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TIME ANALYTICITY FOR NONLOCAL PARABOLIC EQUATIONS*

HONGJIE DONG†, CHULAN ZENG‡, AND QI S. ZHANG‡

Abstract. In this paper, we investigate pointwise time analyticity of solutions to nonlocal
parabolic equations in the settings of Rd and a complete Riemannian manifold M. On the one
hand, in Rd, we prove that any solution u= u(t, x) to ut(t, x)−Lκ

αu(t, x) = 0, where Lκ
α is a nonlocal

operator of order α, is time analytic in (0,1] if u satisfies the growth condition |u(t, x)| ≤C(1+|x|)α−ε

for any (t, x)∈ (0,1]×Rd and ε∈ (0, α). We also obtain pointwise estimates for ∂k
t
pα(t, x;y), where

pα(t, x;y) is the fractional heat kernel. Furthermore, under the same growth condition, we show that
the mild solution is the unique solution. On the other hand, in a manifold M, we also prove the
time analyticity of the mild solution under the same growth condition and the time analyticity of the
fractional heat kernel when M satisfies the Poincaré inequality and the volume doubling condition.
Moreover, we also study the time and space derivatives of the fractional heat kernel in Rd using
the method of Fourier transform and contour integrals. We find that when α ∈ (0,1], the fractional
heat kernel is time analytic at t = 0 when x 6= 0, which differs from the standard heat kernel. As
corollaries, we obtain a sharp solvability condition for the backward nonlocal parabolic equations
and time analyticity of some nonlinear nonlocal parabolic equations with power nonlinearity of order
p. These results are related to those in [9] and [22], which deal with local equations.

Key words. nonlocal parabolic equations, fractional heat equations, time analyticity, heat kernel
estimates, backward fractional heat equations
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DOI. 10.1137/22M1490740

1. Introduction. In this paper, we investigate pointwise time analyticity of
solutions to nonlocal parabolic equations in the settings of Rd and a complete Rie-
mannian manifold M satisfying the standard conditions (1.12) and (1.13). One of our
main results reads that the fractional heat kernel on R

d is time analytic at t= 0 when
x 6= 0 and α ∈ (0,1], which differs from the standard heat kernel. As an intermediate
result, we obtain the uniqueness of solutions to nonlocal parabolic equations in R

d,
which extends a result in [3] in the sense that instead of the bound Ct/(t1/α+ |x|)d+α,
we only impose the growth condition |u(t, x)| ≤C(1+|x|)α−ε for any (t, x)∈ (0,1]×R

d

and ε ∈ (0, α). In the manifold setting, we obtain lower and upper bounds for the
fractional heat kernel pα and prove that pα is time analytic for any (t, x)∈ (0,∞)×M.
These results allow us to solve the solvability problem of the backward nonlocal par-
abolic equations, which can be ill-posed.

Before presenting the results in detail, we wish to justify their value by recalling a
number of related results in the literature and describing some new applications. The
study of the analyticity property of solutions to PDEs has been a classical topic. Even
though spatial analyticity is usually true for generic solutions of the heat equation,
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1884 HONGJIE DONG, CHULAN ZENG, AND QI S. ZHANG

time analyticity is harder to prove and is false in general. For instance, it is not hard
to construct a solution of the heat equation in a space-time cylinder in the Euclidean
setting, which is not time analytic in a sequence of moments. In fact, time analyticity
is not a local property; rather, it requires certain boundary or growth conditions on
the solutions. There is a vast literature on time analyticity for the heat equation and
other parabolic-type equations under various assumptions. See, for example, [17],
[13], [11], [10], [21], [9], [24], and [22] and the citations therein. One can also consider
solutions in certain Lp spaces with p∈ (1,∞). See [18] for a large class of dissipative
equations in the periodic setting. We also mention that in [10], for any bounded
domain Ω⊂ R

d with analytic boundary, the authors proved that any solution of the
high-order heat equation

{
ut + (−∆)mu= 0 ∀(t, x)∈ (0,1]×Ω,
u=Du= · · ·=Dm−1u= 0 on (0,1]× ∂Ω, u(0, x)∈L2(Ω)

is time analytic in t∈ (0,1].
Recently, new applications of time analyticity are found in control theory and in

the study of backward equations and are essential in stochastic analysis and mathe-
matical finance. A fundamental fact in control theory for heat-type equations is that
if a state is reachable by the free equation, then it is reachable by suitable control
from any reasonable initial value. The former is equivalent to the solvability of the
free backward equation from this state. However, this backward solvability question
has been vexing the control theory community for years. As a matter of fact, in a
recent paper [15], it was written, ”However, it is a quite hard task to decide whether
a given state is the value at some time of a trajectory of the system without control
(free evolution). In practice, the only known examples of such states are the steady
states.” This problem for the heat equation was solved in [9] not long ago. More
precisely, in the paper [9] (see also [24]), it was proved that if a smooth solution of
the heat equation in (−2,0]×M is of exponential growth of order 2, then it is time
analytic in t ∈ [−1,0]. Here M is either the Euclidean space or certain noncompact
manifolds. Also, an explicit condition is found on the solvability of the backward
heat equation from a given time, which is equivalent to the time analyticity of the
solution of the heat equation at that time. Lately, time analyticity of solutions to the
biharmonic heat equation, the heat equation with potentials, and some nonlinear heat
equations has been proven in [22]. See also [6] for other results about time analyticity
of parabolic-type differential equations in the half-space. One of the goals of this
paper is to extend the result to nonlocal parabolic equations, which have attracted
intensive research (See Corollary 5.1).

Now let us present the main results formally. For clarity, we will first treat the
nonlocal parabolic equations in the setting of Rd, which reads

ut(t, x)− Lκαu(t, x) = 0, α∈ (0,2), (t, x)∈ [0,1]×R
d,(1.1)

where Lκα is a nonlocal elliptic operator defined as follows.

Definition 1.1. We define

Lκαf(x) := p.v.

∫

Rd

(f(x+ z)− f(x))
κ(x, z)

|z|d+α dz,(1.2)

where p.v. means the principal value. Here κ = κ(x, z) on R
d × R

d is a measurable

function satisfying that

0<κ0 ≤ κ(x, z)≤ κ1, κ(x, z) = κ(x,−z),(1.3)
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TIME ANALYTICITY FOR NONLOCAL PARABOLIC EQUATIONS 1885

and for a constant β ∈ (0,1),

|κ(x, z)− κ(y, z)| ≤ κ2|x− y|β ,(1.4)

where κ0, κ1, and κ2 are positive constants.

The fraction Laplacian (−∆)α/2 is a typical example of Lκα. As a special case,
we also obtain the time and space derivative estimates of the fractional heat kernel
pα(t, x) of

ut(t, x) + (−∆)
α/2

u(t, x) = 0, α∈ (0,2), (t, x)∈ [0,1]×R
d.(1.5)

Our results involve both solutions and fractional heat kernels. We say that a
function pα(t, x;y) is a fractional heat kernel of (1.1) in R

d if

∂tpα(t, x;y) = Lκαpα(t, x;y), lim
t↘0

pα(t, x;y) = δ(x, y).

In [3], it was proved that the fractional heat kernel is unique under the condition that

|pα(t, x;y)| ≤
Ct

(
t1/α + |x− y|

)d+α

for a constant C. In Lemma 2.5, we improve this uniqueness result by only requiring
the growth condition (1.7). The definition of the fractional heat kernel pα(t, x;y) on
a manifold M will be given in section 4.

The next four theorems are the main results of this paper. The first one is a time
analyticity result in the case of Rd.

Theorem 1.2. (a) Let pα(t, x;y) be the heat kernel of (1.1). Then there exists a

positive constant C such that for any t∈ (0,1] and any nonnegative integer k,

|∂kt pα(t, x;y)| ≤
Ck+1kk

tk−1

1
(
t1/α + |x− y|

)d+α
.(1.6)

(b) Assume that u= u(t, x) is a solution to (1.1) with polynomial growth of order

α− ε, i.e.,

|u(t, x)| ≤C1

(
1 + |x|α−ε

)
∀(t, x)∈ [0,1]×R

d, 0<α< 2, ε∈ (0, α)(1.7)

for a positive constant C1. Then

u(t, x) =

∫

Rd

pα(t, x;y)u(0, y)dy

is the unique smooth solution with initial data u(0, ·). Moreover, u is time analytic

for any t∈ (0,1] with the radius of convergence being independent of x.
(c) For any t∈ (1− δ,1] with a small δ > 0, we have

u(t, x) =

∞∑

j=0

aj(x)
(t− 1)j

j!
,

where a0(x) = u(1, x), aj+1(x) = Lκαaj(x),

|aj(x)|=
∣
∣
∣(Lκα)

j
a0(x)

∣
∣
∣≤C1C

j
2j
j
(
1 + |x|α−ε

)
, j = 0,1,2, . . . ,

and C2 is a positive constant.
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1886 HONGJIE DONG, CHULAN ZENG, AND QI S. ZHANG

Remark 1.3. The estimate |aj(x)| in part (c) of this theorem will be used for the
solvability of the backward nonlocal parabolic equations and the time analyticity at
t= 0 in the last section.

Remark 1.4. From the proof of this theorem, for a constant C > 0, we have

|∂kt u(t, x)| ≤
Ck+1kk

tk−1

(
1 + |x|α−ε

t
+

1

tε/α

)

∀t∈ (0,1](1.8)

under the growth condition (1.7).

Now let us focus on the heat kernel of the fractional Laplacian (−∆)
α
2 in R

d.
Recall that the fractional heat kernel pα(t, x) for ut+ (−∆)α/2u(t, x) = 0 is given by

pα(t, x) =C(d,α)

∫

Rd

e−t|ξ|
α

eiξxdξ,(1.9)

which can be deduced by the Fourier transform.

Theorem 1.5. The following statements are true for the fractional heat kernel

pα(t, x) when t≥ 0.
(a) For any α> 0 and for any positive integer k, there exist positive constants C,

C1, and C2 such that

|∂kt pα(t, x)| ≤min

{
C1C

kα
2 (kα)kα

|x|kα+d ,
C

tk+d/α
Γ

(
kα+ d

α

)}

,(1.10)

which implies that pα is of Gevrey class in time of order α when x 6= 0 and pα is

analytic in time when t > 0. Moreover, if 0<< α ≤ 1 and x 6= 0, then pα is analytic

in time for all t≥ 0. Here Γ is the gamma function.

(b) For any α> 0 and for any positive integer k and for an arbitrary multi-index β
of order k,

|∂βxpα(t, x)| ≤min

{

C1C
k+α
2 (k+ α)k+αt

|x|α+k+d ,
C

t(k+d)/α
Γ

(
k+ d

α

)}

,(1.11)

which implies that pα is analytic in space at |x| 6= 0. Especially, when t 6= 0, pα is of

Gevrey class with order 1/α in space for any x.

Part (a) of the theorem shows that for any α∈ (0,1], the fractional heat kernel is
time analytic down to t= 0, x 6= 0, which is not true for the standard heat kernel.

By the above Theorem 1.5, we have the following.

Corollary 1.6. If the unique smooth solution u= u(t, x) to the fractional heat

equation (1.5) satisfies the growth condition (1.7) for some α∈ [1,2), then it is analytic

in space for any (t, x)∈ (0,1]×R
d. Moreover, when α∈ (0,1), u is of Gevrey class of

order 1/α in space for any (t, x)∈ (0,1]×R
d.

The last two theorems of the paper are in the setting of a complete Riemannian
manifold M. We impose the following two standard conditions on M:

Condition (1): There exists a constant C0 > 0 such that for any ball B(x0, r),
x0 ∈M, r > 0, and f ∈C∞(B(x0, r)),

∫

B(x0,r)

|f − fB(x0,r)|2 dx≤C0r
2

∫

B(x0,r)

|∇f |2 dx,(1.12)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TIME ANALYTICITY FOR NONLOCAL PARABOLIC EQUATIONS 1887

where

fB(x0,r) :=
1

|B(x0, r)|

∫

B(x0,r)

f dx.

Condition (2): There exists a constant C∗ > 0 such that for any ball B(x, r),
x∈M, and r > 0,

|B(x,2r)| ≤C∗|B(x, r)|.(1.13)

The first condition is the Poincaré inequality. The second one is the doubling property
of the measure.

We aim to investigate the pointwise time analyticity of solutions to

∂tu(t, x)− Lαu(t, x) = 0, α∈ (0,2), (t, x)∈ [0,1]×M,(1.14)

where Lα is defined as follows. Let ∆ be the Laplace operator on M generating
a Markov semigroup Pt which has a density E(t, x;y), i.e., the heat kernel of the
standard heat equation on M. Consider the α-stable subordination of Pt,

Pαt :=

∫ ∞

0

Ps µ
α
t (ds), t≥ 0,

where µαt is a probability measure on [0,∞) with the Laplace transform

∫ ∞

0

e−λs µαt (ds) = e−tλ
α

, λ≥ 0.

Then Lα is the infinitesimal generator of Pαt . Note that here we restrict ourselves
to the fractional Laplacian instead of more general nonlocal operators defined via
integrals (see, for example, [1]1), and we prove the results by using a different approach
from the Rd case. The fractional Laplacian can be connected to the Laplacian so that
we can use the properties of the heat kernel. For more general nonlocal operators, we
are not able to get a similar bound for ∂tpα(t, x;y). Since we need to impose some
conditions like (1.4), it does not seem to be straightforward to extend the results to
more general nonlocal operators.

In particular, we will also study the fractional heat kernel pα(t, x;y) and its high-
order time derivatives ∂kt pα(t, x;y).

Theorem 1.7. Let M be a d-dimensional complete Riemannian manifold satis-

fying conditions (1.12) and (1.13) and u = u(t, x) be a mild solution to (1.14), i.e.,

u(t, x) =

∫

M

pα(t, x;y)u(0, y)dy.(1.15)

Assume that u is of polynomial growth of order (α− ε) at t = 0; i.e., for a constant

C > 0,

|u(0, x)| ≤C(1 + d(x,0)α−ε), 0εα, x∈M.(1.16)

Then for a constant C > 0, it holds that

|∂kt u(t, x)| ≤
Ck+1kk

tk−1

(
1 + d(x,0)α−ε

t
+

1

tε/α

)

∀(t, x)∈ (0,∞)×M,(1.17)

1We wish to thank one referee for informing us of this paper.
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1888 HONGJIE DONG, CHULAN ZENG, AND QI S. ZHANG

which implies that u is time analytic in (0,∞) × M with the radius of convergence

independent of x.

We also obtain the time analyticity of the fractional heat kernel in the manifold
setting.

Theorem 1.8. Let M be a d-dimensional complete Riemannian manifold sat-

isfying conditions (1.12) and (1.13). Then for any t ∈ (0,∞), there exist positive

constants C1 and C2 such that the fractional heat kernel pα(t, x;y) satisfies

C1t

(d(x, y)α + t)|B(x,d(x, y) + t1/α)| ≤ pα(t, x;y)≤
C2t

(d(x, y)α + t)|B(x,d(x, y) + t1/α)| .
(1.18)

Moreover, for any integer k≥ 0, there exists a constant C > 0 such that

|∂kt pα(t, x;y)| ≤
Ck+1k!

tk−1

1

(d(x, y)α + t)|B(x,d(x, y) + t1/α)| .(1.19)

Here we remark that (1.18) is more or less known, and our main contribution is
(1.19).

Remark 1.9. It is an interesting question whether the uniqueness result still holds
in the manifold case under the same growth condition. In the proof of Lemma 2.5,
we use (1.2) as an explicit formula for Lκα in R

d. However, in M, we do not have such
a formula for Lα in (1.14). Therefore, the proof in Lemma 2.5 does not work in this
case.

Now we give an outline of the rest of this paper. In section 2, we investigate
the pointwise time analyticity of a solution of (1.1) in the setting of Rd and prove
Theorem 1.2. In section 3, by using the Fourier transform and contour integrals, we
derive some estimates of the fractional heat kernel pα(t, x), which implies Theorem
1.5 and Corollary 1.6. In section 4, we turn to the setting of a manifold and obtain
similar results (Theorems 1.7 and 1.8). In the proof, we use the subordination relation
(4.2) and the estimates for the standard heat kernel. Section 5 is devoted to some
corollaries. One of them is about a necessary and sufficient condition for the solvability
of the backward nonlocal parabolic equations. Another corollary gives a necessary and
sufficient condition under which solutions to (1.1) or (1.14) are time analytic at initial
time t= 0. Also, for the nonlinear differential equation (5.7) with power nonlinearity
of order p, we prove that a solution u = u(t, x) is time analytic in t ∈ (0,1] if it is
bounded in [0,1]×M and p is a positive integer.

Let us collect some frequently used notation:

• If x is in R
d, then |x| =

√
∑d
i=1 x

2
i , and Br(x) is a ball of radius r centered

at x.
• In M, B(x, r) denotes the geodesic ball of radius r centered at x, and |B(x, r)|

denotes its volume. We define d(x, y) to be the geodesic distance of two points
x, y ∈M and 0 to be a reference point in M.

• pα(t, x;y) is the fractional heat kernel of (1.1), (1.5), or (1.14), and E(t, x;y)
is the heat kernel of the usual heat equation.

Throughout this paper, the constant C may differ from line to line.

2. Nonlocal parabolic equations in R
d. In this section, we prove Theorem

1.2 in the setting of Rd. First, in subsection 2.1, we prove that the fractional heat
kernel pα and the mild solution u= u(t, x) to (1.1), i.e., (1.15), are analytic in time.
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TIME ANALYTICITY FOR NONLOCAL PARABOLIC EQUATIONS 1889

Next, we prove that u is the unique smooth solution in subsection 2.2. Finally, we
finish the proof of Theorem 1.2 in subsection 2.3. The proof is divided into several
lemmas for easy reading.

2.1. Time analyticity of the fractional heat kernel pα and mild solu-
tions.

Lemma 2.1. Assume that κ(·, ·) satisfies (1.3) and (1.4). Then (1.6) is true.

Moreover, if the mild solution

u= u(t, x) =

∫

Rd

pα(t, x;y)u(0, y)dy

is of polynomial growth of order α− ε as in (1.7), then (1.8) holds.

Proof. From [4, (1.8), (1.14), and (1.10)], there exist constants C1 and C2 such
that for any t∈ (0,1] and x, y ∈R

d,

C1t
(
t1/α + |x− y|

)d+α
≤ pα(t, x;y)≤

C2t
(
t1/α + |x− y|

)d+α
(2.1)

and

|∂tpα(t, x;y)| ≤
C2

(
t1/α + |x− y|

)d+α
.(2.2)

Thus, the conclusions of the lemma are true for k= 1. Now we proceed by induction.
For any integer k > 1, we assume that

|∂k−1
t pα(t, x;y)| ≤

Ck(k− 1)k−1

tk−2

1
(
t1/α + |x− y|

)d+α
, t∈ (0,1].

Without loss of generality, we may assume that C2 ≤ C1/2. Using the semigroup
property and (2.2), for any t∈ (0,1] and τ ∈ (0, t), we know that

∂kt pα(t, x;y) =

∫

Rd

∂tpα(t− τ,x; z)∂k−1
τ pα(τ, z;y)dz.

Therefore, by (2.2) and the inductive assumption, it holds that

|∂kt pα(t, x;y)| ≤
Ck+1/2(k− 1)k−1

τk−2

∫

Rd

1
(
(t− τ)1/α + |x− z|

)d+α

1
(
τ1/α + |y− z|

)d+α
dz.

(2.3)

Then for any t∈ (0,1], we take τ = (k−1)t
k .

On the one hand, if t > |x− y|α, then we have

|∂kt pα(t, x;y)| ≤
Ck+1/2(k− 1)k−1

τk−2

1

τ (d+α)/α

∫

Rd

1
(
(t− τ)1/α + |x− z|

)d+α
dz

≤ Ck+3/4(k− 1)k−1

τk−2

1

τ (d+α)/α
1

t− τ

≤ Ck+7/8kk

tk−1

1

t(d+α)/α
≤ Ck+1kk

tk−1

1
(
t1/α + |x− y|

)d+α

(2.4)

provided that C is sufficiently large.
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On the other hand, if t|x− y|α, by (2.3) and

R
d ⊂

{

z : |x− z| ≥ |x− y|
2

}

∪
{

z : |y− z| ≥ |x− y|
2

}

,

we have

|∂kt pα(t, x;y)|

≤ Ck+1/2(k− 1)k−1

τk−2

∫

{z:|x−z|≥|x−y|/2}

1
(
(t−τ)1/α+|x−z|

)d+α

1
(
τ1/α + |y− z|

)d+α
dz

+
Ck+1/2(k−1)k−1

τk−2

∫

{z:|y−z|≥|x−y|/2}

1
(
(t−τ)1/α+|x−z|

)d+α

1
(
τ1/α+|y−z|

)d+α
dz

≤ Ck+1/2(k−1)k−1

τk−2

1
(
(t−τ)1/α+|x−y|/2

)d+α

∫

{z:|x−z|≥|x−y|/2}

1
(
τ1/α+|y−z|

)d+α
dz

+
Ck+1/2(k−1)k−1

τk−2

1
(
τ1/α+|x−y|/2

)d+α

∫

{z:|y−z|≥|x−y|/2}

1
(

(t−τ)1/α+|x−z|
)d+α

dz

≤ Ck+3/4(k− 1)k−1

τk−2

1
(
(t− τ)1/α + |x− y|/2

)d+α

1

τ

+
Ck+3/4(k− 1)k−1

τk−2

1
(
τ1/α + |x− y|/2

)d+α

1

t− τ
.

(2.5)

Noting τ = (k−1)t
k and t|x− y|α, by (2.5), we can see that

|∂kt pα(t, x;y)| ≤
Ck+7/8kk

tk−1

1

|x− y|d+α ≤ Ck+1kk

tk−1

1
(
t1/α + |x− y|

)d+α
.(2.6)

The combination of (2.4) and (2.6) completes the induction and gives (1.6).
Next, we prove (1.8). We claim that

u(t, x) =

∫

Rd

pα(t, x;y)u(0, y)dy,(2.7)

the proof of which is postponed to the next subsection. Then we have

∂kt u(t, x) =

∫

Rd

∂kt pα(t, x;y)u(0, y)dy.

This together with (1.6) implies that

|∂kt u(t, x)| ≤
∫

Rd

|∂kt pα(t, x;y)||u(0, y)|dy

≤
∫

Rd

Ck+1kk

tk−1

1
(
t1/α + |x− y|

)d+α
(1 + |y|α−ε)dy

≤
∫

Rd

Ck+1kk

tk−1

1
(
t1/α + |x− y|

)d+α
(1 + |x|α−ε + |x− y|α−ε)dy

≤ Ck+1kk

tk−1

(
1 + |x|α−ε

t
+

1

tε/α

)

;

i.e., u is time analytic when t∈ (0,1].
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2.2. Uniqueness of solutions. In this subsection, we prove that the mild so-
lution

u(t, x) =

∫

Rd

pα(t, x;y)u(0, y)dy

in Theorem 1.2 is unique among smooth solutions under the growth condition (1.7).
This will imply (2.7). The proof is based on Propositions 3.4 and 3.5 of [7], which we
recall here for the reader’s convenience. The idea is that once a solution is in Cγ with
a small γ ∈ (0,1), then it is in Cα with α∈ [1,2).

The first lemma is about the case when α∈ (1,2).

Lemma 2.2 (Proposition 3.4 of [7]). Let ωf (·) be a modulus of continuity of a

function f = f(t, x) in Q3/4(1, x0), that is,

|f(t, x)− f(t′, x′)| ≤ ωf (max{|x− x′|, |t− t′|1/α}) ∀(t, x), (t′, x′)∈Q3/4(1, x0),

where Qr(t, x) = (t− rα, t)×Br(x). Assume that κ(·, ·) satisfies (1.3) and (1.4), and
assume that u is a smooth solution to

ut(t, x)− Lκαu(t, x) = f(t, x), α∈ (1,2), (t, x)∈ [0,1]×R
d,

and u∈Cγ([0,1]×R
d) for some γ ∈ (0,1). Then it holds that

[u]xα;Q1/2(1,x0)
+ [Du]t(α−1)/α,Q1/2(1,x0)

+ ‖∂tu‖L∞(Q1/2(1,x0))

≤C‖u‖γ/α,γ;[0,1]×Rd +C

∞∑

k=1

ωf (2
−k)

for a constant C > 0. Here

[u]xα;Q1/2(1,x0)
:= sup

t∈(1−(1/2)α,1)

[u(t, ·)]Cα(B1/2(x0)),

[Du]t(α−1)/α,Q1/2(1,x0)
:= sup

x∈B1/2(x0)

[Du(·, x)]C(α−1)/α((1−(1/2)α,1)),

and ‖u‖γ/α,γ;[0,1]×Rd is the C
γ/α,γ
t,x norm in [0,1]×R

d.

The second lemma is about the case when α= 1.

Lemma 2.3 (Proposition 3.5 of [7]). Assume that κ(·, ·) satisfies (1.3) and (1.4),
and assume that u is a smooth solution to

ut(t, x)− Lκαu(t, x) = f(t, x), α= 1, (t, x)∈ [0,1]×R
d,

and u∈Cγ([0,1]×R
d) for some γ ∈ (0,1). Then it holds that

[Du]L∞(Q1/2(1,x0)) + ‖∂tu‖L∞(Q1/2(1,x0)) ≤C‖u‖γ,γ;[0,1]×Rd +C

∞∑

k=1

ωf (2
−k)

for a constant C > 0.
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The proof of the uniqueness starts with the following lemma.

Lemma 2.4. Assume that κ(·, ·) satisfies (1.3) and (1.4). For (1.1), suppose that

a smooth solution u= u(t, x) is of polynomial growth of order α− ε, i.e.,

|u(t, x)| ≤C1

(
1 + |x|α−ε

)
∀(t, x)∈ [0,1]×R

d, α∈ [1,2), ε∈ (0, α).(2.8)

Then for a constant C > 0 and for any x0 ∈Rd, it holds that

[u]x1;Q1/2(1,x0)
≤C

(
1 + |x0|α−ε

)
, ε > 0,(2.9)

where

[u]x1;Q1/2(1,x0)
:= sup

t∈(1−(1/2)α,1)

‖u(t, ·)‖Lip(B1/2(x0))

and Lip means the Lipschitz norm.

Proof. From Proposition 2.4 of [8] or Theorem 7.1 of [20], there is a small constant
γ ∈ (0,1) such that

[u]γ/α,γ;Q7/8(1,0) ≤C‖u‖L∞((0,1);L1(ωα)),(2.10)

where ωα = 1
1+|x|d+α and

‖u‖L∞((0,1);L1(ωα)) = sup
t∈(0,1)

∫

Rd

|u(t, x)|
1 + |x|d+α dx.

By (2.10), the growth condition (2.8), and the space translation x→ x+ x0 for any
x0 ∈R

d, we have

[u]γ/α,γ;Q7/8(1,x0) ≤C sup
t∈(0,1)

∫

Rd

|u(t, x+ x0)|
1 + |x|d+α dx

≤C

∫

Rd

(1 + |x|α−ε + |x0|α−ε)
1 + |x|d+α dx≤C(1 + |x0|α−ε).

(2.11)

The next step is to prove that

[u]xα;Q5/8(1,x0)
≤C(1 + |x0|)α−ε.(2.12)

We modify the proof of Theorem 1.1 of [7].
Take a cutoff function η= η(t, x)∈C∞

0 (Q7/8(1, x0)) satisfying η= 1 in Q5/6(1, x0)

and ‖∂jtDiη‖L∞ ≤C when i∈ {0,1,2} and j ∈ {0,1}.
Let (t, x), (t′, x′) be two points in Q3/4(1, x0), and let v(t, x) := u(t, x)η(t, x). Then

in Q3/4(1, x0),

∂tv= η∂tu+ ∂tηu= ηLκαu+ ∂tηu=Lκαv+ h+ ∂tηu,(2.13)

where

h= ηLκαu−Lκαv= p.v.

∫

Rd

ξ(t, x, y)κ(x, y)

|y|d+α dy

and

ξ(t, x, y) = u(t, x+ y)(η(t, x)− η(t, x+ y)).(2.14)
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We are going to apply Lemma 2.2 or Lemma 2.3 to (2.13) in Q3/4(1, x0) and
obtain corresponding estimates (2.12) in Q5/8(1, x0). To this end, we only need to
estimate the Hölder seminorm of h in Q3/4(1, x0).

First, when |y| ≤ 5/6− 3/4 = 1/12, by (2.14), we have

ξ(t, x, y) = ξ(t′, x′, y) = 0.(2.15)

By the assumptions on η and (2.14), it holds that

|ξ(t′, x′, y)| ≤
{

C|u(t′, x′ + y)|, |y| ≥ 1,

C|u(t′, x′ + y)||y|, 1/12|y|1.
(2.16)

Now by the triangle inequality, we deduce that

|h(t, x)− h(t′, x′)|

≤
∫

Rd

|(ξ(t, x, y)− ξ(t′, x′, y))κ(x, y)|
|y|d+α dy

︸ ︷︷ ︸

I

+

∫

Rd

|ξ(t′, x′, y)(κ(x′, y)− κ(x, y))|
|y|d+α dy

︸ ︷︷ ︸

II

.

(2.17)

By using (1.4), (2.8), (2.15), and (2.16), we have

II ≤
∫

|y|∈(1/12,1)

C|u(t′, x′ + y)||y|κ2|x− x′|β
|y|d+α dy+

∫

|y|>1

C|u(t′, x′ + y)|
|y|d+α κ2|x− x′|β dy

≤
∫

|y|∈(1/12,1)

C(1 + |x0|α−ε + |y|α−ε)|x− x′|β
|y|d+α−1

dy

+

∫

|y|>1

C(1 + |x0|α−ε + |y|α−ε)
|y|d+α |x− x′|β dy≤C(1 + |x0|α−ε)|x− x′|β .

(2.18)

Now we estimate I. When 1/12 ≤ |y|2, by the fundamental theorem of calculus, we
have

ξ(t, x, y)− ξ(t′, x′, y) =−y
∫ 1

0

(u(t, x+ y)Dη(t, x+ sy)− u(t′, x′ + y)Dη(t′, x′ + sy)) ds.

Therefore, by (2.8), (2.11), and the triangle inequality, it holds that

|ξ(t, x, y)− ξ (t′, x′, y)|

≤ |y|
∫ 1

0

|u(t, x+ y)− u(t′, x′ + y)| |Dη(t′, x′ + sy)| ds

+ |y|
∫ 1

0

|u(t, x+ y)| |Dη(t, x+ sy)−Dη(t′, x′ + sy)| ds

≤C|y| |u(t, x+ y)− u(t′, x′ + y)|+C|y||u(t, x+ y)| (|x− x′|+ |t− t′|)
≤C|y|(1 + |x0|α−ε)

(

|x− x′|γ + |t− t′|γ/α
)

+C|y|(1 + |x0|α−ε) (|x− x′|+ |t− t′|) .

(2.19)
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When |y| ≥ 2, by (2.14) and (2.11), we have

|ξ(t, x, y)− ξ (t′, x′, y)|= |u(t, x+ y)− u (t′, x′ + y)|
≤C(1 + |x0|α−ε + |y|α−ε)

(

|x− x′|γ + |t− t′|γ/α
)

.
(2.20)

Thus, by (1.3), (2.19), (2.20), and (2.15), we infer that

I ≤
∫

|y|∈(1/12,2)

C|y|(1 + |x0|α−ε)
(
|x− x′|γ + |t− t′|γ/α

)

|y|d+α dy

+

∫

|y|∈(1/12,2)

C|y|(1 + |x0|α−ε) (|x− x′|+ |t− t′|)
|y|d+α dy

+

∫

|y|>2

C(1 + |x0|α−ε + |y|α−ε)
(
|x− x′|γ + |t− t′|γ/α

)

|y|d+α dy

≤C(1 + |x0|α−ε)
(

|x− x′|γ + |t− t′|γ/α
)

.

(2.21)

Plugging (2.18) and (2.21) into (2.17), we deduce that

|h(t, x)− h(t′, x′)| ≤C(1 + |x0|α−ε)
(

|x− x′|γ
′
+ |t− t′|γ′/α

)

,

where γ′ =min{γ,β}, which implies that we can take the modulus of continuity as

ωh(r) =C(1 + |x0|α−ε)rγ
′

for any r ∈ (0,1). According to Lemma 2.2, it follows that

∞∑

k=1

ωh

(
3

2k+1

)

≤
∞∑

k=1

C(1 + |x0|α−ε)
(

3

2k+1

)γ
′

≤C(1 + |x0|α−ε).(2.22)

Now we consider two cases.
Case (1): α∈ (1,2). In this case, we apply Lemma 2.2 to (2.13) in Q3/4(1, x0)

with a scaling argument. From (2.11) and (2.22), we have

[v]xα;Q5/8(1,x0)
≤C‖v‖L∞([0,1]×Rd) +C[v]γ/α,γ;[0,1]×Rd +C

∞∑

k=1

ωh

(
3

2k+1

)

≤C‖u‖L∞(Q7/8(1,x0)) +C[u]γ/α,γ;Q7/8(1,x0) +C(1 + |x0|α−ε)≤C(1 + |x0|α−ε)

by noting that v = 0 outside of Q7/8(1, x0). Because η = 1 in Q5/8(1, x0), we get
(2.12) immediately.

Case (2): α= 1. In this case, we apply Lemma 2.3 with a scaling argument.
Using (2.11) and (2.22), we have

‖Dv‖L∞(Q5/8(1,x0)) ≤C‖v‖L∞([0,1]×Rd) +C[v]γ,γ;[0,1]×Rd +C

∞∑

k=1

ωh

(
3

2k+1

)

≤C‖u‖L∞(Q7/8(1,x0)) +C[u]γ,γ;Q7/8(1,x0) +C(1 + |x0|α−ε)
≤C(1 + |x0|α−ε),

which implies (2.12) again.
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Finally, by the interpolation inequality, (2.12), and (2.8), we arrive at

[u]x1;Q1/2(1,x0)
≤C[u]xα;Q5/8(1,x0)

+C‖u‖L∞(Q5/8(1,x0)) ≤C(1 + |x0|)α−ε,

which finishes the proof.

Now we are ready to prove the uniqueness part of the theorem, which is stated
as follows.

Lemma 2.5. Assume that κ(·, ·) satisfies (1.3) and (1.4). Then there is an unique

smooth solution u= u(t, x) to (1.1) satisfying the initial data u(0, ·) and the polynomial

growth condition (1.7), which is given by

u(t, x) =

∫

Rd

pα(t, x;y)u(0, y)dy ∀(t, x)∈ (0,1]×R
d.

Proof. By linearity, we just need to prove that if a smooth solution u satisfies
(1.7) and u(0, x) = 0, then u≡ 0.

Fix (t0, x0)∈ (0,1]×R
d. By shifting the coordinates, we may assume x0 = 0, and

it suffices to prove u(t0,0) = 0. Now let L∗ = (Lκα)
∗ be the adjoint operator of Lκα,

and let p∗α(t, x;s, y) be the heat kernel of L∗, which by definition satisfies

{

∂tp
∗
α(t, x;s, y)−L∗p∗α(t, x;s, y) = 0, t > s and x, y ∈R

d,

p∗α(s,x;s, y) = δ(x, y).
(2.23)

Because the heat kernels of Lκα and L∗ are independent of time, we have

pα(t, x;s, y) = pα(t− s,x; 0, y), p∗α(t, x;s, y) = p∗α(t− s,x; 0, y).(2.24)

It is also known that

pα(t, x;s, y) = p∗α(t, y;s,x), t≥ s,(2.25)

which can be seen as follows. For any t0, s0 ∈ (0,1) with s0 ≤ t0, using (2.23) and
(2.24), we have

∫ t0

s0

∫

Rd

Lκαpα(t, z;s0, y)p
∗
α(t0, z; t, x)dzdt

=

∫ t0

s0

∫

Rd

Lκαpα(t− s0, z; 0, y)p
∗
α(t0 − t, z; 0, x)dzdt

=

∫ t0

s0

∫

Rd

∂tpα(t− s0, z; 0, y)p
∗
α(t0 − t, z; 0, x)dzdt

= pα(t0 − s0, x; 0, y)− p∗α(t0 − s0, y; 0, x)

+

∫ t0
∫
Rd

s0

pα(t− s0, z; 0, y)∂tp
∗
α(t0 − t, z; 0, x)dzdt.

By the definition of the adjoint operator, (2.23), and (2.24), we reach (2.25). The
integrations above are justified due to known decay estimates of pα, i.e., (2.2).

Then we take a cutoff function η= η(x)∈C∞
c (B2(0)) such that for a constant C,

η= 1 in B1(0) and |Dη|+ |D2η| ≤C.(2.26)
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We test (1.1) with p∗α(t0 − t, x; 0,0)η(x/R) and use (2.23) to get

0 =

∫ t0

0

∫

Rd

ut(t, x)p
∗
α(t0 − t, x; 0,0)η(x/R)dxdt

−
∫ t0

0

∫

Rd

Lκαu(t, x)p
∗
α(t0 − t, x; 0,0)η(x/R)dxdt

= u(t0,0) +

∫ t0

0

∫

Rd

u(t, x)(∂tp
∗
α)(t0 − t, x; 0,0)η(x/R)dxdt

−
∫ t0

0

∫

Rd

Lκαu(t, x)p
∗
α(t0 − t, x; 0,0)η(x/R)dxdt.

Therefore, using (2.23) and the definition of the adjoint operator, we infer that

u(t0,0)

=

∫ t0

0

∫

Rd

Lκα(u(t, x))(p
∗
α(t0−t, x; 0,0)η(x/R))−p∗α(t0−t, x; 0,0)Lκα (u(t, x)η(x/R))dxdt

= p.v.

∫ t0

0

∫

Rd

∫

Rd

u(t, x+ z)p∗α(t0 − t, x; 0,0) (η(x/R)− η((x+ z)/R))κ(x, z)

|z|d+α dzdxdt

= p.v.

∫ t0

0

∫

Rd

∫

Rd

u(t, y)p∗α(t0 − t, x; 0,0)(η(x/R)− η(y/R))κ(x, y− x)

|x− y|d+α dydxdt

︸ ︷︷ ︸

J1

,

(2.27)

where we took z = y− x in the last step. In the following, we omit p.v. when there is
no confusion.

Next, we aim to show that J1 → 0 as R→∞, treating the cases α < 1 and α≥ 1
separately.

Case (1): α < 1. This case is simpler since the singularity in the integrand is
weaker. Using (1.7), (1.3), (2.25), and (2.26), we have

J1 =

∫ t0

0

∫

Rd

∫

Rd\BR(x)

u(t, y)p∗α(t0 − t, x; 0,0)(η(x/R)− η(y/R))κ(x, y− x)

|x− y|d+α dydxdt

+

∫ t0

0

∫

Rd

∫

BR(x)

u(t, y)p∗α(t0 − t, x; 0,0)(η(x/R)− η(y/R))κ(x, y− x)

|x− y|d+α dydxdt

≤C

∫ t0

0

∫

Rd

∫

Rd\BR(x)

pα(t0 − t,0; 0, x)

|x− y|d+α (1 + |y|α−ε)dydxdt

+
C

R

∫ t0

0

∫

Rd

∫

BR(x)

pα(t0 − t,0; 0, x)

|x− y|d+α−1
(1 + |y|α−ε)dydxdt

≤C

∫ t0

0

∫

Rd

∫

Rd\BR(x)

pα(t0 − t,0; 0, x)

|x− y|d+α (1 + |x|α−ε + |x− y|α−ε)dydxdt

+
C

R

∫ t0

0

∫

Rd

∫

BR(x)

pα(t0 − t,0; 0, x)

|x− y|d+α−1
(1 + |x|α−ε + |x− y|α−ε)dydxdt

≤C

∫ t0

0

∫

Rd

pα(t0 − t,0; 0, x)

(
1

Rε
+

1+ |x|α−ε
Rα

)

dxdt→ 0 as R→∞,
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TIME ANALYTICITY FOR NONLOCAL PARABOLIC EQUATIONS 1897

where for the last step we used (2.1) and
∫

Rd

pα(t0 − t,0; 0, x)(1 + |x|α−ε)dx

≤
∫

Rd

C(t0 − t)
(
(t0 − t)1/α + |x|

)d+α
(1 + |x|α−ε)dx≤C

(

1 + (t0 − t)1−ε/α
)

.
(2.28)

Case (2): α≥ 1. In this case, by the substitution z→−z in the second line of
(2.27), we have

J1 =

∫ t0

0

∫

Rd

∫

Rd

u(t, x− z)p∗α(t0 − t, x; 0,0) (η(x/R)− η((x− z)/R))κ(x, z)

|z|d+α dzdxdt,

where we used κ(x, z) = κ(x,−z) in the last equation. Then by

u(t, x+ z)

(

η
( x

R

)

− η

(
x+ z

R

))

+ u(t, x− z)

(

η
( x

R

)

− η

(
x− z

R

))

= (u(t, x− z)− u(t, x+ z))

(

η
( x

R

)

− η

(
x− z

R

))

− u(t, x+ z)

(

η

(
x+ z

R

)

− 2η
( x

R

)

+ η

(
x− z

R

))

,

we can write

J1 =

1

2

∫ t0

0

∫

Rd

∫

Rd

(u(t, x−z)−u(t, x+z))
(
η( xR )−η(x−zR )

)
κ(x, z)p∗α(t0−t, x; 0,0)

|z|d+α dzdxdt

︸ ︷︷ ︸

J2

+
1

2

∫ t0

0

∫

Rd

∫

Rd

−u(t, x+z)
(
η(x+zR )−2η( xR )+η(

x−z
R )
)
κ(x, z)p∗α(t0−t, x; 0,0)

|z|d+α dzdxdt

︸ ︷︷ ︸

J3

.

For the term J3, by (1.7), (2.25), and (2.26), we deduce that

|J3| ≤C

∫ t0

0

∫

Rd

∫

Rd\BR(0)

pα(t0 − t,0; 0, x)

|z|d+α (1 + |x|α−ε + |z|α−ε)dzdxdt

+
C

R2

∫ t0

0

∫

Rd

∫

BR(0)

pα(t0 − t,0; 0, x)

|z|d+α−2
(1 + |x|α−ε + |z|α−ε)dzdxdt

≤C

∫ t0

0

∫

Rd

pα(t0 − t,0; 0, x)

(
1

Rε
+

1+ |x|α−ε
Rα

)

dxdt→ 0 as R→∞,

where we used (2.28) in the last step.
Finally, we estimate J2. When α> 1, by (1.7), (2.9), and (2.28), we have

|J2| ≤C

∫ t0

0

∫

Rd

∫

Rd\BR(0)

pα(t0 − t,0; 0, x)

|z|d+α (1 + |x|α−ε + |z|α−ε)dzdxdt

+
C

R2

∫ t0

0

∫

Rd

∫

BR(0)

pα(t0 − t,0; 0, x)

|z|d+α−2
(1 + |x|α−ε)dzdxdt

+
C

R

∫ t0

0

∫

Rd

∫

BR(0)\BR(0)

pα(t0 − t,0; 0, x)

|z|d+α−1
(1 + |x|α−ε + |z|α−ε)dzdxdt

︸ ︷︷ ︸

J4
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1898 HONGJIE DONG, CHULAN ZENG, AND QI S. ZHANG

≤C

∫ t0

0

∫

Rd

pα(t0 − t,0; 0, x)

(
1

Rε
+

1+ |x|α−ε
Rα

)

dxdt

+
C

R

∫ t0

0

∫

Rd

pα(t0 − t,0; 0, x)
(
(1−R1−α)(1 + |x|α−ε) + (R1−ε − 1)

)
dxdt

→ 0 as R→∞.

When α= 1, we only need to estimate J4 slightly differently. By (2.28),

J4 ≤
C

R

∫ t0

0

∫

Rd

p1(t0 − t,0; 0, x)
(
ln(R)(1 + |x|1−ε) + (R1−ε − 1)

)
dx→ 0 as R→∞.

Combining these two cases and plugging into (2.27), we get u(t0,0) = 0, which finishes
the proof.

2.3. Completion of proof of Theorem 1.2.
Proof. We have proved part (a) and (b) of Theorem 1.2 in Lemmas 2.1 and 2.5.

Thus, it remains to show part (c). First, we fix a number R ≥ 1 and let x ∈ BR(0),
t∈ [1− δ,1] for some small δ > 0. For any positive integer j, Taylor’s theorem implies
that

u(t, x)−
j−1
∑

i=0

∂itu(1, x)
(t− 1)i

i!
=

(t− 1)j

j!
∂jt u(s,x),(2.29)

where s= s(x, t, j)∈ [t,1]. By (1.8), for sufficiently small δ > 0, the right-hand side of
(2.29) converges to 0 uniformly with respect to x∈BR(0) as j→∞. Hence,

u(t, x) =

∞∑

j=0

∂jt u(1, x)
(t− 1)j

j!
;

i.e., u is analytic in time with radius δ. Denote aj = aj(x) = ∂jt u(1, x). By (1.8) again,
we have

∂tu(t, x) =

∞∑

j=0

aj+1(x)
(t− 1)j

j!
and Lκαu(t, x) =

∞∑

j=0

Lκαaj(x)
(t− 1)j

j!
,

where both series converge uniformly with respect to (t, x)∈ [1− δ,1]×BR(0). Since
u is a solution of (1.1), this implies that Lκαaj(x) = aj+1(x) with

|aj(x)| ≤Cj+1jj(1 + |x|α−ε).

This completes the proof of Theorem 1.2.

3. Fractional heat kernel estimates on R
d. In this section, we estimate the

time and space derivatives of the fractional heat kernel pα(t, x) for (1.5). The main
tools are the Fourier transform and contour integrals. We first state and prove the
following lemma, which is needed for the proof of Theorem 1.5 and Corollary 1.6.

Lemma 3.1. (a) If α > 0, β ≥ 0, and t≥ 0, there exist constants C, C1, and C2

such that
∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξx|ξ|βdξ
∣
∣
∣
∣
≤min

{

C1C
β
2 β

β

|x|β+d ,
C

t(β+d)/α
Γ

(
β + d

α

)}

,(3.1)

where Γ is the gamma function.
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(b) Let β= (β1, β2, . . . , βd), where βj is a nonnegative integer with j ∈ {1,2, . . . , d}.
Then we have

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξxξβdξ

∣
∣
∣
∣
≤min

{

C1C
α+|β|
2 (α+ |β|)α+|β|t

|x|α+|β|+d ,
C

t(|β|+d)/αΓ

( |β|+ d

α

)}

,

(3.2)

where ξβ = ξβ1

1 ξβ2

2 · · · ξβd

d and |β| :=
d∑

k=1

βk.

Remark 3.2. When t = 0, the integrals in (3.1) and (3.2) can be understood as
the limit as t↘ 0.

Proof of Lemma 3.1. The bound C
t(β+d)/αΓ

(
β+d
α

)

on the right-hand side of (3.1)

is easily obtained as follows:
∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξx|ξ|βdξ
∣
∣
∣
∣
≤
∫

Rd

e−t|ξ|
α |ξ|βdξ = C

t(β+d)/α
Γ

(
β + d

α

)

.

Similarly, the bound C
t(|β|+d)/αΓ(

|β|+d
α ) on the right-hand side of (3.2) holds because

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξxξβdξ

∣
∣
∣
∣
≤
∫

Rd

e−t|ξ|
α |ξ||β|dξ =

C

t(|β|+d)/αΓ

( |β|+ d

α

)

.

We shall use the technique of contour integrals to obtain the first bounds in (3.1)
and (3.2), respectively. To simplify the calculation, without loss of generality, by

rotating the coordinates, we assume that x= ( |x|√
d
, |x|√

d
, . . . , |x|√

d
).

For any point ξ = (ξ1, ξ2, . . . , ξd) and for any j ∈ {1,2, . . . , d}, we consider ξj as a
complex number with modulus ηj and argument (angle) ψj . For a large R > 0 and
φ :=min{π/16, π/(16α)}, consider the regions in the complex plane,

Γ
(1)
R =

{
η0e

iψ
∣
∣ η0 ∈ (0,R), ψ ∈ [0, φ]

}
,

Γ
(2)
R =

{
η0e

iψ
∣
∣ η0 ∈ (0,R), ψ ∈ [π− φ,π]

}
,

and denote

C
(1)
R =

{
Reiψ

∣
∣ ψ ∈ [0, φ]

}
and C

(2)
R =

{
Reiψ

∣
∣ ψ ∈ [π− φ,π]

}
.

We calculate the contour integrals of the functions e−t|ξ|
α

eiξx|ξ|β and e−t|ξ|
α

eiξxξβ

on the boundaries of the sectors Γ
(1)
R and Γ

(2)
R . For the term |ξ|a in the above two

functions, where a= α or β, we extend it to be a holomorphic function,

(
d∑

k=1

ξ2k

)a/2

in C
d,

which needs to be specified by choosing suitable branches. On the one hand, when
Re(ξj) > 0, we select the branch so that the function w = za/2 maps the sector with
angles [0,2φ] to the sector with angles [0, aφ]. On the other hand, when Re(ξj)0, we
make the function w = za/2 map the sector with angles [−2φ,0] to the sector with
angles [−aφ,0].

The main idea is to use the contour integrals to equate the integrals on the rays
ψj = 0, π and the integrals on the rays ψj = φ,π − φ, respectively. The following are
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1900 HONGJIE DONG, CHULAN ZENG, AND QI S. ZHANG

some preliminary calculations on the rays ψj =
π
2 − sgn (Re(ξj))

(
π
2 − φ

)
and the arcs

C
(1)
R or C

(2)
R , respectively. Here sgn (·) is the sign function.

First, we consider the case when ξj ’s are on the rays ψj =
π
2−sgn (Re(ξj))

(
π
2 − φ

)
,

where we can write ξj = ηj exp
(
πi
2 − sgn (Re(ξj))

(
π
2 − φ

)
i
)
with ηj ∈ [0,R]. In this

case, for any fixed ξk ∈ Γ
(1)
R ∪ Γ

(2)
R , where k ∈ {1,2, . . . , d}, we have

(
d∑

k=1

ξ2k

)a/2

=



e2sgn (Re(ξj))iπφη2j +
∑

k 6=j
ξ2k





a/2

,(3.3)

where a= α or β, and

eiξx = exp



i exp

(
πi

2
− sgn (Re(ξj))

(π

2
− φ
)

i

)

ηj
|x|√
d
+
∑

k 6=j
iξk

|x|√
d



 .(3.4)

Notice that if ψk =
π
2 − sgn (Re(ξk))

(
π
2 − φ

)
for all k ∈ {1,2, . . . , d}, it holds that

(
d∑

k=1

ξ2k

)a/2

=

(
d∑

k=1

η2ke
2sgn (Re(ξk))iπφ

)a/2

(3.5)

and

eiξx = exp

(

i

d∑

k=1

exp

(
πi

2
− sgn (Re(ξk))

(π

2
− φ
)

i

)

ηk
|x|√
d

)

.(3.6)

Next, we treat the case when ξj is on the arc C
(1)
R or C

(2)
R , respectively.

By the definition of the regions Γ
(1)
R and Γ

(2)
R , for any fixed ξk ∈ Γ

(1)
R ∪Γ

(2)
R , where

k 6= j and ψj ∈ [0, φ] ∪ [π − φ,π], the angle between R2e2iψj and
∑

k 6=j ξ
2
k is less than

π/2, so we have

∣
∣
∣
∣
∣
∣

R2e2iψj +
∑

k 6=j
ξ2k

∣
∣
∣
∣
∣
∣

≥ |R2e2iψj |.(3.7)

Moreover, since |arg(ξ2k)| ≤ 2φ for any k 6= j, where arg(·) is the argument (angle), it
follows that

∣
∣
∣
∣
∣
∣

arg



R2e2iψj +
∑

k 6=j
ξ2k





∣
∣
∣
∣
∣
∣

≤ 2φ.

This together with (3.7) implies that

Rα cos (αφ)≤Re



R2e2iψj +
∑

k 6=j
ξ2k





α/2

.(3.8)

Now we show that the integral of e−t(
∑d

k=1 ξ
2
k)

α/2

eiξx(
∑d
k=1 ξ

2
k)
β/2 on the arc C

(1)
R

or C
(2)
R tends to 0 as R tends to infinity.
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On the arc C
(1)
R , we can write ξj =Reiψj , where ψj ∈ [0, φ]. By (3.3), (3.4), and

(3.8), we have

lim
R→∞

∣
∣
∣
∣
∣
∣

∫

C
(1)
R

e−t(
∑d

k=1 ξ
2
k)

α/2

eiξx

(
d∑

k=1

ξ2k

)β/2

dξj

∣
∣
∣
∣
∣
∣

≤ lim
R→∞

∫ φ

0

∣
∣
∣
∣
∣
∣

exp



−t(R2e2iψj +
∑

k 6=j
ξ2k)

α/2





∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

exp



iReiψj
|x|√
d
+
∑

k 6=j
iξk

|x|√
d





∣
∣
∣
∣
∣
∣

×

∣
∣
∣
∣
∣
∣
∣



R2e2iψj +
∑

k 6=j
ξ2k





β/2
∣
∣
∣
∣
∣
∣
∣

∣
∣iReiψj

∣
∣dψj

≤C lim
R→∞

∫ φ

0

e−tR
α cos(αφ)




R

β +




∑

k 6=j
|ξk|2





β/2



Rdψj = 0

(3.9)

for any fixed ξk ∈ Γ
(1)
R ∪ Γ

(2)
R , where k 6= j.

Similarly, on the arc C
(2)
R , where ξj =Reiψj and ψj ∈ [π− φ,π], we have

lim
R→∞

∣
∣
∣
∣
∣
∣

∫

C
(2)
R

e−t(
∑d

k=1 ξ
2
k)

α/2

eiξx

(
d∑

k=1

ξ2k

)β/2

dξj

∣
∣
∣
∣
∣
∣

= 0(3.10)

for any fixed ξk ∈ Γ
(1)
R ∪ Γ

(2)
R , where k 6= j.

Combining (3.9) and (3.10) implies that we can apply contour integral to ξj if

ξk ∈ Γ
(1)
R ∪ Γ

(2)
R for all k 6= j. Therefore, by (3.3), (3.4), (3.5), (3.6), (3.9), and (3.10),

using d times of contour integrals, we infer that

∫

Rd

e−t|ξ|
α

eiξx|ξ|β dξ

=
∑

sgn (ξ1)=±1

∫

Rd−1

∫ ∞

0

exp



−t
(

e2isgn (ξ1)φη21 +

d∑

k=2

ξ2k

)α/2




× exp

(

i exp

(
πi

2
− sgn (Re(ξ1))

(π

2
− φ
)

i

)

η1
|x|√
d
+

d∑

k=2

iξk
|x|√
d

)

×
(

e2isgn (ξ1)φη21 +

d∑

k=2

ξ2k

)β/2

exp

(
πi

2
− sgn (Re(ξ1))

(π

2
− φ
)

i

)

dη1dξ2 · · ·dξd

= · · ·=
∑

sgn (ξ1)=±1

· · ·
∑

sgn (ξd)=±1

∫

R
d
1

exp



−t
(

d∑

k=1

e2isgn (ξk)φη2k

)α/2




× exp

(

i

d∑

k=1

exp

(
πi

2
− sgn (Re(ξk))

(π

2
− φ
)

i

)

ηk
|x|√
d

)

×
(

d∑

k=1

e2isgn (ξk)φη2k

)β/2 d∏

k=1

exp

(
πi

2
− sgn (Re(ξk))

(π

2
− φ
)

i

)

dη,

(3.11)
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1902 HONGJIE DONG, CHULAN ZENG, AND QI S. ZHANG

where R
d
1 stands for the first quadrant of Rd and dη= dη1dη2 · · ·dηd. Plugging

Re

(
d∑

k=1

e2isgn (ξk)φη2k

)α/2

≥ |η|α cos (αφ)

and

∣
∣
∣
∣
∣
exp

(

i

d∑

k=1

exp

(
πi

2
− sgn (Re(ξk))

(π

2
− φ
)

i

)

ηk
|x|√
d

)∣
∣
∣
∣
∣
= exp

(

−
d∑

k=1

sin(φ)ηk
|x|√
d

)

into (3.11), we have

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξx|ξ|βdξ
∣
∣
∣
∣
≤ 2d

∫

R
d
1

e−t|η|
α cos(αφ)e

−
d∑

k=1

sin(φ)ηk|x|/
√
d
|η|βdη

≤C

∫

R
d
1

e−t|η|
α cos(αφ)e

−
d∑

k=1

sin(φ)ηk|x|/
√
d

d∑

k=1

ηβkdη

≤C

d∑

k=1

∫ ∞

0

e−t|ηk|
α cos(αφ)e− sin(φ)ηk|x|/

√
dηβkdηk

∏

i 6=k

∫

R
d−1
1

e− sin(φ)ηi|x|/
√
ddηi

≤ C

|x|d−1

∫ ∞

0

e−tρ
α cos(αφ)e− sin(φ)ρ|x|/

√
dρβdρ=

C

|x|d−1
× I,

(3.12)

where

I =

∫ ∞

0

e−tρ
α cos(αφ)e−ρ|x|/

√
dρβdρ≤

∫ ∞

0

e−ρ|x|/
√
dρβdρ≤ Cβ

|x|β+1
Γ(β + 1).

Therefore, we infer that

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξx|ξ|βdξ
∣
∣
∣
∣
≤ C1C

β
2 β

β

|x|β+d
(3.13)

for some constants C1 and C2, which is the first part on the right-hand side of (3.1).
Finally, we prove (3.2), which is a consequence of the following claim.

Claim 3.3. For any β = (β1, . . . , βd), where βi is a nonnegative integer, there

exists a constant C > 0 such that

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξxξβdξ

∣
∣
∣
∣
≤C |β|+α+1 (α+ |β|)α+|β|t

|x|α+|β|+d .

We prove this claim by induction. When |β| = 0, by integration by parts with
respect to ξ1, we see that

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξxdξ

∣
∣
∣
∣
=
α
√
dt

|x|

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α ξ1
i|ξ|2−α e

iξxdξ

∣
∣
∣
∣
.

Then using the method of contour integrals similarly to (3.12), we find that
∣
∣
∣
∣

∫

Rd

e−t|ξ|
α ξ1
i|ξ|2−α e

iξxdξ

∣
∣
∣
∣
≤ C

|x|α+d−1
,
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which implies that
∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξxdξ

∣
∣
∣
∣
≤ Ct

|x|α+d .

Without loss of generality, we assume that β1 > 0. For any positive integer k, we
assume that Claim 3.3 is true for any |β|k. When |β| = k, by integration by parts
with respect to ξ1, the induction assumption, and (3.13), it holds that

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξxξβdξ

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

√
d

|x|

∫

Rd

e−t|ξ|
α

eiξx
β1
iξ1

ξβdξ

∣
∣
∣
∣
∣
+
tα

√
d

|x|

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξx
ξ1

|ξ|2−α ξ
βdξ

∣
∣
∣
∣

≤
√
d

|x| C
α+|β|−1 (α+ |β| − 1)α+|β|−1t

|x|α+|β|−1+d
+
tα

√
d

|x|
C1C

α+|β|−1
2 (α+ |β| − 1)α+|β|−1

|x|α+|β|+d−1

≤Cα+|β|+1 (α+ |β|)α+|β|t

|x|α+|β|+d .

Thus, we finished the proof of Claim 3.3 and therefore completed the proof of Lemma 3.1.

Now we are ready to embark on the proof of Theorem 1.5.

Proof. By (1.9), the heat kernel pα(t, x) of the fractional heat equation (1.5)
satisfies

|∂kt pα(t, x)|=C(d,α)

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξx|ξ|αkdξ
∣
∣
∣
∣
,

which implies (1.10) by part (a) of Lemma 3.1. From the first bound
C1C

kα
2 (kα)kα

|x|kα+d in

(1.10), we see that pα is of Gevrey class in time of order α when x 6= 0. By the second
bound C

tk+d/αΓ
(
kα+d
α

)
in (1.10), pα is analytic in time when t > 0.

Furthermore, for any positive integer k, by (1.9), we have

|∂kxpα(t, x)| ≤C(d,α)
∑

|k|=k
|∂kxpα(t, x)|=C(d,α)

∑

|k|=k

∣
∣
∣
∣

∫

Rd

e−t|ξ|
α

eiξxξkdξ

∣
∣
∣
∣
,

where k = (k1, . . . , kd), ξ
k = ξk11 . . . ξkdd , and we sum over all the k satisfying |k| = k.

By (1.11) and the fact that we have
(
k+d−1
d−1

)
choices of k satisfying |k|= k, we infer

that

|∂kxpα(t, x)| ≤C(d,α)

(
k+ d− 1

d− 1

)

min

{

C1C
α+k
2 (α+ k)α+kt

|x|α+k+d ,
C

t(k+d)/α
Γ

(
k+ d

α

)}

,

which implies (1.11) for a sufficiently large constant C2. By the bound
C1C

k+α
2 (k+α)k+αt

|x|α+k+d

in (1.11), pα is analytic in space at |x| 6= 0. By the other bound C
t(k+d)/αΓ

(
k+d
α

)
in

(1.11), pα is of Gevrey class with order 1/α in space when t > 0 for any x∈R
d.

Remark 3.4. Theorem 1.5 is consistent with the fact that the heat kernel of the
heat equation ∂tu−∆u= 0 is of Gevrey class of order 2 at t= 0. Besides, when α= 1,
it is well known that p1(t, x) =

Ct
(t2+|x|2)(d+1)/2 . By a direct computation, we see that

p1(t, x) satisfies all the results in Theorem 1.5.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/0

1
/2

4
 t

o
 1

2
8
.1

4
8
.2

5
4
.5

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



1904 HONGJIE DONG, CHULAN ZENG, AND QI S. ZHANG

We end this section by proving Corollary 1.6.

Proof. By Theorem 1.2 and the growth condition (1.7), we know that there is an
unique solution to (1.5):

u(t, x) =

∫

Rd

pα(t, x− y)u(0, y)dy.

Therefore, by (1.11) and (1.7), we infer that

|∂kxu(t, x)| ≤
∫

Rd

|∂kxpα(t, x− y)||u(0, y)|dy

≤
∫

B1(x)

C

t(k+d)/α
Γ

(
k+ d

α

)

C1(1 + |y|α−ε)dy

+

∫

Rd\B1(x)

C1C
k+α
2 (k+ α)k+αt

|x− y|α+k+d C1(1 + |y|α−ε)dy

≤ C(1 + |x|α−ε)
t(k+d)/α

Γ

(
k+ d

α

)

+

∫

Rd\B1(x)

Ck+α+1(k+α)k+αt

|x−y|α+d (1+|x|α−ε+|x−y|α−ε)dy

≤ C(1 + |x|α−ε)
t(k+d)/α

Γ

(
k+ d

α

)

+Ck+α+2(k+ α)k+α(1 + |x|α−ε)t,

which implies that u is analytic in space when α ∈ [1,2) and u is of Gevrey class of
order 1/α in space when α∈ (0,1).

4. Fractional heat equation on a manifold. In this section, we prove Theo-
rems 1.7 and 1.8 in the setting of M, which is a d -dimensional, complete Riemannian
manifold.

First, we recall a well-known lemma.

Lemma 4.1. Assume that condition (1.13) is satisfied. Then for any D > 0,
β ≥ 0, and t > 0, there exists a positive constant C such that

∫

M

e−
Dd(x,y)2

t

|B(x,
√
t)|
d(x, y)β dy≤Ctβ/2.(4.1)

Proof. We give the proof for completeness. By condition (1.13), we have

∫

M

e−Dd(x,y)
2/t

|B(x,
√
t)|

d(x, y)β dy

=

∫

B(x,
√
t)

e−Dd(x,y)
2/t

|B(x,
√
t)|

d(x, y)β dy+

∫

M\B(x,
√
t)

e−Dd(x,y)
2/t

|B(x,
√
t)|

d(x, y)β dy

≤Ctβ/2 +

∞∑

k=1

∫

2k−1
√
t≤d(x,y)≤2k

√
t

e−Dd(x,y)
2/t

|B(x,
√
t)|

d(x, y)β dy

≤Ctβ/2 +
∞∑

k=1

|B(x,2k
√
t)|

|B(x,
√
t)|

e−D(2k−1)2(2k
√
t)β

≤Ctβ/2 +

∞∑

k=1

C∗ke−D(2k−1)2(2k
√
t)β ≤Ctβ/2,

where C∗ is the constant in condition (1.13).

We are ready to prove Theorem 1.7.
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4.1. Proof of Theorem 1.7.
Proof. It is well known that there is a connection between the heat kernel E(t, x;y)

and the fractional heat kernel pα(t, x;y), which can be found, for instance, in [2], i.e.,

pα(t, x;y) =

∫ ∞

0

E(s,x;y)ηt(s)ds,

where ηt(s) is a density function of µαt satisfying

ηt(s) = t−2/αη1(t
−2/αs).

Therefore,

pα(t, x;y) =

∫ ∞

0

E(s,x;y)t−2/αη1(t
−2/αs)ds=

∫ ∞

0

E(t2/αs,x;y)η1(s)ds.(4.2)

It is also known that there exists a constant C such that

0≤ η1(s)≤Cs−1−α/2e−s
−α/2

,(4.3)

which can be found, for instance, in Theorem 3.1 of [2], Theorem 37.1 of [5], or Lemma
1 of [12].

Then for any t > 0, by (1.15) and (4.2), it holds that

u(t, x) =

∫

M

∫ ∞

0

E(t2/αs,x;y)η1(s)u(0, y)dsdy.(4.4)

By Theorem 5.4.12 of [19], conditions (1.12) and (1.13) imply that there exist con-
stants C, d1, d2, D1, and D2 such that

d1e
−D1d(x,y)

2/t

|B(x,
√
t)|

≤E(t, x;y)≤ d2e
−D2d(x,y)

2/t

|B(x,
√
t)|

(4.5)

and

|∂tE(t, x;y)| ≤ C

t

e−D2d(x,y)
2/t

|B(x,
√
t)|

.(4.6)

From (1.16), (4.4), (4.5), (4.1), and (4.3), we infer that

|u(t, x)| ≤
∫

M

∫ ∞

0

|E(t2/αs,x;y)|η1(s)|u(0, y)|dsdy

≤C

∫

M

∫ ∞

0

e−D2d(x,y)
2/(t2/αs)

|B(x,
√
t2/αs)|

η1(s)(1 + d(x,0)α−ε + d(x, y)α−ε)dsdy

≤C(1 + d(x,0)α−ε)

∫ ∞

0

η1(s)ds+C

∫ ∞

0

η1(s)(t
2/αs)(α−ε)/2 ds

≤C(1 + d(x,0)α−ε)

∫ ∞

0

η1(s)ds+Ct
α−ε
α

∫ ∞

0

s−1−α/2e−s
−α/2

s(α−ε)/2 ds

≤C(1 + d(x,0)α−ε) +Ct(α−ε)/α.

For any integer k > 0, we proceed by induction. First, we assume it is true that

|∂k−1
t u(t, x)| ≤ Ck(k− 1)k−1

tk−2

(
(1 + d(x,0)α−ε

t
+

1

tε/α

)

.(4.7)
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Then for any t > 0, by (1.15) and (4.2), it holds that

∂kt u(t, x;y) =

∫

M

∫ ∞

0

∂tE((t− τ)2/αs,x;y)η1(s)∂
k−1
τ u(τ, y)dsdy ∀τ ∈ (0, t).(4.8)

By (4.8), (4.7), and (4.6), we have

|∂kt u(t, x;y)|

≤
∫

M

∫ ∞

0

2s

α
(t− τ)2/α−1 C

(t− τ)2/αs

e−D2d(x,y)
2/((t−τ)2/αs)

|B(x,
√

(t− τ)2/αs)|
η1(s)|∂k−1

t u(τ, y)|dsdy

≤ Ck+1/2(k−1)k−1

τk−2(t−τ)

∫

M

∫ ∞

0

e−D2d(x,y)
2/((t−τ)2/αs)

|B(x,
√

(t−τ)2/αs)|
η1(s)

(
1+d(x,0)α−ε

τ
+

1

τ ε/α

)

dsdy

+
Ck+1/2(k− 1)k−1

τk−1(t− τ)

∫

M

∫ ∞

0

e−D2d(x,y)
2/((t−τ)2/αs)

|B(x,
√

(t− τ)2/αs)|
η1(s)d(x, y)

α−ε dsdy

:= I1 + I2,

(4.9)

where we used the triangle inequality in the second inequality. By (4.1) and (4.3), we
have

I1 =
Ck+1/2(k−1)k−1

τk−2(t−τ)

(
1+d(x,0)α−ε

τ
+

1

τ ε/α

)∫ ∞

0

∫

M

e−D2d(x,y)
2/((t−τ)2/αs)

|B(x,
√

(t− τ)2/αs)|
η1(s)dyds

≤ Ck+3/4(k− 1)k−1

τk−2(t− τ)

(
1 + d(x,0)α−ε

τ
+

1

τ ε/α

)∫ ∞

0

η1(s)ds

≤ Ck+3/4(k− 1)k−1

τk−2(t− τ)

(
1 + d(x,0)α−ε

τ
+

1

τ ε/α

)

(4.10)

and

I2 =
Ck+1/2(k− 1)k−1

τk−1(t− τ)

∫ ∞

0

∫

M

e−D2d(x,y)
2/((t−τ)2/αs)

|B(x,
√

(t− τ)2/αs)|
d(x, y)α−εη1(s)dyds

≤ Ck+3/4(k− 1)k−1

τk−1(t− τ)

∫ ∞

0

(

(t− τ)2/αs
)(α−ε)/2

s−1−α/2e−s
−α/2

ds

≤ Ck+7/8(k− 1)k−1

τk−1(t− τ)ε/α
.

(4.11)

Now we set τ = (k−1)t
k . Consequently, by plugging (4.10) and (4.11) into (4.9), we

conclude that

|∂kt u(t, x;y)|

≤ Ck+3/4(k− 1)k−1

τk−2(t− τ)

(
1 + d(x,0)α−ε

τ
+

1

τ ε/α

)

+
Ck+7/8(k− 1)k−1

τk−1(t− τ)ε/α

≤ Ck+1kk

tk−1

(
1 + d(x,0)α−ε

t
+

1

tε/α

)

,

which gives (1.17) immediately.

The proof of Theorem 1.8 is divided into two parts: the proof of (1.18) and the
proof of (1.19). We start with the first part in the following subsection.
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4.2. Proof of (1.18) in Theorem 1.8.
Proof. By condition (1.13), it is well known that when r≤ s,

|B(x, r)| ≥ 1

C∗

(r

s

)log2C
∗

|B(x, s)|.(4.12)

See, for example, Remark 4.2.2 of [23].
Therefore, by (4.2), (4.5), (4.3), and (4.12), we have

pα(t, x;y)

≤
∫ 1

0

Ce−D2d(x,y)
2/(t2/αs)

|B(x,
√
t2/αs)|

s−1−α/2e−s
−α/2

ds

+

∫ ∞

1

Ce−D2d(x,y)
2/(t2/αs)

|B(x,
√
t2/αs)|

s−1−α/2e−s
−α/2

ds

=

∫ 1

0

Ce−D2d(x,y)
2/(t2/αs)

|B(x, t1/α)|
|B(x, t1/α)|

|B(x,
√
t2/αs)|

s−1−α/2e−s
−α/2

ds

+

∫ ∞

1

Ce−D2d(x,y)
2/(t2/αs)

|B(x,
√
t2/αs)|

s−1−α/2e−s
−α/2

ds

≤
∫ 1

0

C

|B(x, t1/α)|
C∗

slog2C
∗/2

s−1−α/2e−s
−α/2

ds+

∫ ∞

1

C

|B(x, t1/α)|s
−1−α/2e−s

−α/2

ds

≤ C

|B(x, t1/α)| .

(4.13)

If d(x, y)≥ t1/α, letting ξ = st2/α

d(x,y)2 , again by (4.2), (4.5), (4.3), and (4.12), we get

pα(t, x;y)≤
∫ ∞

0

Ce−D2/ξ

|B(x,
√
ξd(x, y))|

(
d(x, y)2ξ

t2/α

)−1−α/2
d(x, y)2

t2/α
dξ

=
Ct

d(x, y)α

∫ 1

0

e−D2/ξ

|B(x,
√
ξd(x, y))|ξ

−1−α/2dξ

+
Ct

d(x, y)α

∫ ∞

1

e−D2/ξ

|B(x,
√
ξd(x, y))|ξ

−1−α/2dξ

≤ Ct

d(x, y)α

∫ 1

0

e−D2/ξ

|B(x,d(x, y))|
|B(x,d(x, y))|

|B(x,
√
ξd(x, y))|ξ

−1−α/2dξ

+
Ct

d(x, y)α

∫ ∞

1

e−D2/ξ

|B(x,d(x, y))|ξ
−1−α/2dξ

≤ Ct

d(x, y)α

∫ 1

0

e−D2/ξ

|B(x,d(x, y))|(
√
ξ)log2C

∗ ξ
−1−α/2dξ +

Ct

d(x, y)α|B(x,d(x, y))|

≤ Ct

d(x, y)α|B(x,d(x, y))| .

(4.14)

Thus, we proved the upper bound in (1.18).
Now we show the lower bound in (1.18). By Theorem 3.1 of [2], there exists a

constant s0 = s0(α) such that

η1(s)≥
αs−1−α/2

4Γ(1− α/2)
∀s > s0.(4.15)
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1908 HONGJIE DONG, CHULAN ZENG, AND QI S. ZHANG

Without loss of generality, we assume that s0 ≥ 1 in the following. Then we consider
two cases.

When t1/α ≥ d(x, y), by (4.2), (4.5), (4.15), and (4.12), it holds that

pα(t, x;y) =

∫ ∞

0

E(t2/αs,x;y)η1(s)ds

≥
∫ ∞

s0

Cd1e
−D1d(x,y)

2/(t2/αs)

|B(x,
√
t2/αs)|

s−1−α/2 ds

=

∫ ∞

s0

Cd1e
−D1d(x,y)

2/(t2/αs)

|B(x, t1/α)|
|B(x, t1/α)|

|B(x,
√
t2/αs)|

s−1−α/2 ds

≥ e
−D1
s0

∫ ∞

s0

Cd1
|B(x, t1/α)|

1

C∗slog2C
∗/2

s−1−α/2 ds≥ C

|B(x, t1/α)| .

(4.16)

When t1/αd(x, y), letting ξ = st2/α

d(x,y)2 , again by (4.2), (4.5), (4.15), and (4.12), we
have

pα(t, x;y)≥
∫ ∞

s0

Cd1e
−D1/ξ

|B(x,
√
ξd(x, y))|

(
d(x, y)2ξ

t2/α

)−1−α/2
d(x, y)2

t2/α
dξ

≥ Ct

d(x, y)α

∫ ∞

s0

e−D1/ξ

|B(x,d(x, y))|
|B(x,d(x, y))|

|B(x,
√
ξd(x, y))|ξ

−1−α/2dξ

≥ Ct

d(x, y)α

∫ ∞

s0

e−D1/s0

|B(x,d(x, y))|(
√
ξ)log2C

∗ ξ
−1−α/2dξ

≥ Ct

d(x, y)α|B(x,d(x, y))| .

(4.17)

Combining (4.16) and (4.17), we reach (1.18).

Now in order to prove (1.19), we establish an estimate for high-order time deriv-
atives of the heat kernel E(t, x;y) first.

Lemma 4.2. Let M be a d-dimensional complete Riemannian manifold satisfying

conditions (1.12) and (1.13). Then for any x, y ∈ M, t > 0, and any nonnegative

integer k, there exist positive constants C1 and C2 such that the heat kernel E(t, x;y)
of the heat equation

∂tu−∆u= 0

satisfies

|∂kt E(t, x;y)| ≤ Ck+1
1 kk−2/3

tk|B(x,
√
t)|
e−C2d(x,y)

2/t.

Remark 4.3. To the best of our knowledge, up to now, in the literature, one can
only find the coarser bounds

|∂kt E(t, x;y)| ≤ C(k)

tk|B(x,
√
t)|
e−C2d(x,y)

2/t

in the manifold case, where C(k) is not explicitly calculated. See, for instance, [19,
Theorem 5.4.12]. Here we obtain a more precise result.

Proof. The proof is similar to Lemma 4.1 of [22]. However, since we have different
conditions here and we have the estimate of ∂kt E(t, x;y) for all time t > 0 instead of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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t ∈ (0,1], the proof is a bit different. We present the proof here for the reader’s
convenience.

Fix any t0 > 0 and x0, y0 ∈M. For any nonnegative integer k and j = 1,2, . . . , k+1,
we define

M1
j =

{

(t, x) : t∈
(

t0 −
jt0
2k
, t0

)

, d(x,x0)
j
√
t0√
2k

}

,

M2
j =

{

(t, x) : t∈
(

t0 −
(j + 0.5)t0

2k
, t0

)

, d(x,x0)
(j + 0.5)

√
t0√

2k

}

.

Then M1
j ⊂M2

j ⊂M1
j+1.

Following the proof of Lemma 4.1 of [22], for a constant C, we have
∫ ∫

M1
1

|∂kt E(t, x;y0)|2 dxdt≤
C2kk2k

t2k0

∫ ∫

M1
k+1

|E(t, x;y0)|2 dxdt.(4.18)

Now to estimate the right-hand side of (4.18), we have two cases.
Case 1: d(x0, y0)≤

√
4kt0. In this case, we need to use a well-known result which

can be found, for instance, in Lemma 5.2.7 of [19]: Under condition (1.13), for a
constant C, we have

|B(x, r)| ≤ eCd(x,y)/r|B(y, r)| ∀x, y ∈M and r > 0.(4.19)

By (4.5), (4.12), and (4.19), it holds that

C2kk2k

t2k0

∫ ∫

M1
k+1

|E(t, x;y0)|2 dxdt≤
C2k+1/2k2k|B(x0,

(k+1)
√
t0√

2k
)|

t2k−1
0 min

x∈B(x0,(k+1)
√
t0/

√
2k)

|B(x,
√
t0)|2

=
C2k+1/2k2k

t2k−1
0

|B(x0,
(k+1)

√
t0√

2k
)|

|B(x0,
√
t0)|2

|B(x0,
√
t0)|2

min
x∈B(x0,(k+1)

√
t0/

√
2k)

|B(x,
√
t0)|2

≤ C2k+3/4k2k

t2k−1
0 |B(x0,

√
t0)|

(
k+ 1√
2k

)log2C
∗

exp

(
2C(k+ 1)√

2k

)

≤ C2k+1k2k+1

t2k−1
0 |B(x0,

√
t0)|

e−C2d(x0,y0)
2/t0

for a constant C2, where we used the condition d(y0, x0)≤
√
4kt0 in the last inequality.

Case 2: d(x0, y0)>
√
4kt0. In this case, because d(x,x0)

(k+1)
√
t0√

2k
in M1

k+1, by the

triangle inequality, we have
√
2−1√
2

d(x,y0)
d(x0,y0)

2. Therefore, by (4.5), (4.12), and (4.19), it
holds that

C2kk2k

t2k0

∫ ∫

M1
k+1

|E(t, x;y0)|2 dxdt

≤
C2kk2kt0|B(x0,

(k+1)
√
t0√

2k
)|

t2k0 min
x∈B(x0,(k+1)

√
t0/(2

√
k))

|B(x,
√
t0)|2

e−(3−2
√
2)D2d(x0,y0)

2/(2t0)

≤ C2k+1/2k2k

t2k−1
0

|B(x0,
(k+1)

√
t0√

2k
)|

|B(x0,
√
t0)|2

|B(x0,
√
t0)|2

min
x∈B(x0,(k+1)

√
t0/(2

√
k))

|B(x,
√
t0)|2

e−C2d(x0,y0)
2/t0
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1910 HONGJIE DONG, CHULAN ZENG, AND QI S. ZHANG

≤ C2k+3/4k2k

t2k−1
0

1

|B(x0,
√
t0)|

(
k+ 1√
2k

)log2C
∗

exp

(
C(k+ 1)√

k

)

e−C2d(x0,y0)
2/t0

≤ C2k+1k2k+1

t2k−1
0 |B(x0,

√
t0)|

e−C2d(x0,y0)
2/t0

for a constant C2.
Combining the above two cases, we get

∫ ∫

M1
1

|∂kt E(t, x;y0)|2 dxdt≤
C2k+1k2k+1

t2k−1
0 |B(x0,

√
t0)|

e−C2d(x0,y0)
2/t0 .(4.20)

Now we recall a well-known parabolic mean value inequality which can be found,
for instance, in Theorem 14.7 of [16] or Theorem 5.2.9 of [19]. For 0< r <R< 1, any
nonnegative subsolution u= u(t, x) of the heat equation satisfies

sup
Qr(t0,x0)

u(t, x)≤C

(
R2

|B(x0, r)|2/ν
)ν/2(

1

|R− r|2
)(ν+2)/2 ∫ ∫

QR(t0,x0)

u(t, x)dxdt,

where ν > 2 is a constant and Qr(t, x) = (t − r2, t) × B(x, r). Letting u(t, x) =
|∂kt E(t, x;y0)|2, r↘ 0, and R=

√

t0/(2k), using (4.12), we see that

|∂kt E(t0, x0;y0)|2

≤ Ck
∣
∣
∣B
(

x0,
√

t0/(2k)
)∣
∣
∣ t0

∫ ∫

Q√
t0/(2k)

(t0,x0)

(∂kt E(t, x;y0))
2 dxdt

=
Ck

|B(x0,
√
t0)|t0

|B(x0,
√
t0)|

∣
∣
∣B
(

x0,
√

t0/(2k)
)∣
∣
∣

∫ ∫

Q√
t0/(2k)

(t0,x0)

(∂kt E(t, x;y0))
2 dxdt

≤
Ck
(√

2k
)log2(C

∗)

∣
∣B(x0,

√
t0)
∣
∣ t0

∫ ∫

Q√
t0/(2k)

(t0,x0)

(∂kt E(t, x;y0))
2 dxdt.

(4.21)

By (4.20) and (4.21), we obtain

|∂kt E(t0, x0;y0)|2 ≤
C2k+2k2k+1+log2(C

∗)/2

t2k0 |B(x0,
√
t0)|2

e−C2d(x0,y0)
2/t0 .

Thus,

|∂kt E(t0, x0;y0)| ≤
Ck+1

1 kk−2/3

tk0 |B(x0,
√
t0)|

e−C2d(x0,y0)
2/t0

for a sufficiently large constant C1, which finishes the proof of Lemma 4.2.

To prove the time analyticity of the heat kernel pα(t, x;y), we use the following
result.

Lemma 4.4 (proof of Proposition 1.4.2 of [14]). Suppose that f = f(x) is real

analytic at x0 ∈R, which satisfies near x0

|f (k)(x)| ≤C1
k!

Rk
∀ integer k≥ 0.
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Assume that g= g(x) is real analytic at f(x0)∈R, which satisfies near f(x0)

|g(k)(y)| ≤C3
k!

Sk
∀ integer k≥ 0.

Here R and S are positive constants. Then h(x) = g(f(x)) is analytic near x0 and

satisfies

|h(k)(x0)| ≤
C1C3

S +C1

k!(1 +C1/S)
k

Rk
∀ integer k≥ 0.

Now we are ready to prove (1.19) and thus complete the proof of Theorem 1.8.

4.3. Proof of (1.19) in Theorem 1.8.
Proof. By (4.2), we have

∂nt pα(t, x;y) =

∫ ∞

0

∂nt E(t2/αs,x;y)η1(s)ds.(4.22)

We write E(t2/αs,x;y) = E(t, x;y) ◦ (t2/αs) = g(t) ◦ f(t), where g(t) := E(t, x;y) and
f(t) := t2/αs. Then by Lemma 4.2, for a constant C(1) > 0,

|∂kt g(t)| ≤
(C(1))kk!

tk|B(x,
√
t)|
e−C2d(x,y)

2/t ∀ integer k≥ 0.

Let C3 =
e−C2d(x,y)2/(t2/αs)

|B(x,
√
t2/αs)| and S = t2/αs/C(1). For f(t), it holds that

|f (k)(t)| ≤ (C(2))kk!t2/αs

tk
∀ integer k≥ 0

for a constant C(2) > 0. Let C1 = t2/αs and R= t/C(2). Then by Lemma 4.4, we have
for a constant C > 0

|∂kt E(t2/αs,x;y)| ≤ C1C3

S +C1

k!(1 +C1/S)
k

Rk
≤ Ckk!

tk
e−C2d(x,y)

2/(t2/αs)

|B(x,
√
t2/αs)|

.

Therefore, by (4.22), we deduce that

|∂kt pα(t, x;y)| ≤
∫ ∞

0

Ckk!

tk
e−C2d(x,y)

2/(t2/αs)

|B(x,
√
t2/αs)|

η1(s)ds.

By the same calculations as (4.13) and (4.14), we deduce (1.19) immediately.

5. Corollaries on backward and other equations. In this last section, we
present four corollaries, whose statements and proofs are similar to the corresponding
results in [9] and [22].

First, we consider the Cauchy problem for the backward nonlocal parabolic equa-
tions

{

∂tu+Lκαu= 0 ∀x∈R
d,

u(0, x) = a(x)
(5.1)

with κ(·, ·) satisfying (1.3) and (1.4).
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1912 HONGJIE DONG, CHULAN ZENG, AND QI S. ZHANG

Corollary 5.1. Equation (5.1) has a smooth solution u= u(t, x) of polynomial

growth of order α− ε in (0, δ)×R
d for some δ > 0; i.e.,

|u(t, x)| ≤C(1 + |x|α−ε), 0εα, (t, x)∈ (0, δ)×R
d,(5.2)

if and only if

| (Lκα)k a(x)| ≤Ak+1
1 kk

(
1 + |x|α−ε

)
, k= 0,1,2, . . . ,(5.3)

where A1 is a positive constant.

Proof. On the one hand, suppose that (5.1) has a smooth solution of polynomial
growth of order α − ε, say, u = u(t, x). Then u(−t, x) is a solution of the nonlocal
parabolic equations with polynomial growth of order α−ε. By Theorem 1.2 and (5.2),
(5.3) follows immediately.

On the other hand, suppose that (5.3) holds. Then it is easy to check that

u(t, x) =

∞∑

j=0

(Lκα)
ja(x)

tj

j!

is a smooth solution of the fraction heat equation for t ∈ (−δ,0] with δ sufficiently
small. Indeed, the bounds (5.3) guarantee that the above series and the series

∞∑

j=0

(Lκα)
j+1a(x)

tj

j!
and

∞∑

j=0

(Lκα)
ja(x)

∂tt
j

j!

all converge absolutely and uniformly in [−δ,0]×BR(0) for any fixed R > 0. Hence,
∂tu− Lκαu= 0. Moreover, u has polynomial growth of order α− ε since

|u(t, x)| ≤
∞∑

j=0

∣
∣(Lκα)

ja(x)
∣
∣
tj

j!
≤

∞∑

j=0

Aj+1
1 jj

(
1 + |x|α−ε

) tj

j!
≤A1

(
1 + |x|α−ε

)
(5.4)

provided that t ∈ [−δ,0] with δ sufficiently small. Thus, u(−t, x) is a solution to the
Cauchy problem of the backward nonlocal parabolic equations (5.1) of polynomial
growth of order α− ε.

We have another corollary below about the forward Cauchy problem for the non-
local parabolic equations

{

∂tu− Lκαu= 0 ∀x∈R
d,

u(0, x) = a(x).
(5.5)

The main point is the analyticity of solutions down to the initial time.

Corollary 5.2. Equation (5.5) has a smooth solution u= u(t, x) of polynomial

growth of order α− ε, which is time analytic in [0, δ) for some δ > 0 with the radius

of convergence independent of x if and only if

| (Lκα)k a(x)| ≤Ak+1
1 kk

(
1 + |x|α−ε

)
, k= 0,1,2, . . . ,(5.6)

for a positive constant A1.
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Proof. On the one hand, assuming (5.6), we can see that

u∗(t, x) =
∞∑

j=0

(Lκα)
ja(x)

tj

j!

is a smooth solution to (5.5) for t ∈ [0, δ) with δ sufficiently small. Moreover, if δ
is sufficiently small, u∗ has polynomial growth of order α − ε by (5.4), so u∗ is the
unique solution to (5.5) by part (b) of Theorem 1.2.

By Corollary 5.1, the backward problem (5.1) has a smooth solution v = v(t, x)
in [0, δ)× R

d. Define the function U =U(t, x) by

U(t, x) =

{
u∗(t, x), t∈ [0, δ),
v(−t, x), t∈ (−δ,0].

It is straightforward to check that U(t, x) is a solution of the nonlocal parabolic
equations in (−δ, δ)×R

d. By Theorem 1.2, U(t, x) and hence u(t, x) are time analytic
at t= 0 for some δ > 0.

On the other hand, suppose that u= u(t, x) is a solution of (5.5), which is analytic
in time at t= 0 with the radius of convergence independent of x. Then by definition,
u has a power series expansion in a time interval (−δ, δ) for some δ > 0. Hence, (5.6)
holds following the proof of Corollary 5.1.

Remark 5.3. Since we have not proved that the solution to (1.14) is unique, the
proofs of the above two corollaries cannot be applied to the manifold case. Therefore,
we restrict the above two corollaries to the case of Rd.

For the following two corollaries, the operator L is either Lκα on R
d or Lα on M.

For convenience of notation, let X be either Rd or M satisfying conditions (1.12) and
(1.13).

Then similar to Theorems 1.4 and 1.5 of [22], we have the following two corollaries.

Corollary 5.4. Let p be a positive integer, and consider the equation

ut(t, x)− Lu(t, x) = up(t, x) in (0,1]×X(5.7)

with the initial data u(0, ·). Assume that u= u(t, x) is a mild solution, i.e.,

u(t, x) =

∫

X

pα(t, x;y)u(0, y)dy+

∫ t

0

∫

X

pα(t− s,x;y)up(s, y)dyds,

and there exists a constant C2 such that

|u(t, x)| ≤C2 ∀(t, x)∈ [0,1]×X.

Then u is time analytic in t ∈ (0,1], and the radius of convergence is independent

of x.

Proof. From (1.6) or (1.19), we see by iteration that

‖∂kt pα(t, x, ·)‖L1(X) ≤Ck+1/2kk−2/3t−k ∀ integer k≥ 0,(5.8)

and thus, by the Leibniz rule, it holds that

‖∂kt (tkpα(t, x, ·))‖L1(X) ≤Ck+1kk−2/3 ∀ integer k≥ 0(5.9)

for a sufficiently large constant C.
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The rest of the proof is the same as that of Theorem 1.4 of [22].

Corollary 5.5. For (5.7) with p being any positive rational number, assume

that u= u(t, x) is a mild solution and there exist constants C1 and C2 such that

0≤C1 ≤ |u(t, x)| ≤C2 ∀(t, x)∈ [0,1]×X.

Then u is time analytic in t ∈ (0,1], and the radius of convergence is independent

of x.

Proof. We also have (5.8) and (5.9). Then the rest of the proof is the same as
that of Theorem 1.5 of [22].

Remark 5.6. It is unclear to us whether a similar result holds when p is an
irrational number, as we are unable to get an appropriate relation between ∂nt (t

nu)
and ∂nt (t

nup), where n is any positive integer. When p= q1/q2 is a rational number,
in [22, Lemma 4.5], the author used ∂nt (t

nu1/q2) as a bridge between ∂nt (t
nu) and

∂nt (t
nuq1/q2). Moreover, Lemma 4.4 cannot be used directly here. In fact, for any

integer k > 0, if we assume that

|tn∂nt u| ≤Nnn! ∀ positive integer n≤ k

for a constant N > 0, then by Lemma 4.4, we get

|tk∂kt up| ≤Nk+1/2k!

(

1 +
1

min |u|

)k

,

which cannot be used to obtain a positive radius of convergence.

Acknowledgment. The authors would like to thank the referees for their careful
reading and very helpful comments.
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