality (see [19, Lemma 2.1]): for any p > 1
and &1, & € R", it holds that

e 2 N =1 16217726, — 1611728 |
cHElF+ 18T < Ty

where ¢ = c(n, p) > 1 is a positive constant. Using (2.11), (2.5), and the triangle
inequality, we obtain
AGz, &) — [E1P €l S [IATEIP (A - I)ATE| + [|ATE )72 ATE — 15172 |

p—2
2

<@l +18»"7 . @11

SIA-LIATeP  + e (AT +1g17) T |ATe g1 S I 1g1P

Thus the proof of (2.10) is completed. O
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Assume that r € (0, R1]. We let v| € u; + Wol’p(Br) be the unique solution to

{ —div(ID;v1|”?D;v)) =0 in B, 2.12)

vy =u; on JB,.

By testing (2.12) and (2.9) with v — u1 and using (2.10), we have the comparison
estimate

|D.u; — Dyvi|P < Cr™M2P Doy P, (2.13)
B, B,

where C > 0 is a constant depending only on 7, p, c1, and c,. For detailed proof
of (2.13), see [15, Eq. (4.35)] when p € (1,2) and [16, Lemma 3.4] when p = 2.
Applying Lemma 2.1 and the comparison estimate (2.13), we have

Lemma 2.4. Suppose that u; € Wl’p(B;l) is a solution to (2.8). Then for any
we ,1)andr € (0, R], we have

1/p
(7; |Dyuy — (Dz/ul)B;,IP + IDz,,u1|”>

r

1/p
s Ccpf (][+ |Dyuy — (Dyuy) g+|” + |Dznu1|p> (2.14)

r

1/p
+ Cpr% (]{;+ |D.u |P> ,

where 0, = min{l, 2/ p}, a is the same constant as in Lemma 2.1, C,, is a constant
depending on |, n, p, c1, ¢z and C is a constant depending on n, p, ci, C2.

Proof. By Lemma 2.1, (2.13), and the triangle inequality, we have

1/p
<][ |D uy — (Dzul)B,U|p)
Bur
1/p 1/p
<C (][ |D,vy — (Dzvl)Bw‘lp> +C (7[ |Duy — Dzv1|p>
Bur Bur

1/p .
SCp” (][ |D;v; — (Dzv1)3,|p> +Cu v (
B,

§Cu“<

1/p
|[Dyuy — DZU1|p)
B,

1/p o 1/p
|Douy — (Dzu1)3,|”) +Cu » < D uy — Dzvll”)
JB, J B,

. 1/p 1/p
gc;ﬂ( |Dzu1—<Dzu1>B,|") Cprt (][ |Dzu1|f’) . @9
B,

B,

Since u is even in z,, (2.15) directly implies (2.14). The proof is completed. O
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We now define
1/p
'(p()C(), }") = <f |Dy/u — (D}’/M)Qr()zo)'P + |Dyn1/t|p> . (216)
Qr (o)

Let u € (0, 1) and r € (0, R1/2] be constants. By using change of variables, (2.3),
(2.4), (2.7), and the triangle inequality, we have

I/p
(][+ |Dyruy — (Dz’ul)B;rrlp + |Dz,,’41|p>

B}U‘

1/p
= ][ |Dyu+ Dy,uDyx — (Dyu+ Dy u D.\’/X)A*I(B,fr)w + Dy, ul?
ANBE)

. 1/p
z c ]l |Dy/14 - (Dy/u)ﬂur/Z(XO)|p + |D)'nu|p

Q/LV/Z(/QO)

1/p
—C’ ][ |Dy,u Dy x|?
Qpur2(%0)

1/p
> C (o, ur/2) — C'ur f Dul?) @.17)
Qpury2(%0)

where C and C’ are positive constants depending on n, p, ¢, and c,. Similarly,

1/p
(f_'_ [Dyuy — (Dz’ul)3j|p + |Dznul|p>
By

1/p
IDMI”) ,

where C” is a positive constant depending only on n, p, ¢, and c. Therefore, by
using (2.17), (2.18), and (2.6), (2.14) implies that

(2.18)
< "y (Ro, 2r) + C'r (][
Q

2r (%0)

1/p
|Du|? ) .
By replacing /4 and 2r with u and r respectively, we obtain

1/p
IDMI”>

for u € (0,1/4) and r € (0, Ry], where we recall that Ry = c4(e + |)26|2). Note
that the same argument above also holds when Xy € I'y. Therefore, using the same
argument as in Corollary 2.2, we have

¥ (R0, ur/2) < Cu®y (o, 2r) + Cpur <][
Q

2r (X0)

¥ (Ro, ur) £ Cp(Ro, r) + Cpur” (]fz

r(%o0)

Lemma 2.5. Suppose that u is a solution to (1.2) and xo € (T UT_)N{x e R" :
|x'| £ 3/4). Then there exist constants c4 € (0, 1) and C > 0, both depending
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only on n, p, c1, and ¢, and C,, > 0 depending on n, p, c1, ¢z, and |1, such that
forany u € (0,1/4) andr € (0, ca(e + |)€0|2)], it holds that

1/p
IDMI”> ,

where 0, = min{1, 2/ p}, o is the same constant as in Lemma 2.1, and v is defined
in (2.16). Moreover, there exist constants (1, = ua(n, p,c1,c2) € (0,1/4) and
CL = CL(n, p,ci,ca, ) > 0, such that for any u € (0, uz] and K € N, it holds
that

¥ (Ro, ur) £ Cpy(Fo, r) + Cpr” (7@

- (X0)

K+1 K 1/p
> wo, 1Fr) S 29 (o, 1)+ Cl Y () (][ |Du|P) :
k=0 k=0 Qu"r(’%)

2.4. Mean oscillation estimates for large r

Finally, we consider the case when B, (xg) could potentially intersects with
both T'; and I'_. In this case, we assume xo € 1, and T5(¢ + gl < r <

cs(e + |x(’)|2) %, where c4 is the same constant as in Lemma 2.5 and c5 is a constant
which will be determined later. We define the map Z = A (x) by

/ / /
Z'=x" — xgp,

/ / n—ho(x") +¢/2 1
Zn = (h1(xp) = ha(xo) + 8)<hx1 (x") i(;zcz)(x')g-l/- e E)

Thus A is invertible in Qyo,1/25

" / n / 1 1 / /
0172 := A(Qy,12) =1(2, Z) eR" 1 |27] < > [Za] < E(hl(xo) —ha(xg) +8) ¢,
and

- - 1
Iy :=A<Fiﬂ{x eR": |x" — x| < E})

1 1
= {(Z/, Z) eR": 2] < > Z, = ii(hl(x(’)) — ha(x() +8)}-

Then u2(2) := u(A~1(2)) satisfies the following equation with homogeneous
conormal boundary condition

_divg <|BTDZu2|1’_2(det(B))_1BBTDguz) =0 in Qi)
(|BTDZu2|P*2(det(B))*‘BBT Dguz) —0 only,
n
where we denote

B := B(2) = (b;;(2)) := DA(A™'(2)).
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For Z € Q1)2, letx = A~!(2). Then

bii(Z)=1 forie{l,2,...,n—1},
bij(Z)=0 fori #j, ie{l,2,....n—1}, je{l,2,....n},
hi(xp) — ha(x() + ¢
(h1(x") — ha(x") +€)?
, , & , , &
[ Paha) (30 = () = 5 ) = Dy ) (0 = 2y + 5 )|

bj(2) =

for j e{l,2,...,n—1},and

hl(x(’)) — hz(x(/)) +eé
hi(x') = ha(x') + &

bnn (Z) =

Therefore,

h](x(/)) — hz(x(/)) +eé

det(B(Z2)) = by (2) = h](x(/) + 2 — hz(x(’) + 2N+ ¢

is a function independent of Z,,. Assume

(e + x)[>)2 < (2.19)

FNg

C
STt srs

and let Zy = A(xo). Then for any Z € Qj) with |2’| < r and x = A~!(2), by
the triangle inequality, we have

1 1
IX'I <7+ Ix)) £ (14 y/12/cs)r? and |x/|225|x6|2 2> (|x 1> — o).

Thus, using (1.3), (1.4), and (1.5), we infer that for j = 1,2,...,n — 1 and some
constant C > 0 depending only on n, p, c1, and ¢,

[x'[(h1(xp) — ha(xp) +8) _ 5 x'|(2e2|xp)* + )

b,i(2) <2 =
[bnj (2)] < 2¢2 hi(x') — ha(x)) + ¢ =" cilx’)? + ¢
C
<c|x|<Cr2 <—r
(e + Ix; |2)2

’fo S (h@x" + A = 0)xp) — ha(tx’ + (1 — f)xo))dt‘
hi(x") —ha(x") + &
(x| + |x0|)|x _x()| Cr
2
cilx’l*+e ((9+|xo|2)2

|bnn (Z) -

< 2¢

and similarly,

Cr

|(det(B(2)) " — 1] = |(ban(®)) " — 1] £ ———.
(e +1x)1%)2

(2.20)
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Therefore, when (2.19) holds and Z € Q1> with |Z’| =< r, we have for some
constant C = C(n, p, c1, ¢2) > 0,

Cr

BZ) ~ Iy £ —————
(e + xg/2)2

(2.21)
In particular, there exists cs = c5(n, p, c1, ¢2) € (0, 1/4), such that for any %(e +
|x6|2) <r<cs(e+ |x(’)|2)% and Z € Q12 with | 2’| < r, it also holds that

|B(Z)—1,|] £1/2 and |(b,,,,(Z))_l—1|§1/2. (2.22)

Note that we can always assume & + |)c6|2 to be sufficiently small so that c4(e +

|x(’)|2) < cs(s + |x(’)|2)%. Next we extend u> and B to the whole cylinder Cy /2 :=
{((Z,Z2,) € R" . |Z'| < 1/2}. We take the even extension of uy, by,, and
bij,i,j = 1,2,...,n — 1, with respect to Z, = %(h](xé) — ha(x() + €), and
take the odd extension of b;, and b,;,i = 1,2,...,n — 1, with respect to Z,, =
%(hl(x(’)) — ha(x) + €). Then we take the periodic extension in Z, axis, so that
the period is equal to 2(h1(x)) — h2(x() + €). We still denote these functions by
uy and B after the extension. Then because of the conormal boundary condition,
uy satisfies

—divz (B(Z, Dguz)) =0 in Cl/z, (2.23)
where the nonlinear operator B is defined as
B(Z,6) =d(Z)|B"¢|" BB for ZeCip, £ €R,

and

o _l_hl(Z/+x6)_h2(Z/+x6)+8
d(Z) = (bnn(z)) - hl(x(’)) - hZ(x(/)) +e

Similar to (2.10), using (2.20), (2.21), (2.22), and (2.11), we obtain that for any
r e[+ )P, ese + 1x)2)2], Z € B.(Zp), and £ € R”,

C
B(Z.6) — |7 % < ———— 1517, (2.24)
(e + 152

where C > 0 is a constant depending only on n, p, c1, and c2. Now we let vy €
us + WOl "P(B,(Z0)) be the unique solution to

—divz (|Dzvl??Dzv2) =0 in B,(20),
v2 =up on 3B, (Zp).

Using (2.24), similar to (2.13), we have the following comparison estimate
r
. 1Dzu2 - Dzul < ¢
B (Zy)

min{2, p}
— " Dzl @2s)
(e +IxpP) n.2)
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where C > ( is a constant depending only on n, p, c1, and c3.
We define

. 1/p
d(xo, 1) = <][ IDzup — (DZMZ)B,(ZO)|p> . (2.26)
B, (2p)

Then following the same proof as that of Lemma 2.5 with (2.25) in place of (2.13),
we have

Lemma 2.6. Suppose that xo € Q1,2 and uy is a solution to (2.23). Then there
exist constants cs € (0, 1/4) and C > 0, both depending only on n, p, c1, and c»,
and C,, > 0 depending on n, p, c1, c2, and i, such that for any p € (0, 1) and

re [+ )P, ese + x4 7], it holds that

- - r 6, 1/p
Blxo, ur) £ CuG(x0, 1) + Cu(———— ) (][ IDzuzlp) ,
(e + |x(|»)2 B, (Z0)

where 0, = min{1, 2/p}, a is the same constant as in Lemma 2.1, c4 is the same
constant as in Lemma 2.5, and ¢ is defined in (2.26). Moreover, there exist constants
u3z = u3(n, p,ci,c2) € (0,1) and C’ = C (n p.c1,c2, ) > 0, such thatfor
any u € (0, u3] and k1, ko € N sattsfymg (6‘ + |x0|2) < k2
cs(e + |x0|2)2, it holds that

ko+1 y } ) L
> bl ur) £ 2o, uM1r) +C, Z (o) (7[ |Dzu2|p) :
k=ki =k, (e + |x0|2)2 Bk, (Z0)

2.5. Proof of Theorem 1.1
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We prove the theorem at any point xo € €212.

Step 1: Notation and choices of constants. We choose 1 = % min{uy, o, U3},
where (41, (2, and w3 are the same constants as in Corollary 2.2, Lemma 2.5, and

Lemma 2.6. We define r; = %S/J,j (e + |x6|2)% and let ji, j» be the integers such
that

C4 72
rjy 2 (€+|Xo| )y T4l < g(€+|xo| ),
and
rj, 2 dist(xo, Ty UT_), rj,41 <dist(xo, Ty UT_),

where ¢4 and c5 are the same constants as in Lemma 2.5 and Lemma 2.6. Note that
. 1

we can assume &+|x()|? to be sufficiently small so that 5 (e41xg %2 > S (e+lxy 1)

and thus j; = 0.
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We denote
1/p
][ |Dzus — (Dzus)p, (zy)l? if 0=/ < i,
B, (Z0) !
¢j = 1/p
F o Du—Dwa, ) iz
er(XO)
1/p
][ Dzl it 0<)<i
Brj(Zo)
T = 1/p
][ |Du|? if jzjj+1,
$23r; (x0)
and

(Dzuz)B,j (zy if 0= <,
m; = . .
(D)o, ) it jZ 41,
where us, Zp, and the coordinate Z are defined in Section2.4. In the following
proof, we use C, C’ to denote positive constants depending only on n, p, ¢1, and
c2, which may differ from line to line.
Step 2: Preliminary estimates and iterations. Next, we derive some preliminary

estimates. First, we show that there exists a constant ¢ = ¢(n) > 0, such that for
any j = ji + 1,

|2 (x0)| 2 crj. (2.27)

If r; < 2dist(xg, 'y UT_), then B%r]- (x0) C $2;(x0) and (2.27) clearly holds.
Otherwise, assume r; > 2dist(xo, I'y: UT'_). Then we choose Xy € 'y UT'_ such
that dist(xg, T+ UT'_) = |xo — xg|, and thus Q%r,— (X0) C L, (x0). Note that we can

assume ¢ + c2|x)|* < 1/4 and thus by (1.5) and the triangle inequality, |<)] < 3/4.
Since j = ji + 1, by the triangle inequality again, we know that x| < [x)| +7r;/2
and
cq 2 c4 NI
rj < g(e +x1%) < g(e +21%)1° + Erj)'
Since ¢4 € (0,1) and r; € (0, 1), we get
c4 .
rj< 5+ 1£61%).
By using (2.6), we have

|2 (x0)| 2 1921, (Ro)| Z 7.
277

Thus, (2.27) holds for every j = ji + 1.
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By (2.27) and Holder’s inequality, for any j € N, we have
|m]’| g CTj. (228)

Note that since u < 1/6, Q37,4 (x0) C Q%rj (xo) and thus by (2.27), (2.22) and
the definition of ji,

1/p

Tj 41 <C ][ |Dul? §CTJ'].
Q jl(xo)

1
Therefore, there exists cg = c¢(n, p, c1, c2) > 0, such that for any j € N,
Tiv1 SceT). (2.29)
By (2.29) and the triangle inequality, for any j < jj, we have
Tis1ZceTj = Clmj|+Co;.

For j = ji + 1,since u = 1/6, Q23 (x0) C 2, (x0) and thus by (2.27) and the
triangle inequality, we have

1/p
nasc(f iar) scmice,
er(x())

Therefore, there exists ¢c;7 = c7(n, p, c1, c2) > 0, such that for any j € N,

Tjt1 = c7mj| 4+ c7 ;. (2.30)
Forany 0 < k < jj, since

my —my—1|” < 277 imyg — Dzuz(2)|P + 2771 | Dzux(2) —my—1 |7,
by taking the average over Z € B, (Zy) and then taking the pth root, we obtain
Imy —my—i| = Coy + Cpye—1.
Then by iterating, we get
J
|mj—mjo|§c2¢k, (2.31)
k= jo

for any integers jo, j satisfying 0 < jo < j < j1. By (2.31),(2.28), and the triangle

inequality, we have

J
m;| SCTj,+C Y ¢, (2.32)
k= jo
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for jo < j < ji. Similarly, for any integers j, [ satisfying j; + 1 <1 < j, we also
have

J
mj; —my| £ CY ¢,

k=l

and

j
m;|SCT+CY . (2.33)
k=l

For j € {jo, ..., j1}, from Lemma 2.6 and (2.32), we know that

j j j
r 0
mj|+ > G SCTj,+C ) (—k/z,) "TSCT,+C Y po.
k= k=jo (& +1xpl%)2 k=jo
(2.34)

For j € {j1 +1,..., j2}, we have r; = dist(xo, 'y UT'_). Choose Xy € (I'y U
M) N{x € R" : |x'| £ 3/4} such that dist(xg, T+ UT_) = [Xp — xo[, and thus
Q; (x0) C Q0r;(X0) C Q3y;(x0). Then
C. C. ~
rj < e+ Il S T+ 251 + 2,
which also implies
2rj < cale + 1241 (2.35)

since c4 € (0, 1) and r; € (0, 1).
By (2.35), we can apply Lemma 2.5 at X9 € '+ U I'_ and use (2.27) and (2.6)
to obtain

J J J
~ 6
DT =C D Y2 SCYi+C Y RN

k=j1+1 k=j1+1 k=j1+1
J1+ J1+ ' J1+ (2.36)
J
SCTjp+C Z ko Ty,
k=j1+1
where
1/p
Y= ][ |Du|P .
Q2r; (X0)
Moreover, from (2.33), (2.30), and (2.36) we also know that
j J
lm;;| + Z ¢ =CTj+1+C Z Wk Ty,
k=ji1+1 k=j1+1
J1+ . J1+ 2.37)

J
<Clmy|+Cohj +C Z ukor T,
k=j1+1
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holds for any j € {ji +1,..., j»}.
For j = j» + 1, from Corollary 2.2, (2.33), and (2.30) we have

J
mjl+ D e S CThit < Clmy| +C gy (2.38)
k=ja+1

Combining (2.37) and (2.38), we know that

J J
mj|+ > ¢ <Clmy[+Co; +C Y pfT; (2.39)
k=j1+1 k=j1+1

holds for any j = j; + 1. Note that (2.39) also holds if j, < j; since in that case
rj < dist(xg, '+ UT'_) forany j = j; + 1 and thus we can directly use Corollary
2.2 and (2.33) to get (2.39).

Moreover, combining (2.39) and (2.34), we know that

J J
m;[+ Y g SCTj+C >y (2.40)
k=jo k=jo
holds for any 0 < jo < jj and j 2 jo.
Step 3: A stopping time argument. We choose jo = jo(n, p, c1, c2) € N suffi-
ciently large such that

(c7+1)C Z wkor < (2.41)

1
10’
k=jo

where ¢7 is the constant in (2.30) and C is the constant in (2.40). Note that we can

. - 1
assume ¢ + Ix(’)l2 to be sufficiently small so that 5 /0 (¢ + |x6|2)7 > Z(e+ |x6|2)
and thus j; = jo. Now we show that

|Du(xo)| = C Tj,. (2.42)

We consider the following three possibilities.

Case 1: If |Du(xp)| < T},, then (2.42) directly follows.

Case 2: If T; < |Du(xo)|, Yjo < j = j3, and |Du(xo)| < Tjy41, then by
(2.30), we have

[Du(xo)l = Tjy41 < c7myy| 4+ c7 ;. (2.43)

Now applying (2.40) with j = j3, from (2.43) and (2.41), we get

J3
1
|Duxo)| < C'Tjy +C" 3yt Dutxo)] £ C' Ty + 35 1Dutxo)l,
k=jo

where C’ = ¢7 C, C is the constant in (2.40). The last inequality directly implies
(2.42) as desired.
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Case 3: If T; < |Du(xo)| for every j = jo, then from (2.40), we infer that for
any j = jo,

J
1
Imj| £ CTjy+C Y u!Duxo)| < € Tjy + 1| Dutxo)l.
k= jo

Here we used (2.41) in the last inequality. Letting j — oo and using the fact that
ue ClQ), we get

1
|Du(xo)| = C Tj, + EIDM(XO)I,

which directly implies (2.42). The proof of the inequality (2.42) is completed.

Step 4: Caccioppoli inequality and conclusion. Let 1 € R and ¢ be a nonneg-
ative smooth function satisfying ¢ = 1 in B,. (Zy), |Dz¢| < 2rj_01, and ¢ =0
outside By, (20). Since 2rj, < cs5(e+ x| 1) 3 ,using 7 (uy — X) as a test function
in (2.23), by (2.22), Young’s inequality, we obtain

Tjo

1
ot [ bzl < [ Bz Dzua).c Dz
Boy; (20) By, (20)

= —P/ (B(Z, Dzuz), ¢ (us — 1) Dz¢)
By, (ZO)

J0

< p2rtit / tP D zus | uy — A
Bor. (Z0)
Jo
1 / —p
< — CPIDzus|P +c(p)r, / lus — Al
2042 I, © By, (20

Therefore, we have the following Caccioppoli inequality

/ [Dzuz|? < c(p) rj_op/ luz — Al”, (2.44)
B}, (Z0) Barj, (Z20)

where A is an arbitrary constant and c(p) is a positive constant depending only on p.

Since 2rj, = 05(8+|x(’)|2)% < 41-‘(8+|x(’)|2)% < 1/2,by choosing & = (u2),, (2y)
JO
in (2.44), and using (2.42), we obtain the pointwise blow-up estimate

1
| Du(xo)l < Cle + Ix61*) 72 osc u,
X001

where n = ;ll(e + |x(’)|2)%. O
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3. Improved gradient estimates

In this section, we utilize a similar approach of flattening the boundaries and
extending the equation, as described in [25], to derive an improved gradient esti-
mate for (1.7) in dimensions n 2 3. However, in contrast to [25], since our equation
is degenerate, we need to exploit the nondivergence form of the normalized equa-
tion. Consequently, the argument of flattening the boundaries becomes much more
intricate, and unlike in [25], where the De Giorgi-Nash-Moser Harnack inequality
is applied, we use the Krylov—Safonov Harnack inequality for nondivergence form
equations. Furthermore, there are additional first-order terms that require control
over the size of the coefficients.

To prove Theorem 1.2, for n > 0, we consider the approximating equation

. 9. P2 .o~
—d1v<(n+|Du,7| )5 Dun) =0 inQ,

0
0 onop;, i=1,2, G.1)
av

Uy =¢ onoaL.

Since [|uyllc1a(g,) is bounded independent of 7, it suffices to prove (1.9) for u.
Therefore, we will focus on (3.1) throughout the rest of this section, and denote
u = uy for simplicity. Note that u satisfies the normalized p-Laplace equation

aijDiju =0 inQ,
where
a’ = 8ij+ (p—2)(n + |Du>) "' DiuDju (32)
satisfies
(p— DIEP SaV&s; S 57, VE€R" when 1 <p<2,
1 < aEE < (p— DIEP, VE€R" when p=2. (3.3

For a small ry independent of &, we only need to show (1.9) in €2,,, as [Du]| is
bounded in Q217 \ €2,, independent of ¢. For any x € Q,,, we estimate | Du(x)| as
follows: first we consider the equation in £, \€2, /4 for r € (€, rol, we perform a
suitable change of variables that maps the domain to a flat “annular cylinder”. After
the change of variables, u will satisfy a second-order uniformly elliptic equation
in non-divergence form, and the Neumann boundary condition on the upper and
lower boundaries of the domain. Then we obtain a Harnack inequality through
the Krylov—Safonov theorem. Together with the maximum principle, this gives the
oscillation of u in Q, for r € (4/¢, ro] with a decay rate r28 for some positive
e-independent 8. Then the desired estimate on | Du(x)| follows from the decay rate
of 08C) (g4 |y/2y1/2 u and Theorem 1.1.

Let r € ({/¢, rol, where rq is an ¢ -independent constant to be determined later.
We define

hi(x") when |x'| £ 2rg,

0 when |x'| > 2rg

hi(x') = {
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fori = 1, 2. We denote

Qs = {y=0" ) €R" [ Iy <s.|yal <1},
andfory € 0y, 2\ Q, /4,2, we define the map x = ®(y) by

x'=y =g,
iy = e (3.4)
5 = 5[5+ B0 = () + ) + i),
r
where
g(y) = (on — 1) + %) (Oy, + B), (3.5)
1 ~ ~ - -
© = o5le + () = e (OOIDyIRY () + 7y OO,
= 1 i s
8= ggle + () = OHIDyIAY () = By ),
fzf is a mollification of /; given by
W= [ e s (36)

@ is a positive smooth function with unit integral supported in B; ¢ R"~!, and

W= u > 0.
r
Here we briefly explain the motivation for defining the map & as above: to
ensure that y/ = x” on {y, = +r2}, which is g|y _.,2 = 0, we setup the ansatz
(3.5) for g. Next, we want the function v(y) := LZ(QJ(y)) to satisfy the Neumann
boundary condition on {y, = +r2}, which leads to (see details in Lemma 3.1)

1 ~ ~ ~
(= Dy 5506+ 710N =R I (~Dukin 1) on {y, =17,

1 ~ ~ ~
(= D8 33 +m0) =) I (=Duha, 1) on {y, = =),

Using the ansatz (3.5) and solving for ® and E, we have
1 ~ ~ - ~
0= ﬁ[g +h1(y) — ha(YNIDy[h1 () + ha (3],

1 . N 3 3
E = galeth () = ha(Y)IDy[h1 (Y) — ha(y)].

Note that the equation of v involves second-order derivatives of @, and hence
involves third-order derivatives of le and flz However, le and flz are only cll
we introduce the mollification (3.6) to overcome the lack of regularities. Here u is
chosen so that h“ = h on {y, = :|:r2} and the coefficients of the equation of v
have the desired estlmates

Throughout this section, unless specify otherwise, we use C to denote positive
constants that could be different from line to line, and depend only on n, p, c1, and
c2, where ¢ and ¢, are defined in (1.4) and (1.5), respectively.



Arch. Rational Mech. Anal. (2023) 247:95 Page 21 of 46 95
Lemma 3.1. There exists an ro > 0 independent of &, such that when r € (\/¢, rg|
and ® is given as (3.4), then:

(a) There exists a positive constant C independent of € and r, such that

1
E SDO(y)=CI, ye Q2r,r2 \ Qr/4,r27

and hence ® is invertible.

(b)
Q1.9r.,2\ Qo352 C D7 (R \ Qrya).
and
Qr\Qrpp CP(Qy 12\ Qoarr2)-

(c) Letu € WL-P(Q,, \ ©,/4) be a solution of

— div ((n n |Du|2)#Du> =0 inQ\

9u 3.7

™ =0 on (M UT_) N Q2 \ /4
%

for some n > 0, and v(y) = u(®(y)). Then v satisfies an elliptic equation
@’ Dijv(y) + biDiv(y) =0 in Q9,2 \ Qo352
v (3.8)

500 =0 on{y, ==+r%),

with

lINA
M
VA
9
=~
=
A
*:'| a

Al ~

Proof. By (1.3), we have

|D1;,ﬁi(y/)| < cr?¥k, |D§,ﬁ§‘(y/)| <Ccr** fori=1,2 and k=0, 1,2.
(3.9)

Therefore, when y € Q5,2 \ Q,/4 2,
IDyx" — In—1yxn—1y| = Dy g(y)| < cr?.

Dy, x" = —=Dy,8(y)
—2y,(®y, + B) — (v} — rH(Dy,®)y, + © + Dy, E],

and

el<cr, B sor
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By (3.6), we have for y € 05, 2\ 0, /4,2,

|Dy, Dyt (y))| = ‘—gl: /Rnil Di,fli(y’ —u)d () de
2yn N o |
== - Dyhi(y' — nz)Z'p(@)dz'| = Cr for i =1,2.
Therefore,
Dy, 01 Cr, Dy, Bl S O
and hence

|Dy, x| £12y,(@y, + B)| + (v — rH(Dy, )y, + © + D, E]|
<cr+crir'+r34+r < Cn

By (3.9),
1 ~ - - -
Dy xy| = 3 ij—;(Dy’hl(y/) — Dyha(y')) + Dyhi(y') + Dyha(y')| < Cr.

And lastly,

1 . -
Dy, xn = 75 (e + h(y') = ha(y").
By (1.4),

1
E § Dynxn g C.
Then (a) follows by shrinking r( to be sufficiently small.
Since g(y) = 0 when y = 72, ® maps the upper and lower boundaries of
Qy2 \ Q4,2 onto the upper and lower boundaries of €25, \ €2/4, respectively.

Then (b) simply follows from the fact that |g(y)| < C r3, and we can shrink ry so
that [g(y)| = r/10.

To verify (c), note that u is smooth from the classical elliptic theory. We compute
by the chain rule,

Dy u(x) =Dy, v(y) Dy, yi,
kaxlu(x) =Dy,-Dij()))kayli1yj + Dy,'v(y)kaxl))i~

Recall that u(x) satisfies the equation
alexkxlu(x) =0,
where the matrix a is given by (3.2). If we define
@' = a" Dy yiDyyj, b :=a" Dy i
then v(y) satisfies

@ Dijv(y) + bi Div(y) = 0.
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Next, we show that v satisfies the Neumann boundary condition on {y, = +r?}.
We will show the boundary condition on {y, = r?}, as the one on {y, = —r?}
follows similarly. By the chain rule,

Dyv(y) - e, = Dyu(x) - Dy®e,,
where ¢, := (0, ..., 0, 1). Therefore, it suffices to show that
1 - - -
qu)en = (_ Dyng7 ﬁ(é\ + hl(y/) - h2(y/))> ” (_Dx’hl’ 1) on {yn = rz}‘
(3.10)

Note that when y, = r2, we have g(y) = 0, y' = x/, o = 0, and A} = h.
Therefore,

Dy, & =(yn +r>)(Oy, + B)

Yn=r

1 ~ ~ -
=ﬁ(8 +h1(Y") = ha(y)Dyhy ()

2

1 ~ ~ ~
Zm(E + hi(y) = ha(y") Dyrhy (x1).
This implies (3.10).

Finally, we show that the coefficients @ and b satisfy the desired estimates. From
part (a), we know that

< Dyy=D,d '(x) £CI,

Al ~

which together with (3.3) implies that

A
IS}
A

CI.

Al ~

To estimate I;, we differentiate dy; /dxx - 9xx/0y; = &;; in x;. Note that by chain
rule, we have

82y,- 0Xy @% 82xk

axkaxla dx dx; 0y;0ym B

Since I/C £ D,y < Cl and I/C < Dyx = CI, it suffices to estimate Dgx,
which is DJ®(y). It is easy to see that

82xn
dy?

<

’
To estimate 9%x’/dy?, the key terms are

Dy R (y), Dy, DLhY(Y), Dy Dyhf(y), i=1,2.
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By (3.6) and integration by parts, we have

Dyhi(y) = /R | Dyhi(y = pe() d7!

1 7 / / / /
=7 0 Ja Dohi(y" — nz)e(2') dz
1 -
— [0 = pDep
Then
~ Cllhillcra Cr
D3y < < .
D3R ()] < S
Similarly,
T 2)711 7 / / / / /
Dy, h; (y)=7 - Dyhi(y' —pnz)-z2¢(2)dz
2yn = / / / /
= Jo hi(y’' —nz)Dy - (Z9(z)) dz, (3.11)
SO
~ 2y ~ Cr?
Dy, DY R () = | = / Dy hi(y — pZ)Dy - (Fp@) de | £ —.
) ur Jre-1 rt—y;

Differentiating the first line of (3.11) in y,, we have

B 2 n—1 _
Dy, b (V) == /Rn_] Y Dyhi(y — pzrp() d7’
k=1

—1

4y2 S ~

= /]R 2 Duyhi (6 = nhze @) d2f
k=1

+

n—1
_2 =y / / ’
__/ Y " Dy hi(y' — p)ae(@) dz

r -1
R =1

—1
4y2 n _
+ Z/R,,_l Z D,Vthi(y/ —ILZ/)Dzk(ZkZup(z/)) d7’.

r
s k=1

Therefore,
- 2 -
D30V ST [ DR = )l 02
" r JRrRn—1

4y2 ;
- Mi; / | 1D i (y' = n2)lIDy (2 ® Z'o(2))] d2’
Rﬂ_
cr’
5.

rt—y2

[IA



Arch. Rational Mech. Anal. (2023) 247:95 Page 25 of 46 95

By these estimates above and straightforward computations, we have
D2d(y)| < Cr!
D}y £ Cr,
which implies |b| < Cr—!. 0

Lemma 3.2. Letro beasin Lemma3.1, andletr € (\/¢, rol. Ifu € Wl'p(er\Qr/4)
is a nonnegative solution of (3.7) for some n > 0, then,

sup u < C inf u, (3.12)
S-zr\Qr/Z Qr\Qr/z

for some constant C > 0 depending only on n, p, c1, and c3, but independent of €,
n, r, and u.

Proof. We take the change of variable y = @1 (x), where @ is given as (3.4). Let
v(y) = u(x). By Lemma 3.1 (c), v satisfies the equation (3.8).

Fori,j = 1,2,...,n — 1, we take the even extension of aiv, am, l;i, and v
with respect to y, = 2, and take odd extension of &', ", and b" with respect to
Yp = r2. Then we take the periodic extension (so that the period is equal to 4y,

We still denote them by a, b, and v after the extension. Then v satisfies
@’ Dijv(y) + biDiv(y) =0 in Q192 \ Q0352

Setting @/ (y) = a(ry), b'(y) = rb'(ry), and 9(y) = v(ry), we see that
satisfies

a" D;jvo(y) + b;Div(y) =0 in Q192 \ Qo3s.2,

with

A
A

CI, b <cC.

a

Ol ~

Since Q192 \ Q02352 is connected when n = 3, by the Krylov—Safonov theorem
(see Section 4.2 of [22]), we have

sup v<C  inf D

01.1,1\ Q04,1 01.1,1\Q04,1
This implies
sup v C inf V.
Q1172 \Co.ar2 @112\ Qo4r2

Finally, (3.12) follows by reverting the changes of variables and Lemma 3.1 (b).
O

The following estimate on the oscillation of u is a direct consequence of Lemma
3.2.
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Corollary 3.3. Forn = 3, letu € WLP(Q)) be a solution of (3.1) for some n > 0.
Then there exist positive constants C and B, depending only on n, p, c1, and c3,
such that

oscu < Crﬁ(g?sc u, Vre e 1/2). (3.13)
1

Q

Proof. It suffices to prove (3.13) for r € (/€ ro], where ry is the same as in
Lemma 3.1. Let /¢ < r < ro and v = u — infg,, u. Then v = 0 in Q. By
Lemma 3.2, we have

sup v < C; _inf v,
Q\Qr 2 Q\ /2

where C1 > 1 is a constant independent of . Since v satisfies equation (1.7), by
the maximum principle,

sup v =supuv, inf v =infwv.
QL2 Q 2 \Q2rp2 $2r

Therefore,

supv £ Cy islzlf v,

which implies

surpu < Cligrzlrfu —(Cy — l)igzrgu.

Adding the above inequality with

(Cy — ysupu < (Cy — 1) supu,
Q, Qo

and dividing both sides by C1, we have

Ci—1

oscu < 0SC U.
Q, Cl Qo

Finally, (3.13) follows from iterating the inequality above. O
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. It suffices to show (1.9) for x € Q3 and ¢ € (0, 1/32).
By Corollary 3.3, there exist positive constants C and 3, depending only onn, p, cy,
and ¢y, such that

oscu < C(e + |x'»)Posc u,
9871 Q)

where n = %(8 + |x’|2)%. Then by Theorem 1.1, we have

|Du(x)| <C(e + [x'?) "2 asc
X1
1
<C(e + |X']>) " Zosc u
98)7

<C(e + |x’|2)7%+ﬂ(§zsc u.
1

The theorem is proved. O
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4. The p > n + 1 case

In this section, we establish a more explicit gradient estimate for the equation
(1.7) when p > n + 1, with a blow-up rate of order ¢ ™% for any o > ﬁ
Throughout this section, in addition to (1.3) and (1.4), we need to further assume
that /21 and h, are C? strictly convex and strictly concave functions respectively,
satisfying (1.10). Let v denote the normal vector on Iy, pointing upwards and
downwards respectively.

To obtain the improved gradient estimate, in the following lemma, we construct
a supersolution to show that the oscillation of u enjoys a better decay rate. Then
the desired gradient estimate (1.11) follows by using Theorem 1.1.
Lemmad.d.Lletn =2 2, p > n+ 1, T'y,T_, hy, hy be as above. For any § €
O,p—n—1),letv(x) = (|x’|2 + Q2+ S)X,%)V/z. Then for any y € (0, %:}_5),
there exists a constant 1 € (0, 1/2) depending only on n, p, 8, v, k1, k2, and the

modulus of continuity for D*h1(x") and D*h>(x") at x' = 0, such that for any
e € (0, 1 /i2),
—div(ID|P72Dv) > 0 in Qe \ Qe/ps
av

rls 0 on (It UT) N Qs
v

Proof. We denote R(x) = (|x'|*> + (2 + 8)x2)!/2, so that v(x) = R(x)”. Using
Taylor expansion up to order 2, from (1.3) we know that for any |x'| < 1.
1
h(x') = </ (1 = 0)D*hy(tx")ds - x', x/>,
o (4.1)
ho(x') = </ (1 — )D*hy(tx")dt - x', x’>.
0

By (4.1) and (1.10), we have

K1

K K
P <) < 32|x’|2 -

)

We also note that for any |x'| < 1,

1 1
(Dhl(x/),x’)=</ %Dhl(tx’)dt,x/>=</ Dzhl(tx’)dt.x/,x’>, 4.3)
0 0

2 < ha(x') < K—22|x’|2 for x| < 1. (4.2)

and similarly

1
(th(x’), x’) = </ D?hy(tx)dt - X/, x’>.
0

Since A and h, are C2, for any § € (0, p —n — 1), there is a sufficiently small
ro € (0, 1/2) depending only onn, 8, k1, and the modulus of continuity for D%h 1(x")
and D%hy(x') at x’ = 0, such that

K16
8426

8
D2hy(x') — D*ha (0)] < —2
| 2(x") 2( )|—8+28

|D?hy(x") — D*h1(0)] £

3

for |x'| < ro. (4.4)
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Thus by (4.1), (4.3), (4.4), (1.10), and the triangle inequality, we obtain

Q2+ 8)hi(x") — (Dhi(x), x')
1 1
= </ Q2+ 8)(1 — 1)D*hy(tx")dt - X', x’> — </ D?h;(tx))dt - x/, x’>
0 0

1 2468 K18
> _ 2 N2 e R 2
:</O Q2+ 8)(1 = )D*h1(0)dr x,x> R @.5)

1
5
_ /Dzhl(O)dt-x/,x’ _ K% e
0 §+25

8 ) 8
= S(D?m(0) ¥ x) = oW 2 P 2 0.

By direct computations, we have

Dv =yR"2(x', 2+ 8)xn),
Diiv=yR" >+ y(y — 2)RV_4xi2, fori € {1,2,...,n—1},
Dijv=y(y =R *xix;, fori#j, i,je{l,2,...,n—1},
Dinv =y (y —2)R" 42 + 8)xjxn, forie{l,2,....n—1},

Do =y R 224 8) + y(y —2)RY 42 4 8)%x2.

On F+ N 5”0’

(—=Dhi(x"), 1).

1
V=
V1+[Dhi(x")]?

Then by (4.5),

dv N VRV_Z N £ ’
5 _m[— (Dhi(x), x"y + (2 +8) (5 +h(x ))]
-2
>L[@|x’|2 + <1 + g) e] > 0.

V14 (Dhy(x))2L 4

A similar computation shows that g—l’j >0onT_NQ,.
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Next, we compute in 2 \ {0},
div(|Dv|P~2Dv)| Dv|*"P = |Dv|*Av + (p — 2) DjvDjvD;jv
_ y2R27_4(|x/|2 O+ 5)%5) ((n £ 1+8)yR2
+y( = DR TP + Q4 9)
+ (0 =P R (v R 2y (y — DR )
+2(p =22+ 87y Ry (y =R X Py,
+ (0 =P RT T+ 9% (YR T2+ ) + v (y — DR T+ 8)x))
= PR H W n+ 5+ (p = Dy — 1)
+ P+ )N +8+p—1)
QR+ +1+8+(p—2)2+8) +2(y —2)(p—1)]
+ 35,2+ 8+ 1+8+(p—2D2+8)+( —2(p— 1)(2+5))]}.

Thus div(|Dv|?~2Dv)|Dv|*~Py 3 R373 is a 4th order homogeneous polynomial

of |x| and x,. Since y € (0, p_[':i_(s), we have

n+é+(p—-DHly -1 <0.

Therefore there exists a sufficiently small po € (0, 1/2) depending only on #n, p,
y, and 8, such that if |x,| < uglx’| and x # 0, we have

div(|Dv|?~2Dv) > 0.

We then take p = min{ug, k279}, so that u/ky < ro and thus g—z >0 on('; U
r-yn §M/K2. Note that when x € €2;,/i, \Q2¢/,, by (4.2) we have
e K2
bl £ 5 4+ S 11 S wld'| S pol'l-
2 2
This concludes the proof. O

Proof of Theorem 1.3. It suffices to show (1.11) for § € (0,(p —n — 1)/2),

X € Q26,5 and & € (0, 12/ (k2 + k3)), where 11 € (0, 1/2) is defined in Lemma
p—1—n—28

4.1 with y = =——— € (0, 1). Without loss of generality, we may assume that
1(0) = 0 and oscq,u = 1. By Theorem 1.1,

lu(x))| < Cye for x € Q. (4.6)
Let v be the function defined in Lemma 4.1 with y = % and v; = v+ /e

Note that u < Cv and —u < Cv on ({|x'| = &/} U {|x'| = n/k2}) N Q for
some ¢-independent constant C. By the comparison principle, we have |u| < Cv
in Q/x, \ ¢/, In particular, we have

p—1—n—28
()| < C2+ X2 70 +Ce'? for x € Quir \ e/ 4.7)
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Since % € (0, 1/2), by combining (4.6) and (4.7), we obtain

p—1-n-28

()| £ Ce + 1x1%) 200 for x € Ly,

This implies that for any x € €,,/2¢, and ¢ € (0, w?/ (k2 + /<22)),

P p—1-n—28
gsc u < Cle+ |x[7) 2D, (4.8)

x,1)

where n = 4—1‘(8 + |x/|2)1/2, and C is a constant depending only on n, p, 6, k1, k2,
and the modulus of continuity for D%A(x’) and D?hs(x’) at x’ = 0. Then (1.11)
follows from (4.8) and Theorem 1.1. 0O

5. A two dimensional example

In this section, we provide an example showing that the estimates (1.8) and
(1.11) are close to optimal in 2D. In the following and throughout this section, we
setour domain Q = Bs C R2, D; and D5 to be the unit balls centered at (0, 1+¢/2)
and (0, —1 — &/2), respectively. That is,

_ I R SR
r+_{x2_2+1 lx},
&
r_ = {xz ==5= 14+4/1 —xf}, xp € (—=1,1). 5.1

Lemma 5.1. Letn = 2andlU' 4, T'_ beas(5.1). Forany$ € (0, 1/2), ¢ € (0, 5/10),

and y > max{Z ;EJ{S, 0}, there exists a constant ro € (0, 1/2) depending only on

p and 8, such that the function

R

we) = [(+2-03) —@/eror ],

satisfies

—div(|Dw|?2Dw) £0 in Qy,,
dw (5.2)

— <0 on (T4 UT_)N Q.
av

Proof. We denote R = R(x) = (x% + Q2 - 6))(%)z and v(x) = R(x)”. Then

Dv = yR"2(x, (2 — §)x2).
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On I'y, the upward normal vector v = (—x1, | 4+ &/2 — x2). Therefore,

ov

— I
=R 2[—x]2+(2—8)x2<1 +3 —xz)]

:yRV_2[<x2 - 3)2 - 8)xz(1 + % —xz)]
2

:yRV_Z[— (1 — 8)x2 —8x2(1 n %) Yo+ %]

One can see that dv/dv < 0 if xo > ¢/8. Since x; = % +1—-,/1 —xlz, [x1| >

2./e/8 implies x, > &/8. Note that w = 0 on ' when |x;| < 2./¢/8, therefore
dw/dv < 0 on I'y. The fact that dw/dv < 0 on I'_ follows from a similar
argument.

Next, following a similar computation as Lemma 4.1, we have in the region
(X} + (2 —8)x5 > 16¢/8} N Q,

div(|Dw|P~2Dw)|Dw|*~F
— y2R¥ 4 <x12 +@- a)2x§) ((3 YR 24 y(y — DRI+ 2 — 5)2x§))
+(p— 2)y2R27/_4x12(yRV_2 +yy — 2)R7’_4x12)
+ (=P R =923 (C - Oy R T+ 2= 9Py (y — DRV
+2248)*(p —2)y* Ry (y — 2R *xix3.

Note that in {x? + (2 — 8)x3 > 16¢/8) N Qy, |x1] > 24/¢/3. Therefore,

5 5
|x2|§§+1—,/1—x%§gxf+1—,/1—x2§<§+1)xf,

and thus
2 8 2 4 <« 2 < p2
R —(2—3)(§+1>R <x2 <R

Hence for small R > 0, the leading term of div(|Dw|?~2Dw)|Dw|*~7 is given
by

P RY (B =0y 4y = 2R 24 (p =2 R 2y (y - DRV,
If we set

B=H+-+(—-(y—-D>0 and y >0,
which implies
—344

u’ 0}’

p—1

then there exists a sufficient small ry € (0, 1/2), depending only on p and §, such
that div(|Dw|P~2Dw) = 0in Q,,. O

y>max{
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Proof of Theorem 1.4. We only need to prove the theorem for any § € (0, 1/2)
and ¢ € (0, r§8 /64), where rq is the constant stated in Lemma 5.1. By symmetry
and the maximum principle, we have u(0, x) = 0 for |x3| < ¢/2 and u(x) > 0
when x; > 0.

Next, we use interior Harnack inequality to show that there exists a positive
constant Cy depending only on p and 8§ such that u = Cy on QN {x1 = ro}.
Since u(x) = x| on dBs, by (1.6), there exists r; € (4, 5) such that u(ry,0) = 4
and 5 — r; is bounded from below by a positive constant depending only on p.
Let p = min{rg/lo, (5—r1)/10} and N = L%J. We then define a chain
of balls By = B, (px), where k = 0,1,..., N and py = (r9 + ku, 0). Since
By, (pr) C Qn {x1 > 0}, by the Harnack inequality (see e.g. [31]), there exists a
constant C, > 0 depending only on p, such that

max u < Ciyminu

k By
holds forany k =0, 1, ..., N. Since (r, 0) € By, by iteration, we have
u(ro,0) = (Co) ™M u(r1, 0) Z 4(Co)~" 1. (5.3)

Now we set xg = (rp, 0) and perform the flattening and extension of u to u in
Cip=1{(2,2) € R2: |Z1] < 1/2} as in Section2.4. Since u, is a nonnegative
solution to (2.23) when x; > 0, by the Harnack inequality and a similar iteration
argument as above, we obtain that

u2(0, 22) = Cguz(0,0) (5.4)

holds for any 2, € (— 1+,/1 —rg —¢/2,1—,/1 —r§+£/2), where C()’ >0
is a constant depending only on p and é. In the original coordinate, (5.4) directly
implies that
u(x) = Cqu(ro, 0) (5.5)
for any x € Qn {x1 = ro}. Combining (5.3) and (5.5), we get
u>=Co on QN {x;=rol,
where Co = 4C (C(’))_N ~! is a positive constant depending only on p and §.
Let w be the function defined in Lemma 5.1 with
) when 1 < p <3,
y=43p—3+25
p—1

By the comparison principle, there exists a positive constant C depending only on

p and &, such that u = éw in ©,, N {x; > 0}. In particular, since 8/¢/5 < rp, we
have

when p > 3.

1
u(8/2/5,0) = Ee%.

The desired lower bounds on Du follow from the mean value theorem since u(0) =
0. O
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Remark 5.2. When ¢ = 0 and p > 5, it can be shown that w(x) := (xl2 + 2x%))’/2
is also a subsolution satisfying (5.2) for y = (p — 3)/(p — 1) and some absolute
constant rg € (0, 1). Therefore, a similar argument as in the proof of Theorem
1.4 gives u(x1,0) = co x{p_S)/(p_l) for some constant co = co(p) > 0 and any
x1 € (0, rg). Thus, for any r € (0, 1), there exists x; € (0, r) such that

Dyu(xy,0) = cx; /P70

where ¢ > 0 is a constant depending only on p.

6. Bernstein type argument

In this section, we adapt the Bernstein type argument used in [34] (see also [9]
and [10]) to prove improved gradient estimates for (1.7) in high dimensions. As
mentioned before, our proof also relies on the fact that for any ¢ = p, |Du|? is a
subsolution to the normalized p-Laplace equation, which was originally observed
by Uhlenbeck [32]. In addition to (1.3) and (1.4), we need to further assume that /2
and hp are 2 Dini (so that u is C? at the points where Du # 0, see [14, Theorem
2.4]), strictly convex and strictly concave respectively, satisfying (1.10).

Let v denote the normal vector on '+, pointing upwards and downwards re-
spectively. We have the following lemma:

Lemma 6.1. Let T, T'_, hy, hy be as above, s = 2. If u is twice differentiable and
Dyu =00n T UT_, then at any point xo e T UT_,

sk1|Du(xo)* < Dy|Du(xo)|* < ska|Du(xo)|*. (6.1)

Proof. We only prove (6.1) at xo € I". By a rotation, we may assume that x;, = 0
and D, h1(xy) = 0. The normal vector v on I'; is given by

1
V=— (=Dihy,...,—Dp_1hy, ). 6.2)

Vv 1+ |Dyhy|?
Then D,u = 0 is equivalent to
n—1
Z DjuDjhl — Dyu=0.
j=1

Applying D; to the equation above fori =1, ...,n — 1, we have at xo,

n—1
> DjuDijhy — Diyu = 0. (6.3)
j=1
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By direct computation, at x,

n
Dy|Dul* = s|Dul*"* " DjuDiyu
i=1
n—1n—1

= S|DM|S_2 Z Z D,-uDjuDijhl,

i=1 j=1

where in the second line, we used (6.3) and D, u(xg) = 0. Then (6.1) follows from
(1.10). O

Proof of Theorem 1.5. For convenience, we let y =28 € [0, 1).
Case 1: For p = 2, we consider the quantity

p=py

F=Q 2 [Dul”,

where

5K2 2

e
Q=—+1P-
K1
We will show by contradiction that ' does not achieve its maximum on (I'y U
I'_) N &, orin £, for some suitable ry which is independent of e. Therefore, I
can only achieve maximum on

{IX'I = ro} N,

and (1.14) follows.

If F4/2 achieves it maximum at a point xo, we may assume that Du(xq) # 0.
First we show that xo ¢ T’y N Q,,. A similar argument applies to T'_ N Q,,. On
I',, the normal vector v is given by (6.2). At xq, by (6.1) with s = p,

p,F =E=PL 0™ 71D, 0lDul? + 0

p=pry

2 D, |Dul?

pP—ry n—1

(p—pr)Q—= ! 512

- Djhixj + —————(&/2+ hy) | | Dul?
2_ D 2(1 =y /

v1+|Dx’hl|2 j=1

+ pk2Q 7 | DulP.

A

We choose r( small enough such that
—1 < —1 <_
VI+IDohi? ™~ 1+ lox'?

By (1.3) and (1.10), we have

for |x'| < rop.

| &~

n—1

1
ZDjhlxj é I<1|)C/|2 and hl z §K1|x/|2.
J=1
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Therefore,

_ 4 )
D,F §Qp2py_1|Dul”(— (P — PV)|:K1|x I+

£ ne _ K2 2
+ pK2<K1 + |x’| 20 = s xn>>

p=py _ 4 5pK2
=07 YpulP| - —(p - py)alx')? — ———2—x2) <0.
5 Y)K1

5K2 2
(e + K1 [x| )i|
40 =y

Hence F does not achieve its maximum on '} N ﬁro. Next, we will show that
xo & 2y, by assuming otherwise and showing that a'/ D;; F (xo) > 0, where

a'(x) = 8;; + (p — 2)|Du|"*DjuDju (6.5)
is symmetric. Note that
E1° S a'&&; < (p— DIEP, VEeR", (6.6)

and if u is a solution of (1.7), then @/ Djju = 0. Since Du(xo) # 0. By the
continuity of Du, Du # 0 in a neighborhood of xq, and hence a*/ is well defined
in the neighborhood. By direction computations,

aijDijF
p=py = i: P p=py P p=ry
= Q 7 (a" Dij|Dul”) + |Du|(a" Di; Q" 2) + 2a" (Di| Du|")(D; Q 2 7).
(6.7)

Next, we estimate the three terms on the right-hand side above. First,

p=pry

a''D;j Q2

p—pry _

1>Q : 2DiQDjQ].
6.8)

P‘PV(P—PV_

ii[P— PV p=pr_ 4
— g% ] D::
a[ ;¢ i+ 2

Since a'/ D;ju = 0, applying Dy gives
ai-/ D,-jku + Dkai-/Diju =0.

Since

Dkaij —(p-2) DikuDju + DiuDjku _ 2D,~uDjuDkluDlu 7
| Dul|? | Dul*
we have
a'l DjjruDru = —Dya'’ D;juDyu

= —2(p — 2)|D|Dul|> + 2(p — 2)| Du|~*| Anout|?, (6.9)
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where Agu := D;juDjuD;;u. By (6.5) and (6.9), we have
ail D;;|Dul? =pa"/'[(p —2)| Du|P~* Dyu D D jju Dy
+ |Dul” 2 Dygu D + | Dul~2 Dyu Diju |
=p|Du|”*4[(p —2)| Du*|D|Dull* + (p — 2)*| Du|*| Asou|*
+ |Du*|D*ul* + (p — 2)|Du|*|D| Du||* = 2(p — 2)| Du|*|D|Du||*
+2(p = D Dul 2| Accul?

=p|Dul?™*] p(p = 2| Dul 2| Aceu* + [Dul? | D?ul?]. (6.10)
Note that at the point xg, foranyi = 1,2, ...,n,
0=D;F =(D;Q" )| Du|” + Q"7 (D;|Dul"). (6.11)

We split the last term on the right-hand side of (6.7) into
2p —

—a

For the first term on the right-hand side above we use (6.11) to substitute D; |Du|?,

24'

2p

Y(Di|Dul”)(D,| Du|?)

2 —1
__2p-1p— py) 0"\ DulPa’ D, 0D, 0

P

lkMDkuDjluDlu

_ _2p— 1(p—py)? 0"
p 4

— pQ" " [DulP~*(DulDIDul + (p = DIDul 2| AcculP),  (6.12)

~*|Du|?a" D;QD; Q0

where we used (6.5) in the last equality. Therefore, by (6.7), (6.8), (6.10), and
(6.12),

a Dy F =pQ "3 1Dul"™*[(p = 1)(p = DIDul | Acu? + | Dul?| D2ul?
pP— PV

— |Dul|D|Dul] + 0" | DulPa’’ D;; 0

_[2p—1(p—py)2_p—py<p—py_1>]
p 4 2 2

~2|DulPa" D; QD; Q.

p=py
2

Q
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Note that
|Du|?|D|Du|* < |Du|*|D*ul?.

It remains to show

. 2p—1p— _ .
Qa”DUQ:>[ PP 2py-—<p 2py —1>]d1Dg2DjQ. (6.13)
Recall that Q is given in (6.4). Then
Skp
DO = (2x1, e 2dne s ——x,,), (6.14)
(1 =y
and
aliD;Q=m—2— 22
(1 =y
_ Sk2
+(p =21 Du[2 (2D yu = —=—|Dul?)
(1 =y
5
> —2—(p—1)—22
(I =y

By (6.6) and shrinking ry if necessary, we have

25k3

@IDiQD;Q £4(p — (WP + =2
- 1

ﬁ)<ﬁp—ng

In order to show (6.13), we only require

5
=2 (p =Dt 25(p— )]
=y
which is equivalent to (1.12) since y = 2. This concludes the proof for the case
when p = 2.
Case 2: For p € (1, 2), we consider the quantity

2p—1p—py_<p—py_1ﬂ
2 2 ’

G = Q' |Dul?,

where Q is given in (6.4). From the computation of D, F' with p = 2, one can see

that G does not attain its maximum on (I';. U I'_) N ,,. Next, we assume that G

achieves its maximum at xo € £2,,. By the computations as in (6.7) and (6.8) with

p = 2, we have

a D;;G = Q"7 (a" D;j|Du?) + | Dul*(@” Dij Q') + 2a" (D;| Dul*)(D; Q'77),
(6.15)

where a'/ is given in (6.5) with

(p— DIE? S dVgE; < 617, VE e R™. (6.16)
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Next, we estimate the three terms on the right-hand side of (6.15). First,
aD; 0" =a[(1=)0 7Dy @ —y(1 =)@~V DiOD; 0] (6.17)
By (6.5) and (6.9), we have
cz"~"Dij|Du|2 =a'l [ZDijkuDku + 2DjkuD,-ku]
=42 = p)|D|Dul® = 42 = p)| Dul | Accul?

+2|D*ul* = 22 — p)|D|Dul*

=2(2 — p)|D|Dul]* — 42 — p)|Du|~*| Acou|* + 2| D*ul*.
(6.18)

Note that at the point xo, foranyi = 1,2, ..., n,
0= D;G = (D; Q"7")|Dul* + Q"7 (D;| Dul?). (6.19)

As before, we split the last term on the right-hand side of (6.15) as
1. B 3 .. B
5@/ (Di1Du)(D; Q') + Sa” (Di| Dul)(D; Q')

For the first term on the right-hand side, we use (6.19) to substitute D Q'77, and
for the second term, we substitute D; | Du|?. Then by (6.5),

2a" (Di| Dul*)(D; Q') = — %a"f' (Di| Dul*)(D;|Dul*) Q"' | Du| ™
- %a’j(DiQl_y)(Dle_y)|Du|2Q_l+y
=— 20" |Du|2a" DiyuDyuD jjuDju
— %(1 —y)?Dul*Q™""7a" D;QD; Q
=—20"7|D|Dull* + 22 — p) Q"7 |Du| | Asou|?
- %(1 — ) Dul*Q~"""d" D; QD; 0. (6.20)
Therefore, by (6.15), (6.17), (6.18), and (6.20),
a1 D;;G =022 ~ p) = 2IDIDul = 22 — )| Dul | Accul* + 2/ D%ul?
+ (1 =y)Q 77 |Dul*a” Di; Q
~[ra-n+ %(1 - )| IDulr o™ a' Di0D; 0.
Since

|Du| ™| Asoul* < |D|Dul)* < |D*ul?,
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it remains to show

» 3 ,
0a'1D;;0 > [y + Sa- »|aD;0D; 0. (6.21)
By (6.14), we have
. 3
a”D,-jQ =2n—2 — —K2
I =y
5Ky
— 2 - p)|Du|2(2|Dyu)* — ————|D,ul?
@ = p)IDul > (2Deul = = D)
5
>2n—2— L—2(2—p).
(I =y)k1
By (6.16) and shrinking r if necessary, we have
g 257
ijp. 0 < ey 2% 2
a1 DioD;0 < 4(IWP + o V)ZK%X”) <50.
In order to show (6.21), we only require
5K2 3
m—2- 2 22— p) 25|y + 50 -],
=y 2

which is equivalent to (1.13) since y = 2. This concludes the proof for the case
when p € (1,2). O
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Appendix A.

In the appendix, we provide an alternative proof of the gradient estimates of order
£~ 1/2 using a Bernstein type argument. This proof also requires the assumptions
that 41 and h; are CZDini fynctions and satisfy (1.10) for some «1,« > 0, in
addition to (1.3) imposed in Theorem 1.1.

Theorem A.1. Let hy, hy be C2:Dini functions satisfying (1.10), p > 1, n 2 2,
e € (0,1), and u € WhP(Q21) be a solution of (1.7). Then there exists a positive
constant C depending only on n, p, k1, and k3, such that

|Du(x)| £ Cllullr=@) (e + X' for x € Qip. (A.1)
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Proof. Without loss of generality, we may assume k; € (0, 1] and «p > 1. The
case p = 2 has been shown in [6,34]. It remains to show the cases when p > 2
and p € (1, 2).

Case 1: For p > 2, we consider the quantity F' /2 where

F = Q|Dul® + Au?, Q=¢e+ |x'|? —4x; ' i3x2 (A2)

ne
g = 2 and A are some positive e-independent constants to be determined later. Let
Sa:={0Q|Dul* > 100Au>}.

We will show that F4/2 does not achieve its maximum on (I'y UT_) N 5,0 NSy
or in £2,, N S4 for some suitable ¢, A, and rg. Therefore, F /2 can only achieve its
maximum in

Q,, N {QIDul* < 100Au?},
or on
{Ix'] = ro} N Q,

so (A.1) follows from either case. B
First we show that F9/2 does not achieve its maximum on 'y NQyNSa. Asimilar

argument applies to I'_ N Q,, N S4. On 'y, the normal vector v is given by (6.2).
Then

D, Fi/? = %Fq/z—lququ + QDy|Duf?)

—1 2
) " K

- %F’NH (7[ Y Djhyx; +4—2(8/2+h1)]|Du|2 + QDV|Du|2)>.
J141Dyhi2 "5 k1

We choose r¢ small enough such that

-2 -2
< < —1 for |x'| < ro.
VIH Dok 2~ 1+ Jix/2

By (1.3) and (1.10), we have

n—1

1
ZDjhlxj > k1lx')? and By = §K1|x/|2.
=1

Therefore, by (6.1) with s = 2, we have

DUFq/Z

q .q/2—-1 2 /2 "22 2012 /2 "22 2
EF [Dul“| — | k1|x" |7 +2—=e 4+ 25 |x"|7 | + 262 e + |X'|7 —4—=x,,
K1 K1

A

2
K
- —%Fq/z_llDu|2|:2K2<K—2 - 1)5 + 2 (ks — DI+ kp ¥ 2+ sixﬁ]
K1 K1

< 0.
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Hence F4/% does not achieve its maximum on rLn 5,0 N S4. Next, we will show
F4/2 does not achieve its maximum in ,, N S4 by proving that a’/ D;; F4/2 > 0,
where a'/ is given in (6.5). By direct computations, we have

all Dy Fi/? = %Fq/z_laijDijF + %(% - 1)Fq/2—2a"fD,-FD,-F,
D;F = D; Q|Du|* + 20 DixuDyu + 2AuDju,
and

D;jF =D;; Q|Du|? 4 2D; Q DuD jxu + 2D Q DiuDigu
+ 2Q(Dl~kuDjku + DkuD,-jku) + 2A(uD,-ju + DiuDju).

Then by (6.5) and because a’/ D;ju = 0,
aile‘jF
=d" D;; Q|Dul* + 4(p — 2)|Du| > D;uD; Q Aou + 4D; Q DyuDjxu + 20| D*ul?
+2(p —2)Q|D|Dull* + 2Qa" D;jjuDyu + 2Aa” DiuDju,

where Asou := DjuDjuD;ju. By (6.9),
aile‘jF
= a" D;j Q|Dul* + 4(p — 2)|Du| "> DjuD; Q Asou + 4D; Q DguDiu + 20| D*ul*
—2(p —2)Q|D|Du|* + 4(p — 2) Q| Du| ™| Avout|* + 2Aa" DiuD;u.
By another direction computation, we have
a’ D;FD;F
=a"D; 0D; Q|Dul* +40%a" DjjuDyuD jjuDpu + 4A%ua" DiuDju
+40|Dul*a" D; QD jjuDju + 4Au|Dul*a’/ D; QD ju + 8AQua'’ DjjuDyuD ju
=a" D;QD; Q|Dul* + 4(p — 2) Q%1 Du| 2| Acou|* +4Q% | Dul?| D| Dul|?
+4(p — DA% Du|? + 4(p — 2)QD;juD; O Asou + 40 D; O D;xuDyu|Du)?
+4A(p — D|Dul*uD;uD; Q + 8(p — ) AQuAsout.
Therefore,
' D;jF/?
4 o ir e 1
= JF1272[a" D;; QI Dul’ F +201D1Dull*((g = 2 QIDul* ~ (p = 2)F)
+4(p — 2 DjuD; QAsou| Du| "2 (F + (q — 2)Q| Dul*/2) + 2Q F|D*u|?
+4D; QDuDjgu(F + (q — 2)Q|Dul?/2)
+4(p — 2 0|Dul~*(F + (¢ — 2) Q| Dul?/2)| Acoul*
+2AFa" DiuDju + (g — 2)a"’ |Du*D; 0D; 0/2 +2(p — (g — 2)A*u?|Du|?
+2A(p — (g — 2)|Du|2uD,~uDi O+4(p—1(g— 2)AQquou]. (A.3)
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Note that in Sy4,
101
QIDu® £ F < --0|Du?, (A4)
By (6.6),
(g —2a"D;0D;Q/2 = (¢ —2)|DQI*/220 for g =2,

and
a" D;; Q|Du|*F +2AFa" DiuD;u

=[2(n — 1) — 8] '&3 + (p — 2)|Du| 22| Dyul? — 8«; k3| Dyul*)]| Dul* F

+2AFa"’ DiuDju
> (2(n D=8k KR p— 1)+ 2A)|Du|2F
> (2(n— 1) — 8k, '3 (p — 1)+2A)|Du|4Q. (A.5)

We choose g = %(p —2)+2 > p,sothat

20|D|Dull*((g —2)Q|Dul* — (p — 2)F)

101
> 2QID|Du||2<(q =2 = 1557 - 2))Q|Du|2 =0.

It remains to control
4(p — 2)DijuD; Q Aoott| Du| "> (F + (g — 2)Q|Dul*/2)
+4D; Q DyuDiu(F + (g — 2)Q|Dul*/2)
+2A(p — 1)(g — 2)|Dul*uD;uD; Q + 4(p — 1)(q — 2)AQuAccu
= I+I1I+1II+1V.

Since p > 2, we have

20p—-2q 2[%(1’_2)+Z]

= 2.
P-D@-2 BT 7

Fix a constant B € (2, %). We shrink rg if necessary so that |DQ|2 <80.

By Young’s inequality and (A.4),

g<(P=2_Br-ba=-2
= 2 4q
+ C(p)|Dul*(F + (g —2)Q|Dul*/2)

< (4(p_2) _ 2B(p —;)(q —2)>

+C(p)|Dul*Q, (A.6)

) |Du|~*|D Q| Acott|*(F + (g — 2) Q| Du|?/2)

O|Du| ™| Acou*(F + (¢ — 2)Q|Dul*/2)
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where C(p) is some positive constant depending on p. By Young’s inequality and
(A4),
101 ¢g-—2

1 §4(— —)D D2u||Du)?
11| = 100-1' 5 |DQ||D"ul|Dul”Q

101 g —2\2
+ =) 1D 1Dul* + 0% D%l Dul?

<4(—
= (100 2
101 2

q —2\2 4 2.2
< - —
:32(1004— ) ) |Du|"Q + QF|D*ul~, (A7)

1111 < 2(p — 1)(g — 2)A|Dul*|u||DQ|
4 4B
< o . . 22 2, _ 4
s <2 B)(p 1)(g —2)A"u”|Du| +B_2(P (g —2)|Dul"Q,
(A.8)
and

4
IVI=2 (=D - 2)A%u?|Dul?® 4+ B(p — 1)(q — 2) Q%1 Du| ™| Asoul?

4
=5 (=D - 2)A*u?| Dul?

n 2B(p — (g —2)

OIDu| ™| Asou*(F + (g — 2)Q|Dul?/2). (A.9)

Now we choose A large such that
101  ¢q — 2)2

200 — 1) — 8k 12 (p — 1) +2A — C(p) — 32(@ +3-

4B
—m(l? - 1(g—-2)>0.

Then by (A.3), (A.5), (A.6), (A.7), (A.8), and (A.9), a'/ D;; F9/? > 0in QN Sa,
and hence F4/% does not achieve its maximum in €, N S4. This concludes the
proof for the case when p > 2.

Case 2: For p € (1,2), we consider the quantify F given in (A.2). A similar
argument as above shows that F does not achieve maximumon (I' y UI'_)NQ, ;NS 4.
In ©,, N S4, we compute

aijD,'jF
=d" D;; Q|Dul* — 42 — p)|Du| > DiuD; Q Asou + 4D; Q Dyu D +2Q|D*ul?
+2Q2 — p)QID|Dull* — 42 — p)Q|Du|~*|Asoul* + 2Aa” DiuDju,  (A.10)

where a'/ is given in (6.5) satisfying (6.16). By a direct computation and (6.16),
we have

a'" D;j Q|Dul* + 2Aa" DiuDju
=[2(n — 1) — 8ic; 'i5 + (p — 2)|Du| 22| Dyul* — 8k ' k3| Dyu|?)]| Dul?
+2AaijD,-uDju
> (2(n —1) =8k W E =22 = p)+24(p — 1))|Du|2. (A.11)
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Note that
|Du| ™| Acoul* < |D|Dul|* < |D*ul*.
Therefore,

20|D%ul* +2(2 — p)Q|D|Dul]* — 42 — p) Q|Du|™*| Asout|?
>2(p — 1)QID*ul?. (A.12)

It remains to control
—4(2 — p)|Du| "2 DjuD; Q Aot + 4D; Q DyuDjju =: I + 11.
By Young’s inequality and | D Q|* < 8Q for small rg, we have

1] 42 — p>|Du|—1|DQ||Aoou|

p 642 — p)?
<2 1D 0P | Dul | A + T'D uf?
— 2 p)?
g”—Q|Du|—“|Aoou|2+M|Du|2, (A.13)
2 p—1
and
|11 §4|DQ||Du||D2u|
p 64
<L popip?up + 2 1pup
p—1
2 2 64 2
<P oipup —— |Duf?, (A.14)
Py

Now we choose A large such that

642 — p)? 64

2(n — 1) — 8K1 K2 22—-p)+2A(p—1) — —
p—1 p—1

Then by (A.10), (A.11), (A.12), (A.13), and (A.14), aifDijF > 01in ©,,N S4, and
hence F' does not achieve its maximum in £2,, N S4. This concludes the proof for
the case when p € (1,2). O
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