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Abstract

We present sharp conditions on divergence-free drifts in Lebesgue spaces for

the passive scalar advection–diffusion equation

∂tθ − �θ + b · 'θ = 0,

to satisfy local boundedness, a single-scale Harnack inequality, and upper bounds

on fundamental solutions. We demonstrate these properties for drifts b belonging

to L
q
t L

p
x , where 2

q
+ n

p
< 2, or L

p
x L

q
t , where 3

q
+ n−1

p
< 2. For steady drifts, the

condition reduces to b ( L
n−1

2 +. The space L1
t L∞

x of drifts with ‘bounded total

speed’ is a borderline case and plays a special role in the theory. To demonstrate

sharpness, we construct counterexamples whose goal is to transport anomalous

singularities into the domain ‘before’ they can be dissipated.
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1. Introduction

We consider the linear advection–diffusion equation

∂tθ − �θ + b · 'θ = 0. (A-D)

The solution θ = θ(x, t) is known as a passive scalar, and the prescribed divergence-

free velocity field b = b(x, t) is known as the drift.

Divergence-free drifts arise naturally in the nonlinear PDEs of fluid dynamics.

In that context, often the only a priori knowledge of the drift is in low regularity.

Therefore, it is natural to seek to understand the sharp regularity properties of (A-D)

when the drift b is rough. A great deal is already known in this direction. In this

paper, we give an essentially complete answer to what we consider to be one of the

most interesting remaining questions, see Sect. 1.1.

To understand what is ‘rough’, we recall the scaling symmetry

u → u(λx, λ2t), b → λb(λx, λ2t), λ > 0. (1.1)

In dimensional analysis, one writes [x] = L , [t] = L2, and [b] = L−1. The

scaling (1.1) identifies the Lebesgue spaces L
q
t L

p
x , where 2

q
+ n

p
f 1, as (sub)critical

spaces for the drift, meaning spaces whose norms do not grow upon ‘zooming in’

with the scaling symmetry. For example,

X = L∞
t Ln

x , L2
t L∞

x , Ln+2
t,x (1.2)

are critical spaces, whose norms are dimensionless, i.e., invariant under the sym-

metry (1.1). Here and throughout, n g 2 is the spatial dimension.

When b belongs to one of the critical Lebesgue spaces, it is not difficult to

adapt the work of De Giorgi, Nash, and Moser [7,29,34] to demonstrate that weak

solutions of (A-D) are Hölder continuous and satisfy Harnack’s inequality. The

above threshold is known to be sharp for continuity within the scale of Lebesgue

spaces, see counterexamples in [43,46]. The divergence-free condition even allows

access to drifts in the critical spaces

X = L∞
t L−1,∞

x , L∞
t BMO−1

x (1.3)

considered by [36,38,41]. In these spaces, it is furthermore possible to prove Gaus-

sian upper and lower bounds on fundamental solutions in the spirit of

Aronson [2].

For supercritical drifts, continuity may fail [43], and we must change our expec-

tations. Nonetheless, a version of the regularity theory may be salvaged due to the

divergence-free structure; its crucial role is already visible from the computation1

∫

(b · 'θ)θφ2 dx dt =
∫

b · '
(

θ2

2

)

φ2 dx dt = −
∫

θ2(b · 'φ)φ. (1.4)

1 The divergence-free structure also plays a role in the critical case, but it is more subtle:
without this structure, the drift is required to be small in a critical Lebesgue space or Kato
class, and local boundedness may depend on the ‘profile’ of the drift, not merely its norm.
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With this well known observation, one may apply Moser’s iteration scheme to

demonstrate that, when b ( L
q
t L

p
x and 2

q
+ n

p
< 2, solutions are locally bounded,

see [35]. Typical examples are

X = L∞
t L

n
2 +
x , L

n+2
2 +

t,x . (1.5)

Under these conditions (and a weak background assumption), the Harnack in-

equality persists as a single-scale Harnack inequality [19,20]: In the steady case

θ = θ(x),

sup
BR

θ f CR inf
BR

θ, (1.6)

where CR may become unbounded as R → 0+. Whereas a scale-invariant Har-

nack inequality implies Hölder continuity, it is less well known that a single-scale

Harnack may hold in the absence of Hölder continuity. Finally, pointwise upper

bounds on fundamental solutions continue to hold, although they have ‘fat tails’

compared to their Gaussian counterparts [37,47].

One might wonder whether the easy computation (1.4) already yields the sharp

conditions. It does not. In the steady case, there is an additional subtle feature, which

is not well known and, in our opinion, surprising: Local boundedness continues to

hold when b ( L
n−1

2 +. The best of our knowledge, this ‘dimension reduction’

was first observed in this context by Kontovourkis [21] in his (unpublished) the-

sis.2 Heuristically, Kontovourkis’ key observation is as follows. Consider the basic

L2 energy estimate in a ball Br without smooth cut-off. The drift contributes the

boundary term

∫

Br

(b · 'θ)θ dx =
∫

∂ Br

θ2

2
b · n dσ, (1.7)

where dσ is the surface area measure. Since 'θ ( L2(BR), on ‘many slices’

r ( (R/2, R), we have 'θ ( L2(∂ Br ), with a quantitative bound. Similarly, b

belongs to L
n−1

2 +(∂ Br )on ‘many slices’. Thus, one may exploit Sobolev embedding

on the sphere ∂ Br to estimate the boundary term.

The dimension reduction was recently rediscovered by Bella and Schäffner

in [5]. There, the authors proved local boundedness and a single-scale Harnack

inequality in the context of certain degenerate elliptic PDEs, which we review in

Sect. 1.2.

Following the work [21], it has been an interesting problem to understand what

dimension reduction holds in the parabolic setting. In particular, is b ( L
n+1

2 +
t,x

enough for local boundedness? Very recently, Zhang [48] generalized the work [5]

2 This kind of dimension reduction itself goes back at least to work [11] of Frehse and

R
◦
užička on the steady Navier-Stokes equations in n = 6. The ‘slicing’ was also exploited

by Struwe in [42].
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to the parabolic setting, and among other things, demonstrated local boundedness

under the condition

b ( L
p
x L

q
t ,

3

q
+ n − 1

p
< 2, p f q, (1.8)

see Corollary 1.5 therein. Crucially, the order of integration in (1.8) is reversed. The

condition b ( L
n−1

2 +
x L∞

t implies the elliptic case in [21]. From this condition, we

see that, perhaps, one dimension is not ‘reduced’, but rather hidden into the time

variable.

1.1. Main Results

Everything we have discussed so far has been directed toward answering

(Q) What are the optimal conditions on the drift for which the local

regularity theory holds?

That is, when do weak solutions satisfy local boundedness and its cousins, Har-

nack’s inequality and pointwise upper bounds on fundamental solutions? In this

paper, we give an essentially complete answer to this question in Lebesgue spaces.

Our main results constitute a detailed picture of the local regularity theory for

the passive scalar advection–diffusion equation (A-D) with supercritical drifts. To

give the complete picture and maximize its usefulness to the reader, we present

the known results (appearing with citations) together with our own contributions

(without citations). We will explain the novelty of our contributions in detail in

Remark 1.3, but we summarize a few key points here.

First, we revisit the condition b ( L
q
t L

p
x , 2

q
+ n

p
< 2. We prove that, without

additional structure, it is sharp. The reason for this has to do with a new endpoint

case L1
t L∞

x , the space of drifts with ‘bounded total speed’, in the terminology of

[44]. In this space, local boundedness holds in a modified form, depending on the

profile of b itself rather than its norm in L1
t L∞

x . The counterexamples we construct

are connected to this space, which plays a special role in the theory.

Second, we consider the condition (1.8), that is, with the opposite order of

integration. Under this condition, we prove the parabolic Harnack inequality and

pointwise upper bounds on fundamental solutions. To conclude, we present coun-

terexamples demonstrating its sharpness.

We now state the results. Let n g 2, � ⊂ Rn be a bounded domain, and �′ ⊂⊂ �

be a subdomain. Let I = (S, T ] and I ′ = (S′, T ′] ⊂ I be finite intervals such that

S < S′. Let Q I = � × I and Q′
I = �′ × I ′. Let p, q ( [1,+∞].

Theorem 1.1. (b ( L
q
t L

p
x ) (Local boundedness) [35] If

ζ := 2

q
+ n

p
< 2, (1.9)

then we have the following quantitative local boundedness property: θ ( L1(Q I )∩
C∞(Q I ) satisfies the drift-diffusion equation (A-D) in Q I with divergence-free

drift b ( C∞(Q I ) and

b ( L
q
t L

p
x (Q I ), (1.10)
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then

sup
Q′

I

|θ | � ‖θ‖L1(Q I )
, (1.11)

where the implied constant depends on n, �, �′, I , I ′, p, q, and ‖b‖L
q
t L

p
x (Q I )

.

(Single-scale Harnack) [20] If, additionally, b ( L2
t H−1

x (Q I ) and θ > 0, then

we have the following quantitative Harnack inequality: If I1, I2 ⊂⊂ I are intervals

satisfying sup I1 < inf I2, then

sup
�′×I1

θ � inf
�′×I2

θ, (1.12)

where the implied constant depends on n, �, �′, I , I1, I2, p, q, ‖b‖L
q
t L

p
x (Q I )

, and

‖b‖
L2

t H−1
x (Q I )

.

(Bounded total speed) If (p, q) = (∞, 1), then the above quantitative lo-

cal boundedness property holds with constants depending on b itself rather than

‖b‖L1
t L∞

x (Q I )
. (The property is false without this adjustment.)

(Sharpness) Let Q = B1 × (0, 1). There exist a smooth divergence-free drift

b ( C∞(Q) belonging to L
q
t L

p
x (Q) for all (p, q) ( [1,+∞]2 with 2/q+n/p = 2,

(p, q) 
= (∞, 1), and satisfying the following property. There exists a smooth

solution θ ( L∞
t L1

x ∩ C∞(Q) to the advection–diffusion equation (A-D) in Q

with

sup
B1/2×(0,T )

|θ | → +∞ as T → 1−.

In particular, the above quantitative local boundedness property fails when 2/q +
n/p = 2 and q > 1.

(Upper bounds on fundamental solutions) [37] If the divergence-free drift b (
C∞

0 (Rn × [0,+∞)) belongs to L
q
t L

p
x (Rn × R+) and 1 f ζ < 2, then the funda-

mental solution 
 = 
(x, t; y, s) to the parabolic operator L = ∂t − � + b · '
satisfies, when p < +∞,


(x, t; 0, 0) f Ct−
n
2 max

[

exp

(

−M− 1
1−³

|x |1+ ³
1−³

Ct
³−1/q

1−³

)

, exp

(

−|x |2
Ct

)
]

, (1.13)

and, when p = +∞,


(x, t; 0, 0) � t−
n
2 exp

[

− 1

4Ct

(
1

4
|x | − C Mt

1− 1
q

)2
]

(1.14)

for all x0 ( Rn and t ( R+. Here, C = C(n, p, q) > 0 and

³ = 2 − ζ + 2/q

2
, M = C‖b(·, t)‖L

q
t L

p
x (Rn×R+) . (1.15)

See Fig. 1 for an illustration of Theorem 1.1.
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Fig. 1. Divergence-free drift b ( L
q
t L

p
x in dimension n g 2 (dimension n = 3 illustrated

above). Region A (2/q + n/p f 1): Local boundedness, Harnack inequality, and Hölder
continuity. Region B (1 < 2/q + n/p < 2 or (p, q) = (∞, 1)): Local boundedness and
single-scale Harnack inequality. Dashed line: Local boundedness is false

Theorem 1.2. (b ( L
p
x L

q
t ) (Local boundedness) [48] If

ζ := 3

q
+ n − 1

p
< 2, p f q, (1.16)

then we have the following quantitative local boundedness property: If θ ( L1(Q I )∩
C∞(Q I ) satisfies the drift-diffusion equation (A-D) in Q I with divergence-free drift

b ( C∞(Q I ) and

b ( L
p
x L

q
t (Q I ), (1.17)

then

sup
Q′

I

|θ | � ‖θ‖L1(Q I )
, (1.18)

where the implied constant depends on n, �, �′, I , I ′, p, q, and ‖b‖L
p
x L

q
t (Q I )

.

(Single-scale Harnack) If, additionally, b ( L2
t H−1

x (Q I ) and θ > 0, then we

have the following quantitative Harnack inequality: If I1, I2 ⊂⊂ I are intervals
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satisfying sup I1 < inf I2, then

sup
�′×I1

θ � inf
�′×I2

θ, (1.19)

where the implied constant depends on n, �, �′, I , I1, I2, p, q, ‖b‖L
p
x L

q
t (Q I )

, and

‖b‖
L2

t H−1
x (Q I )

.

(Sharpness, steady case). Let n g 3. The quantitative local boundedness prop-

erty fails for steady drifts b ( L
n−1

2 (B) and steady solutions θ in the ball B.

(Sharpness, time-dependent case). Let n g 2 and Q = B1 × (0, 1). There

exist a smooth divergence-free drift b ( C∞(Q) belonging to L
p
x L

q
t (Q) for all

p, q ( [1,+∞] with p f q and 3/q + (n − 1)/p > 2 and satisfying the following

property. There exists a smooth solution θ ( L∞
t L1

x ∩ C∞(Q) to the advection–

diffusion equation (A-D) in Q with

sup
B1/2×(0,T )

|θ | → +∞ as T → 1−.

In particular, the above quantitative local boundedness property fails when 3/q +
(n − 1)/p > 2 and p f q. Finally, the drift additionally belongs to L

q
t L

p
x (Q) for

all (p, q) ( [1,+∞]2 with 2/q + n/p > 2.

(Upper bounds on fundamental solutions) If the divergence-free drift b (
C∞

0 (Rn × [0,+∞)) belongs to L
p
x L

q
t (Rn × R+) and 1 f ζ < 2, then the funda-

mental solution 
 = 
(x, t; y, s) to the parabolic operator L = ∂t − � + b · '
satisfies, when p < +∞,


(x, t; 0, 0) f Ct−
n
2 max

[

exp

(

−M− 1
1−³

|x |1+ ³+1/p−1/q

1−³

Ct
³−1/q

1−³

)

, exp

(

−|x |2
Ct

)
]

,

(1.20)

and, when p = +∞,


(x, t; 0, 0) � t−
n
2 exp

[

− 1

4Ct

(
1

4
|x | − C M |x |

1
q t

1− 1
q

)2
]

(1.21)

for all x0 ( Rn and t ( R+. Here, C = C(n, p, q) > 0 and

³ = 2 − ζ + 2/q

2
, M = C‖b(·, t)‖L

p
x L

q
t (Rn×R+) . (1.22)

See Figs. 2 and 3 for an illustration of Theorem 1.2.

Remark 1.3. (Contributions)

In the positive direction, our main new contributions are the L1
t L∞

x case in

Theorem 1.1 and the Harnack inequality and Gaussian-like upper bound for the

L
p
x L

q
t cases in Theorem 1.2. However, we actually reprove the known positive

results in Theorems 1.1 and 1.2, together with our new results, in a unified and

(essentially) self-contained way through a new form boundedness condition. This

condition encompasses significantly more general drifts than we stated above, see
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Fig. 2. Divergence-free drift b ( L
p
x L

q
t , dimension n g 3 (dimension n = 4 illustrated

above). Local boundedness and single-scale Harnack inequality

Sect. 1.2. Moreover, in light of Remark 1.4 below, it is worthwhile to mention that

we also give a proof of the Harnack inequality in the L
q
t L

p
x setting. Our condition

b ( L2
t H−1

x in the Harnack inequality is new; it is used to connect the forward-

and backward-in-time regions, see Lemma 2.11. This condition is at the level of

making sense of (A-D) in the sense of distributions. For comparison, the background

condition in [20] was b ( L∞
t L2

x . Finally, the pointwise upper bounds in [37] were

only proved with n g 3; we include the case n = 2.

In the direction of sharpness, our main new contribution is to construct coun-

terexamples demonstrating sharpness of the L
q
t L

p
x and L

p
x L

q
t criteria. This is far

from obvious, and in the parabolic setting, there are no counterexamples like this in

the literature. Our examples are discussed in Sect. 1.3, and as mentioned above, the

space L1
t L∞

x plays a key role in understanding them. Finally, in Proposition 5.4,

we give examples demonstrating that our Gaussian-like pointwise upper bounds

are optimal in certain regions.

Remark 1.4. At a technical level, there is a gap in the proof of the weak Harnack

inequality in [20], see (3.22) therein, where it is claimed that log+(θ/K) is a super-

solution. This is related to a step in the proof of Lemma 6.20, p. 124, in Lieberman’s

book [23], which we had difficulty following, see the first inequality therein. Both

of these are related to improving the weak L1 inequality. We opt to follow Moser’s
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Fig. 3. Divergence-free drift b ( L
p
x L

q
t , dimension n = 2. Local boundedness and single-

scale Harnack inequality

proof in [31] more directly and skip the weak Harnack inequality. In principle, one

could directly apply the parabolic John-Nirenberg inequality in [9,29] to obtain the

weak Harnack inequality.

Remark 1.5. The local boundedness property and Harnack inequality in Theo-

rems 1.1 and 1.2 can be easily extended to accommodate drifts satisfying div b f
0 (with the background assumption b ( L2

t,x (Q I ) in the Harnack inequality).

These properties and the fundamental solution estimates can also be extended to

divergence-form elliptic operators div a'· with bounded, uniformly elliptic a.

1.2. Discussion of Dimension Reduction Principle

The ‘slicing’ described above in the steady setting is more subtle in the time-

dependent setting because the anisotropic condition θ ( L∞
t L2

x does not restrict

well to slices in the radial variable r ; compare this to the isotropic condition 'θ (
L2

t,x . Indeed, to ‘slice’ in a variable, it seems necessary for that variable to be

summed ‘last’ (that is, on the outside) in the norm. The condition b ( L
p
x L

q
t , p f q,

3
q
+ n−1

p
< 2, in Theorem 1.2 comes, roughly speaking, from interpolating between

the isotropic condition b ( L
n+2

2 +
t,x , in which the order of integration may be changed

freely, and the dimensionally reduced condition b ( L
n−1

2 +
x L∞

t , which implies that
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b ( L∞
t L

n−1
2 +

σ (∂ Br × I ) on ‘many slices’, say, a set of r ( A ⊂ (1/2, 1) with

measure |A| > 1/4. Local boundedness under this condition was already observed

by X. Zhang in [48, Corollary 1.5], and the counterexamples we construct answer

an open question in Remark 1.6 therein.

Our proof of local boundedness and the Harnack inequality is built on a certain

form boundedness condition (FBC), see Sect. 2, which subsumes a wide variety

of possible assumptions on b. For example, in Proposition 2.3, we verify (FBC)

not only in the context of Theorems 1.1 and 1.2 but also under the more general

conditions

b ( L
q
t L´

r Lµ
σ ((BR \ BR/2) × I ), ´ g n

2
,

2

q
+ 1

´
+ n − 1

µ
< 2 (1.23)

and

b ( Lκ
r L

q
t L p

σ ((BR \ BR/2) × I ), q g n

2
,

3

q
+ n − 1

p
< 2. (1.24)

Furthermore, we allow arbitrarily low integrability κ > 0 in the radial variable;

the slicing method does not require high integrability. The norms in the above

spaces (1.23) and (1.24) are defined in (2.8) and (2.9) below. Our proof of upper

bounds on fundamental solutions is centered on a variant of the form boundedness

condition, see Sect. 5 which is partially inspired by the work of Qi S. Zhang [47].

We now describe the work [5], which was generalized to the parabolic setting

in [48]. The conditions in [5] are on the ellipticity matrix a, which is allowed to be

degenerate. Define

λ(x) := inf
|ξ |=1

ξ · a(x)ξ, μ(x) := sup
|ξ |=1

|a(x)ξ |2
ξ · a(x)ξ

. (1.25)

If n g 2, p, q ( (1,+∞], and

λ−1 ( Lq(B), μ ( L p(B),
1

p
+ 1

q
<

2

n − 1
, (1.26)

then weak solutions of −div a'u = 0 are locally bounded and satisfy a single-scale

Harnack inequality. The analogous condition with 2
n

on the right-hand side is due

to Trudinger in [45]. By examples in [13], the right-hand side cannot be improved

to 2
n−1

+ ε. Divergence-free drifts b belong to the above framework: Under general

conditions, it is possible to realize b as the divergence of an antisymmetric stream

matrix: bi = di j,i . Then we have −�θ+b ·'θ = −div [(I +d)'θ ], and μ captures

the antisymmetric part d. The steady examples we construct in Sect. 4 handle the

equality case in (1.26). We mention also the works [3,4].

Earlier, it was hoped that the dimension reduction could be further adapted to

treat the case b ( L
n+1

2 +
t,x in the parabolic setting by estimating a half-derivative

in time: |∂t |1/2θ ( L2
t,x , since this condition is better adapted to slicing than θ (

L∞
t L2

x . On the other hand, our counterexamples rule out this possibility. Half time

derivatives in parabolic PDE go back, at least, to [25, Chapter III, Section 4], see

[1] for further discussion.
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1.3. Discussion of Counterexamples and ‘Bounded Total Speed’

Solutions of (A-D) in the whole space evolving from initial data θ0 ( L1(Rn)

become bounded instantaneously. This is captured by the famous Nash estimate

[34]

‖θ(·, t)‖L∞(Rn) � t−
n
2 ‖θ0‖L1(Rn), (1.27)

where the implied constant is independent of the divergence-free drift b. The Nash

estimate indicates that a divergence-free drift does not impede smoothing, in the

sense of boundedness, of a density, even if the density is initially a Dirac mass.3

Therefore, for rough drifts, local boundedness must be violated in a different way:

The danger is that the drift can ‘drag’ an anomalous singularity into the domain of

observation from outside. There is a competition between the drift, which transports

the singularity with some speed, and the diffusion, which smooths the singularity

at some rate. Will the singularity, entering from outside, be smoothed before it can

be observed inside the domain?

Consider a Dirac mass δx=−�e1
, which we seek to transport inside the domain.

If one can transport the Dirac mass inside B1/2 instantaneously, one can violate

local boundedness. This can be done easily via the drift b(x, t) = δt=0�e1, which is

singular in time. This example already demonstrates the importance of the space

L1
t L∞

x , whose drifts cannot transport the mass inside arbitrarily quickly.

To improve this example, we seek the most efficient way to transport the Dirac

mass. Heuristically, the evolution of the Dirac mass is mostly supported in a ball

of radius R(t) ∼ √
t . Therefore, we define our drift b to be S(t)�e1 restricted to this

support. That is, the drift lives on a ball of radius R(t) moving in the x1-direction at

speed S(t). Since we wish to move the Dirac mass instantaneously, we guess that

S(t) ∼ 1/t . A back-of-the-envelope calculation gives

‖b‖q

L
q
t L

p
x

∼
∫ 1

0

S(t)q R(t)
nq
p dt ∼

∫ 1

0

t
−q+ nq

2p dt. (1.28)

The above quantity is finite when 2/q + n/p > 2; more care is required to get the

borderline cases in Theorem 1.1, see Sect. 4. This heuristic is the basis for our time-

dependent counterexamples in Sect. 4, except that we use appropriate subsolutions

to keep the compact support property, we glue together many of these Dirac masses,

and S(t) must be chosen more carefully.

The elliptic counterexample with b ( L
n−1

2 is achieved by introducing an ansatz

which reduces the problem to counterexamples for the steady Schrödinger equation

−�u + V u = 0 in dimension n − 1. These steady counterexamples are singular

on a line through the domain, as they must be to respect the maximum principle.

The time-dependent counterexamples in L
p
x L

q
t seem to be more subtle, and

we only exhibit them in the non-borderline cases ζ = 3
q

+ n−1
p

> 2 and p f q.

When ζ = 2, we have counterexamples in the cases p = q = n+2
2

and (p, q) =

3 By approximation, we may consider the estimate (1.27) also for finite measure initial
data.
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( n−1
2

,+∞) (the steady example). We believe that local boundedness fails also

between these two points, but the counterexamples are yet to be exhibited, see

Remark 4.4.

1.4. Further Review of the Existing Literature

Following the seminal works of De Giorgi [7] and Nash [34], Moser introduced

his parabolic Harnack inequality [29,30] (see [28] for the elliptic case), whose

original proof relied on a parabolic generalization of the John-Nirenberg theorem

concerning exponential integrability of BMO functions. Later, Moser published

a simplified proof [31], whose basic methods we follow. In [41], Seregin, Sil-

vestre, Šverák, and Zlatoš generalized Moser’s methods to accommodate drifts in

L∞
t BMO−1

x . For recent work on boundary behavior in this setting, see [17,24].

Generalizations to critical Morrey spaces and the supercritical Lebesgue spaces are

due to [18–20,35].

The Gaussian estimates on fundamental solutions were discovered by Aronson

[2] and were generalized to divergence-free drifts by Osada in [36] (L∞
t L

−1,∞
x )

and Qian and Xi (L∞
t BMO−1

x ) in [37,38]. Important contributions are due to [47],

who developed Gaussian-like upper bounds in the supercritical case b ( L
n
2 +(Rn),

n g 4, and [26,33,40], among others. For recent progress on Green’s function

estimates with sharp conditions on lower order terms, see [8,22,32,39].

The primary examples concerning the regularity of solutions to (A-D) can be

found in [41,43,46]. Counterexamples to continuity with time-dependent drifts can

be constructed by colliding two discs of +1 (subsolution) and −1 (supersolution)

with radii R(t) ∼
√

1 − t and speeds S(t) ∼ 1/
√

1 − t . The parabolic counterex-

amples with steady velocity fields constructed therein are more challenging. See

[10,12] for examples in the elliptic setting. We also mention Zhikov’s counterex-

amples [49] to uniqueness when b does not belong to L2, whereas weak solutions

with zero Dirichlet conditions are known to be unique when b ( L2 [47].

For recent counterexamples in the regularity theory of parabolic systems based

on self-similarity, see [27].

2. Local Boundedness and Harnack’s Inequality

Let b be a smooth, divergence-free vector field defined on BR0 × I0, where

R0 > 0 and I0 is an open interval. In the sequel, we will use a form boundedness

condition, which we denote by (FBC):

There exist constants M, N , ³ > 0, ε ( [0, 1/2), and δ ( (0, 1] satisfying

the following property. For every R ( [R0/2, R0], � ( [R0/2, R), subin-

terval I ⊂ I0, and Lipschitz u ( W 1,∞(BR × I ), there exists a measurable
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set A = A(�, R, I, u) ⊂ (�, R) with |A| g δ(R − �) and satisfying

− 1

|A|

∫∫

BA×I

|u|2
2

(b · n) dx dt f M R³
0

δ³ R2
0(R − �)³

∫∫

(BR\B�)×I

|u|2 dx dt

+ N

∫∫

(BR\B�)×I

|'u|2 dx dt + ε sup
t(I

∫

BR

|u(x, t)|2 dx,

(FBC)

where BA = ∪r(A∂ Br and n is the outer unit normal.

The left-hand side of (FBC) appears on the right-hand side of the energy esti-

mates.

In the situations we consider, M may depend on R0, and we can predict its

dependence based on dimensional analysis. For example, since b has dimensions

of L−1, the quantity

R
1− 2

q
− n

p

0 ‖b‖L
q
t L

p
x (BR0

×R2
0 I )

is dimensionless.

In Proposition 2.3, we show that (FBC) is satisfied under the hypotheses of

Theorems 1.1 and 1.2.

Notation. In this section, R0/2 f � < R f R0 and −∞ < T < τ < 0. Let us

introduce the backward parabolic cylinders Q R,T = BR × (T, 0). Our working

assumptions are that θ is a non-negative Lipschitz function and b is a smooth,

divergence-free vector field. To give precise constants, we will frequently use the

notation

C(�, τ, R, T, M, δ, ³) = 1

δ2(R − �)2
+ M R³

0

δ³ R2
0(R − �)³

+ 1

τ − T
(2.1)

involving the various parameters from (FBC). Our convention throughout the paper

is that all implied constants may depend on n.

Theorem 2.1. (Local boundedness) Let θ be a non-negative Lipschitz subsolution

and b satisfy (FBC) on Q R,T . Then, for all µ ( (0, 2],

sup
Q�,τ

θ f C(N , ³, ε)
1
µ C

n+2
2µ ‖θ‖Lµ (Q R,T \Q�,τ ). (2.2)

Theorem 2.2. (Harnack inequality) Let θ be a non-negative Lipschitz solution on

Q∗ = B × (−T ∗, T ∗). Let b ( L2
t H−1

x (Q∗; Rn) satisfying (FBC) on Q∗. Let

0 < � < T ∗ be the time lag. Then

sup
B1/2×(−T ∗+�,0)

θ �N ,M,A,T ∗,δ,³,ε,� inf
B1/2×(�,T ∗)

θ, (2.3)

where A = ‖b‖2

L2
t H−1

x (Q∗;Rn)
.
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2.1. Verifying (FBC)

We verify that (FBC) is satisfied in the setting of the main theorems.

Proposition 2.3. (Verifying FBC) Let p, q, ´, µ ( [1,+∞], κ ( (0,+∞], and b

be a smooth, divergence-free vector field defined on BR0 × I0.

1. If

b ( L
q
t L

´
r L

µ
σ ((BR0

\ BR0/2) × I0), ´ g n

2
, ζ := 2

q
+ 1

´
+ n − 1

µ
< 2, (2.4)

then b satisfies (FBC) with A = (�, R), δ = 1, N = ε = 1/4, and

³ = 2

2 − ζ
, M = C

(

R
1−ζ
0 ‖b‖

L
q
t L

´
r L

µ
σ ((BR0

\BR0/2)×I0)

)2/(2−ζ )

+ 1

4
. (2.5)

2. If

b ( Lκ
r L

q
t L p

σ ((BR0 \ BR0/2) × I0), q g n

2
, ζ := 3

q
+ n − 1

p
< 2, (2.6)

then b satisfies (FBC) with δ = 1/2, N = ε = 1/4, and

³ =
( 1

κ
− 1

q
+ 1
) 2

2 − ζ
,

M = C
(

R
1−ζ
0 ‖b‖Lκ

r L
q
t L

p
σ ((BR0

\BR0/2)×I0)

)2/(2−ζ )

+ 1

4
. (2.7)

The above norms are defined by

‖b‖
L

q
t L

´
r L

µ
σ ((BR0

\BR0/2)×I0)

:=
(∫

I0

(∫ R0

R0/2

(∫

Sd−1
|b(rσ, t)|µ rn−1dσ

) ´
µ

dr

) q
´

dt

) 1
q

(2.8)

and

‖b‖Lκ
r L

q
t L

p
σ ((BR0

\BR0/2)×I0)

:=
(∫ R0

R0/2

(∫

I0

(∫

Sd−1
|b(rσ, t)|p rn−1dσ

) q
p

dt

) κ
q

dr

) 1
κ

(2.9)

with standard modifications when exponents are equal to infinity.

As a corollary, we have

Corollary 2.4. (FBC in L
p
x L

q
t ) Let p, q ( [1,+∞] and b be as above. If

b ( L
p
x L

q
t ((BR0 \ BR0/2) × I0), p f q, ζ := 3

q
+ n − 1

p
< 2 , (2.10)

then b satisfies (FBC) with δ = 1/2, N = ε = 1/4, and

³ =
( 1

p
− 1

q
+ 1
) 2

2 − ζ
M = C

(

R
1−ζ
0 ‖b‖L

p
x L

q
t ((BR0

\BR0/2)×I0)

)2/(2−ζ )

+ 1

4
.

(2.11)
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By Minkowski’s inequality, (2.10) is a special case of (2.6) with κ = p.

Remark 2.5. Condition (2.4) automatically enforces q ( (1,+∞] and µ (
(

n−1
2

,

+∞]. Condition (2.6) automatically enforces q (
(

n+2
2

,+∞
]

and p (
(

n−1
2

,+∞
]

.

Proof of Proposition 2.3. First, we rescale R0 = 1. Let 1/2 f � < R f 1 and

I ⊂ I0. All norms below are on BR \ B� unless stated otherwise.

1. Summary of embeddings for u. By the Gagliardo-Nirenberg inequality, we

have

‖u‖L p1 � ‖u‖θ1

L2 [(R − �)−1‖u‖L2 + ‖'u‖L2 ]1−θ1 (2.12)

where 1/p1 = θ1/2 + (1 − θ1)(1/2∗
n) with θ1 ( [0, 1] in dimension n g 3 and, in

dimension n = 2, θ1 ( (0, 1]. Here, 2∗
n = 2n/(n − 2) is the Sobolev exponent and

2∗
2 = +∞.

Suppose, momentarily, that n g 3. Then we have the following Gagliardo-

Nirenberg inequality on the spheres ∂ Br , r ( (�, R):

‖u‖
L2

r L
p2
σ

� ‖u‖θ2

L2 [‖u‖L2 + ‖'u‖L2 ]1−θ2 (2.13)

where 1/p2 = θ2/2 + (1 − θ2)(1/2∗
n−1) with θ2 ( [0, 1] in dimension n g 4 and,

in dimension n = 3, θ2 ( (0, 1]. By interpolation between (2.12) and (2.13), we

have

‖u‖
L

´2
r L

µ2
σ

� ‖u‖θ3

L2 [(R − �)−1‖u‖L2 + ‖'u‖L2 ]1−θ3 (2.14)

whenever 1/´2 + (n − 1)/µ2 = θ3(n/2) + (1 − θ3)(n/2 − 1) and θ3 ( (0, 1].
We now address dimension n = 2. Sobolev embedding on the circle bounds

‖u‖
L2

r C
1/2
σ

� ‖u‖L2 + ‖'u‖L2 , (2.15)

and the following Gagliardo-Nirenberg inequality on circles (see Remark 2.6) will

be useful:

‖u‖Lµ2 (Br ) � ‖u‖θ
L p1 (Br )

‖u‖1−θ

C1/2(Br )
, (2.16)

whenever 1/µ2 = θ/p1−(1−θ)/2, µ2, p1 ( [1,+∞], θ ( [0, 1], and r ( [1/2, 1].
We can combine (2.12), (2.15), (2.16), and Hölder’s inequality in r to recover (2.14)

with the same restrictions on the exponents as mentioned below (2.14).

2. Verifying (FBC) for condition (2.4). For any measurable A ⊂ (�, R), we

have
∫

BA

|b · n||u|2 dx f ‖b‖
L

´
r L

µ
σ
‖|u|2‖

L
´′
r L

µ ′
r

f ‖b‖
L

´
r L

µ
σ
‖u‖2

L
´2
r L

µ2
r

, (2.17)

where BA = ∪r(A∂ Br , ′ denotes Hölder conjugate, ´2/2 = ´ ′, and µ2/2 = µ ′. By

the assumptions, we have ´2 f 2∗
n (with ´2 < +∞ in dimension n = 2) and that

(´2, µ2) is admissible for the interpolation inequality (2.14). Hence, we have
∫

BA

|b · n||u|2 dx � ‖b‖
L

´
r L

µ
σ
‖u‖2θ3

L2

[

(R − �)−2‖u‖2
L2 + ‖'u‖2

L2

]1−θ3

. (2.18)
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We compute

θ3 = 1 − n − 1

2µ
− 1

2´
= 2 − ζ + 2/q

2
. (2.19)

Subsequently, we define

θ4 := θ3 − 1

q
= 2 − ζ

2
g 0 . (2.20)

By Hölder’s inequality in time, we have, with norms on (BR\B�) × I ,
∫∫

BA×I

|b · n||u|2 dx dt

� ‖b‖
L

q
t L

´
r L

µ
σ
‖u‖2θ4

L2 ‖u‖2(θ4−θ3)

L∞
t L2

x

[

(R − �)−2‖u‖2
L2 + ‖'u‖2

L2

]1−θ3

� ‖b‖
L

q
t L

´
r L

µ
σ
‖u‖2θ4

L2

[

‖u‖2
L∞

t L2
x
+ (R − �)−2‖u‖2

L2 + ‖'u‖2
L2

]1−θ4

.

(2.21)

We can set A = (�, R), divide by |A|, and split the product with Young’s inequality:

1

|A|

∫∫

BA×I

|b · n||u|2 dx dt f C(R − �)
− 1

θ4 ‖b‖
1
θ4

L
q
t L

´
r L

µ
σ

‖u‖2
L2

+ 1

100

[

‖u‖2
L∞

t L2
x
+ (R − �)−2‖u‖2

L2 + ‖'u‖2
L2

]

.

(2.22)

This completes the proof.

3. Verifying (FBC) for condition (2.6). First, we identify good slices for b.

Specifically, we apply Chebyshev’s inequality in r to the integrable function

r �→
∥
∥b|I0×∂ Br

∥
∥

κ

L
q
t L

p
σ (I0×∂ Br )

(2.23)

to obtain that, on a set A = A(�, R, I0) of measure |A| g 99(R −�)/100, we have

‖b‖L
q
r L

q
t L

p
σ (BA×I0)

� (R − �)
1
q ‖b‖L∞

r L
q
t L

p
σ (BA×I0)

� (R − �)
1
q
− 1

κ ‖b‖Lκ
r L

q
t L

p
σ ((BR\B�)×I0)

. (2.24)

Now we are in the setting of Step 2 with ´ = q, µ = p, and A already chosen, that

is, we use (2.21), (2.22), and (2.24) to conclude. ��
Remark 2.6. To prove (2.16), we use local coordinates on the sphere and a partition

of unity4 to reduce to functions f on R. Next, we use that L p ⊂ B
− 1

p
∞,∞, C1/2 =

B
1/2
∞,∞, and real interpolation

[B
− 1

p
∞,∞, B

1/2
∞,∞]θ,1 = B0

q,1 ⊂ Lq (2.25)

to demonstrate

‖ f ‖Lq � ‖ f ‖θ
L p(Br )

‖ f ‖1−θ
C1/2(Br )

� ε
1
θ ‖ f ‖L p(Br ) + ε

− 1
1−θ ‖ f ‖C1/2(Br )

. (2.26)

We piece together u from the functions f and optimize in ε to obtain (2.16).

4 Alternatively, one could argue on the flat torus without a partition of unity.
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2.2. Proof of Local Boundedness

To begin, we prove Caccioppoli’s inequality:

Lemma 2.7. (Caccioppoli inequality) Under the hypotheses of Theorem 2.1,

sup
t((τ,0)

∫

Br

|θ(x, t)|2 dx +
∫∫

Q�,τ

|'θ |2 dx dt �N ,³,ε C

∫∫

Q R,T \Q�,τ

|θ |2 dx dt.

(2.27)

Proof of Lemma 2.7. Let η ( C∞
0 (T,+∞) satisfying 0 f η f 1 on R, η ≡ 1 on

(τ,+∞) and 0 f dη/dt � 1/(τ − T ). Let r ( (�, R) and t ( (τ, 0). To begin, we

multiply by θη2 and integrate over Br × (T, t):

1

2

∫

Br

|θ(x, t)|2 dx +
∫∫

Br ×(τ,t)

|'θ |2 dx ds f
∫∫

BR×(T,t)

|θ |2 dη

ds
η dx ds

+
∫∫

∂ Br ×(T,t)

(dθ

dn
θη2 − θ2

2
(b · n)η2

)

dσ ds.

(2.28)

Next, we average in the r variable over the set of ‘good slices’, A = A(�, R, (T, t), θ

η), which was defined in (FBC):

1

2

∫

B�

|θ(x, t)|2 dx +
∫∫

B�×(τ,t)

|'θ |2 dx ds f C

τ − T

∫∫

BR×(T,τ )

|θ |2 dx ds

+ 1

|A|

∫∫

BA×(T,t)

(dθ

dn
θη2 − θ2

2
(b · n)η2

)

dx ds.

(2.29)

Here BA = ∪r(A∂ Br . Let us estimate the term containing dθ/dn:

1

|A|

∫∫

BA×(T,t)

dθ

dn
θη2 dx ds f 1

δ2(R − r)2

∫∫

Q R,T \Q�,τ

|θ |2 dx ds

+
∫∫

Q R,T \Q�,τ

|'θ |2 dx ds.

(2.30)

To estimate the term containing b, we use (FBC) with u = θη:

− 1

|A|

∫∫

BA×(T,t)

θ2

2
(b · n)η2 dx ds f M

δ³(R − r)³

∫∫

Q R,T \Q�,τ

|θ |2 dx ds

+ N

∫∫

Q R,T \Q�,τ

|'θ |2 dx ds + ε sup
s((T,t)

∫

BR

|θ(x, s)|2 dx .

(2.31)

Combining everything and applying supt((T,0), we obtain

1

2
sup

t((τ,0)

∫

B�

|θ(x, t)|2 dx +
∫∫

Q�,τ

|'θ |2 dx dt f C × C

∫∫

Q R,T \Q�,τ

|θ |2 dx dt

+ (1 + N )

∫∫

Q R,T \Q�,τ

|'θ |2 dx dt + ε sup
t((T,0)

∫

BR

|θ(x, t)|2 dx .

(2.32)
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By Widman’s hole-filling trick, there exists µ := max{(N + 1)/(N + 2), 2ε} (
(0, 1) satisfying

1

2(N + 2)
sup

t((τ,0)

∫

B�

|θ(x, t)|2 dx +
∫∫

Q�,τ

|'θ |2 dx dt

f C(N ) × C

∫∫

Q R,T \Q�,τ

|θ |2 dx dt

+ µ

∫∫

Q R,T

|'θ |2 dx dt + µ

2(N + 2)
sup

t((T,0)

∫

BR

|θ(x, t)|2 dx .

(2.33)

To remove the extra terms on the right-hand side, we use a standard iteration argu-

ment on a sequence of scales (progressing ‘outward’) �0 = �, �k+1 = � + (1 −
λk+1)(R − �), Rk = �k+1, τ0 = τ , τk+1 = τ + (1 − λ2k+2)(T − τ), Tk = τk+1,

k = 0, 1, 2, . . ., where 0 < λ < 1 is defined by the relation λmax(³,2) = 2µ . The

argument is given in [15, p. 191, Lemma 6.1], for example, and we recall it here.

Upon iterating, we have

1

2(N + 2)
sup

t((τk ,0)

∫

B�

|θ(x, t)|2 ddx +
∫∫

Q�,τ

|'θ |2 dx dt

f C(N )

k
∑

j=0

µ j C(� j , τ j , R j , T j , M, δ, ³)

∫∫

Q R j ,T j
\Q� j ,τ j

|θ |2 dx dt

+ µ k+1

∫∫

Q Rk ,Tk

|'θ |2 dx dt + µ k+1

2(N + 2)
sup

t((Tk ,0)

∫

BRk

|θ(x, t)|2 dx .

(2.34)

We send k → +∞ and analyze the sum on the right-hand side. By the definition

of C in (2.1) and choice of ρk, τk, Rk, Tk , it is estimated above by

⎛

¿
1

δ2(R − �)2

∞
∑

j=0

µ j

(λ j − λ j+1)2
+ M R³

0

δ³ R2
0(R − �)³

∞
∑

j=0

µ j

(λ j − λ j+1)³

+ 1

T − τ

∞
∑

j=0

µ j

λ2 j − λ2 j+2

À

⎠×
∫∫

Q R,T \Qρ,τ

|θ |2 dx dt,

(2.35)

which is summable provided that µ /λmax(³,2) f 1/2. This gives the desired Cac-

cioppoli inequality. ��

Next, we require a simple corollary.

Corollary 2.8. (Interpolation inequality) Let χ = 1 + 2/n. Then

(
∫∫

Q�,τ

|θ |2χ dx dt

) 1
χ

�N ,³,ε C

∫∫

Q R,T \Q�,τ

|θ |2 dx dt. (2.36)
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Proof. Let 0 f ϕ ( C∞
0 (B(R+�)/2) satisfying ϕ ≡ 1 on B� and |'ϕ| � 1/(R −�).

Using (2.27) at an intermediate scale, we find

sup
t((τ,0)

∫

B�

|θ(x, t)ϕ|2 dx +
∫∫

Q�,τ

|'(θϕ)|2 dx dt �N ,³,ε C

∫∫

Q R,T \Q�,τ

|θ |2 dx dt.

(2.37)

Then (2.36) follows from the Gagliardo-Nirenberg inequality on the whole space.

We are now ready to use Moser’s iteration.

Proof of Theorem 2.1 (Local boundedness). Let ´k := χk , where k = 0, 1, 2, . . ..

A standard computation implies that θ´k is also a non-negative Lipschitz subsolu-

tion. Hence, it satisfies the Caccioppoli inequality (2.36) with Rk = �+2−k(R−�),

rk = Rk+1, Tk = τ −2−2k(τ −T ), τk = Tk+1, k = 0, 1, 2, . . . (iterating ‘inward’).

In other words,

‖θ2´k+1‖
1
χ

L1(Q�k ,τk
)
�N ,³,ε C(�k, τk, Rk, Tk, M, δ, ³)‖θ2´k ‖L1(Q Rk ,Tk

\Q�k ,τk
).

(2.38)

We may expand the domain of integration on the right-hand side as necessary.

Define

M0 := ‖θ2‖L1(Q R0,T0
\Q�0,τ0

) (2.39)

and

Mk+1 := ‖θ2‖
L´k+1 (Q�k ,τk

)
= ‖θ2´k+1‖

1
´k+1

L1(Q�k ,τk
)
, k = 0, 1, 2, . . . (2.40)

Raising (2.38) to 1/´k and using Eq. (2.1) defining C, we obtain

Mk+1 f C(N , ³, ε)
1
´k 2

max(2,³)k
´k C(�, τ, R, T, M, δ, ³)

1
´k Mk . (2.41)

Iterating, we have

Mk+1 f C(N , ³, ε)

∑k
j=0

1

χ j 2

∑k
j=0

max(2,³) j

χ j C(�, τ, R, T, M, δ, ³)

∑k
j=0

1
χ j M0.

(2.42)

Finally, we send k → +∞ and substitute
∑

jg0 1/χ j = (n + 2)/2 to obtain

‖θ‖L∞(Q�,τ ) �N ,³,ε C
n+2

4 ‖θ‖L2(Q R,T \Q�,τ ). (2.43)

We now demonstrate how to replace L2 on the right-hand side of (2.36) with Lµ

(0 < µ < 2). To begin, use the interpolation inequality ‖θ‖L2 f ‖θ‖µ /2
Lµ ‖θ‖1−µ /2

L∞
in (2.43) and split the product using Young’s inequality. This gives

‖θ‖L∞(Q�,τ ) f C(N , ³, ε)
1
µ C

n+2
2µ ‖θ‖Lµ (Q R,T \Q�,τ ) + 1

2
‖θ‖L∞(Q R,T ). (2.44)

The second term on the right-hand side is removed by iterating outward along a

sequence of scales, as in the proof of the Caccioppoli inequality in Lemma 2.7. ��
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Remark 2.9. (Elliptic case) The analogous elliptic result is

sup
B�

θ �N ,³,ε,µ C
n

2µ ‖θ‖Lµ (BR\B�), (2.45)

where C(�, R, M, δ, ³) = 1/[δ2(R − �)2] + M R³−2
0 /[δ³(R − �)³]. The proof is

the same except that χ = n/(n − 2) and
∑

1/χ j = n/2.

2.3. Proof of Harnack Inequality

In this subsection, θ is a strictly positive Lipschitz solution.5 Then log θ is well

defined. Let 0 f ψ ( C∞
0 (B) be a radially decreasing function satisfying ψ ≡ 1

on B3/4. We use the notation

favg = 1

Vol

∫

Rn

f ψ2 dx, Vol =
∫

Rn

ψ2 dx, (2.46)

whenever f ( L1
loc(B). Let

K = exp (log θ(·, 0))avg . (2.47)

whose importance will be made clear in the proof of Lemma 2.11. Define

v = log

(
θ

K

)

. (2.48)

Then v(·, 0)avg = 0. A simple computation yields

|'v|2 = ∂tv − �v + b · 'v. (2.49)

That is, v is itself a supersolution, though it may not itself be positive. We crucially

exploit that |'v|2 appears on the left-hand side of (2.49). First, we require the

following decomposition of the drift:

Lemma 2.10. (Decomposition of drift) We have the following decomposition on

B3/4 × (−T ∗, T ∗).

b = b1 + b2, b1 = −div a, div b2 = 0, (2.50)

Here a : B3/4 × (−T ∗, T ∗) → Rn×n
anti is antisymmetric and

‖a‖L2(B3/4×(−T ∗,T ∗)) + ‖b2‖L2(B3/4×(−T ∗,T ∗)) � ‖b‖
L2

t H−1
x (Q∗), (2.51)

where Q∗ = B1 × (−T ∗, T ∗).

5 There is no loss of generality if we replace θ by θ + κ and let κ → 0+.
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Proof. Letφ ( C∞
0 (B1)withφ ≡ 1 on B15/16. Let b̃ = φb. Hence,‖b̃‖

L2
t H−1

x (Q∗) �

‖b‖
L2

t H−1
x (Q∗). We may decompose b̃(·, t) ( H−1(Rn) into b̃1(·, t) ( Ḣ−1(Rn),

whose Fourier transform is supported outside of B2, and b̃2(·, t) ( L2(Rn). Define

ai j = �−1(−∂ j b̃1i + ∂i b̃1 j ), g = �−1(−div b̃1). (2.52)

This amounts to performing the Hodge decomposition in Rn ‘by hand’.6 Clearly,

a is antisymmetric, and we have the decomposition

− b̃1 = div a + 'g (2.53)

and the estimates

‖a(·, t)‖L2(Rn) + ‖g(·, t)‖L2(Rn) � ‖b̃1(·, t)‖Ḣ−1(Rn). (2.54)

Similarly, we decompose

b̃2 = Pb̃2 + Qb̃2, (2.55)

where P is the Leray (orthogonal) projector onto divergence-free fields, and Q =
I − P is the orthogonal projector onto gradient fields. We denote Qb̃2 = ' f .

Since b̃ = b̃1 + b̃2 = −div a + Pb̃2 + '( f − g) is divergence free in B7/8 on

time slices, we have

�( f − g)(·, t) = 0 in B7/8, (2.56)

and by elliptic regularity, for all k g 0,

‖'( f − g)(·, t)‖H k(B3/4)
�k ‖b̃1(·, t)‖Ḣ−1(B7/8)

+ ‖b̃2(·, t)‖L2(B7/8)
. (2.57)

Finally, we define

b2 = Pb̃2 + '( f − g) ( L2
t,x (B3/4 × (−T ∗, T ∗)), (2.58)

which satisfies the claimed estimates and is divergence free in B7/8 × (−T ∗, T ∗).

We now proceed with the proof of Harnack’s inequality.

Lemma 2.11. For all non-zero t ( [−T ∗, T ∗], we write It = [0, t] if t > 0 and

It = [t, 0] if t < 0. Then

− sgn(t)v(·, t)avg +
∫

It

(

|'v|2(·, s)
)

avg
ds � |t | + ‖b‖2

L2
t H−1

x (B×It )
. (2.59)

6 We are simply exploiting the identity � = dd∗ + d∗d on differential k-forms, up to a
sign convention, for differential 1-forms ∼= vector fields.
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Proof. We multiply (2.49) by ψ2 and integrate over B × It :

sgn(t)

∫

B

(v(x, 0) − v(x, t)) ψ2 dx +
∫∫

B×It

|'v|2ψ2 dx ds

f
∫∫

B×It

2ψ'ψ · 'v + (b · 'v)ψ2 dx ds. (2.60)

By (2.47),
∫

Rn v(x, 0)ψ2 dx = 0. The first term on the right-hand side is easily

estimated:
∫∫

B×It

2ψ'ψ · 'v dx ds f 1

4

∫∫

B×It

|'v|2ψ2 dx ds + C |t |. (2.61)

To estimate the term containing b, we require the drift decomposition b = b1 + b2

from Lemma 2.10. Then
∫∫

B×It

(b1 · 'v)ψ2 dx ds =
∫∫

B×It

2ψa('ψ,'v) dx ds

f 1

4

∫∫

B×It

|'v|2ψ2 dx ds + C‖a‖2
L2(B×It )

. (2.62)

and
∫∫

B×It

(b2 · 'v)ψ2 dx ds f 1

4

∫∫

B×It

|'v|2ψ2 dx ds + C‖b2‖2
L2(B×It )

.

(2.63)

Recall the estimate (2.51) from the decomposition. Combining (2.60–2.63) and

dividing by Vol gives (2.59).

In that follows, we write v = v+ − v−, where v+, v− g 0. We also use the

notation

A+ =
∫ T ∗

0

‖b(·, t)‖2
H−1(B)

dt, A− =
∫ 0

−T ∗
‖b(·, t)‖2

H−1(B)
dt. (2.64)

Lemma 2.12. (Weak–L1 estimates) With the above notation, we have

‖v+‖L1,∞(B3/4×(−T ∗,0)) � 1 + T ∗(T ∗ + A−) (2.65)

and

‖v−‖L1,∞(B3/4×(0,T ∗)) � 1 + T ∗(T ∗ + A+). (2.66)

Proof. By (2.59) and a weighted Poincaré inequality [29, Lemma 3, p. 120],

− sgn(t)vavg(t) + 1

C1

∫

It

(

|v − vavg|2
)

avg
ds f C0

∫

It

(

1 + ‖b(·, t)‖2
H−1(B)

)

ds,

(2.67)

where C0 > 0 is the implied constant in (2.59). In the following, we focus on

the case t ( [−T ∗, 0]. We use (2.67) to obtain a sub/supersolution inequality
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corresponding to a quadratic ODE. First, we remove the forcing in the ODE by

defining

p(x, t) := v(x, t) − C0

∫

It

(

1 + ‖b(·, t)‖2
H−1(B)

)

ds

︸ ︷︷ ︸

fT ∗+A−

. (2.68)

Then (2.67) becomes

pavg(t) + 1

C1

∫

It

(

|p − pavg|2
)

avg
ds f 0. (2.69)

Let us introduce the super-level sets, whose measures η appear as a coefficient in

the ODE:

η(μ, t) :=
∣
∣{x ( B3/4 : p(x, t) > μ}

∣
∣ , μ > 0. (2.70)

Since pavg f 0, we have that p(x, t) − pavg(t) > μ − pavg(t) > 0 whenever

p(x, t) > μ. Then

pavg(t) + 1

C1Vol

∫

It

η(μ, s)(μ − pavg)
2 ds f 0. (2.71)

It is convenient to rephrase (2.71) in terms of a positive function evolving forward-

in-time: p̄(t) = −pavg(−t) with t ( [0, T ∗]. Then (2.71) becomes

p̄(t) g 1

C1Vol

∫ t

0

η(μ, |s|)(μ + p̄(s))2 ds. (2.72)

The above inequality means that p̄ is a supersolution of the quadratic ODE

q̇ = 1

C1Vol
× η(μ, |t |)(μ + q)2 (2.73)

with q(0) = 0. The above scalar ODE has a comparison principle. A priori,

since (2.73) is quadratic, its solutions may quickly blow-up depending on the size

of η(μ, ·) and μ. However, because p̄ lies above the solution q, q does not blow up,

and we obtain a bound for the density η(μ, ·) in the following way. After separating

variables in (2.73), we obtain

1

C1Vol

∫ T ∗

0

η(μ, |s|) ds = 1

μ
− 1

μ + q(T ∗)
f 1

μ
, (2.74)

since q g 0. That is,

‖p+‖L1,∞(B3/4×(−T ∗,0)) � 1. (2.75)

Finally, since ‖·‖L1,∞(B3/4×(−T ∗,0)) is a quasi-norm and v f p + C0(T
∗ + A−)

pointwise due to (2.68), we have

‖v+‖L1,∞(B3/4×(−T ∗,0)) f 2‖p+‖L1,∞(B3/4×(−T ∗,0))

+ 2C0‖T ∗ + A−‖L1,∞(B3/4×(−T ∗,0))

� 1 + T ∗(T ∗ + A−).

(2.76)
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The proof for t ( [0, T ∗] is similar except that one uses sub-level sets in (2.70)

with μ < 0.

We now require the following lemma of Moser [31], which we quote almost

directly, and in which we denote by Q(�), � > 0 any family of domains satisfying

Q(�) ⊂ Q(r) for 0 < � < r .

Lemma 2.13. (Lemma 3 in [31]) Let m, ζ, c0, 1/2 f θ0 < 1 be positive constants,

and let w > 0 be a continuous function defined in a neighborhood of Q(1) for

which

sup
Q(�)

wµ <
c0

(r − �)mmeas(Q(1))

∫∫

Q(r)

wµ dt dx (2.77)

for all �, r, µ satisfying

1

2
f θ0 f � < r f 1, 0 < µ < ζ−1. (2.78)

Moreover, let

meas{(x, t) ( Q(1) : log w > μ} <
c0ζ

μ
meas(Q(1)) (2.79)

for all μ > 0. Then there exists a constant function q = q(θ0, m, c0) such that

sup
Q(θ0)

w < qζ . (2.80)

Proof of Theorem 2.2 (Harnack inequality). Recall that, without loss of generality,

we may assume that θ is strictly positive by considering θ + κ and letting κ → 0+.

We apply Lemma 2.13 to w = θ/K with Q(�) = B� × (−T ∗ + 2�(1 − �), 0)

and θ0 = 1/2.7 Indeed, the requirement (2.77) with m = (n + 2) max(³, 2)/2 and

ζ = 1/2 follows directly from Theorem 2.1, and we recognize (2.79) as the weak

L1 estimate from Lemma 2.12. This gives

sup
B1/2×(−T ∗+�,0)

θ

K
� 1. (2.81)

Here, we suppress also the dependence on the time lag �. Meanwhile, v− =
log+(K/θ) is a subsolution. Hence,

‖v−‖L∞(B1/2×(�,T ∗)) � ‖v−‖L1,∞(B3/4×(0,T ∗)). (2.82)

On the other hand,

K

inf θ
= sup

K

θ
= exp

(

sup log
K

θ

)

f exp (sup v−) � exp
(

‖v−‖L1,∞
)

� 1,

(2.83)

7 Technically, to satisfy the conditions in Lemma 2.13, w = θ/K should be extended
arbitrarily to be continuous in a neighborhood of Q(1).
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where the inf and sup are taken on B1/2 × (�, T ∗). Combining (2.81) and (2.83),

we arrive at

sup
B1/2×(−T ∗+�,0)

θ � K � inf
B1/2×(�,T ∗)

θ, (2.84)

as desired. ��

3. Bounded Total Speed

In this section, we prove the statements in Theorem 1.1 concerning the space

L1
t L∞

x .

Proposition 3.1. (Local boundedness) Let T ( (−∞, 0) and τ ( (T, 0). Let

b Q1,T → Rn be a smooth divergence-free drift satisfying

‖b‖L1
t L∞

x (Q1,T ) f 1/8. (3.1)

Let θ be a non-negative Lipschitz subsolution on Q1,T . Then, for all µ ( (0, 2], we

have

‖θ‖L∞(Q1/2,τ ) �µ

(

1 + 1

τ − T

) n+2
2µ

‖θ‖Lµ (Q1,T ). (3.2)

Under the assumption b ( L1
t L∞

x , it is not evident how to absorb the boundary

term
∫

|θ |2b · 'ϕ ϕ dx in the standard energy estimate due to the presence of 'ϕ.

We require a different strategy.

Proof. For smooth λ : [T, 0] → (0,+∞), we define x = λy and

θ̃ (y, t) = θ(λy, t). (3.3)

That is, θ̃ is obtained by dynamically rescaling θ in space. The new PDE is

∂t θ̃ − 1

λ2
�y θ̃ + 1

λ
b̃ · 'y θ̃ f 0 (3.4)

where

b̃(y, t) = b(λy, t) − λ̇y. (3.5)

Choose λ(T ) = 1, λ̇ = −2‖b(·, t)‖L∞ when t ( [T, 0]. Clearly, 3/4 f λ f 1. Our

picture is that θ̃ dynamically ‘zooms in’ on θ . In particular, using (3.1) and (3.5),

b̃(·, t) · y

|y| g −‖b(·, t)‖L∞ + 2‖b(·, t)‖L∞ |y| g 0 when y ( B1 \ B1/2, (3.6)

and

div b̃ = 2n‖b(·, t)‖L∞ g 0. (3.7)
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We now demonstrate Caccioppoli’s inequality in the new variables. Let 3/4 f
� < R f 1. Let ϕ ( C∞

0 (BR) be a radially symmetric and decreasing function

satisfying 0 f ϕ f 1 on Rn , ϕ ≡ 1 on B�, and |'ϕ| � 1/(R − �). Let � = ϕ2.

We integrate Eq. (3.4) against θ̃� on BR . Then

1

2

d

dt

∫

|θ̃ |2(y, t)� dy +
∫

λ−2|' θ̃ |2� dy

f −
∫

λ−2θ̃' θ̃ · '� dy + 1

2

∫

λ−1 b̃ · '�
︸ ︷︷ ︸

f0 by (3.6)

|θ̃ |2 dy

+ 1

2

∫

λ−1div b̃|θ̃ |2� dy .

(3.8)

While div b̃ has a disadvantageous sign, it acts as a potential in L1
t L∞

x . Simple

manipulations involving the integral form of Gronwall’s inequality give the Cac-

cioppoli inequality:

sup
t((τ,0)

∫

B�

|θ̃ |2(y, t) dy +
∫∫

Q�,τ

|' θ̃ |2 dy ds

�

(
1

τ − T
+ 1

(R − �)2

)∫∫

Q R,T \Q�,τ

|θ̃ |2 dy ds.

(3.9)

The remainder of the proof proceeds as in Theorem 2.1 except in the (y, t) vari-

ables. Namely, we have the interpolation inequality as in Corollary 2.8, and θ̃
´

is

a subsolution of (3.4) whenever ´ g 1. Therefore, we may perform Moser’s iter-

ation verbatim. As in (2.44), the L2 norm on the right-hand side may be replaced

by the Lµ norm. Finally, undoing the transformation yields the inequality (3.2) in

the (x, t) variables, since (y, t) ( BR × {t} corresponds to (x, t) ( Bλ(t)R × {t}.

The quantitative local boundedness property in Theorem 1.1 follows from ap-

plying Proposition 3.1 and its rescalings on finitely many small time intervals. In

Remark 4.3, we justify that the constant depends on the ‘profile’ of b and not just

its norm.

4. Counterexamples

4.1. Elliptic Counterexamples

Let n g 3. Our counterexamples will be axisymmetric in ‘slab’ domains BR ×
(0, 1), where R > 0 is arbitrary and BR is a ball in Rn−1. We use the notation

x = (x ′, z), where x ′ ( Rn−1, r = |x ′|, and z ( (0, 1). Let

¯
θ(x) = u(r)z, (4.1)

b(x) = V (r)ez . (4.2)
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Since b is a shear flow in the ez direction, it is divergence free. Then

− �
¯
θ + b · '

¯
θ = −z�x ′u + V u. (4.3)

We will a construct a subsolution
¯
θ and supersolution θ̄ using the steady Schrödinger

equation

− �u + V u = 0 (4.4)

in dimension n − 1, where additionally u g 0 and V f 0. The way to proceed is

well known. We define

u = log log
10R

r
, (4.5)

V = �u

u
, (4.6)

for r f R. A simple calculation verifies that 0 f u ( H1
loc, �u, V f 0, and

�u, V ( L
(n−1)/2
loc .8 Therefore, V u = �u ( L1

loc, and the PDE (4.4) is satis-

fied in the sense of distributions. Using (4.3), we verify that
¯
θ is a distributional

subsolution:

− �
¯
θ + b · '

¯
θ = −z�x ′u + V u = (1 − z)V u f 0 in BR × (0, 1), (4.7)

with equality at {z = 1}. We also wish to control solutions from above. Since

�u f 0, we define

θ̄ (x ′, z) = u(r). (4.8)

Clearly,
¯
θ f θ̄ , and θ̄ is a distributional supersolution:

− �θ̄ + b · ' θ̄ = −�x ′u g 0 in BR × (0, 1). (4.9)

We now construct smooth subsolutions and supersolutions approximating
¯
θ and

θ̄ according to the above procedure. Let ϕ be standard mollifier and

ϕε = 1

εn−1
ϕ
( ·
ε

)

. (4.10)

Define uε = ϕε ∗ u, Vε = �uε/uε, bε = Vε(r)ez ,
¯
θε = zuε(r), and θ̄ε = uε(r).

Then (
¯
θε) and (θ̄ε) trap a family (θε) of smooth solutions to the PDEs

− �θε + bε · 'θε = 0 on BR/2 × (0, 1) (4.11)

when ε ( (0, R/2). Moreover, we have the desired estimates

sup
ε((0,R/2)

‖θε‖L p(BR/2×(0,1)) f ‖θ̄‖L p(BR×(0,1)) < +∞, p ( [1, +∞), (4.12)

8 Since Schrödinger solutions with critical potentials V belong to L
p
loc for all p < ∞ (see

Han and Lin [16], Theorem 4.4), it is natural to choose u with a log. The double log ensures

that u has finite energy when n = 3. Notice also that �u = −(r log r−1)−2 when n = 3.
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sup
ε((0,R/2)

‖Vε‖
L

n−1
2 (BR/2)

� sup
ε

‖�uε‖
L

n−1
2 (BR/2)

� ‖�u‖
L

n−1
2 (BR)

< +∞,

(4.13)

and the singularity, as ε → 0+,

sup
B R

4
×( 1

4 , 3
4 )

θε g sup
B R

4
×( 1

4 , 3
4 ) ¯

θε → +∞ as ε → 0+. (4.14)

Remark 4.1. (Line singularity) The solutions constructed above are singular on the

z-axis, as the maximum principle demands.

Remark 4.2. (Time-dependent examples) The above analysis of unbounded solu-

tions for the steady Schrödinger equation with critical potential is readily adapted

to the parabolic PDE ∂t u − �u + V u = f in BR × (−T, 0) ⊂ Rn+1, n g 2,

(i) with potential V belonging to L
q
t L

p
x , 2/q + n/p = 2, q > 1, and zero force,

or (ii) with force f belonging to the same space and zero potential. For example,

one can define u = log log(−t + r2), V = −(∂t u − �u)/u, and f = 0. The case

q = 1 is an endpoint case in which solutions remain bounded. These examples are

presumably well known, although we do not know a suitable reference.

4.2. Parabolic Counterexamples

Proof of borderline cases: L
q
t L

p
x , 2

q
+ n

p
= 2, q > 1. 1. A heat subsolution. Let


(x, t) =

⎧

⎪
⎪
«

⎪
⎪
¬

(4π t)−n/2e− |x |2
4t t > 0

δ0(x) t = 0

0 t < 0

(4.15)

be the heat kernel, where δ0 is the Dirac mass at the origin. Let

E(x, t) = (
 − cn)+, (4.16)

where cn = (8π)−n/2. Then E is globally Lipschitz away from t = 0, and E(·, t)

is supported in the ball BR(t), where

R(t)2 = 2nt log
2

t
, t < 2, (4.17)

and E vanishes in t g 2.

2. A steady, compactly supported drift. There exists a divergence-free vector

field U ( C∞
0 (B4) satisfying

U ≡ �e1 when |x | f 2. (4.18)

Here is a construction: Let φ ( C∞
0 (B4) be a radially symmetric cut-off function

such that φ ≡ 1 on B3. By applying Bogovskii’s operator in the annulus B4\B2,

see [14, Theorem III.3.3, p. 179], there exists W ( C∞
0 (B4\B2) solving

div W = −div (φ�e1) ( C∞
0 (B4 \ B2). (4.19)
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Notably, the property of compact support is preserved. Finally, we define

U = φ�e1 + W. (4.20)

3. Building blocks. Let 0 f S ( C∞
0 (0, 1) and X R → Rn be the solution of

the ODE

Ẋ (t) = S(t)�e1, X (0) = −10n�e1. (4.21)

Define

bS(x, t) = S(t)U

(
x − X (t)

R(t)

)

, (4.22)

where R(t) was defined in (4.17) above, and

ES(x, t) = E(x − X (t), t). (4.23)

Then ES is a subsolution:

(∂t − � + bS · ') ES

= [(∂t − �)E](x − X (t), t) + [(bS − S(t)�e1) · 'E](x − X (t), t)

= [(∂t − �)E](x − X (t), t) f 0 on Rn × (0, 1) .

(4.24)

If [a, a′] ⊂ (0, 1), S ( C∞
0 (a, a′), and

∫

S dt g 20n, then we have ES(·, t)|B3 ≡ 0

when t f a or t g a′. Additionally, ES(·, t̃) = E(·, t̃) for some t̃ ( (a, a′).
We also consider the solution �S to the PDE:

(∂t − � + bS · ') �S = 0 on Rn+1 \ {(X (0), 0)}
�S|t=0 = δx=X (0).

(4.25)

For short times |t | � 1 and negative times is equal to the heat kernel 
(x−X (0), t).

By the comparison principle,

ES f �S . (4.26)

We have the following measurements on the size of the drift:

‖bS‖q

L
q
t L

p
x (Rn+1)

�

∫

R

S(t)q R(t)
nq
p dt. (4.27)

There 1 f p, q < +∞, and

‖bS‖L1
t L∞

x (Rn+1) = ‖U‖L∞(Rn)

∫

R

S(t) dt. (4.28)

4. Large displacement. For Sk ( C∞
0 (tk, t ′k), k g 1, with tk = ok→+∞(1) and

[tk, t ′k] ⊂ (0, 1) disjoint-in-k, we consider the drifts bSk
. Let M > 0. We claim that

it is possible to choose Sk satisfying

‖bSk
‖L1

t L∞
x (Rn+1) = M (4.29)
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and
∥
∥
∥
∥
∥
∥

∑

kg1

bSk

∥
∥
∥
∥
∥
∥

L
q
t L

p
x (Rn+1)

< +∞ (4.30)

for all p, q ( [1,+∞] satisfying 2/q + n/p = 2 and q > 1. Indeed, consider

S̄(t) =
(

t log t−1 log log t−1
)−1

(4.31)

when t f c0 so that the above expression is well defined, and extended smoothly

on [c0, 1]. We ask also that t1 f c0. Since

∫ a′

a

S̄(t)dt = log log log t−1
∣
∣
a′

a
(4.32)

when a′ f c0, we have

∫ 1

0

S̄(t) dt = +∞, (4.33)

whereas

∫ 1

t=0

S̄(t)q R(t)
nq
p dt f O(1) + Cn

∫ c0

t=0

(t log t−1)
−q+ nq

2p (log log t−1)−q dt

f O(1) + Cn

∫ c0

t=0

(t log t−1)−1(log log t−1)−q dt < +∞
(4.34)

when q ( (1,+∞). The case q = +∞ is similar. We choose Sk = S̄(t)ϕk with

suitable smooth cut-offs ϕk to complete the proof of the claim.

5. Unbounded solution. We choose M = 20n and a suitable sequence of Sk as

above. We reorder the building blocks we defined above so that the kth subsolution

and kth drift are ‘activated’ on times (1 − t ′k, 1 − tk). Define

bk(·, t) = bSk
(·, t − (1 − t ′k) + tk), b =

∑

kg1

bk (4.35)

and, for size parameters Ak g 0,

Ek(·, t) = ESk
(·, t − (1 − t ′k) + tk)1(1−t ′k ,1−tk )

, E =
∑

kg1

Ak Ek . (4.36)

Then E is a subsolution of the PDE

(∂t − � + b · ')E f 0 on B3 × (−∞, 1). (4.37)

We further define

�k(·, t) = �Sk
(·, t − (1 − t ′k) + tk), θ =

∑

kg1

Ak�k, (4.38)
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which is a solution of the PDE

(∂t − � + b · ')θ = 0 on B2 × (−∞, 1). (4.39)

Since Ek f �k , we have that E f θ on B2 × (−∞, 1).

Additionally, we have

sup
t

Ak‖Ek(·, t)‖L∞(B1) g Ak‖Ek(·, 1 − t̃k)‖L∞(B1) � Ak t ′k
−n/2

, (4.40)

where t̃k ( (tk, t ′k) satisfies X Sk
(t̃k) = 0. Therefore, by the comparison principle

and (4.40), we have

lim sup
t→1−

‖θ(·, t)‖L∞(B1) � lim sup
k→+∞

Ak t ′k
−n/2

. (4.41)

To control the solution from above, we use

‖θ‖L∞
t L1

x (Rn+1) f
∑

Ak . (4.42)

Therefore, it is possible to choose Ak → 0 as k → +∞ while keeping the lim sup

in (4.41) infinite. Hence, by ‘pruning’ the sequence of Ak (meaning we pass to

a subsequence, without relabeling), we can always ensure that ‖θ‖L∞
t L1

x (Rn+1) <

+∞. ��

Remark 4.3. The sequence of solutions {θk} above demonstrates that the constant

in the quantitative local boundedness property in Theorem 1.1 for drifts b ( L1
t L∞

x

depends on the ‘profile’ of b rather than just its norm.

Proof of non-borderline cases: L
p
x L

q
t , 3

q
+ n−1

p
> 2, p f q. This construction ex-

ploits rescaled copies of E and is, in a certain sense, self-similar.

1. Building blocks. Let (tk) ⊂ (0, 1) be an increasing sequence, with tk → 1 as

k → +∞. Define Ik = (tk, tk+1), R2
k = |Ik |.

Let 0 f S ( C∞(0, 1) satisfying
∫ 1

0 S(t) dt = M with M = 20n. Define

Xk R → Rn to be the solution of the ODE

Ẋk(t − tk) = 1

|Ik |
S

(
t

|Ik |

)

︸ ︷︷ ︸

=:Sk (t−tk)

�e1, Xk(tk) = −10n�e1. (4.43)

The ‘total speed’ has been normalized:
∫

|Ẋk | dt =
∫

S dt = M . Define also

bk(x, t) = Sk(t)U

(
x − Xk(t)

Rk

)

(4.44)

and

Ek(x, t) = 1

Rn
k

E

(
x − Xk(t)

Rk

,
t − tk

|Ik |

)

. (4.45)
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Then Ek is a subsolution

(∂t − � + bk · ') Ek f 0 on Rn+1 \ {(Xk(tk), tk)}, (4.46)

and satisfies many of the same properties as Ek in the previous construction, among

which is

Ek(·, t̃k) = 1

Rn
k

E

( ·
Rk

, t̃

)

(4.47)

for some t̃k ( (tk, tk+1) and t̃ ( (0, 1). We define the solution θk to the PDE:

(∂t − � + bk · ') θk = 0 on Rn+1 \ {(Xk(tk), tk)}
θk |t=tk = δx=Xk (tk ).

(4.48)

For short times |t − tk | �k 1 and times t < tk that is equal to the heat kernel


(x − Xk(tk), t). The comparison principle implies

Ek f θk . (4.49)

2. Estimating the drift. We now estimate the size of bk . To begin, we estimate

the L
q
t L

p
x norms, 2

q
+ n

p
> 2. Using the scalings from (4.44), we have

max |bk | f ‖U‖L∞‖S‖L∞ |Ik |−1 (4.50)

and

‖bk‖L
q
t L

p
x (Rn+1) � ‖U‖L∞‖S‖L∞ |Ik |

1
q
−1

R
n
p

k � R
ε(p,q)
k = ok→+∞(1), (4.51)

since |Ik | = R2
k . Next, we estimate the L

p

x ′ L
∞
xn

L
q̃
t norm, where 2

q̃
+ n−1

p
> 2. We

are most interested when q̃ = +∞ and p = n−1
2

−, but it is not more effort to

estimate this. Importantly, we have

supp bk ⊂ BR
n−1

Cn Rk
× (−Cn, Cn) × Ik . (4.52)

Using this and (4.50), we have

‖bk‖L
p

x ′ L∞
xn

L
q̃
t (Rn+1)

� ‖U‖L∞‖S‖L∞ R
n−1

p

k |Ik |
1
q̃
−1

� R
ε(p,q̃)
k = ok→+∞(1).

(4.53)

Interpolating between (4.51) and (4.53) with (p, q̃) = ( n−1
2

−,∞), we thus obtain

‖bk‖L
p
x L

q
t (Rn+1) = ok→+∞(1) (4.54)

when 3
q

+ n−1
p

> 2 and p f q. After ‘pruning’ the sequence in k (meaning we

pass to a subsequence, without relabeling), we have

‖b‖L
q
t L

p
x (Rn+1) f

∑

‖bk‖L
q
t L

p
x (Rn+1) < +∞,

2

q
+ n

p
> 2 (4.55)
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and

‖b‖L
p
x L

q
t (Rn+1) f

∑

‖bk‖L
p
x L

q
t (Rn+1) < +∞,

3

q
+ n − 1

p
> 2, p f q.

(4.56)

3. Concluding. The remainder of the proof proceeds as before, with the notable

difference that we do not need to reorder the blocks in time. To summarize, we

have

sup
t

Ak‖Ek(·, t)‖L∞(B1) g Ak‖Ek(·, t̃k)‖L∞(B1) � Ak Rk
−n, (4.57)

where t̃k ( (tk, tk+1) satisfies Xk(t̃k) = 0, and hence,

lim sup
t→1−

‖θ(·, t)‖L∞(B1) � lim sup
k→+∞

Ak Rk
−n (4.58)

To control the solution from above, we again use (4.42) and choose Ak → 0 as

k → +∞ while maintaining that the right-hand side (4.58) is infinite. By again

‘pruning’ the sequence in k, we have ‖θ‖L∞
t L1

x (Rn+1) < +∞. This completes the

proof. ��
Remark 4.4. (An open question) As mentioned in the introduction, we do not con-

struct counterexamples in the endpoint cases L
p
x L

q
t , 3

q
+ n−1

p
= 2, except when

p = q = n+2
2

or (p, q) = ( n−1
2

,+∞) (steady example constructed above). This

seems to suggest, perhaps, that local boundedness should also fail on the line be-

tween these two points, but that the counterexamples may be more subtle. It would

be interesting to construct these examples. Since each ‘block’ above is uniformly

bounded in the desired spaces, we can say that, if local boundedness were to hold

there, it must be depend on the ‘profile’ of b and not just its norm, as in Remark 4.3.

5. Upper Bounds on Fundamental Solutions

For the Gaussian-like upper bounds on fundamental solutions, we consider the

following assumption, which makes sense for b ( L1
loc(R

n × [0,+∞)).

Assumption 5.1. ( ˜FBC) There exist

• Parameters θ ( (0, 1], q ( ( 1
θ
,+∞], δ ( [−1,+∞), and

• An upper bound M0 g 0,

such that, for all

• Radii R > 0 and intervals I0 ⊂ R+,

there exist

• An upper bound 0 f M ( Lq(I0), with

‖M‖Lq (I0) f M0 , (5.1)

and
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• A measurable set A = A(b, R, I0) ⊂ (R/2, R), with |A| g R/4,

satisfying the following property:

• For all subintervals I ⊂ I0 and Lipschitz functions u ( W 1,∞(BR × I ),
∫

BA

|b · n||u|2(x, t) dx f R−δ M(t)‖u(·, t)‖2θ
L2(BR)

(R−2‖u(·, t)‖2
L2(BR)

+ ‖'u(·, t)‖2
L2(BR)

)1−θ , a.e. t ( I . (5.2)

Assumption 5.1 is invariant under b → −b (without changing the parameters)

and time translation b → b(·, · + T ) (after suitably shifting I0); therefore, it will

be applicable in the duality argument in Step 3 below.

Theorem 5.2. If a divergence-free drift b ( C∞
0 (Rn ×[0,+∞)) satisfies Assump-

tion 5.1, then the fundamental solution 
 = 
(x, t; 0, 0) to the parabolic operator

L = ∂t − � + b · ' with 
(·, 0; 0, 0) = δ0 satisfies the following estimates:

I. When θ < 1, we have


(x, t; 0, 0) f Ct−
n
2 max

[

exp

(

−M
− 1

1−θ

0

|x |1+ θ+δ
1−θ

Ct
θ−1/q

1−θ

)

, exp

(

−|x |2
Ct

)
]

, (5.3)

for all x ( Rn and t ( R+, where C = C(n, θ, q) > 0.

II. When θ = 1, we have


(x, t; 0, 0) � t−
n
2 exp

[

− 1

4Ct

(
1

4
|x | − C M0|x |−δt

1− 1
q

)2
]

(5.4)

for all x0 ( Rn and t ( R+, where C = C(n, q) > 0.

The pointwise upper bounds in Theorems 1.1 and 1.2 are a consequence of

Theorem 5.2 and

Proposition 5.3. Let p, q, ´, µ ( [1,+∞], and κ ( (0,+∞]. Assume b ( L1
loc

(Rn × [0,+∞)).

1. If

b ( L
q
t L´

r Lµ
σ (Rn × R+), ´ g n

2
, ζ := 2

q
+ 1

´
+ n − 1

µ
< 2, (5.5)

then b satisfies Assumption 5.1 with

θ = 2 − ζ + 2/q

2
, δ = 0 , M0 = C‖b(·, t)‖

L
q
t L

´
r L

µ
σ (Rn×R+)

. (5.6)

2. If

b ( Lκ
r L

q
t L p

σ (Rn × R+), q g n

2
, ζ := 3

q
+ n − 1

p
< 2, (5.7)

then b satisfies Assumption 5.1 with

θ = 2 − ζ + 2/q

2
, δ = 1

κ
− 1

q
, M0 = C‖b‖Lκ

r L
q
t L

p
σ (Rn×R+) . (5.8)
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Proof. This was verified in the proof of Proposition 2.3. For (5.5), we refer to (2.18–

2.19). For (5.7), we refer to (2.24) and the discussion afterward.

As in Corollary 2.4, b ( L
p
x L

q
t with p f q is a special case of (5.7) with κ = p.

We record here two preliminary estimates. Define θq := θ − 1/q. First, we

have

∫ t

0

M(s)
1
θ ds f M

1
θ

0 t
θq
θ . (5.9)

Second, if we time-integrate (5.2) and apply Hölder’s inequality with M ( Lq , we

have

∫∫

BA

|u|2|b · n|(x, t) dx f M0‖u‖2θq

L2(BR×I )
(‖u‖2

L∞
t L2

x (BR×I )

+ R−2‖u‖2
L2(BR×I )

+ ‖'u‖2
L2(BR×I )

)1−θq .

(5.10)

If θ = 1, then the R−2‖u‖2
L2 + ‖'u‖2

L2 term can be removed from the right-hand

side of (5.10).

An analogous calculation to (5.10) was contained in (2.21).

Proof of Theorem 5.2. Let x0 ( Rn and R := |x0|. We set T = R2 when θ < 1

and, otherwise, T > 0 is arbitrary. Let I0 = (0, T ). We follow Davies’ method

[6], with some inspiration from [37]. Let ψ = ψ(r) (r = |x |) be a bounded radial

Lipschitz function, to be specified, such that ψ = 0 when r < R/2 and ψ is a

constant when r g R. We record the property |'ψ | f µ , where µ > 0 is to be

optimized.

1. Weighted energy estimates. Let f0 ( C∞
0 (Rn) and u be the solution to the

equation Lu = 0 in Rn × R+ with initial condition u(·, 0) = e−ψ f0. For t g 0,

denote

J (t) = 1

2

∫

Rn

e2ψ(y)|u|2(y, t) dy. (5.11)

For t > 0, we integrate by parts to compute that

J̇ (t) =
∫

Rn

e2ψu∂t u dy =
∫

Rn

e2ψu(�u − b · 'u) dy

= −
∫

Rn

e2ψ |'u|2 dy − 2

∫

Rn

e2ψu'u · 'ψ dy −
∫

Rn

e2ψb · ' |u|2
2

dy

f −1

2

∫

Rn

e2ψ |'u|2 dy + Cµ 2 J (t) +
∫

Rn

e2ψb · 'ψ |u|2 dy .

Let f (·, t) = eψu(·, t). Next, we integrate in time and use the elementary inequality

|' f |2 f 2|'u|2e2ψ + 4µ 2| f |2 (5.12)
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to obtain

J (t) + 1

4

∫ t

0

∫

Rn

|' f |2 dy ds

f J (0) + Cµ 2

∫ t

0

J (s) ds +
∫ t

0

∫

BR

b · 'ψ | f |2 dy ds.

(5.13)

We choose ψ ′(r) = µ 1A, where A = A(b, R, I0) is the set of ‘good slices’ from

Assumption 5.1. Then, for all t ( (0, T ], we have
∫

BR

b · 'ψ | f |2 dy = µ

∫

BA

b · n| f |2 dy

f C(M(t)µ R−δ)
1
θ ‖ f (·, t)‖2

L2(BR)

+ 1

100

[

T −1‖ f (·, t)‖2
L2(BR)

+ ‖' f (·, t)‖2
L2(BR)

]

,

(5.14)

when θ < 1. That is, we have applied Young’s inequality in (5.2). When θ = 1,

Young’s inequality is not necessary, and the terms with coefficient 1/100 on the

right-hand side of (5.14) are absent.

We now time-integrate (5.14) and absorb the last terms on its right-hand side

into the left-hand side of (5.13). This yields

sup
s((0,t)

J (s) f 2J (0) +
∫ t

0

[

Cµ 2 + C(M(s)µ R−δ)
1
θ

]

J (s) ds (5.15)

for all t ( (0, T ]. By Grönwall’s inequality, we have

J (t) f 2J (0) exp

[

Cµ 2t + C(µ R−δ)
1
θ

∫ t

0

M(s)
1
θ ds

]

(5.9)
f 2J (0) exp

[

Cµ 2t + C(M0µ R−δ)
1
θ t

θq
θ

]

.

(5.16)

2. Global-in-space Moser iteration. The goal of this step is to demonstrate that,

for all τ ( (0, T ], we have

‖ f ‖L∞(Rn×(τ/2,τ ))

�

[

µ 2τ + (M0µ R−δ)
1
θq τ + 1

]

τ− n+2
4 ‖ f ‖L2(Rn×(0,τ )) .

(5.17)

Without loss of generality, u g 0. Recall that u p, p g 1, satisfies

∂t u
p − �u p + b · 'u p = −p(p − 1)u p−2|'u|2 f 0 . (5.18)

Let 0 f η ( C∞
0 ((0, T ]) with ∂tη g 0. We multiply (5.18) by u pe2pψη2 and

perform an energy estimate analogous to Step 1. This yields
∫

Rn

| f (x, t)|2pη2(t) dx +
∫∫

Rn×(0,t)

|'| f |p|2η2 dx ds

�

∫∫

Rn×(0,t)

| f |2pη∂tη dx ds + pµ 2

∫∫

Rn×(0,t)

| f |2pη2 dx ds

+ pµ

∫∫

BA×(0,T )

|b · n|| f |2pη2 dx ds .

(5.19)
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The last term above is estimated by applying (5.10), where we substitute u = f pη

into the condition. After applying Young’s inequality to split the product, we have

sup
t((0,T )

∫

Rn

| f (x, t)|2pη2(t) dx +
∫∫

Rn×(0,T )

|'| f |p|2η2 dx dt

�

∫∫

Rn×(0,T )

| f |2pη∂tη dx dt +
[

pµ 2 + (pM0µ R−δ)
1
θq

]

∫∫

Rn×(0,T )

| f |2pη2 dx dt .

(5.20)

We are now in a position to apply Moser’s iteration. This is standard and similar to

the proof of Theorem 2.1, so we omit it. The main difference is that the cut-off is

only necessary in the time variable. This yields (5.17).

3. Duality. For 0 f s < t f T , we define

P
ψ
s→t f (x) = eψ(x)

∫

Rn


(x, t; y, s)e−ψ(y) f (y) dy. (5.21)

We now combine the previous two steps. We can estimate

‖ f ‖L2(Rn×(0,τ )) f τ
1
2 ‖ f ‖L∞

t L2
x (Rn×(0,τ )) (5.22)

on the right-hand side of the L∞ estimate (5.17) in Step 2. Of course, the right-hand

side of (5.22) is further controlled by the energy estimate (5.16) in Step 1. Since

J (0) = ‖ f0‖2
L2/2, the above reasoning implies that, for all t ( (0, T ], we have

‖P
ψ
0→t‖2

L2→L∞ �

[

µ 2t + (M0µ R−δ)
1
θq t + 1

]2

t−
n
2

× exp

[

Cµ 2t + C(M0µ R−δ)
1
θ t

θq
θ

]

.

(5.23)

Since XaeX �a e2X for any a, X > 0, we can incorporate two terms in the algebraic

prefactor in (5.23) into the exponential term after increasing its growth rate:

‖P
ψ
0→t‖2

L2→L∞ � t−
n
2 exp

[

Cµ 2t + C(M0µ R−δ)
1
θ t

θq
θ

]

. (5.24)

By duality, we also have that

‖P
ψ
0→t‖2

L1→L2 � t−
n
2 exp

[

Cµ 2t + C(M0µ R−δ)
1
θ t

θq
θ

]

. (5.25)

Therefore, after a translation in time, we can concatenate the estimates:

‖P
ψ
0→t‖L1→L∞ f ‖P

ψ
0→t/2‖L1→L2‖P

ψ
t/2→t‖L2→L∞

� t−
n
2 exp

[

Cµ 2t + C(M0µ R−δ)
1
θ t

θq
θ

]

.
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In particular, we plug in the definition (5.21) and see that


(x0, t; 0, 0) � t−
n
2 exp

[

−µ |x0|
4

+ Cµ 2t + C(M0µ |x0|−δ)
1
θ t

θq
θ

]

, (5.26)

since ψ(0) = 0 and ψ(x0) g µ |x0|/4.

4. Optimizing µ . The expression inside the exponential is

− 1

4
µ |x0| + Cµ 2t

︸ ︷︷ ︸

A

+ C(M0µ |x0|−δ)
1
θ t

θq
θ

︸ ︷︷ ︸

B

, (5.27)

where we consider C > 0 to be fixed.

When θ = 1, we can optimize µ explicitly via

2Cµ t := 1

4
|x0| − C M0|x0|−δt

1− 1
q , (5.28)

and the resulting estimate is


(x0, t; 0, 0) � t−
n
2 exp

[

− 1

4Ct

(
1

4
|x0| − C M0|x0|−δt

1− 1
q

)2
]

(5.29)

for all x0 ( Rn and t ( R+.9

From now on, suppose θ < 1.

First, we consider scalings of µ in which − 1
16

µ |x0| overtakes B, namely,

(M0µ |x0|−δ)
1
θ t

θq
θ = εµ |x0| . (5.30)

Then 1
16

µ |x0| g B when ε f (C16)−1 and

µ 1−θ = εθ |x0|θ+δ M−1
0 t−θq . (5.31)

With this scaling, we have that B g A (or Cεµ |x0| g Cµ 2t) when

ε2θ−1|x0|2θ+δ−1t1−θ−θq f M0 . (5.32)

In this region, under the additional assumption t f |x0|2, we have the exponential

bound


(x0, t; 0, 0) � t−
n
2 exp

(

−ε
θ

1−θ M
− 1

1−θ

0

|x0|1+ θ+δ
1−θ

8t
θq

1−θ

)

. (5.33)

Second, we consider scalings of µ in which − 1
16

µ |x0| overtakes A. Consider

µ 2t = εµ |x0| . (5.34)

9 Recall that, when θ = 1, we did not treat t g |x0|2 separately; the purpose of t f |x0|2
was only to allow certain terms of the form R−2‖u‖2

L2 + ‖'u‖2
L2 to be absorbed.
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Then 1
16

µ |x0| g A when ε f (C16)−1 and

µ = ε|x0|t−1 . (5.35)

With this scaling, we have that A g B (or Cεµ |x0| g C(M0µ |x0|−δ)
1
θ t

θq
θ ) when

ε2θ−1|x0|2θ+δ−1t1−θ−θq g M0 . (5.36)

In this region, under the additional assumption t f |x0|2, we have the exponential

bound


(x0, t; 0, 0) � t−
n
2 exp

(

−ε
|x0|2

8t

)

. (5.37)

We have demonstrated that, when t f |x0|2,


(x0, t; 0, 0) � t−
n
2 max

[

exp

(

−ε
θ

1−θ M
− 1

1−θ

0

|x0|1+ θ+δ
1−θ

8t
θq

1−θ

)

, exp

(

−ε
|x0|2

8t

)
]

.

(5.38)

Indeed, this is equivalent to (5.33) in the region (5.32) and (5.37) in the region (5.36)

both holding. When t g |x0|2, the fundamental solution is controlled by the Nash

estimate (1.27). Therefore, up to modifying the implicit constant in the symbol

�, (5.38) remains true for arbitrary x0 ( Rn and t ( R+. ��

5.1. Examples

Let l ( (1,+∞]. We consider power-law speeds

S(t) = M0

1 − 1/l

t−
1
l , (5.39)

which belong to the weak Lebesgue space L
l,∞
t . For b(x, t) = S(t)�en , we have

that the fundamental solution 
(x, t; 0, 0) is the translation of the heat kernel

1

(4π t)
n
2

exp

(

−|x − X (t)�en|2
4t

)

, (5.40)

where

X (t) =
∫ t

0

S(t) dt = M0t1− 1
l . (5.41)

In particular, when x = xn �en , the term inside the exponential is

− |xn − M0t1− 1
l |2

4t
. (5.42)

When xn g M0t1− 1
l , this matches, up to prefactors, the upper bound in (1.14) in

Theorem 1.1 for Ll
t L∞

x drifts. In particular, we see that the power 1 − 1/q of t in

the exponential in (1.14) cannot be increased.
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We now generalize the above example. Namely, we identify an ‘inner region’

inside of which the upper bound of Ct−n/2 cannot be improved.

Let X be a Banach space of distributional vector fields on Rn ×R+. Let Y[X] =
{b ( X : ‖b‖X f 1} ∩ {b ( C∞

0 (Rn × [0,+∞)) : div b = 0}. For given

(x, t) ( Rn × R+, we define


X(x, t; 0, 0) := sup
b(Y [X ]


[b](x, t; 0, 0) , (5.43)

where 
[b] is the fundamental solution to ∂t − � + b · '. That is, 
X is the

optimal upper bound for fundamental solutions with divergence-free drifts b (
C∞

0 (Rn × [0,+∞)) belonging to the closed unit ball in X.

Proposition 5.4. (Lower bounds on the optimal upper bound) Let p, q ( [1,+∞].
Consider

X = L
q
t L

p
x (Rn × R+) with 1 f ζ = 2

q
+ n

p
< 2 (5.44)

or

X = L
p
x L

q
t (Rn × R+) with q g p and 1 f ζ = 3

q
+ n − 1

p
< 2 . (5.45)

Let

l0 = 2/ζ > 1 . (5.46)

Then, for all l > l0, there exists a constant C = C(n, p, q, l0, l) > 0 such that


X(x, t; 0, 0) g C−1t−
n
2 , ∀t ( (0, 1] , |x | f C−1t1− 1

l . (5.47)

Remark 5.5. When we substitute |x | f t
1− 1

l0 into the upper bounds in Theorems 1.1

and 1.2, we have that 
X(x, t; 0, 0) � t−
n
2 . Therefore, the lower bound (5.47)

establishes the optimality of the upper bound in that region.

Proof of Proposition 5.4. By rotational invariance, it suffices to consider x = xn �en

with xn g 0. Let l > l0. We use the subsolutions ES with drift bS we constructed

in 3. Building blocks in Sect. 4.2, except that now X (0) = 0 and Ẋ = S(t)�en .

We choose S(t) to be the power law speed from (5.39) with l1 = (l + l0)/2

replacing l and M0 � 1. We can approximate S by Sk ( C∞
0 (0, 1) to justify that

ES(x, t) f 
X(x, t; 0, 0) provided that ‖bS‖X f 1.

To estimate the X norm of bS , we have

‖bS‖q1

L
q1
t L

p1
x (Rn×(0,1))

� M
q1

0

∫ 1

0

R(t)
nq1
p1 S(t)

q
1 dt

� M
q1

0

∫ 1

0

(t log t−1)
nq1
2p1 t

− q1
l1 dt � M

q1

0 (5.48)

provided that 2/q1+n/p1 > 2/ l1, with an appropriate adjustment when q1 = +∞.

Next, we estimate the L
p2

x ′ L∞
xn

L
q2
t norm, where 2/q2 + (n − 1)/p2 > 2/ l1. We
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do this by estimating bk(x, t) = bS(x, t)1Ik
(t), k g 1, where Ik = (2−k, 21−k).

Define Rk = R(21−k). Then

max |bk | � M02
k
l1 ‖U‖L∞ , (5.49)

supp bk ⊂ BR
n−1

Cn Rk
× (−Cn, Cn) × Ik . (5.50)

Hence, we have

‖bS‖
L

p2
x ′ L∞

xn
L

q2
t (Rn+1)

f M0‖U‖L∞
∑

kg1

2
k
l1 R

n−1
p2

k |Ik |
1

q2

� M0

∑

kg1

2
k
l1 (k2−k)

n−1
2p2 2

− k
q2 � M0 ,

provided that 2/q2 + (n − 1)/p2 > 2/ l1, as desired.

Hence, we find that, for all M0 sufficiently small, the drift bS defined above

satisfies ‖bS‖X f 1. Since X (t) = M0t
1− 1

l1 , we have that ES(M0t
1− 1

l1 �en, t) �

t−n/2 for t f 1. Finally, we use that M0 � 1 was arbitrary. This completes the

proof. ��
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