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ABSTRACT. We consider impulsive stochastic vegetation ecosystems with jump-
diffusion, which have played a crucial role in the study of ecological protection.
We are able to fully classify the longtime behavior of the underlying system.
A threshold number is introduced so that its sign characterizes whether or
not the vegetation goes extinct. In order to achieve this, we had to develop
new analytical techniques to deal with jumps and impulses. The analysis is
more subtle than in other population dynamics modeled by usual stochastic
differential equations.

1. Introduction. Theoretically, ecological models play an important role in for-
mulating and refining dynamic strategies to counter ecological degradation [9]. A
common (deterministic) vegetation ecosystem [5] has the form of the following o-
riginal differential equation (ODE)

by

X(t)+1
dY(t) = (R - a22Y(t) - ang(t)Y(t)) dt,

where X () is the vegetation biomass, Y () is the soil water; and a;2 is the maximum
biomass growth rate, ai; is the ratio of the maximum biomass growth rate and
the carrying capacity of biomass, and b; is the maximum consumption rate by
herbivores or other factors. The parameters R, aso and ao; are all positive real
numbers representing the rainfall, the soil water loss rate and the consumption rate
of water by biomass, respectively. Such above vegetation ecosystem is motivated
from the study of environmental issues and ecological challenges like global warming,
declining biodiversity, and land desertification. Which have intensified since the
1960s [8, 17] and references therein, and as a result, much attention has been devoted
to the study of ecological protection [13] recently.

dX(t) = X () [araY (1) — an X (1) — Jat.

(1.1)
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On the other hand, deterministic models operate on the assumption that system
parameters remain constant despite environmental fluctuations. From a biologi-
cal perspective, this imposes limitation on the mathematical modeling of ecological
systems because real-world population dynamics are inevitably influenced by envi-
ronmental noise; see e.g., [16, 4] and references therein. From a different perspective,
impulsive perturbations, as emphasized in [10, 6, 14], emerge across various domains
including automatic control systems, computer networking, population models, neu-
ral networks, and economics. Sudden and intense changes take place abruptly in the
form of impulses, presenting a modeling challenge when relying solely on continuous
or discrete descriptions. Consequently, there is a substantial demand for research
into impulsive systems.

The above needs motivate us to study the following impulsive stochastic vegeta-
tion ecosystem with jump-diffusion

by

dX(t) = X(t) |a12Y (t) — a1 X(t) - X(t) + by

} dt + o1 X (t)dWi(t), ten,n+1)

X(0) ==z, X(n)=(1+p)X(n-),
dY(t) = (R - a22Y(t) — a21X(t)Y(t)) dt + O'QY(t)dWQ t

(t)
+/Y(t—)h(u)ﬁ(dt,du), >0,
U

Y(0) =y,

(1.2)
where X (n—) = lim,_,,,- X(s), Y (t—) = lim, ;- Y (s); Wi(t), Wa(t) are standard
independent Brownian motions, and N (du,dt) is a Poisson counting measure with
characteristic measure v on a measurable set U with v(U) < oo, and N(dt, du) :=
N(dt, du) —v(du)dt is a Poisson martingale measure, which is independent of W1 (¢),
Wa(t).

In this paper, we first study fundamental properties of system (1.2), and then
characterize fully its longtime behavior. Precisely, a threshold A is introduced such
that if A < 0 then X(t) goes to 0 exponentially fast. In contrast, if A > 0, sys-
tem (1.2) admits a unique invariant measure concentrating on {(u,v) € R? : u >
0,v > 0} and the transition probability converges to the invariant measure in total
variation norm. A rate of convergence is also obtained. Compared with existing
literature, the novelty and contribution of this work can be summarized as follows.

e From theoretical aspect, we provide a complete characterization for longtime
behavior of a impulsive stochastic vegetation ecosystem with jump-diffusion
for the first time, to be the best of the authors’ current knowledge.

e From biological point of view, it provides helpful insights for ecologists as
well as advances the study of ecological protection. The threshold A, which
fully forecast what will happen in the future, is computed explicitly from
parameters in the model.

e The techniques developed in the paper to deal with jumps and impulses can
be generalized to study other ecological and biological systems modeled by
impulsive jump-diffusion.

The rest of paper is organized as follows. Section 2 presents our main results,
which states basic properties of (1.2), introduces threshold A, and provides a long-
time characterization of (1.2). Section 3 is devoted to proofs, in which Section 3.1
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proves fundamental properties, Section 3.2 is devoted to a proof of the permanence
case while a proof of extinction is given in Section 3.3.

2. Main results. We denote by L the generator of the jump-diffusion process
(X(t),Y(t)) from (1.2). We will also use P, , s, E; 4 s to indicate the probability
and expectation conditioned on X (s) = x,Y(s) = y. When s = 0, we simple use
Py, By y for Py, and E, 4 o, respectively. Denote R2 = {(u,v) € R? : u,v > 0},
R%° = {(u,v) € R? : u,v > 0}.

The following assumption is held throughout the paper.

Assumption 2.1. The following conditions hold:

/hz(u)du(u) < oo and /(1 + h(u)) " tdv(u) < oo.
U U

The first theorem tells us that together with well-posedness, positivity, and
Markov-Feller properties of (1.2), we can bound the moments of the process. More-
over, the solution process stays in compact sets with large probability if starting
from a compact set.

Theorem 2.1. We have the following claims.

(i) For any initial value (z,y) € R3, there exists a unique a global solution
(X(1),Y(t)) to (1.2) such that P, ,{(X(¢t),Y(t)) € R2, Vt > 0} = 1. More-
over, Py ,{X(t) >0, Vt >0} =1 and P, o{Y(t) =0, ¥Vt > 0} = 1.

(ii) Let p:= i, Z;‘fu)du A 4(0_‘%2@7%) AN0.1 and ay = {2 A1 and V(z,y) = (ave +
y)lﬂ’. Then there exist constants K1, Ko and ko > 0 such that

2K a
Er,yVSYler(t) § - + 67%(tfs)y1+p’ V(x,y) € Ri—at Z S, (21)
a22

and
EoysV(X(1),Y () < Ka(1+e 09V (2,y), V(z,y) eRI > (2.2)
(ii) There exists Kg > 0 such that
Epys(1+avX(t) + Y (1) <091+ aya +9)?, Y(z,y) € R2,t > 5. (2.3)
(iv) For anye > 0,H > 0,T > 0, there exists I?(E,H, T) > 0 such that
Pyy.s {X(t) +Y(t) < K(e,HT), Vs <t <T+ 8} >1—c gwenaxVy < H. (2.4)
(v) (X(t),Y(t)) is a non-homogeneous Markov-Feller process.
We introduce the following threshold A

(112R b1 0‘%

A=In(1+p)+ (2.5)

a9 bg 2 ’

and show that its sign fully characterize longtime behavior of (1.2).
If X\ is positive, the system is persistence, that means, there exists uniquely an

invariant probability measure p* of {(X(¢),Y (¢t)),t > 0} on Ri’o. Moreover, the

convergence and rate of convergence of the transition probability Pi((x,y),-) to u*

is also obtained.

Theorem 2.2. If A > 0, then there exists uniquely an invariant probability measure
w* of {(X(t),Y(¢),t >0} on Ri’o. Moreover, the transition probability P;((x,vy),-)
converges exponentially fast to u* in total variation norm.
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In contrast, if A < 0, X (t) goes extinct exponentially fast almost surely.

Theorem 2.3. If A < 0 then lim;_, lnX(t) = A\ < 0 with probability 1.

Remark 2.1. We make some remarks on an intuition of the threshold A and As-
sumption 2.1 as follows.

e The definition of the threshold A is inspired from a dynamical system theory

point of view (the so-called Lyapunov exponent or stochastic growth rate). In
In X (t)

+— When

particular, A is actually defined as an approximation of lim;_,

X (t) is small. Precisely, let Y (£) be a positive solution to
dY (t) = (R - mf/(t)) dt + oY (1) dWs (1 / Yt N(dt, du).

It is proved in [3] that the process {Y (t)} has a unique invariant measure, v*
on [0, 00) satisfying
R

v*(dy) =
[Oyoo)y (dy) =

By the ergodicity of {Y (¢)}, we have

1 [f
lim — [ Y(s)ds = / yv*(dy) = £ a.s.
0 [0,00)

t—oo a9

Therefore, roughly speaking, when X (¢) is small and Y (t) is close to Y (t),

tim 2 —timsup <1nX<t> Y0 )[tt]+)

t—o00 t

2
b]_ 0’1

1
FERT, {““2”8) ~n X0~ ey = 26)

a2 b2 2 =

e Assumption 2.1 guarantees the solution having finite (1 + p)**-order moment,
for some small p > 0. Moreover, it also helps to ensure the existence and
uniqueness of the invariant measure of the problem on the boundary, which is
needed to define A.

3. Proof of main results.
3.1. Proof of Theorem 2.1.

Proof of Theorem 2.1. Consider a system without impulses in each interval ¢ €
[n,n+1):

_
X(t)+ b2

dY(t) = (R - GQQY(t) - ang(t)Y( )) dt + JQY dWQ / Y dt du)

(3.1)
The existence and uniqueness of continuous nonnegative solutions to (3.1), which
can be proved by standard arguments, see e.g. [18], will imply the existence and

X (1) = X (1) |araY (8) — anX(t) - } dt + o1 X ()dW (1),
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uniqueness of continuous nonnegative solutions to (1.2) on each interval [n,n + 1).
Together with the impulses at n € Z,, we can easily obtain part (i) of Theorem
2.1.

Next, to simplify the notation, we prove parts (ii) — (v) only for s = 0. The
readers can see easily from the proofs that the statements of parts (i) — (v) hold
for any s > 0 with the constants being chosen independent of s.

Now, we prove part (ii). Consider V(z,y) = (ayz + y)'*P. We have

LV (z,y)

avb1 }

= (1+p)layz +y)? [R — agoy — (ag1 — ayaz)ry — ayap r? —
T + b2

+p(1+p)(ave + y)P " (a} 05 2% + 03y?)
4 /U (ava + y(1 + h(w)™*? = (ava + )+ — (1 +p)(ava + 5)yh(w)) dv(w)

3a
<K;—z%-— %(1 +p)(ayx +y)t*P

+ave+y) [ (1+W>1+P—1—<1+p>h<m) dv(u),

U ayr +y ayvr +y
(3.2)
for some finite constant K; > 1. From Taylor’s expansion, we have
(1+2)"7 <14+ (1 +p)(1 + 2)P +pz? for z > 0,
which leads to
h(wy h(uw)y )
1+ —= )P _1_(1 — |d
[ (1 (1452 ()
h 2
<p/ <(u)y> dv(u) (3.3)
ayr +y
<p/ h2(u)dy < aﬂ
Applying (3.3) to (3.2), we have
LV(a,y) < K —a® = 2V (a,y). (3.4)

In light of (3.4) and Dynkin’s formula, one can easily implies forn < s <t <n+1
that

E (ea%(t/\Tnvdfs)V(X(t A\ Tn,s); Y(t A Tn,s))

<E(V(X(s),Y(s)) + ]E/t (e‘%“—s)m) du (3.5)

9K, a k
< L0 L RV (X (s), Y (s)),

a2
it EV(X(s),Y(s)) < oo,n € Zy where 7, s = inf{t > s : V(X(¢),Y(t)) > n}.
Letting n — oo in (3.5) and then dividing both sides by ea%(t_s), we have

EV(X(t),Y(t) < iﬁ + e BUIREV(X(s), Y (s)) (3.6)

ifn<s<t<n+41forsomenecZ,.
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Similarly, we can obtain that

2K a
EY1+p(t) < e 6_%“_3)EY1+”(8) ifn<s<t<n+1forsomeneZ,.
a22
(3.7)
Applying (3.6) for t < 1, we have
2K a
By V(X(12),Y (1)) € = e F V(a,y).
22

On the other hand, we also have from (3.4) that
t
/ EX?(u)du < E(V(X(s),Y(s)) + Ky,

which leads to EX?(t,) < E(V(X(n),Y (n))+ K; for some t,, € [n,n+1). We have
from Holder’s inequality and standard calculations that

1

EX'P(t,) < (E(V(X(n),Y (n) + K1) ™7 < C1 + 2250 (1 § p)iP

EV(X(n),Y(n)),

for some C7 depending only on Ki,p and p.
Combining (3.8) and (3.7) implies that

EpyV(X((n+1)=),Y(n+1)-)

< 25 + V(X (tn), Y (tn)

a22
2K, 14+p 1+ 1+ 1+ 1+
< —— 427 Pa"PE, (X TP (t,) + 27 TPE, , Y P (L)
a9 ’ “ (39)
2K, " 21+pg P paardiel
< — 2P0 Py~ V __F V(X Y
<ot 10y Ty T (X(n), ¥ (n) + ——
K122+p67a%ny1+p'

a22

Since V(X ((n+1)),Y(n+1)) < (1+p)'PV(X((n+1)-),Y(n+1)-) and ay < 1,
we have from (3.9) that

+

K92t 1
2 snyien L, (0, ¥,

E,,V(X((n+1)),Y(n+1) <Co+ s 2

for some constant Cy independent of (x,y) and n. Applying this inequality recur-
sively, we have

K22+

P 1
E.,V(X(1),Y (1)) < Cy + Yyt 4 5V(gc,y),

a22

and

K 22+p a 1
1 e‘%ylﬂj + *Ew,yv<X(1>’Y(1)>

E.yV(X(2),Y(2)) <Cy +
a922 2

1 K2%tp agy 1 1
<Cs(l+ = TP ™2 4 = i g .
<Oy +2)+ o Yy e +2 +4 (x,y)
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Continuing this way, we have
E,,V(X(n+1),Y(n+1))
n n
1 K122+P 1 _aga(ntl—k) 1
< CQZ + 7y1+p2*€ 2 + Wv(may)

ok a 2k
k=0 22 k=0

1
< 20, + Csir"y' P + ES) V(z,y)

n 1
<203 + <C’3/-@ + 2n+1) Vi(x,y),

for some constants & € (0,1), C3 depending only on K1, ass. This together with
(3.6) implies (2.3) when s = 0. Similarly, we can obtain that

2K a22
EY'HP(t) < 2= 4 e B EIRY P (s) for all £ > s. (3.10)
@22

Part (i1) is proved.
Similar to the estimate (3.4), we can show that

LV (2,y) < K3V (2,y) where V(z,y) = (1 + ava + y)*,

for some constant K3 independent of (x,y). Applying Dynkin’s formula for
e K3tV (X (t),Y(t)), we can easily deduce that

Ee 53tV (X (t),Y (1))
<EV(X(s),Y(s)) + E/ [—K3e M5V (X (u), Y (0) + e "LV (X (v),Y (u))] du
<EV(X(s),Y(s)) if t <s,[t] = [s],
which leads to
E.,V(X(t),Y(t) < V(X (s),Y(s)), if t <s,[t] = [s].

Therefore, part (ii¢) is proved.
To prove (iv), we deduce from (3.6) that by Markov’s property, we have

P{V(X(t),Y(t)) <nforall s <t <[s]+1}
>1—P{r.s <[s]+1}

E ea%(t/\‘r"ws_s)‘/(X(t/\Tn.s)7Y(t/\Tn 5)
. ( : : ) (3.11)
n
1 (2K, =
>1- - (1632(t—5) +EV(X(S),Y(S))) )
n \ a2

which together with (2.2) implies (2.4).
Finally, to proof the process (X (¢),Y (t)) is a Markov Feller process can follow
arguments from [12] with slight modification needed due to jumps and impulsive.
O

3.2. Proof of persistence. This section is devoted to a proof of Theorem 2.2. Let
61 > 0 such that

by <ﬁ+gforauo§x§61;

a11x+$+b2 - bg
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and p be as in Theorem 2.1. Let H* > 0 be such that

b 2
apH* —aj — & — T > ), (3.12)
by 2
and such that Ky~ = (% + H*) < %. Now, we pick T* € Z, such that
In(1+ p) ai2 A
Ko < = 3.13
T +8H dgore — 8’ ( )
and ¢* € (0,1) such that
a12

| >

* A *
—(ag1 + a2)e” < =, ane* <
a9 8

Let F* = F(H*,e*) > H* be sufficiently large such that

1 /2K, ) )
T (HHOYP) < e,
(F*)p (azz ()

. (3.14)

To prove Theorem 2.2, we first need some Lemmas, and Propositions as follows.

Lemma 3.1. For H*,T* ¢* defined above, there exists 6o = 0o(T™*, H*,e*) € (0,1)
such that

EpysX(t) < and By X ()Y (t) <e* for s <t <T", if 0 <x <,0<y < H".
(3.15)

Proof. In view of (2.4) (with T replaced by T™*), there exists M = M (e¢*, H*,T*) > 0
such that

1 * *\ 2 e* . *
7 (Pw,y)s{TM’s > ty(ay + H*)eksT )2 <SH0Se<L0<y<HY,

-

where Ty s = inf{t > s: Y (t) > M}. We have
X(t A TM,s)
— X(s)(1 +p)[mm,s]—[s]ef§””s an2Y (w)—an X (u) - xriss

3.16
. eé(t/\TM‘s—5)+01(W1(tATMvS)_W1(S)) ( )

2
S X(S)(l + p)T*€a12MT*e%(tATM,S_5)+Ul(Wl(t/\TJVI,s)_Wl(5))7 s S t S T*
Taking expectation both sides, we have

0_2
Eays X (A Tars) So(1+ p)T e MT R, 0T AT =)+ (Wa(tAT, ) =2 (5)

(14 p) T en2MT" g < < T

IA

(3.17)
As a result, one has

Euys [1{TM,S>t}X(t)Y(t)] <Euy s X(EATM)Y (EATMs)

. . 3.18
SxM(1+P)T ea12MT 75 S t S T*, ( )
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and

[N

Eoys [Lirar . <n XOY (0)] < (Pay o{7ars < }Eey [X ()Y (1))

1 1
=z (o s {7ars > 1By ylay X () + Y (1))

1 AL (319
SE (]P)Ly’s{TM,s > t}(ay + H*)46_K3T )

e* .
S; lf.’lﬁgl,ng_

Combining (3.18) and (3.19), we have

*

By ys[X(H)Y ()] < eM(1+ p)™ 22T 4 =

5 Vs <t < T*, for (z,y) € [0, H*]?.

(3.20)
Similarly, we can have from (3.17), (2.3) and Holder’s inequality that

*

Eay,s[X(8)] < (1 +p)" e 4 % s<t<T (3.21)
if (z,y) € [0, H*]?. Picking &y = % (M(1+ p)T" en2MT™) " ' , we obtain (3.15). O

Lemma 3.2. Let §y be as in Lemma 3.1. For any T < T*, we have

Lcer x(¢)<o0t Eay

T
/ F* A Y(t)dt‘fmg]
TAC

> 1gear x(c <o} (RT Kp+ — (ag1 + a)e™T), (3.22)

where ¢ =inf{t > 0:Y(¢t) > H* or X(t) > do}.

Proof. Note that

T

Y(T) =Y(T A Q) + /TAC (R — assY (t) — am X (1)Y (1)) dt

T
+/ oY (£)dWa(t //Y N(dt, du).
TAC

In view of Theorem 2.1, we can take the conditional expectation Fra¢ both sides
of the equation above to obtain

(3.23)

Eoy Y (D) Frac) =Y (T A C) =Eqy

T
/ (R — asY (t) — am X (1)Y (1)) dt‘]-"TAC] .

TAC
(3.24)
As a result,
T 1
E,, Y(t)dt‘]—"TAC > (RIT =T A+ Y (T A Q) ~Ea [V (1) Frac)).
TAC

(3.25)
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It is noted that if { < T and X (¢) < dp < 1 then Y({) > H*. By the strong Markov
property of (X (t),Y (t)) and (2.1), we have
Licerx(©)<oo) By [Y (T)|Fracl = Y(T A Q)
<Lic<rx(© <oy Bey[Y (T)Frac]

=Eqy [1ic<r,x () <60} Bay,c Y (T)] (3.26)
1
2K, O\ T
Slicer x(¢)<do} (Cm +H ) ;
and
T
Licer,x (<80 By /C X(t)Y(t)dt‘]:T/\C
T
:1{C<T,X(C)<50}Ew,y l TACX(t)Y(t)dt‘]:TAC] dt

(3.27)

T
:1{<<T,X<o<5o}/ Esy [X(t)Y(t)dt‘fTAq} dt
TAC

T
Slicer,x(¢)<do} /T/\C e*dt <" (T — ().

Multiplying (3.25) with 1ic<7 x(¢)<s,} then using (3.26) and (3.27), we have

T
Le<r x(¢) <60} By Y(t)dt‘fmc
TAC
1 2K =2
> ATAO<) (R(T— ¢~ (1 +H*) —ane(T - o) :
a22 a2
(3.28)
On the one hand, one has
T
]Ez,y/ l{y(t)zF*}Y(t)dt’}'TAC
TAC
. 1 (3.29)
< E,, v+ ‘ dt :
— (F*)p w/T/\C Y |: ( ) ]:T/\C:|
1 (2K, ) )
< T (HHP) (T =) <M (T -0).
o (B vy -9 <@g

We deduce from (3.28) and (3.29) that

Lic<r x(¢)<ootEa,y
TAC

T
/ Y(t)dt’]:TAC]

T
/ Fr A Y(t)dt‘}—TAC]

> Lear x(¢)<so} Eay
TAC

T
= Licer x(¢) <60} Bay [/TAC1{Y(t)>F*}Y(t)dt’-7:T/\C]
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1

1 2K T+p

ZWM’(R(TO <1+H*> agls*T>+€*(T<)
a22 a22

1 o 2K * ﬁ *
WWH(}%(TC) <1+H> — (as1 + agn)e (TC)>-

a22 a22

11

(3.30)

Therefore, the proof is complete.

Lemma 3.3. There exist c1,co > 0 such that

Ew,y,SX_l(t) < cpett(t5) [x_l V1.

O

Proof. We prove this lemma for s = 0. It can be seen from the proof can be extended

for any s with c;, c2 being independent of s. By It6’s formula,

1 _ b ay Y(t) o2 o
10 = (o + i T~ R %) R

b
<an + (b; + of) XM (t)ydt — o1 XM () dWA (t),t & Zo..

From this, we can easily obtain that

b
dE,, X1 (t) < ay; + (b1 + a§> E,, X *(t)dt,0 <t < 1.
2

This differential inequality implies that
b -1 b o b -1
ELyX_l(ﬁ)S (3;‘_1+a11 (bl—l—()'%) )e(é*’ 1)75_@11 <bl—‘ra'%) .
2 2

Thus,

1
= —E,, X '(1-

b N\ (b, b -t
<z +an (= +0? e(b;+ %)*an = 4o} :
b2 b2

Continuing this process, we have

b -1 b1 4 52 b -1
ELyX_l(t) < (l‘_l + a1 (bl —|—O’%> > e(b;+ 1)t — a1 (bl n 0_%>
2 2

for any ¢ > 0.

E.y X 7(1)

The claim of the lemma follows obviously.
Lemma 3.4. For any T <T*. Let Ap :={( <T,X({) <dptU{C>T}, and
T 2
b1 o5 AT
=— AY() —anX(t) - ————— — = | dt — Lge —.
(T) 1ar A |:a12(F ANY (1) —ann X (t) X(t) + b 9 :| Ap 2

We have

T
B,y ®(T) < =2 +In(1+ p)T, W(w,y) € [0, H2,T < T".
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Proof. By the definition of ¢, if { > T then ®(T) < %AT. It is noted again that if
¢ <Tand X(¢) < do <1 then Y(¢) > H*. Therefore, we have

2
b1 01

¢
1 F*AY (1) —anX(t) — = — —
{<<T,x<<><6o}/0 {“12( AY () —anX(?) X(t)+by 2

Moreover, by using (3.22), (3.15) and definition (2.5) of A, one has

T 2
b1 o1

E 1 F*AY (1) —anX(t) — —— — —| dt
z,y {C<T,X(C)<6U}/C |:CL12( ()) ail ( ) )((t)+b2 2:|

a a
>Eq |:1{C<T,X(()<6o}a;z (R(T = ¢) — (ag1 + ag)e(T =€) — Kp- —

(2o -k
2 by oy

3AT — ¢ a
2Kz y |:1{€<T»X(C)<6o}(4) —In(1+p)(T - ¢) — Ku- a;z] :

a
? (3.32)

T
1{C<T,X(C)<5o} / anX(t)dt]
¢

From (3.31), (3.32) and definition of Kp+, we have

01

T 2
by
E,,1 F*AY () — an X(t) — ——— — 1| dt
v {C<T7X(C)<5o}/0 [alz( (£) = anX(®) X (t) + be 2}

AT "

AT
> (2 —In(1+ P)T> Eoy [Lic<r,x(0)<60}] -

Since arpF* AY (1) — anX (t) — xlsg — % = 3 i Y() > H* and X(t) < 6 (due
to the definitions of F'*, H*), we have
T b 2
E 1 >T / (ng(F* A Y(t)) - allX(t) S ﬁ dt
@,y +{¢>T} 0 X(t) + bo 9 (3.34)
AT
25 Boy[Licomy)-
We have from (3.33), (3.34) and the definitions of Ay, ®(t) that
By ®(T)
——/\—TIP (A7) —E, 1 /Ta (F*AY () —a X(t)—bil—a—% dt
T O ) A R " X(t)+by 2
T
< —/\7 +1In(1+ p)T.
(3.35)
The proof is complete. O

Lemma 3.5. Let
01 (T) = ©(T) — Eo (7).
There exists K* = K*(H*,T*) > 0 such that
Emﬁyq)%(T)ee‘bl(T) <K* forany0<0<1l,zVvVy<H*"T<T* (3.36)
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Proof. Note that for # € (0,1), 22e%% < 2% if 2 < 0 and 22e%* < 4e? if 2 > 0. As a
result,

E, ,®2(T)e?" 1) <K, [®1(T)]? 4 4E, ,e® ™)
< E,y[0(T)) + 4Ew7ye¢(T)€_]Em’yq>(T)-

Since ®(T) is bounded below by —F*T so that E, ,®(T) > —F*T it is easy to see
that E, ,([®(T) — E, ,(T)]A0)? < E, ,([®(T)] A0)* < (F*T)%. On the other hand,
one has

E,., exp {_1AT /OT [alz(F* ANY ()] —an X () — Xbil 0%] }

) +by 2
<E /T {a (F* AY (8)] — an X () b1 ‘ﬂ exp{apF*T}
z,y EXP g — — - — X
s ,y €XP ) 12 11 X(t) T by B P1ai12
< exp{a1n F*T)E / ’ [a (F* NY (8)] — ann X () b1 U%]
expia z,y €XP  — — - — =
S €Xpai2 .y €XP . 12 11 X(t) b, 5
E,, X (T
S eXp{algF*T}’fol()

< exp{algF*T}chclT for0<z<1.
Moreover, because —®(T) is bounded above by F*T, we have e Eew®(T) < o7,
Thus,

By ®(T)e’* ") < (a12F*T)? + exp{ara F*Theae™ 7.
Therefore, the proof is complete. O

Proposition 3.1. With sufficiently small 8 > 0, there exists C* independent of
(x,y) € [0,00) x [0, H*] such that

Epy X T <2 % "3 4 C*, for (z,y) € [0,00) x [0, H*],T < T*.

Proof. Consider the function: ¢(6) = InE, ,e’®1(T) on 6 € [0, 1]. We have

@ _ Em’yq)l(T)eOQI(T) o @ B ]Em’yq)%(T)ee':bl(T) _ (Em,yq)l(T)e(bl(T))Q
46 E,,e0®1(T) 462 (]ELye‘I)l(T))Q :

Therefore, due to e* < 14 2 + 22e® and Lemma, 3.5, we have

Euye?® (M) =14 0, , & (T) + 0°E, , ®2(T)e?* (7)< 14 02K* < K.

0252

On the other hand ¢?7*W1(T)~—=1T ig o martingale, so
g

0252
Ew)yeéolwl(T)— A

)

which implies
0257
Em)yeealwlT S 672 T'

By Holder’s inequality, for 6 < i,
1 2 o 2 2 OAT
]Ez’y69®1T690'1W1T é (EI’yGQG‘PlTeQ@UlWlT) 2 é 649 K 629 O'IT é eT,

ATy

if we choose 6 no larger than SAR +207T5)
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Note that for w € Ar, we have
X~0(0) = 27°(0)
+ exp {G/T [alg(Y(t) —an X(t) — b Jq }exp {=00, W1 (T)}
0 X(@)+b 2
~2(0)e®™ exp {—00, W1 (T)}

X
= X70(0)eBv M P oxp {00, Wy (T)} .
(3.37)
As a result, by using Lemmas 3.4 and 3.5, we have

Ew,ylATX_GT -E,, (x—a(l +p)—e[T]eeJEm,y@(T)ee@lTeealWlT)

AT AT
SZE70 exp {9 < In(1+p)[T] + (*7 +In(1+p)T)+ 8> }
<z fem .
(3.38)
It is noted that A C {¢ < T}. Thus,

EoyLlag X7 <Eqylicery X7
=By 1ic<ryEx oy X " (3.39)
<(ee1TY050.
In view of Lemma 3.3, there exists C* = C*(dp, T™) such that
E,, X T <C*ifx >0, T <T" (3.40)
The proposition is proved by combining (3.38) and (3.39). O

Lemma 3.6. For any compact subset IC € Ri’o, there exist a probability measure

v and a constant cx > 0 such that
Poy{(X(1),Y(1)) € -} = exvic(’), for all (z,y) € K.

Proof. Let (X,Y) be the solution to (3.1). Because the diffusion is nondegenerate,
in view of [7, Lemma 3.6], there exists a probability measure vx and a constant
cj > 0 such that

P, {(X(1),Y (1) € -} > éxcvic(:), for all (z,y) € K.
Because (W1 (t), Wa(t)) is independent of N, and X (1) = X (1), Y (1) = Y (1) if there
is no jumps on [0, 1], we have
P, {(X(1),Y(1)e-} >P {/UN(l,du) = 0} P, {(X(1),Y(1) € -} > excvic(:)
for all (z,y) € K, where cx =P { [, N(1,du) = 0} ¢} > 0. O

Lemma 3.7. Let U*(z,y) = V(x,y) + 27, where V is as in Theorem 2.1 and 0
is as in Proposition 3.1. For any H, there exists ¢ > 0 and a probability measure
vy such that

Poy{(X(T7),Y(T7)) € -} = ¢uvu(:), if U(z,y) < H.
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Proof. By the variation of constants formula, see [1], we have
)+ R / P! dt] > (T / T
(72 ~
w(t) — e f(;‘ (a22+a21X(s)+72+fU[ln(h(u)+1)—h(u)du)ds+a'2W(t)+fJ Jiy h2(u)N(ds,du) )

3
}<L1}>4

Pay {t:%pl] {lo@®) +¢~ ' (B} < Lz} > % if (z,y) € (0,1] x [0, H].

Y (t) = (T)

where

Since we can find L; > 0 such that

o s {IXOLIWO
te[0,1]
if (z,y) € (0,1] x [0, H], there exists Ly > 0 such that

N(ds, du)

As a result,

P,, {Y(t) > le} > Z if U*(x,y) < H. (3.41)
2

In view of Lemma 3.3 and part (iii) of Theorem 2.1, there exists Ls > 0 such that

P, {avX(1)+Y(1) + X '(1) > Ly} < i if U*(x,y) < H. (3.42)

Since the set {y > L% and ayz +y+a271(1) < Lg} is compact in R , in view of

Lemma 3.6, there exists a probability measure vy and a constant ¢y > 0 such that

~ : 1 -
Py {(X(I* = 1), Y(T" = 1)) €} 2 Tvm (), iy 2 75 and ava +y+a7' < Lo,

2
(3.43)
By virtue of Markov properties of {X(n),Y (n)}, we have from (3.42) and (3.43)
that

* 1~ . *
Poy {(X(T7),Y(I7)) € -} 2 Senvn(), U™ (z,y) < H. (3.44)
The proof is complete. O

Proof of Theorem 2.2. Because of Proposition 3.1 and Theorem 2.1,
E, ,U*(X(T*),Y(T")) < kU*(z,y) + C**, (z,y) € RY®, (3.45)

for some x < 1, where U*(z,y) = V(z,y)+2~ as in Lemma 3.7. Because of Lemma,
3.7 and (3.45), by applying [11], there exists an invariant probability measure u* of
the Markov chain {(X (kT*),Y (kT*)),k € Z.} satisfying

1Per ((2,y), ) — p|| < Cur- (U™ (z, y)) - (3.46)
for some positive constants Cy~ > 0,ky~ € (0,1) independent of (z,y). On the
other hand, (3.45) also implies the existence of invariant probability measures
of the Markov process {(X(¢),Y(t)),t > 0}. Since an invariant probability of
{(X(t),Y(t)),t > 0} is an invariant probability measure of {(X (kT*),Y (kT*)),k €
Z4}, we claim that p* is the unique invariant probability measure of {(X (¢), Y (t)),
t > 0}. Moreover, since the function | Pi((x,y), -) — u*|| is decreasing in ¢, we deduce
from (3.46) that

I1P:((2,),-) — u*|| < Cue (U* (w, y))rild (3.47)
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which completes the proof. O
3.3. Proof of extinction.

Proof. By a comparison theorem, sce e.g., [2], we have Y (¢) < Y (t) for any ¢ > 0
with probability 1 if Y'(0) < Y(0), where Y (¢) is a positive solution to

dY () = (R - azz?(t)) dt + oY (£)dWa(t) + / Y (t—)h(u)N(dt, du).
U

Moreover, it is proved in [3] that the process {Y (¢)} has a unique invariant measure,

v* on [0, 00) satisfying
. R
/ yv*(dy) = —.
[0,00) a22

By the ergodicity of {Y (¢)}, we have

1 [t . R
lim — [ Y(s)ds= yv*(dy) = — a.s.
t—oo ¢ Jg [0,00) a22

In Section 3.2, we presented methods and arguments to treat jumps and impulse.
Combining these processes and the methods in [15] developed for diffusion, we can
prove that

) InX(t) A

limsup——= < — a.s

t—o00 2
In particularly, X (t) converges to 0 exponentially fast with probability 1. In the

In X (¢)
t

remaining, we will prove that lim sup,_, .,
We have

AV () = Y (£)) = — asa(V(t) = Y (D) + ara XY (1) + 02 (V(2) — Y (1)) dWa (1)

+ / h(u)(Y (t) = Y (£))N (dt, du).
U

is exactly A almost surely.

If Y (0) = Y(0), by the variation of constants formula, see c.c. [1], we have

T(0) =Y () = ano”(0) [ o)XY (s,

where
v(t)
2 ~
— exp { <a22 + 2o /[ln(l +h(w) - h(u)}u(du)) E— oaWWa(t) + / N, du)} .
U U
Since
1 2
lim 200 _ (a22 + 22 /[m(l + hw)) — h(u)]y(du)) = o > 0,
t—00 t 2 U
and B
lim sup w < lim sup In¥'(?) =0,
t—o0 t t—o00 t
and
lim sup In X(t) < A <0,
t—o0 t 2
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there exists tg = to(w) > 0 such that

V()X )Y () < P2t ¢ >0,

for any £ < A. As a result, with € < |A\| A A2, we have

to t (Aa—e)s
= 1 X(s)Y(s)d 1 e ds
lim [F(6) — ¥ ()] < 1im Jo VEXEV(E)ds 1, Jrg e
t—o0 Qo9 t—00 v(t) Qo9 t—00 v(t)
to _
X(s)Y(s)d (A2—e)t
<L iy S VDXV (s)ds ! im S —o.
Qgp t—+00 v(t) agz(Ag — €) t=oo  v(t)
Since limy_o0 (X (£) + |Y (£) — Y(t)]) = 0, with probability 1, we have
In X (t InX(t) Wi(t t
lim n7()zlimsup ni()_’_ 1) +ln(1+p)u+
t—o00 t—00 t t t
1 ¢ bl U%
lim — Y(s)—anX(s) — ———— — 1 d 3.48
thggot 0 {(au (8) = anX(s) X(s)+by 2 } s (348)
. 1 ¢ fnd bl O'%
=In(1+4 p) +limsup- [ a2Y(s)ds— = — — =X <0 as.
t—o00 t 0 b2 2
The proof is complete.
O
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