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Abstract. We consider impulsive stochastic vegetation ecosystems with jump-

diffusion, which have played a crucial role in the study of ecological protection.
We are able to fully classify the longtime behavior of the underlying system.

A threshold number is introduced so that its sign characterizes whether or

not the vegetation goes extinct. In order to achieve this, we had to develop
new analytical techniques to deal with jumps and impulses. The analysis is

more subtle than in other population dynamics modeled by usual stochastic

differential equations.

1. Introduction. Theoretically, ecological models play an important role in for-
mulating and refining dynamic strategies to counter ecological degradation [9]. A
common (deterministic) vegetation ecosystem [5] has the form of the following o-
riginal differential equation (ODE)

dX(t) = X(t)
[
a12Y (t)− a11X(t)− b1

X(t) + 1

]
dt,

dY (t) = (R− a22Y (t)− a21X(t)Y (t)) dt,

(1.1)

where X(t) is the vegetation biomass, Y (t) is the soil water; and a12 is the maximum
biomass growth rate, a11 is the ratio of the maximum biomass growth rate and
the carrying capacity of biomass, and b1 is the maximum consumption rate by
herbivores or other factors. The parameters R, a22 and a21 are all positive real
numbers representing the rainfall, the soil water loss rate and the consumption rate
of water by biomass, respectively. Such above vegetation ecosystem is motivated
from the study of environmental issues and ecological challenges like global warming,
declining biodiversity, and land desertification. Which have intensified since the
1960s [8, 17] and references therein, and as a result, much attention has been devoted
to the study of ecological protection [13] recently.
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On the other hand, deterministic models operate on the assumption that system
parameters remain constant despite environmental fluctuations. From a biologi-
cal perspective, this imposes limitation on the mathematical modeling of ecological
systems because real-world population dynamics are inevitably influenced by envi-
ronmental noise; see e.g., [16, 4] and references therein. From a different perspective,
impulsive perturbations, as emphasized in [10, 6, 14], emerge across various domains
including automatic control systems, computer networking, population models, neu-
ral networks, and economics. Sudden and intense changes take place abruptly in the
form of impulses, presenting a modeling challenge when relying solely on continuous
or discrete descriptions. Consequently, there is a substantial demand for research
into impulsive systems.

The above needs motivate us to study the following impulsive stochastic vegeta-
tion ecosystem with jump-diffusion

dX(t) = X(t)

[
a12Y (t)− a11X(t)− b1

X(t) + b2

]
dt+ σ1X(t)dW1(t), t ∈ [n, n+ 1)

X(0) = x, X(n) = (1 + ρ)X(n−),

dY (t) = (R− a22Y (t)− a21X(t)Y (t)) dt+ σ2Y (t)dW2(t)

+

∫
U
Y (t−)h(u)Ñ(dt, du), t ≥ 0,

Y (0) = y,

(1.2)
where X(n−) = lims→n− X(s), Y (t−) = lims→t− Y (s); W1(t), W2(t) are standard
independent Brownian motions, and N(du, dt) is a Poisson counting measure with

characteristic measure ν on a measurable set U with ν(U) < ∞, and Ñ(dt, du) :=
N(dt, du)−ν(du)dt is a Poisson martingale measure, which is independent of W1(t),
W2(t).

In this paper, we first study fundamental properties of system (1.2), and then
characterize fully its longtime behavior. Precisely, a threshold λ is introduced such
that if λ < 0 then X(t) goes to 0 exponentially fast. In contrast, if λ > 0, sys-
tem (1.2) admits a unique invariant measure concentrating on {(u, v) ∈ R2 : u >
0, v > 0} and the transition probability converges to the invariant measure in total
variation norm. A rate of convergence is also obtained. Compared with existing
literature, the novelty and contribution of this work can be summarized as follows.

• From theoretical aspect, we provide a complete characterization for longtime
behavior of a impulsive stochastic vegetation ecosystem with jump-diffusion
for the first time, to be the best of the authors’ current knowledge.

• From biological point of view, it provides helpful insights for ecologists as
well as advances the study of ecological protection. The threshold λ, which
fully forecast what will happen in the future, is computed explicitly from
parameters in the model.

• The techniques developed in the paper to deal with jumps and impulses can
be generalized to study other ecological and biological systems modeled by
impulsive jump-diffusion.

The rest of paper is organized as follows. Section 2 presents our main results,
which states basic properties of (1.2), introduces threshold λ, and provides a long-
time characterization of (1.2). Section 3 is devoted to proofs, in which Section 3.1
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proves fundamental properties, Section 3.2 is devoted to a proof of the permanence
case while a proof of extinction is given in Section 3.3.

2. Main results. We denote by L the generator of the jump-diffusion process
(X(t), Y (t)) from (1.2). We will also use Px,y,s, Ex,y,s to indicate the probability
and expectation conditioned on X(s) = x, Y (s) = y. When s = 0, we simple use
Px,y,Ex,y for Px,y,0 and Ex,y,0, respectively. Denote R2

+ = {(u, v) ∈ R2 : u, v ≥ 0},
R2,◦

+ = {(u, v) ∈ R2 : u, v > 0}.
The following assumption is held throughout the paper.

Assumption 2.1. The following conditions hold:∫
U
h2(u)dν(u) <∞ and

∫
U
(1 + h(u))−1dν(u) <∞.

The first theorem tells us that together with well-posedness, positivity, and
Markov-Feller properties of (1.2), we can bound the moments of the process. More-
over, the solution process stays in compact sets with large probability if starting
from a compact set.

Theorem 2.1. We have the following claims.

(i) For any initial value (x, y) ∈ R2
+, there exists a unique a global solution

(X(t), Y (t)) to (1.2) such that Px,y{(X(t), Y (t)) ∈ R2
+, ∀t ≥ 0} = 1. More-

over, Px,y{X(t) > 0, ∀t > 0} = 1 and Px,0{Y (t) = 0, ∀t ≥ 0} = 1.
(ii) Let p := a22

4
∫
U h

2(u)dν
∧ a22

4(σ2
1∨σ2

2)
∧ 0.1 and aV := a21

a12
∧ 1 and V (x, y) = (aV x+

y)1+p. Then there exist constants K1, K2 and k2 > 0 such that

Ex,y,sY 1+p(t) ≤ 2K1

a22
+ e−

a22
2 (t−s)y1+p, ∀(x, y) ∈ R2

+, t ≥ s, (2.1)

and

Ex,y,sV (X(t), Y (t)) ≤ K2(1 + e−k2(t−s)V (x, y)), ∀(x, y) ∈ R2
+, t ≥ s. (2.2)

(iii) There exists K3 > 0 such that

Ex,y,s(1 + aVX(t) + Y (t))4 ≤ eK3(t−s)(1 + aV x+ y)2, ∀(x, y) ∈ R2
+, t ≥ s. (2.3)

(iv) For any ε > 0, H > 0, T > 0, there exists K̃(ε,H, T ) > 0 such that

Px,y,s
{
X(t) + Y (t) ≤ K̃(ε,H, T ), ∀s ≤ t ≤ T + s

}
≥ 1−ε given x∨y ≤ H. (2.4)

(v) (X(t), Y (t)) is a non-homogeneous Markov-Feller process.

We introduce the following threshold λ

λ = ln(1 + ρ) +
a12R

a22
− b1
b2
− σ2

1

2
, (2.5)

and show that its sign fully characterize longtime behavior of (1.2).
If λ is positive, the system is persistence, that means, there exists uniquely an

invariant probability measure µ∗ of {(X(t), Y (t)), t ≥ 0} on R2,◦
+ . Moreover, the

convergence and rate of convergence of the transition probability Pt((x, y), ·) to µ∗

is also obtained.

Theorem 2.2. If λ > 0, then there exists uniquely an invariant probability measure
µ∗ of {(X(t), Y (t)), t ≥ 0} on R2,◦

+ . Moreover, the transition probability Pt((x, y), ·)
converges exponentially fast to µ∗ in total variation norm.
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In contrast, if λ < 0, X(t) goes extinct exponentially fast almost surely.

Theorem 2.3. If λ < 0 then limt→∞
lnX(t)

t = λ < 0 with probability 1.

Remark 2.1. We make some remarks on an intuition of the threshold λ and As-
sumption 2.1 as follows.

• The definition of the threshold λ is inspired from a dynamical system theory
point of view (the so-called Lyapunov exponent or stochastic growth rate). In

particular, λ is actually defined as an approximation of limt→∞
lnX(t)

t when

X(t) is small. Precisely, let Ỹ (t) be a positive solution to

dỸ (t) =
(
R− a22Ỹ (t)

)
dt+ σ2Ỹ (t)dW2(t) +

∫
U
Ỹ (t−)h(u)Ñ(dt, du).

It is proved in [3] that the process {Ỹ (t)} has a unique invariant measure, ν∗

on [0,∞) satisfying ∫
[0,∞)

yν∗(dy) =
R

a22
.

By the ergodicity of {Ỹ (t)}, we have

lim
t→∞

1

t

∫ t

0

Ỹ (s)ds =

∫
[0,∞)

yν∗(dy) =
R

a22
a.s.

Therefore, roughly speaking, when X(t) is small and Y (t) is close to Ỹ (t),

lim
t→∞

lnX(t)

t
= lim sup

t→∞

(
lnX(t)

t
+
W1(t)

t
+ ln(1 + ρ)

[t]

t
+

)
+ lim
t→∞

1

t

∫ t

0

{
(a12Y (s)− a11X(s)− b1

X(s) + b2
− σ2

1

2

}
ds

≈ ln(1 + ρ) + lim sup
t→∞

1

t

∫ t

0

a12Ỹ (s)ds− b1
b2
− σ2

1

2

= ln(1 + ρ) +
a12R

a22
− b1
b2
− σ2

1

2
:= λ.

(2.6)

• Assumption 2.1 guarantees the solution having finite (1 + p)th-order moment,
for some small p > 0. Moreover, it also helps to ensure the existence and
uniqueness of the invariant measure of the problem on the boundary, which is
needed to define λ.

3. Proof of main results.

3.1. Proof of Theorem 2.1.

Proof of Theorem 2.1. Consider a system without impulses in each interval t ∈
[n, n+ 1):

dX(t) = X(t)

[
a12Y (t)− a11X(t)− b1

X(t) + b2

]
dt+ σ1X(t)dW1(t),

dY (t) = (R− a22Y (t)− a21X(t)Y (t)) dt+ σ2Y (t)dW2(t) +

∫
U
Y (t−)h(u)Ñ(dt, du).

(3.1)
The existence and uniqueness of continuous nonnegative solutions to (3.1), which
can be proved by standard arguments, see e.g. [18], will imply the existence and
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uniqueness of continuous nonnegative solutions to (1.2) on each interval [n, n+ 1).
Together with the impulses at n ∈ Z+, we can easily obtain part (i) of Theorem
2.1.

Next, to simplify the notation, we prove parts (ii) − (v) only for s = 0. The
readers can see easily from the proofs that the statements of parts (ii) − (v) hold
for any s > 0 with the constants being chosen independent of s.

Now, we prove part (ii). Consider V (x, y) = (aV x+ y)1+p. We have

LV (x, y)

= (1 + p)(aV x+ y)p
[
R− a22y − (a21 − aV a12)xy − aV a11x

2 − aV b1
x+ b2

]
+ p(1 + p)(aV x+ y)p−1(a2

V σ
2
1x

2 + σ2
2y

2)

+

∫
U

(
aV x+ y(1 + h(u))1+p − (aV x+ y)1+p − (1 + p)(aV x+ y)pyh(u)

)
dν(u)

≤K1 − x2 − 3a22

4
(1 + p)(aV x+ y)1+p

+ (aV x+ y)1+p

∫
U

(
1 +

h(u)y

aV x+ y
)1+p − 1− (1 + p)

h(u)y

aV x+ y

)
dν(u),

(3.2)
for some finite constant K1 > 1. From Taylor’s expansion, we have

(1 + z)1+p ≤ 1 + (1 + p)(1 + z)p + pz2 for z > 0,

which leads to ∫
U

(
1 +

h(u)y

aV x+ y
)1+p − 1− (1 + p)

h(u)y

aV x+ y

)
dν(u)

≤p
∫
U

(
h(u)y

aV x+ y

)2

dν(u)

≤p
∫
U
h2(u)dν ≤ a22

4
.

(3.3)

Applying (3.3) to (3.2), we have

LV (x, y) ≤ K1 − x2 − a22

2
V (x, y). (3.4)

In light of (3.4) and Dynkin’s formula, one can easily implies for n ≤ s ≤ t < n+ 1
that

E
(
e
a22
2 (t∧τn,s−s)V (X(t ∧ τn,s), Y (t ∧ τn,s)

)
≤ E (V (X(s), Y (s)) + E

∫ t

s

(
e
a22
2 (u−s)K1

)
du

≤ 2K1

a22
e
a22
2 (t−s) + EV (X(s), Y (s)),

(3.5)

if EV (X(s), Y (s)) < ∞, n ∈ Z+ where τn,s = inf{t ≥ s : V (X(t), Y (t)) ≥ n}.
Letting n→∞ in (3.5) and then dividing both sides by e

a22
2 (t−s), we have

EV (X(t), Y (t)) ≤ 2K1

a22
+ e−

a22
2 (t−s)EV (X(s), Y (s)) (3.6)

if n ≤ s ≤ t ≤ n+ 1 for some n ∈ Z+.
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Similarly, we can obtain that

EY 1+p(t) ≤ 2K1

a22
+ e−

a22
2 (t−s)EY 1+p(s) if n ≤ s ≤ t ≤ n+ 1 for some n ∈ Z+.

(3.7)
Applying (3.6) for t ≤ 1, we have

Ex,yV (X(1−), Y (1−)) ≤ 2K1

a22
+ e−

a22
2 V (x, y).

On the other hand, we also have from (3.4) that∫ t

s

EX2(u)du ≤ E (V (X(s), Y (s)) +K1,

which leads to EX2(tn) ≤ E (V (X(n), Y (n))+K1 for some tn ∈ [n, n+1). We have
from Hölder’s inequality and standard calculations that

EX1+p(tn) ≤ (E(V (X(n), Y (n) +K1)
1

1+p ≤ C1 +
1

22+p(1 + ρ)1+p
EV (X(n), Y (n)),

(3.8)
for some C1 depending only on K1, p and ρ.

Combining (3.8) and (3.7) implies that

Ex,yV (X((n+ 1)−), Y (n+ 1)−)

≤ 2K1

a22
+ V (X(tn), Y (tn)

≤ 2K1

a22
+ 21+pa1+p

V Ex,yX1+p(tn) + 21+pEx,yY 1+p(tn)

≤ 2K1

a22
+ 21+pC1a

1+p
V +

21+pa1+p
V

22+p(1 + ρ)1+p
Ex,yV (X(n), Y (n)) +

22+pK1

a22

+
K122+p

a22
e−

a22
2 ny1+p.

(3.9)

Since V (X((n+ 1)), Y (n+ 1)) ≤ (1 +ρ)1+pV (X((n+ 1)−), Y (n+ 1)−) and aV ≤ 1,
we have from (3.9) that

Ex,yV (X((n+ 1)), Y (n+ 1)) ≤ C2 +
K122+p

a22
e−

a22
2 ny1+p +

1

2
Ex,yV (X(n), Y (n)),

for some constant C2 independent of (x, y) and n. Applying this inequality recur-
sively, we have

Ex,yV (X(1), Y (1)) ≤ C2 +
K122+p

a22
y1+p +

1

2
V (x, y),

and

Ex,yV (X(2), Y (2)) ≤C2 +
K122+p

a22
e−

a22
2 y1+p +

1

2
Ex,yV (X(1), Y (1))

≤C2(1 +
1

2
) +

K122+p

a22
y1+p

(
e−

a22
2 +

1

2

)
+

1

4
V (x, y).
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Continuing this way, we have

Ex,yV (X(n+ 1), Y (n+ 1))

≤ C2

n∑
k=0

1

2k
+
K122+p

a22
y1+p

n∑
k=0

1

2k
e−

a22(n+1−k)
2 +

1

2n+1
V (x, y)

≤ 2C2 + C3κ̌
ny1+p +

1

2n+1
V (x, y)

≤ 2C2 +

(
C3κ̌

n +
1

2n+1

)
V (x, y),

for some constants κ̌ ∈ (0, 1), C3 depending only on K1, a22. This together with
(3.6) implies (2.3) when s = 0. Similarly, we can obtain that

EY 1+p(t) ≤ 2K1

a22
+ e−

a22
2 (t−s)EY 1+p(s) for all t ≥ s. (3.10)

Part (ii) is proved.
Similar to the estimate (3.4), we can show that

LV̌ (x, y) ≤ K3V̌ (x, y) where V̌ (x, y) = (1 + aV x+ y)4,

for some constant K3 independent of (x, y). Applying Dynkin’s formula for
e−K3tV̌ (X(t), Y (t)), we can easily deduce that

Ee−K3tV̌ (X(t), Y (t))

≤ EV̌ (X(s), Y (s)) + E
∫ t

s

[
−K3e

−K3iV̌ (X(u), Y (u)) + e−K3uLV̌ (X(u), Y (u))
]
du

≤ EV̌ (X(s), Y (s)) if t ≤ s, [t] = [s],

which leads to

Ex,yV̌ (X(t), Y (t)) ≤ eK3(t−s)V̌ (X(s), Y (s)), if t ≤ s, [t] = [s].

Therefore, part (iii) is proved.
To prove (iv), we deduce from (3.6) that by Markov’s property, we have

P{V (X(t), Y (t)) ≤ n for all s ≤ t ≤ [s] + 1}
≥ 1− P{τn,s < [s] + 1}

≥ 1−
E
(
e
a22
2 (t∧τn,s−s)V (X(t ∧ τn,s), Y (t ∧ τn,s)

)
n

≥ 1− 1

n

(
2K1

a22
e
a22
2 (t−s) + EV (X(s), Y (s))

)
,

(3.11)

which together with (2.2) implies (2.4).
Finally, to proof the process (X(t), Y (t)) is a Markov Feller process can follow

arguments from [12] with slight modification needed due to jumps and impulsive.

3.2. Proof of persistence. This section is devoted to a proof of Theorem 2.2. Let
δ1 > 0 such that

a11x+
b1

x+ b2
≤ b1
b2

+
λ

8
for all 0 ≤ x ≤ δ1;
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and p be as in Theorem 2.1. Let H∗ > 0 be such that

a12H
∗ − a11 −

b1
b2
− σ2

1

2
≥ λ, (3.12)

and such that KH∗ =
(

2K1

a22
+H∗

) 1
1+p

< a22λ
4a12

. Now, we pick T ∗ ∈ Z+ such that

ln(1 + ρ)

T ∗
+KH∗

a12

a22T∗
≤ λ

8
, (3.13)

and ε∗ ∈ (0, 1) such that

a12

a22
(a21 + a22)ε∗ ≤ λ

8
, a11ε

∗ ≤ λ

8
. (3.14)

Let F ∗ = F (H∗, ε∗) > H∗ be sufficiently large such that

1

(F ∗)p

(
2K1

a22
+ (H∗)1+p

)
≤ ε∗.

To prove Theorem 2.2, we first need some Lemmas, and Propositions as follows.

Lemma 3.1. For H∗, T ∗, ε∗ defined above, there exists δ0 = δ0(T ∗, H∗, ε∗) ∈ (0, 1)
such that

Ex,y,sX(t) ≤ ε∗ and Ex,y,sX(t)Y (t) ≤ ε∗ for s ≤ t ≤ T ∗, if 0 < x < δ0, 0 ≤ y ≤ H∗.
(3.15)

Proof. In view of (2.4) (with T replaced by T ∗), there existsM = M(ε∗, H∗, T ∗) > 0
such that

1

a2
V

(
Px,y,s{τM,s > t}(aV +H∗)4eK3T

∗
) 1

2 ≤ ε∗

2
if 0 ≤ x ≤ 1, 0 ≤ y ≤ H∗,

where τM,s = inf{t ≥ s : Y (t) ≥M}. We have

X(t ∧ τM,s)

= X(s)(1 + ρ)[t∧τM,s]−[s]e
∫ t∧τM,s
s a12Y (u)−a11X(u)− b1

X(u)+b2

· e
σ21
2 (t∧τM,s−s)+σ1(W1(t∧τM,s)−W1(s))

≤ X(s)(1 + ρ)T
∗
ea12MT∗e

σ21
2 (t∧τM,s−s)+σ1(W1(t∧τM,s)−W1(s)), s ≤ t ≤ T ∗.

(3.16)

Taking expectation both sides, we have

Ex,y,sX(t ∧ τM,s) ≤x(1 + ρ)T
∗
ea12MT∗Ex,y,se

σ21
2 (t∧τM,s−s)+σ1(W1(t∧τM,s)−W1(s))

≤x(1 + ρ)T
∗
ea12MT∗ , s ≤ t ≤ T ∗.

(3.17)
As a result, one has

Ex,y,s
[
1{τM,s>t}X(t)Y (t)

]
≤Ex,y,sX(t ∧ τM,s)Y (t ∧ τM,s)

≤xM(1 + ρ)T
∗
ea12MT∗ , s ≤ t ≤ T ∗,

(3.18)
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and

Ex,y,s
[
1{τM,s≤t}X(t)Y (t)

]
≤
(
Px,y,s{τM,s < t}Ex,y[X(t)Y (t)]2

) 1
2

≤ 1

a2
V

(
Px,y,s{τM,s > t}Ex,y[aVX(t) + Y (t)]4

) 1
2

≤ 1

a2
V

(
Px,y,s{τM,s > t}(aV +H∗)4e−K3T

∗
) 1

2

≤ε
∗

2
if x ≤ 1, y ≤ H∗.

(3.19)

Combining (3.18) and (3.19), we have

Ex,y,s[X(t)Y (t)] ≤ xM(1 + ρ)T
∗
ea12MT∗ +

ε∗

2
, ∀s ≤ t ≤ T ∗, for (x, y) ∈ [0, H∗]2.

(3.20)
Similarly, we can have from (3.17), (2.3) and Holder’s inequality that

Ex,y,s[X(t)] ≤ x(1 + ρ)T
∗
ea12MT∗ +

ε∗

2
, s ≤ t ≤ T ∗. (3.21)

if (x, y) ∈ [0, H∗]2. Picking δ0 = ε∗

2

(
M(1 + ρ)T

∗
ea12MT∗

)−1
, we obtain (3.15).

Lemma 3.2. Let δ0 be as in Lemma 3.1. For any T ≤ T ∗, we have

1{ζ<T,X(ζ)<δ0}Ex,y

[∫ T

T∧ζ
F ∗ ∧ Y (t)dt

∣∣∣FT∧ζ]

≥ 1{ζ<T,X(ζ)<δ0}
1

a22
(RT −KH∗ − (a21 + a22)ε∗T ) , (3.22)

where ζ = inf{t ≥ 0 : Y (t) ≥ H∗ or X(t) ≥ δ0}.

Proof. Note that

Y (T ) =Y (T ∧ ζ) +

∫ T

T∧ζ
(R− a22Y (t)− a21X(t)Y (t)) dt

+

∫ T

T∧ζ
σ2Y (t)dW2(t) +

∫ T

0

∫
U
Y (t−)h(u)Ñ(dt, du).

(3.23)

In view of Theorem 2.1, we can take the conditional expectation FT∧ζ both sides
of the equation above to obtain

Ex,y[Y (T )|FT∧ζ ]− Y (T ∧ ζ) =Ex,y

[∫ T

T∧ζ
(R− a22Y (t)− a21X(t)Y (t)) dt

∣∣∣FT∧ζ] .
(3.24)

As a result,

Ex,y

[∫ T

T∧ζ
Y (t)dt

∣∣∣FT∧ζ] ≥ 1

a22
(R[T − T ∧ ζ] + Y (T ∧ ζ)− Ex,y[Y (T )|FT∧ζ ]) .

(3.25)
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It is noted that if ζ < T and X(ζ) < δ0 ≤ 1 then Y (ζ) ≥ H∗. By the strong Markov
property of (X(t), Y (t)) and (2.1), we have

1{ζ<T,X(ζ)<δ0}Ex,y[Y (T )|FT∧ζ ]− Y (T ∧ ζ)

≤1{ζ<T,X(ζ)<δ0}Ex,y[Y (T )|FT∧ζ ]
=Ex,y

[
1{ζ<T,X(ζ)<δ0}Ex,y,ζY (T )

]
≤1{ζ<T,X(ζ)<δ0}

(
2K1

a22
+H∗

) 1
1+p

,

(3.26)

and

1{ζ<T,X(ζ)<δ0}Ex,y

[∫ T

ζ

X(t)Y (t)dt
∣∣∣FT∧ζ]

=1{ζ<T,X(ζ)<δ0}Ex,y

[∫ T

T∧ζ
X(t)Y (t)dt

∣∣∣FT∧ζ] dt
=1{ζ<T,X(ζ)<δ0}

∫ T

T∧ζ
Ex,y

[
X(t)Y (t)dt

∣∣∣FT∧ζ] dt
≤1{ζ<T,X(ζ)<δ0}

∫ T

T∧ζ
ε∗dt ≤ ε∗(T − ζ).

(3.27)

Multiplying (3.25) with 1{ζ<T,X(ζ)<δ0} then using (3.26) and (3.27), we have

1{ζ<T,X(ζ)<δ0}Ex,y

[∫ T

T∧ζ
Y (t)dt

∣∣∣FT∧ζ]

≥
1{ζ<T,X(ζ)<δ0}

a22

(
R(T − ζ)−

(
2K1

a22
+H∗

) 1
1+p

− a21ε(T − ζ)

)
.

(3.28)
On the one hand, one has

Ex,y

[∫ T

T∧ζ
1{Y (t)≥F∗}Y (t)dt

∣∣∣FT∧ζ]

≤ 1

(F ∗)p

∫ T

T∧ζ
Ex,y

[
Y 1+p(t)

∣∣∣FT∧ζ] dt
≤ 1

(F ∗)p

(
2K1

a22
+ (H∗)1+p

)
(T − ζ) ≤ ε∗(T − ζ).

(3.29)

We deduce from (3.28) and (3.29) that

1{ζ<T,X(ζ)<δ0}Ex,y

[∫ T

T∧ζ
FH ∧ Y (t)dt

∣∣∣FT∧ζ]

≥ 1{ζ<T,X(ζ)<δ0}Ex,y

[∫ T

T∧ζ
Y (t)dt

∣∣∣FT∧ζ]

− 1{ζ<T,X(ζ)<δ0}Ex,y

[∫ T

T∧ζ
1{Y (t)≥F∗}Y (t)dt

∣∣∣FT∧ζ]
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≥
1{ζ<T,X(ζ)<δ0}

a22

(
R(T − ζ)−

(
2K1

a22
+H∗

) 1
1+p

− a21ε
∗T

)
+ ε∗(T − ζ)

=
1{ζ<T,X(ζ)<δ0}

a22

(
R(T − ζ)−

(
2K1

a22
+H∗

) 1
1+p

− (a21 + a22)ε∗(T − ζ)

)
.

(3.30)

Therefore, the proof is complete.

Lemma 3.3. There exist c1, c2 > 0 such that

Ex,y,sX−1(t) ≤ c2ec1(t−s)[x−1 ∨ 1].

Proof. We prove this lemma for s = 0. It can be seen from the proof can be extended
for any s with c1, c2 being independent of s. By Itô’s formula,

dX−1(t) =

(
a11 +

b1
X(t)(X(t) + b2)

− a12Y (t)

X(t)
+

σ2
1

X(t)

)
dt− σ1

X(t)
dW1(t)

≤a11 +

(
b1
b2

+ σ2
1

)
X−1(t)dt− σ1X

−1(t)dW1(t), t /∈ Z+.

From this, we can easily obtain that

dEx,yX−1(t) ≤ a11 +

(
b1
b2

+ σ2
1

)
Ex,yX−1(t)dt, 0 ≤ t < 1.

This differential inequality implies that

Ex,yX−1(t) ≤

(
x−1 + a11

(
b1
b2

+ σ2
1

)−1
)
e

(
b1
b2

+σ2
1

)
t − a11

(
b1
b2

+ σ2
1

)−1

.

Thus,

Ex,yX−1(1) =
1

1 + ρ
Ex,yX−1(1−)

≤

(
x−1 + a11

(
b1
b2

+ σ2
1

)−1
)
e

(
b1
b2

+σ2
1

)
− a11

(
b1
b2

+ σ2
1

)−1

.

Continuing this process, we have

Ex,yX−1(t) ≤

(
x−1 + a11

(
b1
b2

+ σ2
1

)−1
)
e

(
b1
b2

+σ2
1

)
t − a11

(
b1
b2

+ σ2
1

)−1

for any t ≥ 0.
The claim of the lemma follows obviously.

Lemma 3.4. For any T ≤ T ∗. Let AT := {ζ < T,X(ζ) < δ0} ∪ {ζ ≥ T}, and

Φ(T ) := −1AT
∫ T

0

[
a12(F ∗ ∧ Y (t))− a11X(t)− b1

X(t) + b2
− σ2

1

2

]
dt− 1AcT

λT

2
.

We have

Ex,yΦ(T ) ≤ −λT
2

+ ln(1 + ρ)T, ∀(x, y) ∈ [0, H∗]2, T ≤ T ∗.
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Proof. By the definition of ζ, if ζ ≥ T then Φ(T ) ≤ −λT4 . It is noted again that if
ζ < T and X(ζ) < δ0 ≤ 1 then Y (ζ) ≥ H∗. Therefore, we have

1{ζ<T,X(ζ)<δ0}

∫ ζ

0

[
a12(F ∗ ∧ Y (t))− a11X(t)− b1

X(t) + b2
− σ2

1

2

]
dt

≥
(
a12H

∗ − a11 −
b1
b2
− σ2

1

2

)
ζ ≥ λζ.

(3.31)

Moreover, by using (3.22), (3.15) and definition (2.5) of λ, one has

Ex,y1{ζ<T,X(ζ)<δ0}

∫ T

ζ

[
a12(F ∗ ∧ Y (t))− a11X(t)− b1

X(t) + b2
− σ2

1

2

]
dt

≥Ex,y
[
1{ζ<T,X(ζ)<δ0}

a12

a22
(R(T − ζ)− (a21 + a22)ε(T − ζ))−KH∗

a12

a22

−
(
σ2

1

2
+
b1
b2

)
(T − ζ)

]
− Ex,y

[
1{ζ<T,X(ζ)<δ0}

∫ T

ζ

a11X(t)dt

]

≥Ex,y
[
1{ζ<T,X(ζ)<δ0}

3λ(T − ζ)

4
− ln(1 + ρ)(T − ζ)−KH∗

a12

a22

]
.

(3.32)

From (3.31), (3.32) and definition of KH∗ , we have

Ex,y1{ζ<T,X(ζ)<δ0}

∫ T

0

[
a12(F ∗ ∧ Y (t))− a11X(t)− b1

X(t) + b2
− σ2

1

2

]
dt

≥
(

3λT

4
− ln(1 + ρ)T −KH∗

a12

a22

)
Ex,y

[
1{ζ<T,X(ζ)<δ0}

]
≥
(
λT

2
− ln(1 + ρ)T

)
Ex,y

[
1{ζ<T,X(ζ)<δ0}

]
.

(3.33)

Since a12F
∗ ∧ Y (t)− a11X(t)− b1

X(t)+b2
− σ2

1

2 ≥
λ
2 if Y (t) ≥ H∗ and X(t) ≤ δ (due

to the definitions of F ∗, H∗), we have

Ex,y1{ζ≥T}
∫ T

0

[
a12(F ∗ ∧ Y (t))− a11X(t)− b1

X(t) + b2
− σ2

1

2

]
dt

≥λT
2

Ex,y[1{ζ≥T}].

(3.34)

We have from (3.33), (3.34) and the definitions of AT ,Φ(t) that

Ex,yΦ(T )

= −λT
2

Px,y(AcT )− Ex,y1AT
∫ T

0

[
a12(F ∗ ∧ Y (t))− a11X(t)− b1

X(t) + b2
− σ2

1

2

]
dt

≤ −λT
2

+ ln(1 + ρ)T.

(3.35)
The proof is complete.

Lemma 3.5. Let

Φ1(T ) = Φ(T )− Ex,yΦ(T ).

There exists Ǩ∗ = Ǩ∗(H∗, T ∗) > 0 such that

Ex,yΦ2
1(T )eθΦ1(T ) ≤ Ǩ∗ for any 0 ≤ θ ≤ 1, x ∨ y ≤ H∗, T ≤ T ∗. (3.36)
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Proof. Note that for θ ∈ (0, 1), z2eθz ≤ z2 if z ≤ 0 and z2eθz ≤ 4ez if z ≥ 0. As a
result,

Ex,yΦ2
1(T )eθΦ1(T ) ≤ Ex,y[Φ1(T )]2 + 4Ex,yeΦ1(T )

≤ Ex,y[Φ(T )]2 + 4Ex,yeΦ(T )e−Ex,yΦ(T ).

Since Φ(T ) is bounded below by −F ∗T so that Ex,yΦ(T ) ≥ −F ∗T it is easy to see
that Ex,y([Φ(T )−Ex,y(T )]∧ 0)2 ≤ Ex,y([Φ(T )]∧ 0)2 ≤ (F ∗T )2. On the other hand,
one has

Ex,y exp

{
−1AT

∫ T

0

[
a12(F ∗ ∧ Y (t)]− a11X(t)− b1

X(t) + b2
− σ2

1

2

]}

≤ Ex,y exp

{
−
∫ T

0

[
a12(F ∗ ∧ Y (t)]− a11X(t)− b1

X(t) + b2
− σ2

1

2

]}
exp{a12F

∗T}

≤ exp{a12F
∗T}Ex,y exp

{
−
∫ T

0

[
a12(F ∗ ∧ Y (t)]− a11X(t)− b1

X(t) + b2
− σ2

1

2

]}

≤ exp{a12F
∗T}Ex,yX

−1(T )

x−1

≤ exp{a12F
∗T}c2ec1T for 0 < x ≤ 1.

Moreover, because −Φ(T ) is bounded above by F ∗T , we have e−Ex,yΦ(T ) ≤ eF
∗T .

Thus,

Ex,yΦ2(T )eθΦ(T ) ≤ (a12F
∗T )2 + exp{a12F

∗T}c2ec1T .
Therefore, the proof is complete.

Proposition 3.1. With sufficiently small θ > 0, there exists C∗ independent of
(x, y) ∈ [0,∞)× [0, H∗] such that

Ex,yX−θT ≤ x−θe−
θλT
4 + C∗, for (x, y) ∈ [0,∞)× [0, H∗], T ≤ T ∗.

Proof. Consider the function: φ(θ) = lnEx,yeθΦ1(T ) on θ ∈ [0, 1
2 ]. We have

dφ

dθ
=

Ex,yΦ1(T )eθΦ1(T )

Ex,yeθΦ1(T )
and

d2φ

dθ2
=

Ex,yΦ2
1(T )eθΦ1(T ) −

(
Ex,yΦ1(T )eΦ1(T )

)2(
Ex,yeΦ1(T )

)2 .

Therefore, due to ex ≤ 1 + x+ x2ex and Lemma 3.5, we have

Ex,yeθΦ1(T ) = 1 + θEx,yΦ1(T ) + θ2Ex,yΦ2
1(T )eθΦ1(T ) ≤ 1 + θ2Ǩ∗ ≤ eθ

2Ǩ∗ .

On the other hand eθσ1W1(T )− θ
2σ21
2 T is a martingale, so

Ex,yeθσ1W1(T )− θ
2σ21
2 T = 1;

which implies

Ex,yeθσ1W1T ≤ e
θ2σ21

2 T .

By Holder’s inequality, for θ ≤ 1
4 ,

Ex,yeθΦ1T eθσ1W1T ≤
(
Ex,ye2θΦ1T e2θσ1W1T

) 1
2 ≤ e4θ2Ǩ∗e2θ2σ2

1T ≤ e θλT8 ,

if we choose θ no larger than λT1

8(4Ǩ∗+2σ2
1T2)

.
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Note that for ω ∈ AT , we have

X−θ(0) = x−θ(0)

+ exp

{
−θ
∫ T

0

[
a12(Y (t)− a11X(t)− b1

X(t) + b2
− σ2

1

2

]}
exp {−θσ1W1(T )}

≤ X−θ(0)eΦ(T ) exp {−θσ1W1(T )}

= X−θ(0)eEx,yΦ(T )eΦ1(T ) exp {−θσ1W1(T )} .
(3.37)

As a result, by using Lemmas 3.4 and 3.5, we have

Ex,y1ATX−θT =Ex,y
(
x−θ(1 + p)−θ[T ]eθEx,yΦ(T )eθΦ1T eθσ1W1T

)
≤x−θ exp

{
θ

(
− ln(1 + p)[T ] + (−λT

2
+ ln(1 + p)T ) +

λT

8

)}
≤x−θe− θλT4 .

(3.38)
It is noted that AcT ⊂ {ζ ≤ T}. Thus,

Ex,y1AcTX
−θT ≤Ex,y1{ζ≤T}X−θT

=Ex,y1{ζ≤T}EX(ζ),Y (ζ),ζX
−θT

≤(c2e
c1T )θδ−θ.

(3.39)

In view of Lemma 3.3, there exists C∗ = C∗(δ0, T
∗) such that

Ex,yX−θT ≤ C∗ if x ≥ δ0, T ≤ T ∗. (3.40)

The proposition is proved by combining (3.38) and (3.39).

Lemma 3.6. For any compact subset K ∈ R2,◦
+ , there exist a probability measure

νK and a constant cK > 0 such that

Px,y{(X(1), Y (1)) ∈ ·} ≥ cKνK(·), for all (x, y) ∈ K.

Proof. Let (X̌, Y̌ ) be the solution to (3.1). Because the diffusion is nondegenerate,
in view of [7, Lemma 3.6], there exists a probability measure νK and a constant
c′K > 0 such that

Px,y{(X̌(1), Y̌ (1)) ∈ ·} ≥ čKνK(·), for all (x, y) ∈ K.

Because (W1(t),W2(t)) is independent of Ñ , and X̌(1) = X(1), Y̌ (1) = Y (1) if there
is no jumps on [0, 1], we have

Px,y{(X(1), Y (1)) ∈ ·} ≥ P
{∫

U
N(1, du) = 0

}
Px,y{(X̌(1), Y̌ (1)) ∈ ·} ≥ cKνK(·)

for all (x, y) ∈ K, where cK = P
{∫

UN(1, du) = 0
}
c′K > 0.

Lemma 3.7. Let U∗(x, y) = V (x, y) + x−θ, where V is as in Theorem 2.1 and θ
is as in Proposition 3.1. For any H, there exists čH > 0 and a probability measure
νH such that

Px,y{(X(T ∗), Y (T ∗)) ∈ ·} ≥ čHνH(·), if U∗(x, y) ≤ H.
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Proof. By the variation of constants formula, see [1], we have

Y (t) = ψ(T )

[
Y (0) +R

∫ T

0

ψ−1(t)dt

]
≥ ψ(T )

∫ T

0

ψ−1(t)dt,

where

ψ(t) = e−
∫ t
0

(a22+a21X(s)+
σ22
2 +

∫
U[ln(h(u)+1)−h(u)du)ds+σ2W (t)+

∫ t
0

∫
U h2(u)Ñ(ds,du).

Since we can find L1 > 0 such that

Px,y

{
sup
t∈[0,1]

{
|X(t)|, |W (t)|,

∣∣∣∣∫ t

0

∫
U
h(u)Ñ(ds, du)

∣∣∣∣} ≤ L1

}
≥ 3

4
,

if (x, y) ∈ (0, 1]× [0, H], there exists L2 > 0 such that

Px,y

{
sup
t∈[0,1]

{
|ψ(t) + ψ−1(t)|

}
≤ L2

}
≥ 3

4
, if (x, y) ∈ (0, 1]× [0, H].

As a result,

Px,y
{
Y (t) ≥ 1

L2
2

}
≥ 3

4
, if U∗(x, y) ≤ H. (3.41)

In view of Lemma 3.3 and part (iii) of Theorem 2.1, there exists L3 > 0 such that

Px,y
{
aVX(1) + Y (1) +X−1(1) ≥ L3

}
≤ 1

4
, if U∗(x, y) ≤ H. (3.42)

Since the set
{
y ≥ 1

L2
2

and aV x+ y + x−1(1) ≤ L3

}
is compact in R2,◦

+ , in view of

Lemma 3.6, there exists a probability measure νH and a constant c̃H > 0 such that

Px,y{(X(T ∗ − 1), Y (T ∗ − 1)) ∈ ·} ≥ c̃HνH(·), if y ≥ 1

L2
2

and aV x+ y + x−1 ≤ L3.

(3.43)
By virtue of Markov properties of {X(n), Y (n)}, we have from (3.42) and (3.43)
that

Px,y{(X(T ∗), Y (T ∗)) ∈ ·} ≥ 1

2
c̃HνH(·), if U∗(x, y) ≤ H. (3.44)

The proof is complete.

Proof of Theorem 2.2. Because of Proposition 3.1 and Theorem 2.1,

Ex,yU∗(X(T ∗), Y (T ∗)) ≤ κU∗(x, y) + C∗∗, (x, y) ∈ R2,◦
+ , (3.45)

for some κ < 1, where U∗(x, y) = V (x, y)+x−θ as in Lemma 3.7. Because of Lemma
3.7 and (3.45), by applying [11], there exists an invariant probability measure µ∗ of
the Markov chain {(X(kT ∗), Y (kT ∗)), k ∈ Z+} satisfying

‖PkT∗((x, y), ·)− µ∗‖ ≤ CU∗(U∗(x, y))κkU∗ , (3.46)

for some positive constants CU∗ > 0, κU∗ ∈ (0, 1) independent of (x, y). On the
other hand, (3.45) also implies the existence of invariant probability measures
of the Markov process {(X(t), Y (t)), t ≥ 0}. Since an invariant probability of
{(X(t), Y (t)), t ≥ 0} is an invariant probability measure of {(X(kT ∗), Y (kT ∗)), k ∈
Z+}, we claim that µ∗ is the unique invariant probability measure of {(X(t), Y (t)),
t ≥ 0}. Moreover, since the function ‖Pt((x, y), ·)−µ∗‖ is decreasing in t, we deduce
from (3.46) that

‖Pt((x, y), ·)− µ∗‖ ≤ CU∗(U∗(x, y))κ
t/T∗−1
U∗ , (3.47)
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which completes the proof.

3.3. Proof of extinction.

Proof. By a comparison theorem, see e.g., [2], we have Y (t) ≤ Ỹ (t) for any t ≥ 0

with probability 1 if Y (0) ≤ Ỹ (0), where Ỹ (t) is a positive solution to

dỸ (t) =
(
R− a22Ỹ (t)

)
dt+ σ2Ỹ (t)dW2(t) +

∫
U
Ỹ (t−)h(u)Ñ(dt, du).

Moreover, it is proved in [3] that the process {Ỹ (t)} has a unique invariant measure,
ν∗ on [0,∞) satisfying ∫

[0,∞)

yν∗(dy) =
R

a22
.

By the ergodicity of {Ỹ (t)}, we have

lim
t→∞

1

t

∫ t

0

Ỹ (s)ds =

∫
[0,∞)

yν∗(dy) =
R

a22
a.s.

In Section 3.2, we presented methods and arguments to treat jumps and impulse.
Combining these processes and the methods in [15] developed for diffusion, we can
prove that

lim sup
t→∞

lnX(t)

t
≤ λ

2
a.s.

In particularly, X(t) converges to 0 exponentially fast with probability 1. In the

remaining, we will prove that lim supt→∞
lnX(t)

t is exactly λ almost surely.
We have

d(Ỹ (t)− Y (t)) =− a22(Ỹ (t)− Y (t)) + a12X(t)Y (t) + σ2(Ỹ (t)− Y (t))dW2(t)

+

∫
U
h(u)(Ỹ (t)− Y (t))Ñ(dt, du).

If Ỹ (0) = Y (0), by the variation of constants formula, see e.e. [1], we have

Ỹ (t)− Y (t) = a22υ
−1(t)

∫ t

0

υ(s)X(s)Y (s)ds,

where

υ(t)

= exp

{(
a22 +

σ2
2

2
−
∫
U

[ln(1 + h(u))− h(u)]ν(du)

)
t− σ2W2(t) +

∫
U
Ñ(t, du)

}
.

Since

lim
t→∞

ln υ(t)

t
=

(
a22 +

σ2
2

2
−
∫
U

[ln(1 + h(u))− h(u)]ν(du)

)
:= λ2 > 0,

and

lim sup
t→∞

lnY (t)

t
≤ lim sup

t→∞

ln Ỹ (t)

t
= 0,

and

lim sup
t→∞

lnX(t)

t
≤ λ

2
< 0,
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there exists t0 = t0(ω) > 0 such that

υ(t)X(t)Y (t) ≤ e(λ2−ε)t, t ≥ 0,

for any ε < λ. As a result, with ε < |λ| ∧ λ2, we have

lim
t→∞

[Ỹ (t)− Y (t)] ≤ 1

a22
lim
t→∞

∫ t0
0
υ(s)X(s)Y (s)ds

υ(t)
+

1

a22
lim
t→∞

∫ t
t0
e(λ2−ε)sds

υ(t)

≤ 1

a22
lim
t→∞

∫ t0
0
υ(s)X(s)Y (s)ds

υ(t)
+

1

a22(λ2 − ε)
lim
t→∞

e(λ2−ε)t

υ(t)
= 0.

Since limt→∞(X(t) + |Ỹ (t)− Y (t)|) = 0, with probability 1, we have

lim
t→∞

lnX(t)

t
= lim sup

t→∞

(
lnX(t)

t
+
W1(t)

t
+ ln(1 + ρ)

[t]

t
+

)
+ lim
t→∞

1

t

∫ t

0

{
(a12Y (s)− a11X(s)− b1

X(s) + b2
− σ2

1

2

}
ds

= ln(1 + ρ) + lim sup
t→∞

1

t

∫ t

0

a12Ỹ (s)ds− b1
b2
− σ2

1

2
= λ < 0 a.s.

(3.48)

The proof is complete.
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