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A B S T R A C T

In this paper, we consider a stochastic SIS epidemic model with vaccination in random switching
environment. The system is formulated as a hybrid stochastic differential equation. We provide
a threshold number that characterizes completely its longtime behavior. It turns out that if
the threshold is negative, the number of the infected class converges to zero or the extinction
happens. The rate of convergence is also obtained. In contrast, if the threshold is positive, the
infection is endemic. We are able to obtain an algebraic formula for the threshold, which helps
us to study some strategies for controlling the disease such as: (i) determining the minimum
vaccination rate needed to keep the population from the disease and (ii) determining the
strategy with minimum cost of vaccination and treatment. To illustrate the results, a number
of mathematical simulations and numerical examples are also presented.

1. Introduction

It has been observed in human history that infectious diseases have been making a significant negative impact on the population’s
health, economics, and social life. Because of that, much attention has been devoted to modeling the dynamics of epidemic systems,
analyzing their dynamic behaviors, and predicting what may happen in the future. Introduced by Kermack and McKendrick [1,2],
the compartmental model now is a very popular technique to model the dynamics of epidemic systems. Depending on the type of
disease, we will divide the population into different compartments. In particular, for diseases with permanent immunity we often
use the model with three compartments that includes susceptible group, infectious group, and recovered group. This model is the so-
called SIR epidemic model. However, there are some infections that do not confer any long-lasting immunity, for example, common
colds, influenza, etc. Upon recovery, the infections do not give a permanent immunization and individuals return to the susceptible
compartment again. This is the so-called SIS epidemic model, which has been recognized as one of the most important models in
epidemiology and mathematical biology; see e.g., [3–8] and the references therein. To control diseases, together with improving
treatments, vaccination is also researched, produced, and used. In recent years, many authors have modeled and analyzed the SIS
epidemic models allowing vaccination; see e.g., [9–15] and the references therein.
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A SIS epidemic model with vaccination introduced by Li and Ma [10] has the form

⎧
⎪⎪⎨⎪⎪⎩

𝑆(𝑡)

𝑑𝑡
= (1 − 𝑞)𝐴 − 𝛽𝑆(𝑡)𝐼(𝑡) − (𝑝 + 𝜇)𝑆(𝑡) + 𝛾𝐼(𝑡) + 𝜀𝑉 (𝑡),

𝐼(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝛾 + 𝛼)𝐼(𝑡),

𝑉 (𝑡)

𝑑𝑡
= 𝑞𝐴 + 𝑝𝑆(𝑡) − (𝜇 + 𝜀)𝑉 (𝑡),

(1.1)

where 𝑆(𝑡) denotes the number of susceptible group containing individuals who are susceptible to an infection, 𝐼(𝑡) stands for the
number of the infection group and 𝑉 (𝑡) is the number of members who are immune to an infection as the result of vaccination;
and 𝐴 is an input of new members into the population, 𝑞 is a fraction of vaccinated for newborns, 𝜇 is the nature death rate of
the population, 𝛽 is the transmission coefficient between compartments 𝑆 and 𝐼 , 𝑝 is the proportional coefficient of vaccinated for
the susceptible, 𝛾 is the recovery rate of 𝐼 , 𝜀 is the rate of losing their immunity for vaccinated individuals, 𝛼 is the disease-related
death rate. All these constants are assumed to be positive.

It has also been well-recognized that epidemic models are inevitably subjected to environmental white noise and may be
perturbed by color noise which can cause the system to switch from one environmental regime to another; see e.g., [16,17] and
references therein. Precisely, to take account these kinds of randomness into consideration, instead of considering systems (1.1), we
consider the following system (see also [14])

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑑𝑆(𝑡) =
[
(1 − 𝑞(𝛬(𝑡)))𝐴(𝛬(𝑡)) − 𝛽(𝛬(𝑡))𝑆(𝑡)𝐼(𝑡) − (𝑝(𝛬(𝑡)) + 𝜇(𝛬(𝑡)))𝑆(𝑡)

+ 𝛾(𝛬(𝑡))𝐼(𝑡) + 𝜀(𝛬(𝑡)𝑉 (𝑡))
]
𝑑𝑡 + 𝜎1(𝛬(𝑡))𝑆(𝑡)𝑑𝑊1(𝑡),

𝑑𝐼(𝑡) =
(
𝛽(𝛬(𝑡))𝐼(𝑡)𝑆(𝑡) − [𝜇(𝛬(𝑡)) + 𝛾(𝛬(𝑡)) + 𝛼(𝛬(𝑡))] 𝐼(𝑡)

)
𝑑𝑡

+ 𝜎2(𝛬(𝑡))𝐼(𝑡)𝑑𝑊2(𝑡),

𝑑𝑉 (𝑡) =
[
𝑞(𝛬(𝑡))𝐴(𝛬(𝑡)) + 𝑝(𝛬(𝑡))𝑆(𝑡) − (𝜇(𝛬(𝑡)) + 𝜀(𝛬(𝑡)))𝑉 (𝑡)

]
𝑑𝑡

+ 𝜎3(𝛬(𝑡))𝑉 (𝑡)𝑑𝑊3(𝑡),

𝑆(0) = 𝑠 ≥ 0, 𝐼(0) = 𝑖 ≥ 0, 𝑉 (0) = 𝑣 ≥ 0, 𝛬(0) = 𝑘 ∈ ,

(1.2)

where, 𝛬(𝑡) is a Markov chain with state space  = {1,… , 𝑚0}, and 𝑊𝑖(𝑡) are Brownian motions that are used to model color noise
(which cause the system to switch from one environmental regime to another) and white noises, respectively; see e.g., [16,17].

In this paper, we will analyze system (1.2) and provide a complete characterization of longtime properties of the system. Our main
purpose is that: a threshold 𝜆 is introduced such that its sign will characterize completely the longtime behavior of the underlying
system. In particular, we prove that if 𝜆 is negative, the disease will be eradicated; the rate is also obtained. In contrast, if 𝜆 is
positive, the infection is endemic. We also show that the system has an invariant probability measure, and the transition probability
of the solution process converges to the invariant measure. Our method to determine the thresholds is to look at the dynamics of the
system near the boundary, and that can be generalized to deal with numerous other epidemic models. The algebraic representation
of this threshold is introduced to make it very easy to be computed and facilitate further study of the epidemic model. A number
of mathematical simulations and numerical examples are also provided to illustrate our theoretical results.

The contributions and novelties in this work can be summarized as follows.

• In the literature, although system (1.2) has been studied, for example in [14] and references therein, a complete characteri-
zation has still not been treated. In particular,
all existing results only provided sufficient conditions for the persistence and extinction of the disease and the conditions left a
sizable gap. By characterizing these properties with a threshold level, we provide sufficient and necessary conditions for both
persistence and extinction except for a critical case.

• We also introduce novel and systematic approaches. Our methodology (using the Lyapunov exponents from dynamical systems
theory to define the thresholds) is general and systematic that can be generalized for other models. Although a similar approach
has been developed in [18,19], those results are not applicable here and some new techniques are required. In particular, in
SIS models, the term 𝛾𝐼(𝑡) in the first equations (due to the short immunity making recovered individuals susceptible again)
leads significant challenges in understanding when the extinction happens. To overcome that, we need to consider auxiliary
perturbed systems to understand how small changes in infected groups affect to the whole systems.

• Being able to obtain an algebraic formula for the threshold 𝜆, we can determine the minimum rate of vaccination needed to
keep the disease-free state of the system. In case the disease persists even with full vaccination, we are able to reduce the
problem of minimizing the long-term average cost of vaccination and treatment into an elementary optimization problem.
That will facilitate the decision making process of controlling a disease.

The rest of the paper is organized as follows. Section 2 introduces the threshold 𝜆 and proves the main results. Section 3 answers the
practical question: What is the rate of vaccination needed to keep the disease from persistence. Moreover, we consider the optimal
strategies for minimizing the cost of vaccination and treatments when the disease persists. Section 4.1 is devoted to discussion. A
number of simulated examples are showcased in Section 4.2 to illustrate our main findings.
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2. A complete characterization of longtime behavior

We begin with introduce some notations: R2
+

= {(𝑠, 𝑖) ∈ R
2 ∶ 𝑠 ≥ 0, 𝑖 ≥ 0}, R3

+
= {(𝑠, 𝑖, 𝑣) ∈ R

3 ∶ 𝑠 ≥ 0, 𝑖 ≥ 0, 𝑣 ≥ 0},
R
2,◦
+ = {(𝑠, 𝑖) ∈ R

2 ∶ 𝑠 > 0, 𝑖 > 0}, R3,◦
+ = {(𝑠, 𝑖, 𝑣) ∈ R

3 ∶ 𝑠 > 0, 𝑖 > 0, 𝑣 > 0}, R2,∗
+ = {(𝑠, 𝑖) ∈ R

2 ∶ 𝑠 ≥ 0, 𝑖 > 0}, and
R
3,∗
+ = {(𝑠, 𝑖, 𝑣) ∈ R

3 ∶ 𝑠 ≥ 0, 𝑖 > 0, 𝑣 ≥ 0}. Let (𝛺, , {𝑡}𝑡≥0,P) be a complete filtered probability space. 𝑊1(𝑡), 𝑊2(𝑡), 𝑊3(𝑡) are
independent Brownian motions, and 𝛬(𝑡) is a Markov chain with finite state space. We also assume that 𝛬(𝑡) has the (irreducible)
generator 𝑄 = (𝑞𝑘𝑙)𝑚0×𝑚0

and an ergodic measure 𝜋 and is independent of 𝑊1(𝑡), 𝑊2(𝑡), 𝑊3(𝑡) such that

P{𝛬(𝑡 + 𝛥) = 𝑗|𝛬(𝑡) = 𝑖, 𝛬(𝑢), 𝑢 ≤ 𝑡} = 𝑞𝑖𝑗𝛥 + 𝑜(𝛥) if 𝑖 ≠ 𝑗 and
P{𝛬(𝑡 + 𝛥) = 𝑖|𝛬(𝑡) = 𝑖, 𝛬(𝑢), 𝑢 ≤ 𝑡} = 1 + 𝑞𝑖𝑖𝛥 + 𝑜(𝛥).

(2.1)

Let E𝑠,𝑖,𝑣,𝑘 and P𝑠,𝑖,𝑣,𝑘 denote the expectation and probability associated with the initial data 𝑆(0) = 𝑠, 𝑉 (0) = 𝑣, 𝐼(0) = 𝑖, 𝛬(0) = 𝑘,
respectively. We first establish the existence, uniqueness and basic properties of the solution process of (1.2).

Theorem 2.1. Starting at (𝑠, 𝑖, 𝑣, 𝑘) ∈ R
3
+
× , there is uniquely a global nonnegative solution (𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) to (1.2) satisfying

P𝑠,𝑖,𝑣,𝑘{𝑆(𝑡) > 0, 𝑉 (𝑡) > 0, 𝐼(𝑡) ≥ 0, ∀𝑡 > 0} = 1. Moreover, P𝑠,0,𝑣,𝑘{𝐼(𝑡) = 0, ∀𝑡 ≥ 0} = 1, P𝑠,0,𝑣,𝑘{𝑆(𝑡) > 0, 𝑉 (𝑡) > 0, ∀𝑡 ≥ 0} = 1

and P𝑠,𝑖,𝑣,𝑘{𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡) ∈ R
3,◦
+ , ∀𝑡 > 0} = 1, if 𝑖 > 0. Moreover, the joint-process (𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡), 𝛬(𝑡)) is a Markov–Feller process.

Proof. The proof is standard and similar to [20, Theorem 2.1] or [21, Theorem 2.1], and therefore is omitted here. □

We continue to provide moment boundedness and tightness (boundedness in probability) of the solution.

Lemma 2.1. For any 𝑞 > 0 sufficiently small, there exist 𝐶𝑞 > 0 and 𝐷𝑞 > 0 such that

E𝑠,𝑖,𝑣,𝑘 (1 + 𝑆(𝑡) + 𝑉 (𝑡) + 𝐼(𝑡))1+𝑞 ≤ 𝐶𝑞

𝐷𝑞

+
(1 + 𝑠 + 𝑣 + 𝑖)1+𝑞

𝑒𝐷𝑞 𝑡
, ∀𝑡 ≥ 0. (2.2)

As a result, for any 𝐻 > 0, 𝜀 > 0, 𝑇 > 0, there is a constant 𝑀𝐻,𝜀,𝑇 > 0 such that

P𝑠,𝑖,𝑣,𝑘

{
sup
𝑡∈[0,𝑇 ]

{𝑆(𝑡) + 𝑉 (𝑡) + 𝐼(𝑡)} ≥𝑀𝐻,𝜀,𝑇

}
≤ 𝜀, ∀(𝑠, 𝑖, 𝑣, 𝑘) ∈ [0,𝐻]3 ×. (2.3)

Proof. Denote by  the operator associated with the solution process of (1.2). It is well-known that for a function 𝑉 of (𝑠, 𝑖, 𝑣, 𝑘)
that is twice differentiable with respect to (𝑠, 𝑖, 𝑣), we have

𝑉 (𝑠, 𝑖, 𝑣, 𝑘) =𝑉𝑠(𝑠, 𝑖, 𝑣, 𝑘)
(
(1 − 𝑞(𝑘))𝐴 − 𝛽(𝑘)𝑠𝑖 − (𝑝(𝑘) + 𝜇(𝑘))𝑠 + 𝜀(𝑘)𝑣 + 𝛾(𝑘)𝑖

)

+ 𝑉𝑖(𝑠, 𝑖, 𝑣, 𝑘)
(
𝛽(𝑘)𝑠𝑖 − (𝜇(𝑘) + 𝛼(𝑘) + 𝛾(𝑘))𝑖

)

+ 𝑉𝑣(𝑠, 𝑖, 𝑣, 𝑘)
(
𝑞(𝑘)𝐴(𝑘) + 𝑝(𝑘)𝑠 − (𝜇(𝑘) + 𝜀(𝑘))𝑣

)

+
1

2
𝑉𝑠𝑠(𝑠, 𝑖, 𝑘)𝜎

2
1
(𝑘)𝑠2 +

1

2
𝑉𝑖𝑖(𝑠, 𝑖, 𝑣, 𝑘)𝜎

2
2
(𝑘)𝑖2 +

1

2
𝑉𝑣𝑣(𝑠, 𝑖, 𝑣, 𝑘)𝜎

2
3
(𝑘)𝑖2

+
∑
𝑙∈

𝑞𝑘𝑙𝑉𝑛(𝑠, 𝑖, 𝑣, 𝑙).

Thus, by direct computations, there exists 𝐶𝑞 , 𝐷𝑞 > 0 for sufficiently small 𝑞 > 0 satisfying

(1 + 𝑠 + 𝑣 + 𝑖)1+𝑞 ≤ −𝐷𝑞(1 + 𝑠 + 𝑖 + 𝑣)
1+𝑞 + 𝐶𝑞 .

Therefore, as an application of Itô’s formula, one has (2.2) and (2.3); see e.g., [22] or [23] for this well-known argument. □

2.1. A complete characterization of longtime behavior

In this section, we will define a threshold 𝜆 that will characterize completely the longtime behavior of system (1.2).
For each 𝜃 ≥ 𝜃𝑚 ∶= −min𝑘∈{

(1−𝑞(𝑘))𝐴(𝑘)

2𝛾(𝑘)
}, consider a perturbed system of (1.2) when 𝐼(𝑡) is small:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝑑𝑆𝜃(𝑡) =
[
(1 − 𝑞(𝛬(𝑡)))𝐴(𝛬(𝑡)) − (𝑝(𝛬(𝑡)) + 𝜇(𝛬(𝑡)))𝑆𝜃(𝑡)

+ 𝛾(𝛬(𝑡))𝜃 + 𝜀(𝛬(𝑡))𝑉 𝜃(𝑡)
]
𝑑𝑡 + 𝜎1(𝛼(𝑡))𝑆

𝜃(𝑡)𝑑𝑊1(𝑡),

𝑑𝑉 𝜃(𝑡) =
[
𝑞(𝛬(𝑡))𝐴(𝛬(𝑡)) + 𝑝(𝛬(𝑡))𝑆𝜃(𝑡) − (𝜇(𝛬(𝑡)) + 𝜀(𝛬(𝑡)))𝑉 𝜃(𝑡)

]
𝑑𝑡

+ 𝜎3(𝛬(𝑡))𝑉
𝜃(𝑡)𝑑𝑊2(𝑡).

(2.4)

Similar to Theorem 2.1, we can easily show that for each initial value (𝑠, 𝑣, 𝑘) ∈ R
2
+
×, there exists a global solution (𝑆𝜃(𝑡), 𝑉 𝜃(𝑡))

to (2.4). Moreover, by a similar argument as in Lemma 2.1, we can show the solution satisfies that (𝑆𝜃(𝑡), 𝑉 𝜃(𝑡)) ∈ R
2,◦
+ for all 𝑡 > 0

almost surely and that

E𝑠,𝑣,𝑘

(
𝑆𝜃(𝑡) + 𝑉 𝜃(𝑡)

)1+𝑞 ≤ (1 + 𝑠 + 𝑣)1+𝑞

𝑒𝐷̃𝑞 𝑡
+
𝐶𝑞

𝐷̃𝑞

, ∀𝑡 ≥ 0, (2.5)
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for some 𝑞 > 0, 𝐶𝑞 , 𝐷̃𝑞 > 0, which can be taken uniformly for any 𝜃 ∈ [𝜃𝑚, 1].
Since the diffusion in (2.4) in nondegenerate on R

2,◦
+ × , there exists uniquely an invariant probability distribution 𝝂𝜃 of

(𝑆𝜃(𝑡), 𝑉 𝜃(𝑡), 𝛼(𝑡)) on R
2,◦
+ × . Moreover, it is noted that 𝜋 is the unique invariant measure of 𝛬(𝑡). Therefore, 𝜋 is the marginal

distribution of the third component in the joint distribution 𝝂𝜃 . Due to (2.5), we have

∑
𝑘∈∫

R
2
+

(𝑠 + 𝑣)1+𝑞𝝂𝜃(𝑑𝑠, 𝑑𝑣, 𝑘) ≤ 𝐶𝑞

𝐷̃𝑞

<∞.

Thus, we can well define the following 𝜆𝜃 which is an approximated growth rate of 𝐼(𝑡) as its density is small:

𝜆𝜃 ∶=
∑
𝑘∈∫

R
2
+

(
𝛽(𝑘)𝑠 − (𝜇(𝑘) + 𝛾(𝑘) + 𝛼(𝑘)) −

𝜎2
2
(𝑘)

2

)
𝝂𝜃(𝑑𝑠, 𝑑𝑣, 𝑘)

=
∑
𝑘∈∫

R
2
+

𝛽(𝑘)𝑠𝝂𝜃(𝑑𝑠, 𝑑𝑣, 𝑘) −
∑
𝑘∈

(
𝜇(𝑘) + 𝛼(𝑘) + 𝛾(𝑘) +

𝜎2
2
(𝑘)

2

)
𝜋𝑘.

The equality above follows from the fact that 𝜋 is the marginal distribution of the third component in 𝝂𝜃 . In particular, when 𝜃 = 0,
we denote

𝜆 ∶= 𝜆0 =
∑
𝑘∈∫

R
2
+

(
𝛽(𝑘)𝑠 − (𝜇(𝑘) + 𝛼(𝑘) + 𝛾(𝑘)) −

𝜎2
2
(𝑘)

2

)
𝝂0(𝑑𝑠, 𝑑𝑣, 𝑘). (2.6)

This 𝜆 will be shown to be the threshold that characterizes the longtime behavior of the disease. Note that, when 𝜃 = 0, (2.4) is
the solution to (1.2) with 𝐼(𝑡) ≡ 0. Thus, we can consider 𝝂0 as the unique invariant probability measure of the solution process
(𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡), 𝛬(𝑡)) on the boundary [0,∞) × {0} × [0,∞) × (by embedding [0,∞) × [0,∞) × to [0,∞) × {0} × [0,∞) ×).

Algebraic representation of 𝜆. To proceed, we provide an algebraic representation for the proposed threshold 𝜆. This representation
is very useful from a computational point of view since we can compute 𝜆 by solving a system of linear equations.

Lemma 2.2. Let
(
𝑐1(1), 𝑐1(2),… , 𝑐1(𝑚0), 𝑐2(1), 𝑐2(2,… , 𝑐2(𝑚0))

)⊤
be the unique solution to the linear system:

{
𝛽(𝑘) − (𝑝(𝑘) + 𝜇(𝑘)) 𝑐1(𝑘) + 𝑝(𝑘)𝑐2(𝑘) +

∑
𝑙∈ 𝛾𝑘𝑙𝑐1(𝑙) = 0,

𝜀(𝑘)𝑐1(𝑘) − (𝜇(𝑘) + 𝜀(𝑘)) 𝑐2(𝑘) +
∑
𝑙∈ 𝛾𝑘𝑙𝑐2(𝑙) = 0, 𝑘 = 1, 2,… , 𝑚0.

(2.7)

We have:

𝜆𝜃 =
∑
𝑘∈

[
𝑐1(𝑘)[(1 − 𝑞(𝑘))𝐴(𝑘) + 𝛾(𝑘)𝜃] −

(
𝜇(𝑘) + 𝛼(𝑘) + 𝛾(𝑘) +

𝜎2
2
(𝑘)

2

)]
𝜋𝑘.

Proof. The system (2.7) can be written in the following form

𝐴𝐶 = 𝛽, (2.8)

where 𝐶 ∈ R
2𝑛, 𝛽 =

(
𝛽(1), 𝛽(2),… , 𝛽(𝑚0), 0, 0,… , 0

)⊤
, and

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜇(1) + 𝑝(1) − 𝛾11 … −𝛾1𝑚0
−𝑝(1) … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−𝛾𝑚01
… 𝜇(𝑚0) + 𝑝(𝑚0) − 𝛾𝑚0𝑚0

0 … −𝑝(𝑚0)

−𝜀(1) … 0 𝜇(1) + 𝜀(1) − 𝛾11 … −𝛾1𝑚0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 … −𝜀(𝑚0) −𝛾𝑚01
… 𝜇(𝑚0) + 𝜀(𝑚0) − 𝛾𝑚0𝑚0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since −𝛾𝑖𝑖 =
∑
𝑗≠𝑖 𝛾𝑖𝑗 , it is obvious that matrix 𝐴 = [𝑎𝑖𝑗 ]2𝑚0×2𝑚0

is diagonally dominant, i.e., |𝑎𝑖𝑖| ≥ ∑2𝑚0

𝑗≠𝑖,𝑗=1 |𝑎𝑖𝑗 | for any 𝑖 = 1,… , 𝑚0.
It is well-known that a diagonally dominant matrix is non-singular. Thus, there exists a unique solution 𝐶 to 𝐴𝐶 = 𝛽.

Denote by 𝜃 the operator associated with the solution process of (2.4). It is well known that if we let 𝑈 (𝑠, 𝑣, 𝑘) = 𝑐1(𝑘)𝑠+ 𝑐2(𝑘)𝑣

then

𝜃𝑈 (𝑠, 𝑣, 𝑘) =𝑐1(𝑘) [(1 − 𝑞(𝑘))𝐴(𝑘) + 𝛾(𝑘)𝜃 − (𝑝(𝑘) + 𝜇(𝑘)) 𝑠 + 𝜀(𝑘)𝑣]

+ 𝑐2(𝑘) [𝑞(𝑘)𝐴(𝑘) + 𝑝(𝑘)𝑠 − (𝜇(𝑘) + 𝜀(𝑘)) 𝑣]

+
(∑

𝑙

𝛾𝑘𝑙𝑐1(𝑙)
)
𝑠 +

(∑
𝑙

𝛾𝑘𝑙𝑐2(𝑙)
)
𝑣

=𝑐1(𝑘) [(1 − 𝑞(𝑘))𝐴(𝑘) + 𝛾(𝑘)𝜃] − 𝛽(𝑘)𝑠

=ℎ𝜃(𝑘) − 𝛽(𝑘)𝑠,

where

ℎ𝜃(𝑘) = 𝑐1(𝑘) [(1 − 𝑞(𝑘))𝐴(𝑘) + 𝛾(𝑘)𝜃] . (2.9)
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Then, by Dynkin’s formula (see e.g., [24]) we have

E𝑠,𝑣,𝑘 𝑈 (𝑆𝜃(𝑡), 𝑉 𝜃(𝑡), 𝛬(𝑡)) − 𝑈 (𝑆𝜃(0), 𝑉 𝜃(0), 𝛬(0))

= E𝑠,𝑣,𝑘 ∫ 𝑡0 𝜃𝑈 (𝑆𝜃(𝑢), 𝑉 𝜃(𝑢), 𝛬(𝑢))𝑑𝑢

= E𝑠,𝑣,𝑘 ∫ 𝑡0 ℎ(𝛬(𝑢))𝑑𝑢 − E𝑠,𝑣,𝑘 ∫ 𝑡0 𝛽(𝛬(𝑢))𝑆𝜃(𝑢)𝑑𝑢.
(2.10)

Due to ergodicity of 𝛬(𝑡) and 𝑆𝜃(𝑡), we have

lim
𝑡→∞

1

𝑡
E𝑠,𝑣,𝑘 ∫

𝑡

0

ℎ(𝛬(𝑢))𝑑𝑢 =
∑
𝑘∈

ℎ𝜃(𝑘)𝜋𝑘, (2.11)

lim
𝑡→∞

1

𝑡
E𝑠,𝑣,𝑘 ∫

𝑡

0

𝛽(𝛬(𝑢))𝑆𝜃(𝑢)𝑑𝑢 =
∑
𝑘∈∫

R
2
+

𝛽(𝑘)𝑠𝜈(𝑑𝑠, 𝑑𝑣). (2.12)

Moreover, because of (2.5), one has

lim
𝑡→∞

E𝑠,𝑣,𝑘𝑈 (𝑆𝜃(𝑡), 𝑉 𝜃(𝑡), 𝛬(𝑡)) − 𝑈 (𝑆𝜃(0), 𝑉 𝜃(0), 𝛬(0))

𝑡
= 0. (2.13)

Plugging (2.11), (2.12), and (2.13) in (2.10), we have

∑
𝑘∈

ℎ(𝑘)𝜋𝑘 =
∑
𝑘∈∫

R
2
+

𝛽(𝑘)𝑠𝝂𝜃(𝑑𝑠, 𝑑𝑣, 𝑘),

which implies

𝜆𝜃 =
∑
𝑘∈

ℎ(𝑘)𝜋𝑘 −
∑
𝑘∈

(
𝜇(𝑘) + 𝛼(𝑘) + 𝛾(𝑘) +

𝜎2
2
(𝑘)

2

)
𝜋𝑘.

The proof is complete because of (2.9) □

Now, we state our main results in this section.

Theorem 2.2. Suppose 𝜆 > 0. Then there the transition probability converges to a unique invariant probability measure 𝝂∗ in total variation
with an exponential rate.

Theorem 2.3. If 𝜆 < 0, 𝐼(𝑡) converges to 0 exponentially fast, or

P𝑠,𝑖,𝑣,𝑘

{
lim
𝑡→∞

ln 𝐼(𝑡)

𝑡
= 𝜆

}
= 1. (2.14)

Remark 2.1. The following are some remarks:

• The sufficient conditions for persistence and extinction in our results are also almost necessary conditions. The only case that
left untreated is when 𝜆 = 0. If 𝛾(𝑘) ≡ 0 and 𝜆 = 0, the disease is not persistent in either time average or space average sense,
that is,

lim
𝑡→∞

1

𝑡 ∫
𝑡

0

𝐼(𝑠)𝑑𝑠 = 0 a.s, and lim
𝑡→∞

E𝑠,𝑖,𝑣,𝑘𝐼(𝑡) = 0.

This claim can be derived from the method introduced in [25]. However, if 𝛾(𝑘) > 0 for some 𝑘, it is not easy to treat the case
𝜆 = 0.

• In this work, we treat with linear incidence rate 𝛽𝑆𝐼 for simplifying notation to introduce our new methods and ideas. It can be
easily applied to other types of the incidence rate functions to improve and generalize many existing results, e.g., [14,26–28].
Moreover, the method in [14] cannot work for nonlinear incidence rate. However, our method can be applied to a general
model with nonlinear incidence rate; see Section 4.1. From computational point of view, when the incidence rate is nonlinear,
we might not have an algebraic representation for 𝜆, however it can be approximated by a numerical scheme.

2.2. Proof of Theorem 2.2

Lemma 2.3. There exists 𝑐−1 > 0 such that

E𝑠,𝑖,𝑣,𝑘𝐼
−1(𝑡) ≤ 𝑖 exp{𝑐−1𝑡}, ∀𝑡 ≥ 0, (𝑠, 𝑖, 𝑣) ∈ R

3,∗
+ .

Proof. We have

𝑑𝐼−1(𝑡) =

[
𝜇(𝛬(𝑡)) + 𝛾(𝛬(𝑡)) + 𝛼(𝛬(𝑡)) − 𝛽(𝛬(𝑡))𝑆(𝑡) −

𝜎2
2
(𝛬(𝑡))

2

]
𝐼−1(𝑡)𝑑𝑡 − 𝜎2(𝛬(𝑡))𝐼

−1(𝑡)𝑑𝑊2(𝑡)

≤𝑐−1𝐼−1(𝑡)𝑑𝑡 − 𝜎2(𝛬(𝑡))𝐼−1(𝑡)𝑑𝑊2(𝑡),
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where 𝑐−1 = max{0, 𝜇(𝑘)+ 𝛾(𝑘)+𝛼(𝑘)−𝜎2
2
(𝑘)∕2}. From this estimate, we can easily imply the existence of E𝑠,𝑖,𝑣,𝑘𝐼

−1(𝑡), see [29]. Then
taking expectation both sides, we obtain that

𝑑E𝑠,𝑖,𝑣,𝑘𝐼
−1(𝑡) ≤ 𝑐−1E𝑠,𝑖,𝑣,𝑘𝐼

−1(𝑡).

The Lemma follows easily this differential inequality. □

In this subsection, we assume 𝜆 > 0. Let 𝜃1 < 0 small enough such that 𝜆𝜃1 ≥ 7𝜆

8
> 0. Let (𝑆𝜃1 , 𝑉 𝜃1 ) be the solution to (2.4) with

𝜃 = 𝜃1 and 𝑆
𝜃1 (0) = 𝑉 𝜃1 (0) = 0. Note from the ergodicity of (𝑆𝜃1 , 𝑉 𝜃1 ) that

lim
𝑇→∞

E𝑘
1

𝑇 ∫
𝑇

0

(
𝛽(𝛬(𝑡))𝑆𝜃1 (𝑡)𝑑𝑡 −

(
𝜇(𝛬(𝑢)) + 𝛾(𝛬(𝑢)) + 𝛼(𝛬(𝑢))

)
−
𝜎2
2
(𝛬(𝑢))

2

)
𝑑𝑢 = 𝜆𝜃1 ,

there exists 𝑇 > 0 such that

E𝑘
1

𝑇 ∫
𝑇

0

(
𝛽(𝛬(𝑡))𝑆𝜃1 (𝑡)𝑑𝑡 −

(
𝜇(𝛬(𝑢)) + 𝛾(𝛬(𝑢)) + 𝛼(𝛬(𝑢))

)
−
𝜎2
2
(𝛬(𝑢))

2

)
𝑑𝑢 ≥ 3𝜆

4
. (2.15)

Lemma 2.4. There exists 𝜍 ∈ (0,
1

4
), 𝜅 ∈ (0, 1) and 𝐶𝐼 > 0 such that

E𝑠,𝑖,𝑣,𝑘𝐼
−𝜍 (𝑇 ) ≤ 𝑖−𝜍𝜅 + 𝐶𝐼 for all (𝑠, 𝑖, 𝑣, 𝑘) ∈ R

3,∗
+ ×. (2.16)

Proof. Define

𝜉 = inf{𝑡 ≥ 0 ∶ 𝐼(𝑡) ≥ |𝜃1|}
and

𝛷(𝑡) = −∫
𝑇

0

(
𝛽(𝛬(𝑡))𝑆𝜃1 (𝑡)𝑑𝑡 −

(
𝜇(𝛬(𝑢)) + 𝛾(𝛬(𝑢)) + 𝛼(𝛬(𝑢))

)
−
𝜎2
2
(𝛬(𝑢))

2

)
𝑑𝑢

+ E𝑘 ∫
𝑇

0

(
𝛽(𝛬(𝑡))𝑆𝜃1 (𝑡)𝑑𝑡 −

(
𝜇(𝛬(𝑢)) + 𝛾(𝛬(𝑢)) + 𝛼(𝛬(𝑢))

)
−
𝜎2
2
(𝛬(𝑢))

2

)
𝑑𝑢.

Due to the boundedness (2.5), there exists 𝐶𝑇 > 0 such that

E𝑘[𝛷(𝑇 )]
2 ≤ 𝐶𝑇 ,

and

𝛷(𝑇 ) ≤ ∫
𝑇

0

(
𝜇(𝛬(𝑢)) + 𝛾(𝛬(𝑢)) + 𝛼(𝛬(𝑢)) −

𝜎2
2
(𝛬(𝑢))

2

)
𝑑𝑢 + E𝑘 ∫

𝑇

0

𝛽(𝛬(𝑡))𝑆𝜃1 (𝑡)𝑑𝑡 ≤ 𝐶𝑇 .

Note that for 𝜍 ∈ (0,
1

2
), 𝑧2𝑒𝜍𝑧 ≤ 𝑧2 if 𝑧 ≤ 0 𝑧2𝑒𝜍𝑧 ≤ 4𝑒𝑧 if 𝑧 ≥ 0. As a result,

E𝑥,𝑦𝛷
2(𝑇 )𝑒𝜍𝛷(𝑇 ) ≤ E𝑥,𝑦[𝛷(𝑇 )]

2 + 4E𝑥,𝑦𝑒
𝛷1(𝑇 ) ≤ 𝐶𝑇 + 4𝑒𝐶𝑇 . (2.17)

We deduce from the inequality 𝑒𝑧 ≤ 1 + 𝑧 + 𝑧2𝑒𝑧 that

E𝑥𝑒
𝜍𝛷(𝑇 ) ≤ 1 + 𝜍E𝑘𝛷(𝑇 ) + 𝜍

2
E𝑘[𝛷

2(𝑇 )𝑒𝜍𝛷(𝑇 )] ≤ 1 + 𝜍2(𝐶𝑇 + 4𝑒𝐶𝑇 ) ≤ 𝑒𝜍
2(𝐶𝑇 +4𝑒

𝐶𝑇 ) ∶= 𝑒𝜍
2𝐶𝑇 .

Since

exp

{
𝜍 ∫

𝑡

0

𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢) − 𝜍
2 ∫

𝑡

0

𝜎2(𝛬(𝑢))

2
𝑑𝑢

}

is a martingale, we have

E𝑘 exp

{
∫

𝑡

0

𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢) − ∫
𝑡

0

𝜎2(𝛬(𝑢))

2
𝑑𝑢

}
= 1,

which implies

E𝑘 exp

{
∫

𝑡

0

𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢)

}
≤ 𝑒𝜍

2
𝜎𝑀
2
𝑡

2 , where 𝜎𝑀
2

= max
𝑘∈{𝜎2(𝑘)}

E𝑘𝑒
𝜍𝛷(𝑡)𝑒𝜍 ∫ 𝑡0 𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢) ≤ [

E𝑘𝑒
2𝜍𝛷(𝑡)

E𝑘𝑒
2𝜍 ∫ 𝑡0 𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢)

] 1
2

≤ [
𝑒4𝜍

2(𝐶𝑇 )𝑒2𝜎
𝑀
2
𝑇 𝜍2

] 1
2

≤𝑒𝐶̌𝑇 𝜍2 ,
(2.18)
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where 𝐶̌𝑇 = 2𝐶𝑇 + 𝜎𝑀
2
𝑇 .

Because 𝑆(𝑡) ≥ 𝑆𝜃1 (𝑡) for 𝑡 ≤ 𝜁 , due to a comparison theorem, we deduce that

𝐼−𝜍 (𝑇 )

𝐼−𝜍 (0)
= exp

{
𝜍 ∫

𝑡

0

(
𝛽(𝛬(𝑢))𝑆(𝑢) −

(
𝜇(𝛬(𝑢)) + 𝛾(𝛬(𝑢)) + 𝛼(𝛬(𝑢))

)
−
𝜎2
2
(𝛬(𝑢))

2

)
𝑑𝑢

+ 𝜍 ∫
𝑡

0

𝜎2(𝛼(𝑢))𝑑𝑊2(𝑢)

}

=exp

{
E𝑘 ∫

𝑇

0

(
𝛽(𝛬(𝑡))𝑆𝜃1 (𝑡)𝑑𝑡 −

(
𝜇(𝛬(𝑢)) + 𝛾(𝛬(𝑢)) + 𝛼(𝛬(𝑢))

)
−
𝜎2
2
(𝛬(𝑢))

2

)
𝑑𝑢

}

× exp{𝜍𝛷(𝑇 )} exp

{
𝜍 ∫

𝑡

0

𝜎2(𝛼(𝑢))𝑑𝑊2(𝑢)

}

≤ exp{−
3𝜆

4
𝑇 } exp{𝜍𝛷(𝑇 )} exp

{
𝜍 ∫

𝑇

0

𝜎2(𝛼(𝑢))𝑑𝑊2(𝑢)

}
.

(2.19)

As a result,

E𝑠,𝑖,𝑣,𝑘

[
𝟏{𝜁>𝑇 }

𝐼−𝜍 (𝑇 )

𝐼−𝜍 (0)

]
≤ exp{−

3𝜆

4
𝑇 }E𝑠,𝑖,𝑣,𝑘

{
𝟏{𝜁>𝑇 } exp{𝜍𝛷(𝑇 )} exp

{
𝜍 ∫

𝑇

0

𝜎2(𝛼(𝑢))𝑑𝑊2(𝑢)

}}

≤ exp{−𝜍
3𝜆

4
𝑇 }E𝑠,𝑖,𝑣,𝑘

{
exp{𝜍𝛷(𝑇 )} exp

{
𝜍 ∫

𝑇

0

𝜎2(𝛼(𝑢))𝑑𝑊2(𝑢)

}}

≤ exp{−𝜍
3𝜆

4
𝑇 } exp{𝐶̌𝑇 𝜍

2},

(2.20)

where the last inequality is due to (2.18). Moreover, because of the strong Markov’s property, we have from Lemma 2.3 that

E𝑠,𝑖,𝑣,𝑘

[
𝟏{𝜁≤𝑇 }𝐼−𝜍 (𝑇 )

]
=E𝑠,𝑖,𝑣,𝑘

[
𝟏𝜁≤𝑇E𝑆(𝜁 ),𝐼(𝜁 ),𝑉 (𝜁 ),𝛬(𝜁 )𝐼

−𝜍 (𝑇 )
]

≤E𝑠,𝑖,𝑣,𝑘 [𝟏{𝜁≤𝑇 }|𝜃1|−𝜍 exp{𝜍𝑐−1(𝑇 − 𝜁 )}
]

≤|𝜃1|−𝜍 exp{𝜍𝑐−1𝑇 }.
(2.21)

Combining (2.20) and (2.21), we have

E𝑠,𝑖,𝑣,𝑘𝐼
−𝜍(𝑇 ) ≤ 𝑒−

𝜍𝜆𝑇
2 𝑖−𝜍 + |𝜃1|−𝜍 exp{𝜍𝑐−1𝑇 }.

if 𝜍 ≤ 𝜆𝑇

4𝐶̌𝑇
, □

Lemma 2.5. For any 𝐻 > 1, there exists a compact subset  ⊂ R
3,◦
+ such that

P𝑠,𝑖,𝑣,𝑘{(𝑆(𝑇 − 1), 𝐼(𝑇 − 1), 𝑉 (𝑇 − 1)) ∈ } ≥ 1

2
, if 0 ≤ 𝑠, 𝑣 ≤ 𝐻,𝐻−1 ≤ 𝑖 ≤ 𝐻.

Proof. By the variation of constants formula, see [29], we have

𝑆(𝑡) = 𝜓(𝑡)

(
𝑆(0) + ∫

𝑡

0

𝜓−1(𝑢)(1 − 𝑞(𝛬(𝑢))𝐴(𝛬(𝑢)) + 𝜀(𝛬(𝑢))𝑉 (𝑢))𝑑𝑢

)
, (2.22)

where

𝜓(𝑡) = exp

{
∫

𝑡

0

−𝛽(𝛬(𝑢))𝐼(𝑢) − 𝑝(𝛬(𝑢)) − 𝜇(𝛬(𝑢)) −
𝜎2
1
(𝛬(𝑢))

2
𝑑𝑢 + ∫

𝑡

0

𝜎1(𝛬(𝑢))𝑑𝑊1(𝑢)

}
.

Due to (2.3), there exists 𝐾̌ > 0 such that

P𝑠,𝑖,𝑣,𝑘

{
sup
𝑡∈[0,𝑇 ]

{
𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡),

|||∫
𝑡

0

𝜎1(𝛬(𝑢))𝑑𝑊1(𝑢)
|||
}

≤ 𝐾̌

}
≥ 7

8
if 0 ≤ 𝑠, 𝑣 ≤ 𝐻,𝐻−1 ≤ 𝑖 ≤ 𝐻.

We can easily deduce from (2.22) the existence of 𝑘̌1, 𝐾̌1 > 0 such that

P𝑠,𝑖,𝑣,𝑘

{
𝑘̌1 ≤ 𝑆(𝑡) ≤ 𝐾̌1, 𝑡 ∈ [0, 𝑇 ]

} ≥ 7

8
.

Similarly, we have

P𝑠,𝑖,𝑣,𝑘

{
𝑘̌2 ≤ 𝑆(𝑡) ≤ 𝐾̌2, 𝑡 ∈ [0, 𝑇 ]

} ≥ 7

8
,

P𝑠,𝑖,𝑣,𝑘

{
𝑘̌3 ≤ 𝑆(𝑡) ≤ 𝐾̌3, 𝑡 ∈ [0, 𝑇 ]

} ≥ 7

8
,

for some positive constants 𝑘̌𝑖, 𝐾̌𝑖, 𝑖 = 2, 3. Combining three estimates above we complete the proof. □
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Proof of Theorem 2.2. In view of Lemma 2.4 and (2.2), we have

E𝑠,𝑖,𝑣,𝑘𝑈 (𝑆(𝑇 ), 𝐼(𝑇 ), 𝑉 (𝑇 )) ≤ 𝜅𝑈 (𝑠, 𝑖, 𝑣) + 𝐶∗, for (𝑠, 𝑖, 𝑣) ∈ R
3,∗
+ , (2.23)

where 𝑈 (𝑠, 𝑖, 𝑣) = (1+ 𝑠+ 𝑖+ 𝑣)1+𝑞 + 𝑖−𝜍 with 𝜍 satisfying Lemma 2.4 and 𝜅 ∈ (0, 1) and 𝐶∗ > 0 are constants independent of (𝑠, 𝑖, 𝑣, 𝑘).
On the other hand, because the diffusion is nondegenerate, in view of [19, Lemma 3.6], there exists a probability measure 𝜈

on R
3,◦
+ × and a constant 𝑐 such that

P𝑠,𝑖,𝑣,𝑘{(𝑆(𝑇 ), 𝐼(𝑇 ), 𝑉 (𝑇 ), 𝛬(𝑇 )) ∈ ⋅} ≥ 𝑐𝜈(⋅), for all (𝑥, 𝑦) ∈ . (2.24)

By Markov’s property of (𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡), 𝛬(𝑡)), we have from 2.5 and 2.24 that

P𝑠,𝑖,𝑣,𝑘{(𝑆(𝑇 ), 𝐼(𝑇 ), 𝑉 (𝑇 )) ∈ ⋅} ≥ 𝑐𝐻
2
𝜈𝐻 (⋅), if 𝑈 (𝑠, 𝑖, 𝑣) ≤ 𝐻, (2.25)

for some probability measure 𝜈𝐻 and a constant 𝑐𝐻 . It is well know that, (see e.g., [30] or [31])) with (2.23) and (2.25), there exists
a probability measure 𝜇∗ on R

3,∗
+ × and a constant 𝐶𝑈 > 0, 𝜅𝑈 ∈ (0, 1) such that

‖𝑃𝑛𝑇 ((𝑠, 𝑖, 𝑣, 𝑘), ⋅) − 𝜇∗(⋅)‖ ≤ 𝐶𝑈 (𝑈 (𝑠, 𝑖, 𝑣))𝜅𝑛
𝑈
. (2.26)

Moreover, we deduce from (2.23), 2.1, and (2.16) that

lim sup
𝑡→∞

E𝑠,𝑖,𝑣,𝑘𝑈 (𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) <∞,

which shows the existence of invariant probability measures of the Markov process {(𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡), 𝛬(𝑡)), 𝑡 ≥ 0}. Since an invariant
probability of {(𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡), 𝛬(𝑡)), 𝑡 ≥ 0} is also an invariant probability measure of its skeleton {(𝑆(𝑛𝑇 ), 𝐼(𝑛𝑇 ), 𝑉 (𝑛𝑇 ), 𝛬(𝑛𝑇 )), 𝑛 ∈

Z+}, 𝜇
∗ must be the unique invariant probability measure of {(𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡), 𝛬(𝑡)), 𝑡 ≥ 0}. Moreover, since the function ‖𝑃𝑡((𝑠, 𝑖, 𝑣, 𝑘), ⋅)

− 𝜇∗(⋅)‖ is decreasing in 𝑡, we deduce from (2.26) that

‖𝑃𝑡((𝑠, 𝑖, 𝑣, 𝑘), ⋅) − 𝜇∗(⋅)‖ ≤ 𝐶𝑈 (𝑈 (𝑠, 𝑖, 𝑣))𝜅
𝑡∕𝑇−1

𝑈
, (2.27)

which completes the proof. □

2.3. Proof of Theorem 2.3

By Lemma 2.2, it is readily seen that 𝜆𝜃 is continuous in 𝜃. Therefore, there exists 𝜃0 such that

𝜆𝜃0 <
𝜆0
2

=
𝜆

2
. (2.28)

It is noted that we are considering the case 𝜆 < 0, so 𝜆𝜃0 < 0.

Lemma 2.6. Let 𝜃0 be as in (2.28). For any 𝜀 > 0, 𝐻 > 0, there is a constant 𝜃1 > 0 such that

P𝑠,𝑖,𝑣,𝑘

{
lim
𝑡→∞

ln 𝐼(𝑡)

𝑡
= 𝜆 < 0

}
≥ 1 − 𝜀, ∀(𝑠, 𝑖, 𝑣, 𝑘) ∈ [0,𝐻] × (0, 𝜃1] × [0,𝐻] ×. (2.29)

Proof. Let

𝑔(𝑠, 𝑘) = 𝛽(𝑘)𝑠 − (𝜇(𝑘) + 𝛼(𝑘) + 𝛾(𝑘)) −
𝜎2
2
(𝑘)

2
. (2.30)

We obtain from the ergodicity of (𝑆𝜃0 (𝑡), 𝑉 𝜃0 (𝑡), 𝛬(𝑡)) that

lim
𝑡→∞

1

𝑡 ∫
𝑡

0

𝑔(𝑆𝜃0 (𝑢), 𝛼(𝑢))𝑑𝑢 =
∑
𝑘∈∫

R
2
+

𝑔(𝑠, 𝑘)𝝂𝜃0 (𝑑𝑠, 𝑑𝑣, 𝑘) = 𝜆𝜃0 , a.s. (2.31)

Therefore, for any 𝜀 > 0, there exists a 𝑇1 = 𝑇1(𝐻, 𝜀) > 0 such that P𝐻,𝐻,𝑘(𝛺1) ≥ 1 −
𝜀

4
, where

𝛺1 =

{
𝜔 ∶

1

𝑡 ∫
𝑡

0

𝑔(𝑆
𝜃0
𝐻,𝐻,𝑘

(𝑢), 𝛼(𝑢))𝑑𝑢 ≤ |𝜆𝜃0 |
4

+ 𝜆𝜃0 , ∀ 𝑡 ≥ 𝑇1

}
. (2.32)

Here, the initial value of (𝑆𝜃0 (𝑡), 𝑉 𝜃0 (𝑡), 𝛬(𝑡)) is indicated in the subscript of (𝑆𝜃0
𝐻,𝐻,𝑘

(𝑡), 𝑉
𝜃0
𝐻,𝐻,𝑘

(𝑡)). Because of comparison theorem

(see e.g., [24]), we have 𝑆𝑠,𝑖,𝑣,𝑘(𝑢) ≤ 𝑆𝜃
𝐻,𝐻,𝑘

(𝑢), 𝑉𝑠,𝑖,𝑣,𝑘(𝑢) ≤ 𝑉 𝜃
𝐻,𝐻,𝑖

(𝑢), ∀0 ≤ 𝑢 ≤ 𝜏 almost surely if (𝑠, 𝑖, 𝑣, 𝑘) satisfies 𝑠 ≤ 𝐻, 𝑣 ≤ 𝐻 . On
the other hand, the strong law of large numbers for martingales leads to that

lim
𝑡→∞

1

𝑡 ∫
𝑡

0

𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢) = 0, a.s. (2.33)

This deduces that there exists 𝑇2(𝜀) > 0 such that P(𝛺2) ≥ 1 −
𝜀

4
, where

𝛺2 =

{
𝜔 ∈ 𝛺 ∶

1

𝑡

|||||∫
𝑡

0

𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢)
|||||
≤ |𝜆𝜃0 |

4
, for all 𝑡 ≥ 𝑇2

}
. (2.34)
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Let 𝑇 = max{𝑇1, 𝑇2}. As a consequence of (2.3), there is 𝑀 > 0 satisfying that P(𝛺3) ≥ 1 −
𝜀

4
, where

𝛺3 =

{
𝜔 ∈ 𝛺 ∶ ∫

𝑇

0

𝛽(𝛬(𝑢))𝑆
𝜃0
𝐻,𝐻,𝑘

(𝑢)𝑑𝑢 ≤ 𝑀

2

}
. (2.35)

Moreover, Doob’s inequality allows us to pick 𝑀 > 0 sufficiently large satisfying

P

(
𝛺4 ∶=

{
𝜔 ∈ 𝛺 ∶

|||||∫
𝑡

0

𝜎𝑖(𝛬(𝑢))𝑊𝑖(𝑢)𝑑𝑢
|||||
≤ 𝑀

2

})
≥ 1 −

𝜀

4
, ∀ 𝑡 ∈ [0, 𝑇 ], 𝑖 = 1, 2. (2.36)

Let 𝜃1 ∈
(
0, 𝜃0𝑒

−𝑀
)
. The second equation of (1.2), together with (2.35) and (2.36) implies that for all 𝜔 ∈ ∩4

𝑗=1
𝛺𝑗 , we have

𝐼(𝑡) =𝐼(0) exp

{
∫

𝑡

0

(
𝛽(𝛬(𝑢))𝑆(𝑢) −

(
𝜇(𝛬(𝑢)) + 𝛾(𝛬(𝑢)) + 𝛼(𝛬(𝑢))

)
−
𝜎2
2
(𝛬(𝑢))

2

)
𝑑𝑢

+ ∫
𝑡

0

𝜎2(𝛼(𝑢))𝑑𝑊2(𝑢)

}

≤𝐼(0) exp
{
∫

𝑡

0

𝛽(𝛬(𝑢))𝑆(𝑢)𝑑𝑢 + ∫
𝑡

0

𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢)

}

≤𝜃1𝑒𝑀 < 𝜃0 ∀ 𝑡 ∈ [0, 𝑇 ], given 𝐼(0) ≤ 𝜃1.

(2.37)

Define the stopping time

𝜁 ∶= inf
{
𝑡 ≥ 0 ∶ 𝐼(𝑡) ≥ 𝜃0

}
. (2.38)

Because of (2.37), for 𝜔 ∈ 𝛺3 ∩𝛺4 one has 𝜁 > 𝑇 . As a consequence of comparison theorem (see e.g., [24]), we have 𝑆(𝑡) ≤ 𝑆𝜃0 (𝑡)

for any 𝑡 ≤ 𝜁 given that they have the same initial value. Thus, from (2.37), if 𝑡 ≤ 𝜁 , one has

𝐼(𝑡) ≤𝐼(0) exp
{

∫
𝑡

0

(
𝛽(𝛬(𝑢))𝑆

𝜃0
𝐻,𝐻,𝑘

(𝑢) −
(
𝛽(𝛬(𝑢)) + 𝛾(𝛬(𝑢)) + 𝛼(𝛬(𝑢))

)
−
𝜎2
2
(𝛬(𝑢))

2

)
𝑑𝑢

+ ∫
𝑡

0

𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢)

}
.

(2.39)

Combining (2.32), (2.34), (2.37), and (2.39) we claim that 𝜁 > 𝑇 and

𝐼𝑧(𝑡) ≤ 𝐼(0) exp

{
∫

𝑡

0

𝑔(𝑆
𝜃0
𝐻,𝐻,𝑘

(𝑢), 𝛬(𝑢))𝑑𝑢 + ∫
𝑡

0

𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢)

}

≤ 𝐼(0) exp

{
𝜆𝜃0 𝑡

2

}
< 𝐼(0) < 𝜃0, for any 𝑡 ∈ [𝑇 , 𝜁 ),

for any 𝜔 ∈
⋂4
𝑗=1𝛺𝑗 and 𝐼(0) = 𝑖 ≤ 𝜃1. As a result, we have 𝜁 = ∞ if 𝜔 ∈

⋂4
𝑗=1𝛺𝑗 , 𝐼(0) ≤ 𝜃1. Since 𝜁 = ∞, we have

𝐼(𝑡) ≤ 𝐼(0) exp

{
𝜆𝜃0 𝑡

2

}
,∀𝑡 ≥ 𝑇 , given that 𝜔 ∈

4⋂
𝑗=1

𝛺𝑗 , 𝐼(0) = 𝑖 ≤ 𝜃1.

This clearly implies that lim𝑡→∞ 𝐼(𝑡) = 0 ∀𝜔 ∈
⋂4
𝑗=1𝛺𝑗 , provided 𝐼(0) = 𝑖 ≤ 𝜃1.

Next, we define the randomized occupation measure

𝛱̃ 𝑡
𝑠,𝑖,𝑣,𝑘

(⋅) ∶=
1

𝑡 ∫
𝑡

0

𝟏{(𝑆(𝑢),𝐼(𝑢),𝑉 (𝑢),𝛬(𝑢))∈⋅}𝑑𝑢, 𝑡 > 0.

In the above, the subscript in 𝛱̃ 𝑡
𝑠,𝑖,𝑣,𝑘

(⋅) indicates the initial condition. Because 𝑆𝑠,𝑖,𝑣,𝑘(𝑡) ≤ 𝑆𝜃
𝐻,𝐻,𝑘

(𝑡), 𝑉𝑠,𝑖,𝑣,𝑘(𝑡) ≤ 𝑉 𝜃
𝐻,𝐻,𝑘

(𝑡), 𝑢 ≥ 0 and

lim𝑡→∞ 𝐼𝑠,𝑖,𝑣,𝑘(𝑡) = 0 for 𝜔 ∈ ∩4
𝑗=1
𝛺𝑗 , (𝑠, 𝑖, 𝑣, 𝑘) ∈ [0,𝐻] × (0, 𝜃1] × [0,𝐻] ×, we claim that the family of measures {𝛱̃ 𝑡

𝑠,𝑖,𝑣,𝑘
(⋅;𝜔), 𝑡 >

0, 𝜔 ∈ ∩4
𝑗=1
𝛺𝑗} is tight in the space R

3
+
× and any of its weak limit 𝝂 as 𝑡→ ∞ satisfying 𝝂([0,∞)×{0}×[0,∞)×) = 1. Moreover,

we can also claim with probability 1 that 𝝂 is invariant with respect to the process (𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡), 𝛬(𝑡)) on R
3
+
×. We can refer these

well-known claims to [19,32]. On the other hand, we have showed that 𝝂0, through an embedding, is the only invariant measure
on [0,∞) × {0} × [0,∞) ×. Therefore, for almost every 𝜔 ∈ ∩4

𝑗=1
𝛺𝑗 , we have the weak convergence of 𝛱̃

𝑡
𝑠,𝑖,𝑣,𝑘

(⋅) to 𝝂0 as 𝑡 → ∞.
The weak convergence implies that

lim
𝑡→∞

1

𝑡 ∫
𝑡

0

𝑔(𝑆(𝑢), 𝛬(𝑢))𝑑𝑢 =
∑
𝑘∈∫

R
2
+

𝑔(𝑠, 𝑘)𝝂0(𝑑𝑠, 𝑑𝑣, 𝑘) = 𝜆, (2.40)

for almost every 𝜔 ∈ ∩4
𝑗=1
𝛺𝑗 . It is noted that the limit (2.40) is valid because of the weak convergence and the uniform integrability

lim sup
𝑡→∞

1

𝑡 ∫
𝑡

0

(𝑆(𝑢))1+𝑝𝑑𝑢 ≤ lim
𝑡→∞

1

𝑡 ∫
𝑡

0

(𝑆𝜃0 (𝑢))1+𝑝𝑑𝑢

=
∑
𝑘∈∫

R
2
+

𝑠1+𝑝𝝂𝜃0 (𝑑𝑠, 𝑑𝑣, 𝑘) <∞ for some 𝑝 > 0;
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see e.g., [19, Lemma 5.6]. By (2.30) and (2.37), one has

ln 𝐼(𝑡)

𝑡
=

1

𝑡 ∫
𝑡

0

𝑔(𝑆(𝑢), 𝛬(𝑢))𝑑𝑢 +
ln 𝐼(0)

𝑡
+

1

𝑡 ∫
𝑡

0

𝜎2(𝛬(𝑢))𝑑𝑊2(𝑢). (2.41)

Therefore, letting 𝑡→ ∞ in (2.41) and because of (2.33) and (2.40), we have that for almost every 𝜔 ∈ ∩4
𝑗=1
𝛺𝑗 ,

lim
𝑡→∞

ln 𝐼(𝑡)

𝑡
= 𝜆.

As a result, by noticing that P(∩4
𝑗=1
𝛺𝑗 ) ≥ 1 − 𝜀, the Lemma is proved. □

Proof of Theorem 2.3. Because of Lemma 2.6, the solution process {(𝑆(⋅), 𝐼(⋅), 𝑉 (⋅))} is transient in R
3,◦
+ . This fact leads to that the

process has no invariant probability measure in R
3,◦
+ . As a result, 𝝂0 is the sole invariant probability measure of (𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡), 𝛬(𝑡))

in [0,∞) × {0} × [0,∞) × . Now, pick 𝐻 > 0 satisfying 𝝂0({𝑠 ∈ (0,𝐻)}) > 1 − 𝜀. Because the process (𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡), 𝛬(𝑡)) is tight
(due to (2.2)), for any initial value (𝑠, 𝑖, 𝑣, 𝑘) ∈ R

3
+
×, the family of occupation measures

{
𝛱 𝑡
𝑠,𝑖,𝑣,𝑘

(⋅) ∶=
1

𝑡 ∫
𝑡

0

P {(𝑆(𝑤), 𝐼(𝑤), 𝑉 (𝑤), 𝛬(𝑤)) ∈ ⋅} 𝑑𝑤, 𝑡 ≥ 1

}

is tight in the whole space R3
+
×. Because of the invariability of the weak-limits of 𝛱 𝑡

𝑠,𝑖,𝑣,𝑘
as 𝑡 → ∞, we deduce that 𝛱 𝑡

𝑠,𝑖,𝑣,𝑘
weakly

converges to 𝝂0 as 𝑡→ ∞. Sequentially, for any 𝛿 > 0, there is a constant 𝑇 > 0 satisfying that

𝛱𝑇
𝑠,𝑖,𝑣,𝑘

((0,𝐻) × (0, 𝛿) × (0,𝐻) ×) > 1 − 𝜀,

which can be rewritten as

1

𝑇 ∫
𝑇

0

P𝑠,𝑖,𝑣,𝑘{0 < 𝑆(𝑡), 𝑉 (𝑡) < 𝐻, 0 < 𝐼(𝑡) < 𝛿}𝑑𝑡 > 1 − 𝜀.

Therefore,

P𝑠,𝑖,𝑣,𝑘{𝜁 ≤ 𝑇 } > 1 − 𝜀,

where

𝜁 = inf{𝑡 ≥ 0 ∶ (𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) ∈ (0,𝐻) × (0, 𝛿) × (0,𝐻)}.

We obtain from the strong Markov property and Lemma 2.6 that

P𝑠,𝑖,𝑣,𝑘

{
lim
𝑡→∞

ln 𝐼(𝑡)

𝑡
= 𝜆

}
≥ 1 − 𝜀, ∀(𝑠, 𝑖, 𝑣, 𝑘) ∈ R

3,∗
+ ×.

Letting 𝜀→ 0 we obtain (2.14). The proof of Theorem 2.2 is complete. □

3. Some control policies

3.1. Determining the herd immunity

In (1.2), we let 𝑞(𝑘) and 𝑝(𝑘) be switching-dependent so that the model can be as general as possible. However, they are the
immunization rates and human-controlled so they might not depend on 𝑘 in practice. We will derive a formula for 𝜆 when 𝑞(𝑘) ≡ 𝑞

and 𝑝(𝑘) ≡ 𝑞. The formula will help us determine the immunization rates needed to maintain the disease-free state.
Let 𝐜𝑖 = (𝑐𝑖(1),… , 𝑐𝑖(𝑚0))

⊤, 𝑖 = 1, 2,

𝐁 =

⎡⎢⎢⎣

𝜇(1) − 𝛾11 … −𝛾1𝑚0

⋮ ⋮ ⋮

−𝛾𝑚01
… 𝜇(𝑚0) − 𝛾𝑚0𝑚0

⎤⎥⎥⎦
,

𝐃 = diag(𝜀(1),… , 𝜀(𝑚0)) and 𝐈𝑚0
be the identity matrix on R𝑚0×𝑚0

. Then, consider the equation
{

(𝐁 + 𝑝𝐈𝑚0
)𝐜1 − 𝑝𝐜2 = 𝛽,

−𝐃𝐜1 + (𝐁 + 𝐃)𝐜2 = 0.

Substituting 𝐜2 = (𝐁 + 𝐃)−1𝐃𝐜1 = (𝐈𝑚0
− (𝐁 + 𝐃)−1𝐁)𝐜1, which is from the second equation, into the first equation, we have

(𝐁 + 𝑝(𝐁 + 𝐃)−1𝐁)𝐜1 = 𝜷,

or

(𝐁 + 𝐃 + 𝑝𝐈𝑚0
)(𝐁 + 𝐃)−1𝐁𝐜1 = 𝜷,
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which leads to

𝐜1 = 𝐁
−1(𝐁 + 𝐃)(𝐁 + 𝐃 + 𝑝𝐈𝑚0

)−1𝜷.

In view of Lemma 2.2, we have

𝜆 =
∑
𝑘∈

[
𝑐1(𝑘)(1 − 𝑞)𝐴(𝑘) −

(
𝜇(𝑘) + 𝛼(𝑘) + 𝛾(𝑘) +

𝜎2
2
(𝑘)

2

)]
𝜋𝑘 = (1 − 𝑞)𝜋𝐜1◦𝐚 − 𝜋𝐟 ,

where 𝐜1 = 𝐁−1(𝐁 + 𝐃)(𝐁 + 𝐃 + 𝑝𝐈𝑚0
)−1𝜷, 𝐚 = (𝐴(1),… , 𝐴(𝑚0))

⊤, ◦ is the Hadamard product and

𝐟 =

(
𝜇(1) + 𝛼(1) + 𝛾(1) +

𝜎2
2
(1)

2
,… , 𝜇(𝑚0) + 𝛼(𝑚0) + 𝛾(𝑚0) +

𝜎2
2
(𝑚0)

2

)⊤

.

In what follows, for a matrix (or a vector) 𝑀 , by writing 𝑀 > 0 we mean all entries of M are positive.

Lemma 3.1. 𝐜1 = 𝐁−1(𝐁+𝐃)(𝐁+𝐃+ 𝑝𝐈𝑚0
)−1𝜷 is decreasing in 𝑝, that is if 𝑝1 ≥ 𝑝2 then 𝐁−1(𝐁+𝐃)(𝐁+𝐃+ 𝑝1𝐈𝑚0

)−1𝜷 −𝐁−1(𝐁+𝐃)(𝐁+

𝐃 + 𝑝2𝐈𝑚0
)−1𝜷 > 0.

Proof. Neumann’s series expansion of resolvents give

(𝐁 + 𝐃 + 𝑝𝐈𝑚0
)−1 = (𝐁 + 𝐃 + 𝑝0𝐈𝑚0

)−1 +

∞∑
𝑛=1

(𝑝0 − 𝑝)
𝑛(𝐁 + 𝐃 + 𝑝0𝐈𝑚0

)−𝑛−1, for |𝑝 − 𝑝0| sufficiently small,

which leads to

𝑑(𝐁 + 𝐃 + 𝑝𝐈𝑚0
)−1

𝑑𝑝
(𝑝0) = −(𝐁 + 𝐃 + 𝑝0𝐈𝑚0

)−2.

As a result,

𝑑𝐁−1(𝐁 + 𝐃)(𝐁 + 𝐃 + 𝑝𝐈𝑚0
)−1𝜷

𝑑𝑝
= −𝐁−1(𝐁 + 𝐃)(𝐁 + 𝐃 + 𝑝𝐈𝑚0

)−2𝛽.

Note that 𝐁 + 𝐃 + 𝑝𝐈𝑚0
is a diagonally dominant matrix. Thus, it is well-known that (𝐁 + 𝐃 + 𝑝𝐈𝑚0

)−1 is a matrix of all positive
entries and so is (𝐁 + 𝐃 + 𝑝𝐈𝑚0

)−2. As a result,

𝜷 ∶= (𝐁 + 𝐃 + 𝑝𝐈𝑚0
)−2𝜷 > 0.

So

𝐁
−1(𝐁 + 𝐃)(𝐁 + 𝐃 + 𝑝𝐈𝑚0

)−2𝛽 = 𝐁
−1(𝐁 + 𝐃)𝜷 = 𝜷 + 𝐁

−1
𝐃𝜷.

Since 𝐁−1 > 0 and 𝜷 > 0, 𝐃𝜷 > 0, we deduce that

−
𝑑𝐁−1(𝐁 + 𝐃)(𝐁 + 𝐃 + 𝑝𝐈𝑚0

)−1𝜷

𝑑𝑝
= 𝜷 + 𝐁

−1
𝐃𝜷 > 0,

which implies 𝐜1 is a decreasing vector-valued function of 𝑝. □

From Lemma 3.1, in order to maintain the disease-free state of the system, the vaccination rate 𝑝 must be smaller greater than
𝑝0, which is the solution to

𝜆(𝑝0) = (1 − 𝑞)𝜋𝐁−1(𝐁 + 𝐃)(𝐁 + 𝐃 + 𝑝0𝐈𝑚0
)−1𝜷◦𝐚 − 𝜋𝐟 = 0. (3.1)

3.2. Optimal strategies for controlling the disease

Suppose that 𝑝∗ is the maximum vaccination rate of susceptible group that can be achieved. Note that Eq. (3.1) does not always
have a solution on [0, 𝑝∗]. As a result, we may want to minimize the cost of vaccination and treatment. Suppose the coefficients are
not switching-dependent, we consider the following system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑𝑆(𝑡) =
[
(1 − 𝑞)𝐴 − 𝛽𝑆(𝑡)𝐼(𝑡) − (𝑝 + 𝜇)𝑆(𝑡),

+ (𝛾 + 𝑟)𝐼(𝑡) + 𝜀𝑉 (𝑡)
]
𝑑𝑡 + 𝜎1𝑆(𝑡)𝑑𝑊1(𝑡),

𝑑𝐼(𝑡) =
(
𝛽𝐼(𝑡)𝑆(𝑡) − [𝜇 + 𝛾 + 𝛼 − 𝑟] 𝐼(𝑡)

)
𝑑𝑡 + 𝜎2𝐼(𝑡)𝑑𝑊2(𝑡),

𝑑𝑉 (𝑡) =
[
𝑞𝐴 + 𝑝𝑆(𝑡) − (𝜇 + 𝜀)𝑉 (𝑡)

]
𝑑𝑡 + 𝜎3𝑉 (𝑡)𝑑𝑊3(𝑡),

𝑆(0) = 𝑠 ≥ 0, 𝐼(0) = 𝑖 ≥ 0, 𝑉 (0) = 𝑣 ≥ 0,

(3.2)

where 𝑟 is the rate of recovering due to treatment. It is reasonable to assume that 𝑟 ≤ 𝛼, because 𝛼 is the extra rate of death due to
the disease.
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Using the definition (2.6) of 𝜆, we obtain that for this model,

𝜆 = ∫
R
2
+

𝛽𝑠𝜇(𝑑𝑠, 𝑑𝑣) − (𝜇 + 𝛼 + 𝛾 − 𝑟) −
𝜎2
2

2
,

where 𝜇 is the invariant measure of process (𝑆(𝑡), 𝑉 (𝑡)), which is the solution to the following system obtained by considering (3.2)
on the boundary with 𝐼(𝑡) = 0

⎧
⎪⎨⎪⎩

𝑑𝑆(𝑡) =
[
(1 − 𝑞)𝐴 − (𝑝 + 𝜇)𝑆(𝑡) + 𝜀𝑉 (𝑡)

]
𝑑𝑡 + 𝜎1𝑆(𝑡)𝑑𝑊1(𝑡),

𝑑𝑉 (𝑡) =
[
𝑞𝐴 + 𝑝𝑆(𝑡) − (𝜇 + 𝜀)𝑉 (𝑡)

]
𝑑𝑡 + 𝜎3𝑉 (𝑡)𝑑𝑊3(𝑡).

(3.3)

Because of [19, Lemma 2.1], we can obtain that 𝑀
𝑆
∶= ∫

R
2
+
𝑠𝜇(𝑑𝑠, 𝑑𝑣) and 𝑀

𝑉
∶= ∫

R
2
+
𝑣𝜇(𝑑𝑠, 𝑑𝑣) is the solution to

{
(1 − 𝑞)𝐴 − (𝑝 + 𝜇)𝑀𝑆

+ 𝜀𝑀
𝑉
= 0

𝑞𝐴 + 𝑝𝑀
𝑆
− (𝜇 + 𝜀)𝑀𝑉

= 0.

Therefore, we get 𝑀
𝑆
=

𝐴((1−𝑞)𝜇+𝜀)

𝜇(𝑝+𝜇+𝜀)
, so 𝜆 = 𝛽

𝐴((1−𝑞)𝜇+𝜀)

𝜇(𝑝+𝜇+𝜀)
− (𝜇 + 𝛾 + 𝛼 − 𝑟) −

𝜎2
2

2
. We assume that 𝜆 > 0 for all 0 ≤ 𝑝 ≤ 𝑝∗, 0 ≤ 𝑟 ≤ 𝛼, that

is

𝛽
𝐴((1 − 𝑞)𝜇 + 𝜀)

𝜇(𝑝∗ + 𝜇 + 𝜀)
− (𝜇 + 𝛾) −

𝜎2
2

2
> 0. (3.4)

Under this assumption, the disease persists even with treatment and vaccination. Suppose that 𝑐1, 𝑐2, and 𝑐3 are the per capital costs
of vaccination, treatment, and infection on a short period of time 𝛥𝑡. Then the total cost in the period of time [0, 𝑇 ] is

∫
𝑇

0

(𝑐1𝑝𝑆(𝑡) + 𝑐2𝑟𝐼(𝑡) + 𝑐3𝐼(𝑡))𝑑𝑡.

In the long run, assuming (3.4) holds, we wish to do the following optimization problem:

Minimize lim
𝑇→∞

E𝑠,𝑖,𝑣
1

𝑇 ∫
𝑇

0

(𝑐1𝑝𝑆(𝑡) + 𝑐2𝑟𝐼(𝑡) + 𝑐3𝐼(𝑡))𝑑𝑡, subject to 0 ≤ 𝑝 ≤ 𝑝∗, 0 ≤ 𝑟 ≤ 𝛼. (3.5)

Due to the ergodicity of the process, the following limits exist.

𝑥1 = lim
𝑇→∞

E𝑠,𝑖,𝑣
1

𝑇 ∫
𝑇

0

𝑆(𝑡)𝑑𝑡,

𝑥2 = lim
𝑇→∞

E𝑠,𝑖,𝑣
1

𝑇 ∫
𝑇

0

𝐼(𝑡)𝑑𝑡,

𝑥3 = lim
𝑇→∞

E𝑠,𝑖,𝑣
1

𝑇 ∫
𝑇

0

𝑉 (𝑡)𝑑𝑡,

𝑥4 = lim
𝑇→∞

E𝑠,𝑖,𝑣
1

𝑇 ∫
𝑇

0

𝑆(𝑡)𝐼(𝑡)𝑑𝑡.

From the first equation of (3.2), we have

E𝑠,𝑖,𝑣𝑆(𝑇 )

𝑇
=
𝑠

𝑇
+(1 − 𝑞)𝐴 − 𝛽E𝑠,𝑖,𝑣

1

𝑇 ∫
𝑇

0

𝑆(𝑡)𝐼(𝑡)𝑑𝑡 − (𝑝 + 𝜇)E𝑠,𝑖,𝑣
1

𝑇 ∫
𝑇

0

𝑆(𝑡)𝑑𝑡

+ (𝛾 + 𝑟)E𝑠,𝑖,𝑣
1

𝑇 ∫
𝑇

0

𝐼(𝑡)𝑑𝑡 + 𝜀E𝑠,𝑖,𝑣
1

𝑇 ∫
𝑇

0

𝑉 (𝑡)𝑑𝑡.

Letting 𝑇 → ∞, we have

(1 − 𝑞)𝐴 − 𝛽𝑥4 − (𝑝 + 𝜇)𝑥1 + 𝛾𝑥2 + 𝜀𝑥3 = 0. (3.6)

Similarly, we have from the other equations of (3.2) that

𝛽𝑥4 − (𝜇 + 𝛾 + 𝛼 − 𝑟) = 0, (3.7)

and

𝑞𝐴 + 𝑝𝑥1 − (𝜇 + 𝜀)𝑥3 = 0. (3.8)

Moreover, we have

ln 𝐼(𝑇 )

𝑇
=

ln 𝐼(0)

𝑡
+ 𝛽

1

𝑇 ∫
𝑇

0

𝑆(𝑡)𝑑𝑡 − (𝜇 + 𝛾 + 𝛼 +
𝜎2
2

2
− 𝑟) +

𝜎2𝑊2(𝑡)

𝑡
.
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Letting 𝑇 → ∞, noting that lim𝑇→∞
1

𝑇
∫ 𝑇
0
𝑆(𝑡)𝑑𝑡 = 𝑥1 (due to the ergodicity of (3.2)), we have

lim
𝑡→∞

ln 𝐼(𝑇 )

𝑇
= 𝛽𝑥1 − (𝜇 + 𝛾 + 𝛼 +

𝜎2
2

2
− 𝑟).

Since the process (𝑆(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) is recurrent on R
3,◦
+ , we must have

𝛽𝑥1 − (𝜇 + 𝛾 + 𝛼 +
𝜎2
2

2
− 𝑟) = 0. (3.9)

From (3.6), (3.7),(3.8) and (3.9), we have

𝑥1 =
(𝜇 + 𝛾 + 𝛼 +

𝜎2
2

2
− 𝑟)

𝛽
,

and

(𝛾 + 𝑟)𝑥2 = (𝜇 + 𝛾 + 𝛼 − 𝑟) − 𝐴(𝜇 + 𝜀 + 𝜇𝑞) +

(
𝜇 + 𝑝 −

𝑝𝜀

𝜇 + 𝜀

) (𝜇 + 𝛾 + 𝛼 +
𝜎2
2

2
− 𝑟)

𝛽
.

Then (3.5) becomes an elementary optimization problem:

Minimizing 𝑓 (𝑝, 𝑟), subject to 0 ≤ 𝑝 ≤ 𝑝∗, 0 ≤ 𝑟 ≤ 𝛼, (3.10)

where

𝑓 (𝑝, 𝑟) =
𝑐1𝑝(𝜇 + 𝛾 + 𝛼 +

𝜎2
2

2
− 𝑟)

𝛽

+
𝑐2𝑟 + 𝑐3
𝛾 + 𝑟

⎛⎜⎜⎜⎝
(𝜇 + 𝛾 + 𝛼 − 𝑟) − 𝐴(𝜇 + 𝜀 + 𝜇𝑞) +

(
𝜇 + 𝑝 −

𝑝𝜀

𝜇 + 𝜀

) (𝜇 + 𝛾 + 𝛼 +
𝜎2
2

2
− 𝑟)

𝛽

⎞⎟⎟⎟⎠
.

Remark 3.1. Controlling diseases often involves enhancing vaccination rates for susceptible groups and implementing treatment
methods, typically represented by parameters 𝑝 and 𝑟 (as outlined in (3.2)). Ideally, maximizing the improvement in rates 𝑝 and
𝑟 would be optimal for disease control. However, practical constraints such as budgetary limitations and economic factors limit
these rates in real-world applications. We consider the scenario that the disease persists and find optimal rates, which optimize the
costs that are due to vaccination and treatment and that penalize infection, as given in (3.5). The longtime cost function in (3.5) is
intractable. However, we are able to transform the problem to an elementary optimization problem (3.10).

4. Discussion and numerical examples

4.1. Discussion

Possible generalization. Although, in this paper, we consider the linear incidence rate function 𝛽𝑆𝐼 in the dynamics of disease
transmission, it can be seen that our approach and proofs of main results do not depend on this specific formulation. In particular,
we can replace the linear incidence rate function 𝛽(𝛬(𝑡))𝑆(𝑡)𝐼(𝑡) in (1.2) by a general function 𝐼(𝑡)𝑓 (𝛬(𝑡), 𝑆(𝑡), 𝐼(𝑡)) and consider

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑑𝑆(𝑡) =
[
(1 − 𝑞(𝛬(𝑡)))𝐴(𝛬(𝑡)) − 𝐼(𝑡)𝑓 (𝛬(𝑡), 𝑆(𝑡), 𝐼(𝑡)) − (𝑝(𝛬(𝑡)) + 𝜇(𝛬(𝑡)))𝑆(𝑡)

+ 𝛾(𝛬(𝑡))𝐼(𝑡) + 𝜀(𝛬(𝑡)𝑉 (𝑡))
]
𝑑𝑡 + 𝜎1(𝛬(𝑡))𝑆(𝑡)𝑑𝑊1(𝑡),

𝑑𝐼(𝑡) =
(
𝐼(𝑡)𝑓 (𝛬(𝑡), 𝑆(𝑡), 𝐼(𝑡)) − [𝜇(𝛬(𝑡)) + 𝛾(𝛬(𝑡)) + 𝛼(𝛬(𝑡))] 𝐼(𝑡)

)
𝑑𝑡

+ 𝜎2(𝛬(𝑡))𝐼(𝑡)𝑑𝑊2(𝑡),

𝑑𝑉 (𝑡) =
[
𝑞(𝛬(𝑡))𝐴(𝛬(𝑡)) + 𝑝(𝛬(𝑡))𝑆(𝑡) − (𝜇(𝛬(𝑡)) + 𝜀(𝛬(𝑡)))𝑉 (𝑡)

]
𝑑𝑡

+ 𝜎3(𝛬(𝑡))𝑉 (𝑡)𝑑𝑊2(𝑡),

𝑆(0) = 𝑠 ≥ 0, 𝐼(0) = 𝑖 ≥ 0, 𝑉 (0) = 𝑣 ≥ 0, 𝛬(0) = 𝑘 ∈ .

(4.1)

In this case, by the same approach and similar argument we have developed in Section 2, we can define

𝜆𝑓 =
∑
𝑘∈∫

R
2
+

(
𝑓 (𝑘, 𝑠, 0) − (𝜇(𝑘) + 𝛼(𝑘) + 𝛾(𝑘)) −

𝜎2
2
(𝑘)

2

)
𝝂0(𝑑𝑠, 𝑑𝑣, 𝑘),

where 𝝂0 is the invariant measure of the solution process to (2.4) with 𝜃 = 0, and prove that this 𝜆𝑓 can be used to characterize
completely longtime behaviors of (4.1).

Theorem 4.1. Assume that
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Fig. 1. Sample paths of 𝐼(𝑡). From left to right: in fixed state system with 𝛬(𝑡) = 1, in fixed state system with 𝛬(𝑡) = 2, and in the switched system, respectively
in Example 4.1.

• 𝑓 (𝑘, 𝑠, 𝑖) is locally Lipschitz, 𝑓 (𝑘, 0, 𝑖) = 0, 𝑓 (𝑘, 𝑠, 𝑖) ≤ 𝐾(1 + 𝑠) for some finite 𝐾, and
• 𝑓 (𝑘, 𝑠, 𝑖) is uniformly continuous at 𝑖 = 0, i.e., lim𝑖→0 sup |𝑓 (𝑘, 𝑠, 𝑖) − 𝑓 (𝑘, 𝑠, 0)| = 0.

We have:

1. If 𝜆𝑓 > 0, the transition probability converges to an invariant measure with an exponential rate.

2. If 𝜆𝑓 < 0, lim𝑡→∞
ln 𝐼(𝑡)

𝑡
= 𝜆𝑓 with probability 1.

Remark 4.1. Common incidence rate functions used in epidemic models are: the bilinear functional response 𝛽𝑆𝐼 , the nonlinear
functional response 𝛽𝑆𝐼 𝑙

1+𝑚2𝐼
ℎ , the Beddington–DeAngelis functional response

𝛽𝑆𝐼

1+𝑚1𝑆+𝑚2𝐼
, the Holling type II functional response 𝛽𝑆𝐼

𝑚1+𝑆
,

and their variants; see e.g., [16,26–28,33] and references therein. We note that all these common incidence rate functions satisfy
conditions in Theorem 4.1. Recall that the incidence rate in our setting is 𝐼𝑓 (𝑆, 𝐼) rather than 𝑓 (𝑆, 𝐼).

In Theorem 4.1, if we assume further that

∑
𝑘∈

(
lim
𝑠→∞

𝑓 (𝑘, 𝑠, 0) − (𝜇(𝑘) + 𝛼(𝑘) + 𝛾(𝑘)) −
𝜎2
2
(𝑘)

2

)
𝜋(𝑘) > 0,

then we can prove the convergence has an exponential rate.

4.2. Numerical examples

In this section, we focus on some numerical examples for model (1.2). As in Lemma 2.2, we obtain an algebraic representation
for 𝜆 in this model, which is an interesting finding, allowing us to easily evaluate this threshold. The value 𝜆 is computed simply by
solving a system of linear equations together with basic multiplication and addition. As a result, we can have more insight about
how switching changes the dynamics of the system. Moreover, it will be shown in following examples that extinction or persistence
of two fixed systems can be reversed by switching.

Example 4.1. Consider system (1.2) with two random switching states:  = {1, 2}. The other parameters are 𝑞1 = 0.8, 𝑞2 = 0.4,
𝐴(1) = 2.5, 𝐴(2) = 1, 𝛽1 = 4, 𝛽2 = 8, 𝜇(1) = 1, 𝜇(2) = 0.5, 𝑝(1) = 1, 𝑝(2) = 0.3, 𝛾1 = 0.2, 𝛾2 = 3, 𝜀(1) = 0.2, 𝜀(2) = 0.5,
𝜎1(1) = 0.2, 𝜎1(2) = 1, 𝛼(1) = 0.1, 𝛼(2) = 3, 𝜎2(1) = 0.2, 𝜎2(2) = 2, 𝜎3(1) = 0.2, 𝜎3(2) = 1.

In this example, the thresholds for the system without switching in state 1 and state 2 are 𝜆1 = 0.1216 and 𝜆2 = 1.0524. As a result,
without switching, the disease will persist in either state. However, with switching rates 𝛾12 = 𝛾21 = 30, we have 𝜆 = −0.3804, which
implies that the disease will go away. This example shows that the random switching can make persistence become extinction, see
Fig. 1.

The algebraic representation of 𝜆 in Lemma 2.2 allows us to examine in details 𝜆 as a function of the parameters. In this example,
with 𝛾12 = 𝛾21 = 𝑦 and 𝑞(1) = 𝑞(2) = 𝑥 while the other parameters receive values as above, we have Fig. 2 for 𝜆 as a function of 𝑥, 𝑦
and Fig. 3 for 𝜆 as a function of 𝑥 or 𝑦 given some fixed values of the other.

Example 4.2. Consider system (1.2) with two random switching states:  = {1, 2}. The other parameters are 𝑞1 = 𝑞2 = 0.8, 𝐴(1) =

1.2, 𝐴(2) = 5, 𝛽(1) = 5, 𝛽(2) = 1.0, 𝜇(1) = 𝜇(2) = 0.8, 𝑝(1) = 𝑝(2) = 0.5, 𝛾(1) = 𝛾(2) = 2, 𝜀(1) = 0.2, 𝜀(2) = 0.5, 𝜎1(1) = 𝜎1(2) = 0.1, 𝛼(1) =

𝛼(2) = 0.11, 𝜎2(1) = 𝜎2(2) = 𝜎3(1) = 𝜎3(2) = 0.1.

In this example, the thresholds for two fixed system in state 1 and state 2 are 𝜆1 = −1.115 and 𝜆2 = −0.6233. As a result, without
switching, the disease will die out in either state. However, with switching rates 𝛾12 = 𝛾21 = 20, we have 𝜆 = 1.0261, which implies
the disease persists, see Fig. 4.

With 𝛾12 = 𝛾21 = 𝑦 and 𝑞(1) = 𝑞(2) = 𝑥 while the other parameters receive values as above, we have Fig. 5 for 𝜆 as a function of
𝑥, 𝑦 and Fig. 6 for 𝜆 as a function of 𝑥 or 𝑦 given some fixed values of the other.
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Fig. 2. 𝜆 as a function of 𝑞(1) = 𝑞(2) = 𝑥 and 𝛾12 = 𝛾21 = 𝑦.

Fig. 3. From left to right: the graphs of 𝜆(𝑦) with 𝑥 = 0.1; 𝜆(𝑦) with 𝑥 = 0.9 and 𝜆(𝑥) with 𝑦 = 1 respectively.

Fig. 4. Sample paths of 𝐼(𝑡). From left to right: in fixed state system with 𝛬(𝑡) = 1, in fixed state system with 𝛬(𝑡) = 2, and in the switched system, respectively
in Example 4.2.

Example 4.3. Consider system (1.2) with two random switching states:  = {1, 2}, 𝑝(1) = 𝑝(2) = 𝑝 and parameters 𝑞(1) = 𝑞(2) = 0,
𝐴(1) = 𝐴(2) = 1, 𝛽(1) = 3, 𝛽(2) = 3.5, 𝜇(1) = 1, 𝜇(2) = 2, 𝛾(1) = 𝛾(2) = 0.1, 𝜀(1) = 𝜀(2) = 0.1, 𝜎2(1) = 𝜎2(2) =

√
0.2, 𝛼(1) = 𝛼(2) =
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Fig. 5. 𝜆 as a function of 𝑞(1) = 𝑞(2) = 𝑥 and 𝛾12 = 𝛾21 = 𝑦.

Fig. 6. From left to right: the graphs of 𝜆(𝑦) with 𝑥 = 0.1; 𝜆(𝑦) with 𝑥 = 0.9 and 𝜆(𝑥) with 𝑦 = 1 respectively.

0.1, 𝜎1(1) = 𝜎1(2) = 𝜎3(1) = 𝜎3(2) = 0.1. The equation 𝜆 = 0 leads to

3600𝑝2 + 11770𝑝 − 4959 = 0,

which has a unique root 𝑝0 = 0.3777 in (0, 1). Thus, the vaccination rate 𝑝 of susceptible group must be greater than 0.3777 in order
to maintain the disease-free state of the system.

Biological interpretation. Our theoretical findings indicate that the long-term dynamics of the SIS epidemic model with vaccination
are entirely determined by the threshold number 𝜆, derived from parameters outlined in (2.6). In epidemic models, because our target
is to end the pandemic or to control disease, the extinction stage (corresponding with 𝜆 < 0) is preferable. Our results rigorously
affirm the significant roles played by the disease-transmission rate 𝛽, recovery rate 𝛾, and disease-related death rate 𝛼 in pandemic
control. Additionally, our findings suggest that the uncertainty associated with the evolution of the infected group (described by 𝜎2)
can have positive effects.

Furthermore, above numerical examples demonstrate that random switching environments can make extinction to be persistence
and vice versa. Although the dependence of 𝜆 on vaccinated rate of newborns 𝑞 is not too explicit from (2.6) in the general setting,
our numerical examples (see Figs. 2 and 5) reveal that the vaccinated rate 𝑞 has a significant impact. This emphasizes the importance
of developing vaccines and vaccinating newborns in disease control efforts.
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