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Following Arthur, we present a trace formula argument proving that discrete
automorphic representations on (possibly non-quasisplit) classical groups weakly
transfer to general linear groups in the sense that the transfer is compatible with
Satake parameters and infinitesimal characters. This result is conditional on the
weighted fundamental lemma but no more. We explain how the weak transfer
leads to the existence of automorphic Galois representations valued in the C-
groups, as formulated by Buzzard and Gee, when the automorphic representations
are C-algebraic and satisfy suitable regularity conditions.
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1. Introduction

Classical groups are the isometry groups of symmetric, symplectic or (skew-)
Hermitian forms. They play vital roles in many areas of mathematics. In number
theory they are prominent in the theory of automorphic forms and the Langlands
program. One of the key questions is how to transfer automorphic representations on
classical groups to general linear groups as predicted by the Langlands functoriality
conjecture. There are two main approaches: the converse theorem and the trace
formula.

The converse theorem was successfully employed to transfer cuspidal generic
automorphic representations on quasisplit classical groups over number fields by
Cogdell, Kim, Krishnamurthy, Piatetski-Shapiro, Shahidi, and others; see [Cogdell
et al. 2011]. Lomeli [2009] proved the analogous result for split classical groups
over global function fields. There is a prospect, arising from the work by Cai,
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Friedberg, Ginzburg and Kaplan [Cai et al. 2019], that the converse theorem method
may extend to all classical groups without any genericity condition.

It is perhaps fair to say that the trace formula method requires more groundwork
to get started, notably the stabilization of the trace formula and the fundamental
lemma as well as their twisted analogues. Since the tools are still developing over
global function fields, see [Labesse and Lemaire 2021], we will concentrate on the
number field case throughout the paper. When it works, the trace formula leads to
extra information beyond the existence of transfer to general linear groups, such
as parametrization of local and global packets of representations characterized by
endoscopic character identities and the Arthur multiplicity formula. This has been
carried out for

« quasisplit symplectic and special orthogonal groups by Arthur [2013];
 quasisplit unitary groups by Mok [2015];

» non-quasisplit unitary groups by Kaletha, Minguez, Shin and White [2014],
under temperedness and pure-inner-twist hypotheses;

» non-quasisplit odd special orthogonal groups by Ishimoto [2023], under a
temperedness hypothesis;

e certain non-quasisplit symplectic and special orthogonal groups under a coho-
mological hypothesis at infinity by Taibi [2019].

It is worth mentioning that Clozel and Labesse (see [Labesse 2011]) proved uncon-
ditional results on the transfer of cohomological automorphic representations on
unitary groups to those on general linear groups (without full endoscopic classifica-
tions for them). However the results in the bulleted list are conditional on the proof
of the weighted fundamental lemma and some results to be proven. (By “some
results”, we mean the projected papers in [Arthur 2013], which the author cites as
[A25], [A26] and [A27], as well as their analogues for unitary groups, which are
also missing at the time of writing this article.) The weighted fundamental lemma
is known for split groups by Chaudouard and Laumon [2010; 2012] but it is also
needed for nonsplit groups. We also need the “nonstandard weighted fundamental
lemma” formulated by Waldspurger [2009] in the stabilization of the twisted trace
formula. See the paragraph above Theorem 1.1.2 for further remarks.

Apart from the conditionality mentioned above, the trace formula is believed to
yield complete results for all non-quasisplit classical groups as outlined in [Arthur
2013, Chapter 9]. This is a central problem to work out in its own right. It is also
pivotal for arithmetic applications involving Shimura varieties since non-quasisplit
groups appear naturally in that context. A full solution of the problem would take
years to complete.
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The first goal of this paper is to explain that Arthur’s argument [2013, Chapter 3]
is already enough to establish the existence of a weak transfer for all classical
groups. He states the results for quasisplit symplectic and special orthogonal groups
but the argument works generally. Indeed, Arthur himself [2013, Proposition 9.5.2]
made this observation; our intention is merely to bring this part of his work to the
broader audience.

Here a weak transfer means a transfer of automorphic representations between
two reductive groups related via a morphism of their L-groups, such that the Satake
parameters at finite places and the infinitesimal characters at infinite places are trans-
ported via the L-morphism; see Section 1.1 below. Our argument is relatively simple
as long as the stabilization of the twisted (and untwisted) trace formula is accepted.
In particular we do not need [A25], [A26] and [A27] from [Arthur 2013], or their
analogues mentioned above (nor the main theorems of [Arthur 2013; Mok 2015]).
Rather, the weak transfer at hand is conditional only on the weighted fundamental
lemma for nonsplit groups and the nonstandard weighted fundamental lemma.

Our approach to the weak transfer is close to Taibi’s [2022], see Remark A.5
therein. The difference is that his argument and theorem are optimized for the
intended application. As such, he accepts the main results of [Arthur 2013] and
makes a regularity hypothesis to deal with non-quasisplit symplectic and special
orthogonal groups. By contrast, we keep a minimal hypothesis as mentioned above
and also treat the case of unitary groups in a uniform manner.

As an application and our second goal, we verify Buzzard and Gee’s conjecture
on the existence of automorphic Galois representations, which amounts to one
direction of the global Langlands correspondence, for classical groups. Besides the
weak transfer, a crucial ingredient comes from what is known in the construction
of automorphic Galois representations for general linear groups. Once this is taken
for granted, it is a series of elementary exercises to deduce Buzzard and Gee’s
conjecture for classical groups (modulo some technical hypotheses discussed below).
While we do not claim originality, it may be of interest to see all classical groups
treated side by side in the language of C-groups. Previous works usually considered
these groups separately; e.g., see [Kret and Shin 2020, Section 6; 2023, Section 2]
and the references at the start of Section 3.4 below.

Now we describe the two main goals more precisely in Sections 1.1 and 1.2
below. They correspond to Sections 2 and 3 in the main body of the paper.

1.1. Weak transfer. Let G and G be connected reductive groups over a number field
F,and & : “G — LG be a morphism of L-groups (either the Galois or Weil form, see
[Arthur 2005, Section 26]). Assume that G is quasisplit over F. Let S be a finite set
of places of F including all infinite places such that G, G, and & are unramified over
F, for all places v ¢ S. (For &, this means that & is inflated from an L-morphism with
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respect to the Galois or Weil group for an extension unramified at v.) Ateach v ¢ S,
the map & induces a map &, from irreducible unramified representations of G(F,)
to those of G(Fv) (on the level of isomorphism classes) by Satake transform, which
amounts to the unramified local Langlands correspondence for each of G and G.

A weak form of the Langlands functoriality conjecture is the following, see
[Langlands 1970, Questions 3 and 5] and the commentary in [Arthur 2021, Section 4]
for instance.

Conjecture 1.1.1. Let & : LG — LG be a morphism of L-groups. For each auto-
morphic representation w of G(AF), there exists an automorphic representation
I1 of G(Ar) such that, for every v ¢ S where 1 is unramified, T1, is unramified
and isomorphic to &,(7,). Moreover the infinitesimal characters of archimedean
components of TI are determined by those of w via &.

If IT as above exists, we say that I1 is a weak transfer (a.k.a. a weak functorial
lift) of . It is said to be weak because the conjecture does not address what
happens at the places in S nor what the set of all IT as above looks like. A stronger
conjecture can be best formulated in terms of local Arthur packets at all places as
well as global Arthur packets, as accomplished in the endoscopic classification for
classical groups mentioned above. By focusing on the weak version, we bypass the
subtlety of Arthur packets at the expense of losing precision.

We are particularly interested in Conjecture 1.1.1 where w appears in the discrete
spectrum of the space of LZ-automorphic forms on G(Ar). Although the beyond
endoscopy program was proposed by Langlands to attack this conjecture, the
general case is still completely out of reach. Good news is that substantial progress
has been made in the (twisted) endoscopic case, namely when & realizes G as a
(twisted) endoscopic group for G. A prominent example is Langlands and Arthur
and Clozel’s base change [1989] for general linear groups, where G = GL,, and
G = Res r/r GL,, (Weil restriction of scalars) for a finite solvable extension F'/F.
See [Cogdell 2003, Section 4] for more on the base change and other examples.

This paper is concerned with a weak transfer for classical groups. In this case G
is a classical group and G is (the restriction of scalars of) a general linear group;
the latter is denoted G°(N) in the main text. We are divided into Cases S and U:

Case S: G is a special orthogonal or a symplectic group, £ is the standard embedding.

Case U: G is a unitary group and & is the base change embedding (up to a twist).

In these two cases the quasisplit inner form G* of G may be thought of as a twisted
endoscopic group for G; see Sections 2.1 and 2.2 for more details. Henceforth we
make the following hypothesis as our method crucially relies on the stabilization of
the (possibly twisted) trace formula by Arthur and Moeglin and Waldspurger:
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(H1) The weighted fundamental lemma (WFL) is true for nonsplit groups. More-
over its nonstandard version is true.

It is worth elaborating on the hypothesis. The stabilization of the twisted trace
formula [Moeeglin and Waldspurger 2016a; 2016b] requires the twisted weighted
fundamental lemma [Mceglin and Waldspurger 2016a, 11.4.4], which is reduced
by the main result of [Waldspurger 2009] to the WFL for Lie algebras and the
nonstandard WFL. The latter two, precisely formulated in Sections 3.6 and 3.7 of
[Waldspurger 2009], assert certain identities of weighted orbital integrals on the Lie
algebras of two reductive groups which are related by endoscopic data or nonstan-
dard endoscopic data, respectively. As mentioned above, the WFL for Lie algebras
remains to be verified for nonsplit groups. The nonstandard WFL is open at this time.

With that said, hypothesis (H1) can be black-boxed since we only need the
outcome of the stabilization, namely (2.4.4) and (2.4.6) below. Let us state our first
main theorem.

Theorem 1.1.2. Assuming (HI), Conjecture 1.1.1 is true for Cases S and U above.

Here is the idea of proof in the essential case when G = G*, i.e., when G is
quasisplit; see the proof of Theorem 2.5.1 for complete details. By induction, we
may assume that the theorem is known for all classical groups of smaller rank, or
finite products thereof. Let 7 be as in Conjecture 1.1.1. Let ¢® and ¢ denote the
family of Satake parameters of 7 away from S and the infinitesimal character of
7 at 0o, respectlvely The L-morphism & transfers ¢S and ¢ to a famlly of Satake
parameters ¢° and an infinitesimal character { for G. We assume that (Z, &%) does
not appear in the automorphic spectrum for G. The goal is to derive a contradiction.

The main input is the stabilized trace formula relating G and G, where the
subscript , & indicates the (Z, &)-isotypic part of each trace formula (reviewed
in Section 2.4 following [Arthur 2013, Chapter 3]; we recommend [Arthur 2005]
for a detailed introduction to the trace formula)

Idci;sc,g:,és (f)= Z L(E)S;isc’g’gs(fex (1.1.1)
Gt
where:
. I(fsc is an invariant distribution on G(Ap), which is the discrete part of the

invariant trace formula for the twisted group G.

G*® stands for the twisted endoscopic group in a twisted elliptic endoscopic
datum ¢ for G (up to isomorphism); this includes G* = G.

¢ 1(¢) € Q is a positive constant.

. Sém is a stable distribution on GE(A r), which is the discrete part of the stable
trace formula for the twisted endoscopic group of .
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e f is a decomposable test function on G(Ar) whose components away from §
belong the unramified Hecke algebras.

« f%is a function on G¢(Ar) which is a transfer of f.

Although S ¢ ¢ 1s very complicated in general, the induction hypothesis can
be used to show that S“ ¢ 1s equal to the trace on the (Z, &)-isotypic part of
the L>-discrete spectrum o% G°®. The point is that the “error terms” (the difference
between the two quantities in the preceding sentence) all come from classical groups
of smaller rank, which have to do with automorphic representations of general
linear groups by induction, whereas (7, ¢°) is unrelated to such representations by
hypothesis. In particular, for ¢ such that G* = G, the stable distribution S ¢ o
is not the zero distribution since 7 appears in the sum. (Recall that (g cS ) is gt[he
image of (¢, ) via S.)

The left-hand side of (1.1.1) is trivially zero by the assumption that (g:, &%) does
not appear in the automorphic spectrum of G. Hence our preceding observation
about SdEisc,Z,ES tells us that a certain nonnegative combination of traces of irreducible
representations on different groups on the right-hand side vanishes. We crucially
invoke Arthur’s vanishing result [2013, Section 3.5], exactly designed for these
circumstances and relying on the nonnegativity of coefficients, to show that the
right-hand side is term-by-term trivial, i.e., every nonnegative coefficient is zero.
This is a contradiction since Sfiisc,f,es was seen to be nontrivial.

1.2. Automorphic Galois representations. For the moment we go back to a general
connected reductive group G over a number field . An automorphic representation
7 of G(AF) is called L-algebraic (resp. C-algebraic) if the infinitesimal character
of m at oo is algebraic (resp. algebraic after shifting by the half sum of positive
roots), see Definition 3.1.1 below. By € G we denote the C-group of G introduced
by Buzzard and Gee [2014], which is a certain semiproduct of LG with G,,; see
Section 3.1 below. It can also be thought of as the L-group of a central G,,,-extension
of G.

Fix a prime £. Let S denote the finite set of places of F' containing all £-adic
and infinite places as well as the finite places v such that either G or 7 is ramified
at v. When v ¢ S, write

br, =¢r W, —> "G

for the unramified Langlands parameter for ,,, with coefficient in C. We also define
a C-normalized parameter
¢S Wp, > G

by modifying ¢, ; see below Lemma 3.1.5 for more details. In this paper, a
Galois representation I'p — LG@Qp) orTp — €G(Qy) always means a continuous
semisimple representation which is unramified at all but finitely places and whose
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restriction to the local Galois group at each place above £ is de Rham. When the de
Rham condition is satisfied, the Galois representations can be assigned Hodge—Tate
cocharacters (Section 3.1).

Buzzard and Gee [2014] formulated the following, see Conjectures 3.1.2 and 3.1.8
below, generalizing from the case of general linear groups in Clozel’s work [1990].

Conjecture 1.2.1. Let ? € {L, C}, £ a prime, and 1 : C = Q; an isomorphism. For
each ?-algebraic discrete automorphic representation w of G(Ar), there exists a
Galois representation

r=re,(m):T'r— ?G(@@)
such that:

@) rlﬁf,F = L¢77TU at finite places v ¢ S.

(i) The Hodge—Tate cocharacters of r are explicitly determined by the infinitesimal
characters of w at oo.

Our interest lies in the conjecture when G is a classical group. We will concentrate
on the C-algebraic case for two reasons. Firstly, it is more directly related to the
geometric Satake equivalence (that is, part (i) of the conjecture is compatible with
geometric Satake in the C-algebraic case, see [Zhu 2020b]) and the cohomology of
Shimura varieties (e.g., as observed in [Johansson 2013]). Secondly, the C-algebraic
case is more general as illustrated by the example of an even unitary group (i.e., of
even rank) over a totally real field relative to a CM quadratic extension. Such a group
does not possess any L-algebraic automorphic representations whose archimedean
components belong to discrete series whereas there are many C-algebraic ones.
(In fact, one can go from the C-algebraic case to the L-algebraic case and vice
versa after pulling back via a central (3,,-extension of G, see [Buzzard and Gee
2014, Section 5], but we do not discuss it further.) With that said, it is worth
mentioning that C-algebraicity and L-algebraicity coincide for symplectic, even
special orthogonal, and odd unitary groups.

From now, assume that F is a totally real field. In Case U, assume that G is
a unitary group with respect to a CM quadratic extension E over F, and write
c € Gal(E/F) for the nontrivial element. In Case S, set E := F and c :=1 (trivial
automorphism of F).

We fix 7 as in Theorem 1.1.2, so the theorem provides us with an automorphic
representation [T of GLy(Apg) for a suitable N. Without loss of generality we
assume that IT is an isobaric sum of cuspidal automorphic representations of smaller
general linear groups: IT=H;_, I1;. (In fact we show that IT can be chosen as such
when proving the theorem.) By the strong multiplicity one theorem, such a IT is
unique up to isomorphism. (Hence Iy, ..., I1, are unique up to isomorphism and
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permutation.) For each i, we write IT} for the contragredient of IT; o ¢, where ¢
naturally acts on GLy (Ag). Consider the following hypotheses:

(H2) The infinitesimal character of IT is regular at infinity, see Definition 3.2.1
below.

(H3) Each I1; is (conjugate) self-dual, i.e., IT} = II; for every i.

Condition (H2) is equivalent to regularity of the infinitesimal character of 7 at
infinity unless G* is an even special orthogonal group (Lemma 3.2.2). Hypothesis
(H3) is implied by a full endoscopic classification theorem, which is a conditional
theorem for classical groups as already discussed. Our second main theorem is the
following (Theorem 3.2.7).

Theorem 1.2.2. Assume (HI), (H2), and (H3). Then the C-algebraic version of
Conjecture 1.2.1 holds true in Cases S and U above, except that (i) is true only up
to outer automorphism in the even orthogonal case. If we assume only (HI) and
(H2) then we have the existence of the Galois representation as in the conjecture
satisfying (i) but possibly not (ii).

Let us outline the steps of the proof:

(Step 1) Prove Conjecture 1.2.1 for cuspidal regular automorphic representations
[T of GLy over totally real or CM fields (see Proposition 3.1.11 below
for the precise version).

(Step 2) Combine Step 1 with Theorem 1.1.2 to construct a GLy-valued Galois
representation R () corresponding to given 7 on a classical group.

(Step 3) Factor the Galois representation R(sr) through the L or C-group of G. In
Case U, this entails extending the Galois representation along the quadratic
extension E/F.

Step 1 follows by combining the work of many authors as recalled in the proof
of Proposition 3.1.11, if 1y is moreover (conjugate) self-dual up to a character.
Without hypothesis (H3), we need to appeal to more recent work by Harris, Lan,
Taylor and Thorne [Harris et al. 2016] and Scholze [2015]. In this case we lose
control of the Hodge—Tate cocharacter. (See the last paragraph in the proof of
Proposition 3.1.11.) This is why part (ii) of Conjecture 1.1.1 is not verified when
(H3) is not assumed. Other than this, the argument is the same whether (H3) is
assumed or not.

In Step 2 we start from a weak transfer 7w +— I1 = H;_,I1; and apply Step 1 to
construct Galois representations R; from I1;. The desired Galois representation is
essentially @);_, R; but this is not literally true. We need to keep a careful track of
L and C-normalizations.
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In Step 3 the main input is Bellaiche and Chenevier’s [2011] result on the sign of
Galois representations. Thanks to this, the argument is relatively simple in Case S.
More work is needed in Case U, but knowing the sign again allows us to factor the
extended Galois representation through the C-group.

Remark 1.2.3. When F is a global function field of characteristic p > 0, if £ # p
then Conjecture 1.2.1 can be stated in terms of the L-group of G, without imposing
condition (ii) or algebraicity. (Every automorphic representation is considered
algebraic.) Then Conjecture 1.2.1 is true for every G and every cuspidal = by
V. Lafforgue [2018].

1.3. Complements. We comment on the prospect of removing hypotheses (H1),
(H2), and (H3). The author is cautiously optimistic that the removal of (H1) would
be attainable within the next few years. It may be possible to weaken the regularity
condition (H2) in Theorem 1.2.2 to weak regularity of IT at infinity in the sense
of [Fakhruddin and Pilloni 2019, Section 9.1]; the weak regularity (and oddness) of
[T is always satisfied if 7 has regular infinitesimal character at infinity, even when
G is an even special orthogonal group. A crucial input is [Boxer and Pilloni 2021,
Theorem 6.11.2], which relaxes the regularity assumption on 7 in Proposition 3.1.11
to weak regularity. The proof of Proposition 3.2.4, except the assertions on signs,
goes through with the weakening of (H2) as long as both (H1) and (H3) are assumed.
The only missing ingredient is the analogue of the main results of [Bellaiche and Che-
nevier 2011] when IT is weakly regular (and odd) but not regular. To remove (H3),
the main problem is to compute the Hodge—Tate weights of the automorphic Galois
representations in [Harris et al. 2016; Scholze 2015] as mentioned above. Partial
results are available in [A’Campo 2024, Theorem 1.0.6; Hevesi 2023, Theorem 1.1].

There are other ways to strengthen Theorems 1.1.2 and 1.2.2. Theorem 1.1.2 is
going to be eventually superseded by a full endoscopic classification; the point of our
theorem lies in the simplicity and uniformity of the argument. Theorem 1.2.2 can
be upgraded by listing more properties satisfied by the Galois representation r. For
instance, we can ask for a description of the image of complex conjugation at real
places of F, see Remark 3.2.8. Another question is to prove local-global compatibil-
ity at all finite places v, namely that the Weil-Deligne representation associated with
r at v corresponds to the v-component of the automorphic representation via the
local Langlands correspondence. This is known in the setting of Proposition 3.1.11
for GLy. (If 7 is not conjugate self-dual up to a character then the compatibility is
known away from places above £.) From this, our existing arguments should justify
the local-global compatibility for G at all finite places (avoiding places above £ if
(H3) is not assumed), at least if G is quasisplit. In fact, such a reasoning already
appears in the proof of [Kret and Shin 2023, Theorem 2.4 (i), (iv)] and [Kret and
Shin 2020, Theorem 6.4(SO-1)] in some special cases. If G is not quasisplit then the
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same should work once the local Langlands correspondence for G becomes available
in a way that is compatible with the local Langlands for its quasisplit inner form.

Finally one can try to characterize those Galois representations which correspond
to automorphic representations in Conjecture 1.2.1. In fact it is fruitful to view the
Galois representations as global L-parameters and extend the Galois representations
to some sort of global A-parameters as in [Johansson and Thorne 2020, Section 4].
Then a natural problem is to formulate local and global A-packet classifications
for algebraic automorphic representations by means of such Galois-theoretic A-
parameters. We hope to address this elsewhere.

1.4. Notation and conventions. Let k be a perfect field. Denote by k an algebraic
closure of k. Write T'y/x := Gal(k’/k) for any Galois extension k’/k and put
Ik :=Tf/,. When T is a torus over k, write X*(T):=Homi(T, G,,) and X, (T) :=
Homg(G,,, T). Put X*(T)g := X*(T) ®z R for Z-algebras R, which is an R[I'x]-
module. Define X, (T)r likewise. Let T denote the dual torus of T over C equipped
an action of I'y.

From now on, let F' be a number field. Write A for the ring of adeles and AIS;
for the ring of adeles away from S, where S is a finite set of places of F. For each
place v of I, write W, for the local Weil group. We fix the embeddings ¢, : F—F,
at each v, which induce the injections I'r, < I'r. If v is a complex place, then there
are two R-isomorphisms ¢1, t, : F,, = C. For each complex embedding 7 : F < C
inducing the place v, we write ¢ : F <> C for either ¢;¢, or tst,, whichever induces
T via the inclusion F C F. If 7 is a real embedding inducing v then set t; 1= t,.
Thus we have ¢, : F < C extending every embedding 7 : F — C.

Let Fy be a subfield of F (allowing Fy = F), and S a finite set of places of
Fo containing all infinite places. Then I'r s denotes the Galois group Gal(Fs/F),
where Fg C F is the maximal extension of F which is unramified at every place of
F which lies above some place of Fj in S.

Let G* be a connected quasisplit reductive group over F, with an F-pinning
(B*, T*,{X3}). Let G* denote the Langlands dual group over C equipped with a
" p-action on G* (called an L-action), a I"p-pinning (ﬁ*, T*, {)A(;v}), and a I'p-
equivariant bijection between the based root datum of G* and the dual based root
datum of G*. This allows us to define the Galois form of the L-group

LG>'< = 6* X FF

It is also convenient to use I'//r in place of I'r, where F’ is a finite extension of
F over which G* splits. Only in Section 2 we will occasionally consider the Weil
form of the L-group, with the Weil group of F' in place of I'r. We will often fix
an isomorphism ¢ : C = Q, and also view G* and LG* over Q. Write Spada(G*)
for the set of places v of F which are either infinite or such that G7, is ramified.
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At v ¢ Spaa(G™), the pinning determines a hyperspecial subgroup K C G*(F,).
Unramified representations of G*(F,) at v ¢ Sp,a(G*) are always meant to be
relative to this K.

Let G be a connected reductive group over F with an isomorphism 1 : G* ~Gp
such that i~'o (i) is an inner automorphism of G* for every o € I'f. Such a pair
(G, 1) is called an inner twist of G* over F, and classified up to isomorphism
by the Galois cohomology valued in the adjoint group H'(F, G**), whose im-
age in H L(F, ,_G**ad) is trivial for v not contained a finite set of places S. Then
H'(F, G*(A})) = @, 45 H' (Fy, G**) is trivial, so i is defined over A} after
conjugation by an element of G* “d(AS ). Thereby we obtain an isomorphism
G*(A )= G(A ), canonical up to G*(A )-conjugacy. Put Spaq(G) := Spag(G*)US.
At each v ¢ Spaq(G), we transport hyperspecial subgroups K to K, C G(F,) via
the isomorphism and use them for the notion of unramified representations. We
transfer the F-pinning for G* to a pinning for G via i so that the based root data
for G* and G are I'p-equivariantly identified. Thereby we may and will identify
the L-group LG with LG*, and transfer (B*, T*, {)?;V}) for G* to (B, T, {Xov})
for G.

For a place v of G, we often write G, to mean G X g F,,. Write F.o := FQgR =
[, |00 Fvs and Goo == (Resr/q G) x@ R =[], Gv- We fix a maximal compact
subgroup Koo = ]_[v|oo K, C Go(R) = Hvloo G(F)).

By H(G) we denote the space of smooth compactly supported functions on
G (Ar) which are bi-K -finite under some compact subgroup K =[], K, C G(Ap),
where K, is the fixed hyperspecial subgroup (resp. maximal compact subgroup) at
all but finitely many v (resp. all infinite places v). Let H(G ) denote the space of
smooth compactly supported bi-K «-finite functions on G (R). Let S be a finite
set of finite places of F' containing Spaa(G). At v ¢ S, let Hy(G,) denote the
unramified Hecke algebra of bi-K,-invariant functions on G (F,). Take ’H (G) to
be the unramified Hecke algebra of compactly supported bi-K S-invariant functlons
on G(AISV), where K5 = I, ¢s Ko is the product of fixed hyperspecial subgroups.
The analogous definition of H(G), possibly with decorations, makes sense when G
is a nontrivial coset in a twisted group, e.g., G = G(N) as in Section 2.2 below.

Write Ag for the maximal Q-split torus in the center of Resr/qg G. (We have
Ag = {1} for the classical groups to be considered.) Put

[G]:= G(F)\G(AF)/Ac[R)".

Let Lﬁlsc([G]) denote the discrete part of the L2-space of functions on [G], viewed
as a G (Ar)-module by right translation. Every irreducible G (A g)-subrepresentation
is referred to as a discrete automorphic representation. Denote by L dlsc([G])S " the
subspace generated by discrete automorphic representations which are unramified

away from S. Write C5(G) for the set in which each member is a family of
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semisimple 6—conjugacy classes ¢, C YG, over finite places v ¢ S such that c,
maps to the geometric Frobenius element under the projection from £G, to the
unramified Galois group over F,. By the Satake isomorphism, each ¢, corresponds
to a C-algebra morphisms Hy:(G,) — C at v ¢ S. Thereby C5(G) is identified with
the set of C-algebra morphisms #5 (G) — C.

Write Goo,c := (Resrjg G) x@ C =[],.pe,c Gr, Where G, := G xfp . C. Let
Too,c =[], Tr be a maximal torus in G, c. The Lie algebra of Ty ¢ is denoted
by teo,c. Write Qo = ]_[r Q. for the Weyl group of T ¢ in G c. We often write
Q for @, for simplicity.

We use 3(G) to denote the center of the universal enveloping algebra of
the Lie algebra of G c. By the Harish-Chandra isomorphism, we may identify
3(Gx) = C[too,@]g. Write Coo (G) for the set of C-algebra morphisms 3(G o) — C,
or equivalently

Coo(G) =t ¢/ 2= X*(Too)e/ Qoo = Xu(Too)c/ Qoo = [ [ Xu(To)c/ Q. (1.4.1)

Let 7 = @), be an irreducible admissible representation of G(Ar) such that
7 is unramified outside S. At each v ¢ §, each m, corresponds to a semisimple
a-conjugacy class ¢(m,) C G, known as the Satake parameter of m,, and vice
versa. By assigning to 7 the infinitesimal character at oo and the Satake parameters
away from S, we obtain a map

T (Lrr (€(T0))0gs) € Coo(G) X C(G).

According to the decomposition (1.4.1), we write

é‘noo = (gnoo,r)r:F%C-

For 7 as above, we have an unramified L-parameter ¢, : Wr, — LG, at each
v ¢ S and an archimedean L-parameter ¢, : Wr, — LG, at v | co. The relation to
the above map is as follows. For v ¢ S, ¢, sends lifts of the geometric Frobenius
element into c(m,). Forv|ooand each t : F — C inducing v, if we identify

Fy=Cviatthus Wz =C* C Wp,, then ¢y, | is G- -conjugate to a map of the
form

o~

2eCX > AN G@) eT, c G, =G,

such that A = ¢ ¢

When v is a place of F, we denote by |-|, the usual norm character on F,* or W,
valued in positive real numbers, satisfying the product formula. Our normalization
at finite places v is that a uniformizer in F, and a lift of the geometric Frobenius in
W, both map to the inverse of the residue field cardinality. By dety : GLy — G, we
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mean the determinant map, and |dety |, : GLy (Fy) — R the map x +— |dety (x)],.
We often omit N and v and simply write |-|, det, and |det|.

Given a finite dimensional representation r (typically of a local Weil group), r*
stands for its semisimplification. By an (£-adic) Galois representation of I' , where
F is a number field, we mean a continuous semisimple representation of I'r on
a finite-dimensional @;-vector space which is unramified at almost all places of
F and de Rham at ¢£. More generally, when G is as above, an LG or € G-valued
Galois representation is a continuous representation

I'r—LG@) or R:Tr—G@Q)
which:

o Is unramified at almost all places of F.

o Commutes with the projections from I'r and the L or C-groups onto the Galois
group I'r//r, where F'/F is a Galois extension with respect to which LG or
€G is formed.

e i o R is semisimple and de Rham at ¢ for i a faithful algebraic representation
(see [Borel 1979, Section 2.6]) of the L-group or C-group.

For G over F as above, write & (G) for a set of representatives for isomorphism
classes of (standard) elliptic endoscopic data (H, H, s, £) as in [Kottwitz and
Shelstad 1999, Section 2.1]; see [Langlands and Shelstad 1987, Section 1.2]. We
refer to H as an elliptic endoscopic group for G. We will always be in the case
when # can be taken to be the L-group of H. Our notation for such a datum is
usually ¢ = (G°, LGe, s¢, £%). The set &ui(G) always contains a unique element
¢o whose endoscopic group is a quasisplit inner form of G. Write £3,(G) for the
complement &1(G)\{eo}. Every endoscopic group in £3,(G) has strictly lower
semisimple rank than G.

The cyclotomic character has Hodge—Tate weight —1 in our convention.

2. Weak transfer

2.1. Classical groups. Letm,n € Z-o. We introduce the quasisplit classical groups
Spa,s SO2n+1, SOZn, and U, naturally sitting inside (the restriction of scalars of)
general linear group GL,,. (Compare with [Arthur 2013, Chapters 1 and 9] and
[Waldspurger 2010, Section 1].) For unitary groups, we write N instead of m in
anticipation of Section 2.2.
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Define antidiagonal matrices J,, J,; € GL,,(Z) and J2/n € GL,,(Z) as follows:

1 1

1 -1 —

1 (=pm-!

When m =2n, let n:T'fr — {£1} be a faithful character. (So F;)/F is a quadratic
extension if n # 1, and F;, = F if n = 1.) If n =1 then set Jpi= T, Ifn #1,
choose o € O whose square roots generate F, over F. Then define J2'7n from J,,
by replacing the 2 x 2-matrix ((1) (1)) in the middle with ((1) _Oa).

Case S. We define the Op-group schemes
G e {Spm’ O:Yns Om}7

with m = 2n in the first two cases, and m = 2n + 1 in the last case, by the following
formula

G:={geGL,:'gJg=J}, Jel{J,, J}, respectively,

on Op-algebra valued points. The connected component of the identity in O}, (resp.
O2,+1) is denoted by SOgn (resp. SOz,41). By abuse of notation, we still write Sp,,,
sogn, and SOy, for the F-group schemes obtained by base change. We often
omit 7 in case n = 1. Each group contains a Borel subgroup B over F: if G is SO,,
or Sp,, then B consists of upper triangular matrices in G; if G = sogn with n # 1
then B consists of matrices (g;;) such that g;; =01if i > j and (i, j) # (n +1, n).
In the following examples, we make an explicit choice of a maximal torus 7" in B
and describe the character group of T as well as the half sum of positive roots p.
When A; are square matrices for 1 <i <r, let diag(Ay, ..., A;) denote the block
diagonal matrix.

G =Sp,,. Wetake T = {diag(tl,...,t,,,t,;l,...,tl_l) ‘t1,...,t, € G,} and use
the coordinates to identify X*(7') = Z" with trivial I"p-action. We have the Weyl
group Q = {£1}" x §,, where (€1,...,€,) € {£1}" acts on (a;) € X*(T) by
sending each a; to a;’, and S, acts by permuting ay, ..., a,. By computation

p=mn—1,...,2,1).

G = SO (allowing n = 1). Take T = {diag(ti, ..., ty1,5, 2 ... t; ')
tHy .., tho1€Gy, s € SOQ}. Using b as the last coordinate we identify X*(T) = 27",
with I'r acting through 7 on the last coordinate as {1}. The Weyl group €2 is
the index two subgroup of {£1}" x S, consisting of (ey,..., €,, o) such that
[T/, € = 1. Each element of 2 acts on Z" in the same way as in the Sp,,-case.
Wehave p=(n—1,n—-2,...,1,0).
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G = SOy,41. Here T = {diag(ty, ..., t,, 1,2, ....t;) 111, ..., 1, € Gy} and
X*(T) = 7" with trivial I p-action. The Weyl group Q = {£1}" x S,, acts on X*(T')
in the same way as above, and p = %(Zn —1,2n—-3,...,3,1).

For each G the choice of (B, T') as above extends to an F-pinning (a.k.a. F-
sphttmg, see [Kottwitz and Shelstad 1999, Section 1 2]) The Langlands dual groups
G as reductive groups over C, are described as szn =SO02,+1, SO2 = S0,,, and
S@;l = Sp,,» equlpped with pinnings for G chosen in the same way as for G.
The L-action of I'r on G is trivial when G is the split group Sp,,,, SOz, or SO2,,41,
whereas the action for G = sogn with n # 1 factors through Gal(F),/F) with the
nontrivial element acts as the outer automorphism 6°: g+ 9gv ! on SO,,, where

d1ag< —1, ((1) (1)) , ) € SO,,(0).

Set F/:= F unless G = SOZn, in which case F’ := F,, so that the I" p-action factors
through I' 7/ r. Then the F’/F-form of the L-group LGF//F =G X I'p/F is given
as follows; we will often omit the subscript F’/F:

02}19 777&17
SOZna 77:1,

where SO = O, when n # 1 by sending the nontrivial element of Gal(F,/F)
to .

Endoscopic groups G* in & (G) have the following forms, where 0 <n’ <n
and n',n}, n, : I'r — {Z£1} are continuous characters, understanding that n # 1
(resp. n = 1) in any factor of the form SOZ (resp. SOg) in the list:

L Sp2n =SO02+1, L Sogn = { L SO2n+1 = SpZn’

e G = szn G'= 502 r X Sp2n 2n'*
e G=S0!: G =SOU, xSO% , . niny=n.
e G = SOz,H_]Z Gt = SOZn’—H X SOZn+1—2n’-

There is redundancy in the second and third items, which can be removed by impos-
ing n’ < |n/2]; see [Arthur 2013, Section 1.2] or [Waldspurger 2010, Section 1.8]
for a description of full endoscopic data.

Case U. In this case, let E be a quadratic extension of F. Write ¢ for the nontrivial
element in Gal(E/F). Define Uy as an Op-group scheme by

={g €Resp, 0, GLy :'gJyc(g) = Iy}

on Of-algebra valued points. Again we still write Uy for Uy x o, F'. This group
contains a Borel subgroup B (resp. a maximal torus 7") over F' consisting of upper
triangular (resp. diagonal) matrices in Uy so that

T={(t,...,ty) 1 t; GRCSE/FGm,l,'~C(Z‘N+1_l‘)= 1,i=1,...,N}.
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By fixing an F-algebra embedding 7o : E < F, we obtain a projection (Res ¢ 1FGn)
— G,  induced by E®F F — F,a®b+ t(a)b, thereby T7 = GZ,F‘ This leads
to an identification

X"T)=X.(T)=7" via 1,

with the I' p-action factoring through 'z, and ¢ € T'g/F acts as (a;) = (—ay41-i).
(If Toc was used instead of tp, then the identification changes by (a;) — (—an+1-i).)
We compute p = (3(N —1), 2(N —3), ..., 3(1—N)). The above choice of (B, T)
extends to an F-pinning.

The map 1nduces a projection (Resg,r GLy)z — GL N.F inducing U N, FE
GLy 7 and also Uy =GLy asa complex reductive group. The standard pinning
for GLN is carried over to a pinning for Uy. The L-action of T'p, factoring through
Ie/r, is given by ¢ € 'g/r acting as é(g) = J;\k,’g_l(J;\‘,)_1 for g € Uy = GLy.
This determines the structure of the L-group:

E: YUy =GLy xTr, “(Un)g/r =GLy xTg/r  via 1.

We also let & denote either map or the common restriction to the dual group:
Uy = GLy. If 79 is replaced with a conjugate embedding tyc, then the above
isomorphism is composed with g X y 6 (g) x y. Let v be a finite place of F.
Recall that ¢, : F < F, is fixed (Section 1.4), which gives rise to

T - L -
Tow: E<—> F <> F,.

Write u for the place of E indued by F, via 79,,. As we did for £y, we obtain an
isomorphism
£, :E(Un)p, =GLy xTp,  via 19,.

The maps & and &, fit in a commutative square with the natural embeddings
LUN)F, < EUy and GLy xT'r, = GLy xT'r. Similarly, let o : F < C be an
embedding. Write v for the infinite place of F' induced by o. We have chosen
o . F <> C to extend o in Section 1.4. Write 70,0 ‘= lsTo. Then we obtain

En, 1 "(UN)p, =GLy xTf, via .

For the embedding 19 ;¢ conjugate to 79 ,, we define §mﬁc to be 5,00 followed by
g Xy > 0(g) x y. Similarly, if a finite place v splits in E as u and u’ then &, is
set to be &, composed with g Xy — 6(g) x y. To sum up, we defined

g, for all embeddings £ < C and g, for all finite places u of E.

When v is an infinite place, we also fix an isomorphism F, = C and still write
To,» for the composite map E < F, = C. This map induces Ty, , = GZ over C,
thus X.(T5,,) = Z".
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Endoscopic groups in &1 (Uy) have the form Uy, x Uy, for integers Ny > N, >0
and Ny + Ny = N. See [Rogawski 1990, Section 4.6]; compare [Waldspurger 2010,
Section 1.8] or [Mok 2015, Section 2.4]) for more details on full endoscopic data.
We note that the Weil form (rather than the Galois form) of the L-group is needed
to describe the L-morphisms in the endoscopic data.

2.2. Twisted general linear groups. Consider Cases S and U together. Keep the
same E and c as above in Case U; set E = F and ¢ = 1 € Gal(E/F) in Case S for
uniformity. For N € Z- we introduce the groups

G°(N) :=Resg/r GLy and G(N):=G°(N) x (0),

where (0) is an order 2 group with 6 acting on GO(N) as 0(g):g— Jf\‘,tc(g)*l (J;’\‘,)*l.
Fix a standard pinning (By, Ty, {Xn}) of GO(N), which is stabilized by 6. In
particular, Ty is the diagonal maximal torus of GO(N ). Write G(N) := GO(N )x 60
for the 6-coset in G(N). We also let G(N) stand for the datum (G(N), 0) as in
[Arthur 2013, page 125]. For simplicity of notation we will often write LG(N) and
G(N) for LGO(N) and GO(N).

Denote by E.1(N) a set of representatives for isomorphism classes of twisted en-
doscopic data for (G(N ), ©). Each element of & (N) is represented by a quadruple
¢ = (G5, LG", %, £%); see [Kottwitz and Shelstad 1999]. By Eim(N) we mean the
subset of simple twisted endoscopic data in g’eu(N ), i.e., the data where G*¢ attains
maximal semisimple rank.

We give an explicit parametrization of £ (N) by means of the twisted endoscopic
group G¢ following [Arthur 2013, Section 1.2] and [Rogawski 1990, Section 4.7].
For simple endoscopic data we will write G and £ for G® and £¢, and describe &
explicitly.

Case S. The twisted endoscopic groups are parametrized by triples
(No, Ns,n), No,Ns€Z>9,No+Ns=N, Ngiseven, n:T'r— {1},

where the continuous character 7 is trivial if Npo = 0, nontrivial if Nyp = 2, and
arbitrary if No > 2. The corresponding G¢ is SO”NO x SOpn,41 if N is even, and
Sp No—1 X SOpg+1 if N is odd. In each case, £¢ can be described as in [Arthur 2013,
page 11]. (If N is odd then n only affects £¢, not G*.)

The triple corresponds to an element of g’sim(N ) precisely when Np =0 or Ng=0.
If N =2n, then we have (0, N, 1) and (&, 0, n). In the first case, G = SOy, +; and

£ :XG = Sp,, = GLa,
is the standard embedding, inducing the map on cocharacter groups

XoT)=7" - X (Ton) =77, (@)}_, > (@1, ..., an, =Gy, ..., —ay).
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The triple (N, 0, ) corresponds to G = sogn and
£:YG =0y, = GLy,
is again the standard embedding, inducing the map on cocharacter groups
X (T)=X*(T)=7"— Xo(Ton) =7%", (@)} +> (a1, ..., ap, =Gy, ..., —a1).

Strictly speaking the codomain of £ is GLy, xI’ F,/F» but the image of £ in the
Galois factor is dictated by the fact that & is an L-morphism, so we often omit it
from the formula. The same will apply to £ below when N is odd.

If N =2n+ 1, simple data correspond to (N, 0, n), thus G = Sp,,, and

E: LGFn/F =SO2+1 X'k, /r = GLant1

given by the standard embedding on SOy, 11 and n: ', jp <> {1} C GL2,41 On
the Galois group. The induced map on cocharacters is

XD =2" - Xu(Toe) =", @)j_y = (@1 @0, 0, =ay, ... —ay).
Case U. The twisted endoscopic groups in & (N) are parametrized by quadruples
(N1, Na, k1, k2), N1, N2 € Z>0, N1+ N2 = N, k1, k2 € {£1},

with (k1, k7) either (1, —1) or (—1, 1) if N is even, and (1, 1) or (—1, —1) if N is
odd, modulo the equivalence (N1, Na, k1, k3) ~ (N, N1, k2, k1). (Compare with
[Mok 2015, Section 2.4], but beware of a small inaccuracy that the equivalence
between endoscopic data is incorrect there.) For each quadruple we have a twisted
endoscopic group G =Uy, x Uy,, with respect to the same E/F, which is part of a
twisted endoscopic datum. We refer to loc. cit. for a formula for the L-morphism £¢,
which depends on k1, k3.

The subset g'sim(N) corresponds to quadruples (N, 0, k1, k2). Set k : =k € {£1}.
We need not keep track of k; as it is determined by N and «;. In both cases the
twisted endoscopic group is G = Uy; let £, &_ : L Uy — LG(N) denote the
L-morphisms corresponding to x = 1,;1< respectively. Let 79 : E < F be the
embedding fixed in Section 2.1. Then G(N) = GLy x GLy, where the copies of
GLy are indexed by 19 and 7oc in the order, and I/ acts by permuting the two
factors. The “base change” morphism &, is easy to describe

£y M (UN)E/r £GLN XTgjr — “G(N) = (GLy x GLN) % T,
gxy > (2,0(2)xy = (g, I3 ¢ () Hxy.
This map is independent of the choice of 7¢: if 7 is replaced with tc, then the
first identification is twisted by g x y > 6(g) x y while the second map becomes

gxy— (g, 0 (g)) (if the first component is still labeled by 7) so the changes are
canceled out, while the last identification is unchanged.

(2.2.1)
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The map &, induces a map on the cocharacter groups
XD EZ" - XM =2" 07", (a) (@), (ay11-)
in accordance with (2.2.1). Similarly we can describe the map induced by &, :

X(Too) = P Xu(T) > X (Tiv.00) = EP X(T),

where the first sum is over embeddings o : F' < C and the second over 7 : E — C.
Namely if (a;) € X4 (f) denotes the o -component, then the image is supported on the
70,+ and 79 ¢ components on the right, and the map is (a;) — ((a;), (—an+1-i))-

We refer to [Mok 2015, Section 2.4] for a description of 5_, which will be needed
only in a minor way, and leaves it as an exercise to describe the induced map on
cocharacter groups. We just remark that £_ is not defined on L-groups relative to a
Galois extension; we need the Weil form of the L-groups.

2.3. Global parameters. Keep the notation from the preceding subsection. We
introduce (conjugate) self-dual parameters for general linear groups, which will
serve as parameters for automorphic representations of classical groups. We are
following [Arthur 2013, Section 1.4] in spirit, but our situation is simpler in that
we do not need the seed theorems of Arthur (namely [Arthur 2013, Theorems 1.4.1
and 1.4.2]) as we will prove only weak transfers.

For m € Z>1, let W, (m) denote the set of (isomorphism classes of) unitary
cuspidal automorphic representations of G (m, Ar) = GL,,(Ag). Write ¥ (N) for
the set of formal global parameters

Y=Hieni Qvy,, @ € Yom(m;), m;,n; € 2>y, (2.3.1)

where [ is a finite index set, v,, is an irreducible n;-dimensional algebraic repre-
sentation of SLy(C), and ), _,; m;n; = N. Given 1 is considered equal to another
parameter ' = Hycpuy X V! if there exists a bijection f : I — I’ such that
Wi = W r@) and ni =nggq foralli € 1.

Given u € Wgin(m), let u* := " oc € Wgm(m) denote its conjugate-dual. This
definition extends to W(N) by setting ¢* := H;c;u; X v,,. Put

U(N):={y e W(N): y* =y}

Let S be a finite set of places of F containing all the places of F ramified in E.
Write WS (N) for the subset of ¥ € W(N) which are unramified outside S; the latter
means that y; are all unramified outside S in (2.3.1). Put WS (N) := U (N)NWS(N).
We define Coo (N) and C5(N) to be the sets of C-algebra characters of B(GO(N )oo)
and H5 (G°(N)), respectively. We have a map

Y € US(N) = (o0, € (Y1) € Coo(N) x C5(N)
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defined as follows. Given v as in (2.3.1), we have (¢, ., cS(wi)) € Coo(my) x
C5(m;). The block diagonal embedding [Lic; ]_[;l’:1 GL,,, = GL,,,, induces a map

I1 f[(cw(mi> X C5(m;)) = Coo(N) x C3(N).

iel j=1

We define (¢y.., ¢5(¥)) to be the image of

n+1-—2j IREEY
(§ui.m+ i : gt ZJ)/ZCS(/M)> ’
iel, 1<j<n;

where the sum ¢, . +a with a € Q means that the sum is taken in X *(’T\,,“)@/_/\Qmi,
and a € Q = X, (G,,) g embeds into X*(fmi )g via the incl&s_io\n of G,,= Z(Go(m,-))rf
in Tmi; the product qucs(w) with b € Q) is taken in Go(m,-), where qf € G, (©)
is viewed as a central element of the dual group of éo(mi). Our definition
of (¢y,00, s (¥)) is given explicitly such that it is consistent with the local A-
parameters at oo and finite places away from S obtained from localizing .

2.4. Stabilized trace formulas. Let G be an inner form of a quasisplit classical
group as in Section 2.1. (In fact the discussion below in the untwisted case works
for general reductive groups as in the relevant parts of [Arthur 2013, Chapter 3].)

Let us begin by introducing the notion of Hecke types following [Arthur 2013,
page 129]. We freely use the notation and the choices made from Section 1.4.
Let S be a finite set of places of F' containing Sp,a(G). Let «g° be an open
compact subgroup of [[, G(F,), where v runs over finite places in S. Write
K for the product of hyperspecial subgroups K over finite places v ¢ S, so
kK 5 is an open compact subgroup of G(AP). Fix a finite set T, consisting of
irreducible representations of a fixed maximal compact subgroup K, of G (R) =
I, |oo G(Fy). The pair k = (T, K§°KS) arising this way is called a Hecke type.
Write H(G),, for the subspace generated by f = f*° foo € H(G) such that f° is
biinvariant under «g° K S and such that Jfoo transforms under left and right translations
under K, according to representations in Teo.

Let h € H5 (G) and z € 3(Gwo). By evaluating ¢® € C5(G) and ¢ € Cx(G) at
h and z respectively (see Section 1.4), we obtain the numbers to be denoted by
h(cS) e C and ¢(z) € C. Moreover h and z act on H5.(G) and H(G ), written as
fS5 > hx fSand foo > 7% fao, such that for irreducible admissible representations
75 of G(AY) and 7o of Goo(R),

7S f5) = RS @INTISS),  Too(@* foo) = Cn (DT foo). (241
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In particular we have identities by taking the traces of both sides in (2.4.1). The
commuting action of (k, z) on ”H,fr(G) X H(G o), again denoted by *, obviously
extends to H(G(Ar), K5).

Let t € R>g. Write Igsc’t for the discrete part of the trace formula, which is an
invariant linear form on #(G). The restriction of / d(i;sc’ ; 10 H(G), decomposes as a
finite sum of eigen-linear forms of #5.(G). Moreover, we can further decompose
as a finite sum of eigen-linear forms for the action of 3(Gso) on H(G ). Thus we
can write

Ige () = > Iieces(D)s  [EHGAR), K,  (242)
(£,¢5)€C0 (G)xC5(G)

where Ig s are (¢, c5)-eigen-linear forms:

sc,¢,¢
I s (25 ) =h(HE@DIG,  s(), 7 €HHG),2€3(CG). (243)

The ¢ and ¢3 appearing in (2.4.2) should be thought of as the infinitesimal characters
at oo and the away-from-S Satake parameters for the automorphic representations
contributing to Igisc ;. For a fixed Hecke type «, the sum (2.4.2) runs over a finite
set depending only on « and not on f € H(G), by Harish-Chandra’s finiteness
theorem.

Note that ¢ is determined by ¢ to be the norm of the imaginary part of ¢; see
[Arthur 2013, page 123]. That is, for a fixed ¢ and ¢3S, the linear form Id(i;sc,;‘,cs in
(2.4.2) is nontrivial for at most one #. Hence the meaning of Igsc’ e is unambiguous
even if we do not include ¢ in the notation.

Write RG__ for the regular representation of G (A ) on L? _([G]); see Section 1.4.

disc,t disc
Just like 7¢  the invariant distribution tr RS . decomposes as
disc,? P

disc,t

tr R, (f) = > wRS (), feEHGAR), K.
(£,¢9)€C(G)XC5(G)

To discuss stable distributions, we will only consider G with the following
property: for every finite sequence ¢; = (G;, G/, s/, &) indexed by i =1,...,r,
where ¢; is an elliptic endoscopic datum for Gf_l over F for 2 <i <r, we can
take g; = LGI? for all 1 <i <r. (Thatis, ¢; is isomorphic to an endoscopic datum
whose second entry is given by the L-group of the first entry.) The purpose of the
simplifying hypothesis is to dispense with any discussion of z-extensions. This
suffices for our needs as the classical groups in Section 2.1 satisfy the condition.

Now we consider elliptic endoscopic data ¢ = (G, G¢, 5%, &%) for G over F.
Denote by f¢ € H(G*(AF)) a Langlands—Shelstad transfer of f. Arthur inductively

defined stable linear forms S, . . = S(iGi:c,t : H(G*®) — C for each e satistying the
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fundamental identity

I ()= D 0SS, (f9). (2.4.4)

e€&en(G)

where ¢(e) € Q-0 is an explicit constant. For quasisplit G = G*, the equality should
be viewed as an inductive definition of Sdlqc ;> the inductive procedure is based on
the fact that the semisimple rank of G° is less than that of G for ¢ € E5(G). The
role of the stabilization of the trace formula is to tell us that the inductive definition
of SdlSC , indeed yields a stable linear form. If G is not quasisplit then both sides of
(2.4.4) are a priori defined, and the content of the stabilization is that the equality
holds in (2.4.4). See the explanation between (3.2.3) and (3.2.4) in [Arthur 2013]
for more details.

The transfer f° has trivial stable orbital integrals unless S O Spaa(G*), which we
assume from now. In particular if f € H(G(Ar), K5) then f¢ e H(G*(Ar), K®5),
where K3 is the product of fixed hyperspecial subgroups of G*(F,) over v ¢ S.
Based on (2.4.2) and (2.4.4), we can adapt the argument from [Arthur 2013,

Lemma 3.3.1] to decompose S , into stable linear forms

SSises (f) = > Sise.crcs(f)s [ €H(G (AR), K*),
(£.¢"9)€Ca0 (G) XC5(G*)

such that each S e, s satisfies the analogue of (2.4.3). If G is quasisplit, then this

applies in partlcular to G* = G, that is, we have a stable linear form Sgsc oS

H(G(Ar), K5) — C for (¢, S) as before. Given (¢, ¢5) € Coo(G) x C5(G), define
¢ g = {Z(C’,c’vs)H(C,cS) Sdisc,{’,c’vs if §D Sbaa(G),
disc,¢,c 0 otherwise.

where the sum is taken over the pairs such that ¢’ — ¢ and ¢ > ¢S under the
natural maps Coo(G%) = Coo(G) and C5(G®) — C5(G) induced by £°¢. Then we
have a refinement of (2.4.4) as in [Arthur 2013, Lemma 3.3.1]:

dlSC Z, cg(f) Z t(e)S;isc’;CS(fe), (2.4.5)

ee&en(G)

More precisely, the refinement by ¢3 is done in [loc. cit.] but not by infinitesimal
characters. The argument of [loc. cit.] based on multipliers works in the same way
to give refinement by ¢ as long as the archimedean transfer is compatible with
infinitesimal characters; such compatibility is stated and proved in either of [Mezo
2013, Lemma 24] and [Mceglin and Waldspurger 2016a, 1.2.8. Corollary], including
the twisted case. This point is also explained in [Taibi 2019, page 867].

The discussion so far can be adapted to the twisted case, as this case is covered
n [Arthur 2013, Sections 3.1-3.3]. For the twisted group G(N ) introduced in
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Section 2.1, denote by Igb(c t) the twisted invariant trace formula and by Een(N )a
set of representatives for isomorphism classes of twisted endoscopic data. Each
¢ € Eq(N) is again represented by a quadruple (G%, L G¥, s, £°), where G¢ is a
product of one or two classical groups as listed in Section 2.2.

Recall that we defined Coo(N) and CS(N) in Section 2.3. Put K(N)S C
GYN )(A%) for the product of hyperspecial subgroups coming from the obvious
integral model of G°(N) over Or. We have i € #5.(G°(N)) and z € 3(G*(N)xo)
acton H(G(N, A3 ), K(N )$) and H(G(N )oo)s respectively, such that the analogue
of (2.4.1) holds for representations of G(N AS ) and G(N )oo- The decomposition
(2.4.2) admits a twisted analogue

I (f) = > 100 (). | €HGIN AR, K(N)®),
(£,85)€Co0(N)XCS(N)

G(N)

where each I ¢ 1s an invariant linear form on H(G(N)) satisfying the eigen-

property analogous to (2.4.3). As before, I G( ~) ¢ 1s nontrivial for at most one 7, so
there is no danger if ¢ is omitted in the subscnpt

Provided that S O Spaq(G®), the L- morphism & LGt LGO(N ) induces maps
Coo(GY) — Coo(N) and C5(G¥) — CS(N). Thereby we put, for each (Z, &) €

Coo(N) X C5(N),
¢ . 3
Sdisc,f,ﬁs T Z~ disc,¢,c5?
(C.c5)—>(¢,85)

as a stable linear form on H(G%). If S ) Shad(GY) then set SSisc £ =0.
The stabilization of the twisted trace formula due to Moeglifl and Waldspurger
[2016b, X.8.1] shows that, if f ¢ denotes a Langlands—Shelstad—Kottwitz transfer

of f € H(G(N)) then the twisted analogue of (2.4.4) holds:

Ig (= @S5 (). (2.4.6)

i€ (N)

where ((¢) € Q- is an explicit constant. For (E, &%) as above, we refine the
preceding formula again by [Arthur 2013, Lemma 3.3.1] (see the paragraph below
(2.4.5)):

15N (= D @S5 ;0. 24.7)

dlSC z,és
eelen(N)

2.5. Weak transfer for classical groups. Let G* be a quasisplit classical group as
in Case S or U of Section 2.1. Let 5 LGg* - LGO(N) be the L-morphism such
that G* and £ constitute a simple twisted endoscopic group for (G(N), 6) as in
Section 2.2. Let (G, i) be an inner twist of G* over F' (Section 1.4).
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Theorem 2.5.1 (quasisplit case). Assume (H1) in Section 1.1 and let G = G*. Fix
a finite set S O Spad(G):

(1) For (£, ¢5) € Coo(G) x C5(G) write (2, &%) € Coo(N) x CS(N) for the image
of (¢, ¢S) under é Unless (E, &%) = &y 00 cS(W)) for some € US(N),

URE o5 =15 os() = Sghic . os()) =0, f €H(GAR), K¥).

(2) We have a G(Af)-equivariant decomposition

Li(GD ™=@ D  Lic (G
V(£ (oo, cS (V)

where the first sum runs over ¥ € \iJS(N ), and the second over (¢, c5) €
Coo(G) x C5(G) which map 1o (§y, 00, cS(W)) under &. (See Section 2.3 for the
notation.)

This theorem corresponds to [Arthur 2013, Proposition 3.4.1, Corollary 3.4.3].
Arthur’s main global theorems (Section 1.5 therein) show that only a proper subset
of \iJS(N ) contributes in (i) and (ii), consisting of the ones coming from square-
integrable parameters of G. The soft argument here does not narrow down the set
of i as much. Theorem 2.5.1 is proven essentially in the same way as [Arthur
2013, Proposition 3.4.1, Corollary 3.4.3]. We give some details for the convenience
of the reader, taking for granted the key input [Arthur 2013, Proposition 3.5.1] on
vanishing.

Proof. Assume that (g:, &S £ (Cy. 00 cS(y)) for any y € li’S(N). Let us show (i)
and (ii) by induction on N.

Let us check (i) and (ii) when G is a torus; this serves as the base case. Concretely
G = SOZ (allowing n = 1) in Case S, and G = U, in Case U. Since the two cases
are similar, we only consider the latter case. Then Lgisc([G])S*ur = @X X, where
x :Ui(Ap)\ U (Ap) — C* is an automorphic character unramified outside S. This
matches the decomposition on the right-hand side of (ii) since each x determines a
unique conjugate self-dual Hecke character v : EX\A; — C* by ¥ (x) = x (x/x¢)
and a unique pair (¢, ¢%) recording the infinitesimal character and the Satake
parameter of x. Turning to the displayed formula of (i), we see that the first equality
holds because a torus has no proper parabolic subgroup, and that the second equality
holds because a torus permits no elliptic endoscopic data other than the tautological
one. Now the vanishing of the quantities in (i) follows from the decomposition of (ii).

Now we proceed with the induction hypothesis- suppose that (i) and (ii) are
known for all quasisplit classical groups which are simple twisted endoscopic
groups of G(N’) for all N’ < N and that G is a simple twisted endoscopic group
for G(N). (Here N > 1.)
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Recall that Iggc ,—tr Rdlgc ;
induced representations from discrete automorphic representations m; on proper
Levi subgroups M of G. So the same is true for // G cres I Rgsc oS Hence, if the
latter were nonzero, then there exists a proper Lev1 M of G such that (¢, c) is the
image of c= (¢, c;f,,) € Coo (M) xC5 (M) associated with some discrete automorphic
representation ) of M(Ag). We can write M = Mj x M; with M}, a classical
group, where M), is realized as a twisted endoscopic group for G(N —2N’), and

= G(N') with N’ < N. According to M = M}, x M;, we decompose ¢ = (¢, ¢;).
By induction hypothesis for M;, we have ¢, map to (y, o, cs(wh)) for some
Yy € \iJ(N — 2N’). On the other hand, since the L?-discrete spectrum of M; is
completely accounted for by W (N') thanks to [Mceglin and Waldspurger 1989] (see
[Arthur 2013, pages 23-25] for explanation), we have ¢; = ({y; 00, ¢S () for some
Y € W(N'). Since (£, ¢) is the image of (c¢j, ¢;) under parabolic induction, we see
that (£, %) = (£y,00, 5 (¥)) for ¥ =y, By By € U(N). This is a contradiction.
We conclude that

I es(D=URE  s(f), [eHGAR), K. (2.5.1)

G G ; ; : ¢ <
Now 1/ os = Sise.c.0s 18 @ linear combination of Si, . s over ¢ € £5,(G). If

the difference were nonzero, then for some ¢,

e _ e
disc,¢,c¢5 Z disc,¢’,c"S

(&', (g.c)

is by definition a linear combination of traces of

is nontrivial. Since G° is a product of quasisplit classical groups G and G, of
lower rank (see Section 2.1), by arguing as in the preceding paragraph based on
the induction hypothesis for G| and G;, we reach a similar contradiction. (The
difference is that there is no general linear factor in G and that the role of parabolic
induction is played by the endoscopic transfer via £°.) Hence

L es) = Sgeres()s [ EHGAR), K®). (25.2)

By the initial hypothesis, I ( ) = (0. Applying (2.4.7), (2.5.1) and (2.5.2), we
obtain
=10 (D= Y (@RS (O (2.5.3)

d]SC ¢,C
eelen(N)

The sum runs over the set of ¢ such that G¢ is unramified outside §; thus it is a
finite sum. Each tr RG i ¢ 18 a positive linear combination of traces of finitely
many discrete automorphlc representations 77°¢ of GS(Af). If f is chosen from
the Hecke algebra on G(N) of a fixed Hecke type « then each f ¢ belongs to
the Hecke algebra on G® of a Hecke type «¢ determined by «. Thus the set of
contributing ¢ is contained in a finite set depending only on «, by the condition
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that 77¢ should be unramified outside S and that the components of ¢ at S should
have finitely many types dictated by «¢. (The discussion of this paragraph is based
on the explanation between (3.4.11) and (3.4.13) of [Arthur 2013]. The two key
facts are that a compatible family therein arises exactly from an element of the
Hecke algebra on G (N) and that a compatible family always has a Hecke type.)

The preceding paragraph tells us that Arthur’s vanishing result [2013, Proposi-
tion 3.5.1] applies to (2.5.3). As a result, every summand in (2.5.3) is identically
zero. In particular this is true for G* = G, namely tr RG s is an empty linear
combination. That is, tr RG s (f)=0forall f. This completes the proof of (i)
in light of (2.5.1) and (2. 5 2)

Part (ii) follows immediately from (i) since tr RS disc.c.eS = = 0, which implies
L} ¢ os(IGD) =0, unless (¢, ¢) maps o (¢y.00, ¢S () for some ¥ € W5(N). O

Theorem 2.5.2 (general case). Assume (HI). Let (G, 1) be an inner twist of G*
over F. For each ¢ € Coo(G) and c3 € C3(G),

URG o os(N) =15, s() =0, feHGAR), K,

unless & sends (¢, c5) to &y 00> cS(W)) for some ¥ € \fJ(N). There is a G(Af)-
equivariant decomposition

L™ =B @  Liess0D,
V(€ (Gpo0 S (W)

where the sums run over \ € \i’S(N) and (¢, c3) € Coo(G) x C5(G) such that
(5, ¢%)) = Cyo0r S ().

Proof. We induct on N as in the proof of Theorem 2.5.1. The argument there carries
over to show that

18 s(N=tuRS . (). feHGAR). K,

using the fact that a proper Levi subgroup of G is a product of G'(N) with N' < N
and a non-quasisplit classical group of lower rank than G; the induction hypothesis
is applied to the latter.

Now we consider (2.4.5). Since the stable distributions on the right-hand vanish
by Theorem 2.5.1 (if ¢ € £3;(G), we can also argue as in the proof of that theorem),
we deduce that 1€ .s(f) = 0. Hence tr Rgsc’ = vanishes as well, and the

disc,¢,
assertion about L2. ([G]) follows. O

disc

Theorem 2.5.2 can be rephrased as the existence of a weak endoscopic lift
for G as a twisted endoscopic group of (G(N), #) in the next corollary. Let us
introduce a notion that will be used here and in the next section. Let 77; be a cuspidal
automorphic representation of GLy, (Af) fori =1, ..., r. Following [Clozel 1990,
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Definition 1.2], the isobaric sum of 7y, ..., 7., denoted by H!_,7;, is defined to
be an automorphic representation IT of GLy~ , (Ar) such that IT, is isomorphic to
the Langlands subquotient of the normalized parabolic induction from Q);_, 7; »
at every place v of F. As remarked in [loc. cit.] an automorphic representation of
GLy (AF) is written as an isobaric sum in a unique way (up to permutation) by a
result of Jacquet and Shalika.

Corollary 2.5.3. Assume (HI). For every discrete automorphic representation
7 of G(Ar) unramified away from S, there exists an automorphic representation
1 of GO(N, Ar), which is an isobaric sum of cuspidal representations, such that
MY = Mocand (L, cS()) maps to (¢, ¢S (1)) via E.

Proof. Since m appears in Ldlsc([G])S*ur it appears in Lﬁm : s([G]) for some
,cd) mapping to (y, o, € S(y)) as in Theorem 2.5.2. In partlcular ¢, cd =

(Cnoe» €3 (). Writing ¥ in the form (2.3.1), we can take IT to be the isobaric sum
Bier (uildet] =072 8 o1 det| "=V B - B il det| /).

By construction (£y.00, ¢5(¥)) = (¢n.,, ¢S(I1)). Since ¥* = ¥, it follows that
[MV=TIloc. O

3. Automorphic Galois representations

3.1. The Buzzard-Gee conjecture. Throughout this subsection, let G be a con-
nected reductive group over a number field F' (which need not be a classical group).
Let £ be a prime number and ¢ : C = @, an isomorphism. We work with fixed ¢
and ¢ at a time, but note that the conjectures below predict the existence of weakly
compatible systems of Galois representations in a suitable sense as £ and ¢ vary.

Let Goo,c =[], G and Too,c =] [, T+ be as in Section 1.4. Fix a Borel subgroup
Boo.c = B; containing T c. The half sum of positive roots is denoted by Poo =
(pr)r € X "‘(TOO c)a- We also view oo as the half sum of positive coroots of TOQ 0,C
relative to Boo c, thus an element of X (TOO c)o. We alsohave p € X*(T) =X (T)
as the half sum of positive roots for 7 and B as in Section 1.4. The pairs (B, T') and
(B:, T;) determine isomorphisms X*(7) = X*(7;) and X*(f) = X*(ﬁ), under
which p maps to p;.

Let m = ®/ m, be a discrete automorphic representation of G(Ar). We assigned
the infinitesimal character {;, = ({r,7) € X*(Too,c)c/ R0 = D, X*(T)C/Q in
Section 1.4. We introduce two notions of algebraicity for 7 in terms of .

Definition 3.1.1. We say that 7 is L-algebraic if {r € X*(Teo,c)/ 2. If &n,
belongs to the image of X*(Tx,c) + poo in X*(Too.c)c/ 2 then 7 is said to be
C-algebraic. The representation 7 is regular if ¢, is regular as an 2-orbit in
X*(Two.c)c, 1.€., each element of the orbit has the trivial stabilizer in €2.
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The L and C-algebraicity conditions are independent of the choice of T ¢ and
Bo.c; see [Buzzard and Gee 2014, Section 2.3]. An equivalent definition can be
given by imposing similar conditions on ¢ ., Tz, and p, for every 7 : F < C.

Write S;am () for the set of places v of F such that either v € Spq(G) or m,
is ramified. Let S(£) denote the set of places of F' above £. At a finite place
V¢ Sam(w) of F, let ¢, : Wg, — LG(C) denote the unramified L-parameter for
7, (Section 1.4). Changing coefficients by ¢, we obtain

W, Wr, — LG (Qy).

Given a Galois representation r : I'r — LG(@@) which is de Rham at £ and an
embedding o : F — @(, we follow [Buzzard and Gee 2014, Section 2.4] to assign
a Hodge-Tate cocharacter ,uHT(r 0):G,, > .G over Cy, whose G(Cg) -conjugacy
class is defined over Q;; here .G stands for the base change of G from C to Qy via
¢ or its further base extension to C,. (Such a base change is implicit in the notation
LG(@K).) Thereby we obtain a conjugacy class of cocharacters G,,, — .G over Qy,
which in turn gives an element of X *(l?) / €2. We denote the resulting element by

tro € X2 (T)/ .

Conjecture 3.1.2. Suppose that 7 is L-algebraic. There exists a Galois representa-
tion
r=ry(m):I'r— L@y

such that:
(1) rlyy, = i, at finite places v ¢ Sram(77) U S(£).
(2) prir = —t&y ¢ for every embedding v : F — C.

Remark 3.1.3. The negative sign in (ii), which does not appear in [Buzzard and
Gee 2014, Section 3.2], is due to the different sign convention. (The cyclotomic
character has Hodge-Tate weight 1 there; see [loc. cit., Section 2.4].) In this
conjecture and the next conjecture, we omit the statement on the image of complex
conjugation as we fell short of proving it in the case of interest, see Remark 3.2.8
below.

Remark 3.1.4. When G = GLy, choosing T to be the diagonal maximal torus, we
can identify each member of X*(7,-1,)/ 2, with ordered n integers (a;);_, with
ay > ay > --- > a,. Similarly, each member of X *(TOO c)o/ 2 can be regarded as
ordered rational numbers (a;);_, such that a; > a; > - - - > a,. In particular, if 7 is
L-algebraic or C-algebraic, then we can write —¢; . = (a;);_, for a suitable set of
a; as such. So condition (ii) above may be understood as an equality of multisets
for G = GLy.
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Following [Zhu 2020b] (which gives a different but equivalent definition of
C-groups as in [Buzzard and Gee 2014]) the C-group of G is defined by taking the
semidirect product

CG:=LGxG,, (AxnDExDUxn'=Adpt)gxl, gelG,teG,.

This is well defined because Ad(p) is an algebraic action of G,, on G (although p
need not be an algebraic cocharacter into G). We can also write € G = G (GuxI'g)
with G,, and I'r acting on G via the Ad(p)-action and the L-action respectively,
since the Galois action and the G,,-action on G commute. It is convenient to fix a
finite Galois extension F’/F over which G splits, and use the finite Galois forms
of the L-group LGF//F =LG x I'r//r and similarly for the C-group CGF//F =
LG /F X Gy,. From now on, we use the finite Galois form and drop F’/F from
the subscript unless specified otherwise. We will use the natural 6—conjugati0n
on €G, with coefficients in @e or C, to define the notion of isomorphism for local
parameters and global Galois representations valued in €G. (It does not make any
difference if we use the conjugation by G % G, instead.) For the purpose of this
section G,,, G, €G, etc. will mean the topological groups of @, or C-valued
points (though they can also be viewed as groups over @, or C); the coefficient
field is suppressed if there is no danger of confusion.
Write 7% for the image of T in the adjoint group of G.

Lemma 3.1.5. If there exists p € X, (?) which is T p-invariant and has the same
image in X, (Tad) as p, then G =L G x G,, via g x t — (gp(t), t) with the inverse
map (g, 1)~ gp(t)~ " xt. These maps are G- -equivariant: the image of h(g xt)h ™!
equals (hgp(t)h~ L) forh e G.

Proof. This is a straightforward verification. ([

Let v be a finite place of F not in Sy, (77). We introduce a C-normalization of
the unramified L-parameter for , (with C-coefficient), which is natural from the
viewpoint of the geometric Satake equivalence, see [Zhu 2020b, Section 1.4]:

¢S Wr, > G="G %Gy, x> ¢, (0)20(x]"?) x |x| 7. (3.1.1)

It is elementary to check that ¢>C 1s well defined up to G- -conjugacy. Indeed, if
¢, 1s conjugated by an element of G then the resulting ¢>C is conjugated by the
same element. When p as in Lemma 3.1.5 exists, the isomorphism therein gives an
alternative description of ¢jfv:

¢S Wr, > "G xGy, x> (¢, (0200 —p)(x['?), 1xI7). (3.12)

Example 3.1.6. When G is Sp,, or SO] , we take p = p. In this case F/ = F
except for the case of sogn with 1 # 1; then take F’ = E. For G = SOy, 1, we
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take F/ = F. In this case no g as in the lemma exists. For GLy, we can take
=(N—-1,N-2,...,1,0) with F' = F. So when G = GLy, (3.1.2) reads

qzi, () = (@, ()] T2, x 7. (3.1.3)
For G = Uy, we take F' = E. For odd N we can take p = p, but there does not
exist p as in Lemma 3.1.5 if NV is even. (For instance, (N —1, N —2, ..., 0) is not

I" p-invariant.)
Example 3.1.7. For SO,, 1 (with F/ = F), we have two maps

Spy, XGy — GSpy,, (g,1) — gt,

Spy, XGyy = € 80s,41 =Spy, XGy,  (g.1) > g2p(t) ™ X 1
whose kernels are both generated by (—1, —1). This induces an isomorphism

€S0211 = GSp,, .
Under this isomorphism, (3.1.1) reads
¢S :Wg, — GSpy,, x> by, (0)]x] 712

We return to a general discussion. Let 7 : F <> @ be an embedding. To a Galois
representation 7€ : 'y — €G(Qy) which is de Rham at £, we assign a Hodge—Tate
cocharacter uyr(r€, v) : G,, = G x G,, over C;, which gives rise to an element

fhec ¢ € Xo (T x Gy)/ 9,

as in the case of L-group valued representations. Indeed, € G is the L-group of a
G,,-extension of G, see [Buzzard and Gee 2014] and [Zhu 2020b], and T x G, is
a maximal torus. of G x (3, whose Weyl group is naturally 1somorph1c to Q, the
Weyl group for T in G. The actlon ofweQonX (T xXGu)=X (T) B X (G,) =
X (T) @ Z, induced by the G- -conjugation on G % G, is that w(a,b) = (wa +
b(wp — p), b), where wa and wp are computed using the natural w-action on X *(?).
Define {75 . by

28 = (~Lar—p, 1) € Xu(T X Gp)a/ Q. (3.1.4)

This is well defined since if ¢, € X *(f)@ denotes any representative in its €2-
orbit (still denoted ¢ ;) then w(—¢r r — p, 1) = (—wir.r — p, 1) by the preceding
formula. When p as in Lemma 3.1.5 exists, composition with the isomorphism
CG=LG x Gy, gives an alternative description

8 = (Lre—p+5, D) € XoT x Gp)o/ Q. (3.1.5)

The reader is cautioned that even though T x Gy, serves as a maximal torus in
both G and ©G x G,, via the natural inclusions, the isomorphism G = LG x G,
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does not induce the identity map on T x G,,. Rather the induced map “shifts” by
0, which explains the difference between (3.1.4) and (3.1.5). While (3.1.4) is for
general € G-valued representations, (3.1.5) is for “G x G,,-valued representations
and requires the existence of p.

The C-algebraic version of Buzzard and Gee’s conjecture is adapted to our setting
as follows.

Conjecture 3.1.8. Suppose that w is C-algebraic. There exists a Galois representa-
tion
r€=rf,(m):Tp > “G(Qp)

such that:
(1) r€Ly, =S at finite places v ¢ Sram (1) U S(E).
2) mpe = —Lfgf for every embedding T : F — C.

Remark 3.1.9. Condition (i) implies that the composition of #* with the projection
CG Q) = Gp(Qy) is a)zl, the inverse cyclotomic character, in view of (3.1.1).
This convention is consistent with [Zhu 2020a] but opposite to that of [Buzzard and
Gee 2014, Section 5.3, Conjecture 5.40], where the composition is wy.

Remark 3.1.10. When p € X*(?) (not just p € X*(f)@), Conjectures 3.1.2
and 3.1.8 are equivalent via the isomorphism ¢G = G x G,, of Lemma 3.1.5
given by p = p. Indeed, L-algebraicity coincides with C-algebraicity in that case.
Further, r as in the former conjecture gives rise to 7 in the latter conjecture by
rC(y) = (r(y), we(y)~1) via the isomorphism. Conversely r can be recovered
from ¢ by projection.

Conjectures 3.1.2 and 3.1.8 are known for general linear groups under certain
hypotheses as we now recall. The case of classical groups will be eventually derived
from this result.

Proposition 3.1.11. Let F, E be as in Section 2.2 and * as in Section 2.3. Conjec-
tures 3.1.2 and 3.1.8 are true for every discrete automorphic representation w of
GLy (AEg) (in particular E serves as the field F in the conjectures) if the following
hold:

o 1 is regular (and L or C-algebraic as assumed in the conjectures).
o T* =7 ® (x o Ng/F) for a Hecke character x : F*\Ap — C*.

If 7w is regular but does not satisfy the second condition, then Conjectures 3.1.2
and 3.1.8 are true except for the assertions on Hodge—Tate cocharacters.

Proof. The last assertion will be addressed at the end of proof. Until then we assume
that 7 satisfies both conditions. We begin with the case when 7 is cuspidal and
C-algebraic. Let us represent ¢ ; by (ap, ..., an) — (%(n -1),..., %(n — 1)) with
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(a;)7_, € Z". By [Barnet-Lamb et al. 2014, Theorem 2.1.1] (which summarizes
a theorem due to many people; the sign condition in that theorem was shown to
be superfluous by [Patrikis 2015]), there exists a semisimple Galois representation

R =Ry, () :Tg — GLy(Q) such that
RIS, Zign, 1182 v ¢ Sum(m) US(), (3.1.6)
MR =(al,....an) = —lne+ (300 —1), ..., 3(n = ). (3.1.7)

After choosing /5 as in Example 3.1.6, we identify “GLy = GLy xG,, as in
Lemma 3.1.5. Then we define an GLy xG,,-valued representation

r€:Te — GLy (@) X Gu(Qp), ¥+ (R(), o) ().

Comparing (3.1.6) with (3.1.3), we verify part (i) of Conjecture 3.1.8. The cochar-
acter ;g . 1n part (ii) of the conjecture becomes a GLy x G,,-valued cocharacter in
view of (3.1.5):

t> (Lae—p+D) ), )= (-t + (3 —1, ..., 30 = D)) (), 1).

This coincides with p,c ,, in view of (3.1.7) and the fact that the Hodge—Tate
cocharacter of w[l is the tautological map ¢ — ¢ on G,,.

We turn to the case of cuspidal L-algebraic 7. Then 7/ := mr|det| ¥V =1/2 is
cuspidal, regular, and C-algebraic. So there exists R(;r’) such that (3.1.6) and
(3.1.7) hold with n" in place of w. We take r = ry, () := R(x’). Then r|sv§,Ev =

o |-|§1_N)/2 =iy, at v € Sram () U S(£), so (i) of Conjecture 3.1.2 is satisfied.

Similarly (ii) follows from (3.1.7) for r = R(x').
From now, let = be a noncuspidal discrete automorphic representation. By
[Mceglin and Waldspurger 1989]

m = 8 moldet| "+ 2072

as an isobaric sum, for some Ny, r € Z>; and 7 a cuspidal automorphic repre-
sentation of GLy,(Ag), where N = Nor. If 7 is regular L-algebraic then 7; :=
mo|det| " +1=2)/2 is regular, L-algebraic, and unramified outside Syam (7). By the pre-
ceding argument, we have r, () corresponding to 7; satisfying Conjecture 3.1.2.
Then r := & j Te(j) is the Galois representation corresponding to 7 predicted by
the conjecture. We leave to the reader to verify Conjecture 3.1.8 when r is regular
C-algebraic and noncuspidal as no new idea is needed.

Finally, if the second condition on 7 is not assumed, we can run the same argu-
ment as above except that we apply the theorems of Harris, Lan, Taylor and Thorne
[2016] and Scholze [2015] instead of [Barnet-Lamb et al. 2014, Theorem 2.1.1] to
obtain Galois representations. The only difference in the outcome is that the Hodge—
Tate weights have not been identified for the Galois representations in [Harris
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et al. 2016; Scholze 2015], so we are unable to verify (ii) in Conjectures 3.1.2
and 3.1.8. U

3.2. Existence of Galois representations for classical groups. From here until the
end of the paper, we use the same notation as in Section 2.5, including G*, N, and
E:1G— LGO(N ). In Case U, take £ to be the standard base change morphism §+
(rather than £_). In Case S, we recall that flc* is the standard embedding of G*
into GLy.

Let £ be a prime and choose an isomorphism ¢ : C ~ @,. Let S be a finite set of
places of F' which contains all places above £ and oo such that G is unramified at
places outside S.

Definition 3.2.1. A discrete automorphic representation = of G(Ap) is said to be
std-regular if € ({y.,) € Coo(N) is regular.

Lemma 3.2.2. If 7w is std-regular then it is regular. The two conditions are equiva-
lent unless G is an inner form of sogn

Proof. As we explicated the map X *(?) - X *(?N) induced by & in Section 2.2,
the lemma follows from the definition. O

Example 3.2.3. When G = SO"H, a Weyl group orbit in X*(f) = 7" is uniquely
represented by (a;) such that a; > ax > --- > a,—1 > |a,|. If {; corresponds
to such a tuple (a;) then 7 is regular if strict inequalities hold everywhere, and
std-regular if furthermore a, # 0.

Letr:T'r — GL,, (@g) be a Galois representation. Define another representation
rt by
r(y)i="r(eye H™,

which is isomorphic to the dual representation r* in Case S. Let x : I'g — @Z be a
Galois character such that x (cyc™!) = x(y) for all ¥ € I'g (which is automatic in
Case S). From now assume that r is irreducible. Provided that r+ = r x, we recall
how to define a sign

sgn(r, x) € {x1}

following [Bellaiche and Chenevier 2011, Section 1.1]. In Case S, we obtain a
~! up to a nonzero scalar. According
to whether the pairing is orthogonal or symplectic (it cannot be both since r is
irreducible), we assign 1 or —1 as the value of sgn(r, x). When y is trivial, we
just write sgn(r) and refer to it as the sign of r. Of course if m is odd then always
sgn(r, x) = 1. In Case U, by assumption there exists 7 € GL,, (Qp), unique up
to nonzero scalars, such that 7~ = hrh~'x. Then it is elementary to check that
"h = sgn(r, x)h for sgn(r, x) € {1}, which does not depend on the choice of .

nonzero ["p-equivariant pairing r @ r — x



52 SUG WOO SHIN

Henceforth we restrict £ and F as follows in order to access Proposition 3.1.11:

(Case S) E = F is atotally real field.
(Case U) F is a totally real field, and E is a CM quadratic extension of F.

Consider the following hypotheses — see the paragraph above Theorem 1.2.2.
The two versions of (H2) are equivalent to each other since ¢, = & (¢r,)-

(H2) 7 is std-regular.
(H3) In Corollary 2.5.3, if IT is written as an isobaric sum IT = H;_, TI; then II; is
(conjugate) self-dual for every i, i.e., IT7 =II;.

Proposition 3.2.4. Let E and F be as above. Assume (HI). Let w be a discrete
automorphic representation of G(Af) which is unramified outside S, C-algebraic,
and satisfying (H2) and (H3). Then there exists a continuous semisimple Galois
representation

R =Ry (m):Tgs— GLy (@)
with the following property. If G* = Sp,,, or SOZn (Case S), we have:

@) Rﬁ’?’p = Lg(bﬂv for every place v of F not above S.
(1) uRr.o = —t&(&r o) for embeddings o : F — C.

(ili) RV = R. When G* = SOgn, every self-dual irreducible constituent of R has
sign 1.

(iv) detR =1 if G* = Sp,, and det R = n if G* = SO] .
If G* =S0y,11 (Case S) then:
i) R|§f,Fv = L(§¢ﬂ1J|-|(1_N)/2) for every place v of F not above S.
(i) Uruw =—1ECro)+ (3N =1),..., (N — 1)) for embeddings o : F < C.

(iii’) R*=RQ® a)f,v ~L. For every irreducible constituent r of R such that rt+ =

N—1

r®w) !, we have sgn(r, o) ') = —1.

If G* = Uy (Case U) then with &,, &, as in Section 2.1
i) R ﬁ,Eu = L(éu(]ﬁnu |-|,(41_N)/2) for every place u of E not above S, where v is the
place of F restricted from u.
(i) urur = —tEr Crre) + (X5 o B5L) for embeddings © : E < C.
(iii”) RF=R® a)év -1 For every irreducible constituent r of R such that r+ =
r® a)évfl, we have sgn(r, a)?’*l) =1.

If (H1) and (H2) are assumed but not (H3), then the above is true except (ii), (ii’),
and (ii”).
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Remark 3.2.5. In fact the proof below shows that every irreducible constituent of
R in (iii) (resp. (iii’) and (iii”)) is self-dual (resp. self-dual up to wév _]) thanks to
(H3).

Remark 3.2.6. We could have stated the Uy-case uniformly with the SO;, 1 -case
if we rewrite R as a Galois representation I'r ¢ — LG(N) (@g) via a variant of
Shapiro’s lemma. Then (i”’) and (ii”’) can be merged into (i) and (ii’). E.g., both
(1) and (i) assert R ;f,Fv = té Ox, |-|£1_N)/ % in this formulation. However the current

formulation for unitary groups is convenient in Section 3.4.

Proof. Let I1 = H;_,TI; be the automorphic representation of G(N,Ar) =
GLy (Ag) which is a functorial lift of w as in Corollary 2.5.3. We are going
to apply Proposition 3.1.11 to each I1;. The proof will be presented only when (H1),
(H2), and (H3) are assumed. If (H3) is dropped then we lose track of Hodge—Tate
cocharacters according to Proposition 3.1.11 but the argument is identical other
than that. This explains the last assertion of Proposition 3.2.4.

According to (H3), each I1; is a cuspidal automorphic representation of GL,,, (Ag)
such that TT¥ = T1; and 3_, m; = N. Since (¢, ¢5(11)) = & ({n.,, ¢5 (1)), the std-
regularity of 7 implies that IT is regular. Moreover the description of p and & in
Sections 2.1 and 2.2 tells us that:

o If G* = Sp,, then 7 is also L-algebraic; IT is both L and C-algebraic.

e If G* = SOgn then 7 is also L-algebraic; IT is L-algebraic but not C-algebraic.

o If G* = SOy, then IT is C-algebraic but not L-algebraic.

e If G* = Uy then I is C-algebraic; it is not L-algebraic if N is even.

Suppose G* =S0,,. Since I is regular C-algebraic, we see that IT|det| ! =)/2
is regular L-algebraic, so I} := I1;|det|!~")/? is regular L-algebraic as well.
Moreover (IT))* = IT; |det|V =1, so Proposition 3.1.11 yields a Galois representation
r{ :=rg,(IT}). Then R := @P;_, r/ satisfies (i’) and (ii’) in light of properties (i)
and (ii) of Conjecture 3.1.2 for ri/ . Indeed, (i’) is checked as follows:

RIY, = = n, |11V =g, [10V2 v g s

As for (it’ s since ’ = (7 for ever i, we have
rilo I, o
i i’

KR = —mea-m2.e = =& Cro) + (3(N = 1), ..., 3(N = 1)).

Moreover, we have ‘PIYIU = ¢y, since [TY = I1, so the displayed formula implies that
RLI=ZR® wév ~!. The rest of (iii”) is verified by [Bellaiche and Chenevier 2011,
Corollary 1.3] (their # is our N, which is even; their n, is trivial). This finishes the
proof when G* is SOy, 4.
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The case G* = Uy can be treated as in the SO, 4-case, by defining 1'[;, rl.’ , and
R in the same way. There is only a minor difference in showing (i”):

S ~ ~ 1-N)/2 ~ & 1-N)/2
Ry, =, =i, 11V =g 11TV v s

The justification of (ii’) also goes through for (ii”’) with a similar change. The proof
of (iii”) is identical to that of (iii’) except that we use the conjugate duality and
invoke [Bellaiche and Chenevier 2011, Theorem 1.2] rather than Corollary 1.3
therein.

Now consider G* = Sp,,, or sogn. Then IT is regular L-algebraic so each IT;
is regular L-algebraic, cuspidal, and IT"" = II;. By Proposition 3.1.11, there is
a corresponding Galois representation r; := r¢ ,(I1;). Taking R := @le ri, wWe
deduce (i) and (ii) for R from the properties of r; as in the preceding paragraph. It
follows from (i) that R is self-dual. When G* = SOZn, [Bellaiche and Chenevier

2011, Corollary 1.3] (their n is our N, which is even; their 1, equals our wé_N in
the case at hand, so 1, (¢) = —1) tells us that the irreducible self-dual constituents of

R are orthogonal, so the proof of (iii) is complete. Finally, to show (iv), it suffices
to check that det R|w,, equals 1 if G* = Sp,, and n, if G* = SO}, for v ¢ S. This
follows from part (i). Indeed, this is obvious if G* = Sp,, since the image of £ is
contained in SOy, 1; if G* = SOZn, it is enough to note that the composite map
detoé : £'SOJ — GLy, — G, is given by the projection - SO] — Gal(F,/F)
followed by 7. U

o

When ¢4, ¢ : Wg, — CG(@E) are two parameters, we write ¢ = ¢, to mean
e )1 =P if GFE SOgn, and
o ¢ =y or 6°(h1) = ¢y if G* =SO) .

Similarly if w1, uo € X*(?)@/Q then = o means 1 = o if G* & SOZn, and
pi = o or 0°(uy) = o if G* 280, .

Theorem 3.2.7. Let E and F be as above and assume (HI). Let w be as in
Proposition 3.2.4 satisfying (H2) and (H3). Then Conjecture 3.1.8 holds true if
G* £ SOgn, and it holds up to outer automorphism if G* = sogn. More precisely,
there exists a continuous semisimple Galois representation

r€=rg(m):Trs— “G@y)
such that:
@)) rC|Su5,FU 2 L(,bgv for every place v of F not above S.
(2) pye 5 = —L{,Eg for every o : F — Q.
If we drop (H3), then the theorem still holds true except for part (ii).
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The proof is the same whether we assume (H3) or not. Without (H3), we lose
property (ii) of the theorem only because we do not know (ii), (ii’), and (ii”) in
Proposition 3.2.4. With this understanding, we will present the proof in Section 3.3
and Section 3.4 below in the case that all of (H1), (H2), and (H3) are assumed.

Remark 3.2.8. Buzzard and Gee also makes a prediction on the image of complex
conjugation at each real place but we do not see how to prove it completely beyond
some partial results. For instance, in the proof of Proposition 3.2.4 in Case S, every
r} is totally odd by [Taylor 2012; Taibi 2016; Caraiani and Le Hung 2016], but
this alone does not determine the image of complex conjugation (up to conjugacy)
under R. Thus the information is insufficient to pin down the image of complex
conjugation under 7€ in Theorem 3.2.7. The image is sometimes identified under
additional hypotheses; see [Kret and Shin 2020, Theorem 6.5; 2023, Theorem 2.4].

3.3. Proof of Theorem 3.2.7: Case S. Write R =Ry (w):I'r — GLy (Qy) for
the Galois representation as in Proposition 3.2.4. (We are in the E = F case.) We
will divide into three cases according to G*. When G* is either Sp,, or SO, , we
will prove Conjecture 3.1.2 as this is equivalent to Theorem 3.2.7 but notationally
simpler; see Remark 3.1.10.

If G*=Sp,,, then R” = R and every self-dual irreducible constituent is orthogonal
by (iii) of Proposition 3.2.4. Hence, possibly after a GL,, 1 1-conjugation, R factors
as

_ _
Fe s —> 02,41(Qp) — GLoj41(Qp).

Take ry. L(n) I'es — 02n+1(@g) to be the first map. By Proposition 3.2.4(iv),
the image of re t(n) is contained in SOy, 4 (Qy). Since the natural map T /2 —
T2n+1/ Q2,41 1s injective, one deduces (i) and (ii) of Conjecture 3.1.2 from (i)
and (ii) of Proposition 3.2.4.

Next consider G* = SO, . As in the Sp,,-case, again from Proposition 3.2.4(iii),
we obtain

rZCL(T[) : IﬂF,S - OZn(@D

such that ¢(n) o re L(TL’) = Ry (). The difference is that T/ Q— TZ,,/ an 1s not
a bl_]eCtIOIl but induces a bijection on the set of 6°-orbits on T /2 — T>, onto
T2n / $22,. With this observation, (i) and (ii) of Conjecture 3.1.2 are implied by (i)
and (ii) of Proposition 3.2.4.

In the remaining case G* = SOy,4|, we identify ¢ SO2,+1 = GSp,, as in
Example 3.1.7. Let R=R; () : T'r — GL,, (Q,) be the Galois representation
corresponding to 7w by Proposition 3.2.4. By (iii’) of the proposition, there is a
symplectic pairing (R ® a)Z_l) ®R(R® a)Z_l) — a)[l. After conjugation, R ® w) -
factors through the standard embedding 7€ : GSp,, — GL,,. Denote the resulting
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representation by

r€ =rf,(m) : Trs — GSp,, (Qp).

Write A : GSp,,, = G, for the similitude character. Since the symplectic pairing is
valued in a)zl, we have

A€ = we_l.
By construction, the properties of R in Proposition 3.2.4 tell us that

B0 T,) = i, - 117 = i, - 1172,
ﬁC(MrC,w) = K§CrC 0 = _Lﬁ(fn,a) + (%, e, %) = ﬁc (_Lé‘n,g + (%’ o %))

On the other hand, we have

MG, - 1173 = 17 = 2rClwy, = 20T,
A~ : N=l=p,1,= =X
( Wro + (2v R 2)) = 1= H*w[ Lie = MarC o = (:urc,to)-

To deduce the theorem, we need to show that the above relations hold without
taking 7€ and A at both ends. This is implied by the following facts. Firstly, if
semisimple elements g1, g» € GSp,, (Q;) are such that 7€ (g1), 7€ (g2) are conjugate
and A(g1) =A(g2) then g1, g2 are conjugate in GSp,,, (Qy); see [Kret and Shin 2023,
Lemmas 1.1, 1.3]. Secondly, the analogous injectivity is also true on the level of
conjugacy classes of cocharacters via the isomorphism X (7gsp) ®7 @Z =TGsp (@),
which is equivariant for the Weyl group action, where Tgs), is a maximal torus of
GSp,,, over @g. The proof in the SO,, 1 -case is complete.

3.4. Proof of Theorem 3.2.7: Case U. Recall that E is a CM quadratic extension
of a totally real field F' in this case. Throughout this section we set

o) :=diag(tV ", V72, .1, 1) e GLy (@) 2 Un(Qp), 1€ Gy,

where the isomorphism is fixed as in Section 2.1. (The same p appeared in
Example 3.1.6 for odd unitary groups. Here p is also considered for even unitary
groups as Lemma 3.1.5 is irrelevant here.) A key point in the proof is to extend
a GLy-valued representation of I'g g to a ¢ U-valued representation of 'z 5. We
begin with two lemmas to help address this problem. Similar problems were
considered in related settings; see [Clozel et al. 2008, Section 2.1; Bellaiche and
Chenevier 2009, Appendix A.11; Barnet-Lamb et al. 2014, Section 1] (see [Buzzard
and Gee 2014, Section 8.3] for a comparison with C-groups), and [Kret and Shin
2020, Appendix A] for instance.
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Lemma 34.1. Let R :T'g s — GLy (Qy) be a Galois representation. If there exists
h € GLy (Qy) such that

‘h=h and R*(y)=hR()h™" 0", yelgs, (3.4.1)
then there exists a Galois representation
R:Tps— “Un(@) =GLy (@) % Gy x {1, ¢))
uniquely determined by:
« R(y)=R()p@(1)) % (@ ' (¥), D) forall y € T.s.
e« R(c)=h"1Jyx(—1,0).
Proof. The uniqueness is clear. The main point is to check that the two conditions
on R define a group homomorphism. This amounts to checking that R(c)> = 1 and
R()R()R()™ ' =R(cyc™") fory € I'e.s. Set hg := h 'y = iflJ];l and let
0 be as in Example 3.1.6. We compute
R(e)* = (ho % (=1, ) (ho % (=1, €)) = (ho x (=1, D)Jx'hg Ty~ % (=1, 1))
= hop(=D)J5 by I (=) = hody'hg Iy = R =1
REORpR@™
= (ho x (=1, )R A(@e(y)) » (07 (¥), D)(ho % (=1, )

= (ho % (=1, D)X R ploeyn e~
X (w1 (1), 1)) (ho x (=1, 1))

= hoJn(R(Y) ™ e () 1T % (@) (), )Ry
=h" R plwe() T I Blwe(y) T g Blwe(v)) % (@, (1), 1).

By an explicit computation with p and Jy, we verify that
Iy D)™ = Bl Iy o).
Substituting in the above formula and using & = J; 'hs!, we obtain
RORWRE™ =n"" "Ry hp@) - 0™ 3 (@)™ .
On the other hand, we see from (3.4.1) that
Ricyc™ ) ="RE ™ =h "R h-wp()' ™Y

so R(cye™ ) =h""R(y) " h-we(y)' N p(we(y)) x (@, (), 1). We conclude that
R(RY)R()™ " =R(cyc™), recalling that w,(y) lies in the center of GLy (Qy).
O
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Lemma 3.4.2. Let R :T'g s — GLy (Qy) be a semisimple Galois representation
such that:

« R"=R®w) "

e Every irreducible subrepresentation Ry C R such that Rj = Ry ® wé\’ ~1 has
sgn(Ry, a)év_l) =1.

Then there exists a Galois representation
R:Trs— “Un(@p) =GLy(@) % (G x {1, ¢})

such that:

« R(Y)=R(y)p(@e(y)) % (@7 (y), 1) forall y € Tps.

. I?(c) =h"'Jy x (=1, ¢) for a symmetric matrix h € GLy (Q)).
Proof. Since R* =R ® wév ~! we can decompose R into irreducibles

r A
RZ (@ Ri) ® (@(R, ® (R} ®w};N))>
i=1 Jj=1

such that R* = R; ®®, ' and RY%R; ®a)9”1 forevery i, j. (Recall that R% = RjL.)
Write d; := dim R; and d; := dim R;. For each i, since sgn(R;, a)év_l) =1, there
exists /; € GLyg, (Qy) satisfying (3.4.1) for h; and R; in place of 4 and R. For
1 <j<s,take

01 —
hj .= (1 0) € GLog, (Qy),

where 0 and 7 stand for the zero and identity d; x d; matrices. Then it satisfies
(3.4.1) for h; aEd RjL ® a)é_N in place of 4 and R by construction. Hence if we
form h € GLy (Qy) as a block diagonal matrix according to the decomposition of R
by putting together s; and £, then (3.4.1) holds true for 4 and R. By Lemma 3.4.1
we obtain the desired R. (]

Now we put ourselves in the setting of Theorem 3.2.7 for G* = Uy and let
R :Tg s — GLy(Q) be the representation coming from Proposition 3.2.4. Since
R satisfies the condition of Lemma 3.4.2, we obtain

rC:Trs— CUyn(@0) 2 GLy (@) % ({1, ¢} X Gy)

as in the lemma. (We renamed R as 7€) By construction the following composition
is equal to the representation (R, w[l):

Trs o GLy (@) % Gy, > GLy/(@¢) X G,

where ¢ : g Xt +— gp(¢) is the isomorphism from Lemma 3.1.5.



WEAK TRANSFER FROM CLASSICAL GROUPS TO GENERAL LINEAR GROUPS 59

Our goal is to verify (i) and (ii) of Theorem 3.2.7 for €. Since the codomain
of € is identified with GLy(Q¢) x ({1, ¢} x G,,) via & above, we want to do
the same with (1)% :WE, — CUFU via CUFv = GLy(Qp) % ({1, ¢} x G,,) given by
éu : LUFU >~ GLy(Qp) % {1, ¢} (and the identity map on the G,,-factor of the C-
group), which is consistent with &. For each o : F <> C, similarly lro€X (T, )o
is viewed as an element of X (GN )g via 5,0”, see Case U of Section 2.1 for the
discussions on So, é}u, and S,O ,- Therefore (i) and (ii) are equivalent to the following
assertions; see Section 2.1 for 79, and 79 4:

(a) ¢r |WF, Léu (¢C ), for each finite place v of F not contained in S, and the
place u of E induced by 19, : E <> F,.

(b) pere o = (—iéy, (¢<,), 1) for every embedding o : F — C.

We observed that ¢r¢ = (R, wzl). Hence (a) holds after restriction to Wg, by
Proposition 3.2.4 (i”). Assertion (a) follows from this because the isomorphism
class on each side is determined by its restriction to W, ; this is a special case of
[Gan et al. 2012, Theorem 8.1(ii)]. As for (b), let 79, : £ < C be as in Section 2.1,
which extends o. The Hodge-Tate cocharacters can be computed after taking a
finite base extension, SO

Her€io = HerCir, im0 = M (R0 ") im0,0 "

Hence (b) is a consequence of Proposition 3.2.4(ii”’) as well as the fact that w; has
Hodge—Tate weight —1. (]
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