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Abstract

We present sharp conditions on divergence-free drifts in Lebesgue spaces for
the passive scalar advection—diffusion equation

00 —AO+Db-VO =0,

to satisfy local boundedness, a single-scale Harnack inequality, and upper bounds
on fundamental solutions. We demonstrate these properties for drifts b belonging
to LY LY, where %1 + % < 2,0r LYL?, where 3 + % < 2. For steady drifts, the

condition reduces to b € L' *. The space L} L% of drifts with ‘bounded total
speed’ is a borderline case and plays a special role in the theory. To demonstrate
sharpness, we construct counterexamples whose goal is to transport anomalous
singularities into the domain ‘before’ they can be dissipated.
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1. Introduction

We consider the linear advection—diffusion equation
90— A0 +b-VH =0. (A-D)

The solutionf® = 0(x, t) isknown as a passive scalar, and the prescribed divergence-
free velocity field b = b(x, t) is known as the drift.

Divergence-free drifts arise naturally in the nonlinear PDEs of fluid dynamics.
In that context, often the only a priori knowledge of the drift is in low regularity.
Therefore, it is natural to seek to understand the sharp regularity properties of (A-D)
when the drift b is rough. A great deal is already known in this direction. In this
paper, we give an essentially complete answer to what we consider to be one of the
most interesting remaining questions, see Sect. 1.1.

To understand what is ‘rough’, we recall the scaling symmetry

u — u(hx, \2t), b— rb(ix,\’t), i >0. (1.1)

In dimensional analysis, one writes [x] = L, [t] = L2, and [b] = L. The
scaling (1.1) identifies the Lebesgue spaces Lf’L P where %—i—% < 1,as(sub)critical
spaces for the drift, meaning spaces whose norms do not grow upon ‘zooming in’
with the scaling symmetry. For example,

X =LZ®L! L7LY, LT (1.2)

are critical spaces, whose norms are dimensionless, i.e., invariant under the sym-
metry (1.1). Here and throughout, n > 2 is the spatial dimension.

When b belongs to one of the critical Lebesgue spaces, it is not difficult to
adapt the work of De Giorgi, Nash, and Moser [7,29,34] to demonstrate that weak
solutions of (A-D) are Holder continuous and satisfy Harnack’s inequality. The
above threshold is known to be sharp for continuity within the scale of Lebesgue
spaces, see counterexamples in [43,46]. The divergence-free condition even allows
access to drifts in the critical spaces

X = L®L;">, L®BMO;! (1.3)

considered by [36,38,41]. In these spaces, it is furthermore possible to prove Gaus-
sian upper and lower bounds on fundamental solutions in the spirit of
Aronson [2].

For supercritical drifts, continuity may fail [43], and we must change our expec-
tations. Nonetheless, a version of the regularity theory may be salvaged due to the
divergence-free structure; its crucial role is already visible from the computation'

2
/(b~V0)0qb2dxdt =/b~V<%> ¢*dxdr = —/Qz(b-Vq&)qb. (1.4)

1 The divergence-free structure also plays a role in the critical case, but it is more subtle:
without this structure, the drift is required to be small in a critical Lebesgue space or Kato
class, and local boundedness may depend on the ‘profile’ of the drift, not merely its norm.
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With this well known observation, one may apply Moser’s iteration scheme to
demonstrate that, when b € LY LY and % + % < 2, solutions are locally bounded,
see [35]. Typical examples are

n+2+

X=LXLI L2 . (1.5)

Under these conditions (and a weak background assumption), the Harnack in-
equality persists as a single-scale Harnack inequality [19,20]: In the steady case
0 =0(x),

supf < Crinf 0, (1.6)
Br Br

where Cg may become unbounded as R — 0T. Whereas a scale-invariant Har-
nack inequality implies Holder continuity, it is less well known that a single-scale
Harnack may hold in the absence of Holder continuity. Finally, pointwise upper
bounds on fundamental solutions continue to hold, although they have ‘fat tails’
compared to their Gaussian counterparts [37,47].

One might wonder whether the easy computation (1.4) already yields the sharp
conditions. It does not. In the steady case, there is an additional subtle feature, which
is not well known and, in our opinion, surprising: Local boundedness continues to
hold when b € L%*'. The best of our knowledge, this ‘dimension reduction’
was first observed in this context by Kontovourkis [21] in his (unpublished) the-
sis.2 Heuristically, Kontovourkis’ key observation is as follows. Consider the basic
L? energy estimate in a ball B, without smooth cut-off. The drift contributes the
boundary term

2
(b-VO)O dx =/ e—b-nda, 1.7)
B, 9B, 2

where do is the surface area measure. Since V6 € Lz(BR), on ‘many slices’
r € (R/2, R), we have VO € LZ(BBr), with a quantitative bound. Similarly, b
belongsto L o (0 B;) on ‘many slices’. Thus, one may exploit Sobolev embedding
on the sphere d B, to estimate the boundary term.

The dimension reduction was recently rediscovered by Bella and Schéffner
in [5]. There, the authors proved local boundedness and a single-scale Harnack
inequality in the context of certain degenerate elliptic PDEs, which we review in
Sect. 1.2.

Following the work [21], it has been an interesting problem to understand what
n+l

dimension reduction holds in the parabolic setting. In particular, is b € Lg N
enough for local boundedness? Very recently, Zhang [48] generalized the work [5]

2 This kind of dimension reduction itself goes back at least to work [11] of Frehse and

Ruzicka on the steady Navier-Stokes equations in n = 6. The ‘slicing’ was also exploited
by Struwe in [42].
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to the parabolic setting, and among other things, demonstrated local boundedness
under the condition

3 -1
bELfL;Iv _+n
q

<2, p<gq, (1.8)

see Corollary 1.5 therein. Crucially, the order of integration in (1.8) is reversed. The

n—1
condition b € L,? * L implies the elliptic case in [21]. From this condition, we
see that, perhaps, one dimension is not ‘reduced’, but rather hidden into the time
variable.

1.1. Main Results

Everything we have discussed so far has been directed toward answering

(Q) What are the optimal conditions on the drift for which the local
regularity theory holds?

That is, when do weak solutions satisfy local boundedness and its cousins, Har-
nack’s inequality and pointwise upper bounds on fundamental solutions? In this
paper, we give an essentially complete answer to this question in Lebesgue spaces.

Our main results constitute a detailed picture of the local regularity theory for
the passive scalar advection—diffusion equation (A-D) with supercritical drifts. To
give the complete picture and maximize its usefulness to the reader, we present
the known results (appearing with citations) together with our own contributions
(without citations). We will explain the novelty of our contributions in detail in
Remark 1.3, but we summarize a few key points here.

First, we revisit the condition b € L?Lfg , 240 22 We prove that, without
additional structure, it is sharp. The reason for this has to do with a new endpoint
case Lt] LS°, the space of drifts with ‘bounded total speed’, in the terminology of
[44]. In this space, local boundedness holds in a modified form, depending on the
profile of b itself rather than its norm in L! L. The counterexamples we construct
are connected to this space, which plays a special role in the theory.

Second, we consider the condition (1.8), that is, with the opposite order of
integration. Under this condition, we prove the parabolic Harnack inequality and
pointwise upper bounds on fundamental solutions. To conclude, we present coun-
terexamples demonstrating its sharpness.

We now state the results. Let n > 2, Q C R” be a bounded domain, and Q' CC Q
be a subdomain. Let I = (S, T] and I’ = (S’, T’] C I be finite intervals such that
S<S8.LetQr=QxTand Q) =Q xI'. Let p,q €[, +o0].
Theorem 1.1. (b € LY LY ) (Local boundedness) [35] If
2 n
(=—+—-<2, (1.9)
q p

then we have the following quantitative local boundedness property: 6 € L' (Q7)N
C®°(Qy) satisfies the drift-diffusion equation (A-D) in Q with divergence-free
drift b € C*(Qy) and

beL{LY(Q), (1.10)
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then

sup 0] S 101210,y (1.11)
Q)

where the implied constant depends onn, Q, Q', I, I', p, q, and ”b”L?Lf.(Q,)'

(Single-scale Harnack) [20] If, additionally, b € L>H='(Q;) and 6 > 0, then
we have the following quantitative Harnack inequality: If I, I, CC I are intervals
satisfying sup Iy < inf I, then

sup 6 < inf 6, (1.12)
Uxl Q' xI

where the implied constant depends onn, 2, Q', I, I}, I, p, q, ||b||L;1L€(Q1), and
1P1 21 0,

(Bounded total speed) If (p,q) = (oo, 1), then the above quantitative lo-
cal boundedness property holds with constants depending on b itself rather than
”b”L}LOO(Q,)' (The property is false without this adjustment.)

(Sharpness) Let Q = By x (0, 1). There exist a smooth divergence-free drift
b € C*®(Q) belonging to L LY (Q) forall (p, q) € [1, +00)? with2/q+n/p =2,
(p,q) # (00, 1), and satisfying the following property. There exists a smooth
solution 0 € L?OL}C N C*(Q) to the advection—diffusion equation (A-D) in Q
with

sup 0] > +oocasT — 1_.
B1/2x(0,T)

In particular, the above quantitative local boundedness property fails when 2 /q +
n/p=2andq > 1.

(Upper bounds on fundamental solutions) [37] If the divergence-free drift b €
CS(R" x [0, +00)) belongs to L LY (R" x Ry) and 1 < ¢ < 2, then the funda-
mental solution I' = I'(x, t; y, s) to the parabolic operator L = 0; — A +b -V
satisfies, when p < 400,

) 14+ 2
T(x, 1 0,0) < Ct~3 max | exp —M—ﬁMT% ,exp (—ﬁ> . (1.13)
Cti=e Ct

and, when p = +00,

. 1 /1 1\?
I'(x,7;0,0) <t 2 —— | =|x] — CMt 1.14
(x ) S CXP[ 4Ct<4|x| ")] (1.14)
forall xo € R" andt € Ry. Here, C = C(n, p,q) > 0 and

2—-¢+4+%Y
o= —"

M = ClbC D, - (1.15)

See Fig. 1 for an illustration of Theorem 1.1.
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Fig. 1. Divergence-free drift b € L;’ L? in dimension n > 2 (dimension n = 3 illustrated
above). Region A (2/q + n/p < 1): Local boundedness, Harnack inequality, and Holder
continuity. Region B (1 < 2/q +n/p < 2 or (p,q) = (00, 1)): Local boundedness and
single-scale Harnack inequality. Dashed line: Local boundedness is false

Theorem 1.2. (b € LY L?) (Local boundedness) [48] If

3 n-—1
{i=—+
q

<2, p<gq, (1.16)

then we have the following quantitative local boundedness property: If6 € L'(Q)N
C®°( Q) satisfies the drift-diffusion equation (A-D) in Q  with divergence-free drift
b e C®(Qy) and

be LYLI(Q)). (1.17)
then
sup 01 S 11611210, (1.18)
0]

where the implied constant depends onn, , 2/, I, I, p, q, and ||b||L§L:1(Q1).

(Single-scale Harnack) If, additionally, b € L>?H;'(Q;) and 6 > 0, then we
have the following quantitative Harnack inequality: If Iy, I, CC I are intervals
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satisfying sup Iy < inf I, then

sup 0 < inf 6, (1.19)
QUxl Q'xIp

where the implied constant depends onn, Q, @/, I, I, I, p, q, ||b||L§L;;(Q1), and

12111 0

(Sharpness, steady case). Let n > 3. The quantitative local boundedness prop-
erty fails for steady drifts b € L' (B) and steady solutions 0 in the ball B.

(Sharpness, time-dependent case). Let n > 2 and Q = By x (0, 1). There
exist a smooth divergence-free drift b € C*°(Q) belonging to LfL?(Q) for all
p,q €[1,4oo]lwithp < qand3/q+ (n—1)/p > 2 and satisfying the following
property. There exists a smooth solution 6 € L{° L)lc N C*®(Q) to the advection—
diffusion equation (A-D) in Q with

sup 0] > +o0 asT — 1_.
B1/2%x(0,T)

In particular, the above quantitative local boundedness property fails when 3/q +
(n —1)/p > 2and p < q. Finally, the drift additionally belongs to L LY (Q) for
all (p,q) € [1, +ocl? with2/q +n/p > 2.

(Upper bounds on fundamental solutions) If the divergence-free drift b €
CP(R" x [0, 400)) belongs to LYLT(R" x Ry) and 1 < ¢ < 2, then the funda-
mental solution I' = I'(x, t; y, s) to the parabolic operator L = 9; — A +b -V
satisfies, when p < 400,

n 1 |x|1+a+1‘ﬁ’;‘/q |x|2
I'(x,#;0,0) < Ctr 2 max | exp —M_HT , EXp (——) ,
Cr i Ct

(1.20)
and, when p = +00,
_n 1 1 1q_1 2
[(x,2;0,0) <t 2exp ~1c; Z|x|—CM|x|4t q (1.21)
forall xo e R" andt € Ry. Here, C = C(n, p,q) > 0and
2—C+2
@z 2EE0 b M = b Dl s (1.22)

See Figs.2 and 3 for an illustration of Theorem 1.2.

Remark 1.3. (Contributions)

In the positive direction, our main new contributions are the L} L% case in
Theorem 1.1 and the Harnack inequality and Gaussian-like upper bound for the
LYL] cases in Theorem 1.2. However, we actually reprove the known positive
results in Theorems 1.1 and 1.2, together with our new results, in a unified and
(essentially) self-contained way through a new form boundedness condition. This
condition encompasses significantly more general drifts than we stated above, see
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1/q
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1/2—|

R LTIy

o 1/p
0 | | T \
1/n 2/n 2/(n—1) 1

Fig. 2. Divergence-free drift b € L L?, dimension n > 3 (dimension n = 4 illustrated
above). Local boundedness and single-scale Harnack inequality

Sect. 1.2. Moreover, in light of Remark 1.4 below, it is worthwhile to mention that
we also give a proof of the Harnack inequality in the LY LY setting. Our condition
b € L?H_ ! in the Harnack inequality is new; it is used to connect the forward-
and backward-in-time regions, see Lemma 2.11. This condition is at the level of
making sense of (A-D) in the sense of distributions. For comparison, the background
condition in [20] was b € L>°L2. Finally, the pointwise upper bounds in [37] were
only proved with n > 3; we include the case n = 2.

In the direction of sharpness, our main new contribution is to construct coun-
terexamples demonstrating sharpness of the L LY and LY L{ criteria. This is far
from obvious, and in the parabolic setting, there are no counterexamples like this in
the literature. Our examples are discussed in Sect. 1.3, and as mentioned above, the
space L}Lg" plays a key role in understanding them. Finally, in Proposition 5.4,
we give examples demonstrating that our Gaussian-like pointwise upper bounds
are optimal in certain regions.

Remark 1.4. At a technical level, there is a gap in the proof of the weak Harnack
inequality in [20], see (3.22) therein, where it is claimed that log, (6/K) is a super-
solution. This is related to a step in the proof of Lemma 6.20, p. 124, in Lieberman’s
book [23], which we had difficulty following, see the first inequality therein. Both
of these are related to improving the weak L' inequality. We opt to follow Moser’s
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Fig. 3. Divergence-free drift b € LY LY, dimension n = 2. Local boundedness and single-
scale Harnack inequality

proof in [31] more directly and skip the weak Harnack inequality. In principle, one
could directly apply the parabolic John-Nirenberg inequality in [9,29] to obtain the
weak Harnack inequality.

Remark 1.5. The local boundedness property and Harnack inequality in Theo-
rems 1.1 and 1.2 can be easily extended to accommodate drifts satisfying divb <
0 (with the background assumption b € Ltz,x(Q 1) in the Harnack inequality).
These properties and the fundamental solution estimates can also be extended to
divergence-form elliptic operators div aV- with bounded, uniformly elliptic a.

1.2. Discussion of Dimension Reduction Principle

The ‘slicing’ described above in the steady setting is more subtle in the time-
dependent setting because the anisotropic condition 6 € L;’OL% does not restrict
well to slices in the radial variable r; compare this to the isotropic condition V6 €
L,z’x. Indeed, to ‘slice’ in a variable, it seems necessary for that variable to be
summed ‘last’ (that is, on the outside) in the norm. The conditionb € L? L;’, p <gq,

2 + "—;1 < 2,in Theorem 1.2 comes, roughly speaking, from interpolating between
n+2
the isotropic conditionb € L,y ,in which the order of integration may be changed
n—1

freely, and the dimensionally reduced condition b € LXT+L§’°, which implies that
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n—1

b e L¥®L,” +(8Br x I) on ‘many slices’, say, asetof r € A C (1/2, 1) with
measure |A| > 1/4. Local boundedness under this condition was already observed
by X. Zhang in [48, Corollary 1.5], and the counterexamples we construct answer
an open question in Remark 1.6 therein.

Our proof of local boundedness and the Harnack inequality is built on a certain
form boundedness condition (FBC), see Sect.2, which subsumes a wide variety
of possible assumptions on b. For example, in Proposition 2.3, we verify (FBC)
not only in the context of Theorems 1.1 and 1.2 but also under the more general
conditions

arB n 2 1 n-—1
be L{LYLY((Br \ Bry2) x I, CERY _+E+ <2 (1.23)
and
P n 3 n-—1
be LyL;LY((Br \ Bry2) x I), qz5. <2, (124
q

Furthermore, we allow arbitrarily low integrability x > O in the radial variable;
the slicing method does not require high integrability. The norms in the above
spaces (1.23) and (1.24) are defined in (2.8) and (2.9) below. Our proof of upper
bounds on fundamental solutions is centered on a variant of the form boundedness
condition, see Sect.5 which is partially inspired by the work of Qi S. Zhang [47].

We now describe the work [5], which was generalized to the parabolic setting
in [48]. The conditions in [5] are on the ellipticity matrix a, which is allowed to be
degenerate. Define

_ g laEP
Ax) = ‘g?:flg a(x)é, pux):= |;]:p1 EaG)E (1.25)
Ifn>2,p,qe(,+o0],and
1 1 1 2
A~ eLiYB), pel’B), —4+—-<——, (1.26)
p g n-—1

then weak solutions of —divaVu = 0 are locally bounded and satisfy a single-scale
Harnack inequality. The analogous condition with % on the right-hand side is due
to Trudinger in [45]. By examples in [13], the right-hand side cannot be improved
to % + ¢. Divergence-free drifts b belong to the above framework: Under general
conditions, it is possible to realize b as the divergence of an antisymmetric stream
matrix: b; = d;; ;. Then we have —A0+b-V0 = —div [(/ +d) V0], and u captures
the antisymmetric part d. The steady examples we construct in Sect.4 handle the
equality case in (1.26). We mention also the works [3,4].

Earlier, it was hoped that the dimension reduction could be further adapted to

n+1
treat the case b € L, " in the parabolic setting by estimating a half-derivative
in time: [9,|'/%0 Ltz’ > since this condition is better adapted to slicing than 6 €
L;’oL%. On the other hand, our counterexamples rule out this possibility. Half time
derivatives in parabolic PDE go back, at least, to [25, Chapter III, Section 4], see

[1] for further discussion.
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1.3. Discussion of Counterexamples and ‘Bounded Total Speed’

Solutions of (A-D) in the whole space evolving from initial data 6y € L'(R")
become bounded instantaneously. This is captured by the famous Nash estimate
[34]

16, Dllzoeny < 17216011 s (1.27)

where the implied constant is independent of the divergence-free drift b. The Nash
estimate indicates that a divergence-free drift does not impede smoothing, in the
sense of boundedness, of a density, even if the density is initially a Dirac mass.?
Therefore, for rough drifts, local boundedness must be violated in a different way:
The danger is that the drift can ‘drag’ an anomalous singularity into the domain of
observation from outside. There is a competition between the drift, which transports
the singularity with some speed, and the diffusion, which smooths the singularity
at some rate. Will the singularity, entering from outside, be smoothed before it can
be observed inside the domain?

Consider a Dirac mass §,—_g,, which we seek to transport inside the domain.
If one can transport the Dirac mass inside By, instantaneously, one can violate
local boundedness. This can be done easily via the drift b(x, t) = §;—¢€1, which is
singular in time. This example already demonstrates the importance of the space
L,1 LS, whose drifts cannot transport the mass inside arbitrarily quickly.

To improve this example, we seek the most efficient way to transport the Dirac
mass. Heuristically, the evolution of the Dirac mass is mostly supported in a ball
of radius R(¢) ~ /. Therefore, we define our drift b to be S(¢)e; restricted to this
support. That is, the drift lives on a ball of radius R (#) moving in the x| -direction at
speed S(7). Since we wish to move the Dirac mass instantaneously, we guess that
S(t) ~ 1/t. A back-of-the-envelope calculation gives

1 1
1519, ~/ SOIR@) 7 dr ~/ AT TS (1.28)
Lite o 0

The above quantity is finite when 2/g + n/p > 2; more care is required to get the
borderline cases in Theorem 1.1, see Sect. 4. This heuristic is the basis for our time-
dependent counterexamples in Sect. 4, except that we use appropriate subsolutions
to keep the compact support property, we glue together many of these Dirac masses,
and S(#) must be chosen more carefully.

The elliptic counterexample withb € L *7" is achieved by introducing an ansatz
which reduces the problem to counterexamples for the steady Schrodinger equation
—Au 4+ Vu = 0 in dimension n — 1. These steady counterexamples are singular
on a line through the domain, as they must be to respect the maximum principle.

The time-dependent counterexamples in LY L? seem to be more subtle, and
3

we only exhibit them in the non-borderline cases ¢ = i "P%l > 2and p < gq.
When ¢ = 2, we have counterexamples in the cases p = g = ’lziz and (p,q) =

3 By approximation, we may consider the estimate (1.27) also for finite measure initial
data.
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(ﬂ, 400) (the steady example). We believe that local boundedness fails also
between these two points, but the counterexamples are yet to be exhibited, see
Remark 4.4.

1.4. Further Review of the Existing Literature

Following the seminal works of De Giorgi [7] and Nash [34], Moser introduced
his parabolic Harnack inequality [29,30] (see [28] for the elliptic case), whose
original proof relied on a parabolic generalization of the John-Nirenberg theorem
concerning exponential integrability of BMO functions. Later, Moser published
a simplified proof [31], whose basic methods we follow. In [41], Seregin, Sil-
vestre, gverék, and Zlato§ generalized Moser’s methods to accommodate drifts in
L;’OBMO;I. For recent work on boundary behavior in this setting, see [17,24].
Generalizations to critical Morrey spaces and the supercritical Lebesgue spaces are
due to [18-20,35].

The Gaussian estimates on fundamental solutions were discovered by Aronson
[2] and were generalized to divergence-free drifts by Osada in [36] (L;X’L;l’oo)
and Qian and Xi (L;’OBMO;l) in [37,38]. Important contributions are due to [47],
who developed Gaussian-like upper bounds in the supercritical case b € L 1T (R,
n > 4, and [26,33,40], among others. For recent progress on Green’s function
estimates with sharp conditions on lower order terms, see [8,22,32,39].

The primary examples concerning the regularity of solutions to (A-D) can be
found in [41,43,46]. Counterexamples to continuity with time-dependent drifts can
be constructed by colliding two discs of 41 (subsolution) and —1 (supersolution)
with radii R(¢) ~ +/1 —t and speeds S(¢) ~ 1/+/1 — t. The parabolic counterex-
amples with steady velocity fields constructed therein are more challenging. See
[10,12] for examples in the elliptic setting. We also mention Zhikov’s counterex-
amples [49] to uniqueness when b does not belong to L2, whereas weak solutions
with zero Dirichlet conditions are known to be unique when b € L2 [47].

For recent counterexamples in the regularity theory of parabolic systems based
on self-similarity, see [27].

2. Local Boundedness and Harnack’s Inequality

Let b be a smooth, divergence-free vector field defined on Bg, x Iy, where
Ro > 0 and [y is an open interval. In the sequel, we will use a form boundedness
condition, which we denote by (FBC):

There exist constants M, N,« > 0, ¢ € [0, 1/2), and § € (0, 1] satisfying
the following property. For every R € [Ro/2, Rol, ¢ € [Ro/2, R), subin-
terval I C Iy, and Lipschitz u € WL (B x I), there exists a measurable
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set A = A(o, R, I,u) C (o, R) with [A] > §(R — @) and satisfying

2
// ﬂ(b nydxdr < ———>—— // Jul® dx d
1AL s S8R (R 0)* JJ(Br\By)x1

+Nf/ |Vu|2dxdt+esup/ lu(x, )] dx,
(Br\Bg)xI tel JBg

(FBC)

where B4 = U,c40 B, and n is the outer unit normal.

The left-hand side of (FBC) appears on the right-hand side of the energy esti-
mates.

In the situations we consider, M may depend on Ry, and we can predict its
dependence based on dimensional analysis. For example, since b has dimensions
of L™!, the quantity

2_
1-2-

Ry

n
P

”b”Lqu(BR xR3I)

is dimensionless.

In Proposition 2.3, we show that (FBC) is satisfied under the hypotheses of
Theorems 1.1 and 1.2.
Notation. In this section, Ryp/2 < 0 < R < Rpand —oo < T <t < 0. Let us
introduce the backward parabolic cylinders Qr 7 = Bg x (T, 0). Our working
assumptions are that 6 is a non-negative Lipschitz function and b is a smooth,
divergence-free vector field. To give precise constants, we will frequently use the
notation

1 MRY 1
2 2+ o 2 a+
82(R—0)* &*R}(R—0® t©—T

C,t, R, T,M,$,a) = (2.1)

involving the various parameters from (FBC). Our convention throughout the paper
is that all implied constants may depend on n.

Theorem 2.1. (Local boundedness) Let 0 be a non-negative Lipschitz subsolution
and b satisfy (FBC) on Qg 7. Then, for all y € (0, 2],

1 n+2
supf < C(N,a,e)7C% ||9||LV(QR_T\QQJ). 2.2)
Qo

Theorem 2.2. (Harnack inequality) Let 6 be a non-negative Lipschitz solution on
Q0 = Bx (=T*,T*). Let b € LtzHX_l(Q*; R™) satisfying (FBC) on Q*. Let
0 < ¢ < T* be the time lag. Then

sup 0 SNMAT*s,aee Inf 6, (2.3)
Bij2x (—=T*+¢,0) Bijpx(£.T%)

where A = ||b||L2 (g iRy’



75 Page 14 of 44 Arch. Rational Mech. Anal. (2023) 247:75

2.1. Verifying (FBC)

We verify that (FBC) is satisfied in the setting of the main theorems.

Proposition 2.3. (Verifying FBC) Let p, q, B,y € [1, +00], k € (0, 400], and b
be a smooth, divergence-free vector field defined on Bg, x Iy.

1. If
9rByy n 2 1 n-—1
belL/Ly L ((BRy \ BR()/Z) x 1lp), B> 3 ¢ = 5 + E + <2, (24
then b satisfies FBC) with A = (0, R), § =1, N = ¢ = 1/4, and
_ 2 m—c(R 2000 1
o = 2_@_ s - ( 0 ” ”L?LﬁLg((BRO\BRO/Z)Xlo)) + Z 2.5)
2. If
Kkrdrp n 3 n—1
b S LrLt LU((BR() \ BR0/2) X IO), q 2 5’ é‘ = ; _I_ < 2’ (2.6)
then b satisfies (FBC) with§ = 1/2, N =& = 1/4, and
1 1 2
K q 2 — e
1-¢ 2/2-¢) 1
M=C (Ro ||b||L5L7L§((BRO\BRO/Z)X1O)) +-. 2.7)

The above norms are defined by

151 g LY LY ((Bry\Bry/2)xIo)

Ry g % é
(L penore) /o) es
Io Ro/2 §d-1

1N e 29 12 (B ry\Bry2) < o)

R Z H ‘
= </ ’ (f </ |b(ro, z)|Pr”—1do) dt) dr> (2.9)
Ro/2 Iy §d-1

with standard modifications when exponents are equal to infinity.
As a corollary, we have

and

Corollary 2.4. (FBCin LY LY) Let p, q € [1, +00] and b be as above. If

Prq 3 n—1
beLyL;((Bry\ Bry2) x l0), p =g, ¢:= 7 + <2, (210
then b satisfies (FBC) withd = 1/2, N = ¢ = 1/4, and
1 1 2 1-¢ 2/2-0) 1
o= (; - 5 + 1) 2-¢ M=cC (RO ”b||L§’L?((BR0\BR0/2)><IO)> 4"

@2.11)
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By Minkowski’s inequality, (2.10) is a special case of (2.6) with k = p.

Remark 2.5. Condition (2.4) automatically enforces ¢ € (1, +oo] and y € ( -
+00]. Condition (2.6) automatically enforces ¢ € (£2, +oo]and p € (%5 —i—oo].

Proof of Proposition 2.3. First, we rescale Ry = 1. Let 1/2 < o < R < 1 and
I C Iy. All norms below are on Bg \ B, unless stated otherwise.

1. Summary of embeddings for u. By the Gagliardo-Nirenberg inequality, we
have

leell o < Nl 50R — @)~ ull 2 + [ Vaul 21— (2.12)

where 1/p; = 61/2+ (1 —01)(1/2}) with 0; € [0, 1] in dimension n > 3 and, in
dimensionn = 2, 01 € (0, 1]. Here, 2 = 2n/(n — 2) is the Sobolev exponent and
27 = +o0.

Suppose, momentarily, that » > 3. Then we have the following Gagliardo-
Nirenberg inequality on the spheres dB,, r € (0, R):

(% —
el 222 S Nl Pallael g2+ 11V 2117 (2.13)

where 1/py = 602/2 4 (1 — 6,)(1/2%_,) with 6, € [0, 1] in dimension n > 4 and,
in dimension n = 3, 6, € (0, 1]. By interpolation between (2.12) and (2.13), we
have

lull 2o S Nl 0R = @)~ Null 2 + [Vl 21" (2.14)

whenever 1/, + (n — 1)/ = 63(n/2) + (1 — 63)(n/2 — 1) and 65 € (0, 1].
We now address dimension n = 2. Sobolev embedding on the circle bounds

lull 212 S llullpz + 1Vullp2 (2.15)

L2C,

and the following Gagliardo-Nirenberg inequality on circles (see Remark 2.6) will
be useful:

lullLrs,) < ||M||Lp1(5,)||M||C1/z(B ) (2.16)

whenever 1/y, =0/p1—(1-0)/2,v2, p1 € [1, +0c0],0 € [0, 1],andr € [1/2, 1].
We can combine (2.12), (2.15), (2.16), and Holder’s inequality in r to recover (2.14)
with the same restrictions on the exponents as mentioned below (2.14).

2. Verifying (FBC) for condition (2.4). For any measurable A C (o, R), we
have

b-n|lul*>dx < ||b ul? < |Ib ul|? . (217
/BAI ul™dx < 1Bl gy Wl 7l g < 161y IILr,sery2 (2.17)

where By = U,c40B,,  denotes Holder conjugate, 82/2 = B’,and 2 /2 = y’. By
the assumptions, we have 8, < 2% (with f, < 400 in dimension n = 2) and that
(B2, y2) is admissible for the interpolation inequality (2.14). Hence, we have

3
fB|b-n||u|2dx5||b||LgLy||u||29*[(R—g)*znuniﬁ||Vu||’iz] L (2.18)
A
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We compute
-1 1 2 — 2
=1L _ 27t (2.19)
2y 28 2
Subsequently, we define
1 2-
Oy =03 —— = —=>0. (2.20)
q 2

By Holder’s inequality in time, we have, with norms on (Bg\By,) x I,

// b - nllu)?dx dt
BaxI

1-63
26, 2(04—0: _
S 1Bl oy a5 Nl 5 ™ [(R—g) 2||u||iz+||w||iz] (2:21)

1-6.
26 2 2y 12 2
SO0 gy el [IIMIIL?OL% +(R—0) “lulp: + IIVuIILz]

Wecanset A = (o, R),divide by |A[, and split the product with Young’s inequality:

|A|f/3 | nlluP dxd = CR ) llblquLﬁLynuniz
A

! -2
100 ["“HL;»L,% + (R —0)llull7> + IIVu||L2] '

This completes the proof.
3. Verifying (FBC) for condition (2.6). First, we identify good slices for b.
Specifically, we apply Chebyshev’s inequality in r to the integrable function

(2.23)

(2.22)

b K
I H |19xaB, LILE (IgxdB,)

to obtain that,onaset A = A(p, R, Ip) of measure |A| > 99(R — 0)/100, we have
1
1B Ls s LrBaxt) S (R =0T 10N oo 1812 3y x10)

11
S(R—0)7 « ”b”LfL?Lg((BR\BQ)xIO) . (2.24)

Now we are in the setting of Step 2 with 8 = ¢, y = p, and A already chosen, that
is, we use (2.21), (2.22), and (2.24) to conclude. O

Remark 2.6. To prove (2.16), we use local coordinates on the sphere and a partition
1

of unity* to reduce to functions f on R. Next, we use that L? C B<>Q o, C1/2 =

Béo/?oo, and real interpolation

_1
[Boo'so. Boisclot = BY, C LY (2.25)

to demonstrate

1 _ 1
1l S WA 1 i,y S €71 NLoes,) +€ TP 1 g, (2:26)

We piece together u# from the functions f and optimize in ¢ to obtain (2.16).

4 Alternatively, one could argue on the flat torus without a partition of unity.
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2.2. Proof of Local Boundedness

To begin, we prove Caccioppoli’s inequality:

Lemma 2.7. (Caccioppoli inequality) Under the hypotheses of Theorem 2.1,

sup / |9(x,t)|2dx+// VO dx dr Sy .ae c// 16|% dx dr.
te(r,0) J By Oo.t Or,1\ Qo r
(2.27)

Proof of Lemma 2.7. Letn € C3°(T, 4+00) satisfying0 <n < lonR,n = 1on

(t,400)and 0 < dpn/dt <1/(t —T).Letr € (0, R) and t € (z, 0). To begin, we
multiply by 6% and integrate over B, x (T, 1):

/ |6(x,1)] dx—i—// |V0| dx ds <// |0| ndxds
" , x(t ) Brx(T,1) ds (2.28)
+// 92——(b-n)2 do ds.
3B, x(T.1) <d’l 2 7 )

Next, we average in the r variable over the set of ‘good slices’, A = A(o, R, (T, 1), 0

1), which was defined in (FBC):
1
-/ |9(x,t)|2dx+// Vo> dx ds < f/ 1617 dx ds
2 /B, Byx(r.1) Brx(T,7)

1 o , 02 ) (2.29)
+_// (_977 ——(b~7l)n)dxds.
|Al JJByx (T, \dn 2
Here By = U,c40B,. Let us estimate the term containing d6/dn:
141 f/BmT 2 %9’7 drde= 82(R——r)2//QRr\ng oF" d ds
(2.30)

+// |VO|? dx ds.
Or.1\ Qo1

To estimate the term containing b, we use (FBC) with u = 0n:

—(b n)n?dx ds < // 161% dx ds
|A| //BAx(T n 2 sa(R_r)a Or,7\ Qo

(2.31)
+N// |VO|>dx ds +¢& sup / 10(x, $)? dx.
Or.1\Qoc se(T,t) J Bg

Combining everything and applying sup, ¢z o), We obtain

1
= sup / |9<x,r>|2dx+f/ Vo2 dxdr < C x c// 0 dx dr
2 1e(z.0) /B, Qprr Or1\ Qo

(2.32)
+(1+N)// |VO|*>dx ds +& sup / 10(x, 1)|*dx.
Or1\Qor te(T,0) JBg



75 Page 18 of 44 Arch. Rational Mech. Anal. (2023) 247:75

By Widman’s hole-filling trick, there exists y := max{(N + 1)/(N + 2),2¢} €
(0, 1) satisfying

1 / 2 2
———— sup |6(x, 1)] dx+// |VO|“ dx dt
2(N + 2) te(t,0) /By Oo.t

< C(N) x c// 161 dx dr (2.33)
Or.1\Qo,x

+y// IVO|* dx df + ———— sup / 16.Cx, )] dx.
OR,T 2(N+2) te(T,0) JBg

To remove the extra terms on the right-hand side, we use a standard iteration argu-
ment on a sequence of scales (progressing ‘outward’) oo = 0, ok+1 = 0 + (1 —
MR —0), Rk = 0kg1. 10 = T ot = 7+ (1 = AT — 1), Ty = 1iq1,
k=0,1,2,..., where 0 < A < 1 is defined by the relation A™>*@®2) = 2y, The
argument is given in [15, p. 191, Lemma 6.1], for example, and we recall it here.
Upon iterating, we have

1 » 5
—— s / 10, 1)] ddx—l—// V62 dx dr
2(N +2) te(rk 0) /B, Q0o

< C(N>ny Coj, 7/, R}, Tj, M, 5, ) f/ 612 dx dr (2.34)
Or;.1\Qoj.1;

Yaas // |VO|>dxdr + —— sup f 10(x, 1)|* dx.
Or,.1, 2(N +2) re(1.0) J B,

We send k — 400 and analyze the sum on the right-hand side. By the definition
of Cin (2.1) and choice of pg, T, R, Tk, it is estimated above by

1 Z 2 MRY i v/
82(R — @)2 ¢ (M —aJt)? B“RZ(R 0)* = < (M =gt
(2.35)

o0

1 yi f/ 2
N . ' % |07 dx dt,
T _t JX_(:) A2J — \2j+2 Or,1\Qp,x

which is summable provided that y /A™@2) < /2 This gives the desired Cac-
cioppoli inequality. O

Next, we require a simple corollary.

Corollary 2.8. (Interpolation inequality) Let x = 1+ 2/n. Then

1

X
// 012 dxdr )] Swy.aeC // 16| dx dr. (2.36)
Qg,r QR,T\QQ,t
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Proof. Let0 < ¢ € C°(B(r49),2) satisfyingg = 1on B, and [Vo| S 1/(R—0).
Using (2.27) at an intermediate scale, we find

sup / |9(x,t)¢|2dx+f/ [V(0p)|? dx dt 5N,a,8C// 1012 dx dr.
IG(‘L',O) Bg Qg,r QR,T\QQ.I

(2.37)
Then (2.36) follows from the Gagliardo-Nirenberg inequality on the whole space.

We are now ready to use Moser’s iteration.

Proof of Theorem 2.1 (Local boundedness). Let By := Xk, where k =0,1,2,....
A standard computation implies that 8¢ is also a non-negative Lipschitz subsolu-
tion. Hence, it satisfies the Caccioppoli inequality (2.36) with Ry = 0+27¥(R—0),
re=Ris, i =1 =27k =T), 5 = Ty 1,k =0,1,2, ... (iterating ‘inward’).
In other words,

1
1020 g,y SN €0k T Ri Tio M 8, 107 W11y 1004

(2.38)

We may expand the domain of integration on the right-hand side as necessary.
Define

— 1p2
Mo := |6 ”LI(QROvTO\QQOJO) (2.39)
and
1
— 192 — 192Bk41 || Prr1 _
My =110 ”Lﬁk'H(ng,rk) = ||§“Pk+ ”Ll(ng,zk)’ k=0,1,2,... (2.40)
Raising (2.38) to 1/8k and using Eq. (2.1) defining C, we obtain
max(2,a)k

1 1
M1 <C(N,a,e)2 A C(o,7,R, T, M,8, )P M. (2.41)
Iterating, we have

k 1 k max(2,a)j k 1
Zj:() e B

X 2= © C(g,r,R,T,M,a,a)z-"=°7fM0.
(2.42)

M1 <C(N,a,¢)

Finally, we send k — 400 and substitute ijo 1/x/ = (n +2)/2 to obtain

n+2
1611 2(000) SN CF 101120 11 000)- (2.43)

We now demonstrate how to replace L? on the right-hand side of (2.36) with LY
(0 < y < 2). To begin, use the interpolation inequality [|0],2 < 0777161}/

in (2.43) and split the product using Young’s inequality. This gives

1 nt2 1
101L(0,) < C(N, e, &) C2 |10y Qg 1\0pr) T EIIGIILOO(QR,T)- (2.44)

The second term on the right-hand side is removed by iterating outward along a
sequence of scales, as in the proof of the Caccioppoli inequality in Lemma 2.7. O
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Remark 2.9. (Elliptic case) The analogous elliptic result is

sup6 Sn.ae.y C¥NO1Ly (Bx\B,) (2.45)
BQ

where C(o, R, M, 8, a) = 1/[8%(R — 0)*] + MRS‘_Z/[(S“(R — 0)?]. The proof is
the same except that x =n/(n —2) and >_ 1/x/ =n/2.
2.3. Proof of Harnack Inequality

In this subsection, 6 is a strictly positive Lipschitz solution.’ Then log @ is well

defined. Let 0 < ¢ € C§°(B) be a radially decreasing function satisfying ¥y = 1
on B3/4. We use the notation

1
Fave = —— / Fytde, Vol= [ y2dx, (2.46)
Vol Jgn R~

whenever f € LIIOC(B). Let
K = exp (logb(., O))avg . (2.47)

whose importance will be made clear in the proof of Lemma 2.11. Define

0
v = log (E) . (2.48)

Then v(-, 0)avg = 0. A simple computation yields
[Vv|> = 8,v — Av+ b - Vo. (2.49)

That is, v is itself a supersolution, though it may not itself be positive. We crucially
exploit that |Vv|? appears on the left-hand side of (2.49). First, we require the
following decomposition of the drift:

Lemma 2.10. (Decomposition of drift) We have the following decomposition on
B34 x (=T*,T™).

b=by+by, by =—diva, divb, =0, (2.50)
Here a : B34 x (—T*, T*) — RI:!" is antisymmetric and

||a||L2(B3/4X(7T*,T*)) + ||b2||L2(B3/4X(7T*,T*)) 5 “b”L,ZH;‘(Q*)’ (2.51)

where Q* = By x (=T*,T*).

5 There is no loss of generality if we replace 6 by § + « and let k — 07
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Proof. Let¢ € C3°(By) with¢ = 1on Bis16. Leth = ¢b.Hence, ||b||L2 (Q*) <

12112 =1 o+)- We may decompose b(-,t) € H-'(R") into by (-, 1) € H LR,
t x

whose Fourier transform is supported outside of B, and by(-, 1) € L3(R"). Define

aij = AN (=8;by; + 8ib1j), g = A" (=divh). (2.52)

This amounts to performing the Hodge decomposition in R” ‘by hand’.® Clearly,
a is antisymmetric, and we have the decomposition

— by =diva + Vg (2.53)
and the estimates
laC. Oll2gm + 18C, Ol 2@y S 151G, O -1 @ny- (2.54)
Similarly, we decompose
by = Phy + Qbo, (2.55)

where PP is the Leray (orthogonal) projector onto divergence-free fields, and Q =
I — P is the orthogonal projector onto gradient fields. We denote Qby =VF.

Since b = by + by = —diva + Pb, + V(f — g) is divergence free in B7,g on
time slices, we have

A(f —g)(,1) =0in By, (2.56)
and by elliptic regularity, for all kK > 0,
IVCE = 96Dl akzy) Sk 1B1C Ol o150 + 1522 D125, 257)
Finally, we define
by =Phy + V(f —g) € L} ,(B3js x (=T*, T")), (2.58)
which satisfies the claimed estimates and is divergence free in B7/g x (=T*, T™").
We now proceed with the proof of Harnack’s inequality.

Lemma 2.11. For all non-zero t € [—T*, T*], we write I, = [0,t] ift > 0 and
I = [1,0]ift < 0. Then

=500 g+ [ (1VOPC0) | ds S 18Iy 259

Iy

6 We are simply exploiting the identity A = dd* + d*d on differential k-forms, up to a
sign convention, for differential 1-forms = vector fields.
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Proof. We multiply (2.49) by ¥2 and integrate over B x I,
sgn(r) f (v(x,0) — v(x, ) Y2 dx + // |Vv|?y? dx ds
B BxI
< // 20UV - Vo + (b- Vo) dxds. (2.60)
BxI;

By (2.47), fR,, v(x, O)l/f2 dx = 0. The first term on the right-hand side is easily
estimated:

1
f/ 20V - Vudxds < -// [Vol?y2dxds + Clt].  (2.61)
BxI, 4 BxI;

To estimate the term containing b, we require the drift decomposition b = by + b>
from Lemma 2.10. Then

// (b1 - V)Y 2 dxds = // 2¥a(Vr, V) dx ds

Bx1I; Bx1I;
< lff Vo> dx ds + Clla|? (2.62)
~ 4 ) )y, L2(Bx1))® :

and

1
(by - V)Y dxds < — // |Vu>y2 dx ds 4+ C||by |2 .
//Bxl, 4 JJpx1, L2(Bx1)
(2.63)

Recall the estimate (2.51) from the decomposition. Combining (2.60-2.63) and
dividing by Vol gives (2.59).

In that follows, we write v = v — v_, where vy, v— > 0. We also use the
notation

T* 0
A= [0yt A7 = [ IO @60

Lemma 2.12. (Weak—L' estimates) With the above notation, we have

o4l oo (Bygx(—1+,0p) S THTHT* 4+ A7) (2.65)
and

o=l 100y xo. 70y S 14+ THT* + A™). (2.66)

Proof. By (2.59) and a weighted Poincaré inequality [29, Lemma 3, p. 120],
1 2 2
= sen() g () + & f; (10— vl )avg ds < Co /1 (14 16C. D121 ) 0.
(2.67)

where Cp > 0 is the implied constant in (2.59). In the following, we focus on
the case t+ € [—T%*,0]. We use (2.67) to obtain a sub/supersolution inequality
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corresponding to a quadratic ODE. First, we remove the forcing in the ODE by
defining

p(x, 1) = v(x, 1) — CO/I (1 + IIb(, t)||§,,1(3)) ds . (2.68)

<T*+A~
Then (2.67) becomes

1
Davg(?) + _/ (|P - pavg'z) ds <0. (2.69)
Ci g, avg

Let us introduce the super-level sets, whose measures 7 appear as a coefficient in
the ODE:

NG 1) = |{x € Bya: pr.t) > |, > 0. (2.70)
Since pavg < 0, we have that p(x,?) — pavg(t) > 1 — pave(t) > 0 whenever
p(x,t) > . Then

1 2
Pavg(t) + m | n(w, s)( — pavg)”ds < 0. (2.71)

It is convenient to rephrase (2.71) in terms of a positive function evolving forward-
in-time: p(t) = —payg(—t) with ¢t € [0, T*]. Then (2.71) becomes

.
AT

The above inequality means that p is a supersolution of the quadratic ODE

t
/0 nGe, s (e + pis)*ds. (2.72)

. 2

= — Lt 2.73
q Vol x n(u, [t (n+q) (2.73)
with ¢(0) = 0. The above scalar ODE has a comparison principle. A priori,
since (2.73) is quadratic, its solutions may quickly blow-up depending on the size
of n(u, -) and . However, because p lies above the solution ¢, ¢ does not blow up,
and we obtain a bound for the density (i, -) in the following way. After separating

variables in (2.73), we obtain

T*
1 1 1
nu,lspds = — — ——r— < —, (2.74)
C1V01/0 wo om+g(T) T ou
since ¢ > 0. That is,
IP4+llL1oo By s x(—T+.0)) S 1 (2.75)

Finally, since ||.||L1,OC(B3/4X<_T*’O)) is a quasi-norm and v < p + Co(T* + A7)
pointwise due to (2.68), we have
o+l 2100 By ax (—7#,00) = 20 P+l L1208y 4 (—T,0))
+ 2rC‘0||T>x< + A7||L1’°°(B3/4><(—T*,O)) (2.76)
S14+THT*+A).
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The proof for r € [0, T*] is similar except that one uses sub-level sets in (2.70)
with u < 0.

We now require the following lemma of Moser [31], which we quote almost
directly, and in which we denote by Q(0), 0 > 0 any family of domains satisfying
Q) Cc Q(r)for0 <o < r.

Lemma 2.13. (Lemma 3 in [31]) Let m, ¢, co, 1/2 < 6y < 1 be positive constants,
and let w > 0 be a continuous function defined in a neighborhood of Q(1) for
which

sup w” < < / / w? dr dx 2.77)
0(0) (r —o)™meas(Q(1)) JJow)

forall o, r, y satisfying

1
sSthse<r=l, 0<y<¢ L (2.78)
Moreover, let
col
meas{(x,?) € Q(1) : logw > u} < —meas(Q(1)) 2.79)
n
forall u > 0. Then there exists a constant function g = q(6y, m, co) such that
sup w < ¢°. (2.80)
0(6o)

Proof of Theorem 2.2 (Harnack inequality). Recall that, without loss of generality,
we may assume that 6 is strictly positive by considering 6 + x and letting x — 0.
We apply Lemma 2.13 to w = 6/K with Q(0) = B, x (=T* + 2£(1 — @), 0)
and 6y = 1/2.7 Indeed, the requirement (2.77) with m = (n 4 2) max(c«, 2)/2 and
¢ = 1/2 follows directly from Theorem 2.1, and we recognize (2.79) as the weak
L' estimate from Lemma 2.12. This gives

0
sup — <1 (2.81)
Bipx(—T*+6,0) K

Here, we suppress also the dependence on the time lag £. Meanwhile, v— =
log, (K/0) is a subsolution. Hence,

lv—llzoe By pxe. 1) S NV-IL100 By 4% 0.74)) - (2.82)

On the other hand,

— Sllp — eXp S]]p log < exp (s”p v ) < exp (”] ” ) < ]
inf % (% 0 ~ § ~

7 Technically, to satisfy the conditions in Lemma 2.13, w = 6/K should be extended
arbitrarily to be continuous in a neighborhood of Q(1).
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where the inf and sup are taken on By, x (¢, T*). Combining (2.81) and (2.83),
we arrive at

sup 0 <K<

inf 0, (2.84)
Bij2 X (—=T*+£,0) Bijax(€,T%)

as desired. O

3. Bounded Total Speed

In this section, we prove the statements in Theorem 1.1 concerning the space
LlL®.

Proposition 3.1. (Local boundedness) Let T € (—00,0) and t € (T,0). Let
b Q1,1 — R" be a smooth divergence-free drift satisfying

”b”L}L?CO(QLT) = 1/8~ 3.1)

Let 6 be a non-negative Lipschitz subsolution on Q1 1. Then, forall y € (0, 2], we
have

n+2

1 2y
18101500 Sy (1+-;tff> 101127 (011)- (3:2)

Under the assumption b € L} L%, it is not evident how to absorb the boundary
term [ |01?b - Vg @ dx in the standard energy estimate due to the presence of V.
We require a different strategy.

Proof. For smooth A : [T, 0] — (0, 400), we define x = Ay and
O(y. 1) =0y, 1. (3.3)
That is, 6 is obtained by dynamically rescaling € in space. The new PDE is

1

0:0 — 2

AyG+ —b-Vy0 <0 (3.4)

>

where
b(y,t) = b(hy, 1) — hy. (3.5)

Choose A(T) = 1,k = =2|b(-, )|z whent € [T, 0]. Clearly, 3/4 < A < 1. Our
picture is that & dynamically ‘zooms in’ on 6. In particular, using (3.1) and (3.5),

B, 1) - 2 = (b, )l + 2016 Dllze|yl = 0 when y € By \ By2,(3.6)

ly

and

divh = 2n|b(-, 1)|| . > 0. (3.7)
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We now demonstrate Caccioppoli’s inequality in the new variables. Let 3/4 <
0 < R < 1.Let ¢ € C°(Bg) be aradially symmetric and decreasing function
satisfying 0 < ¢ < 1onR", ¢ = 1on By, and |[Vg| S 1/(R — ). Let ® = @2,
We integrate Eq. (3.4) against & on Bg. Then
1d ~ ~
-—/|9|2(y,t)c1>dy+/}r2|ve|2cbdy
2dt
.~ 1 ~ -
P— 72 . _— 71 . 2
< /k ove Vd)dy—i—z/A b-Vo |6|~dy (3.8)
<0by (3.6)
[N
+2 AT divb|g|“ddy.
While div b has a disadvantageous sign, it acts as a potential in L}Li". Simple

manipulations involving the integral form of Gronwall’s inequality give the Cac-
cioppoli inequality:

sup / |é|2(y,t)dy+// |V§|2dyds
te(z,0) J B, Qo

1 1 3
< + ) /[ 1612 dy ds.
<T T R-0?%)))orr\0,-

The remainder of the proof proceeds as in Theorem 2.1 except in the (y, ¢) vari-

(3.9)

ables. Namely, we have the interpolation inequality as in Corollary 2.8, and éﬂ is
a subsolution of (3.4) whenever § > 1. Therefore, we may perform Moser’s iter-
ation verbatim. As in (2.44), the L? norm on the right-hand side may be replaced
by the LY norm. Finally, undoing the transformation yields the inequality (3.2) in
the (x, t) variables, since (y, t) € Bg x {t} corresponds to (x, t) € By)r x {t}.

The quantitative local boundedness property in Theorem 1.1 follows from ap-
plying Proposition 3.1 and its rescalings on finitely many small time intervals. In
Remark 4.3, we justify that the constant depends on the ‘profile’ of b and not just
its norm.

4. Counterexamples

4.1. Elliptic Counterexamples
Let n > 3. Our counterexamples will be axisymmetric in ‘slab’ domains Br x
(0, 1), where R > 0 is arbitrary and Bp is a ball in R"~!. We use the notation

x = (x,z), where x’ € R"~!, r = |x/|, and z € (0, 1). Let

0 (x) = u(r)z, 4.1

b(x) = V(r)e;. 4.2)
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Since b is a shear flow in the e, direction, it is divergence free. Then
— AN +b-VO=—zAvu+Vu. 4.3)

We will a construct a subsolution @ and supersolution 8 using the steady Schridinger
equation

—Au+Vu=0 4.4)

in dimension n — 1, where additionally # > 0 and V < 0. The way to proceed is
well known. We define

10R
u = loglog —, 4.5)
r
A
v="2 (4.6)
u

for r < R. A simple calculation verifies that 0 < u € HILC, Au,V < 0, and
Au,V e Ll(gc_l)/z.s Therefore, Vu = Au € Ll | and the PDE (4.4) is satis-

loc?
fied in the sense of distributions. Using (4.3), we verify that 6 is a distributional
subsolution:

—A0+b-VO=—zAvu+Vu=(1—-2Vu <0in Bg x (0, 1), (4.7)

with equality at {z = 1}. We also wish to control solutions from above. Since
Au < 0, we define

6(x",2) = u(r). (4.8)
Clearly, 9 < 9, and 0 is a distributional supersolution:
—AO+b-VO=—Apu>0inBg x (0, 1). (4.9)

We now construct smooth subsolutions and supersolutions approximating 6 and
6 according to the above procedure. Let ¢ be standard mollifier and

Qe = g,%w (g) : (4.10)

Define u, = Qe * U, Ve = Aug/ug, be = Ve(r)es, 8 = zug(r), and 0_8 = ug(r).
Then (6;) and (6,) trap a family (6;) of smooth solutions to the PDEs

— A6 + b - V6. =0 on By x (0, 1) “.11)

when ¢ € (0, R/2). Moreover, we have the desired estimates

sup 10 llLr(Bgx(0.1) < 101lLr(Brx(0.1)) < +00, p €[l +00), (4.12)
£€(0,R/2)

8 Since Schrodinger solutions with critical potentials V belong to Lf(’)c forall p < oo (see
Han and Lin [16], Theorem 4.4), it is natural to choose u with a log. The double log ensures
that u has finite energy when n = 3. Notice also that Au = —(r log r_l)_2 when n = 3.
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sup  [[Vell n1 Ssup [ Augll uot SAull w1 < 400
£€(0,R/2) L 2 (Bgrj2) 2 L 2 (Bgry) L 2 (Bg)
(4.13)
and the singularity, as ¢ — 0T,
sup 6, > sup 6, > tooase — 0. (4.14)
Brx(3.3) Brx(3.3)

Remark 4.1. (Line singularity) The solutions constructed above are singular on the
z-axis, as the maximum principle demands.

Remark 4.2. (Time-dependent examples) The above analysis of unbounded solu-
tions for the steady Schrodinger equation with critical potential is readily adapted
to the parabolic PDE d,u — Au + Vu = f in Bg x (=T,0) c R* n > 2,
(i) with potential V belonging to LY LY, 2/q +n/p = 2, q > 1, and zero force,
or (ii) with force f belonging to the same space and zero potential. For example,
one can define u = loglog(—t + r2),V = —u — Au)/u, and f = 0. The case
q = 11is an endpoint case in which solutions remain bounded. These examples are
presumably well known, although we do not know a suitable reference.

4.2. Parabolic Counterexamples

Proof of borderline cases: LT LY, % + % =2,q > 1. 1. A heat subsolution. Let

,(2
Grt)y 2% 150
Fx, 1) = 180(x) t=0 (4.15)
0 t<0

be the heat kernel, where & is the Dirac mass at the origin. Let
E(x,t) =T —cp)+, (4.16)
where ¢, = (87)~"/2. Then E is globally Lipschitz away from ¢ = 0, and E(-, t)

is supported in the ball Bg(;), where

2
R(t)* = 2ntlog o< 2, 4.17)

and E vanishes in ¢t > 2.
2. A steady, compactly supported drift. There exists a divergence-free vector
field U € C§°(By) satisfying

U = & when |x| < 2. (4.18)

Here is a construction: Let ¢ € C{°(By) be a radially symmetric cut-off function

such that ¢ = 1 on B3. By applying Bogovskii’s operator in the annulus B4\B,
see [14, Theorem II1.3.3, p. 179], there exists W € C§°(B4\B) solving

div W = —div (¢é1) € C°(Bs \ Ba). (4.19)
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Notably, the property of compact support is preserved. Finally, we define
U=¢e +W. (4.20)

3. Building blocks. Let 0 < § € Cgo (0, 1) and X R — RR” be the solution of
the ODE

X)) =S®)eé, X(0)=—10ne;. 4.21)
Define
bs(x,1) = S()U (x_—x(t)> , 4.22)
R(1)
where R(t) was defined in (4.17) above, and
Es(x,t) = E(x — X (1), 1). (4.23)

Then Eg is a subsolution:

(0 —A+bs-V)Es
=[(0 — A)EN(x — X(1),1) + [(bs — S(1)é1) - VEI(x — X (1), 1) (4.24)
=[(3 —A)El(x—X®),1)<0 onR" x (0,1).

If[a,a’l C (0,1),S € C{°(a,a’),and [ Sdr > 20n, then we have Es(-,1)|p, =0
whent < aort > a'. Additionally, Es(-,7) = E(-,f) for some f € (a, a’).
We also consider the solution ®g to the PDE:

(& — A4bs-V)Ps=0 onR"\ {(X(0),0)}

4.25)
Dglr=0 = bx=x(0)-

For short times |t| < 1 and negative times is equal to the heat kernel I' (x — X (0), t).
By the comparison principle,

Es < ®s. (4.26)

We have the following measurements on the size of the drift:
q 7
”bS”L?Lf(]R”“) hS '/RS(t)‘IR(t)z dr. (4.27)

There 1 < p, g < 400, and
sl oo nsty = U oo /R S()dr. (4.28)

4. Large displacement. For Sy € C°(tx, 1), k = 1, with #; = 05 4.00(1) and
[, t,é] C (0, 1) disjoint-in-k, we consider the drifts bg, . Let M > 0. We claim that
it is possible to choose Sy satisfying

165111 oo 1y = M (4.29)
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and

> by, < 400 (4.30)
k>1 L?Lf(]R”“)

forall p, g € [1, 4-00] satistying 2/q +n/p = 2 and g > 1. Indeed, consider

_ —1
51) = (r log ™! loglogt_l) 431)

when 7 < ¢¢ so that the above expression is well defined, and extended smoothly
on [co, 1]. We ask also that #; < ¢q. Since

’

a ’
/ Sdt = log log logt_1 Z (4.32)
a

when a’ < ¢p, we have

1
/ S(t)dt = +o0, (4.33)
0

whereas

1 _ n €0 ng
/ SOIRM T df < 0(1) + C,,/ (tlog =19 (log log r~1) =4 dr
= =0 (4.34)
<o)+ cnf (tlogt™") ' loglog =)™ dr < 400
t=0

when g € (1, 4+00). The case ¢ = 400 is similar. We choose Sy = S‘(t)q)k with
suitable smooth cut-offs ¢y to complete the proof of the claim.

5. Unbounded solution. We choose M = 20n and a suitable sequence of Sy as
above. We reorder the building blocks we defined above so that the kth subsolution
and kth drift are ‘activated’ on times (1 — t,i, 1 — #;). Define

be( 1) =bs, (.t —(L—1)+ 1), b= by (4.35)
k>1

and, for size parameters Ay > 0,

Ex(,t) = Eg (.t — (1 — 1) + gy 1-4). E= ZAkEk~ (4.36)

k>1
Then E is a subsolution of the PDE
@ —A+b-V)E <0 onB3x(—o0,]l). 4.37)
We further define
O, 1) =D (1 — (1 — 1)+ 1), 0= ZAktbk, (4.38)

k>1
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which is a solution of the PDE
(0 —A+b-V)0 =0 on B x (—o0, 1). (4.39)
Since E; < ®y, we have that E < 6 on By x (—o0, 1).
Additionally, we have
sup A ExC, Dll =iz = Al ExC, 1= 0)lea 2 Akt "%, (4.40)

where 7 € (1, ;) satisfies X, (fx) = 0. Therefore, by the comparison principle
and (4.40), we have
lim sup |6 (-, 1) Loop,) 2 lim sup Aktlé_n/z.

t—1_ k—+00

(4.41)

To control the solution from above, we use
101l oot o1y < D Ak (4.42)

Therefore, it is possible to choose Ay — 0 as k — +o0o while keeping the lim sup
in (4.41) infinite. Hence, by ‘pruning’ the sequence of A; (meaning we pass to
a subsequence, without relabeling), we can always ensure that [|6]| o LIRn+1) <
+o0. ' O

Remark 4.3. The sequence of solutions {6} above demonstrates that the constant
in the quantitative local boundedness property in Theorem 1.1 for drifts b € L ,1 LY®
depends on the ‘profile’ of b rather than just its norm.
Proof of non-borderline cases: LY L], % + % > 2, p < g. Thisconstruction ex-
ploits rescaled copies of E and is, in a certain sense, self-similar.

1. Building blocks. Let (¢;) C (0, 1) be an increasing sequence, with #; — 1 as
k — +o0. Define Iy = (t, tit1), RE = |kl

Let0 < § € C*(0, 1) satisfying fol S(t)dt = M with M = 20n. Define
X R — RR" to be the solution of the ODE

C NI

=Sk (t—tx)

. 1 ro\ o -
X (t — 1) S( )61, Xk (tr) = —10ne;. (4.43)
—_——

The ‘total speed’ has been normalized: [ |X|dt = [ §df = M. Define also

bi(x, 1) = SK(OU (x_R—)ik(t)) (4.44)
and
_ 1 x — Xp(t) t—t
Ek(x, t) = R_I?E (R—k, |Ik| ) . (445)
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Then Ey is a subsolution
0 — A+ b+ V) Ex <00on R\ {(Xe (1), 1)}, (4.46)

and satisfies many of the same properties as Ej in the previous construction, among
which is

~ 1 -
Ev(-, tx) = FE (R—k, t) (4.47)
k

for some f; € (t, ty41) and 7 € (0, 1). We define the solution & to the PDE:

(O —A+be-V)6 =0 on R\ {(Xi (1), 1)}

(4.48)
9k|t:tk = 8x=Xk(tk)~

For short times |t — x| <k | and times ¢ < f; that is equal to the heat kernel
I'(x — Xk (#), t). The comparison principle implies
Ei < 6. (4.49)

2. Estimating the drift. We now estimate the size of by. To begin, we estimate
the L?Lf norms, % + % > 2. Using the scalings from (4.44), we have

max [bg| < Ul o ISl oo Tx| ™! (4.50)
and

1

1kl a2 ety S WU Lo ISzl k7™ R S REPD = 04 yoo(1), (451)

since |Ix| = R?. Next, we estimate the Lf,LijL? norm, where % +2=L 52 We

P
are most interested when ¢ = 400 and p = %—, but it is not more effort to
estimate this. Importantly, we have
n—1
supp b C BE g, X (—Cu, Cy) x I (4.52)

Using this and (4.50), we have

T o e
1515 o3 oy S 10N ST R 1kl ™ S REPT = 0 oD,
(4.53)
Interpolating between (4.51) and (4.53) with (p, ¢) = (%—, 00), we thus obtain
”bk”Li’L;l(Rn-%—l) = 0k—>+oo(1) (4.54)

when % + "P%l > 2 and p < g. After ‘pruning’ the sequence in k£ (meaning we
pass to a subsequence, without relabeling), we have

2 n
1Bl L p gy < D Ubkll g a1y < 00, gty @5y
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and

3 -1
1ol Lpy 4Rty = Z 1Dkl e, 9 (Rn+1y < 109, a‘i‘ T >2, p=gq.

(4.56)

3. Concluding. The remainder of the proof proceeds as before, with the notable
difference that we do not need to reorder the blocks in time. To summarize, we
have

sup Al Ex (-, Dl 8y = AkllEx (-, t) Iy 2 AkRi ", (4.57)
t

where 7y € (t, trs1) satisfies X (x) = 0, and hence,

limsup [|0(-, 1)|| Lo,y 2 limsup Ag R ™" (4.58)

t—1_ k—+o00

To control the solution from above, we again use (4.42) and choose Ay — 0 as
k — 400 while maintaining that the right-hand side (4.58) is infinite. By again
‘pruning’ the sequence in k, we have ||0|| LeLl Rr+1) < +00. This completes the
proof. O

Remark 4.4. (An open question) As mentioned in the introduction, we do not con-
struct counterexamples in the endpoint cases LY L, 3 + "p;l = 2, except when

p=q= ﬁ or (p,q) = (%, ~+00) (steady example constructed above). This

seems to suggest, perhaps, that local boundedness should also fail on the line be-
tween these two points, but that the counterexamples may be more subtle. It would
be interesting to construct these examples. Since each ‘block’ above is uniformly
bounded in the desired spaces, we can say that, if local boundedness were to hold
there, it must be depend on the ‘profile’ of b and not just its norm, as in Remark 4.3.

5. Upper Bounds on Fundamental Solutions

For the Gaussian-like upper bounds on fundamental solutions, we consider the
following assumption, which makes sense for b € LIOC(R” x [0, +00)).

Assumption 5.1. (FBC) There exist

o Parameters 6 € (0, 1], ¢ € (5, +00], § € [—1, +00), and
e An upper bound My > 0,

such that, for all
e Radii R > 0 and intervals Ip C R4,
there exist

e An upper bound 0 < M € L9(lp), with
| MllLary) < Mo, (5.1

and
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e A measurable set A = A(b, R, Ip) C (R/2, R), with |A| > R/4,
satisfying the following property:

e For all subintervals I C Iy and Lipschitz functions u € WL (Br x I),

LAwwMMRLdesR*Mvmwuwﬁzthﬁmew;wm

VUG, Do) " aerel. (5.2)

Assumption 5.1 is invariant under b — —b (without changing the parameters)
and time translation b — b(-, - + T') (after suitably shifting /); therefore, it will
be applicable in the duality argument in Step 3 below.

Theorem 5.2. If a divergence-free drift b € C;°(R" x [0, 4+00)) satisfies Assump-
tion 5.1, then the fundamental solution ' = I'(x, t; 0, 0) to the parabolic operator
L=0—A4+Db-VwithT'(-,0;0,0) = d satisfies the following estimates:

1. When 6 < 1, we have

. oty x| x P
I'(x,1;0,0) < Ct™2 max | exp | —M, 1—9T% , €Xp <_E) , (5.3)

forallx € R" andt € Ry, where C = C(n, 0, q) > 0.
1. When 6 = 1, we have

_n 1 1 _s.1-1 z
[(x,1;0,0) St 2exp ~c: Z|x|—CM0|x| ta 5.4

forall xo € R" and t € Ry, where C = C(n, q) > 0.

The pointwise upper bounds in Theorems 1.1 and 1.2 are a consequence of
Theorem 5.2 and

Proposition 5.3. Let p,q, B,y € [1, +oc], and k € (0, 400]. Assume b € LllOC
R" x [0, +00)).

L1f
q,B " n 2 1 n-1
be L{LPLY(R" xRy), B>=, ¢:=—+—-+ <2, (59
2 qg B Y
then b satisfies Assumption 5.1 with
2- ¢+
=, 6=0. Mo=CIbC.Ola 117 ng,)-  56)
2.1f
P n n 3 n-—-1
beLIL/LPR"xRy), ¢g=>—=, ¢:=—+ <2, (5.7)
2 q p
then b satisfies Assumption 5.1 with
2—C 42 1 1
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Proof. This was verified in the proof of Proposition 2.3. For (5.5), we refer to (2.18—
2.19). For (5.7), we refer to (2.24) and the discussion afterward.

Asin Corollary 2.4, b € LY LY with p < q is a special case of (5.7) withk = p.

We record here two preliminary estimates. Define 6, := 6 — 1/q. First, we
have

t 1 g
/ M(s)?ds < MIt¥ . (5.9)
0

Second, if we time-integrate (5.2) and apply Holder’s inequality with M € L9, we
have

2 26, 2
//B ulP1b - nl e, ) de < Mollull o el 2 5

) 2 2 1-6
RNl 2 gy + VI L2 ) -

(5.10)

If 6 = 1, then the R™2lu|7, + || Vul|7, term can be removed from the right-hand
side of (5.10).
An analogous calculation to (5.10) was contained in (2.21).

Proof of Theorem 5.2. Let xo € R and R := |xo|. We set T = R?> when 6 < 1
and, otherwise, 7 > 0 is arbitrary. Let Iy = (0, 7). We follow Davies’ method
[6], with some inspiration from [37]. Let ¥ = ¥ (r) (r = |x|) be a bounded radial
Lipschitz function, to be specified, such that = 0 when r < R/2 and ¢ is a
constant when r > R. We record the property |Vi| < y, where y > 0 is to be
optimized.

1. Weighted energy estimates. Let fy € Ci°(R") and u be the solution to the
equation Lu = 0 in R” x R, with initial condition u(-,0) = e~ ¥ fy. Fort > 0,
denote

1
J(t) = 5/ VO (y, 1) dy. (5.11)
Rn

For t > 0, we integrate by parts to compute that
j(t) = / ewuatu dy = f ezwu(Au —b-Vu)dy
Rn n
Ju|?

—/ ez"’lvulzdy—Z/ e”’uvu-vwdy_/ &p- vy
n R" n

1
_E/ e2¢|W|2dy+Cy21(t)+f Vb Vylu>dy.
R® R®

IA

Let (-, t) = e¥u(-, t). Next, we integrate in time and use the elementary inequality

IVFI? <2|Vul?e? +4y2 | f? (5.12)
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to obtain

l t
J(t)+—/ f IV £1?dyds
4 0 Rll

. . (5.13)
< J(O)+Cy2/ J(s)ds+/ / b-Vy|f|*>dyds.
0 0 JBg

We choose ¥/ (r) = y14, where A = A(b, R, Ij) is the set of ‘good slices’ from
Assumption 5.1. Then, for all # € (0, T'], we have

f b-W|f|2dy=yf b-n|f*dy
Bgr By
< CMOYR™ £ D225 (5.14)

o [T D gy 19 £ D ]
100 LA (BR) PNL2BR) |

when 6 < 1. That is, we have applied Young’s inequality in (5.2). When 6 = 1,
Young’s inequality is not necessary, and the terms with coefficient 1/100 on the
right-hand side of (5.14) are absent.

We now time-integrate (5.14) and absorb the last terms on its right-hand side
into the left-hand side of (5.13). This yields

t
sup J(s) <2J(0) —l—/ [C}/2 + C(M(s)ny‘S)%] J(s)ds (5.15)
s€(0,1) 0

forall# € (0, T']. By Gronwall’s inequality, we have

t
J@) =2/ O)exp [Cyzt +C(yR™)7 / M(s)s ds]
0

(5.16)
3.9 ’ _si 1 e
< 2JO)exp|Cy<t+ C(MoyR™*)vt7 | .

2. Global-in-space Moser iteration. The goal of this step is to demonstrate that,
forall T € (0, T], we have

| fllLoo R (z/2,7))
L a2 (5.17)
< |:y2r + (Moy R™%)% 7 + 1] T 2@ 0.0 -

Without loss of generality, u > 0. Recall that u?, p > 1, satisfies
dul — AuP +b-VuP = —p(p — DuP?|Vu)? < 0. (5.18)

Let 0 < n € C3°((0, T]) with & > 0. We multiply (5.18) by u”e*”¥n? and
perform an energy estimate analogous to Step 1. This yields

f |f<x,r>|2f’n2<r>dx+// V117 P2 dx ds
R» % (0,1)

5// |f|2f’namdxds+py2// |f1?Pn*dxds  (5.19)
% (0,1) "% (0,t)

—i—p]/// b -n|| f1*’n?dxds .
Bax(0,T)
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The last term above is estimated by applying (5.10), where we substitute u = f?n
into the condition. After applying Young’s inequality to split the product, we have

sup / e PP 2<r)dx+// V1 £17 20 dx di
1€(0,T) JR? R % (0,T)

1
< / f | f1*Pndym dx dt + [py2+(pMoyR—3w] (5.20)
n5(0,T)

// |£1?Pn? dx dt .
1% (0,T)

We are now in a position to apply Moser’s iteration. This is standard and similar to
the proof of Theorem 2.1, so we omit it. The main difference is that the cut-off is
only necessary in the time variable. This yields (5.17).

3. Duality. For 0 < s <t < T, we define

PV f(x) =e'™ / C(x, 15y, 8)e VD) f(y)dy. (5.21)
Rn
We now combine the previous two steps. We can estimate

1
I l2@®ex0.0)) < T2 N Lo L2 e x0.7)) (5.22)

on the right-hand side of the L estimate (5.17) in Step 2. Of course, the right-hand
side of (5.22) is further controlled by the energy estimate (5.16) in Step 1. Since
JO) = | folli2 /2, the above reasoning implies that, for all # € (0, T'], we have

2
i n
”P(;Lt”i?—moo S |:)/2f + (MoyR™®)% t + 1] 2
, (5.23)
1
X exp |:Cy2t + C(MOyR_‘S)etg] .

Since X¢eX <, X foranya, X > 0, we can incorporate two terms in the algebraic

~a

prefactor in (5.23) into the exponential term after increasing its growth rate:
_n 2 s L g
I ()_>t||L2_>Loc St2exp|Cyt+ C(MoyR™)7t7 | . (5.24)
By duality, we also have that
_n 2 Y N S b
I 0_”||Ll_)L2 St7zexp|Cy“t + C(MoyR™°)oto | . (5.25)
Therefore, after a translation in time, we can concatenate the estimates:

||P()_>,||L1_>L0<> = ||P0_>t/2||L1_>L2|| /2_>,||L2_>L00

< 172 exp |:Cy2t + C(MoyR_5)9t0] .
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In particular, we plug in the definition (5.21) and see that

n 0,
T(x0,1;0,0) <172 exp [—@ +Cy2t+C(M0y|x0|8)ét9q:| ., (5.26)

since ¥ (0) = 0 and ¥ (x9) > y|xo0|/4.
4. Optimizing y . The expression inside the exponential is

1 1 0
— —ylxol + Cy2t + C(Moy |xo )77 (5.27)
4 P—
A B

where we consider C > 0 to be fixed.
When 6 = 1, we can optimize y explicitly via

1 _1
20yt = ol — C Mylxo| %t "7, (5.28)

and the resulting estimate is

_n 1 1 _s.1—1L 2
I'(x0,1;0,0) St 2exp e Z|x0|—CM0|x0| roa (5.29)

forall xo € R* and t € R,.7
From now on, suppose 6 < 1.
First, we consider scalings of y in which —%y |xo| overtakes B, namely,

(Moylxo )Pt # = eylxol. (5.30)
Then %y|x0| > Bwhene < (C16)~! and
y 70 =&l xolf O My el (5.31)
With this scaling, we have that B > A (or Cey|xp| > Cy?t) when
201 xo[20H0=141-0=00 < pq, (5.32)

In this region, under the additional assumption ¢ < |xg |2, we have the exponential
bound

1+ 145
F(xo. 1:0.0) < 1~ 3 exp [ —ero g ™7 KO0 533
0,15, Y, ~ p & 0 6q . ( . )
8t 18

Second, we consider scalings of y in which —%y |xo| overtakes A. Consider

y*t = eylxol. (5.34)

9 Recall that, when 8 = 1, we did not treat > |x()|2 separately; the purpose of r < |x0|2
was only to allow certain terms of the form R =2 [lu ||%2 + [|Vu ||i2 to be absorbed.
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Then %y [xo| > A when e < (C16)~! and
y = elxolt™". (5.35)
With this scaling, we have that A > B (or Cey|xg| > C(Moy|x0|_5)%t%q) when
2071 x| 20+ 141-0=0 > M, (5.36)

In this region, under the additional assumption ¢ < |xo|2, we have the exponential
bound

2
[(x0,2;0,0) <t~ 2exp (—8%) . (5.37)

We have demonstrated that, when ¢ < |x0|2,

) ot x| o2
['(x0,1;0,0) St 2max [exp | —eT7 M, '™’ —— | exp <—a—) .
8t 1-0

Indeed, this is equivalent to (5.33) in the region (5.32) and (5.37) in the region (5.36)
both holding. When ¢ > |xo|2, the fundamental solution is controlled by the Nash
estimate (1.27). Therefore, up to modifying the implicit constant in the symbol
<, (5.38) remains true for arbitrary xo € R” and ¢ € R;.. O

5.1. Examples

Let! € (1, 400]. We consider power-law speeds

My _1
17T, 5.39
=1 (5.39)

which belong to the weak Lebesgue space Lﬁ’oo. For b(x,t) = S(t)é,, we have
that the fundamental solution I (x, #; 0, 0) is the translation of the heat kernel

S(t) =

1 lx — X(t)Enlz)
n €X - . ]> (540)
(4rt)? p( 4t
where
t
X(r)=/ Sty d = Mot' 1. (5.41)
0

In particular, when x = x,é,, the term inside the exponential is

lxn — Mot' =12
- (5.42)

When x,, > Motl_%, this matches, up to prefactors, the upper bound in (1.14) in
Theorem 1.1 for L§L§° drifts. In particular, we see that the power 1 — 1/g of ¢ in
the exponential in (1.14) cannot be increased.
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We now generalize the above example. Namely, we identify an ‘inner region’
inside of which the upper bound of Ct~"/? cannot be improved.

Let X be a Banach space of distributional vector fields on R” x Ry . Let Y[X] =
b e X:|bllx < 1}Nn{hb e CFFR" x [0,400)) : divh = 0}. For given
(x,1) € R" x Ry, we define

I'x(x,1;0,0) := sup I'[b](x,?;0,0), (5.43)
beY[X]

where I'[b] is the fundamental solution to 9; — A + b - V. That is, I'x is the
optimal upper bound for fundamental solutions with divergence-free drifts b €
CSO(R" X [0, +00)) belonging to the closed unit ball in X.

Proposition 5.4. (Lower bounds on the optimal upper bound) Let p, g € [1, +0o0].
Consider

2
X =LILP(R" x Ry) with 1 < ¢ = . +% <2 (5.44)
or
Prdmn . 3 n—1
X=LL/R" xRy withg>pandl <¢=—-—+——<2. (545
g P

Let
lhy=2/¢>1. (5.46)
Then, for all |l > ly, there exists a constant C = C(n, p, q, lo,!) > O such that

Tx(x,7:0,0) > C~'r™%, Vie(0,1], |x| < C 47T (5.47)

1
Remark 5.5. When we substitute |x| < t'710 into the upper bounds in Theorems 1.1
and 1.2, we have that I'x(x, #; 0,0) < ¢~ 2. Therefore, the lower bound (5.47)
establishes the optimality of the upper bound in that region.

Proof of Proposition 5.4. By rotational invariance, it suffices to consider x = x,é,
with x,, > 0. Let [ > [5. We use the subsolutions Eg with drift bg we constructed
in 3. Building blocks in Sect.4.2, except that now X (0) = 0 and X = S(t)e,.
We choose S(¢) to be the power law speed from (5.39) with Iy = (I + lp)/2
replacing / and My < 1. We can approximate S by Sx € C3°(0, 1) to justify that
Egs(x,1) < I'x(x,t;0,0) provided that ||bg|x < 1.
To estimate the X norm of bg, we have
a1 < : TG
1881241 oy S ME' [ RO T S0
nq| q1

1
< Mg‘/ (tlogt™HZie T dr S MJ" (548)
0

providedthat2/q1+n/p; > 2/1;, with an appropriate adjustment when g; = +o00.
Next, we estimate the L7 L°L{* norm, where 2/g> + (n — 1)/p> > 2/1;. We
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do this by estimating by (x, t) = bs(x, )1, (t), k > 1, where [, = (27% 21=K),
Define Ry = R(2'%). Then

k
max |b| S Mo2" |U | L=, (5.49)
n—1
supp b C BE g, X (—Cu, Cy) x Ii. (5.50)

Hence, we have

n—1

k — 1
165172 o 12 gty < MollUllzoe 2200 R (1l 72
! k>1
13 eisl
< Moy 20 (k2F) 2T S My,
k>1

provided that 2/g> + (n — 1)/ p2 > 2/11, as desired.

Hence, we find that, for all My sufficiently small, the drift bs defined above
1

_ 1
satisfies ||bs|lx < 1. Since X (t) = Mot1 ', we have that ES(MOt1 e, 1) 2
t~"/2 for t < 1. Finally, we use that My < | was arbitrary. This completes the
proof. O
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