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Abstract

We study the insulated conductivity problem with closely spaced insulators

embedded in a homogeneous matrix where the current-electric field relation is the

power law J = |E |p−2 E . The gradient of solutions may blow up as ε, the distance

between insulators, approaches to 0. We prove an upper bound of the gradient to

be of order ε−³ , where ³ = 1/2 when p ∈ (1, n + 1] and any ³ > n/(2(p − 1))

when p > n +1. We provide examples to show that this exponent is almost optimal

in 2D. Additionally, in dimensions n � 3, for any p > 1, we prove another upper

bound of order ε−1/2+´ for some ´ > 0, and show that ´ ↗ 1/2 as n → ∞.

Mathematics Subject Classification: 35J92 35Q74 74E30 74G70 78A48

1. Introduction and Main results

We investigate the phenomenon of electric field concentration in high-contrast

composites. Such a phenomenon can occur when two approaching inclusions pos-

sess material properties that differ significantly from the background matrix (see e.g.

[8,21,28]). The study of this area originated from [4], where the problem with in-

clusions closely located in a linear background medium was studied numerically. In

this paper, we study the scenario in which the inclusions are insulators, and the back-

ground matrix follows the current-electric field relation described by the power law

J = σ |E |p−2 E, p > 1, (1.1)

where J , E , and σ denote current, electric field, and conductivity, respectively.

Physically, such power law can occur in various materials, including dielectrics,
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plastic moulding, plasticity phenomena, viscous flows in glaciology, electro-rheological

and thermo-rheological fluids; see, e.g., [3,17,20,23,29,30], the second paragraph

of [7] and the references therein.

Let us describe the mathematical setup: let n � 2, � ⊂ R
n be a bounded

domain with C1,1 boundary containing two C1,1 open sets D1 and D2 with dist(D1∪
D2, ∂�) > c > 0. Let

ε := dist(D1,D2),

�̃ := �\(D1 ∪ D2), and σ = 1�̃. The voltage potential u satisfies the p-Laplace

equation with p > 1
⎧
⎪⎪⎪«
⎪⎪⎪¬

− div(|Du|p−2 Du) = 0 in �̃,

∂u

∂ν
= 0 on ∂Di , i = 1, 2,

u = ϕ on ∂�,

(1.2)

where ϕ ∈ C1,1(∂�) is given, and ν = (ν1, . . . , νn) denotes the inner normal

vector on ∂D1 ∪ ∂D2.

Our goal is to quantitatively analyze the concentration of the electric field

E = −Du between the inclusions, and this is a challenging problem even in the

linear case when p = 2. While the optimal blow-up rate for the linear case in two

dimensions was captured about two decades ago in [1,2], the optimal rate in dimen-

sions n � 3 was only recently identified in [12,13]. This optimal rate is linked to

the first non-zero eigenvalue of an elliptic operator on S
n−2, which is determined by

the principal curvatures of the inclusions. This phenomenon is completely different

from the perfect conductivity problem, where the optimal blow-up rates do not de-

pend on the curvatures of the inclusions (see [1,2,5]). For other earlier work on the

linear insulated conductivity problem, we refer the reader to [6,24,25,34,35]. In

the case when the current-electric field relation is given by (1.1), Gorb and Novikov

in [18] and Ciraolo and Sciammetta in [10] studied the field concentration when

D1 and D2 are perfect conductors. They proved that, for n � 2,

‖∇u‖L∞(�̃) �

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

Cε
− n−1

2(p−1) p >
n + 1

2
,

Cε−1| log ε|
1

1−p p = n + 1

2
,

Cε−1 p <
n + 1

2
.

These bounds were shown to be optimal in their respective papers. However, the

phenomenon of electric field concentration between insulators has not been studied

before.

Before stating our main results, let us introduce some notation. We denote

x = (x ′, xn), where x ′ ∈ R
n−1. By choosing a coordinate system properly, we can

assume that near the origin, the part of ∂D1 and ∂D2, denoted by 
+ and 
−, are

respectively the graphs of two C1,1 functions in terms of x ′. That is,


+ =
{

xn = ε

2
+ h1(x ′), |x ′| < 1

}
, 
− =

{
xn = −ε

2
+ h2(x ′), |x ′| < 1

}
,
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where h1 and h2 are C1,1 functions satisfying

h1(0
′) = h2(0

′) = 0, Dx ′h1(0
′) = Dx ′h2(0

′) = 0, (1.3)

c1|x ′|2 � h1(x ′) − h2(x ′) for 0 < |x ′| < 1, (1.4)

‖h1‖C1,1 � c2, ‖h2‖C1,1 � c2, (1.5)

with some positive constants c1, c2. For x0 ∈ �̃, 0 < r � 1, we denote

�x0,r :=
{
(x ′, xn) ∈ �̃ : − ε

2
+ h2(x ′) < xn <

ε

2
+ h1(x ′), |x ′ − x ′

0| < r
}

,

and �r := �0,r . We use Br (x0) to denote the open ball of radius r centered at x0

and we set

Br = Br (0), �r (x0) = �̃ ∩ Br (x0).

By classical C1,³ estimates for the p-Laplace equation and the maximum principle

(see e.g. [26,33]), the solution u ∈ W 1,p(�̃) of (1.2) satisfies

‖u‖L∞(�̃) + ‖u‖C1,³(�̃\�1/2)
� C‖ϕ‖C1,1(∂�) (1.6)

for some constants ³ = ³(n, p) ∈ (0, 1) and C > 0 independent of ε, ϕ, and u.

As such, we focus on the following problem near the origin:
⎧
«
¬

− div(|Du|p−2 Du) = 0 in �1,

∂u

∂ν
= 0 on 
+ ∪ 
−.

(1.7)

For any domain D, we denote the oscillation of u in D by

osc
D

u := sup
D

u − inf
D

u.

Our first main result is the following pointwise gradient estimate of order ε−1/2

for any p > 1 and n � 2:

Theorem 1.1. Let h1, h2 be C1,1 functions satisfying (1.3)–(1.5), p > 1, n � 2,

ε ∈ (0, 1), and u ∈ W 1,p(�1) be a solution of (1.7). Then there exists a constant

C > 0 depending only on n, p, c1, and c2, such that for any x ∈ �1/2 and

η = 1
4
(ε + |x ′|2) 1

2 ,

|Du(x)| � C(ε + |x ′|2)− 1
2 osc
�x,η

u. (1.8)

When n � 3, we improve the upper bound in Theorem 1.1 to the order of

ε−1/2+´ for some ´ > 0.

Theorem 1.2. Let h1, h2 be C1,1 functions satisfying (1.3)–(1.5), p > 1, n � 3,

ε ∈ (0, 1), and u ∈ W 1,p(�1) be a solution of (1.7). Then there exist positive

constants C and ´ depending only on n, p, c1, and c2, such that for any x ∈ �1/2,

|Du(x)| � C(ε + |x ′|2)−1/2+´osc
�1

u. (1.9)



95 Page 4 of 46 Arch. Rational Mech. Anal. (2023) 247:95

When p > n + 1, we derive a more explicit upper bound, under an additional
assumption that h1 and h2 are C2 strictly convex and strictly concave, respectively.
That is, for some positive constants κ1 and κ2,

κ1 In−1 � D2h1(x ′) � κ2 In−1, κ1 In−1 � −D2h2(x ′) � κ2 In−1 for 0 � |x ′| < 1.

(1.10)

Our pointwise gradient estimate of order − n+2δ
2(p−1)

, for any δ > 0 when p > n + 1,

is as follows:

Theorem 1.3. Let n � 2, p > n + 1, h1, h2 be C2 functions satisfying (1.3) and

(1.10), and let u ∈ W 1,p(�1) be a solution of (1.7). Then for any δ > 0 and

ε ∈ (0, 1), we have

|Du(x)| � C(ε + |x ′|2)−
n+2δ

2(p−1) osc
�1

u for x ∈ �1/2, (1.11)

where C is a positive constant depending on n, p, δ, κ1, κ2, and the modulus of

continuity for D2h1(x ′) and D2h2(x ′) at x ′ = 0.

Furthermore, we show that when n = 2, the blow-up exponents −1/2 for p � 3

and −1/(p − 1) for p > 3 obtained in Theorems 1.1 and 1.3 are critical in the

following sense:

Theorem 1.4. For n = 2, p > 1, ε ∈ (0, 1), let � = B5, and D1,D2 be the

unit balls center at (0, 1 + ε/2) and (0,−1 − ε/2), respectively. Let ϕ = x1 and

u ∈ W 1,p(�̃) be the solution of (1.2). Then for any δ > 0, there exists a positive

constant C depending only on p and δ, such that, when p ∈ (1, 3],

‖Du‖L∞(�̃∩B8
√

ε/δ)
�

1

C
ε

−1+δ
2 ,

and when p > 3,

‖Du‖L∞(�̃∩B8
√

ε/δ)
�

1

C
ε

−1+δ
p−1 .

Finally, we also establish a blow-up rate of ε−1/2+´ for the gradient, for any

p > 1 and sufficiently large n, with more explicit constant ´ ∈ [0, 1/2). For this,

we impose a further assumption that h1 and h2 are C2,Dini strictly convex and

strictly concave respectively, satisfying (1.10) for some positive constants κ1 and

κ2.

Theorem 1.5. Let h1, h2 be C2,Dini functions satisfying (1.3) and (1.10), p > 1,

´ ∈ [0, 1/2), ε ∈ (0, 1), and u ∈ W 1,p(�1) be a solution of (1.7). If n, p, and ´

satisfy either

p � 2, n �
5(p − 1)

2

(
p + 1 − 2´(p − 1)

2
+ κ2

(1 − 2´)κ1

)
+ 1, (1.12)

or

1 < p < 2, n �
5

2

(
3 − 2´

2
+ κ2

(1 − 2´)κ1

)
+ 3 − p, (1.13)
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then there exist a positive constant C depending only on n, p, ´, κ1, and κ2, such

that

|Du(x)| � C‖u‖L∞(�1)(ε + |x ′|2)− 1
2 +´ for x ∈ �1/2. (1.14)

Remark 1.6. By (1.12) and (1.13), when n → ∞, ´ can be chosen arbitrarily

close to 1/2. In view of (1.14), the singularity of Du diminishes as the dimension

n increases. We also note that by refining the inequalities in the proof of Theorem

1.5 further, it is possible to improve the lower bounds of n in both (1.12) and (1.13).

However, we have decided not to pursue this in the current paper.

The rest of the paper is organized as follows: in the next section, we give the

proof of Theorem 1.1 using mean oscillation estimates. In Section 3, we demonstrate

the proof of Theorem 1.2 by utilizing a delicate change of variables, an extension

argument, and the Krylov–Safonov Harnack inequality. Sections 4 and 5 are devoted

to the proofs of Theorems 1.3 and 1.4, respectively, for which we construct suitable

sub- and super-solutions. In Section 6, we employ a Bernstein type argument to

prove Theorem 1.5. Here we use the fact that for any q � p, |Du|q is a subsolution

to the normalized p-Laplace equation, as originally observed by Uhlenbeck [32].

Finally, we provide an alternative proof of the gradient estimates of order ε−1/2 in

the Appendix by also using the Bernstein type argument.

2. Mean oscillation estimates

In this section, we give the proof of Theorem 1.1 using mean oscillation esti-

mates. We fix a point x0 ∈ �1/2 and prove (1.8) at x = x0. Note that we can always

assume ε+|x ′
0|2 � c, where c = c(n, p, c1, c2) > 0 could be any sufficiently small

constant depending only on n, p, c1, and c2. Otherwise, by classical estimates (see

[26,33]), (1.8) directly follows. Next, we derive some mean oscillation estimates

of Du on a ball Br (x0) for different radii r .

2.1. Mean oscillation estimates for small r

We recall a classical interior mean oscillation estimate when Br (x0) ⊂ �1.

Estimates of this type, with different exponents involved, were developed in [11,

15,27].

Lemma 2.1. Let u ∈ W 1,p(�1) be a solution to (1.7). There exist constants C > 1

and ³ ∈ (0, 1) depending only on n and p, such that u ∈ C1,³(�1) and for every

Br (x0) ⊂ �1 and ρ ∈ (0, r ], we have

(
 

Bρ (x0)

|Du − (Du)Bρ (x0)|p

) 1
p

� C
(ρ

r

)³
(
 

Br (x0)

|Du − (Du)Br (x0)|p

) 1
p

.
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We denote

Ç(x0, r) =
(
 

Br (x0)

|Du − (Du)Br (x0)|p

) 1
p

.

Then Lemma 2.1 also implies

Corollary 2.2. Under the assumptions of Lemma 2.1, there exists a constant μ1 ∈
(0, 1) depending only on n and p, such that for any μ ∈ (0, μ1], Br (x0) ⊂ �1,

and K ∈ N, it holds that

K+1∑

k=0

Ç(x0, μ
kr) � 2 Ç(x0, r). (2.1)

Proof. We take μ1 ∈ (0, 1) such that Cμ³
1 = 1

2
, where C and ³ are the same

constants as in Lemma 2.1. Replacing r with μkr and setting ρ = μk+1r , we get

Ç(x0, μ
k+1r) �

1

2
Ç(x0, μ

kr).

Summing the above inequality over k = 0, 1, . . . , K , we obtain (2.1). 
�

2.2. Mean oscillation estimates for intermediate r

Next, we consider the case when Br (x0) intersects with only one of 
+ and


−. In this case, we choose x̂0 ∈ 
+ ∪
− such that dist(x0, 
+ ∪
−) = |x̂0 − x0|
and we derive mean oscillation estimates around x̂0. Note that we can assume

ε + c2|x ′
0|2 � 1/4 and thus by (1.5) and the triangle inequality, |x̂ ′

0| � 3/4.

Without loss of generality, we assume x̂0 ∈ 
−. Then by (1.4) and (1.5), there

exists a constant c = c(n, c1, c2) ∈ (0, 1/4), such that B(x̂0, r) ∩ 
+ = ∅ for any

r ∈ (0, c(ε + |x̂ ′
0|2)).

We first choose a coordinate y = (y′, yn) such that y(x̂0) = 0, the direction of

axis yn is the upper normal vector at x̂0 ∈ 
−, and �R0(x̂0) = {y ∈ BR0 : yn >

È(y′)}, where R0 = c3(ε+|x̂ ′
0|2) ∈ (0, 1/4) for some constant c3 = c3(n, c1, c2) ∈

(0, 1/8) and È : {y′ ∈ R
n−1 : |y′| < R0} → R is a C1,1 function in the coordinate

system depending on x̂0 such that

È(0′) = 0, Dy′È(0′) = 0, ‖È‖C1,1 � C‖h2‖C1,1 . (2.2)

Then we let

z = �(y) = (y′, yn − È(y′)).

Since 
− is C1,1, by (2.2) there exist constants C = C(n, c1, c2), c4 = c4(n, c1, c2)

∈ (0, c3) ⊂ (0, 1/8), and R1 = c4(ε + |x̂ ′
0|2) such that

|Dy′È(y′)| � C |y′| � 1/2 if |y′| � 2R1, (2.3)

�r/2(x̂0) ⊂ �−1(B+
r ) ⊂ �2r (x̂0) ∀ r ∈ (0, 2R1], (2.4)
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and thus

|D�(y) − In| � C |y′| � 1/2 if |y′| � 2R1, (2.5)

Therefore, there exist positive constants c(n) and c′(n) depending only on n, such

that for any x̂0 ∈ (
+ ∪ 
−) ∩ {x ∈ R
n : |x ′| � 3/4} and 0 < r � c4(ε + |x̂ ′

0|2),
c(n)rn � |�r (x̂0)| � c′(n)rn . (2.6)

Note that

det(D�) ≡ 1. (2.7)

Then u1(z) := u(�−1(z)) satisfies the following equation with conormal boundary

condition ⎧
⎪«
⎪¬

− divz

(
|AT Dzu1|p−2 AAT Dzu1

)
= 0 in B+

R1
,

(
|AT Dzu1|p−2 AAT Dzu1

)
n

= 0 on BR1 ∩ ∂R
n
+,

(2.8)

where we denote

A := A(z) := (ai j (z)) := D�(�−1(z)).

Next we extend u1 and the coefficient matrix A to the whole ball BR1 . We take the

even extension of u1, ann , and ai j , i, j = 1, 2, . . . , n − 1, with respect to zn = 0,

and take the odd extension of ain and ani , i = 1, 2, . . . , n − 1, with respect to

zn = 0. We still denote these functions by u1 and A after the extension. Because

of the conormal boundary condition, u1 satisfies

− divz

(
A(z, Dzu1)

)
= 0 in BR1 , (2.9)

where the nonlinear operator A is defined as

A(z, ξ) = |AT ξ |p−2 AAT ξ for z ∈ BR1 , ξ ∈ R
n .

Lemma 2.3. There exists a constant C = C(n, p, c1, c2) > 0, such that for any

z ∈ BR1 and ξ ∈ R
n ,

|A(z, ξ) − |ξ |p−2ξ | � C |z′| |ξ |p−1. (2.10)

Proof. We recall a well-known inequality (see [19, Lemma 2.1]): for any p > 1

and ξ1, ξ2 ∈ R
n , it holds that

c−1
(
|ξ1|2 + |ξ2|2)

p−2
2 �

∣∣|ξ2|p−2ξ2 − |ξ1|p−2ξ1

∣∣
|ξ2 − ξ1|

� c
(
|ξ1|2 + |ξ2|2)

p−2
2 , (2.11)

where c = c(n, p) > 1 is a positive constant. Using (2.11), (2.5), and the triangle

inequality, we obtain

|A(z, ξ) − |ξ |p−2ξ | �
∣∣|AT ξ |p−2(A − In)AT ξ

∣∣ +
∣∣|AT ξ |p−2 AT ξ − |ξ |p−2ξ

∣∣

� |A − In| |AT ξ |p−1 + c
(
|AT ξ |2 + |ξ |2

) p−2
2 |AT ξ − ξ | � C |z′| |ξ |p−1.

Thus the proof of (2.10) is completed. 
�
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Assume that r ∈ (0, R1]. We let v1 ∈ u1 + W
1,p
0 (Br ) be the unique solution to

{
− divz(|Dzv1|p−2 Dzv1) = 0 in Br ,

v1 = u1 on ∂ Br .
(2.12)

By testing (2.12) and (2.9) with v1 − u1 and using (2.10), we have the comparison

estimate

 

Br

|Dzu1 − Dzv1|p � Crmin{2,p}
 

Br

|Dzu1|p, (2.13)

where C > 0 is a constant depending only on n, p, c1, and c2. For detailed proof

of (2.13), see [15, Eq. (4.35)] when p ∈ (1, 2) and [16, Lemma 3.4] when p � 2.

Applying Lemma 2.1 and the comparison estimate (2.13), we have

Lemma 2.4. Suppose that u1 ∈ W 1,p(B+
R1

) is a solution to (2.8). Then for any

μ ∈ (0, 1) and r ∈ (0, R1], we have

(
 

B+
μr

|Dz′u1 − (Dz′u1)B+
μr

|p + |Dzn u1|p

)1/p

� Cμ³

(
 

B+
r

|Dz′u1 − (Dz′u1)B+
r
|p + |Dzn u1|p

)1/p

+ Cμr θp

(
 

B+
r

|Dzu1|p

)1/p

,

(2.14)

where θp = min{1, 2/p}, ³ is the same constant as in Lemma 2.1, Cμ is a constant

depending on μ, n, p, c1, c2 and C is a constant depending on n, p, c1, c2.

Proof. By Lemma 2.1, (2.13), and the triangle inequality, we have

(
 

Bμr

|Dzu1 − (Dzu1)Bμr |p

)1/p

� C

(
 

Bμr

|Dzv1 − (Dzv1)Bμr |p

)1/p

+ C

(
 

Bμr

|Dzu1 − Dzv1|p

)1/p

� Cμ³

(
 

Br

|Dzv1 − (Dzv1)Br |p

)1/p

+ Cμ
− n

p

(
 

Br

|Dzu1 − Dzv1|p

)1/p

� Cμ³

(
 

Br

|Dzu1 − (Dzu1)Br |p

)1/p

+ Cμ
− n

p

(
 

Br

|Dzu1 − Dzv1|p

)1/p

� Cμ³

(
 

Br

|Dzu1 − (Dzu1)Br |p

)1/p

+ Cμr θp

(
 

Br

|Dzu1|p

)1/p

. (2.15)

Since u1 is even in zn , (2.15) directly implies (2.14). The proof is completed. 
�
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We now define

ψ(x̂0, r) =
(
 

�r (x̂0)

|Dy′u − (Dy′u)�r (x̂0)|p + |Dyn u|p

)1/p

. (2.16)

Let μ ∈ (0, 1) and r ∈ (0, R1/2] be constants. By using change of variables, (2.3),
(2.4), (2.7), and the triangle inequality, we have

(
 

B+
μr

|Dz′u1 − (Dz′u1)B+
μr

|p + |Dzn u1|p

)1/p

=
(
 

�−1(B+
μr )

|Dy′u + Dyn u Dy′È − (Dy′u + Dyn u Dy′È)�−1(B+
μr )

|p + |Dyn u|p

)1/p

� C

(
 

�μr/2(x̂0)

|Dy′u − (Dy′u)�μr/2(x0)|p + |Dyn u|p

)1/p

−C ′
(
 

�μr/2(x̂0)

|Dyn u Dy′È |p

)1/p

� Cψ(x̂0, μr/2) − C ′μr

(
 

�μr/2(x̂0)

|Du|p

)1/p

, (2.17)

where C and C ′ are positive constants depending on n, p, c1, and c2. Similarly,

(
 

B+
r

|Dz′u1 − (Dz′u1)B+
r
|p + |Dzn u1|p

)1/p

� C ′′ψ(x̂0, 2r) + C ′′r

(
 

�2r (x̂0)

|Du|p

)1/p

,

(2.18)

where C ′′ is a positive constant depending only on n, p, c1, and c2. Therefore, by

using (2.17), (2.18), and (2.6), (2.14) implies that

ψ(x̂0, μr/2) � Cμ³ψ(x̂0, 2r) + Cμr θp

(
 

�2r (x̂0)

|Du|p

)1/p

.

By replacing μ/4 and 2r with μ and r respectively, we obtain

ψ(x̂0, μr) � Cμ³ψ(x̂0, r) + Cμr θp

(
 

�r (x̂0)

|Du|p

)1/p

for μ ∈ (0, 1/4) and r ∈ (0, R1], where we recall that R1 = c4(ε + |x̂ ′
0|2). Note

that the same argument above also holds when x̂0 ∈ 
+. Therefore, using the same

argument as in Corollary 2.2, we have

Lemma 2.5. Suppose that u is a solution to (1.2) and x̂0 ∈ (
+ ∪ 
−) ∩ {x ∈ R
n :

|x ′| � 3/4}. Then there exist constants c4 ∈ (0, 1) and C > 0, both depending
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only on n, p, c1, and c2, and Cμ > 0 depending on n, p, c1, c2, and μ, such that

for any μ ∈ (0, 1/4) and r ∈ (0, c4(ε + |x̂ ′
0|2)], it holds that

ψ(x̂0, μr) � Cμ³ψ(x̂0, r) + Cμr θp

(
 

�r (x̂0)

|Du|p

)1/p

,

where θp = min{1, 2/p}, ³ is the same constant as in Lemma 2.1, and ψ is defined

in (2.16). Moreover, there exist constants μ2 = μ2(n, p, c1, c2) ∈ (0, 1/4) and

C ′
μ = C ′

μ(n, p, c1, c2, μ) > 0, such that for any μ ∈ (0, μ2] and K ∈ N, it holds

that

K+1∑

k=0

ψ(x̂0, μ
kr) � 2 ψ(x̂0, r) + C ′

μ

K∑

k=0

(μkr)θp

(
 

�
μkr

(x̂0)

|Du|p

)1/p

.

2.4. Mean oscillation estimates for large r

Finally, we consider the case when Br (x0) could potentially intersects with

both 
+ and 
−. In this case, we assume x0 ∈ �1/2 and c4
12

(ε + |x ′
0|2) � r �

c5(ε + |x ′
0|2)

1
2 , where c4 is the same constant as in Lemma 2.5 and c5 is a constant

which will be determined later. We define the map Z = �̃(x) by

⎧
«
¬

Z
′ = x ′ − x ′

0,

Zn = (h1(x ′
0) − h2(x ′

0) + ε)
( xn − h2(x ′) + ε/2

h1(x ′) − h2(x ′) + ε
− 1

2

)
.

Thus �̃ is invertible in �x0,1/2,

Q1/2 := �̃(�x0,1/2) =
{
(Z ′, Zn) ∈ R

n : |Z ′| <
1

2
, |Zn | <

1

2
(h1(x ′

0) − h2(x ′
0) + ε)

}
,

and


̃± := �̃

(

± ∩

{
x ∈ R

n : |x ′ − x ′
0| <

1

2

})

=
{
(Z ′,Zn) ∈ R

n : |Z ′| <
1

2
, Zn = ±1

2
(h1(x ′

0) − h2(x ′
0) + ε)

}
.

Then u2(Z) := u(�̃−1(Z)) satisfies the following equation with homogeneous

conormal boundary condition

⎧
⎪«
⎪¬

− divZ

(
|BT DZu2|p−2(det(B))−1 B BT DZu2

)
= 0 in Q1/2

(
|BT DZu2|p−2(det(B))−1 B BT DZu2

)
n

= 0 on 
̃±,

where we denote

B := B(Z) := (bi j (Z)) := D�̃(�̃−1(Z)).
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For Z ∈ Q1/2, let x = �̃−1(Z). Then

bi i (Z) = 1 for i ∈ {1, 2, . . . , n − 1},
bi j (Z) = 0 for i �= j, i ∈ {1, 2, . . . , n − 1}, j ∈ {1, 2, . . . , n},

bnj (Z) = h1(x ′
0) − h2(x ′

0) + ε

(h1(x ′) − h2(x ′) + ε)2

·
[

Dx j
h2(x ′)

(
xn − h1(x ′) − ε

2

)
− Dx j

h1(x ′)
(

xn − h2(x ′) + ε

2

)]

for j ∈ {1, 2, . . . , n − 1}, and

bnn(Z) = h1(x ′
0) − h2(x ′

0) + ε

h1(x ′) − h2(x ′) + ε
.

Therefore,

det(B(Z)) = bnn(Z) = h1(x ′
0) − h2(x ′

0) + ε

h1(x ′
0 + Z ′) − h2(x ′

0 + Z ′) + ε

is a function independent of Zn . Assume

c4

12
(ε + |x ′

0|2) � r �
1

4
(ε + |x ′

0|2)
1
2 �

1

2
(2.19)

and let Z0 = �̃(x0). Then for any Z ∈ Q1/2 with |Z ′| � r and x = �̃−1(Z), by

the triangle inequality, we have

|x ′| � r + |x ′
0| �

(
1 +

√
12/c4

)
r

1
2 and |x ′|2 �

1

2
|x ′

0|2 − r2 �
1

4
(|x ′

0|2 − ε).

Thus, using (1.3), (1.4), and (1.5), we infer that for j = 1, 2, . . . , n − 1 and some

constant C > 0 depending only on n, p, c1, and c2,

|bnj (Z)| � 2c2
|x ′|(h1(x ′

0) − h2(x ′
0) + ε)

h1(x ′) − h2(x ′) + ε
� 2c2

|x ′|(2c2|x ′
0|2 + ε)

c1|x ′|2 + ε

� C |x ′| � Cr
1
2 �

Cr

(ε + |x ′
0|2)

1
2

,

|bnn(Z) − 1| =
∣∣∣
´ 1

0
d
dt

(
h1(t x ′ + (1 − t)x ′

0) − h2(t x ′ + (1 − t)x ′
0)
)
dt

h1(x ′) − h2(x ′) + ε

∣∣∣

� 2c2
(|x ′| + |x ′

0|)|x ′ − x ′
0|

c1|x ′|2 + ε
�

Cr

(ε + |x ′
0|2)

1
2

,

and similarly,

∣∣(det(B(Z))
)−1 − 1

∣∣ =
∣∣(bnn(Z)

)−1 − 1
∣∣ �

Cr

(ε + |x ′
0|2)

1
2

. (2.20)
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Therefore, when (2.19) holds and Z ∈ Q1/2 with |Z ′| � r , we have for some

constant C = C(n, p, c1, c2) > 0,

|B(Z) − In| �
Cr

(ε + |x ′
0|2)

1
2

. (2.21)

In particular, there exists c5 = c5(n, p, c1, c2) ∈ (0, 1/4), such that for any c4
12

(ε +
|x ′

0|2) � r � c5(ε + |x ′
0|2)

1
2 and Z ∈ Q1/2 with |Z ′| � r , it also holds that

|B(Z) − In| � 1/2 and
∣∣(bnn(Z)

)−1 − 1
∣∣ � 1/2. (2.22)

Note that we can always assume ε + |x ′
0|2 to be sufficiently small so that c4(ε +

|x ′
0|2) � c5(ε + |x ′

0|2)
1
2 . Next we extend u2 and B to the whole cylinder C1/2 :=

{(Z ′,Zn) ∈ R
n : |Z ′| < 1/2}. We take the even extension of u2, bnn , and

bi j , i, j = 1, 2, . . . , n − 1, with respect to Zn = 1
2
(h1(x ′

0) − h2(x ′
0) + ε), and

take the odd extension of bin and bni , i = 1, 2, . . . , n − 1, with respect to Zn =
1
2
(h1(x ′

0) − h2(x ′
0) + ε). Then we take the periodic extension in Zn axis, so that

the period is equal to 2(h1(x ′
0) − h2(x ′

0) + ε). We still denote these functions by

u2 and B after the extension. Then because of the conormal boundary condition,

u2 satisfies

− divZ

(
B(Z, DZu2)

)
= 0 in C1/2, (2.23)

where the nonlinear operator B is defined as

B(Z, ξ) = d(Z ′)|BT ξ |p−2 B BT ξ for Z ∈ C1/2, ξ ∈ R
n,

and

d(Z ′) :=
(
bnn(Z)

)−1 = h1(Z
′ + x ′

0) − h2(Z
′ + x ′

0) + ε

h1(x ′
0) − h2(x ′

0) + ε
.

Similar to (2.10), using (2.20), (2.21), (2.22), and (2.11), we obtain that for any

r ∈
[

c4
12

(ε + |x ′
0|2), c5(ε + |x ′

0|2)
1
2
]
, Z ∈ Br (Z0), and ξ ∈ R

n ,

|B(Z, ξ) − |ξ |p−2ξ | �
Cr

(ε + |x ′
0|2)

1
2

|ξ |p−1, (2.24)

where C > 0 is a constant depending only on n, p, c1, and c2. Now we let v2 ∈
u2 + W

1,p
0 (Br (Z0)) be the unique solution to

{
− divZ

(
|DZv2|p−2 DZv2

)
= 0 in Br (Z0),

v2 = u2 on ∂ Br (Z0).

Using (2.24), similar to (2.13), we have the following comparison estimate

 

Br (Z0)

|DZu2 − DZv2|p � C
( r

(ε + |x ′
0|2)

1
2

)min{2,p}  

Br (Z0)

|DZu2|p, (2.25)
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where C > 0 is a constant depending only on n, p, c1, and c2.

We define

Ç̃(x0, r) =
(
 

Br (Z0)

|DZu2 − (DZu2)Br (Z0)|p

)1/p

. (2.26)

Then following the same proof as that of Lemma 2.5 with (2.25) in place of (2.13),

we have

Lemma 2.6. Suppose that x0 ∈ �1/2 and u2 is a solution to (2.23). Then there

exist constants c5 ∈ (0, 1/4) and C > 0, both depending only on n, p, c1, and c2,

and Cμ > 0 depending on n, p, c1, c2, and μ, such that for any μ ∈ (0, 1) and

r ∈
[

c4
12

(ε + |x ′
0|2), c5(ε + |x ′

0|2)
1
2 ], it holds that

Ç̃(x0, μr) � Cμ³Ç̃(x0, r) + Cμ

( r

(ε + |x ′
0|2)

1
2

)θp
(
 

Br (Z0)

|DZu2|p

)1/p

,

where θp = min{1, 2/p}, ³ is the same constant as in Lemma 2.1, c4 is the same

constant as in Lemma 2.5, and Ç̃ is defined in (2.26). Moreover, there exist constants

μ3 = μ3(n, p, c1, c2) ∈ (0, 1) and C ′
μ = C ′

μ(n, p, c1, c2, μ) > 0, such that for

any μ ∈ (0, μ3] and k1, k2 ∈ N satisfying c4
12

(ε + |x ′
0|2) � μk2r � μk1r �

c5(ε + |x ′
0|2)

1
2 , it holds that

k2+1∑

k=k1

Ç̃(x0, μ
kr) � 2 Ç̃(x0, μ

k1r) + C ′
μ

k2∑

k=k1

( μkr

(ε + |x ′
0|2)

1
2

)θp

(
 

B
μk r

(Z0)

|DZu2|p

) 1
p

.

2.5. Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We prove the theorem at any point x0 ∈ �1/2.

Step 1: Notation and choices of constants. We choose μ = 1
6

min{μ1, μ2, μ3},
where μ1, μ2, and μ3 are the same constants as in Corollary 2.2, Lemma 2.5, and

Lemma 2.6. We define r j = c5
2
μ j (ε + |x ′

0|2)
1
2 and let j1, j2 be the integers such

that

r j1 �
c4

6
(ε + |x ′

0|2), r j1+1 <
c4

6
(ε + |x ′

0|2),

and

r j2 � dist(x0, 
+ ∪ 
−), r j2+1 < dist(x0, 
+ ∪ 
−),

where c4 and c5 are the same constants as in Lemma 2.5 and Lemma 2.6. Note that

we can assume ε+|x ′
0|2 to be sufficiently small so that c5

2
(ε+|x ′

0|2)
1
2 > c4

6
(ε+|x ′

0|2)
and thus j1 � 0.
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We denote

Ç j =

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

(
 

Br j
(Z0)

|DZu2 − (DZu2)Br j
(Z0)|p

)1/p

if 0 � j � j1,

(
 

�r j
(x0)

|Du − (Du)�r j
(x0)|p

)1/p

if j � j1 + 1,

T j =

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

(
 

Br j
(Z0)

|DZu2|p

)1/p

if 0 � j � j1,

(
 

�3r j
(x0)

|Du|p

)1/p

if j � j1 + 1,

and

m j =
{

(DZu2)Br j
(Z0) if 0 � j � j1,

(Du)�r j
(x0) if j � j1 + 1,

where u2, Z0, and the coordinate Z are defined in Section 2.4. In the following

proof, we use C , C ′ to denote positive constants depending only on n, p, c1, and

c2, which may differ from line to line.

Step 2: Preliminary estimates and iterations. Next, we derive some preliminary

estimates. First, we show that there exists a constant c = c(n) > 0, such that for

any j � j1 + 1,

|�r j
(x0)| � c rn

j . (2.27)

If r j � 2 dist(x0, 
+ ∪ 
−), then B 1
2 r j

(x0) ⊂ �r j
(x0) and (2.27) clearly holds.

Otherwise, assume r j > 2 dist(x0, 
+ ∪ 
−). Then we choose x̂0 ∈ 
+ ∪ 
− such

that dist(x0, 
+ ∪
−) = |x̂0 −x0|, and thus � 1
2 r j

(x̂0) ⊂ �r j
(x0). Note that we can

assume ε + c2|x ′
0|2 � 1/4 and thus by (1.5) and the triangle inequality, |x̂ ′

0| � 3/4.

Since j � j1 + 1, by the triangle inequality again, we know that |x ′
0| � |x̂ ′

0|+ r j/2

and

r j <
c4

6
(ε + |x ′

0|2) �
c4

6

(
ε + 2|x̂ ′

0|2 + 1

2
r2

j

)
.

Since c4 ∈ (0, 1) and r j ∈ (0, 1), we get

r j <
c4

2
(ε + |x̂ ′

0|2).

By using (2.6), we have

|�r j
(x0)| � |� 1

2 r j
(x̂0)| � c rn

j .

Thus, (2.27) holds for every j � j1 + 1.
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By (2.27) and Hölder’s inequality, for any j ∈ N, we have

|m j | � CT j . (2.28)

Note that since μ � 1/6, �3r j+1(x0) ⊂ � 1
2 r j

(x0) and thus by (2.27), (2.22) and

the definition of j1,

T j1+1 � C

⎛
¿
 

� 1
2

r j1

(x0)

|Du|p

À
⎠

1/p

� C T j1 .

Therefore, there exists c6 = c6(n, p, c1, c2) > 0, such that for any j ∈ N,

T j+1 � c6 T j . (2.29)

By (2.29) and the triangle inequality, for any j � j1, we have

T j+1 � c6 T j � C |m j | + C Ç j .

For j � j1 + 1, since μ � 1/6, �3r j+1(x0) ⊂ �r j
(x0) and thus by (2.27) and the

triangle inequality, we have

T j+1 � C

(
 

�r j
(x0)

|Du|p

)1/p

� C |m j | + C Ç j .

Therefore, there exists c7 = c7(n, p, c1, c2) > 0, such that for any j ∈ N,

T j+1 � c7 |m j | + c7 Ç j . (2.30)

For any 0 � k � j1, since

|mk − mk−1|p � 2p−1|mk − DZu2(Z)|p + 2p−1|DZu2(Z) − mk−1|p,

by taking the average over Z ∈ Brk
(Z0) and then taking the pth root, we obtain

|mk − mk−1| � CÇk + CÇk−1.

Then by iterating, we get

|m j − m j0 | � C

j∑

k= j0

Çk, (2.31)

for any integers j0, j satisfying 0 � j0 � j � j1. By (2.31), (2.28), and the triangle

inequality, we have

|m j | � C T j0 + C

j∑

k= j0

Çk, (2.32)
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for j0 � j � j1. Similarly, for any integers j , l satisfying j1 + 1 � l � j , we also

have

|m j − ml | � C

j∑

k=l

Çk,

and

|m j | � C Tl + C

j∑

k=l

Çk . (2.33)

For j ∈ { j0, . . . , j1}, from Lemma 2.6 and (2.32), we know that

|m j | +
j∑

k= j0

Çk � C T j0 + C

j∑

k= j0

( rk

(ε + |x ′
0|2)

1
2

)θp

Tk � C T j0 + C

j∑

k= j0

μkθp Tk .

(2.34)

For j ∈ { j1 + 1, . . . , j2}, we have r j � dist(x0, 
+ ∪ 
−). Choose x̂0 ∈ (
+ ∪

−) ∩ {x ∈ R

n : |x ′| � 3/4} such that dist(x0, 
+ ∪ 
−) = |x̂0 − x0|, and thus

�r j
(x0) ⊂ �2r j

(x̂0) ⊂ �3r j
(x0). Then

r j <
c4

6
(ε + |x ′

0|2) �
c4

6
(ε + 2|x̂ ′

0|2 + 2r2
j ),

which also implies

2r j < c4(ε + |x̂ ′
0|2) (2.35)

since c4 ∈ (0, 1) and r j ∈ (0, 1).

By (2.35), we can apply Lemma 2.5 at x̂0 ∈ 
+ ∪ 
− and use (2.27) and (2.6)

to obtain

j∑

k= j1+1

Çk � C

j∑

k= j1+1

ψ(x̂0, 2rk) � C Y j1+1 + C

j∑

k= j1+1

r
θp

k Yk

� C T j1+1 + C

j∑

k= j1+1

μkθp Tk,

(2.36)

where

Y j :=
(
 

�2r j
(x̂0)

|Du|p

)1/p

.

Moreover, from (2.33), (2.30), and (2.36) we also know that

|m j | +
j∑

k= j1+1

Ç j � C T j1+1 + C

j∑

k= j1+1

μkθp Tk

� C |m j1 | + C Ç j1 + C

j∑

k= j1+1

μkθp Tk

(2.37)
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holds for any j ∈ { j1 + 1, . . . , j2}.
For j � j2 + 1, from Corollary 2.2, (2.33), and (2.30) we have

|m j | +
j∑

k= j2+1

Çk � C T j2+1 � C |m j2 | + C Ç j2 . (2.38)

Combining (2.37) and (2.38), we know that

|m j | +
j∑

k= j1+1

Ç j � C |m j1 | + C Ç j1 + C

j∑

k= j1+1

μkθp Tk (2.39)

holds for any j � j1 + 1. Note that (2.39) also holds if j2 � j1 since in that case

r j � dist(x0, 
+ ∪ 
−) for any j � j1 + 1 and thus we can directly use Corollary

2.2 and (2.33) to get (2.39).

Moreover, combining (2.39) and (2.34), we know that

|m j | +
j∑

k= j0

Çk � C T j0 + C

j∑

k= j0

μkθp Tk (2.40)

holds for any 0 � j0 � j1 and j � j0.

Step 3: A stopping time argument. We choose j0 = j0(n, p, c1, c2) ∈ N suffi-

ciently large such that

(c7 + 1) C

∞∑

k= j0

μkθp �
1

10
, (2.41)

where c7 is the constant in (2.30) and C is the constant in (2.40). Note that we can

assume ε +|x ′
0|2 to be sufficiently small so that c5

2
μ j0(ε +|x ′

0|2)
1
2 > c4

6
(ε +|x ′

0|2)
and thus j1 � j0. Now we show that

|Du(x0)| � C T j0 . (2.42)

We consider the following three possibilities.

Case 1: If |Du(x0)| � T j0 , then (2.42) directly follows.

Case 2: If T j < |Du(x0)|, ∀ j0 � j � j3, and |Du(x0)| � T j3+1, then by

(2.30), we have

|Du(x0)| � T j3+1 � c7 |m j3 | + c7 Ç j3 . (2.43)

Now applying (2.40) with j = j3, from (2.43) and (2.41), we get

|Du(x0)| � C ′ T j0 + C ′
j3∑

k= j0

μkθp |Du(x0)| � C ′ T j0 + 1

10
|Du(x0)|,

where C ′ = c7 C , C is the constant in (2.40). The last inequality directly implies

(2.42) as desired.
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Case 3: If T j < |Du(x0)| for every j � j0, then from (2.40), we infer that for

any j � j0,

|m j | � C T j0 + C

j∑

k= j0

μkθp |Du(x0)| � C T j0 + 1

10
|Du(x0)|.

Here we used (2.41) in the last inequality. Letting j → ∞ and using the fact that

u ∈ C1(�1), we get

|Du(x0)| � C T j0 + 1

10
|Du(x0)|,

which directly implies (2.42). The proof of the inequality (2.42) is completed.

Step 4: Caccioppoli inequality and conclusion. Let λ ∈ R and ζ be a nonneg-

ative smooth function satisfying ζ = 1 in Br j0
(Z0), |DZζ | � 2r−1

j0
, and ζ = 0

outside B2r j0
(Z0). Since 2r j0 � c5(ε+|x ′

0|2)
1
2 , using ζ p(u2 −λ) as a test function

in (2.23), by (2.22), Young’s inequality, we obtain

1

2p+1

ˆ

B2r j0
(Z0)

ζ p|DZu2|p �

ˆ

B2r j0
(Z0)

〈B(Z, DZu2), ζ
p DZu2〉

= −p

ˆ

B2r j0
(Z0)

〈B(Z, DZu2), ζ
p−1(u2 − λ)DZζ 〉

� p2p+2r−1
j0

ˆ

B2r j0
(Z0)

ζ p−1|DZu2|p−1|u2 − λ|

�
1

2p+2

ˆ

B2r j0

ζ p|DZu2|p + c(p) r
−p
j0

ˆ

B2r j0
(Z0)

|u2 − λ|.

Therefore, we have the following Caccioppoli inequality

ˆ

Br j0
(Z0)

|DZu2|p � c(p) r
−p
j0

ˆ

B2r j0
(Z0)

|u2 − λ|p, (2.44)

where λ is an arbitrary constant and c(p) is a positive constant depending only on p.

Since 2r j0 � c5(ε+|x ′
0|2)

1
2 � 1

4
(ε+|x ′

0|2)
1
2 � 1/2, by choosing λ = (u2)B2r j0

(Z0)

in (2.44), and using (2.42), we obtain the pointwise blow-up estimate

|Du(x0)| � C(ε + |x ′
0|2)−

1
2 osc
�x0,η

u,

where η = 1
4
(ε + |x ′

0|2)
1
2 . 
�
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3. Improved gradient estimates

In this section, we utilize a similar approach of flattening the boundaries and

extending the equation, as described in [25], to derive an improved gradient esti-

mate for (1.7) in dimensions n � 3. However, in contrast to [25], since our equation

is degenerate, we need to exploit the nondivergence form of the normalized equa-

tion. Consequently, the argument of flattening the boundaries becomes much more

intricate, and unlike in [25], where the De Giorgi-Nash-Moser Harnack inequality

is applied, we use the Krylov–Safonov Harnack inequality for nondivergence form

equations. Furthermore, there are additional first-order terms that require control

over the size of the coefficients.

To prove Theorem 1.2, for η > 0, we consider the approximating equation
⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

− div
(
(η + |Duη|2)

p−2
2 Duη

)
= 0 in �̃,

∂uη

∂ν
= 0 on ∂ Di , i = 1, 2,

uη = ϕ on ∂�.

(3.1)

Since ‖uη‖C1,³(�1)
is bounded independent of η, it suffices to prove (1.9) for uη.

Therefore, we will focus on (3.1) throughout the rest of this section, and denote

u = uη for simplicity. Note that u satisfies the normalized p-Laplace equation

ai j Di j u = 0 in �1,

where

ai j = δi j + (p − 2)(η + |Du|2)−1 Di u D j u (3.2)

satisfies

(p − 1)|ξ |2 � ai jξiξ j � |ξ |2, ∀ξ ∈ R
n when 1 < p < 2,

|ξ |2 � ai jξiξ j � (p − 1)|ξ |2, ∀ξ ∈ R
n when p � 2. (3.3)

For a small r0 independent of ε, we only need to show (1.9) in �r0 , as |Du| is

bounded in �1/2 \ �r0 independent of ε. For any x ∈ �r0 , we estimate |Du(x)| as

follows: first we consider the equation in �2r\�r/4 for r ∈ (
√

ε, r0], we perform a

suitable change of variables that maps the domain to a flat “annular cylinder”. After

the change of variables, u will satisfy a second-order uniformly elliptic equation

in non-divergence form, and the Neumann boundary condition on the upper and

lower boundaries of the domain. Then we obtain a Harnack inequality through

the Krylov–Safonov theorem. Together with the maximum principle, this gives the

oscillation of u in �r for r ∈ (
√

ε, r0] with a decay rate r2´ for some positive

ε-independent ´. Then the desired estimate on |Du(x)| follows from the decay rate

of osc2(ε+|x ′|2)1/2 u and Theorem 1.1.

Let r ∈ (
√

ε, r0], where r0 is an ε -independent constant to be determined later.

We define

h̃i (x ′) :=
{

hi (x ′) when |x ′| � 2r0,

0 when |x ′| > 2r0
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for i = 1, 2. We denote

Qs,t := {y = (y′, yn) ∈ R
n
∣∣ |y′| < s, |yn| < t},

and for y ∈ Q2r,r2 \ Qr/4,r2 , we define the map x = �(y) by

⎧
«
¬

x ′ = y′ − g(y),

xn = 1

2

[ yn

r2
(ε + h̃1(y′) − h̃2(y′)) + h̃1(y′) + h̃2(y′)

]
,

(3.4)

where

g(y) = (yn − r2)(yn + r2)(�yn + �), (3.5)
⎧
⎪«
⎪¬

� = 1

8r6
[ε + h̃1(y′) − h̃2(y′)]Dy′[h̃μ

1 (y′) + h̃
μ
2 (y′)],

� = 1

8r4
[ε + h̃1(y′) − h̃2(y′)]Dy′[h̃μ

1 (y′) − h̃
μ
2 (y′)],

h̃
μ
i is a mollification of h̃i given by

h̃
μ
i (y′) :=

ˆ

Rn−1
h̃i (y′ − μz′)ϕ(z′) dz′, (3.6)

ϕ is a positive smooth function with unit integral supported in B1 ⊂ R
n−1, and

μ = r4 − y2
n

r
� 0.

Here we briefly explain the motivation for defining the map � as above: to

ensure that y′ = x ′ on {yn = ±r2}, which is g
∣∣
yn=±r2 = 0, we setup the ansatz

(3.5) for g. Next, we want the function v(y) := u(�(y)) to satisfy the Neumann

boundary condition on {yn = ±r2}, which leads to (see details in Lemma 3.1)
⎧
⎪«
⎪¬

(
− Dyn g,

1

2r2
(ε + h̃1(y′) − h̃2(y′))

)
‖ (−Dx ′ h̃1, 1) on {yn = r2},

(
− Dyn g,

1

2r2
(ε + h̃1(y′) − h̃2(y′))

)
‖ (−Dx ′ h̃2, 1) on {yn = −r2}.

Using the ansatz (3.5) and solving for � and �, we have
⎧
⎪«
⎪¬

� = 1

8r6
[ε + h̃1(y′) − h̃2(y′)]Dy′[h̃1(y′) + h̃2(y′)],

� = 1

8r4
[ε + h̃1(y′) − h̃2(y′)]Dy′[h̃1(y′) − h̃2(y′)].

Note that the equation of v involves second-order derivatives of �, and hence

involves third-order derivatives of h̃1 and h̃2. However, h̃1 and h̃2 are only C1,1, so

we introduce the mollification (3.6) to overcome the lack of regularities. Here μ is

chosen so that h̃
μ
i = h̃i on {yn = ±r2}, and the coefficients of the equation of v

have the desired estimates.

Throughout this section, unless specify otherwise, we use C to denote positive

constants that could be different from line to line, and depend only on n, p, c1, and

c2, where c1 and c2 are defined in (1.4) and (1.5), respectively.
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Lemma 3.1. There exists an r0 > 0 independent of ε, such that when r ∈ (
√

ε, r0]
and � is given as (3.4), then:

(a) There exists a positive constant C independent of ε and r, such that

I

C
� D�(y) � C I, y ∈ Q2r,r2 \ Qr/4,r2 ,

and hence � is invertible.

(b)

Q1.9r,r2 \ Q0.35r,r2 ⊂ �−1(�2r \ �r/4),

and

�r \ �r/2 ⊂ �(Q1.1r,r2 \ Q0.4r,r2).

(c) Let u ∈ W 1,p(�2r \ �r/4) be a solution of

⎧
⎪«
⎪¬

− div
(
(η + |Du|2)

p−2
2 Du

)
= 0 in �2r \ �r/4,

∂u

∂ν
= 0 on (
+ ∪ 
−) ∩ �2r \ �r/4

(3.7)

for some η > 0, and v(y) = u(�(y)). Then v satisfies an elliptic equation

⎧
«
¬

ãi j Di jv(y) + b̃i Div(y) = 0 in Q1.9r,r2 \ Q0.35r,r2 ,

∂v

∂ν
(y) = 0 on {yn = ±r2},

(3.8)

with

I

C
� ã � C I, |b̃| �

C

r
.

Proof. By (1.3), we have

|Dk
y′ h̃i (y′)| � Cr2−k, |Dk

y′ h̃
μ
i (y′)| � Cr2−k for i = 1, 2 and k = 0, 1, 2.

(3.9)

Therefore, when y ∈ Q2r,r2 \ Qr/4,r2 ,

|Dy′ x ′ − I(n−1)×(n−1)| = |Dy′ g(y)| � Cr2.

Dyn x ′ = −Dyn g(y)

= −2yn(�yn + �) − (y2
n − r4)[(Dyn �)yn + � + Dyn �],

and

|�| � Cr−3, |�| � Cr−1.
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By (3.6), we have for y ∈ Q2r,r2\Qr/4,r2 ,

|Dyn Dy′ h̃
μ
i (y′)| =

∣∣∣∣−
∂μ

∂yn

ˆ

Rn−1
D2

y′ h̃i (y′ − μz′)z′ϕ(z′) dz′
∣∣∣∣

=
∣∣∣∣
2yn

r

ˆ

Rn−1
D2

y′ h̃i (y′ − μz′)z′ϕ(z′) dz′
∣∣∣∣ � Cr for i = 1, 2.

Therefore,

|Dyn �| � Cr−3, |Dyn �| � Cr−1,

and hence

|Dyn x ′| �|2yn(�yn + �)| + |(y2
n − r4)[(Dyn �)yn + � + Dyn �]|

�Cr + Cr4[r−1 + r−3 + r−1] � Cr.

By (3.9),

|Dy′ xn| = 1

2

∣∣∣ yn

r2
(Dy′ h̃1(y′) − Dy′ h̃2(y′)) + Dy′ h̃1(y′) + Dy′ h̃2(y′)

∣∣∣ � Cr.

And lastly,

Dyn xn = 1

2r2
(ε + h̃1(y′) − h̃2(y′)).

By (1.4),

1

C
� Dyn xn � C.

Then (a) follows by shrinking r0 to be sufficiently small.

Since g(y) = 0 when y = ±r2, � maps the upper and lower boundaries of

Q2r,r2 \ Qr/4,r2 onto the upper and lower boundaries of �2r \ �r/4, respectively.

Then (b) simply follows from the fact that |g(y)| � Cr3, and we can shrink r0 so

that |g(y)| � r/10.

To verify (c), note that u is smooth from the classical elliptic theory. We compute

by the chain rule,

Dxk
u(x) =Dyi

v(y)Dxk
yi ,

Dxk xl
u(x) =Dyi

Dy j
v(y)Dxk

yi Dxl
y j + Dyi

v(y)Dxk xl
yi .

Recall that u(x) satisfies the equation

akl Dxk xl
u(x) = 0,

where the matrix a is given by (3.2). If we define

ãi j := akl Dxk
yi Dxl

y j , b̃i := akl Dxk xl
yi ,

then v(y) satisfies

ãi j Di jv(y) + b̃i Div(y) = 0.
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Next, we show that v satisfies the Neumann boundary condition on {yn = ±r2}.
We will show the boundary condition on {yn = r2}, as the one on {yn = −r2}
follows similarly. By the chain rule,

Dyv(y) · en = Dx u(x) · Dy�en,

where en := (0, . . . , 0, 1). Therefore, it suffices to show that

Dy�en =
(

− Dyn g,
1

2r2
(ε + h̃1(y′) − h̃2(y′))

)
‖ (−Dx ′ h̃1, 1) on {yn = r2}.

(3.10)

Note that when yn = r2, we have g(y) = 0, y′ = x ′, μ = 0, and h̃
μ
1 = h̃1.

Therefore,

Dyn g =(yn + r2)(�yn + �)

∣∣∣
yn=r2

= 1

2r2
(ε + h̃1(y′) − h̃2(y′))Dy′ h̃

μ
1 (y′)

= 1

2r2
(ε + h̃1(y′) − h̃2(y′))Dx ′ h̃1(x ′).

This implies (3.10).

Finally, we show that the coefficients ã and b̃ satisfy the desired estimates. From

part (a), we know that

I

C
� Dx y = Dx�

−1(x) � C I,

which together with (3.3) implies that

I

C
� ã � C I.

To estimate b̃, we differentiate ∂yi/∂xk · ∂xk/∂y j = δi j in xl . Note that by chain

rule, we have

∂2 yi

∂xk∂xl

∂xk

∂y j

+ ∂yi

∂xk

∂ym

∂xl

∂2xk

∂y j∂ym

= 0.

Since I/C � Dx y � C I and I/C � Dy x � C I , it suffices to estimate D2
y x ,

which is D2
y�(y). It is easy to see that

∣∣∣∣
∂2xn

∂y2

∣∣∣∣ �
C

r
.

To estimate ∂2x ′/∂y2, the key terms are

D3
y′ h̃

μ
i (y′), Dyn D2

y′ h̃
μ
i (y′), D2

yn
Dy′ h̃

μ
i (y′), i = 1, 2.
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By (3.6) and integration by parts, we have

Dy′ h̃
μ
i (y′) =

ˆ

Rn−1
Dy′ h̃i (y′ − μz′)ϕ(z′) dz′

= − 1

μ

ˆ

Rn−1
Dz′ h̃i (y′ − μz′)ϕ(z′) dz′

= 1

μ

ˆ

Rn−1
h̃i (y′ − μz′)Dz′ϕ(z′) dz′.

Then

|D3
y′ h̃

μ
i (y′)| �

C‖hi‖C1,1

μ
�

Cr

r4 − y2
n

.

Similarly,

Dyn h̃
μ
i (y′) =2yn

r

ˆ

Rn−1
Dy′ h̃i (y′ − μz′) · z′ϕ(z′) dz′

=2yn

μr

ˆ

Rn−1
h̃i (y′ − μz′)Dz′ · (z′ϕ(z′)) dz′, (3.11)

so

|Dyn D2
y′ h̃

μ
i (y′)| =

∣∣∣∣
2yn

μr

ˆ

Rn−1
D2

y′ h̃i (y′ − μz′)Dz′ · (z′ϕ(z′)) dz′
∣∣∣∣ �

Cr2

r4 − y2
n

.

Differentiating the first line of (3.11) in yn , we have

D2
yn

h̃
μ
i (y′) =2

r

ˆ

Rn−1

n−1∑

k=1

Dyk
h̃i (y′ − μz′)zkϕ(z′) dz′

+ 4y2
n

r2

ˆ

Rn−1

n−1∑

k,l=1

Dyk yl
h̃i (y′ − μz′)zk zlϕ(z′) dz′

=2

r

ˆ

Rn−1

n−1∑

k=1

Dyk
h̃i (y′ − μz′)zkϕ(z′) dz′

+ 4y2
n

μr2

ˆ

Rn−1

n−1∑

k,l=1

Dyl
h̃i (y′ − μz′)Dzk

(
zk zlϕ(z′)

)
dz′.

Therefore,

|D2
yn

Dy′ h̃
μ
i (y′)| �

2

r

ˆ

Rn−1
|D2

y′ h̃i (y′ − μz′)||z′ϕ(z′)| dz′

+ 4y2
n

μr2

ˆ

Rn−1
|D2

y′ h̃i (y′ − μz′)||Dz′(z′ ⊗ z′ϕ(z′))| dz′

�
Cr3

r4 − y2
n

.
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By these estimates above and straightforward computations, we have

|D2
y�(y)| � Cr−1,

which implies |b̃| � Cr−1. 
�

Lemma 3.2. Let r0 be as in Lemma 3.1, and let r ∈ (
√

ε, r0]. If u ∈ W 1,p(�2r\�r/4)

is a nonnegative solution of (3.7) for some η > 0, then,

sup
�r \�r/2

u � C inf
�r \�r/2

u, (3.12)

for some constant C > 0 depending only on n, p, c1, and c2, but independent of ε,

η, r , and u.

Proof. We take the change of variable y = �−1(x), where � is given as (3.4). Let

v(y) = u(x). By Lemma 3.1 (c), v satisfies the equation (3.8).

For i, j = 1, 2, . . . , n − 1, we take the even extension of ãi j , ãnn , b̃i , and v

with respect to yn = r2, and take odd extension of ãin , ãni , and b̃n with respect to

yn = r2. Then we take the periodic extension (so that the period is equal to 4r2).

We still denote them by ã, b̃, and v after the extension. Then v satisfies

ãi j Di jv(y) + b̃i Div(y) = 0 in Q1.9r,2r \ Q0.35r,2r .

Setting āi j (y) = ãi j (r y), b̄i (y) = r b̃i (r y), and v̄(y) = v(r y), we see that v̄

satisfies

āi j Di j v̄(y) + b̄i Di v̄(y) = 0 in Q1.9,2 \ Q0.35,2,

with

I

C
� ā � C I, |b̄| � C.

Since Q1.9,2 \ Q0.35,2 is connected when n � 3, by the Krylov–Safonov theorem

(see Section 4.2 of [22]), we have

sup
Q1.1,1\Q0.4,1

v̄ � C inf
Q1.1,1\Q0.4,1

v̄.

This implies

sup
Q

1.1r,r2 \Q
0.4r,r2

v � C inf
Q

1.1r,r2 \Q
0.4r,r2

v.

Finally, (3.12) follows by reverting the changes of variables and Lemma 3.1 (b).


�

The following estimate on the oscillation of u is a direct consequence of Lemma

3.2.
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Corollary 3.3. For n � 3, let u ∈ W 1,p(�1) be a solution of (3.1) for some η > 0.

Then there exist positive constants C and ´, depending only on n, p, c1, and c2,

such that

osc
�r

u � Cr´osc
�1

u, ∀ r ∈ (
√

ε, 1/2). (3.13)

Proof. It suffices to prove (3.13) for r ∈ (
√

ε, r0], where r0 is the same as in

Lemma 3.1. Let
√

ε < r � r0 and v = u − inf�2r u. Then v � 0 in �2r . By

Lemma 3.2, we have

sup
�r \�r/2

v � C1 inf
�r \�r/2

v,

where C1 > 1 is a constant independent of r . Since v satisfies equation (1.7), by

the maximum principle,

sup
�r \�r/2

v = sup
�r

v, inf
�r \�r/2

v = inf
�r

v.

Therefore,

sup
�r

v � C1 inf
�r

v,

which implies

sup
�r

u � C1 inf
�r

u − (C1 − 1) inf
�2r

u.

Adding the above inequality with

(C1 − 1) sup
�r

u � (C1 − 1) sup
�2r

u,

and dividing both sides by C1, we have

osc
�r

u �
C1 − 1

C1
osc
�2r

u.

Finally, (3.13) follows from iterating the inequality above. 
�
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. It suffices to show (1.9) for x ∈ �1/8 and ε ∈ (0, 1/32).

By Corollary 3.3, there exist positive constants C and ´, depending only on n, p, c1,

and c2, such that

osc
�8η

u � C(ε + |x ′|2)´osc
�1

u,

where η = 1
4
(ε + |x ′|2) 1

2 . Then by Theorem 1.1, we have

|Du(x)| �C(ε + |x ′|2)− 1
2 osc
�x,η

u

�C(ε + |x ′|2)− 1
2 osc

�8η

u

�C(ε + |x ′|2)− 1
2 +´osc

�1

u.

The theorem is proved. 
�
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4. The p > n + 1 case

In this section, we establish a more explicit gradient estimate for the equation

(1.7) when p > n + 1, with a blow-up rate of order ε−³ for any ³ > n
2(p−1)

.

Throughout this section, in addition to (1.3) and (1.4), we need to further assume

that h1 and h2 are C2 strictly convex and strictly concave functions respectively,

satisfying (1.10). Let ν denote the normal vector on 
±, pointing upwards and

downwards respectively.

To obtain the improved gradient estimate, in the following lemma, we construct

a supersolution to show that the oscillation of u enjoys a better decay rate. Then

the desired gradient estimate (1.11) follows by using Theorem 1.1.

Lemma 4.1. Let n � 2, p > n + 1, 
+, 
−, h1, h2 be as above. For any δ ∈
(0, p − n − 1), let v(x) = (|x ′|2 + (2 + δ)x2

n )γ /2. Then for any γ ∈ (0,
p−n−1−δ

p−1
),

there exists a constant μ ∈ (0, 1/2) depending only on n, p, δ, γ , κ1, κ2, and the

modulus of continuity for D2h1(x ′) and D2h2(x ′) at x ′ = 0, such that for any

ε ∈ (0, μ2/κ2),⎧
«
¬

− div(|Dv|p−2 Dv) > 0 in �μ/κ2 \ �ε/μ,

∂v

∂ν
> 0 on (
+ ∪ 
−) ∩ �μ/κ2 .

Proof. We denote R(x) = (|x ′|2 + (2 + δ)x2
n )1/2, so that v(x) = R(x)γ . Using

Taylor expansion up to order 2, from (1.3) we know that for any |x ′| < 1.

h1(x ′) =
〈
ˆ 1

0

(1 − t)D2h1(t x ′)dt · x ′, x ′
〉
,

h2(x ′) =
〈
ˆ 1

0

(1 − t)D2h2(t x ′)dt · x ′, x ′
〉
.

(4.1)

By (4.1) and (1.10), we have

κ1

2
|x ′|2 � h1(x ′) �

κ2

2
|x ′|2, κ1

2
|x ′|2 � h2(x ′) �

κ2

2
|x ′|2 for |x ′| < 1. (4.2)

We also note that for any |x ′| < 1,

〈
Dh1(x ′), x ′〉 =

〈
ˆ 1

0

d

dt
Dh1(t x ′)dt, x ′

〉
=

〈
ˆ 1

0

D2h1(t x ′)dt · x ′, x ′
〉
, (4.3)

and similarly 〈
Dh2(x ′), x ′〉 =

〈
ˆ 1

0

D2h2(t x ′)dt · x ′, x ′
〉
.

Since h1 and h2 are C2, for any δ ∈ (0, p − n − 1), there is a sufficiently small

r0 ∈ (0, 1/2)depending only on n, δ,κ1, and the modulus of continuity for D2h1(x ′)
and D2h2(x ′) at x ′ = 0, such that

|D2h1(x ′) − D2h1(0)| �
κ1δ

8 + 2δ
,

|D2h2(x ′) − D2h2(0)| �
κ1δ

8 + 2δ
for |x ′| � r0. (4.4)
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Thus by (4.1), (4.3), (4.4), (1.10), and the triangle inequality, we obtain

(2 + δ)h1(x ′) −
〈
Dh1(x ′), x ′〉

=
〈
ˆ 1

0

(2 + δ)(1 − t)D2h1(t x ′)dt · x ′, x ′
〉
−

〈
ˆ 1

0

D2h1(t x ′)dt · x ′, x ′
〉

�

〈
ˆ 1

0

(2 + δ)(1 − t)D2h1(0)dt · x ′, x ′
〉
− 2 + δ

2

κ1δ

8 + 2δ
|x ′|2

−
〈
ˆ 1

0

D2h1(0)dt · x ′, x ′
〉
− κ1δ

8 + 2δ
|x ′|2

= δ

2
〈D2h1(0) · x ′, x ′〉 − κ1δ

4
|x ′|2 �

κ1δ

4
|x ′|2 � 0.

(4.5)

By direct computations, we have

Dv = γ Rγ−2(x ′, (2 + δ)xn),

Di iv = γ Rγ−2 + γ (γ − 2)Rγ−4x2
i , for i ∈ {1, 2, . . . , n − 1},

Di jv = γ (γ − 2)Rγ−4xi x j , for i �= j, i, j ∈ {1, 2, . . . , n − 1},
Dinv = γ (γ − 2)Rγ−4(2 + δ)xi xn, for i ∈ {1, 2, . . . , n − 1},
Dnnv = γ Rγ−2(2 + δ) + γ (γ − 2)Rγ−4(2 + δ)2x2

n .

On 
+ ∩ �r0 ,

ν = 1√
1 + |Dh1(x ′)|2

(−Dh1(x ′), 1).

Then by (4.5),

∂v

∂ν
= γ Rγ−2

√
1 + (Dh1(x ′))2

[
− 〈Dh1(x ′), x ′〉 + (2 + δ)

(ε

2
+ h1(x ′)

) ]

�
γ Rγ−2

√
1 + (Dh1(x ′))2

[κ1δ

4
|x ′|2 +

(
1 + δ

2

)
ε
]

> 0.

A similar computation shows that ∂v
∂ν

> 0 on 
− ∩ �r0 .
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Next, we compute in �1 \ {0},

div(|Dv|p−2 Dv)|Dv|4−p = |Dv|2�v + (p − 2)DivD jvDi jv

= γ 2 R2γ−4
(
|x ′|2 + (2 + δ)2x2

n

)(
(n + 1 + δ)γ Rγ−2

+ γ (γ − 2)Rγ−4(|x ′|2 + (2 + δ)2x2
n )

)

+ (p − 2)γ 2 R2γ−4|x ′|2
(
γ Rγ−2 + γ (γ − 2)Rγ−4|x ′|2

)

+ 2(p − 2)(2 + δ)2γ 2 R2γ−4γ (γ − 2)Rγ−4|x ′|2x2
n

+ (p − 2)γ 2 R2γ−4(2 + δ)2x2
n

(
γ Rγ−2(2 + δ) + γ (γ − 2)Rγ−4(2 + δ)2x2

n

)

= γ 3 R3γ−8
{
|x ′|4

[
n + δ + (p − 1)(γ − 1)

]

+ |x ′|2x2
n

[
(2 + δ)(n + δ + p − 1)

+ (2 + δ)2(n + 1 + δ + (p − 2)(2 + δ) + 2(γ − 2)(p − 1))
]

+ x4
n

[
(2 + δ)3(n + 1 + δ + (p − 2)(2 + δ) + (γ − 2)(p − 1)(2 + δ))

]}
.

Thus div(|Dv|p−2 Dv)|Dv|4−pγ −3 R8−3γ is a 4th order homogeneous polynomial

of |x ′| and xn . Since γ ∈ (0,
p−n−1−δ

p−1
), we have

n + δ + (p − 1)(γ − 1) < 0.

Therefore there exists a sufficiently small μ0 ∈ (0, 1/2) depending only on n, p,

γ , and δ, such that if |xn| � μ0|x ′| and x �= 0, we have

div(|Dv|p−2 Dv) > 0.

We then take μ = min{μ0, κ2r0}, so that μ/κ2 � r0 and thus ∂v
∂ν

> 0 on (
+ ∪

−) ∩ �μ/κ2 . Note that when x ∈ �μ/κ2\�ε/μ, by (4.2) we have

|xn| �
ε

2
+ κ2

2
|x ′|2 � μ|x ′| � μ0|x ′|.

This concludes the proof. 
�

Proof of Theorem 1.3. It suffices to show (1.11) for δ ∈ (0, (p − n − 1)/2),

x ∈ �μ/2κ2 , and ε ∈ (0, μ2/(κ2 + κ2
2 )), where μ ∈ (0, 1/2) is defined in Lemma

4.1 with γ = p−1−n−2δ
p−1

∈ (0, 1). Without loss of generality, we may assume that

u(0) = 0 and osc�1 u = 1. By Theorem 1.1,

|u(x))| � C
√

ε for x ∈ �ε/μ. (4.6)

Let v be the function defined in Lemma 4.1 with γ = p−1−n−2δ
p−1

and v1 = v +√
ε.

Note that u � Cv and −u � Cv on ({|x ′| = ε/μ} ∪ {|x ′| = μ/κ2}) ∩ �1 for

some ε-independent constant C . By the comparison principle, we have |u| � Cv

in �μ/κ2 \ �ε/μ. In particular, we have

|u(x)| � C(ε2 + |x ′|2)
p−1−n−2δ

2(p−1) + Cε1/2 for x ∈ �μ/κ2 \ �ε/μ. (4.7)
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Since
p−1−n−2δ

2(p−1)
∈ (0, 1/2), by combining (4.6) and (4.7), we obtain

|u(x)| � C(ε + |x ′|2)
p−1−n−2δ

2(p−1) for x ∈ �μ/κ2 .

This implies that for any x ∈ �μ/2κ2 and ε ∈ (0, μ2/(κ2 + κ2
2 )),

osc
�x,η

u � C(ε + |x ′|2)
p−1−n−2δ

2(p−1) , (4.8)

where η = 1
4
(ε + |x ′|2)1/2, and C is a constant depending only on n, p, δ, κ1, κ2,

and the modulus of continuity for D2h1(x ′) and D2h2(x ′) at x ′ = 0. Then (1.11)

follows from (4.8) and Theorem 1.1. 
�

5. A two dimensional example

In this section, we provide an example showing that the estimates (1.8) and

(1.11) are close to optimal in 2D. In the following and throughout this section, we

set our domain � = B5 ⊂ R
2, D1 and D2 to be the unit balls centered at (0, 1+ε/2)

and (0,−1 − ε/2), respectively. That is,


+ =
{

x2 = ε

2
+ 1 −

√
1 − x2

1

}
,


− =
{

x2 = −ε

2
− 1 +

√
1 − x2

1

}
, x1 ∈ (−1, 1). (5.1)

Lemma 5.1. Let n = 2 and 
+, 
− be as (5.1). For any δ ∈ (0, 1/2), ε ∈ (0, δ/10),

and γ > max{ p−3+δ
p−1

, 0}, there exists a constant r0 ∈ (0, 1/2) depending only on

p and δ, such that the function

w(x) :=
[(

x2
1 + (2 − δ)x2

2

) γ
2 − (4

√
ε/δ)γ

]
+

satisfies

⎧
«
¬

− div(|Dw|p−2 Dw) � 0 in �r0 ,

∂w

∂ν
� 0 on (
+ ∪ 
−) ∩ �r0 .

(5.2)

Proof. We denote R = R(x) =
(

x2
1 + (2 − δ)x2

2

) 1
2

and v(x) = R(x)γ . Then

Dv = γ Rγ−2(x1, (2 − δ)x2).
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On 
+, the upward normal vector ν = (−x1, 1 + ε/2 − x2). Therefore,

∂v

∂ν
=γ Rγ−2

[
− x2

1 + (2 − δ)x2

(
1 + ε

2
− x2

)]

=γ Rγ−2
[(

x2 − 1 − ε

2

)2
− 1 + (2 − δ)x2

(
1 + ε

2
− x2

)]

=γ Rγ−2
[

− (1 − δ)x2
2 − δx2

(
1 + ε

2

)
+ ε + ε2

4

]
.

One can see that ∂v/∂ν < 0 if x2 > ε/δ. Since x2 = ε
2

+ 1 −
√

1 − x2
1 , |x1| >

2
√

ε/δ implies x2 > ε/δ. Note that w = 0 on 
+ when |x1| � 2
√

ε/δ, therefore

∂w/∂ν � 0 on 
+. The fact that ∂w/∂ν � 0 on 
− follows from a similar

argument.
Next, following a similar computation as Lemma 4.1, we have in the region

{x2
1 + (2 − δ)x2

2 > 16ε/δ} ∩ �1,

div(|Dw|p−2 Dw)|Dw|4−p

= γ 2 R2γ−4
(

x2
1 + (2 − δ)2x2

2

)(
(3 − δ)γ Rγ−2 + γ (γ − 2)Rγ−4(x2

1 + (2 − δ)2x2
2 )

)

+ (p − 2)γ 2 R2γ−4x2
1

(
γ Rγ−2 + γ (γ − 2)Rγ−4x2

1

)

+ (p − 2)γ 2 R2γ−4(2 − δ)2x2
2

(
(2 − δ)γ Rγ−2 + (2 − δ)2γ (γ − 2)Rγ−4x2

2

)

+ 2(2 + δ)2(p − 2)γ 2 R2γ−4γ (γ − 2)Rγ−4x2
1 x2

2 .

Note that in {x2
1 + (2 − δ)x2

2 > 16ε/δ} ∩ �1, |x1| > 2
√

ε/δ. Therefore,

|x2| �
ε

2
+ 1 −

√
1 − x2

1 �
δ

8
x2

1 + 1 −
√

1 − x2
1 �

( δ

8
+ 1

)
x2

1 ,

and thus

R2 − (2 − δ)
( δ

8
+ 1

)2
R4 � x2

1 � R2.

Hence for small R > 0, the leading term of div(|Dw|p−2 Dw)|Dw|4−p is given

by

γ 2 R2γ−2
(
(3 − δ)γ + γ (γ − 2)

)
Rγ−2 + (p − 2)γ 2 R2γ−2γ (γ − 1)Rγ−2.

If we set

(3 − δ) + (γ − 2) + (p − 2)(γ − 1) > 0 and γ > 0,

which implies

γ > max
{ p − 3 + δ

p − 1
, 0

}
,

then there exists a sufficient small r0 ∈ (0, 1/2), depending only on p and δ, such

that div(|Dw|p−2 Dw) � 0 in �r0 . 
�
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Proof of Theorem 1.4. We only need to prove the theorem for any δ ∈ (0, 1/2)

and ε ∈ (0, r2
0 δ/64), where r0 is the constant stated in Lemma 5.1. By symmetry

and the maximum principle, we have u(0, x2) = 0 for |x2| < ε/2 and u(x) > 0

when x1 > 0.

Next, we use interior Harnack inequality to show that there exists a positive

constant C0 depending only on p and δ such that u � C0 on �̃ ∩ {x1 = r0}.
Since u(x) = x1 on ∂ B5, by (1.6), there exists r1 ∈ (4, 5) such that u(r1, 0) � 4

and 5 − r1 is bounded from below by a positive constant depending only on p.

Let μ = min{r2
0 /10, (5 − r1)/10} and N = � r1−r0

μ
�. We then define a chain

of balls Bk = Bμ(pk), where k = 0, 1, . . . , N and pk = (r0 + kμ, 0). Since

B2μ(pk) ⊂ �̃ ∩ {x1 > 0}, by the Harnack inequality (see e.g. [31]), there exists a

constant C ′
0 > 0 depending only on p, such that

max
Bk

u � C ′
0 min

Bk

u

holds for any k = 0, 1, . . . , N . Since (r1, 0) ∈ BN , by iteration, we have

u(r0, 0) � (C ′
0)

−N−1u(r1, 0) � 4(C ′
0)

−N−1. (5.3)

Now we set x0 = (r0, 0) and perform the flattening and extension of u to u2 in

C1/2 = {(Z1,Z2) ∈ R
2 : |Z1| < 1/2} as in Section 2.4. Since u2 is a nonnegative

solution to (2.23) when x1 > 0, by the Harnack inequality and a similar iteration

argument as above, we obtain that

u2(0,Z2) � C ′′
0 u2(0, 0) (5.4)

holds for any Z2 ∈
(
− 1 +

√
1 − r2

0 − ε/2, 1 −
√

1 − r2
0 + ε/2

)
, where C ′′

0 > 0

is a constant depending only on p and δ. In the original coordinate, (5.4) directly

implies that

u(x) � C ′′
0 u(r0, 0) (5.5)

for any x ∈ �̃ ∩ {x1 = r0}. Combining (5.3) and (5.5), we get

u � C0 on �̃ ∩ {x1 = r0},

where C0 = 4C ′′
0 (C ′

0)
−N−1 is a positive constant depending only on p and δ.

Let w be the function defined in Lemma 5.1 with

γ =

⎧
«
¬

δ when 1 < p � 3,

p − 3 + 2δ

p − 1
when p > 3.

By the comparison principle, there exists a positive constant C depending only on

p and δ, such that u � 1
C

w in �r0 ∩ {x1 > 0}. In particular, since 8
√

ε/δ < r0, we

have

u(8
√

ε/δ, 0) �
1

C
ε

γ
2 .

The desired lower bounds on Du follow from the mean value theorem since u(0) =
0. 
�



Arch. Rational Mech. Anal. (2023) 247:95 Page 33 of 46 95

Remark 5.2. When ε = 0 and p > 5, it can be shown that w(x) := (x2
1 + 2x2

2 )γ /2

is also a subsolution satisfying (5.2) for γ = (p − 3)/(p − 1) and some absolute

constant r0 ∈ (0, 1). Therefore, a similar argument as in the proof of Theorem

1.4 gives u(x1, 0) � c0 x
(p−3)/(p−1)
1 for some constant c0 = c0(p) > 0 and any

x1 ∈ (0, r0). Thus, for any r ∈ (0, 1), there exists x1 ∈ (0, r) such that

D1u(x1, 0) � c x
−2/(p−1)
1 ,

where c > 0 is a constant depending only on p.

6. Bernstein type argument

In this section, we adapt the Bernstein type argument used in [34] (see also [9]

and [10]) to prove improved gradient estimates for (1.7) in high dimensions. As

mentioned before, our proof also relies on the fact that for any q � p, |Du|q is a

subsolution to the normalized p-Laplace equation, which was originally observed

by Uhlenbeck [32]. In addition to (1.3) and (1.4), we need to further assume that h1

and h2 are C2,Dini (so that u is C2 at the points where Du �= 0, see [14, Theorem

2.4]), strictly convex and strictly concave respectively, satisfying (1.10).

Let ν denote the normal vector on 
±, pointing upwards and downwards re-

spectively. We have the following lemma:

Lemma 6.1. Let 
+, 
−, h1, h2 be as above, s � 2. If u is twice differentiable and

Dνu = 0 on 
+ ∪ 
−, then at any point x0 ∈ 
+ ∪ 
−,

sκ1|Du(x0)|s � Dν |Du(x0)|s � sκ2|Du(x0)|s . (6.1)

Proof. We only prove (6.1) at x0 ∈ 
+. By a rotation, we may assume that x ′
0 = 0

and Dx ′h1(x ′
0) = 0. The normal vector ν on 
+ is given by

ν = 1√
1 + |Dx ′h1|2

(−D1h1, . . . ,−Dn−1h1, 1). (6.2)

Then Dνu = 0 is equivalent to

n−1∑

j=1

D j u D j h1 − Dnu = 0.

Applying Di to the equation above for i = 1, . . . , n − 1, we have at x0,

n−1∑

j=1

D j u Di j h1 − Dinu = 0. (6.3)
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By direct computation, at x0,

Dν |Du|s = s|Du|s−2
n∑

i=1

Di u Dinu

= s|Du|s−2
n−1∑

i=1

n−1∑

j=1

Di u D j u Di j h1,

where in the second line, we used (6.3) and Dnu(x0) = 0. Then (6.1) follows from

(1.10). 
�

Proof of Theorem 1.5. For convenience, we let γ = 2´ ∈ [0, 1).

Case 1: For p � 2, we consider the quantity

F = Q
p−pγ

2 |Du|p,

where

Q = ε

κ1
+ |x ′|2 − 5κ2

2(1 − γ )κ1
x2

n . (6.4)

We will show by contradiction that F does not achieve its maximum on (
+ ∪

−) ∩ �r0 or in �r0 for some suitable r0 which is independent of ε. Therefore, F

can only achieve maximum on

{|x ′| = r0} ∩ �1,

and (1.14) follows.

If Fq/2 achieves it maximum at a point x0, we may assume that Du(x0) �= 0.

First we show that x0 �∈ 
+ ∩ �r0 . A similar argument applies to 
− ∩ �r0 . On


+, the normal vector ν is given by (6.2). At x0, by (6.1) with s = p,

Dν F = p − pγ

2
Q

p−pγ
2 −1 Dν Q|Du|p + Q

p−pγ
2 Dν |Du|p

� − (p − pγ )Q
p−pγ

2 −1

√
1 + |Dx ′h1|2

⎡
£

n−1∑

j=1

D j h1x j + 5κ2

2(1 − γ )κ1
(ε/2 + h1)

¤
⎦ |Du|p

+ pκ2 Q
p−pγ

2 |Du|p.

We choose r0 small enough such that

−1√
1 + |Dx ′h1|2

�
−1√

1 + |κ2x ′|2
� −4

5
for |x ′| < r0.

By (1.3) and (1.10), we have

n−1∑

j=1

D j h1x j � κ1|x ′|2 and h1 �
1

2
κ1|x ′|2.
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Therefore,

Dν F �Q
p−pγ

2 −1|Du|p

(
− 4

5
(p − pγ )

[
κ1|x ′|2 + 5κ2

4(1 − γ )κ1
(ε + κ1|x ′|2)

]

+ pκ2

(
ε

κ1
+ |x ′|2 − 5κ2

2(1 − γ )κ1
x2

n

))

=Q
p−pγ

2 −1|Du|p

(
− 4

5
(p − pγ )κ1|x ′|2 − 5pκ2

2

2(1 − γ )κ1
x2

n

)
< 0.

Hence F does not achieve its maximum on 
+ ∩ �r0 . Next, we will show that

x0 �∈ �r0 by assuming otherwise and showing that ai j Di j F(x0) > 0, where

ai j (x) = δi j + (p − 2)|Du|−2 Di u D j u (6.5)

is symmetric. Note that

|ξ |2 � ai jξiξ j � (p − 1)|ξ |2, ∀ξ ∈ R
n, (6.6)

and if u is a solution of (1.7), then ai j Di j u = 0. Since Du(x0) �= 0. By the

continuity of Du, Du �= 0 in a neighborhood of x0, and hence ai j is well defined

in the neighborhood. By direction computations,

ai j Di j F

= Q
p−pγ

2 (ai j Di j |Du|p) + |Du|p(ai j Di j Q
p−pγ

2 ) + 2ai j (Di |Du|p)(D j Q
p−pγ

2 ).

(6.7)

Next, we estimate the three terms on the right-hand side above. First,

ai j Di j Q
p−pγ

2

= ai j
[ p − pγ

2
Q

p−pγ
2 −1 Di j Q + p − pγ

2

( p − pγ

2
− 1

)
Q

p−pγ
2 −2 Di Q D j Q

]
.

(6.8)

Since ai j Di j u = 0, applying Dk gives

ai j Di jku + Dkai j Di j u = 0.

Since

Dkai j = (p − 2)

[
Diku D j u + Di u D jku

|Du|2 − 2
Di u D j u Dklu Dlu

|Du|4
]

,

we have

ai j Di jku Dku = −Dkai j Di j u Dku

= −2(p − 2)|D|Du||2 + 2(p − 2)|Du|−4|�∞u|2, (6.9)
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where �∞u := Di u D j u Di j u. By (6.5) and (6.9), we have

ai j Di j |Du|p =pai j
[
(p − 2)|Du|p−4 Diku Dku D jlu Dlu

+ |Du|p−2 Diku D jku + |Du|p−2 Dku Dik j u
]

=p|Du|p−4
[
(p − 2)|Du|2|D|Du||2 + (p − 2)2|Du|−2|�∞u|2

+ |Du|2|D2u|2 + (p − 2)|Du|2|D|Du||2 − 2(p − 2)|Du|2|D|Du||2

+ 2(p − 2)|Du|−2|�∞u|2
]

=p|Du|p−4
[

p(p − 2)|Du|−2|�∞u|2 + |Du|2|D2u|2
]
. (6.10)

Note that at the point x0, for any i = 1, 2, . . . , n,

0 = Di F = (Di Q
p−pγ

2 )|Du|p + Q
p−pγ

2 (Di |Du|p). (6.11)

We split the last term on the right-hand side of (6.7) into

2p − 1

p
ai j (Di |Du|p)(D j Q

p−pγ
2 ) + 1

p
ai j (Di |Du|p)(D j Q

p−pγ
2 ).

For the first term on the right-hand side above, we use (6.11) to substitute Di |Du|p,

and for the second term, we substitute D j Q
p−pγ

2 . Then,

2ai j (Di |Du|p)(D j Q
p−pγ

2 )

= −2p − 1

p
Q− p−pγ

2 |Du|pai j (Di Q
p−pγ

2 )(D j Q
p−pγ

2 )

− 1

p
Q

p−pγ
2 |Du|−pai j (Di |Du|p)(D j |Du|p)

= −2p − 1

p

(p − pγ )2

4
Q

p−pγ
2 −2|Du|pai j Di Q D j Q

− pQ
p−pγ

2 |Du|p−4ai j Diku Dku D jlu Dlu

= −2p − 1

p

(p − pγ )2

4
Q

p−pγ
2 −2|Du|pai j Di Q D j Q

− pQ
p−pγ

2 |Du|p−4(|Du|2|D|Du||2 + (p − 2)|Du|−2|�∞u|2), (6.12)

where we used (6.5) in the last equality. Therefore, by (6.7), (6.8), (6.10), and

(6.12),

ai j Di j F =pQ
p−pγ

2 |Du|p−4
[
(p − 1)(p − 2)|Du|−2|�∞u|2 + |Du|2|D2u|2

− |Du|2|D|Du||2
]

+ p − pγ

2
Q

p−pγ
2 −1|Du|pai j Di j Q

−
[2p − 1

p

(p − pγ )2

4
− p − pγ

2

( p − pγ

2
− 1

)]

Q
p−pγ

2 −2|Du|pai j Di Q D j Q.
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Note that

|Du|2|D|Du||2 � |Du|2|D2u|2.

It remains to show

Qai j Di j Q >
[2p − 1

p

p − pγ

2
−

( p − pγ

2
− 1

)]
ai j Di Q D j Q. (6.13)

Recall that Q is given in (6.4). Then

DQ =
(

2x1, . . . , 2xn−1,−
5κ2

(1 − γ )κ1
xn

)
, (6.14)

and

ai j Di j Q =2n − 2 − 5κ2

(1 − γ )κ1

+ (p − 2)|Du|−2
(

2|Dx ′u|2 − 5κ2

(1 − γ )κ1
|Dnu|2

)

�2n − 2 − (p − 1)
5κ2

(1 − γ )κ1
.

By (6.6) and shrinking r0 if necessary, we have

ai j Di Q D j Q � 4(p − 1)
(
|x ′|2 + 25κ2

2

4(1 − γ )2κ2
1

x2
n

)
< 5(p − 1)Q.

In order to show (6.13), we only require

2n − 2 − (p − 1)
5κ2

(1 − γ )κ1
� 5(p − 1)

[2p − 1

p

p − pγ

2
−

( p − pγ

2
− 1

)]
,

which is equivalent to (1.12) since γ = 2´. This concludes the proof for the case

when p � 2.

Case 2: For p ∈ (1, 2), we consider the quantity

G = Q1−γ |Du|2,

where Q is given in (6.4). From the computation of Dν F with p = 2, one can see
that G does not attain its maximum on (
+ ∪ 
−) ∩ �r0 . Next, we assume that G

achieves its maximum at x0 ∈ �r0 . By the computations as in (6.7) and (6.8) with
p = 2, we have

ai j Di j G = Q1−γ (ai j Di j |Du|2) + |Du|2(ai j Di j Q1−γ ) + 2ai j (Di |Du|2)(D j Q1−γ ),

(6.15)

where ai j is given in (6.5) with

(p − 1)|ξ |2 � ai jξiξ j � |ξ |2, ∀ξ ∈ R
n . (6.16)
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Next, we estimate the three terms on the right-hand side of (6.15). First,

ai j Di j Q1−γ = ai j
[
(1 − γ )Q−γ Di j Q − γ (1 − γ )Q−1−γ Di Q D j Q

]
. (6.17)

By (6.5) and (6.9), we have

ai j Di j |Du|2 =ai j
[
2Di jku Dku + 2D jku Diku

]

=4(2 − p)|D|Du||2 − 4(2 − p)|Du|−4|�∞u|2

+ 2|D2u|2 − 2(2 − p)|D|Du||2

=2(2 − p)|D|Du||2 − 4(2 − p)|Du|−4|�∞u|2 + 2|D2u|2.
(6.18)

Note that at the point x0, for any i = 1, 2, . . . , n,

0 = Di G = (Di Q1−γ )|Du|2 + Q1−γ (Di |Du|2). (6.19)

As before, we split the last term on the right-hand side of (6.15) as

1

2
ai j (Di |Du|2)(D j Q1−γ ) + 3

2
ai j (Di |Du|2)(D j Q1−γ ).

For the first term on the right-hand side, we use (6.19) to substitute D j Q1−γ , and

for the second term, we substitute Di |Du|2. Then by (6.5),

2ai j (Di |Du|2)(D j Q1−γ ) = − 1

2
ai j (Di |Du|2)(D j |Du|2)Q1−γ |Du|−2

− 3

2
ai j (Di Q1−γ )(D j Q1−γ )|Du|2 Q−1+γ

= − 2Q1−γ |Du|−2ai j Diku Dku D jlu Dlu

− 3

2
(1 − γ )2|Du|2 Q−1−γ ai j Di Q D j Q

= − 2Q1−γ |D|Du||2 + 2(2 − p)Q1−γ |Du|−4|�∞u|2

− 3

2
(1 − γ )2|Du|2 Q−1−γ ai j Di Q D j Q. (6.20)

Therefore, by (6.15), (6.17), (6.18), and (6.20),

ai j Di j G =Q1−γ
[
(2(2 − p) − 2)|D|Du||2 − 2(2 − p)|Du|−4|�∞u|2 + 2|D2u|2

]

+ (1 − γ )Q−γ |Du|2ai j Di j Q

−
[
γ (1 − γ ) + 3

2
(1 − γ )2

]
|Du|2 Q−1−γ ai j Di Q D j Q.

Since

|Du|−4|�∞u|2 � |D|Du||2 � |D2u|2,
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it remains to show

Qai j Di j Q >
[
γ + 3

2
(1 − γ )

]
ai j Di Q D j Q. (6.21)

By (6.14), we have

ai j Di j Q =2n − 2 − 5κ2

(1 − γ )κ1

− (2 − p)|Du|−2
(

2|Dx ′u|2 − 5κ2

(1 − γ )κ1
|Dnu|2

)

�2n − 2 − 5κ2

(1 − γ )κ1
− 2(2 − p).

By (6.16) and shrinking r0 if necessary, we have

ai j Di Q D j Q � 4
(
|x ′|2 + 25κ2

2

4(1 − γ )2κ2
1

x2
n

)
< 5Q.

In order to show (6.21), we only require

2n − 2 − 5κ2

(1 − γ )κ1
− 2(2 − p) � 5

[
γ + 3

2
(1 − γ )

]
,

which is equivalent to (1.13) since γ = 2´. This concludes the proof for the case

when p ∈ (1, 2). 
�
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Appendix A.

In the appendix, we provide an alternative proof of the gradient estimates of order

ε−1/2 using a Bernstein type argument. This proof also requires the assumptions

that h1 and h2 are C2,Dini functions and satisfy (1.10) for some κ1, κ2 > 0, in

addition to (1.3) imposed in Theorem 1.1.

Theorem A.1. Let h1, h2 be C2,Dini functions satisfying (1.10), p > 1, n � 2,

ε ∈ (0, 1), and u ∈ W 1,p(�1) be a solution of (1.7). Then there exists a positive

constant C depending only on n, p, κ1, and κ2, such that

|Du(x)| � C‖u‖L∞(�1)(ε + |x ′|2)−1/2 for x ∈ �1/2. (A.1)
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Proof. Without loss of generality, we may assume κ1 ∈ (0, 1] and κ2 > 1. The

case p = 2 has been shown in [6,34]. It remains to show the cases when p > 2

and p ∈ (1, 2).

Case 1: For p > 2, we consider the quantity Fq/2, where

F = Q|Du|2 + Au2, Q = ε + |x ′|2 − 4κ−1
1 κ2

2 x2
n , (A.2)

q � 2 and A are some positive ε-independent constants to be determined later. Let

SA := {Q|Du|2 > 100Au2}.

We will show that Fq/2 does not achieve its maximum on (
+ ∪ 
−) ∩ �r0 ∩ SA

or in �r0 ∩ SA for some suitable q, A, and r0. Therefore, Fq/2 can only achieve its

maximum in

�r0 ∩ {Q|Du|2 � 100Au2},

or on

{|x ′| = r0} ∩ �1,

so (A.1) follows from either case.
First we show that Fq/2 does not achieve its maximum on 
+ ∩�r0 ∩ SA. A similar

argument applies to 
− ∩ �r0 ∩ SA. On 
+, the normal vector ν is given by (6.2).
Then

Dν Fq/2 = q

2
Fq/2−1(Dν Q|Du|2 + Q Dν |Du|2)

= q

2
Fq/2−1

( −2√
1 + |Dx ′h1|2

[ n−1∑

j=1

D j h1x j + 4
κ2

2

κ1
(ε/2 + h1)

]
|Du|2 + Q Dν |Du|2)

)
.

We choose r0 small enough such that

−2√
1 + |Dx ′h1|2

�
−2√

1 + |κ2x ′|2
� −1 for |x ′| < r0.

By (1.3) and (1.10), we have

n−1∑

j=1

D j h1x j � κ1|x ′|2 and h1 �
1

2
κ1|x ′|2.

Therefore, by (6.1) with s = 2, we have

Dν Fq/2

�
q

2
Fq/2−1|Du|2

[
−

(
κ1|x ′|2 + 2

κ2
2

κ1
ε + 2κ2

2 |x ′|2
)

+ 2κ2

(
ε + |x ′|2 − 4

κ2
2

κ1
x2

n

)]

= −q

2
Fq/2−1|Du|2

[
2κ2

(
κ2

κ1
− 1

)
ε + 2κ2(κ2 − 1)|x ′|2 + κ1|x ′|2 + 8

κ2
2

κ1
x2

n

]

< 0.
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Hence Fq/2 does not achieve its maximum on 
+ ∩ �r0 ∩ SA. Next, we will show

Fq/2 does not achieve its maximum in �r0 ∩ SA by proving that ai j Di j Fq/2 > 0,

where ai j is given in (6.5). By direct computations, we have

ai j Di j Fq/2 = q

2
Fq/2−1ai j Di j F + q

2

(q

2
− 1

)
Fq/2−2ai j Di F D j F,

Di F = Di Q|Du|2 + 2Q Diku Dku + 2Au Di u,

and

Di j F =Di j Q|Du|2 + 2Di Q Dku D jku + 2D j Q Dku Diku

+ 2Q(Diku D jku + Dku Di jku) + 2A(u Di j u + Di u D j u).

Then by (6.5) and because ai j Di j u = 0,

ai j Di j F

= ai j Di j Q|Du|2 + 4(p − 2)|Du|−2 Di u Di Q�∞u + 4Di Q Dku Diku + 2Q|D2u|2

+ 2(p − 2)Q|D|Du||2 + 2Qai j Di jku Dku + 2Aai j Di u D j u,

where �∞u := Di u D j u Di j u. By (6.9),

ai j Di j F

= ai j Di j Q|Du|2 + 4(p − 2)|Du|−2 Di u Di Q�∞u + 4Di Q Dku Diku + 2Q|D2u|2

− 2(p − 2)Q|D|Du||2 + 4(p − 2)Q|Du|−4|�∞u|2 + 2Aai j Di u D j u.

By another direction computation, we have

ai j Di F D j F

= ai j Di Q D j Q|Du|4 + 4Q2ai j Diku Dku D jlu Dl u + 4A2u2ai j Di u D j u

+ 4Q|Du|2ai j Di Q D jlu Dl u + 4Au|Du|2ai j Di Q D j u + 8AQuai j Diku Dku D j u

= ai j Di Q D j Q|Du|4 + 4(p − 2)Q2|Du|−2|�∞u|2 + 4Q2|Du|2|D|Du||2

+ 4(p − 1)A2u2|Du|2 + 4(p − 2)Q Di u Di Q�∞u + 4Q Di Q Diku Dku|Du|2

+ 4A(p − 1)|Du|2u Di u Di Q + 8(p − 1)AQu�∞u.

Therefore,

ai j Di j Fq/2

= q

2
Fq/2−2[ai j Di j Q|Du|2 F + 2Q|D|Du||2

(
(q − 2)Q|Du|2 − (p − 2)F

)

+ 4(p − 2)Di u Di Q�∞u|Du|−2(F + (q − 2)Q|Du|2/2) + 2Q F |D2u|2

+ 4Di Q Dku Diku(F + (q − 2)Q|Du|2/2)

+ 4(p − 2)Q|Du|−4(F + (q − 2)Q|Du|2/2)|�∞u|2

+ 2AFai j Di u D j u + (q − 2)ai j |Du|4 Di Q D j Q/2 + 2(p − 1)(q − 2)A2u2|Du|2

+ 2A(p − 1)(q − 2)|Du|2u Di u Di Q + 4(p − 1)(q − 2)AQu�∞u
]
. (A.3)
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Note that in SA,

Q|Du|2 � F �
101

100
Q|Du|2. (A.4)

By (6.6),

(q − 2)ai j Di Q D j Q/2 � (q − 2)|DQ|2/2 � 0 for q � 2,

and

ai j Di j Q|Du|2 F + 2AFai j Di u D j u

= [2(n − 1) − 8κ−1
1 κ2

2 + (p − 2)|Du|−2(2|Dx ′u|2 − 8κ−1
1 κ2

2 |Dnu|2)]|Du|2 F

+ 2AFai j Di u D j u

�
(

2(n − 1) − 8κ−1
1 κ2

2 (p − 1) + 2A
)
|Du|2 F

�
(

2(n − 1) − 8κ−1
1 κ2

2 (p − 1) + 2A
)
|Du|4 Q. (A.5)

We choose q = 101
100

(p − 2) + 2 > p, so that

2Q|D|Du||2
(
(q − 2)Q|Du|2 − (p − 2)F

)

� 2Q|D|Du||2
(

(q − 2) − 101

100
(p − 2)

)
Q|Du|2 = 0.

It remains to control

4(p − 2)Di u Di Q�∞u|Du|−2(F + (q − 2)Q|Du|2/2)

+ 4Di Q Dku Diku(F + (q − 2)Q|Du|2/2)

+ 2A(p − 1)(q − 2)|Du|2u Di u Di Q + 4(p − 1)(q − 2)AQu�∞u

=: I + I I + I I I + I V .

Since p > 2, we have

2(p − 2)q

(p − 1)(q − 2)
=

2
[

101
100

(p − 2) + 2
]

101
100

(p − 1)
> 2.

Fix a constant B ∈ (2,
2(p−2)q

(p−1)(q−2)
). We shrink r0 if necessary so that |DQ|2 � 8Q.

By Young’s inequality and (A.4),

|I | �

(
p − 2

2
− B(p − 1)(q − 2)

4q

)
|Du|−4|DQ|2|�∞u|2(F + (q − 2)Q|Du|2/2)

+ C(p)|Du|2(F + (q − 2)Q|Du|2/2)

�

(
4(p − 2) − 2B(p − 1)(q − 2)

q

)
Q|Du|−4|�∞u|2(F + (q − 2)Q|Du|2/2)

+ C(p)|Du|4 Q, (A.6)
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where C(p) is some positive constant depending on p. By Young’s inequality and

(A.4),

|I I | � 4
(101

100
+ q − 2

2

)
|DQ||D2u||Du|3 Q

� 4
(101

100
+ q − 2

2

)2
|DQ|2|Du|4 + Q2|D2u|2|Du|2

� 32
(101

100
+ q − 2

2

)2
|Du|4 Q + QF |D2u|2, (A.7)

|I I I | � 2(p − 1)(q − 2)A|Du|3|u||DQ|

�

(
2 − 4

B

)
(p − 1)(q − 2)A2u2|Du|2 + 4B

B − 2
(p − 1)(q − 2)|Du|4 Q,

(A.8)

and

|I V | �
4

B
(p − 1)(q − 2)A2u2|Du|2 + B(p − 1)(q − 2)Q2|Du|−2|�∞u|2

�
4

B
(p − 1)(q − 2)A2u2|Du|2

+ 2B(p − 1)(q − 2)

q
Q|Du|−4|�∞u|2(F + (q − 2)Q|Du|2/2). (A.9)

Now we choose A large such that

2(n − 1) − 8κ−1
1 κ2

2 (p − 1) + 2A − C(p) − 32
(101

100
+ q − 2

2

)2

− 4B

B − 2
(p − 1)(q − 2) > 0.

Then by (A.3), (A.5), (A.6), (A.7), (A.8), and (A.9), ai j Di j Fq/2 > 0 in �r0 ∩ SA,

and hence Fq/2 does not achieve its maximum in �r0 ∩ SA. This concludes the

proof for the case when p > 2.
Case 2: For p ∈ (1, 2), we consider the quantify F given in (A.2). A similar
argument as above shows that F does not achieve maximum on (
+∪
−)∩�r0∩SA.
In �r0 ∩ SA, we compute

ai j Di j F

= ai j Di j Q|Du|2 − 4(2 − p)|Du|−2 Di u Di Q�∞u + 4Di Q Dku Diku + 2Q|D2u|2

+ 2(2 − p)Q|D|Du||2 − 4(2 − p)Q|Du|−4|�∞u|2 + 2Aai j Di u D j u, (A.10)

where ai j is given in (6.5) satisfying (6.16). By a direct computation and (6.16),

we have

ai j Di j Q|Du|2 + 2Aai j Di u D j u

= [2(n − 1) − 8κ−1
1 κ2

2 + (p − 2)|Du|−2(2|Dx ′u|2 − 8κ−1
1 κ2

2 |Dnu|2)]|Du|2

+ 2Aai j Di u D j u

�
(

2(n − 1) − 8κ−1
1 κ2

2 − 2(2 − p) + 2A(p − 1)
)
|Du|2. (A.11)



95 Page 44 of 46 Arch. Rational Mech. Anal. (2023) 247:95

Note that

|Du|−4|�∞u|2 � |D|Du||2 � |D2u|2.

Therefore,

2Q|D2u|2 + 2(2 − p)Q|D|Du||2 − 4(2 − p)Q|Du|−4|�∞u|2

� 2(p − 1)Q|D2u|2. (A.12)

It remains to control

−4(2 − p)|Du|−2 Di u Di Q�∞u + 4Di Q Dku Diku =: I + I I.

By Young’s inequality and |DQ|2 � 8Q for small r0, we have

|I | �4(2 − p)|Du|−1|DQ||�∞u|

�
p − 1

16
|DQ|2|Du|−4|�∞u|2 + 64(2 − p)2

p − 1
|Du|2

�
p − 1

2
Q|Du|−4|�∞u|2 + 64(2 − p)2

p − 1
|Du|2, (A.13)

and

|I I | �4|DQ||Du||D2u|

�
p − 1

16
|DQ|2|D2u|2 + 64

p − 1
|Du|2

�
p − 1

2
Q|D2u|2 + 64

p − 1
|Du|2. (A.14)

Now we choose A large such that

2(n − 1) − 8κ−1
1 κ2

2 − 2(2 − p) + 2A(p − 1) − 64(2 − p)2

p − 1
− 64

p − 1
> 0.

Then by (A.10), (A.11), (A.12), (A.13), and (A.14), ai j Di j F > 0 in �r0 ∩ SA, and

hence F does not achieve its maximum in �r0 ∩ SA. This concludes the proof for

the case when p ∈ (1, 2). 
�
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