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1. Introduction and main result

In this paper, we first study the second-order elliptic equations in divergence form
with discontinuous coefficients in two dimensions

Le.ry rou:= D;(a(x)Dju) = D; f; in D, (1.1)
where D is a bounded open subset of R?,

a(x) - leB1 + kQXBQ + kOXB()7

ko =1, k1, ko, 71,72 € (0,00) are constants,
By = Br1(8/2+7°170), By = BTQ(—€/2—T2,0)7 By = R2\(81U82)7

and y is the indicator function. The equation models the conductivity problem in com-
posite material. The gradient of the voltage potential u represents the electric field, and
a(x) is the conductivity which is a constant on each inclusion, and a different constant
on the background matrix. It is significant from an engineering point of view to estimate
the derivatives of the solutions.

In [6], Babuska et al. analyzed an analogous elliptic system, and numerically showed
that, when the ellipticity constants are away from 0 and infinity, the gradient of solu-
tions remains bounded independent of ¢, the distance between inclusions. When € = 0,
Bonnetier and Vogelius [14] proved that |Du| is bounded for a fixed k = k1 = ko away
from 0 and infinity. This result was extended by Li and Vogelius [32] to general second
order elliptic equations in divergence form with piecewise Holder coefficients and general
shape of inclusions in any dimension. Furthermore, they established a stronger piecewise
C1 control of u, which is independent of . Li and Nirenberg [31] further extended this
global Lipschitz and piecewise O result to general second order elliptic systems in
divergence form, including the linear system of elasticity. Some higher order derivative
estimates in dimension n = 2 were obtained in [17,20,22].

On the other hand, if ki, ks are allowed to be 0 or oo, it was shown in [15,26,36]
that the gradient of solutions generally becomes unbounded as ¢ — 0. For the perfect
conductivity problem (ki = ke = 00), it has been proved that the generic blow-up rate

L in dimensions

of |Dul is e~*/? in two dimensions, |eloge|~" in three dimensions, and e~
greater than three; see [4,5,8,9,38,39]. These bounds were shown to be optimal and are
independent of the shape of inclusions, as long as the inclusions are relatively strictly
convex. Moreover, more detailed characterizations of the singular behavior of Vu have
been obtained. For further works on the perfect conductivity problem and closely related
works, see e.g. [1-3,10-13,16,17,20,21,23-25,27-30,35] and the references therein.

For the insulated conductivity problem (k; = k2 = 0), it was shown in [4,5] that the

1/2

optimal blow-up rate is e7/¢ in two dimensions. The proof uses a harmonic conjugate
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argument to link the insulated conductivity case to the perfect conductivity case, which
fails in dimensions greater than two. For the higher dimensional case, Bao, Li, and Yin
in [9] established an upper bound of order e~/2. Yun in [40] proved the optimal blow-up
rate on the shortest line segment connecting two spherical inclusions in three dimensions

is £Y5 " Later, the upper bound ¢~1/2

was improved by Li and Yang in [34] to be
e=1/2+8 for some 8 > 0. See also [33]. Weinkove in [37] used a Bernstein-type argument
to obtain a more explicit upper bound of 5 in dimensions greater than three. Dong, Li,
and Yang in recent works [18,19] identified the optimal blow-up rate. They proved the
optimal gradient estimate for a class of inclusions including balls and “almost” optimal
gradient estimate for general strictly convex inclusions. Unlike the perfect conductivity
case, the optimal blow-up rate is related to the principal curvature of the inclusions.

Recently, among other results, Ji and Kang in [22] used some spectral properties of
Neumann-Poincaré operators to study the problem (1.1) for the case when 0 < k < 1
and ko > 1, and proved that

—m-+1

(]{31 + 1)(1{52 + 1) 2(T1 —+ 7“2)5
pry| <o | T AR ) g AT T TR)E C om=1,2,....
Dl (ki = 1)(ka — 1)

In particular, when k1 — 0 and ko — oo, this implies
|D"u| < Ce m=D/2 =12 ...

In the first part of this paper, we apply the Green function method developed in [17] to
show that |D™u| is in fact bounded independent of e for any m = 1,2,.... Compared
to the method in [22], we use m-th order finite differences to estimate the m-th order

derivatives more precisely.
Let

k-1

. k-1
_kl—l—l’

_k‘g—l-l’

I} and v =—apf.

In particular, we are interested in the case when k; — 0, kg — 400 (or @« = —1,5 — 1).
Therefore, we may restrict v > % First we assume that r; = ro = 1.

Theorem 1.1. Let € € (0,1/2) and p € (0,1) be constants. Assume that u is a weak
solution of (1.1) in By := B1(0) with my = 19 = 1, ky € (0,1), ko € (1,00), and
v € (1/2,1). For any m € N, if f is piecewise C*™~ L1 in By, and for some constant
Cp >0,

Hu||L2(Bl) < Om7 ||f||CZ"L*1’“(BlﬂB,‘) < ka]a .] = Oa 1727

then we have
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|ID™u(z)| < CCpy in By, (1.2)

where C > 0 is a positive constant depending only on m and p, and in particular is
independent of €, k1, and ks.

When u satisfies (1.1) in a domain that contains B; and By, we have more precise
estimates as follows.

Theorem 1.2. Let e € (0,1/2) and p € (0,1) be constants. Assume that ByUBy; € D1 € D
for some domain D1, u is a weak solution of (1.1) in D withry =ry =1, 0 < k; < 1,
ke > 1, and v € (1/2,1). For any m € N, if f is piecewise C*™~ 1+ in D, and for some
constant C,, > 0,

||u||L2(D) < Cn, HfHC’2m_1=“'(BlﬁBj) <Cn min{lvkj}7 J=0,1,2,
then we have

CCp,  in DN By,

CCm . 5
[D"Mu@)| < § k41 Y
Cm
ki’—l— 1 mn 82,

where C' > 0 is a constant depending only on m, u, D1, and D.

For the general case when r; and ry are not necessarily equal to 1, we have the
following theorem.

Theorem 1.3. Let ¢ € (0,1/2), pn € (0,1) be constants, and 1/2 < ri,r3 < 10. Then
there exist domains Dy € D that depend on 11,19, such that if By UBy € D1, and u is a
weak solution of (1.1) in D with 0 < k1 < 1, ko > 1, and v € (1/2,1), we have, for any
m € N, if f is piecewise C*™~L# in D, and for some constant C,, > 0,

lullz2(py < Cm;y I fllc2m—1u(BinB,) < Cramin{l,k;}, j=0,1,2,
then

CCp  in DN By,
cCy,

Du(@)| < {1 ™ B
CcC,
kg—l—l mn 82,

where C' > 0 is a constant depending only on m, p, r1, and ro.
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In the final part of this paper, we partially answer a question raised by Kang in [23],
where in the conclusion section, he mentioned that the extensions to general shape of
inclusions and higher dimensions for the case (k1 — 1)(k2 — 1) < 0 are quite challenging.
We prove the derivatives estimates for the extreme case when k; = 0, ky = 0o, and f =0
for general strictly convex inclusions in dimensions n > 2.

The setting of this problem is as follows. Let D C R™ be a bounded domain containing
two smooth relatively strictly convex open sets B1 and Bs so that B; UBs € D, dist(B1N
By) = ¢, and dist(B; U By, D) > 0. It is known that when k1 = 0, ko = oo, and f = 0,
(1.1) is reduced to

Au=0 in D\ (B, UBsy),
% =0 on 0By,

u = C (Constant) on 9Bs,

fazsz % =0.

We use the notation z = (z/, x,), where 2’ € R"~!. After choosing a coordinate system
properly, we can assume that near the origin, the part of 9B, and 082, denoted by I';
and I'_, are respectively the graphs of two smooth functions in terms of z’. That is,

r; = {xn = % + ha(2'), |2'] < 1} and I'_ = {xn = —% + ha(z'), |2'| < 1},
where hy and hy are sufficiently smooth functions satisfying

hi(z') > ha(z") for 0 < |2'| <1,
hi(0') = ho(0') =0, Dphy(0)) = Dyhy(0') =0, D?*(hy — hy)(0') > 0.

For 0 < r <1, we denote

Q= {(@,2) eD\BIUB) | — 5 +hala’) <a < 5 + (@), o' <7}

We focus on the following problem near the origin:

—D;(a" (x)Dju(x)) =0 in Q,
a’(z)Dju(z)y; =0 on Ty, (1.3)
u = C (Constant) onI'_,

where (a%(z)) satisfies, for some constants o € (0,1) and any x € Q1,¢ € R™,

olé|? < a¥(x)&&,  |a¥(2)| <

S
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Theorem 1.4. Assume the above and let w € H'(Q) be a weak solution of (1.3). For
m € N, some constants o € (0,1), and Cp, o > 0, if

lallcm—1.ay + [Rillomefar<1y) + [[h2llemelari<1}) < Cmias

then there exist constants p € (0,1) and C, depending only on n, o, m, «, and Cp, o
such that

1
|D™u(x)| < Cuvarilull L2,y for € Q.

The rest of this paper is organized as follows. First, we review the Green function of the
operator L., 1 constructed in [17], and derive some preliminary estimates in Section 2. In
Section 3, we prove Theorem 1.1 with m = 1 to illustrate the main idea without getting
into too much technicalities. Then we prove Theorem 1.1 with general m € N in Section 4,
and Theorem 1.2 in Section 5. In Section 6, we prove Theorem 1.3 by introducing a
conformal map to reduce the problem to the case considered in Theorem 1.2. Finally,
Theorem 1.4 is proved in Section 7.

2. Preliminary

In this section, we first review the Green function of the operator L..;,; constructed
in [17], and then derive some preliminary estimates.

Let ®;(z), ®a(x) denote the inversion maps of a point z € R? with respect to 9B
and 0B,, respectively, that is

x1—(1+¢/2)
(1 —1—¢/2)2 42

€2
5 +14+¢/2, )
2

Q1 (21, 22) := ( (1 —1—¢/2)2+ 23

and

1 2
T+ 14¢/ C1-e/2, T2 )

P =
2(21,22) ((x1+1+a/2)2+x§ (r1 + 1 +¢/2)2 + a2

The auxiliary function G(x,y) is given as follows:

(1) When y € By, G(z,y) equals

2 = k k k
T o0 (o8 (@182)* () =3l = log | (B200)* Ba(c) — 4]

for x € Bu;

log e —yl + Y [(@8)" (log [(2192)" (x) — y| + log | (2201)" () — y1)
k=0
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— (aB)F (Blog |(@221)*@2(2) — y| + alog [(@182)" @1 (2) ~ y] )|

for x € By;
— gmﬂ)k(log (@281)"(2) — y] — alog | (B182) @1 (2) — y])
for x € Bo;
(2) When y € By, G(z, y) equals
-(log o — |+ alog 1(0) ~ 1) ~ =75 ki *log |(2201) @ () — ]
for o€ By\ {(1+¢/2,0)}:
— é(aﬂ)k(log [(@221) () — 9] — Blog | (®21)" ®s(x) — /)
for x € By;
A o
[CEDIES)] ’;(aﬁ)k log |(®281)"(z) — y|
for x € Bo;
(3) When y € By, G(,y) equals
T ) el (0102 @)
for = € By;
— é(amk(log (@192)" () | — aclog|(#122) 1 () — y])
for x € By;
k%(log |z —y| + Blog|P2(z) — yl) — %;lTal)Q }i(aﬁ)’“ log |(®102)" @ () — y|
for x € By \ {(—1—¢/2,0)}.
Define
G(z,y) for y € By,
Glony) = 190+ %g(w,(l—ke/ZO)) for y € By, 2.1)
Ge,y) + —D—G(x, (=1 —/2,0)) for y € Ba.

1-p



8 H. Dong, Z. Yang / Advances in Mathematics 428 (2023) 109160

By [17, Proposition 2.3], G is a Green function of L., 1 in the sense that
a(x)A;G(z,y) =0(x —y) for x ¢ OBy UOBs,

and G(-,y), aD,G(-,y) are continuous across 0B; and 9B3. Let € C3°(B3/4) be a cutoff
function such that n = 1 in By ;. Let v = un, where u is a solution of (1.1). Then v

satisfies
Dj(a(z)Dyv) = Difi+ fs in R?
where
fi=fin+auDin, fs = —fiDin+ aDuD;n. (22)
We define

awz—/mﬁmmﬂw@—/mﬁwmﬁw@
B Ba

—/Din(m,y)fi(y) dy+/G(wvy)f3(y) dy
Bo B

=—wi(z) —wa(x) —wo(z) + ws(x). (2.3)

We know from [17, pp. 1447] that v = @ + Cj for some constant Cy. We define for
J=0,1,2

(o) = [ Dy logla = ol (w) dy (2.4)
B;
and
gj(x) = [ log|z — y|f3(y) dy. (2.5)
/

Since supp(Dn) C Bsjs \ Bij2, by [17, Lemma 3.2] and [20, Lemma 2.1], we have for
m € N,

Hu”Cvau(Bjﬂsupp(Dn)) < CCy, ||fi||C’2m*1#‘(Bj) < Ccmkj for i=1,2,3, J7=0,1,2
(2.6)

and

||hj||C2mv“(BgﬁBi) + ||ngC2m’“(B3ﬁBi) < C’ka;j for i,j =0,1,2. (27)
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From now on, we identify a point 2 = (z1,22) € R? with a complex number z =
71 + ize € C. We will derive some derivative estimates of the maps (®o®;)*(2) with
respect to k and z € By. Estimates of (®;®5)*(2) with respect to k and 2 for z € By will
follow similarly.

We denote a = 1 + /2 for convenience, after a change of variable

2az — (2% — 1) — z,
we have
(Oo®1)(2) = —1/2 — 2(2a* — 1),
and the two fixed points of ®5P; are given by

A o= —(2a% = 1) +2aVa? — 1~ -1+ 25,
Ay =—(2a% — 1) —2a/a? — 1 ~ —1 — 2/c.

We denote ¢ = &P, for simplicity. For z € By, we denote r := |z — A2/, and
Toi= (== 231 = Pal (2 = 2a) = (= = A7)(1 = Dl ™) + Oz — A7)l ™.
It is easy to see that |z — Ay | ~ 7+ /&, Re (2 — Ay ') < 0, and Ay — \; ' ~ —/c. Hence
[T ~ (r + V) (1 =A%) + Ve

Following the iteration argument from Section 3 of [17], we have, for any o € N,

() = o+ (A3 = DAz = M)y (2.8)
Da(wk(Z)) _ %(1)0‘_1&!(1 . )\27%)0‘_1[2}(@"'1), (2.9)

and in particular, since [\y — A\y'| < /€ and | 12| > V&,
[D*(¥(2))] < C, (2.10)
where C' is a positive constant depending only on «. By (2.8), for any 8 > 1,
DY) = D[ = DATH (2 = o) I

= > Cs s =1z = X)[DPA DRI,
B1+p2=p8

Since
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DAy 2 = —2log | Ao Ay 2 ~ —\/EN; 2

and

B2
DI =S Cylog | hal) 2 A3 W (2 — A I,
=0

where C; is some constant independent of k and ¢, we obtain

c+8)/2 B L+

DP(yF < — 2.11
| k(’l/} )(Z)| ~ /\gk ot |I2k|]+l ( )
For any 8 > 0 and o € N, by (2.9), we have
DD (k) = D Chupass(he = A )2 (=1)* MDA 7] %
B1+B2+63=0
x [DP(1 = A28y [DP 1, ).
Observe that
min(B2,0—1) 4 ‘
DEA-Ae =] 3 G- a3 g  log )
j=0
min(B2,a—1)
< 662/2 Z |1 _ /\2—2k|a7j717
=0
and
1 & ; ; i+1
DRI = 37 Cog Pa) A ¥ (2 = Mg 1,V
§=0
B
< Bs/2 -
Ser Z Top o i+
7=0
where C; is some constant and can be different from line to line. Thus we have
1+8/2 B3
B o,k € —2kja—Ba—1 r
| Dy, D (¢ (Z))ISW > L= AP [Top|a et (2.12)
2 Batps<p
B2<a—1

Note that fq, 85 in (2.12) might be different from the ones above.



H. Dong, Z. Yang / Advances in Mathematics 428 (2023) 109160 11

3. First order derivative

In this section, we prove Theorem 1.1 when m = 1. Without loss of generality, we
may assume that C; = 1.
Case 1: @ € By N By 2. In this case, v*(z) € B, for k € N. By (2.1) and (2.3), we have

Dun(a) = > (- (Dlha (2] = Bl (0 02(2)))
We denote

O := 7 DIhy (v* ()] = ¥ Dha[0* ()] D(* 1) [()] Dy ().

Then
i(_l)ke)k =: i(—l)k(@)k — Ok41) + 60 — “o..
k=0 2= 2

By (2.6) and (2.7), it is clear that |©g — £©1| < Cky, where C' is a positive constant
independent of & and 4. Therefore, the goal is to estimate |©; — ©y11]. By the mean
value theorem,

O — Opsr = Dk@k\k

for some k € (k,k +1). We claim that
Y10k =Bkl S I1D1Ok| S k. (3.1)
k=1 k=1
By the chain rule and the product rule, we have
Dy =(log7)y" Dhu[* ()] D" ™) [¢:(2)| Dy ()
+ 7 D2ha [0 (@) D (W) [ ()] D) [ ()| Dy ()

+ " Dhy [* ()] D D(* 1) (2) Dip()
=:Jp+ i+ i

Recall that |A2| > 1 and |log~y| ~ 1 — 7, by (2.7), (2.10), (2.11), and (2.12), we have

e
J| <ki|lo b~
‘ k|N 1| g’ﬂ’y )\gk|12k|2

€ r r2 € 1 g2 r r2
J2| <k ’“—( + )— 5k—< +—),
il <y NF Lok [Toxl?) AZF (T2 ~ 7038 \[Int® [ To]*
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I3 <k g3/2 1 T
| k| 17 )\Qk (|]2k|2 + |]2k|3>'

When k < 4_\[,We have
o] 2 Ve
Therefore,
1
ISR T
k<r+1ﬁ k< T+\f
Sk(l=7) Y <k,
2 2
€ r r
| 5w . +
| 2 sk 2 A3k<|fzk|3 [T
k<r+\/2 k<r+\/E
2
Sof T r
S ka Z < <E3/2+52>
k<7'+1\/5
2 2
€ r r
Shitr (G54 5) shtE+n
and
3/2 1
€ r
Y RE__ I
’ Zl k|~ Rl Z v A2F |12k|2+|12k|3
k<37 k<37
1 T
32 (1
Sk Z € (5+53/2>
k<r+1\/5
3/2
< € 1 T Ky
~re\e e32) 7
When f<k<f,we have
Lok | 2 (r + Ve)kve.
Therefore,
1 k €
‘ Z Jk‘ S by Z |log v|v W
e Sk<Jz Ve Sh<z 2

k e
gkl Z |10g7|7 )\%k(T+\/g)2k25
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1 1 1
< kvt ] R _
~ Ry | 0g7|<r+\/g)2 ) § : k2

1
rrvESk<E

|l gl
<k‘1€ <k1,
~ \/_N

where we used the fact that |e x| < C for any = > 0,

Y s Y ot m (s
k|~ M )\2’“ | Lo | | T |4

1 1 1
e Sh<TE Fvesk<z

2
< 2 T r
s ¥ vt rrvaes)

1 1
i Y (et )

and

3/2 1 T
3 < k. R T A
‘ Z Jk‘ ~ M Z v A2k <|12k|2 + |]2k|3>

1 1
7‘+\/E§k<ﬁ 7+\/_—k<\/_

1 r
< 3/2
Sk 2 e ((r VR oy \/E)3k3s3/2>

rrve Sk<Jz

1 1
i Y (Grvaet rrvem) $6

1
Ve Sk<TE

Finally, when k > f’ we have
|Lok| 27+ Ve

Therefore,

‘ ’ 1Y [logyly )\2k|l B

kz\% k> e
1
Skl Z Sk Ve,
k>\1f
2 2
5 r r
’ Jl?‘ 5 kl ’Yk 2k 3 + 4
PEEANTZENTAY
E>-L E>-L
=Ve =VE



14 H. Dong, Z. Yang / Advances in Mathematics 428 (2023) 109160

<k /yk 2 r 7»2
h 25 ((r+ﬁ)3+(r+ﬁ)‘*>
=E

< kl% < Ve ),

where we used 1 — /A2 > /2, and

’ Z Jk‘<k1 Z 7 )\Qk (|]2k|2+L>

= P

v 3/2 1 r
<k J
~ 2L ke ((r+\/5)2+(r+\/&_?)3)
k> -1
= e
VE(1/A2)VE 2\ L
<fp X2 <Lk A3) Ve .

Therefore, (3.1) follows from the estimates above, and hence

oo

Y (=nkey

k=0

S Ckl,

where C is a positive constant independent of ¢ and ~.
By the same argument, we can estimate

> (=) " Dby (v* o ()] < Chy.
k=0
Therefore,
Ck
|Dwy ()] < T +11 for 2 € By N By .

By (2.1) and (2.3) again, we have, for x € By N B2,

Duuzle) =~ 21 “9F (Dlh2((@1@2)"(@))] — aDlha(2192) 1 (@),

Duy(w) =Dho(x Z[ £ (Dlho((@192)" ()] + Dlho((@281)"(2))])

— (=1)F 15 (BDho(@201)* @ (@))] + aDlho (2102)" @1 (x))]) .

Therefore, in the same way we can estimate
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Ck
| Dwsy(z)] < . +21 and |[Dwg(z)| < C for z € ByN By,
2

where C' is a positive constant independent of ¢, ki, and ky. To estimate ws, since

supp(fs) C By, we can write

- / G, ) f(w) dy + / G, y)Foly) dy + / G, y) Faly) dy
Bs Bo

oo

= k12+ 1 Z(—l)’“v’“ (gl((@2¢1)k(a§)) - ﬁgl((<1>2¢>1)kq>2(x)))

+az “* (og | (@2@1)" (x) - (a,0)]

- flog|(@21)"@a(0) - (@,0)]) [ Falw)dy
B

oo

+ k22+ ] Z(*l)’“v’“ (92((@1@2)k(x)) - agz((q>1<1>2)k¢1(x)))

+5Z Voo (log | (@195)"(2) + (a,0)|

— alog|(®Dy)* (a,0)] /f3

+ go(a +Z (D8 (90((@192) () + 90(2221)" (x)))

— (=1 (Bgo(201) 710 () + ago((21@2)" 7 01 () ).
Note that for any x € By N By 2,

|(@2@1)" () — (a,0)] > 1, |(@2®@1)" 2 (z) — (a,0)] > 1,
|(@1®2)"(2) + (a,0)] = 1, |(®1®2) @1 (2) + (a,0)] = 1.

By (2.2) and (1.1),

/f3 / iDin + a(z)D;uDin = 0.

[5-

Therefore, by (2.6),

< CCn,

L / fiDin + a(x)DyuD;n

1UBo
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where C' is some positive constant independent of €, k1, and k3. Then we can estimate
Dws similarly as above to obtain

|Dws(x)] < C for x € ByN Bys.
Therefore,
|Du(z)] < C for x € ByN By,

where C' is a positive constant independent of ¢, k1, and k.
Case 2: x € B1 N By/5. By (2.1) and (2.3), we have

1 « 43 >
wi (z) Zk—1h1($) + k—1h1(<1>1(w)) T kzzo(—l)k’ykhl((‘1)2‘1)1)%2(30))7
4 o0
wa(z) S kZ:O(—l)kah2((‘I’1‘I’2)k($))7
wo () :k12+ 1 D (—1)kyk (hO((‘I’l‘I)z)k(m)) - ﬁhO((%‘I’l)k%(%)))’
k=0

and

- / G(z,9) () dy + / Gla,y)foly) dy + / Gla,y) fay) dy

= kilgl(l') + ]{%gl(@l( kl Jr 0 YRV Z ’Y a1(( ¢2¢1)kq>2(x))
+ ,%bg\x — (a,0)] /fg(w dy
By
kfofl Z 7" log |(2221)"® (a,0) |/f3
L4 5 . "
Tt Dt D) kZ:O 7792 ((91®2)" (x))
k1+1z kk10g|q)q)2 a0|/f3
+ k12+ DI (90((¢1@2)k(9€)) - 590(@2@1)%2@)))7
k=0

where we used log |z — (a,0)| = —log |®1(x) — (a,0)| for x € By N By 5. Note that
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[z —(a,0)] >1/2, [(®2®1)*P2(z) — (a,0)] > 1, [(1D2)"(2) + (a,0)| > 1.

We can estimate Dw;,t = 0,1, 2,3, as above to obtain

Cky
< S OO
[Dun(@)] < €, |Dua(e)l < oy
C

ki+1’

| Dwo ()] < |Dws(z)| < C.
Therefore,

|Du(z)] < C for x € BiN By,

where C is a positive constant independent of ¢, k1, and ks.
Case 3: x € B2 N By /3. By (2.1) and (2.3) again, we have

4 o0
wi (z) S ) kz:(:)(—l)kykhl((db%)k(x)),
_ 1 ﬁ -
wa(w )*k2h2( r) + k2h2(‘1’2( k:2+1 kazo )"V ha((®192)"®1 (7)),
o) = (1) (ol (220)¢ () — abol(B18)"21(2))).
k=0

and

ws(z) = / G, y) Faly) dy + / G, y) Faly) dy + / G, y) fay) dy

By B 2
— m Z(—l)k'ykgl((q)gcbl)k(x))
k=0
200

+k2+1kzzo( 1) log (@2, aOI/fg

1 ﬂ %) )

k_292( )+k—292(<1>2( k2+ YTTERY) Z Yok g2((P1P2)" Py (x))

k=0

+ k%log|x+ (aa0)|/f3(y) dy

2a3
_k2+1z=: 10g|(1)1¢)2) GO /f3

17
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2 = k_k k k
kz+1,§g(_1> v <go((<1>2<1>1) (z)) — ago((P1P2) Ql(x))),

where we used log |z + (a,0)| = —log |®2(x) + (a,0)] for x € By N By /3. Note that
@+ (a,0)] > 1/2,  |(P182)"1(2) + (a,0)] > 1, |(P281)"(2) — (a,0)] > 1.

We can estimate Dw;,i = 0,1, 2,3, as above to obtain

Cky
D < ———F7——, D <C
Dun)| < ey D@l <6
C
< <C.
Dun(@)] < == [Dus(a)| < C

Therefore,
|Du(z)] < C for x € ByN By,

where C is a positive constant independent of ¢, k; and ks. Hence (1.2) is proved for
m = 1.

4. Higher order derivatives

In this section, we prove Theorem 1.1 for m > 2. The idea is essentially the same as
the case when m = 1. Without loss of generality, we assume that C,, = 1.
For x € By N By 2, by (2.1) and (2.3), we have

o0

SO0k (D (0 ()] — 5D I (4 (2)]).

k=0

_ 2
k41

D" wy (x)

We denote

Om e =7 D™ [ha (V" (2))].

Since Y, () = 2™, we have

S (10 =g 30 3 (7)o
k=0 k=1 =0
1 & ia N (m
+@m,o+2—m; (—1) @m,zj_i<j) : (4.1)

The second line of (4.1) is clearly bounded independent of ¢ and v. The main goal is to
estimate the first term on the right-hand side of (4.1). By the mean value theorem,
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> -1 (T) O bts = D'?"@W‘k_,;

S IDF Okl S ka (4.2)

k=1

By the chain rule and the product rule,

D™ [ ($* (= Z D h(f() Y [P W) |,

N7y any=m =1

where «,, ; > 1. For each n and {a,, satisfying Qp i =m,
J d5j=1 =1%n,j

Do) = Y | DR i) Y HDa"v-fvaw ,
Qp, ;=1 =1

anlJ QUn,j,p=0qn,j
where a,, ;, > 1. Then by (2.10),

| D D o (0" ()|

m m

3 Z(mlomT|D£°[D"h1<w<x>mx

T+By=0n=1
7,802>0

D SRR | B SR >H) (43)

Z;L:l/ﬁj =m—71—LB0 J=1 Gn j=1

When 5y > 1, by the chain rule and the product rule,

Bo s
DRD hy (*(2))] = S [ D" ha(wh(2)) Y. [[ DU (@) ]
s=1 i1 Vs, i=Bo i=1

where v, ; > 1. For each s and {~,;}{_, satisfying vs; > 1 and Y ;_, 75, = Bo, by (2.11)

S

HD'Ys 1,(/)16 l

i=1

< lj[ c(I+7s,:)/2 128 g+l
A2k gt | Iop |7 +1

c(s+80)/2 Bo i+s

~ /\gk j=0 |I2k|j+sl

(4.4)
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To prove the claim, we consider the following two cases:
Case 1: §y > 1. For each n, by (4.4), (2.7), and (2.12), the right-hand side of (4.3) can
be estimated by (up to a positive constant independent of k)

Bo [ o(s+B0)/2 Po,  pi+s n+(m—7—50)/2
& € T €
k17 |log7|TZ \2F |1 |j+s 22k x
s=1 2 j=0 172k 2
" Bs
. r
% Z |1 _ A52k|m—n—62 —
m-r+n 3
0<Ba+B3<m—7—Bo |]2k|
0<Ba<r—n
Bo n+(m—7+s)/2
k e
SkY v |10g’Y|TTX
s=1 2
- Ba+i+s
. r
% Z |1 _ )\2—2k|m—n—62 . _ ,
o | Ioj | tntPatits
0<B2+B3<m—7—po
0<B2<m—n
0<5<Bo

where n < m < m. For every s, 7, j, Ba, and B3 that satisfy 1 < s < By, 0 < j < B,
0<Ba<m—n,7>0,and 0 < By + B3 < m — 7 — [y, we consider the following three
cases:

When k < #\/E’ we have

1= Skve and || 2 Ve

Since
YN* enes
S () e
<z
| ==
< min - —— - _
P O
< L
(=7t et
we have

n+(m—7+s)/2 r53+j+s

‘1 _ )\2—216 |ﬁl*’n7[§2

L€
> A*logn)|

o 7 T rreAotiee
k - - Bs+i+s
< 5 (2) i pogaretmmin e
L A5 g(m+n+pBs+j+s)/2
<

Ve
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S ( 1/_) - 5ot (1— ’Y)TE(m_T_Bz_BS_j)/2T§3+j+S
1- Y +r 4+ Je)ym—n—pF2
1

< _ m—fats <
STy VTS

asm<mandn—1+s>1>0. When r+1ﬁ§k<%€,wehave

1= SkvE and || 2 (r+ VE)kve.
Therefore,

€n+(m—7'+s)/2 B S 7«/5_3+j+5
> Alogn T g1 = A

2k ntntB3+i+s
%ﬁgk<% )\2 |]2k|m n 3+J+s
S Z TRV e log | Telm AT —fat6) /2 rioti _
R [(r+ VR E B
v Ve
1 = 1 1
< ~TFVE To(m—T—B2—Ps—j)/2___~ e —
S| logy|e GG > | k2ntBatBatsts
rrve Sk<z
lo 2 2 - 1 3 3 ;
S e loga T TR e 4 R
sy | logy |” s _
<6"'+‘/E el r 4 Sm m—+n—+s 1<1’

where we used the fact that |e"z7| < C; for any z > 0, m—1—LBa—PB3—7j >0, m<m,
andn+s—1>1>0.
When k£ > %, we have

1-XA2% <1 and  |Iog| 27+ Ve
Therefore,

€n+(m77'+s)/2 7,53+j+s

k T —2k|m—n—f
lo 1—A ——
k>L7| 5| A3 | 2| Ly |t Pstits
2E
7\* 1
< e lo ‘r€n+(mf‘r+s)/27
<3 (5) o RV
K>k
< ’yﬁ IOg’y 6(n—&—s)/Q
S 1-q/A3 ] Ve
< o (1080 w2 <

NG
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where we used the fact that |e”*27| < C for any 2 > 0, m—n—PFs >0,n+s—1>1>0,
and 1 —v/A3 > /e. Therefore, (4.2) follows from the estimates above.

Case 2: By = 0. For each n, by (2.12), the right-hand side of (4.3) can be estimated
by (up to a positive constant independent of k)

+(m—7)/2 . Bs
k - =2k {m—n—p, r
k17" [log | Tk ) 2: =27 | g, |tn+Bs
0<B2+pz<m—r1
0<fBa<m—n

where n < m < m. Then (4.2) follows by repeating the exact same argument as in Case
1 with s =0 and 57 = 0.
Using the same argument but replacing %=1 () (x)) with ¢¥*®,(x), we have

o0

Y (=MD [ (9F s (2))]| < Cha,y

k=0

where C is a positive constant independent of ¢ and ~. Therefore,

k
D™y (z)] < -

_k1+1 fOI‘.TeBOmBl/Q.

As in Section 3, we can estimate |D™w1 (x)|, |D™wa(x)|, | D™ws(x)|, and |[D™wq(z)| in
all three regions. Therefore, (1.2) is proved.

5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The proof is similar to that of Theorem 1.1.
Without loss of generality, we assume C,,, = 1. Take a domain D5 such that D; € Dy € D,
and take a cutoff function n € C§°(Ds) such that n =1 on D;. Then v := un satisfies

Di(a(z)Div) = D;f; + f3 in R2,
where
fi = fin+uD;n, f3 = —fiDin+ DyuD;n.

For i = 0,1,2,3, j = 1,2,3, we define @, w;, hj, and g; as in (2.3), (2.4), and (2.5).
Instead of (2.6) and (2.7), we have

| fillczm-1m(s;) < Cmin{l,k;} for i=1,2,3, j=0,1,2,
and

||hj||027”'“(33087‘,) + ||gj||027n,u(BsmBi) S Cmin{l, k]} fOI" l’_j = O7 17 2. (51)
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As in the proof of Theorem 1.1, for = € By N Dy, we have, by (5.1),

Cky

D™ <
D (@) < 7

[D™ ws ()] <

C
D™ D™ <C.
a1 And [DMwo(@)] + DM ws(w)] < €

For x € By, we have

Cky

(k1 +1)2’
C

(i + (ks + 1)
C

k1 + 1

D™ wy (z)] < C+

|D™ wa(x)] <

| D™ wo(z)] <

To estimate |D™ws(x)|, we note that
« 6] ~
For(@@) + 1 logle — (@0)] [ Fa) dy
k1 kr
B
(0% ~
— & [ tog1®1(0) ]+ loglz - (0.0 Faty) dy,
B

and for fixed y € By, x = (a,0) is a removable singular point for log |®1(z) — y| +log |z —
(@, 0)]. Therefore log |®1(x) — y| + log |z — (a, 0)| is harmonic in B;, and

D™ ]%91(‘191(@) + %logb: — (a,0)|/f3(y) dy || < c.
By

The rest of the terms can be estimated similarly as before, and hence we obtain

D™ ws(z)| < C,
which yields
|Di(x)| < klil for z € B;.
Finally, for € Bs, we have
Ckq
D™ < —
DT @) S F o T
C C
| D™ wa(x) +

< - 4=
= ky = (ks +1)2’
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c

D™ <
D @) < =

)

|D™ws ()] < Oks L S
PN+ (ko +1) " ko411 ky (ke +1)2 ka1

which yields

Theorem 1.2 is proved.
6. Proof of Theorem 1.3

When 71 = ry, Theorem 1.3 follows from Theorem 1.2 after scaling. When r1 # ra,
we will find a conformal map 7' : C — C that maps B; and By to circles of the same
radius. Without loss of generality, we may assume ro > 7.

Let T(z) = —L—, where zg € C and 2y = z; +29i. It is well known that if zo ¢ By U Ba,

z—zp’
T maps By U By to two disks. After a direct computation, we know that 7" maps B; to
. 50—6/2—7‘ . r .
the disk of cel/qter W, radius m, and maps B to the disk of
Zote/24r ; = ;
center W, radius m We only need to find zy = z1 + 22t such
that

rl(rg —|z0 +¢/2 +r2|2) = 7"2(7“% —|z0—€/2 — 7"1|2).
This is equivalent to
eETL+ T 2rqyr 2
(o (Gt )Y g
2T2—T’1 To —T1

2 2 2 2 2
B ( 7179 ) n erira(ry + 72) n [(rl +r2> 3 1] .
To —T1 ro —T1

€
(ro —r1)? 4

We take

2rirg \2  2erire(ri +r 2 [ /ry + 179\ 2
2 = < 12) + 172(71 22)+_[(1 2) _1]
To —T1 (TQ*T’l) 4 To —T1

ery+rs 21179

2T2—T1 TQ_Tl’
22:0.

It is easy to see that z; > /24 4r;. Therefore 2o ¢ By U Ba, and we can choose domains
D, and D such that By UBy € D; € D, and zy ¢ D. Hence T is smooth in D and is the
desired conformal map.
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7. The extreme case

In this section, we prove Theorem 1.4. The proof essentially follows that of [7, Theorem
1.1], with some modifications.

By considering u — C' instead of u, we may assume the constant C' = 0 in (1.3). For
any 0 < t < s < 1, let n € C(Qy) be a cutoff function such that n = 1 in ; and
|Dn| < C(s —t)~t. Multiplying un? on both sides of (1.3) and integrating by parts, we
have

/aiijuDiuUZ + Qaiijquun =0.
Q4

By Young’s inequality,

C
2 o 2
/|Du| S G / u
Q

QA
Since © = 0 on I'_, by the Poincaré inequality in the x,, direction, we have
/ u? < Ofe + s%)? / | Dul?.
Q\ 2\

Therefore,

et 52\ 2
/|Du|2 <y ( s ) / | Dul?. (7.1)
Q4

Qs\Qt

Let to =7 € (v/&,1/2) and t; = (1 — jr)r for j € N. Taking s = t;,t = t;41 in (7.1), we

have
/ |Dul? < 4Cy / | Dul?.

Qe; Qtj\Qtj+1

Adding both sides by 4Cp [, |Dul? and dividing both sides by 1 + 4Cp, we have
fi+1

4C
/ |Du? < 1+4000 / |Dul?.
Q.

Qtj+1 J

Let k = |5~ and iterate the above inequality k times. We have

2 4Cy g 2 1 2
Dl < (54 ) [ 1Pul <G [ 1P, (72)
Q, Q4

Qp./2
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where p € (0,1) and C are constants depending only on n, o, ||h1]|c2, and ||hz||c2. For
any r = (',%,) € Qy/2, let R = ¢+ hy(2') — h2(2'). We make the change of variables
by setting

/ / =/
y=r —x,

B Ty —ho(z')+e/2 1
Yn = 2R <€+ hl(j}/) — hQ(CC/) B §>

for . = (¢/,2,) € {|2' —&'| < R,—€/2 + ha(2’) < ®, < €/2+ hy(2’)}. This change of
variables maps the domain above to @, where

Qs ={ yn) €R™ | |y'| <5, |yn| < s}
for s > 0. Let

o (02y)(a(x(y))) (Oy)"
(07(y)) = det(8,y) ’

Bij(y) = b (Ry), and 7(y) = u(Rx). Then 7 satisfies

—0,(b7 (y)95u(y)) = 0 in Q1
b (y)9;u(y) =0 on {y, =1},
a(y) =0 on {y, =—1}.

It is straightforward to verify that

I ~ -
6 S b S CI and ||b||cm—1,a(Q1) S C‘7

where C' is a positive constant depending only on n, o, m, o, and C,, o. Then by the
Schauder estimate, we have

m s~ / < ~
711233(§1 |D U(O 7yn)| < OHDUHL2(Q1)7

which gives, after reversing the change of variables,
|D™u(z)| < CR™™ "2||Dull 120, ) VEE€ Qo (7.3)

where C' is a positive constant depending only on n, o, m, «, and C,, . Then by using
(7.2) and (7.3) with r = 2max(/¢, |#'| + R), we conclude the proof.



H. Dong, Z. Yang / Advances in Mathematics 428 (2023) 109160 27

References

[1] H. Ammari, G. Ciraolo, H. Kang, H. Lee, K. Yun, Spectral analysis of the Neumann-Poincaré
operator and characterization of the stress concentration in anti-plane elasticity, Arch. Ration.
Mech. Anal. 208 (1) (2013) 275-304.

[2] H. Ammari, B. Davies, S. Yu, Close-to-touching acoustic subwavelength resonators: eigenfrequency
separation and gradient blow-up, Multiscale Model. Simul. 18 (3) (2020) 1299-1317.

[3] H. Ammari, H. Kang, D.W. Kim, S. Yu, Quantitative estimates for stress concentration of the
Stokes flow between adjacent circular cylinders, arXiv:2003.06578, 2020.

[4] H. Ammari, H. Kang, H. Lee, J. Lee, M. Lim, Optimal estimates for the electric field in two
dimensions, J. Math. Pures Appl. (9) 88 (4) (2007) 307-324.

[6] H. Ammari, H. Kang, M. Lim, Gradient estimates for solutions to the conductivity problem, Math.
Ann. 332 (2) (2005) 277-286.

[6] I. Babuska, B. Andersson, P.J. Smith, K. Levin, Damage analysis of fiber composites. I. Statistical
analysis on fiber scale, Comput. Methods Appl. Mech. Eng. 172 (1-4) (1999) 27-77.

[7] E. Bao, H.G. Li, Y.Y. Li, B. Yin, Derivative estimates of solutions of elliptic systems in narrow
regions, Q. Appl. Math. 72 (3) (2014) 589-596.

[8] E. Bao, Y.Y. Li, B. Yin, Gradient estimates for the perfect conductivity problem, Arch. Ration.
Mech. Anal. 193 (1) (2009) 195-226.

[9] E. Bao, Y.Y. Li, B. Yin, Gradient estimates for the perfect and insulated conductivity problems
with multiple inclusions, Commun. Partial Differ. Equ. 35 (11) (2010) 1982-2006.

[10] J.G. Bao, H.G. Li, Y.Y. Li, Gradient estimates for solutions of the Lamé system with partially
infinite coefficients, Arch. Ration. Mech. Anal. 215 (1) (2015) 307-351.

[11] J.G. Bao, H.G. Li, Y.Y. Li, Gradient estimates for solutions of the Lamé system with partially
infinite coefficients in dimensions greater than two, Adv. Math. 305 (2017) 298-338.

[12] E. Bonnetier, F. Triki, Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré
operator: the case of 2 discs, in: Multi-Scale and High-Contrast PDE: from Modelling, to Mathe-
matical Analysis, to Inversion, 2012, pp. 81-91.

[13] E. Bonnetier, F. Triki, On the spectrum of the Poincaré variational problem for two close-to-touching
inclusions in 2D, Arch. Ration. Mech. Anal. 209 (2) (2013) 541-567.

[14] E. Bonnetier, M. Vogelius, An elliptic regularity result for a composite medium with “touching”
fibers of circular cross-section, STAM J. Math. Anal. 31 (3) (2000) 651-677.

[15] B. Budiansky, G.F. Carrier, High shear stresses in stiff-fiber composites, J. Appl. Mech. 51 (4)
(1984) 733-735.

[16] Y. Capdeboscq, S.C. Yang Ong, Quantitative Jacobian determinant bounds for the conductivity
equation in high contrast composite media, Discrete Contin. Dyn. Syst., Ser. B 25 (10) (2020)
3857-3887.

[17] H. Dong, H.G. Li, Optimal estimates for the conductivity problem by Green’s function method,
Arch. Ration. Mech. Anal. 231 (3) (2019) 1427-1453.

[18] H. Dong, Y.Y. Li, Z. Yang, Optimal gradient estimates of solutions to the insulated conductivity
problem in dimension greater than two, J. Eur. Math. Soc. (2023), in press, arXiv:2110.11313, 2021.

[19] H. Dong, Y.Y. Li, Z. Yang, Gradient estimates for the insulated conductivity problem: the non-
umbilical case, arXiv:2203.10081, 2022.

[20] H. Dong, H. Zhang, On an elliptic equation arising from composite materials, Arch. Ration. Mech.
Anal. 222 (1) (2016) 47-89.

[21] Y. Gorb, Singular behavior of electric field of high-contrast concentrated composites, Multiscale
Model. Simul. 13 (4) (2015) 1312-1326.

[22] Y-G. Ji, H. Kang, Spectrum of the Neumann-Poincaré operator and optimal estimates for transmis-
sion problems in presence of two circular inclusions, Int. Math. Res. Not. 2023 (9) (2023) 7638-7685.

[23] H. Kang, Quantitative analysis of field concentration in presence of closely located inclusions of high
contrast, in: Proceedings of the International Congress of Mathematicians, 2023, in press, available
at: http://people.math.inha.ac.kr//~hbkang/paper/ICM-KangH.pdf.

[24] H. Kang, M. Lim, K. Yun, Asymptotics and computation of the solution to the conductivity equation
in the presence of adjacent inclusions with extreme conductivities, J. Math. Pures Appl. (9) 99 (2)
(2013) 234-249.

[25] H. Kang, M. Lim, K. Yun, Characterization of the electric field concentration between two adjacent
spherical perfect conductors, STAM J. Appl. Math. 74 (1) (2014) 125-146.

[26] J.B. Keller, Stresses in narrow regions, J. Appl. Mech. 60 (4) (1993) 1054-1056.



28 H. Dong, Z. Yang / Advances in Mathematics 428 (2023) 109160

[27] J. Kim, M. Lim, Electric field concentration in the presence of an inclusion with eccentric core-shell
geometry, Math. Ann. 373 (1-2) (2019) 517-551.

[28] H.G. Li, Asymptotics for the electric field concentration in the perfect conductivity problem, SIAM
J. Math. Anal. 52 (4) (2020) 3350-3375.

[29] H.G. Li, Y.Y. Li, Z. Yang, Asymptotics of the gradient of solutions to the perfect conductivity
problem, Multiscale Model. Simul. 17 (3) (2019) 899-925.

[30] H.G. Li, F. Wang, L. Xu, Characterization of electric fields between two spherical perfect conductors
with general radii in 3D, J. Differ. Equ. 267 (11) (2019) 6644-6690.

[31] Y.Y. Li, L. Nirenberg, Estimates for elliptic systems from composite material, Commun. Pure Appl.
Math. 56 (7) (2003) 892-925.

[32] Y.Y. Li, M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with
discontinuous coefficients, Arch. Ration. Mech. Anal. 153 (2) (2000) 91-151.

[33] Y.Y. Li, Z. Yang, Gradient estimates of solutions to the conductivity problem with flatter insulators,
Anal. Theory Appl. 37 (1) (2021) 114-128.

[34] Y.Y. Li, Z. Yang, Gradient estimates of solutions to the insulated conductivity problem in dimension
greater than two, Math. Ann. 385 (2023) 1775-1796.

[35] M. Lim, K. Yun, Blow-up of electric fields between closely spaced spherical perfect conductors,
Commun. Partial Differ. Equ. 34 (10-12) (2009) 1287-1315.

[36] X. Markenscoff, Stress amplification in vanishingly small geometries, Comput. Mech. 19 (1) (1996)
T7-83.

[37] B. Weinkove, The insulated conductivity problem, effective gradient estimates and the maximum
principle, Math. Ann. 385 (2023) 1-16.

[38] K. Yun, Estimates for electric fields blown up between closely adjacent conductors with arbitrary
shape, SIAM J. Appl. Math. 67 (3) (2007) 714-730.

[39] K. Yun, Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-
sections, J. Math. Anal. Appl. 350 (1) (2009) 306-312.

[40] K. Yun, An optimal estimate for electric fields on the shortest line segment between two spherical
insulators in three dimensions, J. Differ. Equ. 261 (1) (2016) 148-188.



	Optimal estimates for transmission problems including relative conductivities with different signs
	1 Introduction and main result
	2 Preliminary
	3 First order derivative
	4 Higher order derivatives
	5 Proof of Theorem 1.2
	6 Proof of Theorem 1.3
	7 The extreme case
	References


