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1. Introduction and main result

In this paper, we first study the second-order elliptic equations in divergence form 

with discontinuous coefficients in two dimensions

Lε;r1,r2
u := Di(a(x)Diu) = Difi in D, (1.1)

where D is a bounded open subset of R2,

a(x) = k1χB1
+ k2χB2

+ k0χB0
,

k0 = 1, k1, k2, r1, r2 ∈ (0, ∞) are constants,

B1 := Br1
(ε/2 + r1, 0), B2 := Br2

(−ε/2 − r2, 0), B0 := R
2 \ (B1 ∪ B2),

and χ is the indicator function. The equation models the conductivity problem in com-

posite material. The gradient of the voltage potential u represents the electric field, and 

a(x) is the conductivity which is a constant on each inclusion, and a different constant 

on the background matrix. It is significant from an engineering point of view to estimate 

the derivatives of the solutions.

In [6], Babuška et al. analyzed an analogous elliptic system, and numerically showed 

that, when the ellipticity constants are away from 0 and infinity, the gradient of solu-

tions remains bounded independent of ε, the distance between inclusions. When ε = 0, 

Bonnetier and Vogelius [14] proved that |Du| is bounded for a fixed k = k1 = k2 away 

from 0 and infinity. This result was extended by Li and Vogelius [32] to general second 

order elliptic equations in divergence form with piecewise Hölder coefficients and general 

shape of inclusions in any dimension. Furthermore, they established a stronger piecewise 

C1,α control of u, which is independent of ε. Li and Nirenberg [31] further extended this 

global Lipschitz and piecewise C1,α result to general second order elliptic systems in 

divergence form, including the linear system of elasticity. Some higher order derivative 

estimates in dimension n = 2 were obtained in [17,20,22].

On the other hand, if k1, k2 are allowed to be 0 or ∞, it was shown in [15,26,36]

that the gradient of solutions generally becomes unbounded as ε → 0. For the perfect 

conductivity problem (k1 = k2 = ∞), it has been proved that the generic blow-up rate 

of |Du| is ε−1/2 in two dimensions, |ε log ε|−1 in three dimensions, and ε−1 in dimensions 

greater than three; see [4,5,8,9,38,39]. These bounds were shown to be optimal and are 

independent of the shape of inclusions, as long as the inclusions are relatively strictly 

convex. Moreover, more detailed characterizations of the singular behavior of ∇u have 

been obtained. For further works on the perfect conductivity problem and closely related 

works, see e.g. [1–3,10–13,16,17,20,21,23–25,27–30,35] and the references therein.

For the insulated conductivity problem (k1 = k2 = 0), it was shown in [4,5] that the 

optimal blow-up rate is ε−1/2 in two dimensions. The proof uses a harmonic conjugate 
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argument to link the insulated conductivity case to the perfect conductivity case, which 

fails in dimensions greater than two. For the higher dimensional case, Bao, Li, and Yin 

in [9] established an upper bound of order ε−1/2. Yun in [40] proved the optimal blow-up 

rate on the shortest line segment connecting two spherical inclusions in three dimensions 

is ε
√

2−2
2 . Later, the upper bound ε−1/2 was improved by Li and Yang in [34] to be 

ε−1/2+β , for some β > 0. See also [33]. Weinkove in [37] used a Bernstein-type argument 

to obtain a more explicit upper bound of β in dimensions greater than three. Dong, Li, 

and Yang in recent works [18,19] identified the optimal blow-up rate. They proved the 

optimal gradient estimate for a class of inclusions including balls and “almost” optimal 

gradient estimate for general strictly convex inclusions. Unlike the perfect conductivity 

case, the optimal blow-up rate is related to the principal curvature of the inclusions.

Recently, among other results, Ji and Kang in [22] used some spectral properties of 

Neumann-Poincaré operators to study the problem (1.1) for the case when 0 < k1 < 1

and k2 > 1, and proved that

|Dmu| ≤ C

⎛

⎝− (k1 + 1)(k2 + 1)

(k1 − 1)(k2 − 1)
− 1 +

√

2(r1 + r2)ε

r1r2

⎞

⎠

−m+1

, m = 1, 2, . . . .

In particular, when k1 → 0 and k2 → ∞, this implies

|Dmu| ≤ Cε−(m−1)/2, m = 1, 2, . . . .

In the first part of this paper, we apply the Green function method developed in [17] to 

show that |Dmu| is in fact bounded independent of ε for any m = 1, 2, . . .. Compared 

to the method in [22], we use m-th order finite differences to estimate the m-th order 

derivatives more precisely.

Let

α =
k1 − 1

k1 + 1
, β =

k2 − 1

k2 + 1
, and γ = −αβ.

In particular, we are interested in the case when k1 → 0, k2 → +∞ (or α → −1, β → 1). 

Therefore, we may restrict γ > 1
2 . First we assume that r1 = r2 = 1.

Theorem 1.1. Let ε ∈ (0, 1/2) and µ ∈ (0, 1) be constants. Assume that u is a weak 

solution of (1.1) in B1 := B1(0) with r1 = r2 = 1, k1 ∈ (0, 1), k2 ∈ (1, ∞), and 

γ ∈ (1/2, 1). For any m ∈ N, if f is piecewise C2m−1,µ in B1, and for some constant 

Cm > 0,

‖u‖L2(B1) ≤ Cm, ‖f‖C2m−1,µ(B1∩Bj) ≤ Cmkj , j = 0, 1, 2,

then we have
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|Dmu(x)| ≤ CCm in B1/2, (1.2)

where C > 0 is a positive constant depending only on m and µ, and in particular is 

independent of ε, k1, and k2.

When u satisfies (1.1) in a domain that contains B1 and B2, we have more precise 

estimates as follows.

Theorem 1.2. Let ε ∈ (0, 1/2) and µ ∈ (0, 1) be constants. Assume that B1∪B2 � D1 � D
for some domain D1, u is a weak solution of (1.1) in D with r1 = r2 = 1, 0 < k1 < 1, 

k2 > 1, and γ ∈ (1/2, 1). For any m ∈ N, if f is piecewise C2m−1,µ in D, and for some 

constant Cm > 0,

‖u‖L2(D) ≤ Cm, ‖f‖C2m−1,µ(B1∩Bj) ≤ Cm min{1, kj}, j = 0, 1, 2,

then we have

|Dmu(x)| ≤

⎧

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

¬

CCm in D1 ∩ B0,

CCm

k1 + 1
in B1,

CCm

k2 + 1
in B2,

where C > 0 is a constant depending only on m, µ, D1, and D.

For the general case when r1 and r2 are not necessarily equal to 1, we have the 

following theorem.

Theorem 1.3. Let ε ∈ (0, 1/2), µ ∈ (0, 1) be constants, and 1/2 < r1, r2 < 10. Then 

there exist domains D1 � D that depend on r1, r2, such that if B1 ∪ B2 � D1, and u is a 

weak solution of (1.1) in D with 0 < k1 < 1, k2 > 1, and γ ∈ (1/2, 1), we have, for any 

m ∈ N, if f is piecewise C2m−1,µ in D, and for some constant Cm > 0,

‖u‖L2(D) ≤ Cm, ‖f‖C2m−1,µ(B1∩Bj) ≤ Cm min{1, kj}, j = 0, 1, 2,

then

|Dmu(x)| ≤

⎧

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

¬

CCm in D1 ∩ B0,

CCm

k1 + 1
in B1,

CCm

k2 + 1
in B2,

where C > 0 is a constant depending only on m, µ, r1, and r2.
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In the final part of this paper, we partially answer a question raised by Kang in [23], 

where in the conclusion section, he mentioned that the extensions to general shape of 

inclusions and higher dimensions for the case (k1 − 1)(k2 − 1) < 0 are quite challenging. 

We prove the derivatives estimates for the extreme case when k1 = 0, k2 = ∞, and f = 0

for general strictly convex inclusions in dimensions n ≥ 2.

The setting of this problem is as follows. Let D ⊂ R
n be a bounded domain containing 

two smooth relatively strictly convex open sets B1 and B2 so that B1 ∪B2 � D, dist(B1 ∩
B2) = ε, and dist(B1 ∪ B2, D) > 0. It is known that when k1 = 0, k2 = ∞, and f = 0, 

(1.1) is reduced to

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

∆u = 0 in D \ (B1 ∪ B2),
∂u
∂ν = 0 on ∂B1,

u = C (Constant) on ∂B2,
∫

∂B2

∂u
∂ν = 0.

We use the notation x = (x′, xn), where x′ ∈ R
n−1. After choosing a coordinate system 

properly, we can assume that near the origin, the part of ∂B1 and ∂B2, denoted by Γ+

and Γ−, are respectively the graphs of two smooth functions in terms of x′. That is,

Γ+ =
{

xn =
ε

2
+ h1(x′), |x′| < 1

}

and Γ− =
{

xn = −ε

2
+ h2(x′), |x′| < 1

}

,

where h1 and h2 are sufficiently smooth functions satisfying

h1(x′) > h2(x′) for 0 < |x′| < 1,

h1(0′) = h2(0′) = 0, Dx′h1(0′) = Dx′h2(0′) = 0, D2(h1 − h2)(0′) > 0.

For 0 < r ≤ 1, we denote

Ωr :=
{

(x′, xn) ∈ D \ (B1 ∪ B2)
∣

∣ − ε

2
+ h2(x′) < xn <

ε

2
+ h1(x′), |x′| < r

}

.

We focus on the following problem near the origin:

⎧

⎪

⎪

«

⎪

⎪

¬

−Di(a
ij(x)Dju(x)) = 0 in Ω1,

aij(x)Dju(x)νi = 0 on Γ+,

u = C (Constant) on Γ−,

(1.3)

where (aij(x)) satisfies, for some constants σ ∈ (0, 1) and any x ∈ Ω1, ξ ∈ R
n,

σ|ξ|2 ≤ aij(x)ξiξj , |aij(x)| ≤ 1

σ
.
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Theorem 1.4. Assume the above and let u ∈ H1(Ω1) be a weak solution of (1.3). For 

m ∈ N, some constants α ∈ (0, 1), and Cm,α > 0, if

‖a‖Cm−1,α(Ω1) + ‖h1‖Cm,α({|x′|<1}) + ‖h2‖Cm,α({|x′|<1}) ≤ Cm,α,

then there exist constants µ ∈ (0, 1) and C, depending only on n, σ, m, α, and Cm,α

such that

|Dmu(x)| ≤ Cµ
1√

ε+|x′| ‖u‖L2(Ω1) for x ∈ Ω1/2.

The rest of this paper is organized as follows. First, we review the Green function of the 

operator Lε;1,1 constructed in [17], and derive some preliminary estimates in Section 2. In 

Section 3, we prove Theorem 1.1 with m = 1 to illustrate the main idea without getting 

into too much technicalities. Then we prove Theorem 1.1 with general m ∈ N in Section 4, 

and Theorem 1.2 in Section 5. In Section 6, we prove Theorem 1.3 by introducing a 

conformal map to reduce the problem to the case considered in Theorem 1.2. Finally, 

Theorem 1.4 is proved in Section 7.

2. Preliminary

In this section, we first review the Green function of the operator Lε;1,1 constructed 

in [17], and then derive some preliminary estimates.

Let Φ1(x), Φ2(x) denote the inversion maps of a point x ∈ R
2 with respect to ∂B1

and ∂B2, respectively, that is

Φ1(x1, x2) :=

(

x1 − (1 + ε/2)

(x1 − 1 − ε/2)2 + x2
2

+ 1 + ε/2,
x2

(x1 − 1 − ε/2)2 + x2
2

)

and

Φ2(x1, x2) :=

(

x1 + 1 + ε/2

(x1 + 1 + ε/2)2 + x2
2

− 1 − ε/2,
x2

(x1 + 1 + ε/2)2 + x2
2

)

.

The auxiliary function G(x, y) is given as follows:

(1) When y ∈ B0, G(x, y) equals

2

k1 + 1

∞
∑

k=0

(αβ)k
(

log |(Φ1Φ2)k(x) − y| − β log |(Φ2Φ1)kΦ2(x) − y|
)

for x ∈ B1;

log |x − y| +
∞
∑

k=0

[

(αβ)k
(

log |(Φ1Φ2)k(x) − y| + log |(Φ2Φ1)k(x) − y|
)
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− (αβ)k−1
(

β log |(Φ2Φ1)kΦ2(x) − y| + α log |(Φ1Φ2)kΦ1(x) − y|
)]

for x ∈ B0;

2

k2 + 1

∞
∑

l=0

(αβ)k
(

log |(Φ2Φ1)k(x) − y| − α log |(Φ1Φ2)kΦ1(x) − y|
)

for x ∈ B2;

(2) When y ∈ B1, G(x, y) equals

1

k1
(log |x − y| + α log |Φ1(x) − y|) − 4β

(k1 + 1)2

∞
∑

k=0

(αβ)k log |(Φ2Φ1)kΦ2(x) − y|

for x ∈ B1 \ {(1 + ε/2, 0)};

2

k1 + 1

∞
∑

k=0

(αβ)k
(

log |(Φ2Φ1)k(x) − y| − β log |(Φ2Φ1)kΦ2(x) − y|
)

for x ∈ B0;

4

(k1 + 1)(k2 + 1)

∞
∑

k=0

(αβ)k log |(Φ2Φ1)k(x) − y|

for x ∈ B2;

(3) When y ∈ B2, G(x, y) equals

4

(k1 + 1)(k2 + 1)

∞
∑

k=0

(αβ)k log |(Φ1Φ2)k(x) − y|

for x ∈ B1;

2

k2 + 1

∞
∑

k=0

(αβ)k
(

log |(Φ1Φ2)k(x) − y| − α log |(Φ1Φ2)kΦ1(x) − y|
)

for x ∈ B0;

1

k2
(log |x − y| + β log |Φ2(x) − y|) − 4α

(k2 + 1)2

∞
∑

k=0

(αβ)k log |(Φ1Φ2)kΦ1(x) − y|

for x ∈ B2 \ {(−1 − ε/2, 0)}.

Define

G(x, y) =

⎧

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

¬

G(x, y) for y ∈ B0,

G(x, y) +
α

1 − α
G(x, (1 + ε/2, 0)) for y ∈ B1,

G(x, y) +
β

1 − β
G(x, (−1 − ε/2, 0)) for y ∈ B2.

(2.1)
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By [17, Proposition 2.3], G is a Green function of Lε;1,1 in the sense that

a(x)∆xG(x, y) = δ(x − y) for x /∈ ∂B1 ∪ ∂B2,

and G(·, y), aDνG(·, y) are continuous across ∂B1 and ∂B2. Let η ∈ C∞
0 (B3/4) be a cutoff 

function such that η = 1 in B1/2. Let v = uη, where u is a solution of (1.1). Then v

satisfies

Di(a(x)Div) = Dif̃i + f̃3 in R
2,

where

f̃i = fiη + auDiη, f̃3 = −fiDiη + aDiuDiη. (2.2)

We define

ũ(x) = −
∫

B1

Dyi
G(x, y)f̃i(y) dy −

∫

B2

Dyi
G(x, y)f̃i(y) dy

−
∫

B0

Dyi
G(x, y)f̃i(y) dy +

∫

B1

G(x, y)f̃3(y) dy

:= − w1(x) − w2(x) − w0(x) + w3(x). (2.3)

We know from [17, pp. 1447] that u = ũ + C0 for some constant C0. We define for 

j = 0, 1, 2,

hj(x) =

∫

Bj

Dyi
log |x − y|f̃i(y) dy (2.4)

and

gj(x) =

∫

Bj

log |x − y|f̃3(y) dy. (2.5)

Since supp(Dη) ⊂ B3/4 \ B1/2, by [17, Lemma 3.2] and [20, Lemma 2.1], we have for 

m ∈ N,

‖u‖C2m,µ(Bj∩supp(Dη)) ≤ CCm, ‖f̃i‖C2m−1,µ(Bj) ≤ CCmkj for i = 1, 2, 3, j = 0, 1, 2,

(2.6)

and

‖hj‖C2m,µ(B3∩Bi) + ‖gj‖C2m,µ(B3∩Bi) ≤ CCmkj for i, j = 0, 1, 2. (2.7)
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From now on, we identify a point x = (x1, x2) ∈ R
2 with a complex number z =

x1 + ix2 ∈ C. We will derive some derivative estimates of the maps (Φ2Φ1)k(z) with 

respect to k and z ∈ B2. Estimates of (Φ1Φ2)k(z) with respect to k and z for z ∈ B1 will 

follow similarly.

We denote a = 1 + ε/2 for convenience, after a change of variable

2az − (2a2 − 1) → z,

we have

(Φ2Φ1)(z) = −1/z − 2(2a2 − 1),

and the two fixed points of Φ2Φ1 are given by

λ1 : = −(2a2 − 1) + 2a
√

a2 − 1 ∼ −1 + 2
√

ε,

λ2 : = −(2a2 − 1) − 2a
√

a2 − 1 ∼ −1 − 2
√

ε.

We denote ψ = Φ2Φ1 for simplicity. For z ∈ B2, we denote r := |z − λ2|, and

Ik := (z − λ−1
2 ) − |λ2|−k(z − λ2) = (z − λ−1

2 )(1 − |λ2|−k) + (λ2 − λ−1
2 )|λ2|−k.

It is easy to see that |z − λ−1
2 | ∼ r +

√
ε, Re (z − λ−1

2 ) < 0, and λ2 − λ−1
2 ∼ −√

ε. Hence

|Ik| ∼ (r +
√

ε)(1 − λ−k
2 ) +

√
ε.

Following the iteration argument from Section 3 of [17], we have, for any α ∈ N,

ψk(z) = λ2 + (λ2
2 − 1)λ−2k−1

2 (z − λ2)I−1
2k , (2.8)

Dα(ψk(z)) =
(λ2 − λ−1

2 )2

λ2k
2

(−1)α−1α!(1 − λ−2k
2 )α−1I

−(α+1)
2k , (2.9)

and in particular, since |λ2 − λ−1
2 | � √

ε and |I2| � √
ε,

|Dα(ψ(z))| ≤ C, (2.10)

where C is a positive constant depending only on α. By (2.8), for any β ≥ 1,

Dβ
k (ψk)(z) = Dβ

k

[

(λ2
2 − 1)λ−2k−1

2 (z − λ2)I−1
2k

]

=
∑

β1+β2=β

Cβ1,β2
(λ2

2 − 1)(z − λ2)[Dβ1

k λ−2k−1
2 ][Dβ2

k I−1
2k ].

Since
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Dkλ−2k
2 = −2 log |λ2|λ−2k

2 ∼ −
√

ελ−2k
2

and

Dβ2

k I−1
2k =

β2
∑

j=0

Cj(log |λ2|)β2λ−2jk
2 (z − λ2)jI−j−1

2k ,

where Cj is some constant independent of k and ε, we obtain

|Dβ
k (ψk)(z)| � ε(1+β)/2

λ2k
2

β
∑

j=0

rj+1

|I2k|j+1
. (2.11)

For any β ≥ 0 and α ∈ N, by (2.9), we have

Dβ
k Dα(ψk(z)) =

∑

β1+β2+β3=β

Cβ1,β2,β3
(λ2 − λ−1

2 )2(−1)α−1α![Dβ1

k λ−2k
2 ]×

× [Dβ2

k (1 − λ−2k
2 )α−1][Dβ3

k I
−(α+1)
2k ].

Observe that

∣

∣

∣
Dβ2

k (1 − λ−2k
2 )α−1

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

min(β2,α−1)
∑

j=0

Cj(1 − λ−2k
2 )α−j−1λ−2jk

2 (log |λ2|)β2

∣

∣

∣

∣

∣

∣

� εβ2/2

min(β2,α−1)
∑

j=0

|1 − λ−2k
2 |α−j−1,

and

|Dβ3

k I
−(α+1)
2k | =

∣

∣

∣

∣

∣

∣

β3
∑

j=0

Cj(log |λ2|)β3λ−2jk
2 (z − λ2)jI

−(α+j+1)
2k

∣

∣

∣

∣

∣

∣

� εβ3/2

β3
∑

j=0

rj

|I2k|α+j+1
,

where Cj is some constant and can be different from line to line. Thus we have

|Dβ
k Dα(ψk(z))| � ε1+β/2

λ2k
2

∑

β2+β3≤β
β2≤α−1

|1 − λ−2k
2 |α−β2−1 rβ3

|I2k|α+β3+1
. (2.12)

Note that β2, β3 in (2.12) might be different from the ones above.
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3. First order derivative

In this section, we prove Theorem 1.1 when m = 1. Without loss of generality, we 

may assume that C1 = 1.

Case 1: x ∈ B0 ∩ B1/2. In this case, ψk(x) ∈ B2 for k ∈ N. By (2.1) and (2.3), we have

Dw1(x) =
2

k1 + 1

∞
∑

k=0

(−1)kγk
(

D[h1(ψk(x))] − βD[h1(ψkΦ2(x))]
)

.

We denote

Θk := γkD[h1(ψk(x))] = γkDh1[ψk(x)]D(ψk−1)[ψ(x)]Dψ(x).

Then

∞
∑

k=0

(−1)kΘk =
1

2

∞
∑

k=1

(−1)k(Θk − Θk+1) + Θ0 − 1

2
Θ1.

By (2.6) and (2.7), it is clear that |Θ0 − 1
2Θ1| ≤ Ck1, where C is a positive constant 

independent of ε and γ. Therefore, the goal is to estimate |Θk − Θk+1|. By the mean 

value theorem,

Θk − Θk+1 = DkΘk

∣

∣

∣

k=k̄

for some k̄ ∈ (k, k + 1). We claim that

∞
∑

k=1

|Θk − Θk+1| �
∞
∑

k=1

|DkΘk| � k1. (3.1)

By the chain rule and the product rule, we have

DkΘk =(log γ)γkDh1[ψk(x)]D(ψk−1)[ψ(x)]Dψ(x)

+ γkD2h1[ψk(x)]Dk(ψk−1)[ψ(x)]D(ψk−1)[ψ(x)]Dψ(x)

+ γkDh1[ψk(x)]DkD(ψk−1)(x)Dψ(x)

= : J1
k + J2

k + J3
k .

Recall that |λ2| > 1 and | log γ| ∼ 1 − γ, by (2.7), (2.10), (2.11), and (2.12), we have

|J1
k | �k1| log γ|γk ε

λ2k
2 |I2k|2 ,

|J2
k | �k1γk ε

λ2k
2

(

r

|I2k| +
r2

|I2k|2
)

ε

λ2k
2

1

|I2k|2 � k1
ε2

λ2k
2

(

r

|I2k|3 +
r2

|I2k|4
)

,
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|J3
k | �k1γk ε3/2

λ2k
2

(

1

|I2k|2 +
r

|I2k|3
)

.

When k < 1
r+

√
ε
, we have

|I2k| �
√

ε.

Therefore,

∣

∣

∣

∑

k< 1
r+

√
ε

J1
k

∣

∣

∣
� k1(1 − γ)

∑

k< 1
r+

√
ε

γk ε

λ2k
2 |I2k|2

� k1(1 − γ)
∑

k< 1
r+

√
ε

γk � k1,

∣

∣

∣

∑

k< 1
r+

√
ε

J2
k

∣

∣

∣
� k1

∑

k< 1
r+

√
ε

ε2

λ2k
2

(

r

|I2k|3 +
r2

|I2k|4
)

� k1

∑

k< 1
r+

√
ε

ε2

(

r

ε3/2
+

r2

ε2

)

� k1
ε2

r +
√

ε

(

r

ε3/2
+

r2

ε2

)

� k1(
√

ε + r),

and

∣

∣

∣

∑

k< 1
r+

√
ε

J3
k

∣

∣

∣
� k1

∑

k< 1
r+

√
ε

γk ε3/2

λ2k
2

(

1

|I2k|2 +
r

|I2k|3
)

� k1

∑

k< 1
r+

√
ε

ε3/2

(

1

ε
+

r

ε3/2

)

� k1
ε3/2

r +
√

ε

(

1

ε
+

r

ε3/2

)

� k1.

When 1
r+

√
ε

≤ k < 1√
ε
, we have

|I2k| � (r +
√

ε)k
√

ε.

Therefore,

∣

∣

∣

∑

1
r+

√
ε

≤k< 1√
ε

J1
k

∣

∣

∣
� k1

∑

1
r+

√
ε

≤k< 1√
ε

| log γ|γk ε

λ2k
2 |I2k|2

� k1

∑

1
r+

√
ε

≤k< 1√
ε

| log γ|γk ε

λ2k
2 (r +

√
ε)2k2ε
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� k1γ
1

r+
√

ε | log γ| 1

(r +
√

ε)2

∑

1
r+

√
ε

≤k< 1√
ε

1

k2

� k1e
log γ

r+
√

ε
| log γ|
r +

√
ε
� k1,

where we used the fact that |e−xx| ≤ C for any x > 0,

∣

∣

∣

∑

1
r+

√
ε

≤k< 1√
ε

J2
k

∣

∣

∣
� k1

∑

1
r+

√
ε

≤k< 1√
ε

γk ε2

λ2k
2

(

r

|I2k|3 +
r2

|I2k|4
)

� k1

∑

1
r+

√
ε

≤k< 1√
ε

ε2

(

r

(r +
√

ε)3k3ε3/2
+

r2

(r +
√

ε)4k4ε2

)

� k1

∑

1
r+

√
ε

≤k< 1√
ε

(

1

(r +
√

ε)k3
+

1

(r +
√

ε)2k4

)

� k1(r +
√

ε),

and

∣

∣

∣

∑

1
r+

√
ε

≤k< 1√
ε

J3
k

∣

∣

∣
� k1

∑

1
r+

√
ε

≤k< 1√
ε

γk ε3/2

λ2k
2

(

1

|I2k|2 +
r

|I2k|3
)

� k1

∑

1
r+

√
ε

≤k< 1√
ε

ε3/2

(

1

(r +
√

ε)2k2ε
+

r

(r +
√

ε)3k3ε3/2

)

� k1

∑

1
r+

√
ε

≤k< 1√
ε

(

1

(r +
√

ε)k2
+

1

(r +
√

ε)2k3

)

� k1.

Finally, when k ≥ 1√
ε
, we have

|I2k| � r +
√

ε.

Therefore,

∣

∣

∣

∑

k≥ 1√
ε

J1
k

∣

∣

∣
� k1

∑

k≥ 1√
ε

| log γ|γk ε

λ2k
2 |I2k|2

� k1(1 − γ)
∑

k≥ 1√
ε

γk � k1γ
1√
ε ,

∣

∣

∣

∑

k≥ 1√
ε

J2
k

∣

∣

∣
� k1

∑

k≥ 1√
ε

γk ε2

λ2k
2

(

r

|I2k|3 +
r2

|I2k|4
)
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� k1

∑

k≥ 1√
ε

γk

λ2k
2

ε2

(

r

(r +
√

ε)3
+

r2

(r +
√

ε)4

)

� k1
ε(γ/λ2

2)
1√

ε

1 − γ/λ2
2

� k1

√
ε(γ/λ2

2)
1√

ε ,

where we used 1 − γ/λ2
2 �

√
ε, and

∣

∣

∣

∑

k≥ 1√
ε

J3
k

∣

∣

∣
� k1

∑

k≥ 1√
ε

γk ε3/2

λ2k
2

(

1

|I2k|2 +
r

|I2k|3
)

� k1

∑

k≥ 1√
ε

γk

λ2k
2

ε3/2

(

1

(r +
√

ε)2
+

r

(r +
√

ε)3

)

� k1

√
ε(γ/λ2

2)
1√
ε

1 − γ/λ2
2

� k1(γ/λ2
2)

1√
ε .

Therefore, (3.1) follows from the estimates above, and hence

∣

∣

∣

∣

∣

∞
∑

k=0

(−1)kΘk

∣

∣

∣

∣

∣

≤ Ck1,

where C is a positive constant independent of ε and γ.

By the same argument, we can estimate

∣

∣

∣

∣

∣

∞
∑

k=0

(−1)kγkD[h1(ψkΦ2(x))]

∣

∣

∣

∣

∣

≤ Ck1.

Therefore,

|Dw1(x)| ≤ Ck1

k1 + 1
for x ∈ B0 ∩ B1/2.

By (2.1) and (2.3) again, we have, for x ∈ B0 ∩ B1/2,

Dw2(x) =
2

k2 + 1

∞
∑

k=0

(−1)kγk
(

D[h2((Φ1Φ2)k(x))] − αD[h2((Φ1Φ2)kΦ1(x))]
)

,

Dw0(x) =Dh0(x) +
∞
∑

k=0

[

(−1)kγk
(

D[h0((Φ1Φ2)k(x))] + D[h0((Φ2Φ1)k(x))]
)

− (−1)k−1γk−1
(

βD[h0((Φ2Φ1)k−1Φ2(x))] + αD[h0((Φ1Φ2)k−1Φ1(x))]
)]

.

Therefore, in the same way we can estimate
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|Dw2(x)| ≤ Ck2

k2 + 1
and |Dw0(x)| ≤ C for x ∈ B0 ∩ B1/2,

where C is a positive constant independent of ε, k1, and k2. To estimate w3, since 

supp(f̃3) ⊂ B1, we can write

w3(x) =

∫

B1

G(x, y)f̃3(y) dy +

∫

B2

G(x, y)f̃3(y) dy +

∫

B0

G(x, y)f̃3(y) dy

=
2

k1 + 1

∞
∑

k=0

(−1)kγk
(

g1((Φ2Φ1)k(x)) − βg1((Φ2Φ1)kΦ2(x))
)

+ α
∞
∑

k=0

(−1)kγk
(

log |(Φ2Φ1)k(x) − (a, 0)|

− β log |(Φ2Φ1)kΦ2(x) − (a, 0)|
)

∫

B1

f̃3(y) dy

+
2

k2 + 1

∞
∑

k=0

(−1)kγk
(

g2((Φ1Φ2)k(x)) − αg2((Φ1Φ2)kΦ1(x))
)

+ β

∞
∑

k=0

(−1)kγk
(

log |(Φ1Φ2)k(x) + (a, 0)|

− α log |(Φ1Φ2)kΦ1(x) + (a, 0)|
)

∫

B2

f̃3(y) dy

+ g0(x) +
∞
∑

k=0

[

(−1)kγk
(

g0((Φ1Φ2)k(x)) + g0((Φ2Φ1)k(x))
)

− (−1)k−1γk−1
(

βg0((Φ2Φ1)k−1Φ2(x)) + αg0((Φ1Φ2)k−1Φ1(x))
)]

.

Note that for any x ∈ B0 ∩ B1/2,

|(Φ2Φ1)k(x) − (a, 0)| ≥ 1, |(Φ2Φ1)kΦ2(x) − (a, 0)| ≥ 1,

|(Φ1Φ2)k(x) + (a, 0)| ≥ 1, |(Φ1Φ2)kΦ1(x) + (a, 0)| ≥ 1.

By (2.2) and (1.1),

∫

B1

f̃3 =

∫

B1

−fiDiη + a(x)DiuDiη = 0.

Therefore, by (2.6),

∣

∣

∣

∣

∣

∣

∫

B2

f̃3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

B1∪B0

−fiDiη + a(x)DiuDiη

∣

∣

∣

∣

∣

∣

≤ CCm,
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where C is some positive constant independent of ε, k1, and k2. Then we can estimate 

Dw3 similarly as above to obtain

|Dw3(x)| ≤ C for x ∈ B0 ∩ B1/2.

Therefore,

|Du(x)| ≤ C for x ∈ B0 ∩ B1/2,

where C is a positive constant independent of ε, k1, and k2.

Case 2: x ∈ B1 ∩ B1/2. By (2.1) and (2.3), we have

w1(x) =
1

k1
h1(x) +

α

k1
h1(Φ1(x)) − 4β

(k1 + 1)2

∞
∑

k=0

(−1)kγkh1((Φ2Φ1)kΦ2(x)),

w2(x) =
4

(k1 + 1)(k2 + 1)

∞
∑

k=0

(−1)kγkh2((Φ1Φ2)k(x)),

w0(x) =
2

k1 + 1

∞
∑

k=0

(−1)kγk
(

h0((Φ1Φ2)k(x)) − βh0((Φ2Φ1)kΦ2(x))
)

,

and

w3(x) =

∫

B1

G(x, y)f̃3(y) dy +

∫

B2

G(x, y)f̃3(y) dy +

∫

B0

G(x, y)f̃3(y) dy

=
1

k1
g1(x) +

α

k1
g1(Φ1(x)) − 4β

(k1 + 1)2

∞
∑

k=0

(−1)kγkg1((Φ2Φ1)kΦ2(x))

+
α

k1
log |x − (a, 0)|

∫

B1

f̃3(y) dy

− 2αβ

k1 + 1

∞
∑

k=0

(−1)kγk log |(Φ2Φ1)kΦ2(x) − (a, 0)|
∫

B1

f̃3(y) dy

+
4

(k1 + 1)(k2 + 1)

∞
∑

k=0

(−1)kγkg2((Φ1Φ2)k(x))

+
2β

k1 + 1

∞
∑

k=0

(−1)kγk log |(Φ1Φ2)k(x) + (a, 0)|
∫

B2

f̃3(y) dy

+
2

k1 + 1

∞
∑

k=0

(−1)kγk
(

g0((Φ1Φ2)k(x)) − βg0((Φ2Φ1)kΦ2(x))
)

,

where we used log |x − (a, 0)| = − log |Φ1(x) − (a, 0)| for x ∈ B1 ∩ B1/2. Note that
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|x − (a, 0)| ≥ 1/2, |(Φ2Φ1)kΦ2(x) − (a, 0)| ≥ 1, |(Φ1Φ2)k(x) + (a, 0)| ≥ 1.

We can estimate Dwi, i = 0, 1, 2, 3, as above to obtain

|Dw1(x)| ≤ C, |Dw2(x)| ≤ Ck2

(k1 + 1)(k2 + 1)
,

|Dw0(x)| ≤ C

k1 + 1
, |Dw3(x)| ≤ C.

Therefore,

|Du(x)| ≤ C for x ∈ B1 ∩ B1/2,

where C is a positive constant independent of ε, k1, and k2.

Case 3: x ∈ B2 ∩ B1/2. By (2.1) and (2.3) again, we have

w1(x) =
4

(k1 + 1)(k2 + 1)

∞
∑

k=0

(−1)kγkh1((Φ2Φ1)k(x)),

w2(x) =
1

k2
h2(x) +

β

k2
h2(Φ2(x)) − 4α

(k2 + 1)2

∞
∑

k=0

(−1)kγkh2((Φ1Φ2)kΦ1(x)),

w0(x) =
2

k2 + 1

∞
∑

k=0

(−1)kγk
(

h0((Φ2Φ1)k(x)) − αh0((Φ1Φ2)kΦ1(x))
)

,

and

w3(x) =

∫

B1

G(x, y)f̃3(y) dy +

∫

B2

G(x, y)f̃3(y) dy +

∫

B0

G(x, y)f̃3(y) dy

=
4

(k1 + 1)(k2 + 1)

∞
∑

k=0

(−1)kγkg1((Φ2Φ1)k(x))

+
2α

k2 + 1

∞
∑

k=0

(−1)kγk log |(Φ2Φ1)k(x) − (a, 0)|
∫

B1

f̃3(y) dy

+
1

k2
g2(x) +

β

k2
g2(Φ2(x)) − 4α

(k2 + 1)2

∞
∑

k=0

(−1)kγkg2((Φ1Φ2)kΦ1(x))

+
β

k2
log |x + (a, 0)|

∫

B2

f̃3(y) dy

− 2αβ

k2 + 1

∞
∑

k=0

(−1)kγk log |(Φ1Φ2)kΦ1(x) + (a, 0)|
∫

B2

f̃3(y) dy
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+
2

k2 + 1

∞
∑

k=0

(−1)kγk
(

g0((Φ2Φ1)k(x)) − αg0((Φ1Φ2)kΦ1(x))
)

,

where we used log |x + (a, 0)| = − log |Φ2(x) + (a, 0)| for x ∈ B2 ∩ B1/2. Note that

|x + (a, 0)| ≥ 1/2, |(Φ1Φ2)kΦ1(x) + (a, 0)| ≥ 1, |(Φ2Φ1)k(x) − (a, 0)| ≥ 1.

We can estimate Dwi, i = 0, 1, 2, 3, as above to obtain

|Dw1(x)| ≤ Ck1

(k1 + 1)(k2 + 1)
, Dw2(x)| ≤ C,

|Dw0(x)| ≤ C

k2 + 1
, |Dw3(x)| ≤ C.

Therefore,

|Du(x)| ≤ C for x ∈ B2 ∩ B1/2,

where C is a positive constant independent of ε, k1 and k2. Hence (1.2) is proved for 

m = 1.

4. Higher order derivatives

In this section, we prove Theorem 1.1 for m ≥ 2. The idea is essentially the same as 

the case when m = 1. Without loss of generality, we assume that Cm = 1.

For x ∈ B0 ∩ B1/2, by (2.1) and (2.3), we have

Dmw1(x) =
2

k1 + 1

∞
∑

k=0

(−1)kγk
(

Dm[h1(ψk(x))] − βDm[h1(ψkΦ2(x))]
)

.

We denote

Θm,k := γkDm[h1(ψk(x))].

Since 
∑m

i=0

(

m
i

)

= 2m, we have

∞
∑

k=0

(−1)kΘm,k =
1

2m

∞
∑

k=1

(−1)k

[

m
∑

i=0

(−1)i

(

m

i

)

Θm,k+i

]

+ Θm,0 +
1

2m

m
∑

i=1

⎡

£(−1)iΘm,i

m
∑

j=i

(

m

j

)

¤

⎦ . (4.1)

The second line of (4.1) is clearly bounded independent of ε and γ. The main goal is to 

estimate the first term on the right-hand side of (4.1). By the mean value theorem,



H. Dong, Z. Yang / Advances in Mathematics 428 (2023) 109160 19

m
∑

i=0

(−1)i

(

m

i

)

Θm,k+i = Dm
k Θm,k

∣

∣

∣

k=k̄

for some k̄ ∈ (k, k + m). We claim that

∣

∣

∣

∣

∣

∞
∑

k=1

m
∑

i=0

(−1)i

(

m

i

)

Θm,k+i

∣

∣

∣

∣

∣

�

∞
∑

k=1

|Dm
k Θm,k| � k1. (4.2)

By the chain rule and the product rule,

Dm[h1(ψk(x))] =

m
∑

n=1

⎛

⎝Dnh1(ψk(x))
∑

∑n
j=1 αn,j=m

n
∏

j=1

Dαn,j (ψk)(x)

⎞

⎠ ,

where αn,j ≥ 1. For each n and {αn,j}n
j=1 satisfying 

∑n
j=1 αn,j = m,

Dαn,j (ψk)(x) =

αn,j
∑

α̃n,j=1

⎛

⎜

⎝
Dα̃n,j ψk−1[ψ(x)]

∑

∑α̃n,j
p=1 αn,j,p=αn,j

α̃n,j
∏

p=1

Dαn,j,pψ(x)

⎞

⎟

⎠
,

where αn,j,p ≥ 1. Then by (2.10),

∣

∣

∣
Dm

k γkDm[h1(ψk(x))]
∣

∣

∣

�

m
∑

τ+β0=0
τ,β0≥0

m
∑

n=1

(

γk| log γ|τ
∣

∣Dβ0

k [Dnh1(ψk(x))]
∣

∣×

×
∑

∑n
j=1 βj=m−τ−β0

n
∏

j=1

αn,j
∑

α̃n,j=1

∣

∣D
βj

k Dα̃n,j (ψk−1)[ψ(x)]
∣

∣

)

. (4.3)

When β0 ≥ 1, by the chain rule and the product rule,

Dβ0

k [Dnh1(ψk(x))] =

β0
∑

s=1

⎛

⎝Dn+sh1(ψk(x))
∑

∑s
i=1 γs,i=β0

s
∏

i=1

D
γs,i

k ψk−1[ψ(x)]

⎞

⎠ ,

where γs,i ≥ 1. For each s and {γs,i}s
i=1 satisfying γs,i ≥ 1 and 

∑s
i=1 γs,i = β0, by (2.11)

∣

∣

∣

∣

∣

s
∏

i=1

D
γs,i

k ψk−1[ψ(x)]

∣

∣

∣

∣

∣

�

s
∏

i=1

⎛

⎝

ε(1+γs,i)/2

λ2k
2

γs,i
∑

j=0

rj+1

|I2k|j+1

⎞

⎠

�
ε(s+β0)/2

λ2k
2

β0
∑

j=0

rj+s

|I2k|j+s
. (4.4)



20 H. Dong, Z. Yang / Advances in Mathematics 428 (2023) 109160

To prove the claim, we consider the following two cases:

Case 1: β0 ≥ 1. For each n, by (4.4), (2.7), and (2.12), the right-hand side of (4.3) can 

be estimated by (up to a positive constant independent of k)

k1γk| log γ|τ
β0
∑

s=1

⎛

⎝

ε(s+β0)/2

λ2k
2

β0
∑

j=0

rj+s

|I2k|j+s

⎞

⎠

εn+(m−τ−β0)/2

λ2k
2

×

×
∑

0≤β̃2+β̃3≤m−τ−β0

0≤β̃2≤m̃−n

|1 − λ−2k
2 |m̃−n−β̃2

rβ̃3

|I2k|m̃+n+β̃3

� k1

β0
∑

s=1

γk| log γ|τ εn+(m−τ+s)/2

λ2k
2

×

×
∑

0≤β̃2+β̃3≤m−τ−β0

0≤β̃2≤m̃−n
0≤j≤β0

|1 − λ−2k
2 |m̃−n−β̃2

rβ̃3+j+s

|I2k|m̃+n+β̃3+j+s
,

where n ≤ m̃ ≤ m. For every s, τ , j, β̃2, and β̃3 that satisfy 1 ≤ s ≤ β0, 0 ≤ j ≤ β0, 

0 ≤ β̃2 ≤ m̃ − n, τ ≥ 0, and 0 ≤ β̃2 + β̃3 ≤ m − τ − β0, we consider the following three 

cases:

When k < 1
r+

√
ε
, we have

|1 − λ−2k
2 | � k

√
ε and |I2k| �

√
ε.

Since

∑

k< 1
r+

√
ε

(

γ

λ2
2

)k

km̃−n−β̃2

� min

{

1

(1 − γ/λ2
2)m̃−n−β̃2+1

,
1

(r +
√

ε)m̃−n−β̃2+1

}

�
1

(1 − γ + r +
√

ε)m̃−n−β̃2+1
,

we have

∑

k< 1
r+

√
ε

γk| log γ|τ εn+(m−τ+s)/2

λ2k
2

|1 − λ−2k
2 |m̃−n−β̃2

rβ̃3+j+s

|I2k|m̃+n+β̃3+j+s

�
∑

k< 1
r+

√
ε

(

γ

λ2
2

)k

km̃−n−β̃2 | log γ|τ ε(m+m̃+n−τ−β̃2+s)/2 rβ̃3+j+s

ε(m̃+n+β̃3+j+s)/2
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�
1

(1 − γ + r +
√

ε)m̃−n−β̃2+1
(1 − γ)τ ε(m−τ−β̃2−β̃3−j)/2rβ̃3+j+s

�
1

(1 − γ + r +
√

ε)m̃−n−β̃2+1
(1 − γ + r +

√
ε)m−β̃2+s � 1,

as m̃ ≤ m and n − 1 + s ≥ 1 > 0. When 1
r+

√
ε

≤ k < 1√
ε
, we have

|1 − λ−2k
2 | � k

√
ε and |I2k| � (r +

√
ε)k

√
ε.

Therefore,

∑

1
r+

√
ε

≤k< 1√
ε

γk| log γ|τ εn+(m−τ+s)/2

λ2k
2

|1 − λ−2k
2 |m̃−n−β̃2

rβ̃3+j+s

|I2k|m̃+n+β̃3+j+s

�
∑

1
r+

√
ε

≤k< 1√
ε

γ
1

r+
√

ε km̃−n−β̃2 | log γ|τ ε(m+m̃+n−τ−β̃2+s)/2 rβ̃3+j+s

[(r +
√

ε)k
√

ε]m̃+n+β̃3+j+s

� γ
1

r+
√

ε | log γ|τ ε(m−τ−β̃2−β̃3−j)/2 1

(r +
√

ε)m̃+n

∑

1
r+

√
ε

≤k< 1√
ε

1

k2n+β̃2+β̃3+s+j

� e
log γ

r+
√

ε | log γ|τ ε(m−τ−β̃2−β̃3−j)/2 1

(r +
√

ε)m̃+n
(r +

√
ε)2n+β̃2+β̃3+s+j−1

� e
log γ

r+
√

ε

∣

∣

∣

∣

log γ

r +
√

ε

∣

∣

∣

∣

τ

(r +
√

ε)m−m̃+n+s−1 � 1,

where we used the fact that |e−xxτ | ≤ Cτ for any x > 0, m −τ − β̃2 − β̃3 −j ≥ 0, m̃ ≤ m, 

and n + s − 1 ≥ 1 > 0.

When k ≥ 1√
ε
, we have

|1 − λ−2k
2 | � 1 and |I2k| � r +

√
ε.

Therefore,

∑

k≥ 1√
ε

γk| log γ|τ εn+(m−τ+s)/2

λ2k
2

|1 − λ−2k
2 |m̃−n−β̃2

rβ̃3+j+s

|I2k|m̃+n+β̃3+j+s

�
∑

k≥ 1√
ε

(

γ

λ2
2

)k

| log γ|τ εn+(m−τ+s)/2 1

(r +
√

ε)m+n

�
γ

1√
ε

1 − γ/λ2
2

∣

∣

∣

∣

log γ√
ε

∣

∣

∣

∣

τ

ε(n+s)/2

� e
log γ√

ε

∣

∣

∣

∣

log γ√
ε

∣

∣

∣

∣

τ

ε(n+s−1)/2 � 1,
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where we used the fact that |e−xxτ | ≤ Cτ for any x > 0, m̃−n −β̃2 ≥ 0, n +s −1 ≥ 1 > 0, 

and 1 − γ/λ2
2 �

√
ε. Therefore, (4.2) follows from the estimates above.

Case 2: β0 = 0. For each n, by (2.12), the right-hand side of (4.3) can be estimated 

by (up to a positive constant independent of k)

k1γk| log γ|τ εn+(m−τ)/2

λ2k
2

∑

0≤β̃2+β̃3≤m−τ
0≤β̃2≤m̃−n

|1 − λ−2k
2 |m̃−n−β̃2

rβ̃3

|I2k|m̃+n+β̃3

,

where n ≤ m̃ ≤ m. Then (4.2) follows by repeating the exact same argument as in Case 

1 with s = 0 and j = 0.

Using the same argument but replacing ψk−1(ψ(x)) with ψkΦ2(x), we have

∣

∣

∣

∣

∣

∞
∑

k=0

(−1)kγkDm[h1(ψkΦ2(x))]

∣

∣

∣

∣

∣

≤ Ck1,

where C is a positive constant independent of ε and γ. Therefore,

|Dmw1(x)| ≤ Ck1

k1 + 1
for x ∈ B0 ∩ B1/2.

As in Section 3, we can estimate |Dmw1(x)|, |Dmw2(x)|, |Dmw3(x)|, and |Dmw0(x)| in 

all three regions. Therefore, (1.2) is proved.

5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The proof is similar to that of Theorem 1.1. 

Without loss of generality, we assume Cm = 1. Take a domain D2 such that D1 � D2 � D, 

and take a cutoff function η ∈ C∞
0 (D2) such that η = 1 on D1. Then v := uη satisfies

Di(a(x)Div) = Dif̃i + f̃3 in R
2,

where

f̃i = fiη + uDiη, f̃3 = −fiDiη + DiuDiη.

For i = 0, 1, 2, 3, j = 1, 2, 3, we define ũ, wi, hj , and gj as in (2.3), (2.4), and (2.5). 

Instead of (2.6) and (2.7), we have

‖f̃i‖C2m−1,µ(Bj) ≤ C min{1, kj} for i = 1, 2, 3, j = 0, 1, 2,

and

‖hj‖C2m,µ(B3∩Bi) + ‖gj‖C2m,µ(B3∩Bi) ≤ C min{1, kj} for i, j = 0, 1, 2. (5.1)
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As in the proof of Theorem 1.1, for x ∈ B0 ∩ D1, we have, by (5.1),

|Dmw1(x)| ≤ Ck1

k1 + 1
, |Dmw2(x)| ≤ C

k2 + 1
, and |Dmw0(x)| + |Dmw3(x)| ≤ C.

For x ∈ B1, we have

|Dmw1(x)| ≤ C +
Ck1

(k1 + 1)2
,

|Dmw2(x)| ≤ C

(k1 + 1)(k2 + 1)
,

|Dmw0(x)| ≤ C

k1 + 1
.

To estimate |Dmw3(x)|, we note that

α

k1
g1(Φ1(x)) +

α

k1
log |x − (a, 0)|

∫

B1

f̃3(y) dy

=
α

k1

∫

B1

(log |Φ1(x) − y| + log |x − (a, 0)|)f̃3(y) dy,

and for fixed y ∈ B1, x = (a, 0) is a removable singular point for log |Φ1(x) −y| +log |x −
(a, 0)|. Therefore log |Φ1(x) − y| + log |x − (a, 0)| is harmonic in B1, and

∣

∣

∣

∣

∣

∣

Dm

⎛

⎝

α

k1
g1(Φ1(x)) +

α

k1
log |x − (a, 0)|

∫

B1

f̃3(y) dy

⎞

⎠

∣

∣

∣

∣

∣

∣

≤ C.

The rest of the terms can be estimated similarly as before, and hence we obtain

|Dmw3(x)| ≤ C,

which yields

|Dũ(x)| ≤ C

k1 + 1
for x ∈ B1.

Finally, for x ∈ B2, we have

|Dmw1(x)| ≤ Ck1

(k1 + 1)(k2 + 1)
,

|Dmw2(x)| ≤ C

k2
+

C

(k2 + 1)2
,
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|Dmw0(x)| ≤ C

k2 + 1
,

|Dmw3(x)| ≤ Ck1

(k1 + 1)(k2 + 1)
+

Ck1

k2 + 1
+

C

k2
+

C

(k2 + 1)2
+

C

k2 + 1
,

which yields

|Dũ(x)| ≤ C

k2 + 1
for x ∈ B2.

Theorem 1.2 is proved.

6. Proof of Theorem 1.3

When r1 = r2, Theorem 1.3 follows from Theorem 1.2 after scaling. When r1 �= r2, 

we will find a conformal map T : C → C that maps B1 and B2 to circles of the same 

radius. Without loss of generality, we may assume r2 > r1.

Let T (z) = 1
z−z0

, where z0 ∈ C and z0 = z1 +z2i. It is well known that if z0 /∈ B1 ∪ B2, 

T maps B1 ∪ B2 to two disks. After a direct computation, we know that T maps B1 to 

the disk of center z̄0−ε/2−r1

r2
1−|z0−ε/2−r1|2 , radius r1

|r2
1−|z0−ε/2−r1|2| , and maps B2 to the disk of 

center z̄0+ε/2+r2

r2
2−|z0+ε/2+r2|2 , radius r2

|r2
2−|z0+ε/2+r2|2| . We only need to find z0 = z1 + z2i such 

that

r1(r2
2 − |z0 + ε/2 + r2|2) = r2(r2

1 − |z0 − ε/2 − r1|2).

This is equivalent to

(

z1 −
(ε

2

r1 + r2

r2 − r1
+

2r1r2

r2 − r1

)

)2

+ z2
2

=
( 2r1r2

r2 − r1

)2

+
2εr1r2(r1 + r2)

(r2 − r1)2
+

ε2

4

[

(r1 + r2

r2 − r1

)2

− 1

]

.

We take

z1 =

√

( 2r1r2

r2 − r1

)2

+
2εr1r2(r1 + r2)

(r2 − r1)2
+

ε2

4

[

(r1 + r2

r2 − r1

)2

− 1

]

+
ε

2

r1 + r2

r2 − r1
+

2r1r2

r2 − r1
,

z2 = 0.

It is easy to see that z1 > ε/2 + 4r1. Therefore z0 /∈ B1 ∪ B2, and we can choose domains 

D1 and D such that B1 ∪ B2 � D1 � D, and z0 /∈ D. Hence T is smooth in D and is the 

desired conformal map.
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7. The extreme case

In this section, we prove Theorem 1.4. The proof essentially follows that of [7, Theorem 

1.1], with some modifications.

By considering u − C instead of u, we may assume the constant C = 0 in (1.3). For 

any 0 < t < s < 1, let η ∈ C∞
c (Ωs) be a cutoff function such that η = 1 in Ωt and 

|Dη| ≤ C(s − t)−1. Multiplying uη2 on both sides of (1.3) and integrating by parts, we 

have
∫

Ω1

aijDjuDiuη2 + 2aijDjuDiηuη = 0.

By Young’s inequality,

∫

Ωt

|Du|2 ≤ C

(s − t)2

∫

Ωs\Ωt

u2.

Since u = 0 on Γ−, by the Poincaré inequality in the xn direction, we have

∫

Ωs\Ωt

u2 ≤ C(ε + s2)2

∫

Ωs\Ωt

|Du|2.

Therefore,

∫

Ωt

|Du|2 ≤ C0

(

ε + s2

s − t

)2 ∫

Ωs\Ωt

|Du|2. (7.1)

Let t0 = r ∈ (
√

ε, 1/2) and tj = (1 − jr)r for j ∈ N. Taking s = tj , t = tj+1 in (7.1), we 

have
∫

Ωtj+1

|Du|2 ≤ 4C0

∫

Ωtj
\Ωtj+1

|Du|2.

Adding both sides by 4C0

∫

Ωtj+1

|Du|2 and dividing both sides by 1 + 4C0, we have

∫

Ωtj+1

|Du|2 ≤ 4C0

1 + 4C0

∫

Ωtj

|Du|2.

Let k = � 1
2r � and iterate the above inequality k times. We have

∫

Ωr/2

|Du|2 ≤
(

4C0

1 + 4C0

)k ∫

Ωr

|Du|2 ≤ Cµ
1
r

∫

Ω1

|u|2, (7.2)
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where µ ∈ (0, 1) and C are constants depending only on n, σ, ‖h1‖C2 , and ‖h2‖C2 . For 

any x̄ = (x̄′, ̄xn) ∈ Ω1/2, let R = ε + h1(x̄′) − h2(x̄′). We make the change of variables 

by setting

⎧

⎪

«

⎪

¬

y′ = x′ − x̄′,

yn = 2R

(

xn − h2(x′) + ε/2

ε + h1(x′) − h2(x′)
− 1

2

)

for x = (x′, xn) ∈ {|x′ − x̄′| < R, −ε/2 + h2(x′) < xn < ε/2 + h1(x′)}. This change of 

variables maps the domain above to QR, where

Qs := {(y′, yn) ∈ R
n
∣

∣ |y′| < s, |yn| < s}

for s > 0. Let

(bij(y)) =
(∂xy)

(

aij(x(y))
)

(∂xy)t

det(∂xy)
,

b̃ij(y) = bij(Ry), and ũ(y) = u(Rx). Then ũ satisfies

⎧

⎪

⎪

«

⎪

⎪

¬

−∂i(b̃
ij(y)∂j ũ(y)) = 0 in Q1,

b̃nj(y)∂j ũ(y) = 0 on {yn = 1},

ũ(y) = 0 on {yn = −1}.

It is straightforward to verify that

I

C
≤ b̃ ≤ CI and ‖b̃‖Cm−1,α(Q1) ≤ C,

where C is a positive constant depending only on n, σ, m, α, and Cm,α. Then by the 

Schauder estimate, we have

max
−1≤yn≤1

|Dmũ(0′, yn)| ≤ C‖Dũ‖L2(Q1),

which gives, after reversing the change of variables,

|Dmu(x̄)| ≤ CR1−m−n/2‖Du‖L2(Ω|x̄′|+R) ∀x̄ ∈ Ω1/2, (7.3)

where C is a positive constant depending only on n, σ, m, α, and Cm,α. Then by using 

(7.2) and (7.3) with r = 2 max(
√

ε, |x′| + R), we conclude the proof.
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