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TIME ANALYTICITY FOR NONLOCAL PARABOLIC EQUATIONS"

HONGJIE DONGT, CHULAN ZENG#, AND QI S. ZHANGH#

Abstract. In this paper, we investigate pointwise time analyticity of solutions to nonlocal
parabolic equations in the settings of R? and a complete Riemannian manifold M. On the one
hand, in R%, we prove that any solution u = u(t,x) to ut(t,z) — LEu(t,z) = 0, where LY is a nonlocal
operator of order «, is time analytic in (0, 1] if u satisfies the growth condition |u(t,z)| < C(1+|z|)*~¢
for any (t,2) € (0,1] x R? and ¢ € (0,). We also obtain pointwise estimates for 8Fpa (¢, x;y), where
Da(t,z;y) is the fractional heat kernel. Furthermore, under the same growth condition, we show that
the mild solution is the unique solution. On the other hand, in a manifold M, we also prove the
time analyticity of the mild solution under the same growth condition and the time analyticity of the
fractional heat kernel when M satisfies the Poincaré inequality and the volume doubling condition.
Moreover, we also study the time and space derivatives of the fractional heat kernel in R% using
the method of Fourier transform and contour integrals. We find that when a € (0,1], the fractional
heat kernel is time analytic at t = 0 when x # 0, which differs from the standard heat kernel. As
corollaries, we obtain a sharp solvability condition for the backward nonlocal parabolic equations
and time analyticity of some nonlinear nonlocal parabolic equations with power nonlinearity of order
p. These results are related to those in [9] and [22], which deal with local equations.
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1. Introduction. In this paper, we investigate pointwise time analyticity of
solutions to nonlocal parabolic equations in the settings of R? and a complete Rie-
mannian manifold M satisfying the standard conditions (1.12) and (1.13). One of our
main results reads that the fractional heat kernel on R¢ is time analytic at t = 0 when
x#0 and « € (0, 1], which differs from the standard heat kernel. As an intermediate
result, we obtain the uniqueness of solutions to nonlocal parabolic equations in R?,
which extends a result in [3] in the sense that instead of the bound Ct/(t'/* + |z|)4*+,
we only impose the growth condition |u(t,z)| < C(1+]|z|)*~¢ for any (¢,z) € (0,1] x R?
and € € (0,a). In the manifold setting, we obtain lower and upper bounds for the
fractional heat kernel p,, and prove that p, is time analytic for any (¢, z) € (0, 00) x M.
These results allow us to solve the solvability problem of the backward nonlocal par-
abolic equations, which can be ill-posed.

Before presenting the results in detail, we wish to justify their value by recalling a
number of related results in the literature and describing some new applications. The
study of the analyticity property of solutions to PDEs has been a classical topic. Even
though spatial analyticity is usually true for generic solutions of the heat equation,
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time analyticity is harder to prove and is false in general. For instance, it is not hard
to construct a solution of the heat equation in a space-time cylinder in the Euclidean
setting, which is not time analytic in a sequence of moments. In fact, time analyticity
is not a local property; rather, it requires certain boundary or growth conditions on
the solutions. There is a vast literature on time analyticity for the heat equation and
other parabolic-type equations under various assumptions. See, for example, [17],
[13], [11], [10], [21], [9], [24], and [22] and the citations therein. One can also consider
solutions in certain LP spaces with p € (1,00). See [18] for a large class of dissipative
equations in the periodic setting. We also mention that in [10], for any bounded
domain © ¢ R? with analytic boundary, the authors proved that any solution of the
high-order heat equation

ur+ (—A)"u=0 V(t,z)€(0,1] x Q,
u=Du=---=D""tyu=0o0n (0,1] x 9Q, u(0,z) € L*(Q)

is time analytic in ¢ € (0, 1].

Recently, new applications of time analyticity are found in control theory and in
the study of backward equations and are essential in stochastic analysis and mathe-
matical finance. A fundamental fact in control theory for heat-type equations is that
if a state is reachable by the free equation, then it is reachable by suitable control
from any reasonable initial value. The former is equivalent to the solvability of the
free backward equation from this state. However, this backward solvability question
has been vexing the control theory community for years. As a matter of fact, in a
recent paper [15], it was written, "However, it is a quite hard task to decide whether
a given state is the value at some time of a trajectory of the system without control
(free evolution). In practice, the only known examples of such states are the steady
states.” This problem for the heat equation was solved in [9] not long ago. More
precisely, in the paper [9] (see also [24]), it was proved that if a smooth solution of
the heat equation in (—2,0] x M is of exponential growth of order 2, then it is time
analytic in ¢t € [-1,0]. Here M is either the Euclidean space or certain noncompact
manifolds. Also, an explicit condition is found on the solvability of the backward
heat equation from a given time, which is equivalent to the time analyticity of the
solution of the heat equation at that time. Lately, time analyticity of solutions to the
biharmonic heat equation, the heat equation with potentials, and some nonlinear heat
equations has been proven in [22]. See also [6] for other results about time analyticity
of parabolic-type differential equations in the half-space. One of the goals of this
paper is to extend the result to nonlocal parabolic equations, which have attracted
intensive research (See Corollary 5.1).

Now let us present the main results formally. For clarity, we will first treat the
nonlocal parabolic equations in the setting of R?, which reads

(1.1) ug(t,2) — LEu(t,2) =0, a € (0,2), (t,x)€[0,1] x RY,
where L[ is a nonlocal elliptic operator defined as follows.
DEFINITION 1.1. We define
k(z, 2)

(1.2) Laf(@)=po. | (Flat2) = f@) T de

R4

where p.v. means the principal value. Here k = k(x,z) on RY x R? is a measurable
function satisfying that

(1.3) 0 < ko < k(x,2) <Ky, K(z,2)=kK(z,—2),
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and for a constant 8 € (0,1),
(1.4) |k(x,2) = K(y, 2)| < ral — y|”,
where Ko, k1, and ko are positive constants.

The fraction Laplacian (—A)®/2 is a typical example of L%. As a special case,
we also obtain the time and space derivative estimates of the fractional heat kernel
Da(t,z) of

(1.5) w(t, ) + (—A)* 2 u(t,) =0, a€(0,2), (t,z)€[0,1] x R%
Our results involve both solutions and fractional heat kernels. We say that a
function p,(t,7;y) is a fractional heat kernel of (1.1) in R? if
Orpa(t,7;y) = Lopa(t, z3y),  limpa(t, 21y) =0(z,y).
In [3], it was proved that the fractional heat kernel is unique under the condition that
Ct

Ipa(t,z;)] <
(tl/f’é + |z — y|)d+a

for a constant C. In Lemma 2.5, we improve this uniqueness result by only requiring
the growth condition (1.7). The definition of the fractional heat kernel p, (t,z;y) on
a manifold M will be given in section 4.

The next four theorems are the main results of this paper. The first one is a time
analyticity result in the case of R?.

THEOREM 1.2. (a) Let po(t,x;y) be the heat kernel of (1.1). Then there exists a
positive constant C' such that for any t € (0,1] and any nonnegative integer k,

CHHLEk 1
(1.6) 10 pa(t, 239)] < — =
(tot |z —y

Dd—‘r()&.

(b) Assume that u=u(t,x) is a solution to (1.1) with polynomial growth of order
a—eg, e,

(1.7) lu(t,z)| <C1 (L+|2|*7°) VY(t,2)€[0,1] xRY, 0<a<2, e€(0,a)

for a positive constant C1. Then

u(tvx):/ﬂedpa(tvx;y)u(ovy) dy

is the unique smooth solution with initial data u(0,-). Moreover, u is time analytic
for any t € (0,1] with the radius of convergence being independent of x.
(c) For any t € (1 —46,1] with a small § >0, we have

u(t,z) = Z a;(x)

Jj=0

where ag(z) =u(l,x), aj41(x) =LEa;(z),

Ja; ()| = (LE) ao(@)| < 1477 (1+12177), =012,

and Cy is a positive constant.
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Remark 1.3. The estimate |a;j(z)| in part (c) of this theorem will be used for the
solvability of the backward nonlocal parabolic equations and the time analyticity at
t =0 in the last section.

Remark 1.4. From the proof of this theorem, for a constant C > 0, we have

Ok (1 + [a]o—

(18) Ok u(t, )| < Sy

t + e/«

>Vte(0,1}

under the growth condition (1.7).

Now let us focus on the heat kernel of the fractional Laplacian (—A)% in R
Recall that the fractional heat kernel pq (t,2) for us + (—A)*/2u(t,2) =0 is given by

(1.9) pa(tw):C’(d,a)/ e el gitz ge
Rd

which can be deduced by the Fourier transform.

THEOREM 1.5. The following statements are true for the fractional heat kernel
Pa(t,x) when t>0.

(a) For any o> 0 and for any positive integer k, there exist positive constants C,
C4, and Cy such that

ko ko
(1.10) 10Fpa(t, 2)| §min{0102 (ka) ¢ <ko‘+d)},

|g|katd 7 ghtd/a a

which implies that p, is of Gevrey class in time of order o when x # 0 and p, is
analytic in time when t > 0. Moreover, if 0 << a <1 and x # 0, then p,, is analytic
in time for all t > 0. Here I is the gamma function.

(b) For any a > 0 and for any positive integer k and for an arbitrary multi-index (3

of order k,

k4o k4o
(1.11) |85pa(t,m)<min{0102 (ko)™ C r(k+d>},

|x|a+k+d ) t(k+d)/a a

which implies that p,, is analytic in space at |x| #0. Especially, when t #0, py is of
Gevrey class with order 1/« in space for any x.

Part (a) of the theorem shows that for any « € (0,1], the fractional heat kernel is
time analytic down to ¢t =0, x # 0, which is not true for the standard heat kernel.
By the above Theorem 1.5, we have the following.

COROLLARY 1.6. If the unique smooth solution uw=u(t,z) to the fractional heat
equation (1.5) satisfies the growth condition (1.7) for some o € [1,2), then it is analytic
in space for any (t,x) € (0,1] x R%. Moreover, when a € (0,1), u is of Gevrey class of
order 1/a in space for any (t,z) € (0,1] x R?,

The last two theorems of the paper are in the setting of a complete Riemannian
manifold M. We impose the following two standard conditions on M:

Condition (1): There exists a constant Cy > 0 such that for any ball B(xg,r),
zg €M, >0, and f € C®(B(xo,r)),

(1.12) / 1 Foan|? dz < Cor? / V12 de,
B(zg,r) B(xzo,r)
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where

1
fB(zo,r) = |B( fdiE

mOaT)| B(zo,r)
Condition (2): There exists a constant C* > 0 such that for any ball B(z,r),
x €M, and r >0,

(1.13) |B(z,2r)| < C*|B(z,r)|.

The first condition is the Poincaré inequality. The second one is the doubling property
of the measure.
We aim to investigate the pointwise time analyticity of solutions to

(1.14) Owu(t,x) — L%(t,z) =0, a € (0,2), (¢t,z)€[0,1] x M,

where L% is defined as follows. Let A be the Laplace operator on M generating
a Markov semigroup P, which has a density E(t,x;y), i.e., the heat kernel of the
standard heat equation on M. Consider the a-stable subordination of P,

Py ::/ P, pif(ds), t>0,
0

where u¢ is a probability measure on [0,00) with the Laplace transform

/ e u(ds) = e A>0.
0

Then L® is the infinitesimal generator of Pf. Note that here we restrict ourselves
to the fractional Laplacian instead of more general nonlocal operators defined via
integrals (see, for example, [1]!), and we prove the results by using a different approach
from the R? case. The fractional Laplacian can be connected to the Laplacian so that
we can use the properties of the heat kernel. For more general nonlocal operators, we
are not able to get a similar bound for d;p. (¢, 2;y). Since we need to impose some
conditions like (1.4), it does not seem to be straightforward to extend the results to
more general nonlocal operators.

In particular, we will also study the fractional heat kernel p,, (¢, z;y) and its high-
order time derivatives 0Fp, (t, ;).

THEOREM 1.7. Let M be a d-dimensional complete Riemannian manifold satis-
fying conditions (1.12) and (1.13) and u = u(t,x) be a mild solution to (1.14), i.e.,

(1.15) u(t,z) = /M Pt 23 9)u(0, y) dy.

Assume that u is of polynomial growth of order (o« — ) at t =0; i.e., for a constant
C >0,

(1.16) |u(0,2)] <C(1+d(z,0)*"¢), Ocar, x € M.
Then for a constant C >0, it holds that

Ck+1pk <1—|—d($,0)0‘8 1

tk—1 +

k
(117 [ou(t,a)| < t —

) Y(t,z) € (0,00) x M,

1'We wish to thank one referee for informing us of this paper.
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which implies that u is time analytic in (0,00) X M with the radius of convergence
independent of x.

We also obtain the time analyticity of the fractional heat kernel in the manifold
setting.

THEOREM 1.8. Let M be a d-dimensional complete Riemannian manifold sat-
isfying conditions (1.12) and (1.13). Then for any t € (0,00), there exist positive
constants C1 and Co such that the fractional heat kernel p,(t,z;y) satisfies

(1.18)
Cht
(d(x,y)™ +t)|B(z, d(z,y) + /)

Cyt
(d(x,y)™ +t)|B(x,d(z,y) + /)]’

| <palt,zyy) <

Moreover, for any integer k >0, there exists a constant C' >0 such that

Ck+1E) 1
th=1 (d(x,y)* +t)|B(z,d(z,y) + t/*)]’

(1.19) |0F pa (t, 259)| <

Here we remark that (1.18) is more or less known, and our main contribution is
(1.19).

Remark 1.9. It is an interesting question whether the uniqueness result still holds
in the manifold case under the same growth condition. In the proof of Lemma 2.5,
we use (1.2) as an explicit formula for L% in R?. However, in M, we do not have such
a formula for L in (1.14). Therefore, the proof in Lemma 2.5 does not work in this
case.

Now we give an outline of the rest of this paper. In section 2, we investigate
the pointwise time analyticity of a solution of (1.1) in the setting of R? and prove
Theorem 1.2. In section 3, by using the Fourier transform and contour integrals, we
derive some estimates of the fractional heat kernel p,(¢,2), which implies Theorem
1.5 and Corollary 1.6. In section 4, we turn to the setting of a manifold and obtain
similar results (Theorems 1.7 and 1.8). In the proof, we use the subordination relation
(4.2) and the estimates for the standard heat kernel. Section 5 is devoted to some
corollaries. One of them is about a necessary and sufficient condition for the solvability
of the backward nonlocal parabolic equations. Another corollary gives a necessary and
sufficient condition under which solutions to (1.1) or (1.14) are time analytic at initial
time ¢t = 0. Also, for the nonlinear differential equation (5.7) with power nonlinearity
of order p, we prove that a solution uw = u(¢,x) is time analytic in ¢ € (0,1] if it is
bounded in [0,1] x M and p is a positive integer.

Let us collect some frequently used notation:

e If 7 is in RY, then |z| = Zgzl z?, and B,(z) is a ball of radius r centered
at .

e In M, B(x,r) denotes the geodesic ball of radius r centered at x, and |B(x,r)|
denotes its volume. We define d(z,y) to be the geodesic distance of two points
z,y € M and 0 to be a reference point in M.

e . (t,z;y) is the fractional heat kernel of (1.1), (1.5), or (1.14), and E(t,z;y)
is the heat kernel of the usual heat equation.

Throughout this paper, the constant C' may differ from line to line.

2. Nonlocal parabolic equations in R¢. In this section, we prove Theorem
1.2 in the setting of R?. First, in subsection 2.1, we prove that the fractional heat
kernel p, and the mild solution u = u(t,z) to (1.1), i.e., (1.15), are analytic in time.
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Next, we prove that u is the unique smooth solution in subsection 2.2. Finally, we
finish the proof of Theorem 1.2 in subsection 2.3. The proof is divided into several
lemmas for easy reading.

2.1. Time analyticity of the fractional heat kernel p, and mild solu-
tions.

LEMMA 2.1. Assume that k(-,-) satisfies (1.3) and (1.4). Then (1.6) is true.
Moreover, if the mild solution

u=u(t,z) = /Rd Pa(t, 7;9)u(0,y) dy

is of polynomial growth of order oo — e as in (1.7), then (1.8) holds.

Proof. From [4, (1.8), (1.14), and (1.10)], there exist constants C; and Cy such
that for any t € (0,1] and z,y € R?,

Clt CQt
(2.1) 5 Spalt,ziy) < p
(tl/a+|x_y‘)d+ a (tl/a+|$—y‘)d+
and
Co
(2.2) |0tpa(t, 25 9)] < :
(tl/“ + |z — y|)d+a

Thus, the conclusions of the lemma are true for £ =1. Now we proceed by induction.
For any integer k > 1, we assume that

Ck(k—1)k1 1
108 pg(t, ) < D)
thk—2 1/
(t/e + o —y|

)d+a,te(0,1].

Without loss of generality, we may assume that Cy < C'/2. Using the semigroup
property and (2.2), for any ¢t € (0,1] and 7 € (0,t), we know that

0fpa(t,x;y)=/ Opa(t — 7,2;2)08 ' pa (7, 239) dz.
Rd

Therefore, by (2.2) and the inductive assumption, it holds that
(2.3)

CHH1/2(f — 1)k—1 1 1
|afpa(t7x;y)\ < (k—2 ) / d+a d+a dz.
T RY ((t— 7)o+ |z — 2]) (Ve + |y — 2)

_ (k=1)t
Then for any t € (0,1], we take 7= =

On the one hand, if ¢ > |z — y|*, then we have

Ck+1/2(k, _ 1)k—1 1 1
|0F pa(t,23)| < - / = 2
+ Tk 2 T(d—‘,—(x)/(l Rd ((t77—)1/a+|xfz|)d+
(2.4) _CRPAGk DM 1
. = Tk—2 rldta)/ot — 7
ORISR ] Ck+1Ek 1
< < —= &
A e P )

provided that C is sufficiently large.
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On the other hand, if t|z — y|*, by (2.3) and

Rdc{z:|x—z|2|xgy}U{z:|y—z|2|m;y|},

we have
(2.5)
|0¢ pa(t, z;y)]
< Ck+1/2(k_1)k—1 1 1 d
= k2 1 dra’ d+a 4%
{zlz—2>lz—yl/2} ((t—T)V/2+|z—2]) (Ve + |y — 2|)
Ck+1/2(k_1)k71 1 1 p
7'k_2 . 1/« dta 1/« d+a &
{zly—21>lz—yl/2} ((t—T)Vo4|z—2)" " (71/2+]|y—2])
- Ck+1/2(k_1)k—l 1 1
- Th=2 1/« d+a R 1/« d+a dz
((t—7)Vo+|z—y|/2) {zle—z|2la—yl/2} (T1/*+]y—2|)
Ck+1/2(k71)k71 1 / 1
Th=2 (r/otla—y|/2) T Sty 2120 -u1/2) ((t_T)l/“+|x_z|)d+a
Ck+3/4(k _ 1)k—1 1 1
= k—2 dto
T (E=m)Motla—yl/2)"" T
Ck+3/4(k _ l)kfl 1 1
N S L
Noting 7= (k?)t and t|x — y|%, by (2.5), we can see that
| X ( )| Ck+7/8)k 1 Ck+1pk 1
2.6 Oy pa(t,;y)| < - Py o
( ) t tk 1 |ZL'7y|d+ tk 1 (tl/a+|I—y|)d+
The combination of (2.4) and (2.6) completes the induction and gives (1.6).
Next, we prove (1.8). We claim that
(2.7) u(tw):/dea(tw;y)U(Qy) dy,
the proof of which is postponed to the next subsection. Then we have
Okult.)= [ obpa(t.:9)u(0.y) d
R4
This together with (1.6) implies that
hutt.o) < [ |okpaltzsy)llul0.v)ldy
R,
CrH1Ek 1
S <1+ p1" ) dy
Rd tk 1 (tl/a+‘$7y|)d+
CrH1Ek 1
S S+ [al" o o = gl dy
R tk 1 (tl/a+‘1jfy|)d+
< C«k+1kk 14+ |l‘|a_€ 1 .
- thk-1 t te/a |7’
i.e., u is time analytic when ¢ € (0, 1].
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2.2. Uniqueness of solutions. In this subsection, we prove that the mild so-
lution

u(t, ) Z/dea(t,m;y)u(O,y) dy

in Theorem 1.2 is unique among smooth solutions under the growth condition (1.7).
This will imply (2.7). The proof is based on Propositions 3.4 and 3.5 of [7], which we
recall here for the reader’s convenience. The idea is that once a solution is in C7 with
a small v € (0,1), then it is in C* with a € [1,2).

The first lemma is about the case when « € (1,2).

LEMMA 2.2 (Proposition 3.4 of [7]). Let wys(-) be a modulus of continuity of a
Junction f = f(t,z) in Q3/4(1,2¢), that is,

|[f(t,2) = f(,a")] Swp(max{le — 2’|, [t = '|/*}) V(t,2), (', 2) € Q37a(1,20),

where Q- (t,x) = (t — r*,t) x B.(x). Assume that k(-,-) satisfies (1.3) and (1.4), and
assume that v is a smooth solution to

ug(t,z) — LEu(t,z) = f(t,x), a€(1,2), (t,z)€[0,1] x RY,
and u € CV([0,1] x RY) for some € (0,1). Then it holds that

[u]z;le(lJO) + [Du]fa—l)/a,Ql/z(Lwo) + ||6tUHL°°(Q1/2(1,a;O))

3
< CHUH’Y/(X/*/;[O,HXRd + CZWf(27k>

k=1
for a constant C' > 0. Here
ul?. o) = sup u(t, )] ce o))
[ ] iQ1/2(1,20) te(l—(1/2)a,1)[ ( )] (B1/2(w0))
[Du]fa—l)/a,Ql/z(l,zo) = EBSUP( )[Du('axﬂc(wl)/a((1_(1/2)a,1))7
z 1/2\(Zo

and |[ul|y/a,i[0,1]xre 5 the th)éa,w norm in [0,1] x R%,
The second lemma is about the case when o =1.

LEMMA 2.3 (Proposition 3.5 of [7]). Assume that x(-,-) satisfies (1.3) and (1.4),
and assume that u is a smooth solution to

up(t,x) — LEu(t,z) = f(t,x), a=1, (t,z)€[0,1] x RY,

and u € CV([0,1] x RY) for some v € (0,1). Then it holds that
[Du] L= (Q,5(1,20)) T 106Ul Lo (@) o (1,20)) < Clltlly 150,17 xR + Cwa(Q*’“)
k=1

for a constant C > 0.
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The proof of the uniqueness starts with the following lemma.

LEMMA 2.4. Assume that k(-,-) satisfies (1.3) and (1.4). For (1.1), suppose that
a smooth solution u=u(t,z) is of polynomial growth of order o —e, i.e.,

(2.8) lut,z)| < C1 (1 + |2|* %) V(t,z) € [0,1] x RY, a€[1,2), e € (0, ).
Then for a constant C' >0 and for any xo € R?, it holds that
(2.9) [U]3,q, 2(1.00) < C (14 |20]* %), £>0,

where

u7. 2oy = sup U(t, )| Lip(By (=
[ ]1,Q1/2(1, 0) t€(17(1/2)a,1)|| ( )HL p(B /2( 0))

and Lip means the Lipschitz norm.

Proof. From Proposition 2.4 of [8] or Theorem 7.1 of [20], there is a small constant
~v € (0,1) such that

(2.10) [Uly/a:@/5(1,0) < Cllull oo ((0,1)521 (wa))»

and

[ull Lo ((0,1); 1 (wa)) = SUP / ut,z)]
y1)ib1 (Wa te(0,1) JRd 1—|—|x|d+a

_ 1
where Wo = W

By (2.10), the growth condition (2.8), and the space translation x — z + x¢ for any
zo € R%, we have

t
[u]'v/ary;ng(l,xo)SC sup /R wdx

(2.11) te(0,1) Jra 14 [z]dHe
! 14 |z|@—e 4 |zg|o—e _
<c [ Bt <o i)

The next step is to prove that
(212> [u]i;Qs/s(l,xo) < C(]' + |x0|)oz—8.

We modify the proof of Theorem 1.1 of [7].

Take a cutoff function n = n(t,z) € C§°(Q7/s(1,20)) satisfying n=11in Q5,6(1, 7o)
and |0} Din||p~ < C when i € {0,1,2} and j € {0,1}.

Let (t,2), (t',2") be two points in Qs3/4(1,20), and let v(t,z) := u(t, x)n(t,z). Then
in Q3/4(1,20),

(2.13) 0o =n0iu + Onu =nLiu+ Omu = Lyv + h + Oinu,
where

§(t,w,y)k(z,y)

[y|d+e dy

h=nLiu— Liv=p.v.
R4

and

(2'14) g(tvx’y):u(t?x_'_y)(n(tax) _n(t’x+y))'
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We are going to apply Lemma 2.2 or Lemma 2.3 to (2.13) in Q3/4(1,70) and
obtain corresponding estimates (2.12) in @Q5/5(1,20). To this end, we only need to
estimate the Holder seminorm of h in Qs/4(1,z0).

First, when |y| <5/6 —3/4=1/12, by (2.14), we have

(2.15) £t z,y) =E(t, 2", y) =0.
By the assumptions on 1 and (2.14), it holds that

C|u(tlvl'/+y)|v |y| >1,

(2.16) 1€t 2", y)| <
Clu(t', 2" +y)llyl, 1/12]y[1.

Now by the triangle inequality, we deduce that

|h(t, ) — h(t',2")]
‘(g(tvmvy) _g(t/’x/ay))ﬁ(xvy”
: /Rd Jyl @t dy
(2.17) )
@, 2" y) (k(2',y) — K(z,9))|
+/Rd dy .

‘y|d+a

11

By using (1.4), (2.8), (2.15), and (2.16), we have

(2.18)
Clu(t,z’' _ B Clu(t .z
IIS/ lu(t', @ +y)d”+3{1|’€2|x | dy+/ Ju( ’£a+y)|n2|x—m’\ﬁdy
lyle(1/12,1) [l st Yl
</ C(1+|930|“*E+|y|°‘*€)|$*17’|5d
“ Jyle/i2,1) |y|dFa-t

C 1+ T Oé*E_’_ a—eg _
+/|| 1 ( | (|)Z|J|d+a |y| )|$—xl|ﬁdy§0(1+|$o|a €)|£C—{E/|B.
Yy|>

Now we estimate /. When 1/12 < |y|2, by the fundamental theorem of calculus, we
have

1
&(t,z,y) —f(t’,x’,y)=—y/0 (u(t,x +y)Dn(t,x + sy) —u(t', 2" +y)Dn(t', 2" + sy)) ds.

Therefore, by (2.8), (2.11), and the triangle inequality, it holds that

(2.19)
|§(t7$7y) - § (t/’xlvy)|

1
<l / u(t,z +y) — u(ta' + )| [Dn(t' o + sy)| ds
0
1
] / lu(t,z + )] [ Dtz + sy) — Du(t',a’ + sy)| ds
0

< Clylfu(t,z +y) —ut', 2" +y)| + Clyllu(t, z +y)| (Jo — 2’| + [t = '])
< Clyl(1+ Jol*=#) (lo = &' + [t = /%) + Clyl(1+ fwo*~#) (J — /| + [t ']
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When |y| > 2, by (2.14) and (2.11), we have

|§(t,x,y) _S(t/v'r/’y” = |u(t,a: + y) - u(t',x’ + y)|

2.20
(220 < C(1+ ool + 1317 (ja =7 + e~ /).

Thus, by (1.3), (2.19), (2.20), and (2.15), we infer that

C 1+ a—¢ _ /'y+ t_t/'y/a
< 10 ool ™) (o =+ =)
lyle(1/12,2) |y
1 a—e ! t*t,
+/ Cly|(1 + |z )d(lfi z'| + | I)dy
(2.21) lyle(1/12,2) |yl

C(1+ |zo|* 2 +|y|*=°) (|lo — 2| + |t — ']/
+/ (1 4 |xol ly| lﬂl "+ [t =t )dy
lyl>2 [l

<O+ fool*™#) (lo =@/ + |t =)
Plugging (2.18) and (2.21) into (2.17), we deduce that
|h(t,z) — h(t',2')| < C(1+ |wo|*~°) (|zr —a e t/p’/a) ,
where 4/ = min{~, 8}, which implies that we can take the modulus of continuity as
wp(r)=C(1+ |x0|a75)7"7/

for any r € (0,1). According to Lemma 2.2, it follows that

I
S 3 - a—e 3 K a—e
(2.22) > wn <2k+1) <370+ |wo*7?) (2k+1> < O(1+ |ao|®9).
k=1 k=1

Now we consider two cases.
Case (1): a € (1,2). In this case, we apply Lemma 2.2 to (2.13) in Q3/4(1,z0)
with a scaling argument. From (2.11) and (2.22), we have

xT - 3
()05 s (120) < CllVll e (0.11x) + Cl0)y jasfo gt + C > wn <2k+1>
k=1
< Cllull Lo (@qs(1,20)) + Clttly/a,71@s(1,00) + C (LA |0 *7%) < C(1 + [20]*7F)

by noting that v = 0 outside of Q7/5(1,z0). Because n = 1 in Q5/5(1,20), we get
(2.12) immediately.

Case (2): a=1. In this case, we apply Lemma 2.3 with a scaling argument.
Using (2.11) and (2.22), we have

[ee]
3
D= @upttany < Clollosoapensy + Clbronpens + € Yoo g
k=1

< CHUHL‘X’(QUS(LxO)) + C[u]’y,'y;Q”S(l,:co) + C(]‘ + |‘(E0‘a7€)
< C(1+ |zo|*™9),

which implies (2.12) again.
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Finally, by the interpolation inequality, (2.12), and (2.8), we arrive at

[U}T;Qlﬂ(l,xo) < C[U}E;ng(l,xo) + CHUHL‘”(Qs/s(l@O)) < O(l + |x0|)a7€7

which finishes the proof. 0

Now we are ready to prove the uniqueness part of the theorem, which is stated
as follows.

LEMMA 2.5. Assume that k(-,-) satisfies (1.3) and (1.4). Then there is an unique
smooth solution u=u(t,x) to (1.1) satisfying the initial data w(0,-) and the polynomial
growth condition (1.7), which is given by

ult,z) = / et )u(0,y) dy¥(t,) € (0,1] X R

Proof. By linearity, we just need to prove that if a smooth solution u satisfies
(1.7) and u(0,z) =0, then u=0.

Fix (tg,z0) € (0,1] x R%. By shifting the coordinates, we may assume xo = 0, and
it suffices to prove u(tg,0) = 0. Now let L* = (L%)* be the adjoint operator of L%,
and let pf (t,z;s,y) be the heat kernel of L*, which by definition satisfies

(2.23) {atpz;(t,:c;s,y) — Lp5(t;5,y) =0, t>5 and 2,y €RY,

Pa(s,;5,y) =0(x,y).

Because the heat kernels of LY and L* are independent of time, we have
(2.24) Pa(t,@;8,y) =palt —s,2:0,y), pu(t,@s,y) =po(t —s,2;0,y).
It is also known that

(2.25) Pa(t,z;5,y) =po(t,y;s, @), t =,

which can be seen as follows. For any to,s0 € (0,1) with so < ¢, using (2.23) and
(2.24), we have

to
//LZpa(t,Z;SO,y)pZ(to,Z;t,x)dzdt
S0 ]Rd
to
:/ / LEpa(t — s0,2;0,y)pk(to — t, 2;0,2) dzdt
o JR4
to

= / Otpa(t — 50,2;0,y)pk (to — t,2;0,2) dzdt
S0 Rd
:poz(to - sOax;Ovy) _pZ(tO - San;Ov‘r)

to fpd
+/ Dot — 80,2;0,4)0:p (to — t,2; 0, ) dzdt.

S0

By the definition of the adjoint operator, (2.23), and (2.24), we reach (2.25). The
integrations above are justified due to known decay estimates of p,, i.e., (2.2).
Then we take a cutoff function n=n(x) € C°(B2(0)) such that for a constant C,

(2.26) n=11in B1(0) and |Dn|+|D*y <C.
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We test (1.1) with p% (tg — t,2;0,0)n(z/R) and use (2.23) to get
to
0 :/ / ue(t, x)pl (to — ¢,2;0,0)n(z/R) dxdt
Rd
0 J:
—/ / Liu(t,z)pl (to — t,2;0,0)n(x/R) dedt
Rd
u(to,0) / / (t,x)(0eph)(to — t,2;0,0)n(x/R) dadt
Rd
- / [ Erutt.a)p; (o~ 1.5:0.0)0(0/R) ded.
0 Jra
Therefore, using (2.23) and the definition of the adjoint operator, we infer that

(2.27)
u(to,

0
=[]t 0—t:0.00m(a )=} (o1, 0:0.0) L% (ult. )/ B) o
o [ [t 2o — 6w 0,0) (ae/R) — nl(w+ 2) /R )

_p../o /R/R dzdzdt

el

I ult,y)pa (to — t,2:0,0)(n(z/R) —n(y/R)k(z.y —2) ,
e st

|z — yld+e

J1

where we took z =y — z in the last step. In the following, we omit p.v. when there is
no confusion.

Next, we aim to show that J; — 0 as R — oo, treating the cases « < 1 and v >1
separately.

Case (1): a < 1. This case is simpler since the singularity in the integrand is
weaker. Using (1.7), (1.3), (2.25), and (2.26), we have

e /to / / u(t,y)ps(to — t,2;0,0)(n(x/R) — n(y/R))k(x,y — x) dydzdt
0 R4 JRI\ Br(x)

| — yldte

o u(t,y)pg (to — t,2;0,0)(n(z/R) — n(y/R))k(z,y — x)
+/ /Rd /BR(Z) dydxdt

| — yldte

—t,0;0,x) _
<C/ / / 1+ |y|*°) dydzdt
R JRI\ Bg(2) |33_ o —ylite SR

pato t,0;0,x) _
1 ) dydxdt
R/ //B e 0 (o by

ot t,0;0,
< c/ / / Pallo Z00:0.2) () ppjome [ — yjo=e) dydat
R4 JRI\ By (z) |z =yl

patO tOOLI}) — _
14 |2|*7% + | — y|*™°) dydxdt
“al Ji i e Ll =

to 1 1 a—¢e
SC/ / Pa(to —t,0;0,2) <+—|—|m|> dxdt — 0 as R — oo,
Rd

Re R
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where for the last step we used (2.1) and

/dea( —4,0:0,2)(1 + 2]°%) da
(2.28)

C(to—t) 21978 d l1—¢/a
S/ ((toft)l/“+|:c|)d+a( e <61k o =0T

Case (2): a > 1. In this case, by the substitution z — —z in the second line of
(2.27), we have

pe(to —t,2;0,0) (n(z/R) —n((z — 2)/R)) k(z, z)
Jp = / /Rd /Rd dzdzdt,

‘Z|d+a

where we used k(x,z) =k(x,—z) in the last equation. Then by
o (1(5) 0 (Z5)) vutee 9 (o () -0(75)
~(ulte =) —utte+2) (n(5) -0 (T5))
—u(t, x4+ 2) (n (ﬁ;) —2n(2)+77<x1_%z))’

we can write

/to/ / u(t,x—z)—u(t,z+2)) (77( )—n(*% )) K(@, 2)p5 (to—t,2;0,0) dzdzdt
R JRd

‘Z|d+a

/// u(t,atz) (n(52) - 2n( (7)) (@, 2)pa(to—t,2:0,0) |
Rd JRd |2 |

J3
For the term Js, by (1.7), (2.25), and (2.26), we deduce that

—t,0;0,x) _ _
J3| <C 1 a-e T8 dzdxdt
| /5] / /Rd /Rd\BR |Z|d+0‘ (1+ |z|*% +2|* %) dzdx

to
—1,0;0,x)
1+ |2]*7% +|2|%7%) dzdxdt
v L) R e e

1 14|z~ =
< . .
c/ /dea t,o,o,x)(R€+ P )da:dt—>0asR—>oo,

where we used (2.28) in the last step.
Finally, we estlmate Ja. When a> 1, by (1.7), (2.9), and (2.28), we have

(to — t,0;0,
|J2|<O/ // Pallo ~000.3) (1 4 ppjeme 4 |sfo=) dadudt
0o Jr JRO\BR(0) |z]d+e

to
o (t t
/ / (fo d+0020 x)(1+\x|0‘_€)dzdxdt
R4 J Br(0) |2|

to
wlto = 1,0;0, . )
/ / / £ dto—1 x)(1+|$|a S+ |2|*7°) dzdxdt
'R R4 J Br(0)\Br(0) \ZI

Jy
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fo 1 1+ |z
<C alto —£,0;0,2) | = + ————— | dadt
< /O/]de(o il?)(REJF Ro )95

to
+g/ /pa(toft,o;o,x)((17lea)(1+|x|a*€)+(R1*671)) dxdt
R 0 Rd
—0 as R— o0.

When a=1, we only need to estimate Jy slightly differently. By (2.28),

to
Jy < % / pi(to —t,0;0,2) (In(R)(1+ |z|' =)+ (R'"°—1)) dz—0 as R— oo.
0 Jra

Combining these two cases and plugging into (2.27), we get u(to,0) = 0, which finishes
the proof. 0

2.3. Completion of proof of Theorem 1.2.

Proof. We have proved part (a) and (b) of Theorem 1.2 in Lemmas 2.1 and 2.5.
Thus, it remains to show part (c). First, we fix a number R > 1 and let z € Br(0),
t €[1—4,1] for some small § > 0. For any positive integer j, Taylor’s theorem implies
that

(2.29) u(t, ) —Za,fu(l,x) (t ;'1)1 = (t;
i=0 ’

Jj o
!1) Olu(s,z),

where s = s(z,t,7) € [¢t,1]. By (1.8), for sufficiently small é > 0, the right-hand side of
(2.29) converges to 0 uniformly with respect to x € Br(0) as j — co. Hence,

i t—1)
u(t,z) =Y Hu(l,z ( —;
(t) = Y- ofu(1.0)
7=0
i.e., u is analytic in time with radius 8. Denote a; = a;(z) = & u(1,z). By (1.8) again,
we have

(t—1)

and Lgu(t,x)zg Lgaj(x)i,‘ ,
; J!
Jj=0

(t—1)

j!

Ou(t,x) = Zaj+1(l‘)
§=0

where both series converge uniformly with respect to (¢,z) € [1 —4,1] x Br(0). Since
u is a solution of (1.1), this implies that Lfa;(x) = a;j11(x) with

Jaj ()] < CTHG7 (1 + |2]*79).
This completes the proof of Theorem 1.2. O

3. Fractional heat kernel estimates on R?. In this section, we estimate the
time and space derivatives of the fractional heat kernel p,(¢,x) for (1.5). The main
tools are the Fourier transform and contour integrals. We first state and prove the
following lemma, which is needed for the proof of Theorem 1.5 and Corollary 1.6.

LeEmMA 3.1. (a) Ifa>0, >0, and t >0, there exist constants C, C1, and Co
such that

. c.clpt ¢ B+d
—HE| gikz| ¢\ B : 105
(3.1) ‘/Rde e~ ¢] df‘émm{ [P ,t(m_d)/af( 5 > .

where I is the gamma function.
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(b) Let B=(p1,P2,.-.,Ba4), where B; is a nonnegative integer with j € {1,2,...,d}.
Then we have

(3.2)
/ eﬂaae@gﬁdg‘ < i {clcs“*'ﬁ'(w Bl o <ﬂ| +d)}
R4 - ’

|x‘a+\ﬁ\+d > ¢(IBl+d) /e «

d
where &P il .ggd and |B]:= kz—:lﬂk‘

Remark 3.2. When t = 0, the integrals in (3.1) and (3.2) can be understood as
the limit as ¢\, 0.

Proof of Lemma 3.1. The bound W%F (%) on the right-hand side of (3.1)
is easily obtained as follows:

. . C B+d
—t|E% gikz| ¢ —tEl* 1 ¢1B e =
‘/R il d&‘s/we g ds—tw)/ar( . )

Similarly, the bound MB‘%F( 16 Hd) on the right-hand side of (3.2) holds because

«

el e C |8 +d
tE|* ik ¢ B el |18l ge —
/]Rde e dﬁ‘ S/Rde €[ds = t(\ﬁl-&-cl)/aF ( a > :

We shall use the technique of contour integrals to obtain the first bounds in (3.1)
and (3.2), respectively. To simplify the calculation, without loss of generality, by
rotating the coordinates, we assume that = = (m Lzl m)

) \/E? \/E? M \/E *

For any point & = (§1,&2,...,&4) and for any j € {1,2,...,d}, we consider &; as a

complex number with modulus 7; and argument (angle) ;. For a large R > 0 and

¢ :=min{r/16,7/(16a)}, consider the regions in the complex plane,

Fg) — {noe“’b‘ Mo = (O,R)ﬂb S [07¢]}a
0% = {noe™| no € (0, R), ¢ € [r — 6,7},

and denote
Cy! = {Re’| we0.d]} and CF) = {Re"| Y € [~ o,m]}.

We calculate the contour integrals of the functions e *€1” %% |¢|8 and e~ tI¢I” ¢ ¢B
on the boundaries of the sectors I‘g) and Fg). For the term [£|* in the above two
functions, where a =« or 3, we extend it to be a holomorphic function,

d a/2
(Z g,%) in C¢,
k=1

which needs to be specified by choosing suitable branches. On the one hand, when
Re(¢;) > 0, we select the branch so that the function w = 2%/2 maps the sector with
angles [0, 2¢] to the sector with angles [0,a¢]. On the other hand, when Re(¢;)0, we
make the function w = 2%/? map the sector with angles [—2¢,0] to the sector with
angles [—a,0].

The main idea is to use the contour integrals to equate the integrals on the rays
1; = 0,7 and the integrals on the rays 1; = ¢, ™ — ¢, respectively. The following are
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some preliminary calculations on the rays ¢; = Z —sgn (Re(;)) (5 — ¢) and the arcs
C}(%) or Cg), respectively. Here sgn (-) is the sign function.

First, we consider the case when £;’s are on the rays ¢; = Z—sgn (Re(§;)) (5 — ¢),
where we can write &; = n; exp (% —sgn (Re(&;)) (5 — ¢) i) with n; € [0, R]. In this
case, for any fixed & € I‘( )y FEQ), where k € {1,2,...,d}, we have

a/2

d a/2
(3.3) <Z 513) — | e2sen (Re(§;)imo, 2 2y 252 ’
k=1

k#3j
where a =« or 3, and

(34) €€ —exp iexp@—sgnme(sj))(g )) '“kaﬂ
k#j

Notice that if ¢, = —sgn (Re(&)) (5 — ¢) for all k€ {1,2,...,d}, it holds that

2

d a/2 a/
(35) <Z gi) <Z 7]2 2sgn (Re(&x )“T¢>
k=1

and

(6) o= p(i (G s (o) (5 - 0) ) '””)
) e exp|i ) ex 5 sgn (Re(&, 5 i nk\/ﬁ )

k=1

Next, we treat the case when &; is on the arc Cg) or Cl(;?), respectively.

By the definition of the regions Fg) and Fg), for any fixed & € Fg) Ufg), where
k# j and 1, € [0,6] U [ — ¢, 7], the angle between R?e%%i and P &2 is less than
/2, so we have

(3.7) R2®5 13 &R > |[R%e*V9|.
kg

Moreover, since |arg(£7)| < 2¢ for any k # j, where arg(-) is the argument (angle), it
follows that

arg | R2e2%i 4 Zg,% <2¢.
oy

This together with (3.7) implies that
a/2

(3.8) R*cos (ag) <Re [ R2*5 +> "¢}
=

Now we show that the integral of e_t(zzﬂii)ameig“(zzzl €2)5/2 on the arc Cg)
or C’g) tends to 0 as R tends to infinity.
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On the arc Cg), we can write {; = Re'¥i | where v; € [0,¢]. By (3.3), (3.4), and
(3.8), we have

/ 4\ B2
. _ 4 a 2
thgéo /C(ne ) <Z§k> d&;

¢ |z

. " s T |z
< lim exp | —t(R%e%i —I—Z@%)O‘/Q exp | iRe™i 1 —|—Zz§k—
fimeeJo k#j vd k£ vd
(3.9) 8/2
x || R 4> ¢} |iRe™s | dip;
k#j
. B/2
< CRlim et cos(ad) [ R 4 Z 95 Rdip;j=0
—o0 Jo oy

for any fixed &, € T UT) | where k # ;.
Similarly, on the arc C’g), where &; = Re'¥i and 1, € [ — ¢, 7], we have

8/2

3 _t(zdzlf a/2 ] | =

(3.10) Jim /C(z)e k=1 Sk <Z§k> déj| =0
R

for any fixed & € I‘g{l) U I‘g), where k # j.

Combining (3.9) and (3.10) implies that we can apply contour integral to §; if
& € Fg) Ufg) for all k # j. Therefore, by (3.3), (3.4), (3.5), (3.6), (3.9), and (3.10),
using d times of contour integrals, we infer that

(3.11)
/ e—tlilaei£m|§|ﬁ d¢
]Rd

a/2
2isgn (£1)¢ 2_|_ 5 )
D [ (g
X exp <iexp (7;2 —sgn (Re(&)) (g — ¢) ’L) |x| + Z i€k i )

d B/2 .
X (e%sg“ E)ep2 4 Zﬁ%) exp (7; —sgn (Re(&1)) (g — (25) z) dmd&s -+ -d&q

k=2

a/2
— = Z ce. Z / exp | —t (Z eZzsgn (Er)o )
sgn (§1)==%1 sgn (£q4)==%1

d i T ||
X exp (i;exp (2 ~ sen (Re()) (5 ) ) nkﬁ>
d B2 4
x (Z <€k>¢nﬁ> H ( —sgn (Re(&e) (5 —9) ) i,
k=1 k=1
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where R¢ stands for the first quadrant of R? and dn = dnydns - - - dng. Plugging

J a/2
Re (Z e2isen (5k)¢77]2€> > |7]|0‘ cos (04(25)
k=1

and

p(i: p<mg (R(f))(ﬂ(b)) |x>|_ ( |x|>
ex 1 ex B) Sgn CelCk 5 1 77]6\/& exXp ZSHI

k=1

into (3.11), we have

S5 sin(6)klel/v/a

/ e—tlflaei€w|§|5d§ <2d/ et cos(ad) = |77|'8d77
R  Jre
5= sin(@)nilal /v &

<0 [t enton T ORI
(3.12) Ry k=1

<CZ/ 7t\m\"cos ag) 7sm(¢)nk|z|/\f ﬁdnkH/ 7sm 771\1|/\de71

i#k
« O [T —tpcosad) j—sin(@)plel/Va B g, I
=zl ¢ ¢ prap = -1
0

where
oo B
[:/ e—tp"COS(W)e—plw\/\/Epﬁdpg/ e=Plel/ Vg, < | (|/:3+1 (B+1).
0 0

Therefore, we infer that

— @ s C1C.
(3.13) ] / el e 5|ﬁd£’ IW

for some constants C; and Co, which is the first part on the right-hand side of (3.1).
Finally, we prove (3.2), which is a consequence of the following claim.

CrLam 3.3. For any B = (B1,...,B4), where B; is a nonnegative integer, there
exists a constant C' >0 such that

) a+|Bl;
—tlel® igw B ge| < clBla+1 (@ [B) TP
/Rde e gdg’_c R

We prove this claim by induction. When |3| = 0, by integration by parts with
respect to &1, we see that

/ e el gt ge :L\/th
R4

]

—tlelr 81 igay
[ e

Then using the method of contour integrals similarly to (3.12), we find that

[t S ey < S
Rd Z|§|2 @ | |O¢+d 1
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which implies that

a Ct
—t[¢] 1fﬂ‘d <
(& e .
/Rd 5‘ N ‘x|a+d

Without loss of generality, we assume that 5, > 0. For any positive integer k, we
assume that Claim 3.3 is true for any |3|k. When |3| = k, by integration by parts
with respect to &1, the induction assumption, and (3.13), it holds that

/Rd e—tlélaeiérgﬁdg‘

d o tavd o
< £ e tlel elg‘”,ﬁ—lf’@df + avd / e tEl" gk il_agﬁdg
2| Jra i&1 | | /ga €
o Vi aygia (@18l = DO ta/d CiOfP (a4 | - 1)t e
e |z|otIBlI=1+d || |z|otIBl+d—1
< cotipln (@ + B 1P
= |m|a+|ﬁ|+d

Thus, we finished the proof of Claim 3.3 and therefore completed the proof of Lemma 3.1.
Now we are ready to embark on the proof of Theorem 1.5.

Proof. By (1.9), the heat kernel p,(t,z) of the fractional heat equation (1.5)
satisfies

|0Fpa(t,z)| = C(d, a)

[ e eegpa
Rd
ka ka
which implies (1.10) by part (a) of Lemma 3.1. From the first bound % in
(1.10), we see that p, is of Gevrey class in time of order @ when x # 0. By the second
bound tkf;/al" (%) in (1.10), p, is analytic in time when ¢ > 0.
Furthermore, for any positive integer k, by (1.9), we have

/ e—t§|aei§x§kd5‘ ,
Rd

|0k pa(t,z)| < C(d,) Y |0Fpalt,z)| = C(d,a) Y
[k|=Fk |k|=Fk

where k = (ki,...,kq), €5 =€k 5‘1, and we sum over all the k satisfying |k| = k.
By (1.11) and the fact that we have (kjﬁ;l) choices of k satisfying |k| = k, we infer
that

—_ a+k a+k
8§pa(t,x)|<0(d,a)<’“+d 1>min{0102 (a+k)*™™  C F<k+d>}’

d—1 |z|otktd ' t(kt+d) /o o
k+a k+ao
which implies (1.11) for a sufficiently large constant Cs. By the bound %

in (1.11), po is analytic in space at || # 0. By the other bound W%F (%)

(1.11), p,, is of Gevrey class with order 1/a in space when t >0 for any x € R%. 1]

Remark 3.4. Theorem 1.5 is consistent with the fact that the heat kernel of the
heat equation d,u — Au =0 is of Gevrey class of order 2 at ¢t = 0. Besides, when a =1,
it is well known that py(t,2) = (t2+|z\§)t<d+1>/2‘ By a direct computation, we see that
p1(t, ) satisfies all the results in Theorem 1.5.

in
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We end this section by proving Corollary 1.6.

Proof. By Theorem 1.2 and the growth condition (1.7), we know that there is an
unique solution to (1.5):

u(t,x) = /]Rd Pa(t,z —y)u(0,y) dy.

Therefore, by (1.11) and (1.7), we infer that
Ohu(t. o) < [ |0kpalts — u)[u(0.)|dy
R,

C k+d .
<[ gt (M) @bl

C1C5+ (k + o)k tot
+/ Ch(1+ [y]* %) dy
ROBy ()  |T—ylothHd )

C(1+\a:|0‘_5)r k+d +/ Crratl(fqa)ktat
< t(k+d)/a o R\ B, () |z—y|otd

(IH|z|* " 4 z—y|* %) dy

CQA A |x]*7°)
S T 0rd)/a

r (/{Jl—d) +Ck+a+2(k+a)k'+a(1+ |x‘o¢—s)t’

which implies that v is analytic in space when « € [1,2) and v is of Gevrey class of
order 1/c in space when a € (0,1). O

4. Fractional heat equation on a manifold. In this section, we prove Theo-
rems 1.7 and 1.8 in the setting of M, which is a d-dimensional, complete Riemannian
manifold.

First, we recall a well-known lemma.

LEMMA 4.1. Assume that condition (1.13) is satisfied. Then for any D > 0,
B >0, and t >0, there exists a positive constant C' such that

Dd(z y?

(4.1) / Bl (z, )" dy < Ct9/2.

Proof. We give the proof for completeness. By condition (1.13), we have

/ eiDd(z’y)Q/t d( )Bd
-, . alr,y )
M |B(x,V/1)|

/ e—Dd(z,y)?/t d(.y)d o—Dd(z,y) /t Aoy d
- TRy WY y+/ oA, y)" ay
Bavh |B(@ Vi)l M\B(vi) |B(@,V1)]

0o —Dd(z,y)?/t
§0t5/2+2/ e DA

<Cf/? 4 Z'BI 2 \[ |e=DEH12 gk /)0

7d(zvy)ﬂdy
2k=1/t<d(z,y)<2F/t |B<.’IJ,\/7§)|

<CtP/? 4 Z c*‘“e*D@’““)"‘(Q’“\/i)ﬁ <CtP/?,
k=1

where C* is the constant in condition (1.13). ad

We are ready to prove Theorem 1.7.
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4.1. Proof of Theorem 1.7.
Proof. Tt is well known that there is a connection between the heat kernel E (¢, x;y)
and the fractional heat kernel p, (¢, x;y), which can be found, for instance, in [2], i.e.,

palt,asy) = / E(s,z;)m(s) ds,
0

where 7;(s) is a density function of u* satisfying

m(s) =t~/ (72 s).

Therefore,

(42) palt,ziy) = / E(s, )t~/ (%% s) ds = / E(/* s, 2y)n.(s) ds.
0 0

It is also known that there exists a constant C' such that
—a/2

4.3 0<n(s)<Cs 1725
S ~ )

which can be found, for instance, in Theorem 3.1 of [2], Theorem 37.1 of [5], or Lemma
1 of [12).
Then for any ¢ >0, by (1.15) and (4.2), it holds that

(4.4) u(t,x) / / E(t*%s, ;9)m (s)u(0, y) dsdy.
By Theorem 5.4.12 of [19], conditions (1.12) and (1.13) imply that there exist con-
stants C, dy, d2, D1, and D5 such that

dye~Drd@y)*/t doe—D2d(@y)*/t

15 he D By < 2D
(49 B V) B Vi)
and

_D2d($7y) /t
(4.6) 0:E(t, 5 y) e

=5 |B(z,V1)|
From (1.16), (4.4), (4.5), (4.1), and (4.3), we infer that

utols [ / B/ s, z) I (3)]u(0, )] dsdy

e—D2d(z, y)2 /(% %s)
<c / / m(s)(1 -+ d(z,0)°~ + d(z,y)**) dsdy

Vi2/es)|
_C(1+d(x,0)a f)/o 1(s )ds+C’/Ooon1(s)(t2/°‘s)(a5)/2ds

SC(Ier(:c,O)a*E)/ m(s)dstCt%/ glma/2,=s7% ((a—e)/2 4
0 0

< 0(1 + d(x,O)a_s) + Ct(a—s)/a

For any integer k > 0, we proceed by induction. First, we assume it is true that

k k—1 r.0)*¢
an et s S (B ).

t te/ o
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Then for any ¢ >0, by (1.15) and (4.2), it holds that

(4.8) af t,z;y) / / o E 2/@3 x;y)nl(s)af—lu(q_’ ) dsdy ¥ € (0,4).
By (4.8), (4.7), and (4.6), we have
(4.9)
|5 u(t, x; y)|
a- C e D)/ (=) %) _

Ck—l—l/Q k 1 k—1 —ng(my /((t )2/ s) 14+d ,0)2—¢ 1
) // (2 Y

V(t—r)?s)| T Tele
Ck+1/2 yh—1 7D2d(:v,y /((t—=7)2/*s) e
+ 1t_7 / / ey ) sy
=1+ I,

where we used the triangle inequality in the second inequality. By (4.1) and (4.3), we
have

(4.10)
k1721 _1k=1 /144 e—D2d(z.y)?/((t—7)%/*s)
A ( tdlz,0)7 >/ / i (s) dyds
Th2(t—7) T e 0o Jm t—T)2/O‘8)|
Ck+3/4(k _ 1) 1 —i—d(m 0)
<
- rh2(t—1) ( T +T€/“>/0 1(s)ds
C«k+3/4(k_1)k—l <1+d(1,70)a—5 N 1 )

,Q(t_T) T rela
and
CFH/2(f — 1)k~ e~ D2d(z,y)?/((t=7)*/s) o
b= / /M Ty ) ) duds
k+3/4 a
iy < CEREEDT / (& )2/“ )T e
- 7kt —17) 0
1

Ck+7/8(l€ )k
Tk— 1(t _ T)a/a

Now we set 7 = @ Consequently, by plugging (4.10) and (4.11) into (4.9), we
conclude that

|8fu(t,x;y)|
Ck+3/4(k _ 1)k71 1+ d(:c, 0)(175 1 Ok+7/8(k _ 1)k71
Th=2(t — T) < T 7'5/0‘) Th=1(t — 1)e/e
CHHLEF (1+d(m,0)°‘_5 L L )
- k-1 t te/a |7
which gives (1.17) immediately. d

The proof of Theorem 1.8 is divided into two parts: the proof of (1.18) and the
proof of (1.19). We start with the first part in the following subsection.
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4.2. Proof of (1.18) in Theorem 1.8.
Proof. By condition (1.13), it is well known that when r <s,
r ) log, C*

1
(4.12) Bl > & (=

S |B(z, s)|.

See, for example, Remark 4.2.2 of [23].
Therefore, by (4.2), (4.5), (4.3), and (4.12), we have
(4.13)
Pa(t, z;y)
</1 Ce—Dzd($7y)2/(t2/as) _1_(1/26_8701/2
0o |B(x,Vt2/os)|
00 _ T 2 2/&8
/ Ce—D2d(z,y)"/(t )Silia/Qeisﬁx/zd
1 |B(z, Vt2/2s)]
B /1 Ce=Dadlew)® /(%) | B(g,11/)] g—1-a/2,—s7%
0 B@O B Vi)
_ N2 42 o
/OO Ce Dad(x,y)=/(t s) S_l_a/Qe_sfa/zd
1 |B(z, Vt2/as)|

1 oo
C C* 1 —a/2 C —a/2
< —l-a/2 —s d / —1-a/2,_ —s d
—AB@ﬂmnw&mﬂs ¢ ) Bt ¢ ’
C

< —F.
~ |B(, /)|
If d(z,y) >t/ letting & = %, again by (4.2), (4.5), (4.3), and (4.12), we get

ds

S

S

S

(4.14)
© Cerhe/t d(z,y)’€\ " d(a,y)?
“xy)ué TG \famwﬂ( ahe) e
_D2/f g—l—a/2d§
d(x y o |B(z,vE&d(z,y))|

e—D2/¢ 1z
+d A v ey

D2/ |B(z,d(z,y))| g-1ma/2ge

) Jo 1B G N 15 Vo)
e—D2/¢ eay2
*d k/ Boamt e

e—D2/¢ a2 Ct
(e, y)° /|Bxd DIVeREe s R GG e B ()

d(z,y)* \B(Sc’d(xvy))l
Thus, we proved the upper bound in (1.18).
Now we show the lower bound in (1.18). By Theorem 3.1 of [2], there exists a
constant sg = sg(«) such that

as—l—(x/Q

(4.15) m(s) > m

Vs > sg.
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Without loss of generality, we assume that sg > 1 in the following. Then we consider
two cases.
When tY/® > d(x,y), by (4.2), (4.5), (4.15), and (4.12), it holds that

o0
Pa(t,z;y) =/ E(t**s,z;y)m(s) ds
0

/00 Cdye—DPrd(@)?*/(t*/s)

>

Jso |B(x, Vt2/2s)
/oo Cdle—Dld(w,y)2/(t2/D‘s) |B((,U,t1/a)‘

s |B(x, t1/*)] |B(z,Vi2/os)|

=Dy [ Cd; 1 L 8.
zer 20s>  ~
= /so |B($,tl/a)| C*slog: C*/QS §= |B(z7t1/a)|

—1-a/2 ds

(4.16)

S—l—a/2 ds

When t'/%d(z,y), letting & = (1?227,;;2’ again by (4.2), (4.5), (4.15), and (4.12), we
have

*_Cdie P/ (dwy)’e) T T dey)?
: B(x,\/zd@,ym( e/ > e
>t /°° P/ |B(x,d(z,y))]
(4.17) = d(z,y)* Jy, [Blz,d(w,y))] Bz, VEd(,y))]
Ct oo e—D1/s0 L
> (X/Qd
= d(z,y)” / Bz, d(w, )| (Ve 0 ¢
Ct
= W) 1B )]
Combining (4.16) and (4.17), we reach (1.18). ad

Palt, z;y) 2/

£717Q/2d§

Now in order to prove (1.19), we establish an estimate for high-order time deriv-
atives of the heat kernel E(t,z;y) first.

LEMMA 4.2. Let M be a d-dimensional complete Riemannian manifold satisfying
conditions (1.12) and (1.13). Then for any z,y € M, t > 0, and any nonnegative
integer k, there exist positive constants C1 and Co such that the heat kernel E(t,x;y)
of the heat equation

Oiu—Au=0
satisfies
O+ gh=2/3
B, V)|

Remark 4.3. To the best of our knowledge, up to now, in the literature, one can
only find the coarser bounds

|0F B(t,x3)| < ~Cad(ow)*/t,

o) _ .
akE t7$, < e Cad(x,y)”/t
OBt eyl < o )

in the manifold case, where C(k) is not explicitly calculated. See, for instance, [19,
Theorem 5.4.12]. Here we obtain a more precise result.

Proof. The proof is similar to Lemma 4.1 of [22]. However, since we have different
conditions here and we have the estimate of 9F E(t,z;y) for all time ¢ > 0 instead of
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€ (0,1], the proof is a bit different. We present the proof here for the reader’s
convenience.
Fix any tg > 0 and z(,yo € M. For any nonnegative integer k and j =1,2,...,k+1,

we define
1 ) jto .7\/%
Mj _{(t7$).t€ (to 2k tO) d(x:xO)m}’

MJ2 = {(t,x) te (to — (j_|—20k.5)t07t0> ,d(%xo)mj;k?\/%}.

1 2 1
Then M; C M7 C Mjy,.

Following the proof of Lemma 4.1 of [22], for a constant C, we have
2kk2k
(4.18) // |OF B(t, 2;y0)|* dadt < // E(t,z;y0)|* dzdt.
M

Now to estimate the right-hand side of (4.18)7 we have two cases.
Case 1: d(xo,Y0) < V4kto. In this case, we need to use a well-known result which
can be found, for instance, in Lemma 5.2.7 of [19]: Under condition (1.13), for a
constant C, we have

(4.19) |B(z,r)| < eC4@W/"| B(y,r)| Yo,y € M and 7 > 0.
By (4.5), (4.12), and (4.19), it holds that

k
2k 2k | ) 02k+1/2k‘2k|3($0, %”
t% E(t, z;y0)|" dodt < 51— ; 2
t2 min |B(z,v/%o)|
z€B(zo,(k+1)vE0/V2k)
k41
R | B(xo, %)I | B(z0,/T0)|?
tort |B(z0, v/to)/|? min |B(x, Vo)

z€B(wo,(k+1)v/to/V2k)
O2k+3/4) 2k (k - 1)1@20* (2C(k: + 1))
< —— exp [ L2
2" B(wo, vE0)| \ V2K V2k
2k+17.2k+1
< O 2R e—CQd(ZEo,yo)z/to
to" | B(xo, To))|
for a constant Cy, where we used the condition d(yo,xo) < 4kt in the last inequality.
Case 2: d(x0,Y0) > V4kto. In this case, because d(x,x) ket DV 5, M1§+1’ by the

V2k
triangle inequality, we have \/\5/%1 &%’?0))2. Therefore, by (4.5), (4.12), and (4.19), it
holds that ‘
C2kk2k
t2k // B(t,z;y0)|? dzdt
k+1
2k 1.2k (k+1)vto
< Tk t0|B(Z‘0, V2k )| 6*(3*2\/§)D2d(1’07y0)2/(2t0)
S min B Vi)
2€B(wo,(k+1)vio/(2Vk))
(k+1)vto
C2k+1/2k2k |B($0, V2k U)| |B({,E0, \/1%)|2 e—czd(wmyo)z/to
25T [Blao, Vo) min B Vi)

z€B(z0,(k+1)vT0/(2VE))
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log2C*
- C2k+3/4 12k 1 <k+ 1) 92 oo <C(k+ 1)) o= Cad(z0,0)* /o
Tt |Bl@o, Vo)l \ V2 vk
02k+1k2k+1

e—Czd(wo,yo)z/to

<
t3" B (0, Vio)|

for a constant Cs.
Combining the above two cases, we get

C2k+1k2k+1 5
(4.20) / / 108 E(t, 25 o) |2 dadt < —-C ¢~ Cad(zouo)? /1o
M} ‘ tgk 1|B($Oa\/%)|

Now we recall a well-known parabolic mean value inequality which can be found,
for instance, in Theorem 14.7 of [16] or Theorem 5.2.9 of [19]. For 0 <r < R < 1, any
nonnegative subsolution u = u(t,z) of the heat equation satisfies

R2 v/2 1 (v+2)/2
sup wu(t,z)<C (> <) // u(t, z) dzdt,
Qr(to,zo0) |B(I0,T‘)|2/” |R_r‘2 QRr(to,xo)

where v > 2 is a constant and Q,(t,z) = (t — 7%,t) x B(z,r). Letting u(t,z) =
|OEE(t,z;90)|%, ¥ \ 0, and R = +/to/(2k), using (4.12), we see that

|0 E(to, z0; o) |*

Ck / " 9
< (OFE(t,x;y0))° dadt
‘B (0, vt/ (2R) )(to Q_izrzzr (to-w0)

k B(
(421) = ¢ |50, v/l // (OF E(t,x;y0))? dedt
|B(wo, v/to)to ’B (1‘0 to/ 2/43 ‘ Q. fig 7w (to,%o)
logg(C )
C’k
< // (OFE(t,z;90))? dadt.
|B 1?0, |t0 Qm(foﬂ“o)

By (4.20) and (4.21), we obtain

C2k+2.2k+1+log, (c*)/2

t5* B (o, Vto)[?

|0F E(to, z0; y0)|* < ¢~ Cad(xo,y0)?/to.

Thus,
Ck-‘rl kk 2/3 )
|8kE(t07170;y0)| <—"i—n——— —C2d(x0,y0)~/to
t 15180, Vio)|
for a sufficiently large constant C7, which finishes the proof of Lemma 4.2. ]

To prove the time analyticity of the heat kernel p,(t,z;y), we use the following
result.

LEMMA 4.4 (proof of Proposition 1.4.2 of [14]). Suppose that f = f(x) is real
analytic at xo € R, which satisfies near xq

k!
|f(’“)(a:)| < Clﬁ Y integer k > 0.
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Assume that g = g(x) is real analytic at f(xo) € R, which satisfies near f(xo)

k!

9™ (y)| < Osﬁ V integer k> 0.

Here R and S are positive constants. Then h(x) = g(f(x)) is analytic near x¢ and
satisfies

Ci1Cs k(14 Cy/S)k
S+ C RF

) (20)] < Y integer k> 0.

Now we are ready to prove (1.19) and thus complete the proof of Theorem 1.8.

4.3. Proof of (1.19) in Theorem 1.8.
Proof. By (4.2), we have

(4.22) atnpa(t,a:;y):/ ANE(t? s, x;y)n(s) ds.
0

We write E(t2/%s,x;y) = B(t,z;y) o (t/%s) = g(t) o f(t), where g(t) := E(t,x;y) and
f(t):=t*s. Then by Lemma 4.2, for a constant C(!) >0,

WYk L 5
|0Fg(t)] < Me_@d(z’y) /t Y integer k > 0.
t*|B(z, V)|

e—Cad(z.1)?/(t2/%s)

Let 03 = Bz, tQ/QS)‘

and S =t?/*s/C(). For f(t), it holds that

(CEYrEI s

< S

Y integer k>0

for a constant C® > 0. Let C}; =t*/*s and R=1t/C®. Then by Lemma 4.4, we have
for a constant C' >0

|3kE(t2/065 2yl < C1Cs k(1 JrCl/S)k: - Ck k! efc2d(a:,y)2/(t2/as)
t y L3 Y _S+Cl Rk - tk ‘B(.’E, /tg/as)|

Therefore, by (4.22), we deduce that

0 k) g—Cad(z,y)?/(t*/*s)
(%pa t,x;y S/ (s s,
R S T
By the same calculations as (4.13) and (4.14), we deduce (1.19) immediately. 0

5. Corollaries on backward and other equations. In this last section, we
present four corollaries, whose statements and proofs are similar to the corresponding
results in [9] and [22].

First, we consider the Cauchy problem for the backward nonlocal parabolic equa-
tions

(5.1)

Opu+LEu=0 Vo € RY,
u(0,z) =a(x)

with k(-,-) satisfying (1.3) and (1.4).
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COROLLARY 5.1. Equation (5.1) has a smooth solution uw=u(t,x) of polynomial
growth of order o — ¢ in (0,0) x R? for some § > 0; i.e.,

(5.2) u(t, z)| <C(1 + |2|*7%), Oea, (t,2) € (0,8) x RY,
if and only if
(53) (L3 a(a)] < AR (L [2f*) . k=012,

where Ay is a positive constant.

Proof. On the one hand, suppose that (5.1) has a smooth solution of polynomial
growth of order a — ¢, say, u = u(t,z). Then u(—t,x) is a solution of the nonlocal
parabolic equations with polynomial growth of order «—¢e. By Theorem 1.2 and (5.2),
(5.3) follows immediately.

On the other hand, suppose that (5.3) holds. Then it is easy to check that

ult, z) = Z(sz‘a(x)%

Jj=0

is a smooth solution of the fraction heat equation for ¢ € (—4,0] with ¢ sufficiently
small. Indeed, the bounds (5.3) guarantee that the above series and the series

> e’

Vi

O t?
4!

and Z(Lg)ja(x)
=0

Jj=0

all converge absolutely and uniformly in [—4§,0] x Bg(0) for any fixed R > 0. Hence,
Oru — LEu=0. Moreover, u has polynomial growth of order a — ¢ since

> : i > y o i o
(4)  Julta)] £ 3|8V ale)| 5 < 3 AL (14 fal" ) 5 <y (1 el )
=0 j=0

provided that ¢ € [—6,0] with ¢ sufficiently small. Thus, u(—t,z) is a solution to the
Cauchy problem of the backward nonlocal parabolic equations (5.1) of polynomial
growth of order o — €. O

We have another corollary below about the forward Cauchy problem for the non-
local parabolic equations

(5.5) {&tuLguO Vo e R4,

u(0,z) = a(x).

The main point is the analyticity of solutions down to the initial time.

COROLLARY 5.2. FEquation (5.5) has a smooth solution u=u(t,z) of polynomial
growth of order oo — €, which is time analytic in [0,0) for some 6 >0 with the radius
of convergence independent of x if and only if

(5.6) (L) a(e)| < AAFER (14 [2|*7%), k=0,1,2,...,

for a positive constant Aj.
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Proof. On the one hand, assuming (5.6), we can see that

w(t,z) = Z(sz‘a(x)%

j=

0
is a smooth solution to (5.5) for ¢ € [0,6) with § sufficiently small. Moreover, if §
is sufficiently small, u* has polynomial growth of order o — e by (5.4), so u* is the
unique solution to (5.5) by part (b) of Theorem 1.2.
By Corollary 5.1, the backward problem (5.1) has a smooth solution v = v(¢, z)
in [0,0)x RZ Define the function U = U (t, ) by

w (t,z), tel0,d),
U(t,m) - { v(_t7;p)7 te (_57 0]

It is straightforward to check that U(¢,z) is a solution of the nonlocal parabolic
equations in (—4,0) x RZ. By Theorem 1.2, U(t,x) and hence u(t, ) are time analytic
at t =0 for some d > 0.

On the other hand, suppose that u = u(t,z) is a solution of (5.5), which is analytic
in time at ¢t =0 with the radius of convergence independent of x. Then by definition,
u has a power series expansion in a time interval (—d,9) for some § > 0. Hence, (5.6)
holds following the proof of Corollary 5.1. |

Remark 5.3. Since we have not proved that the solution to (1.14) is unique, the
proofs of the above two corollaries cannot be applied to the manifold case. Therefore,
we restrict the above two corollaries to the case of R

For the following two corollaries, the operator L is either L on R? or L® on M.
For convenience of notation, let X be either R? or M satisfying conditions (1.12) and
(1.13).

Then similar to Theorems 1.4 and 1.5 of [22], we have the following two corollaries.

COROLLARY 5.4. Let p be a positive integer, and consider the equation
(5.7) ug(t, ) — Lu(t,z) =uP(t,z) in (0,1] x X

with the initial data u(0,-). Assume that u=u(t,x) is a mild solution, i.e.,

t
u(t.a)= [ pattaiu@)dy+ [ [ patt .o (s.0) dyds,
X 0 Jx
and there exists a constant Co such that

lu(t,z)] < Cqy V(t,x) €0,1] x X.

Then w is time analytic in t € (0,1], and the radius of convergence is independent
of x.

Proof. From (1.6) or (1.19), we see by iteration that
(5.8) 10Fpa(t, 2, ) || L1 (x) < CFH/2ER=2/34=F  integer k >0,
and thus, by the Leibniz rule, it holds that
(5.9) 10 (t*pa(t, @, )| 1 (x) < CFFHEF2/3  integer k >0

for a sufficiently large constant C.
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The rest of the proof is the same as that of Theorem 1.4 of [22]. 0

COROLLARY 5.5. For (5.7) with p being any positive rational number, assume
that w=wu(t,z) is a mild solution and there exist constants C1 and Cz such that

0<C < |ult,z)| < Co V(t,z) €[0,1] x X.

Then w is time analytic in t € (0,1], and the radius of convergence is independent
of x.

Proof. We also have (5.8) and (5.9). Then the rest of the proof is the same as
that of Theorem 1.5 of [22]. 0

Remark 5.6. It is unclear to us whether a similar result holds when p is an
irrational number, as we are unable to get an appropriate relation between 9} (t"u)
and O (t"uP), where n is any positive integer. When p = ¢1/¢2 is a rational number,
in [22, Lemma 4.5], the author used 97 (t"u'/9) as a bridge between 97(t"u) and
P (t"u/92). Moreover, Lemma 4.4 cannot be used directly here. In fact, for any
integer k > 0, if we assume that

[t"0fu| < N™n! V positive integer n <k

for a constant N > 0, then by Lemma 4.4, we get

k
[tFokuP| < NF+1/2E) (1 + 1) ;

min |u
which cannot be used to obtain a positive radius of convergence.
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