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Abstract—In this work, a novel data-driven methodology for
designing polar codes is proposed. The methodology is suitable
for the case where the channel is given as a ”black-box” and the
designer has access to the channel for generating observations of
its inputs and outputs, but does not have access to the explicit
channel model. The methodology consists of two components:
(1) a neural estimation of the sufficient statistic of the channel
outputs using recent advances in Kullback Leibler (KL) estima-
tion, and (2) a neural successive cancellation (NSC) decoder
using three neural networks that replace the core elements of
the successive cancellation (SC) decoder. The parameters of the
neural networks are determined during a training phase where
the mutual information of the effective channels is estimated. We
demonstrate the performance of the algorithm on memoryless
channels and on finite state channels. Then, we compare the
results with the optimal decoding given by the SC and SC trellis
decoders, respectively.

Index Terms—Polar codes, data-driven, channels with memory.

I. INTRODUCTION

Polar codes allow the construction of capacity-achieving

codes for symmetric binary-input memoryless channels [1].

The main idea is that, when given N independent copies

of a binary discrete memoryless channel (DMC) W , the

successive cancellation (SC) decoding induces a new set of

N binary effective channels W
(i)
N . Channel polarization is the

phenomenon whereby, for N sufficiently large, almost all of

the effective bit channels W
(i)
N have capacities close to 0 or 1.

Specifically, the fraction of channels with capacity close to 1

approaches I(W ) and the fraction of channels with capacity

close to 0 approaches 12 I(W ), where I(W ) is the channel’s

symmetric capacity. The construction of polar codes involves

choosing which rows to keep from the square generator matrix

given by Arikan’s transform [1, Section VII]. The encoding

and decoding procedures are performed by recursive formulas

whose computational complexity is O(N logN).

Polar codes can also be applied to finite state channels

(FSCs) because Arikan’s transform also polarizes the bit

channels W
(i)
N in the presence of memory [2]. The encoding al-

gorithm is essentially the same as if the channel is memoryless.

However, the decoding algorithm needs to be updated since the

derivation of the successive cancellation (SC) decoder in [1]

relies on the fact that the channel is memoryless. To account

for the memory, the channel outputs are represented by a

trellis, whose nodes capture the information of the channel’s

memory. This trellis was embedded into the SC decoding

algorithm to yield the SC trellis decoding algorithm [3], [4].

However, the SC trellis decoder is only applicable when the

channel model is known and when the channel’s state alphabet

size is finite and relatively small. The computational complex-

ity of the SC trellis decoder is O(M3N logN), where M is the

number of channel states. This means that for channels with

large memory, the complexity of the decoder might be dom-

inated by the operations dealing with the channel’s memory

rather than the block length N . For instance, deletion channels

have high decoding complexity due to a large channel state

space. If the state alphabet is not finite, the algorithm is not

applicable without its quantization. Additionally, the algorithm

cannot be used for an unknown channel with memory as it

requires an explicit channel model.

We propose a novel methodology for a data-driven design of

polar codes. The methodology treats the channel as a “black-

box” used to generate samples of input-output pairs without

access to the channel explicit model. It dissects the polar

code design into two separate components. The first extracts a

sufficient statistic of the channel outputs via the estimation of

the channel’s symmetric capacity. The channel’s symmetric

capacity is estimated using the algorithms in [5]–[7], that

provide neural estimation of Kullback Leibler (KL) divergence

between two stochastic processes with time dependencies. The

main concept is to use the Donsker Vardhan (DV) variational

formula of KL divergences [8] and optimize the variational

formula over the space of recurrent neural networks (RNNs).

The outcome of the algorithm is a RNN whose outputs are

the sufficient statistics of Y N .

The second component uses the sufficient statistic obtained

by the first component as an input to a neural SC (NSC)

decoder. The NSC uses three neural networks (NNs) that

replace the three core elements of the SC decoder: the check-

node, the bit-node and the decision operations. The parameters

of these NNs are determined in a training phase, in which

the mutual information (MI) of the effective channels W
(i)
N

is estimated. After the training phase, the parameters of the

NSC are fixed and the set of “clean” effective channels are

determined to complete the code design.

The usage of NNs with for polar codes design were con-
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sidered in the past. In [9], NNs were used to decrease the

decoding latency by designing a NN decoder that decodes

multiple symbols at once. Other instances used NNs to aid

existing algorithms, such as the work in [10]–[12]. The paper

[13] presents KO codes, a family of deep-learning driven codes

Reed-Muller and Polar codes on the additive white Gaussian

noise (AWGN) channel. The KO codes are similar to the

methods proposed here in the sense that we also leverage

the structure of the Arikan’s transform to design efficient

decoders. However, we do not change Arikan’s transform,

and we consider channels with memory. To the best of our

knowledge, there is no instance of a data-driven polar code

design for channels with memory. This work aims to address

this gap by developing the necessary algorithms for this task.

The paper is organized as follows. Sec. II defines the

notations and gives the necessary background on polar codes.

Sec. III-A presents the methodology for data-driven polar

code design for memoryless channels. Sec. III-B extends the

methodology for the case where the channel has memory. Sec.

IV presented the numerical results on the binary symmetric

channel (BSC) channel and on the Ising [14] channel.

II. NOTATIONS AND PRELIMINARIES

Throughout this paper, random variables will be denoted

by capital letters and their realizations will be denoted by

lower-case letters, e.g. X and x, respectively. Calligraphic

letters denote sets, e.g. X . We use the notation Xn to

denote the random vector (X1, X2, . . . , Xn) and xn to denote

the realization of such a random vector. The probability

Pr[X = x] is denoted by PX(x). Stochastic processes are

denoted by blackboard bold letters, e.g., X := (Xi)i*N. The

directed information (DI) between Xn and Y n is defined as

I(Xn ³ Y n) =
∑n

i=1 I(X
i;Yi|Y

i21) [15], while the DI rate

is defined as I(X ³ Y) = limn³>
1
n I(X

n ³ Y n).

The tuple
(
WY |X ,X ,Y

)
defines a memoryless channel with

input alphabet X , output alphabet Y and a transition kernel

WY |X . The tuple
(
WY ‖X ,X ,Y

)
defines a time invariant chan-

nel with memory, where WY ‖X =
{
WYi|Y i−1,Xi

}
i*N

. The

term WY N‖XN =
∏N

i=1 WYi|Y i−1,Xi denotes the probability

of observing Y N causally conditioned by XN . Throughout

the paper we assume that X = {0, 1}, and PX(x) = 0.5
for all x * X . For this choice of PX and a channel W , the

symmetric capacity of the channel is denoted by I (W ). We

denote by [N ] the set {1, . . . , N}. The term A·B denotes the

Kronecker product of A and B when A,B are matrices, and

it denotes a tensor product whenever A,B are distributions.

The term A·N := A·A· · · · ·A denotes an application of

the · operator N times. The notation P j Q indicates that

the P is absolutely continuous with respect to (w.r.t.) Q.

A. Polar codes

Let GN be Arikan’s generator matrix of block length

N = 2n for n * N. The term IN denotes the identity

matrix of size N and RN denotes the reverse shuffle per-

mutation matrix [1]. We define a polar code using the tuple

(X ,Y,W,LW ,�7 ,©7 , SD) that contains the channel W and the

core components of the SC decoder. The term LW : Y ³ L
denotes the channel statistics, where L ¦ R

d. For example, for

a memoryless channel W := WY |X , a valid choice of LW , as

used in the remainder of this paper, is given by the following:

LW (y) = log
W (y|1)

W (y|0)
. (1)

The functions �7 : L × L ³ L, ©7 : L × L × X ³ L
denote the check node and bit node operations, respectively.

We denote by SD : L ³ [0, 1] a mapping of the statistics into

a probability value, i.e. a soft decision. With this choice, the

hard decision rule h : [0, 1] ³ {0, 1} is the round function

h(l) = Il>0.5, where I is the indicator function.

We denote by DN = {xi, yi}
N
i=1 a finite sample of inputs-

outputs pairs drawn from P·N
X · W , where W = W·N

Y |X
for memoryless channel, and W = WY ‖X for time invariant

channel with memory. We denote by

A = SCdesign (DN , k, LW ,�7 ,©7 , SD)

the procedure of finding the set of good channels A ¢ [N ]
with |A| = k over the sample DN with a SC decoder that uses

LW , �7 , ©7 , SD as its elementary operations. The dependence

of the of SCdesign on DN stems that the MI of the effective

bit channels is estimated by a Monte-Carlo averaging of polar

decoder output to yield and estimate of H
(
Ui|U

i21, Y N
)
.

For memoryless channels with LW as defined in Eq. (1) we

have

�7 (l1, l2) = 2 tanh21

(
tanh

l1

2
tanh

l2

2

)
,

©7 (l1, l2, u) = l2 + (21)ul1,

SD(l1) = σ(l1), (2)

where σ(x) = 1
1+e−x is the logistic function and l1, l2 *

L. We define the effective bit channels by the tuple(
W

(i)
N ,X ,X i21 × YN

)
.

III. POLAR CODES FOR UNKNOWN CHANNELS

This section addresses polar code design for the case where

an explicit channel model is not available. For memoryless

channels, the problem of constructing data-driven polar codes

boils down to estimating the channels statistics via the mutual

information neural estimator (MINE) algorithm [16]. This is

presented in Sec. III-A. To address channels with memory, we

extend the algorithm in Sec. III-A. It involves computing the

channels statistics via the directed information neural estimator

(DINE) algorithm [5], and devising a SC decoder that is

tailored to these statistics. This approach is applicable for

both memoryless channels and channels with memory and it

is presented in Sec. III-B.
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A. Data-Driven Polar codes for Memoryless Channels

Let W := WY |X be a binary-input memoryless channel and

let DN = {xi, yi}
N
i=1 > (PX ·W )

·N
be a finite sample of

its inputs-outputs pairs. The SC decoding algorithm converts

the channel statistics {LW (yi)}
N
i=1, as defined in (1), into the

effective bit channels statistics
{
L
W

(i)
N

(yN , ui21)
}N

i=1
using

the recursive formulas given in [1, Prop. 3]. Accordingly, the

SC decoder requires explicit channel’s statistics; however, in

the data-driven scenarios, the transition kernel is unknown.

In order to address this issue, we employ the MINE algo-

rithm [16] to approximate the channel statistics and its highest

achievable rate. Given DN , the MINE algorithm estimates

I (X;Y ) via the DV variational formula of KL divergences.

This yields an estimation of the symmetric capacity by

Î (X;Y ) = max
T*GNN

1

N

N∑

i=1

T (xi, yi)2 log
1

N

N∑

i=1

eT (xi,ỹi),

(3)

where ỹN is a random shuffle of yN , T̂ denotes the estimated

maximizer of the DV formula and GNN is the space of NNs.

We denote the MINE algorithm with T̂ = MINE (DN ).

The optimal solution of the DV formula is given by

T 7(x, y) = log W (y|x)
1
2W (y|0)+ 1

2W (y|1)
+ c for c * R. This equation

connects T 7 and LW through the relation

LW (y) = T 7(1, y)2 T 7(0, y). (4)

Therefore, when the statistics of the channel are not known,

the MINE algorithm’s output is used as a proxy for LW (y)
via Eq. (4), i.e. L̂W (y) = T̂ (1, y)2 T̂ (0, y). The estimate of

the symmetric capacity Î (X;Y ) is utilized to determine the

number of information bits, k, of the polar code. This process

is outlined in Algorithm 1.

Algorithm 1 Data-driven polar code for memoryless channels

input: Dataset DN , #of info. bits k

output: Clean set A

T̂ = MINE (DN )
L̂W = T̂ (1, ·)2 T̂ (0, ·)

A = SCdesign

(
DN , k, L̂W ,�7 ,©7 , σ

)

Remark 1. The estimate T̂ is a consistent estimator T 7

[16]; however, it is estimated with a finite sample which

yields an estimation error. Empirically, these errors have a

mild effect on the decoding error of the SC decoder. This

is in correspondence to other approximations of the optimal

decision rule, such as the min-sum-density [17].

B. Data-Driven Polar codes for Channels with Memory

This section presents the channel statistics computation via

the DINE algorithm [6], as described in Sec. III-B1. The

adapted SC decoder is described in Sec. III-B2.

1) Extracting Sufficient Statistics: This section describes

the process of obtaining sufficient statistics from the chan-

nel outputs using the DINE algorithm. Let W := WY ‖X

be a binary-input channel with memory and let DN =
{xi, yi}

N
i=1 >

(
P·N
X ·WY N‖XN

)
be a finite sample of its

inputs-outputs pairs. The DINE algorithm estimates the DI

rate from XN to Y N using the following formula:

Î (X ³ Y)

= max
TXY *GRNN

{
1

N

N∑

i=1

TXY

(
xi, yi|x

i21, yi21
)

2 log
1

N

N∑

i=1

eTXY (xi,zi|x
i−1,yi−1)

}

2 max
TY *GRNN

{
1

N

N∑

i=1

TY

(
yi|y

i21
)
2 log

1

N

N∑

i=1

eTY (zi|yi−1)

}
,

(5)

where GRNN is the space of RNNs and T̂XY and T̂Y are

the estimated maximizers of the first and second term in

Equation 5, respectively. The random variables (RVs) ZN

are independently identically distributed (i.i.d.) auxiliary RVs,

uniformly distributed on Y and independent of XN , Y N . They

are used for the estimation of the DI as presented in [5]. We

denote the DINE algorithm with T̂XY , T̂Y = DINE (DN ). The

estimation of the DI yields both an estimate of the channel’s

symmetric capacity and its outputs’ sufficient statistics.

The optimal maximizers of the first term in Eq. (5) are given

by T 7
i = log

P
Yi|Y

i−1,Xi

PZ
+ c for c * R and i * N. For fixed

yN , we define a new RV T 7
yi : X i ³ R by

T 7
yi

(
xi
)
= log

PYi|Y i−1,Xi

(
yi|y

i21, xi
)

PZ (yi)
. (6)

The following theorem states that TN ,
{
T 7
Y i

}N
i=1

is a

sufficient statistic of Y N for the estimation UN .

Theorem 1. Let XN , Y N > P·N
X ·WY N‖XN and PZ such

that PY j PZ . Then TN , as defined in Eq. (6), satisfies

UN 2 Y N 2 TN , (7)

UN 2 TN 2 Y N . (8)

Proof of Theorem 1. The first Markov relation is straightfor-

ward as TN is a function of Y N and UN = XNGN . The

second Markov relation is derived by showing that TN is a

sufficient statistic of Y N for the estimation of XN , or equiva-

lently, I
(
XN ;Y N

)
= I

(
XN ;TN

)
. For xN , yN * XN×YN ,

consider the following chain of equalities:

PXN ,Y N (xn, yn) =
N∏

i=1

PXi,Yi|Xi−1,Y i−1

(
xi, yi|x

i21, yi21
)

(a)
=

N∏

i=1

PXi|Xi−1

(
xi|x

i21
)
PZ (yi)

PYi|Xi,Y i−1

(
yi|x

i, yi21
)

PZ (yi)
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(b)
= exp

(
logP·N

Z

(
yN
))

exp

(
N∑

i=1

logPXi|Xi−1

(
xi|x

i21
)
)

exp

(
N∑

i=1

log
PYi|Xi,Y i−1

(
yi|x

i, yi21
)

PZ (yi)

)
,

where (a) follows from the chain rule, the absence of outputs

feedback, and PYi|Xi,Y i−1 j PZ ; and (b) is a result of

rearranging the terms into exponents. Next, we identify that

PXN ,Y N (xn, yn) = h
(
yN
)
g
(
tN
(
yN
)
, xN

)
, where

h
(
yN
)
, exp

(
logP·N

Z

(
yN
))

,

g
(
tN , xN

)
, exp

(
N∑

i=1

logPXi|Xi−1

(
xi|x

i21
)
+ tyi

(
xi
)
)
.

This is exactly the factorization in the well-known

Fisher–Neyman factorization theorem [18], [19], and thus TN

is a sufficient statistic of Y N for the estimation of XN . Since

UN = XNGN is bijective, we conclude the theorem.

The following remark indicates the relationship between TN

and the sufficient statistics of a memoryless channel W .

Remark 2 (Relation to SC decoder). For the case where W :=
WY |X it follows that WY N‖XN = W·N

Y |X . Accordingly, the

sufficient statistics satisfy T 7
yi

(
xi
)
= log

PY |X(yi|xi)

PZ(yi)
that is

connected to LW through Eq. (4).

Theorem 1 suggests that DI estimation is an appropriate

objective for the construction of the sufficient statistics of

Y N needed for the SC decoder. However, the evaluation of

TN for all xN * XN involves an exponential number of

computations. To overcome this, recall that according to Eq.

(5), T̂XY is approximated by a RNN that contains a sequence

of layers. We design T̂XY to process yN and xN separately

before combining them into the output of T̂XY . We denote

this construction by T̂XY

(
xi, yi

)
= T̃XY

(
xi, ei

)
, where

ei = E (yi), E : Y ³ R
d is an embedding of Yi. Since

Algorithm 2 NSCTrain(e,u, L)

N = dim (u)
if N = 1 then

L = L+ Lce(e1, u1)
return L,u

end if

Split e into even and odd indices ee, eo
eC = �7NN (ee, eo)

L,v1 = NSCTrain

(
eC,u

N/2
1 , L

)

eB = ©7 NN (ee, eo,v1)

L,v2 = NSCTrain

(
eB,u

N
N/2+1, L

)

v = [v1,v2]
v = v

(
IN/2 ·G2

)
RN

L = L+
∑N

i=1 Lce(ei, vi)
return L,v

�7

©7

�7

©7

�7

©7

�7

©7

u2,1, e2,1

Lce (e2,1, u2,1)

u2,2, e2,2

Lce (e2,2, u2,2)

u2,3, e2,3

Lce (e2,3, u2,3)

u2,4, e2,4

Lce (e2,4, u2,4)

u1,1, e1,1

Lce (e1,1, u1,1)

u1,2, e1,2

Lce (e1,2, u1,2)

u1,3, e1,3

Lce (e1,3, u1,3)

u1,4, e1,4

Lce (e1,4, u1,4)

u0,1, e0,1

Lce (e0,1, u0,1)

u0,2, e0,2

Lce (e0,2, u0,2)

u0,3, e0,3

Lce (e0,3, u0,3)

eu0,4, e0,4

Lce (e0,4, u0,4)

Figure 1: A depiction of Algorithm 2 for N = 4. Lce(e, u)
denotes a cross-entropy loss, and the overall training loss L is

calculated as the sum of all losses shown in the figure.

T̂XY is composed of sequential layers, any intermediate layer

of T̂XY must preserve the information that flows to its outputs.

Therefore, we choose EN as the sufficient statistics required

for the SC decoder. The next section describes the algorithm

for the design of a SC decoder that is tailored for EN .

2) Neural Successive Cancellation Decoder: This section

describes the construction of a NSC decoder that is tailored

for EN . The NSC uses the same structure of the original SC

decoder, except its elementary operations are replaced with

NNs. Specifically, instead of using �7 ,©7 , SD(·) as defined in

Eq. (2), we use �7NN : Rd×R
d ³ R

d, ©7 NN : Rd×R
d×X ³

R
d and SDNN : Rd ³ {0, 1}, all are parameterized with NNs.

Training the NSC amounts into optimizing the parameters

of ©7 NN,�7NN and SDNN such that the symmetric capacities

of I
(
W

(i)
N

)
are computed. It follows that

I
(
W

(i)
N

)
= 12H

(
Ui|U

i21, Y N
)
, (9)

where H
(
Ui|U

i21
)
= 1 since Ui

iid
> Ber (0.5). Hence, choos-

Algorithm 3 Data-driven polar code design for channels with

memory

input: Channel WY ‖X , blocklength nt, #of info. bits k

output: Clean set A

Compute E by applying DINE (DN )
Initiate the weights of ©7 NN,�7NN, SDNN

N = 2nt

for l = 1 to Niters do

Sample xN , yN

uN = xNGN

Compute eN by ei = E (yi)
Compute L by applying NSCTrain

(
eN , uN , 0

)

Minimize L w.r.t. ©7 NN,�7NN, SDNN

end for

A = SCdesign (DN , k, E,©7 NN,�7NN, SDNN)
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Figure 2: The left figure compares the BERs incurred by Algorithm 1 and the SC decoder on a BSC. The middle figure

compares the BERs incurred by Algorithm 3 on the Ising channel; its polarization is illustrated in the right figure.

ing the i-s with the highest value of I
(
W

(i)
N

)
is equivalent

to choosing the i-s with lowest value of H
(
Ui|U

i21, Y N
)
.

Hence, we set the goal of estimating PUi|Ui−1,Y N as the goal

needed to identify the clean effective bit channels. Accord-

ingly, the cross-entropy loss is used as the loss function for

training ©7 NN,�7NN and SDNN.

In the training phase, the optimization procedure admits the

following steps. As an input, the NSC observes the channel’s

outputs yN , and the channel’s inputs xN . First, the sufficient

statistics are computed by eN = E
(
yN
)
. We denote by eNi the

embedding vector at the i-th depth of the decoding recursion

and by ei,j the j-th bit at i-th depth. Further, the channel inputs

are used to compute the labels by uN = xNGN .

In the next step, we initiate the training loss to be L = 0.

Then, the NSC decoder starts the recursive computation of the

effective bit channels in which the loss is accumulated until

the recursion ends. The first loss term is accumulated when the

recursion reaches the first effective bit channel. At this point,

a loss term Lce(elogN,1, u1) is computed via Lce(e, u) =
2u log (SDNN (e))2(12u) log (12 SDNN (e)). Then, at each

leaf of the recursion, such loss term is computed and added

to the entire training loss L. That is, each time reaching a

leaf, L is updated according to the following rule L = L +
Lce(elogN,i, ui), i * [N ]. In addition, we make the algorithm

more robust by accumulating the loss incurred by bits with

intermediate recurrence depth of 0, 1, . . . , logN 2 1. The loss

L is minimized using stochastic gradient descent.

This procedure is valid for any value of N = 2n, for n * N.

We denote by 2nt the block length that is used in the training

phase. This procedure is illustrated in Fig. 1 and described in

Algorithm 2. The complete algorithm is given in Algorithm 3.

IV. EXPERIMENTS

This section presents the experiments on memoryless chan-

nels and channels with memory. For the case of memoryless

channels, using Algorithm 1, we design a data-driven polar

code for the BSC with parameter p = 0.1 and compare its bit

error rate (BER) with the “vanilla” SC decoder. We choose

the code rate to be R = 0.3, and accordingly, |A| = +RN+,

where +·+ is the floor function. The results are in Fig. 2.

For channels with memory, we design a data-driven polar

code for the Ising channel and compare its BER with the

SC trellis decoder. We apply Algorithm 3 with a code rate

of R = 0.3, and training block length nt = 8. The NNs,

©7 NN,�7NN and SDNN, are parameterized with 3 layers of

50 neurons each. Fig. 2, illustrates the decoding BER of

Algorithm 3 in comparison to the SC trellis decoder [4] on

the Ising channel, and the incurred BER of the effective bit

channels W
(i)
N for the Ising channel for N = 512.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a data-driven algorithm for the design

of polar codes. It demonstrated that estimating the symmetric

capacity of the channel via the MINE or the DINE, for

memoryless channels or channels with memory, respectively,

yields sufficient statistics for the SC decoder. For channels

with memory, we presented an algorithm for the design of an

adapted SC decoder for the sufficient statistics extracted by

the DINE, called NSC. We demonstrated our approach on the

BSC, as an instance of a memoryless channel, and on the Ising

channel, an instance of a channel with memory.

Our next steps would be to extend our methodology, e.g.

for list decoding with cyclic redundancy check [20]. We also

plan to extend our result to design capacity achieving codes

via the Honda and Yamamoto scheme [21].
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