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Abstract—In this work, a novel data-driven methodology for
designing polar codes is proposed. The methodology is suitable
for the case where the channel is given as a ”’black-box” and the
designer has access to the channel for generating observations of
its inputs and outputs, but does not have access to the explicit
channel model. The methodology consists of two components:
(1) a neural estimation of the sufficient statistic of the channel
outputs using recent advances in Kullback Leibler (KL) estima-
tion, and (2) a neural successive cancellation (NSC) decoder
using three neural networks that replace the core elements of
the successive cancellation (SC) decoder. The parameters of the
neural networks are determined during a training phase where
the mutual information of the effective channels is estimated. We
demonstrate the performance of the algorithm on memoryless
channels and on finite state channels. Then, we compare the
results with the optimal decoding given by the SC and SC trellis
decoders, respectively.

Index Terms—Polar codes, data-driven, channels with memory.

I. INTRODUCTION

Polar codes allow the construction of capacity-achieving
codes for symmetric binary-input memoryless channels [1].
The main idea is that, when given N independent copies
of a binary discrete memoryless channel (DMC) W, the
successive cancellation (SC) decoding induces a new set of
N binary effective channels WJ(\;). Channel polarization is the
phenomenon whereby, for N sufficiently large, almost all of
the effective bit channels W](\;) have capacities close to 0 or 1.
Specifically, the fraction of channels with capacity close to 1
approaches I(W) and the fraction of channels with capacity
close to 0 approaches 1 — I(W), where I(W) is the channel’s
symmetric capacity. The construction of polar codes involves
choosing which rows to keep from the square generator matrix
given by Arikan’s transform [1, Section VII]. The encoding
and decoding procedures are performed by recursive formulas
whose computational complexity is O(N log N).

Polar codes can also be applied to finite state channels
(FSCs) because Arikan’s transform also polarizes the bit
channels WJ(\;) in the presence of memory [2]. The encoding al-
gorithm is essentially the same as if the channel is memoryless.
However, the decoding algorithm needs to be updated since the
derivation of the successive cancellation (SC) decoder in [1]
relies on the fact that the channel is memoryless. To account
for the memory, the channel outputs are represented by a
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trellis, whose nodes capture the information of the channel’s
memory. This trellis was embedded into the SC decoding
algorithm to yield the SC trellis decoding algorithm [3], [4].

However, the SC trellis decoder is only applicable when the
channel model is known and when the channel’s state alphabet
size is finite and relatively small. The computational complex-
ity of the SC trellis decoder is O(M3N log N), where M is the
number of channel states. This means that for channels with
large memory, the complexity of the decoder might be dom-
inated by the operations dealing with the channel’s memory
rather than the block length V. For instance, deletion channels
have high decoding complexity due to a large channel state
space. If the state alphabet is not finite, the algorithm is not
applicable without its quantization. Additionally, the algorithm
cannot be used for an unknown channel with memory as it
requires an explicit channel model.

We propose a novel methodology for a data-driven design of
polar codes. The methodology treats the channel as a “black-
box” used to generate samples of input-output pairs without
access to the channel explicit model. It dissects the polar
code design into two separate components. The first extracts a
sufficient statistic of the channel outputs via the estimation of
the channel’s symmetric capacity. The channel’s symmetric
capacity is estimated using the algorithms in [5]-[7], that
provide neural estimation of Kullback Leibler (KL) divergence
between two stochastic processes with time dependencies. The
main concept is to use the Donsker Vardhan (DV) variational
formula of KL divergences [8] and optimize the variational
formula over the space of recurrent neural networks (RNNs).
The outcome of the algorithm is a RNN whose outputs are
the sufficient statistics of Y.

The second component uses the sufficient statistic obtained
by the first component as an input to a neural SC (NSC)
decoder. The NSC uses three neural networks (NNs) that
replace the three core elements of the SC decoder: the check-
node, the bit-node and the decision operations. The parameters
of these NNs are determined in a training phase, in which
the mutual information (MI) of the effective channels WI(\;)
is estimated. After the training phase, the parameters of the
NSC are fixed and the set of “clean” effective channels are
determined to complete the code design.

The usage of NNs with for polar codes design were con-
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sidered in the past. In [9], NNs were used to decrease the
decoding latency by designing a NN decoder that decodes
multiple symbols at once. Other instances used NNs to aid
existing algorithms, such as the work in [10]-[12]. The paper
[13] presents KO codes, a family of deep-learning driven codes
Reed-Muller and Polar codes on the additive white Gaussian
noise (AWGN) channel. The KO codes are similar to the
methods proposed here in the sense that we also leverage
the structure of the Arikan’s transform to design efficient
decoders. However, we do not change Arikan’s transform,
and we consider channels with memory. To the best of our
knowledge, there is no instance of a data-driven polar code
design for channels with memory. This work aims to address
this gap by developing the necessary algorithms for this task.

The paper is organized as follows. Sec. II defines the
notations and gives the necessary background on polar codes.
Sec. III-A presents the methodology for data-driven polar
code design for memoryless channels. Sec. III-B extends the
methodology for the case where the channel has memory. Sec.
IV presented the numerical results on the binary symmetric
channel (BSC) channel and on the Ising [14] channel.

II. NOTATIONS AND PRELIMINARIES

Throughout this paper, random variables will be denoted
by capital letters and their realizations will be denoted by
lower-case letters, e.g. X and =z, respectively. Calligraphic
letters denote sets, e.g. X. We use the notation X" to
denote the random vector (X7, Xs,...,X,,) and 2™ to denote
the realization of such a random vector. The probability
Pr[X = z] is denoted by Px(z). Stochastic processes are
denoted by blackboard bold letters, e.g., X := (X;);en. The
directed information (DI) between X™ and Y™ is defined as
(X™ = Y") =31 I(X%Y;]Y"!) [15], while the DI rate
is defined as (X — Y) = limp 00 21(X™ — Y™).

The tuple (Wy|x, X, ) defines a memoryless channel with
input alphabet X', output alphabet )’ and a transition kernel
Wy |x. The tuple (Wy | x, X,Y) defines a time invariant chan-
nel with memory, where Wy x = {W}/’ilyi—lﬁxi}ieN. The
term Wynxn = Hf\[:l Wy, |yi-1 xi denotes the probability
of observing YV causally conditioned by X*. Throughout
the paper we assume that X = {0,1}, and Px(z) = 0.5
for all x € X. For this choice of Px and a channel W, the
symmetric capacity of the channel is denoted by I (V). We
denote by [N] the set {1,..., N}. The term A® B denotes the
Kronecker product of A and B when A, B are matrices, and
it denotes a tensor product whenever A, B are distributions.
The term A®Y := A® A® ---® A denotes an application of
the ® operator N times. The notation P < @ indicates that
the P is absolutely continuous with respect to (w.r.t.) Q.

A. Polar codes

Let Gy be Arikan’s generator matrix of block length
N = 2" for n € N. The term Iy denotes the identity

matrix of size N and Ry denotes the reverse shuffle per-
mutation matrix [1]. We define a polar code using the tuple
(X, Y, W, Ly ,®, (%),SD) that contains the channel W and the
core components of the SC decoder. The term Ly : Y — L
denotes the channel statistics, where £ C R%. For example, for
a memoryless channel W := Wy x, a valid choice of Ly, as
used in the remainder of this paper, is given by the following:

UACLY
W (y[0)

The functions B : Lx L = L, ® : LXL XX — L
denote the check node and bit node operations, respectively.
We denote by SD : £ — [0, 1] a mapping of the statistics into
a probability value, i.e. a soft decision. With this choice, the
hard decision rule A : [0,1] — {0,1} is the round function
h(l) = I;>0.5, where I is the indicator function.

Lw(y) =

(D

We denote by Dy = {z;, yZ}N:1 a finite sample of inputs-
outputs pairs drawn from PY" @ W, where W = Wf?‘];[(
for memoryless channel, and W = Wy x for time invariant

channel with memory. We denote by
A = Scdesign (DN7 ka LW7 7 @a SD)

the procedure of finding the set of good channels A C [N]
with |A| = k over the sample Dy with a SC decoder that uses
Ly, B, %), SD as its elementary operations. The dependence
of the of SCgesign On Dy stems that the MI of the effective
bit channels is estimated by a Monte-Carlo averaging of polar
decoder output to yield and estimate of H (U;|U*~, V™).

For memoryless channels with Ly as defined in Eq. (1) we
have

l l
(I1,1) = 2tanh ™ (tanhgtanh 2) ,

2
® (1,12, u) = la + (=1)"11,
SD(ly) = o(ly), @)

where o(z) = H% is the logistic function and [;,ls €
L. We define the effective bit channels by the tuple
(W, 2, 201y,

III. POLAR CODES FOR UNKNOWN CHANNELS

This section addresses polar code design for the case where
an explicit channel model is not available. For memoryless
channels, the problem of constructing data-driven polar codes
boils down to estimating the channels statistics via the mutual
information neural estimator (MINE) algorithm [16]. This is
presented in Sec. III-A. To address channels with memory, we
extend the algorithm in Sec. III-A. It involves computing the
channels statistics via the directed information neural estimator
(DINE) algorithm [5], and devising a SC decoder that is
tailored to these statistics. This approach is applicable for
both memoryless channels and channels with memory and it
is presented in Sec. III-B.
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A. Data-Driven Polar codes for Memoryless Channels

Let W := Wy x be a binary-input memoryless channel and
let Dy = {zs,yi} ., ~ (Px ® W)®" be a finite sample of
its inputs-outputs pairs. The SC decoding algorithm converts
the channel statistics {LW(y,;)}i.V:l, as defined in (1), into the

‘ N

effective bit channels statistics {LW( y (YN, u“l)} using
N

the recursive formulas given in [1, Prop. 3]. Accordlngly, the

SC decoder requires explicit channel’s statistics; however, in

the data-driven scenarios, the transition kernel is unknown.

In order to address this issue, we employ the MINE algo-
rithm [16] to approximate the channel statistics and its highest
achievable rate. Given Dy, the MINE algorithm estimates
I(X;Y) via the DV variational formula of KL divergences.
This yields an estimation of the symmetric capacity by

1 N
T(xi,§i)
ot 37
i=

3)
where ¢V is a random shuffle of yV, T denotes the estimated
maximizer of the DV formula and Gyy is the space of NNs.
We denote the MINE algorithm with 7= MINE (Dy).

T(X;Y)= max — > T (z;,y:) —
( TEgl)\l(N Z Y

The optimal solution of the DV formula is given by
* W (ylx) ; ;
T*(z,y) = log W0+ W T ¢ fo.r ¢ € R. This equation
connects T* and Lyy through the relation

Lw(y) =T"(1,y) — T*(0,y). “4)

Therefore, when the statistics of the channel are not known,
the MINE algorithm’s output is used as a proxy for Lw(y)
via Eq. (4), i.e. Lw (y) =T (1,y) — T (0, y). The estimate of
the symmetric capacity I (X;Y") is utilized to determine the
number of information bits, &, of the polar code. This process
is outlined in Algorithm 1.

Algorithm 1 Data-driven polar code for memoryless channels

input: Dataset Dy, #of info. bits k
output: Clean set A

T = MINE (DN)
A= scdesign (DN, b Lw, B, ®,0)

Remark 1. The estimate 7 is a consistent estimator T*
[16]; however, it is estimated with a finite sample which
yields an estimation error. Empirically, these errors have a
mild effect on the decoding error of the SC decoder. This
is in correspondence to other approximations of the optimal
decision rule, such as the min-sum-density [17].

B. Data-Driven Polar codes for Channels with Memory

This section presents the channel statistics computation via
the DINE algorithm [6], as described in Sec. III-B1. The
adapted SC decoder is described in Sec. III-B2.

1) Extracting Sufficient Statistics: This section describes
the process of obtaining sufficient statistics from the chan-
nel outputs using the DINE algorithm. Let W = Wy x
be a binary-input channel with memory and let Dy =
{2y}, ~ (PN ® Wy~ x~) be a finite sample of its
inputs-outputs pairs. The DINE algorithm estimates the DI
rate from X% to YV using the following formula:

T(X—>Y)
1 N
= max — T xi, yi|et Tyt
T'xy €GrRNN {N ; Xy ( 4 | y )
1 N i—1
o - T T,z |2t it
log N ;e v ( )}
1 N 1 N (2ily'~")
_ = T i i—1 —1 - Ty (zily*™
&%&N§Y@w> By 2 »

&)

where Grnn is the space of RNNs and fxy and fy are
the estimated maximizers of the first and second term in
Equation 5, respectively. The random variables (RVs) ZV
are independently identically distributed (i.i.d.) auxiliary RVs,
uniformly distributed on ) and independent of XV, Y™ They
are used for the estimation of the DI as presented in [5]. We
denote the DINE algorithm with Txy, Ty = DINE (Dy). The
estimation of the DI yields both an estimate of the channel’s
symmetric capacity and its outputs’ sufficient statistics.

The 0pt1mal maximizers of the first term in Eq. (5) are given

by T = log LIXT + ¢ for ¢ € R and ¢ € N. For fixed
y", we define a new RV T : X' — R by

Py'ilyi—17xi (yi|yi_
Py (y:)

1’$i)

T (2') =log (©6)
The following theorem states that TN £ {T}*/}i\; is a
sufficient statistic of YV for the estimation U

Theorem 1. Let XN YN ~ PN @ Wy~ x~ and Py such
that Py < Py. Then TV, as defined in Eq. (0), satisfies

UN —yN 1N, (7
UN 1N _yVN, (8)

Proof of Theorem 1. The first Markov relation is straightfor-
ward as TV is a function of YV and UN = XNGy. The
second Markov relation is derived by showing that 7% is a
sufficient statistic of Y for the estimation of X*V, or equiva-
lently, I (XY;YN) =1 (XN;TV). For 2™, yN € AN XYV,
consider the following chain of equalities:

N
Pxn yn (2", y") = HPXi,Y,;\Xifl,Y’Fl (zi,yil2~ Ny ™)
i=1
N i i1
(a) i—1 PYY;|X1',Y1'*1 (yz‘m 'Y )
= Py xi-1 (xi]z" ™) Pz (y;
g XX ( 1| ) ( Z) PZ (yz)
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=1
N P
Py, xiyi-1 (yila', y'™")
o (?—; 8 Pz (yi) ’

where (a) follows from the chain rule, the absence of outputs
feedback, and Py, x:yi-1 < Pz; and (b) is a result of
rearranging the terms into exponents. Next, we identify that
Pxvyn~ (2™, y")=h (yN) g (tN (yN) ,a:N), where

h(y™) £ exp (log PZY (yV))

N
g (tN7$N) £ exp (ZIOgPXi|Xi1 (l‘i|xi*1) +ty: (xz)> '

N
® exp (1og P?N (yN)) exp <Z log Py, xi—1 (mi|xi_1)>

i=1

This is exactly the factorization in the well-known
Fisher-Neyman factorization theorem [18], [19], and thus ™
is a sufficient statistic of YV for the estimation of X*. Since
UN = XNGy is bijective, we conclude the theorem. O

The following remark indicates the relationship between 7
and the sufficient statistics of a memoryless channel V.

Remark 2 (Relation to SC decoder). For the case where W :=
Wy x it follows that Wy~ x~ = Wf}’l];(. Accordingly, the

Py x (yilz:)

2 em) that is

sufficient statistics satisfy T;i (xl) = log
connected to Lyy through Eq. (4).

Theorem 1 suggests that DI estimation is an appropriate
objective for the construction of the sufficient statistics of
YN needed for the SC decoder. However, the evaluation of
TN for all 2N € XV involves an exponential number of
computations. To overcome this, recall that according to Eq.
5), Txy is approximaied by a RNN that contains a sequence
of layers. We design T'xy to process y'v and zV separately
before combining them into the output of T'xy. We denote
this construction by Txy (z%,y") = Txy (z%,€’), where
e; = E(y;), E : Y — R? is an embedding of Y;. Since

Algorithm 2 NSCTrain(e, u,L)
N =dim (u)
if N =1 then
L = L + Lce(el, Ul)
return L,u
end if
Split e into even and odd indices e., €,
ec = NN (ee7eo)
L, vy = NSCTrain (ec,uiV/Q, L)
eg = @y (€cs €0, V1)
L,vo = NSCTrain (eru%/zﬂ’ L)
v = [vq, Vo]
vV=v (IN/2 ®G2) Ry
|_ = L + vazl Lce(ei7 ’Ui)
return L,v

|
+
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Figure 1: A depiction of Algorithm 2 for N = 4. Le.(e, u)
denotes a cross-entropy loss, and the overall training loss L is
calculated as the sum of all losses shown in the figure.

fXX is composed of sequential layers, any intermediate layer
of T'x'y must preserve the information that flows to its outputs.
Therefore, we choose EXN as the sufficient statistics required
for the SC decoder. The next section describes the algorithm
for the design of a SC decoder that is tailored for EX.

2) Neural Successive Cancellation Decoder: This section
describes the construction of a NSC decoder that is tailored
for EV. The NSC uses the same structure of the original SC
decoder, except its elementary operations are replaced with
NNs. Specifically, instead of using [, ), SD(-) as defined in
Eq. (2), we use Elyy : RIxR? — R, @y : RIXRYx X —
R? and SDyy : R? — {0, 1}, all are parameterized with NNs.

Training the NSC amounts into optimizing the parameters
of My, Enn and SDyy such that the symmetric capacities

of I WI(\;)> are computed. It follows that
(W) =1- 8 @ yY), ©)

where H (U;|U*!) = 1 since U; X Ber (0.5). Hence, choos-

Algorithm 3 Data-driven polar code design for channels with
memory

input: Channel WYH x, blocklength ny, #of info. bits k
output: Clean set A

Compute E by applying DINE (Dy)
Initiate the weights of ®pn, Enn, SDnn
N — 271,(
for [ = 1 to Njiers do
Sample v,y
uN =2NGy
Compute eV by e; = E (y;)
Compute L by applying NSCTrain (eV, u'', 0)
Minimize L w.r.t. ®ynn, Enn, SDnn
end for
A= SCdesign (DNv ka Ev @NN; NN7 SDNN)
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Figure 2: The left figure compares the BERs incurred by Algorithm 1 and the SC decoder on a BSC. The middle figure
compares the BERs incurred by Algorithm 3 on the Ising channel; its polarization is illustrated in the right figure.

ing the i-s with the highest value of [ (WI(\;)) is equivalent

to choosing the i-s with lowest value of H (U;|U~1, YY),
Hence, we set the goal of estimating Py, |7+-1y~ as the goal
needed to identify the clean effective bit channels. Accord-
ingly, the cross-entropy loss is used as the loss function for
training My, Enn and SDyn.

In the training phase, the optimization procedure admits the
following steps. As an input, the NSC observes the channel’s
outputs y”, and the channel’s inputs xV. First, the sufficient
statistics are computed by eV = E (yV). We denote by e the
embedding vector at the i-th depth of the decoding recursion
and by e; ; the j-th bit at ¢-th depth. Further, the channel inputs
are used to compute the labels by u”¥ = 2V G y.

In the next step, we initiate the training loss to be L = 0.
Then, the NSC decoder starts the recursive computation of the
effective bit channels in which the loss is accumulated until
the recursion ends. The first loss term is accumulated when the
recursion reaches the first effective bit channel. At this point,
a loss term Lce(€10g n,1,u1) is computed via Le(e,u) =
—ulog (SDnn (e)) — (1 —u) log (1 — SDnn (€)). Then, at each
leaf of the recursion, such loss term is computed and added
to the entire training loss L. That is, each time reaching a
leaf, L is updated according to the following rule L = L +
Lee(€1og N,is i), % € [N]. In addition, we make the algorithm
more robust by accumulating the loss incurred by bits with
intermediate recurrence depth of 0,1,...,log N — 1. The loss
L is minimized using stochastic gradient descent.

This procedure is valid for any value of N = 2", forn € N.
We denote by 2™ the block length that is used in the training
phase. This procedure is illustrated in Fig. 1 and described in
Algorithm 2. The complete algorithm is given in Algorithm 3.

IV. EXPERIMENTS

This section presents the experiments on memoryless chan-
nels and channels with memory. For the case of memoryless
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channels, using Algorithm 1, we design a data-driven polar
code for the BSC with parameter p = 0.1 and compare its bit
error rate (BER) with the “vanilla” SC decoder. We choose
the code rate to be R = 0.3, and accordingly, |A| = |[RN|,
where || is the floor function. The results are in Fig. 2.

For channels with memory, we design a data-driven polar
code for the Ising channel and compare its BER with the
SC trellis decoder. We apply Algorithm 3 with a code rate
of R = 0.3, and training block length ny = 8. The NN,
®nn, ®Enn and SDyy, are parameterized with 3 layers of
50 neurons each. Fig. 2, illustrates the decoding BER of
Algorithm 3 in comparison to the SC trellis decoder [4] on
the Ising channel, and the incurred BER of the effective bit
channels WJ(\;) for the Ising channel for N = 512.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a data-driven algorithm for the design
of polar codes. It demonstrated that estimating the symmetric
capacity of the channel via the MINE or the DINE, for
memoryless channels or channels with memory, respectively,
yields sufficient statistics for the SC decoder. For channels
with memory, we presented an algorithm for the design of an
adapted SC decoder for the sufficient statistics extracted by
the DINE, called NSC. We demonstrated our approach on the
BSC, as an instance of a memoryless channel, and on the Ising
channel, an instance of a channel with memory.

Our next steps would be to extend our methodology, e.g.
for list decoding with cyclic redundancy check [20]. We also
plan to extend our result to design capacity achieving codes
via the Honda and Yamamoto scheme [21].
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