
Numerische Mathematik (2023) 155:83–119
https://doi.org/10.1007/s00211-023-01370-y

Numerische
Mathematik

Precision-aware deterministic and probabilistic error
bounds for floating point summation

Eric Hallman1 · Ilse C. F. Ipsen1

Received: 31 March 2022 / Revised: 25 July 2023 / Accepted: 27 July 2023 /
Published online: 30 August 2023
© Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
We analyze the forward error in the floating point summation of real numbers, for
computations in low precision or extreme-scale problem dimensions that push the
limits of the precision. We present a systematic recurrence for a martingale on a
computational tree, which leads to explicit and interpretable bounds with nonlinear
terms controlled explicitly rather than by big-O terms. Two probability parameters
strengthen the precision-awareness of our bounds: one parameter controls the first
order terms in the summation error, while the second one is designed for control-
ling higher order terms in low precision or extreme-scale problem dimensions. Our
systematic approach yields new deterministic and probabilistic error bounds for three
classes of mono-precision algorithms: general summation, shifted general summation,
and compensated (sequential) summation. Extension of our systematic error analysis
to mixed-precision summation algorithms that allow any number of precisions yields
the first probabilistic bounds for the mixed-precision FABsum algorithm. Numerical
experiments illustrate that the probabilistic bounds are accurate, and that among the
three classes of mono-precision algorithms, compensated summation is generally the
most accurate. As for mixed precision algorithms, our recommendation is to minimize
the magnitude of intermediate partial sums relative to the precision in which they are
computed.

Mathematics Subject Classification 65G99 · 60G42 · 60G50

This research was supported in part by grants DMS-1745654 and DMS-1760374 from the National
Science Foundation, and grant DE-SC0022085 from the Department of Energy.

B Eric Hallman
ehallman@google.com

Ilse C. F. Ipsen
ipsen@ncsu.edu

1 Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-023-01370-y&domain=pdf

84 E. Hallman, I. C. F. Ipsen

1 Introduction

Weanalyze algorithms for the summation sn = x1+· · ·+xn in floating point arithmetic
of n floating-point numbers x1, . . . , xn , and bound the forward error en = ŝn − sn in
the computed sum ŝn in terms of the unit roundoff u.

Our bounds are designed for low precision computations, or extreme-scale problem
dimensions n that push the limits of the arithmetic precision with n > u−1. The idea is
to set up a systematic recurrence for a martingale on a computational tree (Sect. 2.2),
and strengthen its precision-awareness with the help of two probability parameters:
one to control the first order terms in the summation error; and a second one to
control higher order terms which become more influential with increasing problem
dimension or decreasing precision. This precision-aware martingale makes possible
a unified and clean derivation of bounds with explicit non-linear terms in place of
the usual asymptotic big-O terms, for a wide variety of mono- and mixed-precision
summation algorithms.

As an illustration, we derive new deterministic and probabilistic bounds for three
classes of mono-precision algorithms: general summation on a computational tree
(Sect. 2), shifted general summation (Sect. 3), and compensated summation (Sect. 4).
For compensated summation, our bounds imply that third and higher order terms do
not matter, unless the problem dimension n � u−2, in which case the first-order error
terms are likely to have already exceeded the limitations of the precision.

We extend our bounds to mixed-precision summation, allowing any number of pre-
cisions, on a computational tree (Sect. 5). The special case of two precisions leads to
the first probabilistic bounds for the mixed-precision FABsum algorithm [2]. Numer-
ical experiments (Sect. 6) illustrate that the bounds are informative, and that, among
the three classes of mono-precision algorithms, compensated summation is the most
accurate method.

1.1 Contributions

We present systematic derivations for interpretable precision-aware forward error
bounds for summation in mono- and mixed-precision on a computational tree.

Martingales on a computational tree.We present a systematic recurrence for mar-
tingales on a computational tree (Theorem 2.2, Corollary 1), which makes possible a
unified and clean derivation of bounds with explicit non-linear terms in place of the
usual asymptotic big-O terms, for a wide variety of summation algorithms.

Our analysis of summation serves as a model problem for systematic error analyses
of higher level matrix computations in mixed precision [2], or on hardware with wider
accumulators [7].

Precision-aware bounds. Our bounds are exact and hold to all orders. This is
important when the problem dimension exceeds the precision n > u−1; or in low
precision, where asymptotic terms O(u2) in first-order bounds are too large to be
ignored. Precision-awareness is strengthened with two probability parameters: one
for controlling the first order terms in the summation error, and a second one for
controlling the O(u2) terms.

123

Precision-aware deterministic and probabilistic error... 85

General summation on a computational tree.We extend the error bounds in [12, 17]
by customizing them to specific summation algorithms. Rather than depending on the
number of inputs n, our bounds depend primarily on the height h of the computational
tree, which can be much smaller than n, particularly in parallel computations.

We derive a deterministic bound for the summation error en that is proportional
to h u (Theorem 2.1) and a probabilistic bound that is proportional to

√
h u. The

probabilistic bound treats the roundoffs as zero-mean random variables that are mean-
independent (Theorem 2.3, Corollary 2) and employs a novel staggered martingale
approach in the proof.

Shifted summation algorithms. We extend the shifted sequential summation in [2]
to shifted general summation (Algorithm 3.1). We derive probabilistic bounds for
mean-independent roundoffs (Theorem 3.1).

Compensated summation. We derive a recursive expression for the exact error
(Theorem 4.1), an explicit expression for the second-order error (Corollary 3), and
a probabilistic bound (Theorem 4.3) based on our martingale approach. In particular
(Remark 7) we note the discrepancy by a unit roundoff u of existing bounds with ours,

ŝn =
n
∑

k=1

(1 + ρk)xk, |ρk | ≤ 3u + O(nu2).

Mixed precision summation. We present bounds for mixed-precision summation,
in any number of precisions, on a computational tree (Theorem 5.1). The special case
of two precisions yields the first probabilistic bounds (Corollary 4) for the mixed-
precision FABsum algorithm [2]. More generally, we extend the mono-precision
recommendation [11, Sect. 4.2] to mixed-precision (Remark 2): Try to minimize the
magnitude of the intermediate partial sums sk relative to the precision uk in which
they are computed, that is, try to minimize |uksk | for all k.

Table 1 summarizes our contributions compared to recent related papers. In the case
of pairwise summation, the recent paper [8] uses a stronger version of the Azuma-
Hoeffding inequality to derive bounds in terms of the input data xk that are tighter
than our probabilistic bounds by roughly a constant factor of

√
2.

1.2 Modeling roundoff

We assume the inputs xk are floating point numbers, that is, they can be stored exactly
without error; and that the summation produces no overflow or underflow. Let 0 <

u < 1 denote the unit roundoff to nearest.
Individual roundoffs. Apply an operation op ∈ {+,−, ∗, /} to floating point num-

bers x and y. In the absence of underflow or overflow, IEEE floating-point arithmetic
can be interpreted as computing [11]

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u. (1.1)

Our probabilistic bounds treat roundoffs as zero-mean mean-independent random
variables.

123

86 E. Hallman, I. C. F. Ipsen

Table 1 A summary of important features in probabilistic error bounds for summation

All orders Partial sums Mean independent Tree

Higham/Mary [12] �
Ipsen/Zhou [17] �
Higham/Mary [13] � �
Connolly/Higham/Mary [4] � �
El Arar et al. [8] � �
This paper � � � �

Check marks in the four columns highlight the presence of the following features. The bounds: (i) hold to
all orders (‘All Orders’); (ii) are expressed in terms of partial sums sk instead of inputs xk , which makes
them tighter (‘Partial Sums’); (iii) assume mean-independence of roundoffs rather than the stricter notion
of total independence (’Mean Independent’); (iv) apply to algorithms on any computational tree rather than
just sequential summation (‘Tree’)

Probabilistic model for sequences of roundoffs. Assume the summation gener-
ates roundoffs δ2, δ3, . . ., whose labeling is consistent with the partial order of the
underlying algorithm. We treat the δk as zero-mean random variables that are mean
independent1

E[δk |δ2, . . . , δk−1] = E[δk] = 0. (1.2)

Mean-independence (1.2) of roundoff is a weaker assumption than mutual indepen-
dence but stronger than uncorrelated roundoffs [13]. At least one mode of stochastic
rounding [4] produces the mean-independent errors in (1.2), but the stochastic round-
ing error bound |δ| ≤ 2u is weaker than (1.1).

1.3 Probability theory

For the derivation of the probabilistic bounds, we need a martingale, and a concentra-
tion inequality.

Definition 1 (Martingale [25]) A sequence of random variables Z1, . . . , Zn is a mar-
tingale with respect to the sequence X1, . . . , Xn if the following three properties are
satisfied:

1. Zk is a function of X1, . . . , Xk , 1 ≤ k ≤ n,
2. E[|Zk |] < ∞, and
3. E

[

Zk+1|X1, . . . , Xk
] = Zk .

Lemma 1 (Azuma-Hoeffding inequality [26]) Let Z1, . . . , Zn be a martingale as in
Definition 1 and let bk be constants with

|Zk − Zk−1| ≤ bk, 2 ≤ k ≤ n.

1 For simplicity, the conditioning also includes those δ�, 1 ≤ � ≤ k − 1, that are not descendants in the
partial order. With stochastic rounding such δ� are fully independent of δk .

123

Precision-aware deterministic and probabilistic error... 87

Then for any 0 < δ < 1, with probability at least 1 − δ,

|Zn − Z1| ≤
(

n
∑

k=2

b2k

)1/2
√

2 ln(2/δ). (1.3)

If a bound |Zk − Zk−1| ≤ bk is permitted to fail with probability at most η, then a
similar but weaker version of the Azuma-Hoeffding inequality still holds.

Lemma 2 (Relaxed Azuma-Hoeffding inequality [3]) Let Z1, . . . , Zn be a martingale
as in Definition 1. For any 0 < η < 1, let bk be constants so that with probability at
least 1 − η, the following bounds hold simultaneously,

|Zk − Zk−1| ≤ bk, 2 ≤ k ≤ n.

Then for any 0 < δ < 1, with probability at least 1 − (δ + η),

|Zn − Z1| ≤
(

n
∑

k=2

b2k

)1/2
√

2 ln(2/δ).

2 General summation on a computational tree

We recall the algorithm for general summation (Algorithm 2.1); define its compu-
tational tree (Definition 2); derive error expressions and a deterministic error bound
(Sect. 2.1); and at last set up a martingale on the tree (Sect. 2.2).

Algorithm 2.1 General summation [11, Algorithm 4.1]
Input: A set of floating point numbers S = {x1, . . . , xn}
Output: sn = ∑n

k=1 xk
1: for k = 2 : n do
2: Remove two elements x and y from S
3: sk = x + y
4: Add sk to S
5: end for
6: return sn

Denote by sk the exact partial sum, by ŝk the sum computed in floating point
arithmetic, and by ek = ŝk − sk the absolute forward error, 2 ≤ k ≤ n.

Definition 2 (Computational tree for Algorithm 2.1) The partial order of pairwise
sums s2, . . . , sn in Algorithm 2.1 for summing n inputs x1, . . . , xn is represented by
a binary tree with 2n − 1 vertices. Specifically,

• Each vertex represents a pairwise sum sk or an input xk .

123

88 E. Hallman, I. C. F. Ipsen

Fig. 1 Computational trees for two different summation orderings in Algorithm 2.1 for n = 4. Left:
sequential (a.k.a. recursive) summation. Right: pairwise summation

• The root is the final sum sn , and the leaves are the inputs x1, . . . , xn .
• Each pairwise sum sk = x+ y is a vertex with downward edges (sk, x) and (sk, y).
Vertices x and y are the children of sk .

The tree defines a partial ordering. We say j ≺ k if s j is a descendant of sk , and j 	 k
if s j = sk is possible.

• The height of a vertex is the length of the longest downward path from that vertex
to a leaf.

• Leaves have height zero.
• The height of the tree is the height of its root. Sequential summation yields a tree
of height n − 1.

Algorithm 2.1 imposes a topological ordering on the graph: j ≺ k implies that
j < k. Thus if the vertices are visited in the order s2, . . . , sn , no vertex is visited
before its children. Figure1 shows two computational trees, one of height n − 1 for
sequential summation; and another of height
log2 n� for pairwise summation.

To make our bounds as tight as possible, we express them in terms of partial sums.
However, the dependence on the height of the computational tree is more explicit when
the bounds are expressed in terms of the inputs. Below is the translation from partial
sums to inputs.

Lemma 3 (Relation between partial sums and inputs) If h is the height of the compu-
tational tree in Algorithm 2.1, then

n
∑

k=2

|sk | ≤ h
n
∑

j=1

|x j |,
√

√

√

√

n
∑

k=2

s2k ≤ √
h

n
∑

j=1

|x j |.

Proof The first bound follows from the triangle inequality:

n
∑

k=2

|sk | ≤
n
∑

k=2

∑

[x j]≺k

|x j | =
n
∑

j=1

∑

[x j]≺k	n

|x j | ≤ h
n
∑

j=1

|x j |,

123

Precision-aware deterministic and probabilistic error... 89

where [x j] ≺ k means that leaf x j is a descendant of vertex k. The second bound
follows from the first:

n
∑

k=2

s2k ≤ max
2≤ j≤n

|s j |
n
∑

k=2

|sk | ≤
⎛

⎝

n
∑

j=1

|x j |
⎞

⎠

⎛

⎝h
n
∑

j=1

|x j |
⎞

⎠ = h

⎛

⎝

n
∑

j=1

|x j |
⎞

⎠

2

.

�

2.1 Explicit expressions and deterministic bounds for errors on computational
trees

We present two expressions for the error in Algorithm 2.1 (Lemmas 4 and 5), and a
deterministic bound (Theorem 2.1).

We generalize the error for sequential summation in [10, Lemma 3.1] to errors on
computational trees. Expression (4) in Lemma 4 and expression (2.2) are analogs of
[11, (4.2)], but with exact partial sums instead of computed ones.

Lemma 4 (First explicit expression) The error in Algorithm 2.1 equals

en = ŝn − sn =
n
∑

k=2

skδk
∏

k≺ j	n

(1 + δ j), (2.1)

where the product is equal to 1 if k = n.

Proof The proof proceeds by strong induction on n.

• Induction basis: For n = 1, no sums are computed and the error is zero.
• Induction hypothesis: Assume that (2.1) holds for any number of summands less
than n.

• Induction step: Express the computed parent sum in line 3 of Algorithm 2.1 as the
sum of the computed children x̂ = x + ex and ŷ = y + ey ,

ŝn = (̂x + ŷ)(1 + δn)

where ex = 0 if x = xi is an input, and likewise for ey . Use the error in the
computed children,

sn + en = ŝn = ((x + ex) + (y + ey))(1 + δn) = (sn + ex + ey)(1 + δn)

= (ex + ey)(1 + δn) + snδn + sn

to obtain the error in the computed parent

en = (ex + ey)(1 + δn) + snδn .

123

90 E. Hallman, I. C. F. Ipsen

Denote by �(n) and r(n), respectively, the left and right children of the vertex
corresponding to ŝn . Then the induction hypothesis implies

ex =
∑

k	�(n)

skδk
∏

k≺ j	�(n)

(1 + δ j), ey =
∑

k	r(n)

skδk
∏

k≺ j	r(n)

(1 + δ j),

where a sum is empty if the corresponding child is a leaf. Inserting the above
expressions for ex and ey into the expression for en gives

en = snδn + (1 + δn)(ex + ey) = snδn + (1 + δn)
∑

k≺n

skδk
∏

k≺ j≺n

(1 + δ j)

= snδn +
∑

k≺n

skδk
∏

k≺ j	n

(1 + δ j) =
n
∑

k=2

skδk
∏

k≺ j	n

(1 + δ j).

�

Lemma 4 represents the forward error as a sum of local errors at a vertex, each

perturbed by subsequent rounding errors. Truncating (2.1) yields the first order bound

en =
n
∑

k=2

skδk + O(u2), (2.2)

which extends the result for sequential summation [13, Lemma 2.1]. Lemma 4 also
allows us to conveniently obtain a deterministic error bound.

Theorem 2.1 If the computational tree for Algorithm 2.1 has height h, then the error
in Algorithm 2.1 is bounded by

|en| ≤
n
∑

k=2

|sk ||δk |
∏

k≺ j	n

|1 + δ j | ≤ u (1 + u)h
n
∑

k=2

|sk |

≤ h u (1 + u)h
n
∑

j=1

|x j |.

Proof The first bound follows from Lemma 4, while the last bound follows from
Lemma 3. �

Remark 1 A bound [11, (4.3)] similar to the first one in Theorem 2.1,

|en| ≤ u
n
∑

k=2

|̂sk |,

is accompanied by the following recommendation:

123

Precision-aware deterministic and probabilistic error... 91

In designing or choosing a summation method to achieve high accuracy, the aim
should be to minimize the absolute values of the intermediate sums sk .

Reducing the height of the computational tree often helps in this regard. The depen-
dence on the height h is explicitly visible in the second bound of Theorem 2.1.

Remark 2 The error expression in (2.1) still holds for mixed precision. If the rounding
errors satisfy |δk | ≤ uk , 2 ≤ k ≤ n, then with u ≡ maxk uk , the error satisfies

|en| ≤
n
∑

k=2

|sk | uk
∏

k≺ j	n

(1 + u j) =
n
∑

k=2

|sk | uk + O(u2).

Thus we extend the recommendation in [11, Sect. 4.2] to mixed-precision environ-
ments:

In designing a mixed-precision summation method to achieve high accuracy,
the aim should be to minimize the absolute values of the intermediate quantities
skuk .

The FABsum Algorithm 5.1 attempts to do just this by reserving its high-precision
computations for the end, when the intermediate sums sk are likely to have larger
magnitudes.

Remark 3 The sum in (2.1) in Lemma 4 is not a martingale with respect to the errors
δ2, . . . , δn . Since each term skδk is further perturbed by subsequent roundoffs, the sum
of the first k terms is not a function of δ2, . . . , δk .

However, if the roundoffs δ2, . . . , δn are assumed to be fully independent, then the
sum in reverse order is a martingale with respect to δn, . . . , δ2, as noted in [10] for
sequential summation. Unfortunately, this approach does not work under the weaker
assumption of mean independence in (1.2).

Finally, the sum in (2.2) is amartingale in the original ordering under the assumption
of mean independence, but it is accurate only to first order.

The primary contribution of this paper is an expression for the error that overcomes
the obstacles in Remark 3. Section2.2 shows that the sum in Lemma 5 below is a
martingale in the original ordering. Lemma 5 also expresses the error in terms of exact
partial sums, thereby making it more amenable to a probabilistic analysis than the
computed partial sums in en = ∑n

k=2 ŝkδk [11, (4.2)].

Lemma 5 (Second explicit expression) The error in Algorithm 2.1 equals

en = ŝn − sn =
n
∑

j=2

(s j + f j)δ j , (2.3)

where f j = 0 for all vertices both of whose children are leaves. For all other vertices,
the child-errors satisfy the recurrence

fk ≡
∑

j≺k

(s j + f j)δ j , 2 ≤ k ≤ n. (2.4)

123

92 E. Hallman, I. C. F. Ipsen

Proof As in the proof of Lemma 4, express the error in the computed parent sum in
terms of the errors in the computed children,

ek = (ex + ey)
︸ ︷︷ ︸

fk

(1 + δk) + skδk = fk + (sk + fk)δk, 2 ≤ k ≤ n, (2.5)

and unravel the recurrence for fk . �

We refer to the term fk as a child-error, because fk is the sum of the errors in the

computed children at vertex k.

Example 1 A pairwise tree summation for n = 8 illustrates the recurrences for the
child-errors in Lemma 5.

1. Leaves: The exact sums are

s2 = x1 + x2, s3 = x3 + x4, s4 = x5 + x6, s5 = x7 + x8,

while the computed sums are ŝ j = s j + s jδ j with child-errors f j = 0, 2 ≤ j ≤ 5.
2. Intermediate level: The exact sums are s6 = s2 + s3 and s7 = s4 + s5 while the

computed sums are

ŝ6 = (ŝ2 + ŝ3)(1 + δ6) = (s2δ2 + s3δ3)
︸ ︷︷ ︸

f6

(1 + δ6) + s6δ6 + s6

= f6 + (s6 + f6)δ6 + s6,

ŝ7 = (ŝ4 + ŝ5)(1 + δ7) = (s4δ4 + s5δ5)
︸ ︷︷ ︸

f7

(1 + δ7) + s7δ7 + s7

= f7 + (s7 + f7)δ7 + s7.

The child-errors are

f6 = s2δ2 + s3δ3 = (s2 + f2)δ2 + (s3 + f3)δ3 =
∑

j≺6

(s j + f j)δ j ,

f7 = s4δ4 + s5δ5 = (s4 + f4)δ4 + (s5 + f5)δ5 =
∑

j≺7

(s j + f j)δ j .

3. Root: The exact sum is s8 = s6 + s7 while the computed sum is

ŝ8 = (ŝ6 + ŝ7)(1 + δ8)

= (f6 + (s6 + f6)δ6 + f7 + (s7 + f7)δ7)
︸ ︷︷ ︸

f8

(1 + δ8) + s8δ8 + s8

= f8 + (s8 + f8)δ8 + s8,

123

Precision-aware deterministic and probabilistic error... 93

with child-error

f8 = f6 + f7 + (s6 + f6)δ6 + (s7 + f7)δ7

=
5
∑

j=2

(s j + f j)δ j + (s6 + f6)δ6 + (s7 + f7)δ7 =
7
∑

j=2

(s j + f j)δ j .

The total error is

e8 = f8 + (s8 + f8)δ8 =
7
∑

j=2

(s j + f j)δ j + (s8 + f8)δ8 =
8
∑

j=2

(s j + f j)δ j .

2.2 Setting upmartingales on computational trees

We derive a probabilistic bound (Lemma 6) for the child-errors in Lemma 5, followed
by two types of probabilistic bounds for the error in Algorithm 2.1: one in terms
of a recurrence relation (Theorem 2.2, Corollary 1) and a second in closed form
(Theorem 2.3, Corollary 2).

We introduce our first probability parameter η which controls terms of order two
and higher in en , and guarantees, with probability at least 1 − η, that all child errors
| fk | are simultaneously bounded. Below are the key ingredients for the results in this
section, and Sects. 3 and 5.

Definition 3 For a computational tree with n inputs, height h, and summations with
unit roundoff u, define the following quantities.

• L is the number of vertices both of whose children are leaves.
• ñ ≡ n − L − 1 is the number of interior vertices with at least one non-leaf child.
• For 0 < δ < 1, let λδ ≡ √

2 ln(2/δ).
• For 0 < η < 1, let

λñ,η ≡ √

2 ln(2ñ/η) and φñ,h,η ≡ λñ,η

√
2hu exp

(

λ2ñ,ηhu
2
)

.

The quotient ñ/η occurs in a union bound over ñ vertices that simultaneously
bounds all child-errors | fk |, while φñ,h,η appears only in second and higher order
error terms. Specifically, the error bound in Theorem 2.3 is equal to its first order
approximation multiplied by a factor of 1 + φñ,h,η.

Remark 4 We illustrate the potential values of the quantities in Definition 3.

1. The value of λñ,η grows very slowly. If ñ = 4 and η = 1/2 then λñ,η ≈ 2.35. If
ñ = 1010 and η = 10−32 then λñ,η ≈ 13.96.

2. The extreme values of ñ are attained by recursive summation with ñ =
n/2� − 1;
and by sequential summation with ñ = n − 2.
The structure of the tree therefore has almost no impact on λñ,η. To wit, doubling
the value of ñ in item 1 gives λñ,η ≈ 2.63 and λñ,η ≈ 14.01, respectively.

123

94 E. Hallman, I. C. F. Ipsen

3. The value of φñ,h,η becomes significant only if the computational tree is deep
enough so that λñ,η

√
2hu ≈ 1.

Consider single precision with u = 2−24 ≈ 5.96 · 10−8. If the number of interior
vertices is ñ = 1010, the failure probability η = 10−32, and themaximal tree height

h = n − 1, then exp
(

λ2ñ,η
hu2

)

≈ 1.00, and the total contribution of the higher

order terms is merely a factor of 1 + φñ,h,η < 1.12.

The following lemma establishes simultaneous bounds for the child errors in (2.4).

Lemma 6 Abbreviate as in Definition 3, number the interior vertices with two leaf
children by 2, . . . , L + 1, and define

Fk,ñ,η ≡
⎧

⎨

⎩

0 2 ≤ k ≤ L + 1,

λñ,ηu
(

∑

j≺k

(|s j | + Fj,ñ,η

)2
)1/2

L + 2 ≤ k ≤ n.
(2.6)

If the δ j are mean independent as in (1.2), then with probability at least 1 − η, the
n − 1 bounds

| fk | ≤ Fk,ñ,η, 2 ≤ k ≤ n,

hold simultaneously.

Proof This is an induction proof over k and the failure probability η.

• Induction basis 2 ≤ k ≤ L + 1: Since the leaf inputs are exact, fk = 0 in (2.4),
thus | fk | ≤ Fk,ñ,η holds always.

• Induction hypothesis: For k ≥ L + 2, assume that the k − 2 bounds

| f j | ≤ Fj,ñ,η, 2 ≤ j ≤ k − 1

hold simultaneously with probability at least 1 − k−L−2
ñ η.

• Induction step: Move the precedence relation j ≺ k inside the sum, so as to write
the child-error recurrence (2.4) as a contiguous sum,

fk =
k−1
∑

j=2

(s j + f j)δ j1 j≺k . (2.7)

We show that the sequence

Z1 ≡ 0, Zi ≡
i
∑

j=2

(s j + f j)δ j1 j≺i , 2 ≤ i ≤ k − 1,

is a martingale with respect to δ1, . . . , δi−1, by confirming the three properties in
Definition 1.

123

Precision-aware deterministic and probabilistic error... 95

1. According to (2.4) and (2.7), f j is a function of δ1 = 0, δ2, . . . , δ j−1, thus Zi

is a function of δ1, . . . , δi−1, 1 ≤ i ≤ k − 1.
2. The boundedness of the random variables δ j implies deterministic bounds

|Zi | ≤ ζi for appropriate constants ζi , 1 ≤ i ≤ k − 1, which, in turn, implies
finite expectations E[|Zi |] < ∞, 1 ≤ i ≤ k − 1.

3. The dependence of f j on δ1, . . . , δ j−1 also implies

E[Zi+1|δ1, . . . , δi] = E

⎡

⎣

i+1
∑

j=2

(

s j + f j
)

δ j1 j≺i+1

∣

∣

∣ δ1, . . . , δi

⎤

⎦

= E

[

(si+1 + fi+1)δi+11i≺i+1

∣

∣

∣ δ1, . . . , δi

]

+
i
∑

j=2

(s j + f j)δ j1 j≺i

= (si+1 + fi+1)1 j≺i+1E
[

δi+1|δ1, . . . , δi
]+ Zi = Zi ,

where the last equality follows from the mean independence (1.2) of the δ j . The
three properties above confirm that the Zi are indeed a martingale with respect to
δ1, . . . , δi−1.
The induction hypothesis implies that the k − 2 bounds

|Zi − Zi−1| ≤
{

u(|si | + Fi,ñ,η) i ≺ k,

0 i ⊀ k,
2 ≤ i ≤ k − 1,

hold simultaneously with probability at least 1 − k−L−2
ñ η. We now use the fact

that fk = Zk−1 − Z1 = Zk−1 is a martingale in Lemma 2 with δ = η/ñ, and
conclude that the bound

| fk | ≤ λñ,ηu

⎛

⎝

∑

j≺k

(|s j | + Fj,ñ,η)
2

⎞

⎠

1/2

= Fk,ñ,η

holds with probability at least

1 − (k−L−2
ñ η + δ

) = 1 − k−L−1
ñ η.

Therefore the k − 1 bounds | f j | ≤ Fj,ñ,η, 2 ≤ j ≤ k hold simultaneously with
probability at least 1 − k−L−1

ñ η, which concludes the induction.

As a consequence of the induction, the n − 1 bounds | fk | ≤ Fk,ñ,η, 2 ≤ k ≤ n, hold
simultaneously with probability at least 1 − n−L−1

ñ η = 1 − η. �

Finally we are ready to set up a martingale on a computational tree, with a second

probability parameter δ to control the first-order terms in en .

123

96 E. Hallman, I. C. F. Ipsen

Theorem 2.2 Abbreviate as in Definition 3, assume mean independence of the δ j in
(1.2), and define Fj,ñ,η as in (2.6). Then for any 0 < η < 1 and 0 < δ < 1 − η, with
probability at least 1 − (δ + η), the error in Algorithm 2.1 is bounded by

|en| ≤ λδu

⎛

⎝

n
∑

j=2

(|s j | + Fj,ñ,η)
2

⎞

⎠

1/2

. (2.8)

Proof The sequence

Z1 ≡ 0, Zi ≡
i
∑

j=2

(s j + f j)δ j , 2 ≤ i ≤ n,

is a martingale with respect to δ1 = 0, δ2, . . . , δn . Lemma 6 implies that with proba-
bility at least 1− η, the n − 1 bounds | f j | ≤ Fj,ñ,η, 2 ≤ j ≤ n, hold simultaneously.
These bounds, in turn, imply that with probability at least 1− η, the n − 1 martingale
differences are simultaneously bounded by

|Zi − Zi−1| = |(si + fi)δi | ≤ u(|si | + Fi,ñ,η), 2 ≤ i ≤ n.

The bound for the error (2.3) in Lemma 5,

|en| =
∣

∣

∣

∣

∣

n
∑

i=2

(si + fi)δi

∣

∣

∣

∣

∣

≤
n
∑

i=2

|(si + fi)δi | ≤ u
n
∑

i=2

(|si | + Fi,ñ,η)

is the sum of the above martingale differences. Applying Lemma 2 shows that (2.8)
holds with probability at least 1 − (δ + η). �

The next bound holds for every summation algorithm, and represents, to our
knowledge, the first probabilistic bound for an arbitrary summation tree. It simpli-
fies Theorem 2.2 by disposing of the number of vertices with at least one non-leaf
child ñ, and replacing it instead by the total number of vertices n. In the first-order
version, η is absent from the first-order error term, suggesting that its effect on the
overall bound is negligible.

Corollary 1 Abbreviate as in Definition 3, define

F2,n,η ≡ 0, Fk,n,η ≡ λn,ηu

⎛

⎝

∑

j≺k

(|s j | + Fj,n,η)
2

⎞

⎠

1/2

, 3 ≤ k ≤ n,

and assume mean independence of the δ j as in (1.2). Then for any 0 < η < 1 and
0 < δ < 1 − η, with probability at least 1 − (δ + η), the error in Algorithm 2.1 is
bounded by

123

Precision-aware deterministic and probabilistic error... 97

|en| ≤ λδu

⎛

⎝

n
∑

j=2

(|s j | + Fj,n,η)
2

⎞

⎠

1/2

= λδu

√

√

√

√

n
∑

k=2

s2k + O(u2).

Proof The first bound follows from ñ ≤ n, and the second one from Fj,n,η = O(u).
�

A closed-form analogue of the above Theorem 2.2 is Theorem 2.3 below. It shows
that, with high probability, the first-order summation error is proportional to

√
h, where

h is the height of the computational tree. As a consequence, even in a probabilistic
context, summation algorithms based on shallow computational trees are likely to be
more accurate.

Remark 5 We introduce the following novel approach for proving Theorem 2.3.

1. Write the forward errors ek in terms of child-errors fk (see Lemma 5).
2. Express each fk as a martingale in terms of the preceding child-errors, and repeat-

edly use the Azuma-Hoeffding inequality in Lemma 1 to bound all of them
simultaneously with probability at least 1 − η (see Lemma 6).

3. Express the error en as a martingale whose bounds depend on the fk bounds, and
then derive a bound for |en| that holds with probability at least 1 − (η + δ) (see
Theorem 2.2).

4. Simplify the bound through repeated applications of the triangle inequality.

Theorem 2.3 Abbreviate as in Definition 3, and assume mean independence of the δ j
as in (1.2). Then for any 0 < η < 1 and 0 < δ < 1 − η, with probability at least
1 − (δ + η), the error in Algorithm 2.1 is bounded by

|en| ≤ λδu
(

1 + φñ,h,η

)

√

√

√

√

n
∑

k=2

s2k

≤ λδ

√
hu
(

1 + φñ,h,η

)

n
∑

k=1

|xk |.

Proof Apply the 2-norm triangle inequality to the sum in Theorem 2.2,

⎛

⎝

n
∑

j1=2

(|s j1 | + Fj1,ñ,η)
2

⎞

⎠

1/2

≤
√

√

√

√

n
∑

k=2

s2k +
⎛

⎝

∑

j1	n

F2
j1,ñ,η

⎞

⎠

1/2

.

123

98 E. Hallman, I. C. F. Ipsen

Apply the recurrence for Fj,ñ,η from (2.6), followed by the triangle inequality,

⎛

⎝

∑

j1	n

F2
j1,ñ,η

⎞

⎠

1/2

=
⎛

⎝

∑

j1	n

∑

j2≺ j1

λ2ñ,ηu
2(|s j2 | + Fj2,ñ,η)

2

⎞

⎠

1/2

≤ λñ,ηu
√

∑

j2≺ j1	n

s2j2 + λñ,ηu

⎛

⎝

∑

j2≺ j1	n

F2
j2,ñ,η

⎞

⎠

1/2

≤ λñ,ηu

√

(

h

1

)

√

√

√

√

n
∑

k=2

s2k + λñ,ηu

⎛

⎝

∑

j2≺ j1	n

F2
j2,ñ,η

⎞

⎠

1/2

,

where the final inequality follows from the fact that for each index j2, there are at
most h − 1 occurrences of the index j1, thus each partial sum sk appears at most
h − 1 ≤ h times. Repeating this and combining the result with Theorem 2.2 shows
that with probability at least 1 − (δ + η) the error is bounded by

|en| ≤ λδu

⎛

⎝1 +
h
∑

j=1

λ
j
ñ,η

u j

√

(

h

j

)

⎞

⎠

√

√

√

√

n
∑

k=2

s2k . (2.9)

Next, we bound the first sum in (2.9) by a simpler expression. Let z1, . . . , zh be scalars,
and set γ j ≡ 2 j , 1 ≤ j ≤ h. The Cauchy-Schwarz inequality implies

⎛

⎝

h
∑

j=1

z j

⎞

⎠

2

=
⎛

⎝

h
∑

j=1

1√
γ j

· √
γ j z j

⎞

⎠

2

≤
⎛

⎝

h
∑

j=1

1

γ j

⎞

⎠

⎛

⎝

h
∑

j=1

γ j z
2
j

⎞

⎠ ≤
h
∑

j=1

γ j z
2
j .(2.10)

Abbreviate z j ≡ λ
j
ñ,η

u j
√

(h
j

)

and apply (2.10) to the first sum in (2.9),

h
∑

j=1

λ
j
ñ,η

u j

√

(

h

j

)

=
h
∑

j=1

z j ≤
⎛

⎝

h
∑

j=1

2 j z2j

⎞

⎠

1/2

=
⎛

⎝

h
∑

j=1

2 jλ
2 j
ñ,η

u2 j
(

h

j

)

⎞

⎠

1/2

=
√

(1 + 2λ2ñ,η
u2)h − 1 ≤

√

exp
(

2λ2ñ,η
hu2

)

− 1

≤
√

2λ2ñ,η
hu2 exp

(

2λ2ñ,η
hu2

)

= φñ,h,η.

Substituting the above into (2.9) gives the first bound.
The second bound follows from applying Lemma 3 to the first. �

Remark 6 In the special case of sequential summation, Theorem 2.3 is more informa-
tive for a larger n than existing bounds.

123

Precision-aware deterministic and probabilistic error... 99

To see this, consider the following probabilistic bound from [13, Theorem 2.4],

|̂sn − sn| ≤ λδ

√
n − 1u(1 + u)n−2

n
∑

j=1

|x j |,

which is less tight than the first bound in Theorem 2.3. It does agree with the second
bound in Theorem 2.3 to first order, but its quadratic terms are larger by a factor of
roughly

√
n than ours. The difference becomes significant for nu ≈ 1, since (1+u)n−2

grows quickly past this point. In contrast, Remark 4 implies that 1 + φñ,h,η ≈ 1 until
λñ,η

√
2hu ≈ 1.

The simpler bound below holds for all summation algorithms, and like Corollary 1,
depends only on the total number n of inputs.

Corollary 2 Abbreviate as in Definition 3, and assume mean independence of the δ j
as in (1.2). Then for any 0 < η < 1 and 0 < δ < 1 − η, with probability at least
1 − (δ + η), the error in Algorithm 2.1 is bounded by

|en| ≤ λδu
(

1 + φn,h,η

)

√

√

√

√

n
∑

k=2

s2k

≤ λδ

√
hu
(

1 + φn,h,η

)

n
∑

k=1

|xk |.

3 Shifted summation

We present a general algorithm for shifted summation (Algorithm 3.1) that extends
the algorithm for shifted sequential summation in [13], and derive a probabilistic error
bound (Theorem 3.1).

Shifted summation is motivated by work in computer architecture [5, 6] and formal
methods for program verification [24] where not only the roundoffs but also the inputs
are interpreted as random variables sampled from some distribution. Then one can
compute statistics for the total roundoff error and estimate the probability that it is
bounded by tu for a given t .

Probabilistic bounds for random inputs are derived in [13], with improved higher-
order terms in [10], to show that sequential summation is accurate for inputs x j that
are tightly clustered around zero. As a consequence, accuracy can be improved by
shifting the inputs to have zero mean, which is affordable in the context of matrix
multiplication [13, Sect. 4].

Our Algorithm 3.1 extends the shifted algorithm for sequential summation [13,
Algorithm 4.1] to general summation. Its pseudo-code is geared towards exposition,
because in practice one shifts the xk immediately prior to the summation, to avoid
allocating additional storage for yk = xk − c. The ideal choice for centering is the
empirical mean c = sn/n. A simpler approximation is c = (mink xk + maxk xk)/2.

123

100 E. Hallman, I. C. F. Ipsen

Algorithm 3.1 Shifted General Summation
Input: A set of loating point numbers {x1, . . . , xn}; floating point shift c
Output: sn = ∑n

k=1 xk
1: for k = 1 : n do
2: yk = xk − c
3: end for
4: yn+1 = nc
5: tn = output of Algorithm 2.1 applied to {y1, . . . , yn}
6: return sn = tn + yn+1

Fig. 2 Computational tree for
shifted summation of n = 2
inputs. The dotted lines
distinguish the call to Algorithm
2.1 in line 5 of Algorithm 3.1

Error bounds for Algorithm 3.1 follow almost directly from the ones for Algo-
rithm 2.1. Figure2 illustrates a computational tree for n = 2, with 4n+3 vertices, and
height equal to two plus the height of the tree in Algorithm 2.1. The one twist is the
additional multiplication y = nc, but if n and c can be stored exactly then the error
analysis remains the same.2

Theorem 3.1 Abbreviate as in Definition 3, assume mean independence of the δ j as
in (1.2), and define tk as the partial sum of k terms, 1 ≤ k ≤ n, in the application
of Algorithm 2.1 to y1, . . . , yn. Then for any 0 < η < 1 and 0 < δ < 1 − η, with
probability at least 1 − (δ + η), the error in Algorithm 3.1 is bounded by

|en| ≤ λδu
(

1 + φn,h,η

)

√

√

√

√s2n +
n
∑

k=2

t2k +
n+1
∑

k=1

y2k

≤ λδu
(

1 + φn,h,η

)

(

n|c| +
n
∑

k=1

(

|xk | + √
h + 1|xk − c|

)

)

.

Proof The first bound follows from Corollary 2. The factor λn,η ≡ √
2 ln(2n/η)

in φn,h,η appears because the tree for Algorithm 3.1 has at least L = n + 1 vertices,
both of whose children are leaves. Hence ñ ≤ (2n + 1) − (n + 1) = n.

The second bound follows from the first, based on techniques similar to those in
Lemma 3. From the triangle inequality and yn+1 = nc in line 4 of Algorithm 3.1
follows

2 If n does not admit an exact floating point representation, then we could append an additional vertex for
the artificial ‘addition’ n + 0, to induce the rounding of n.

123

Precision-aware deterministic and probabilistic error... 101

√

√

√

√s2n +
n
∑

k=2

t2k +
n+1
∑

k=1

y2k ≤ |sn| + n|c| +
√

√

√

√

n
∑

k=2

t2k +
n
∑

k=1

y2k . (3.1)

We treat the sums under the square root as in the proof of the second bound in Lemma3,

n
∑

k=2

t2k ≤ h

(

n
∑

k=1

|yk |
)2

= h

(

n
∑

k=1

|xk − c|
)2

,

n
∑

k=1

y2k ≤ max
1≤ j≤n

|y j |
n
∑

k=1

|yk | ≤
(

n
∑

k=1

|yk |
)2

=
(

n
∑

k=1

|xk − c|
)2

.

Combine the two bounds above,

√

√

√

√

n
∑

k=2

t2k +
n
∑

k=1

y2k ≤ √
h + 1

n
∑

k=1

|xk − c|,

insert them into (3.1), and merge the bound for |sn| into the resulting sum,

√

√

√

√s2n +
n
∑

k=2

t2k +
n+1
∑

k=1

y2k ≤ n|c| +
n
∑

k=1

(

|xk | + √
h + 1

√|xk − c|
)

.

�

4 Compensated sequential summation

Our approach extends beyond algorithms whose computational graphs are trees, and
we demonstrate its versatility by analyzing the forward error for compensated sequen-
tial summation (Algorithm 4.1). After deriving exact error expressions and bounds that
hold to second order (Sect. 4.1), we derive an exact probabilistic bound (Sect. 4.2).

Algorithm 4.1 Compensated Summation [9, Theorem 8] [20]
Input: A set of floating point numbers {x1, . . . , xn}
Output: sn = ∑n

k=1 xk
1: s1 = x1, c1 = 0
2: for k = 2 : n do
3: yk = xk − ck−1
4: sk = sk−1 + yk
5: ck = (sk − sk−1) − yk
6: end for
7: return sn

123

102 E. Hallman, I. C. F. Ipsen

Algorithm4.1 is the formulation [9, Theorem8] of the ‘KahanSummation Formula’
[20]. We follow [21, page 9–5] and add notation for the computed terms ẑk , to arrive
at our finite precision model

ŝ1 = s1 = x1, ĉ1 = 0, η2 = 0

ŷk = (xk − ĉk−1)(1 + ηk), 2 ≤ k ≤ n

ŝk = (̂sk−1 + ŷk)(1 + σk)

ẑk = (̂sk − ŝk−1)(1 + δk)

ĉk = (̂zk − ŷk) (1 + βk),

(4.1)

The presentation of compensated summation varies slightly across sources. The ver-
sions in [9, 22] align with our Algorithm 4.1, while the correction terms in [11, 20,
21] are the negatives of our ck .

4.1 Second-order deterministic bound

We derive recursions for the child-errors at each vertex (Theorem 4.1) and a second-
order expression for the error Algorithm 4.1 (Corollary 3), and present a comparison
to existing bounds (Remark 7).

We follow the strategy for general summation, and derive an analogue of Lemma 5,
where the recursions (4.4a)–(4.4d) correspond to (2.5), and Theorem 4.1 corresponds
to (2.4). We differentiate among the different types of errors as follows. Single dots
represent individual forward errors,3

ẏk ≡ ŷk − xk, ṡk ≡ ŝk − sk, żk ≡ ẑk − xk, ċk ≡ ĉk, (4.2)

whose exact arithmetic counter parts are yk = zk = xk and ck = 0. Double dots
represent child-errors,

ÿk ≡ −ċk−1, s̈k ≡ ṡk−1 + ẏk, z̈k ≡ ṡk − ṡk−1, c̈k ≡ żk − ẏk . (4.3)

The expressions (4.1) for the computed quantities lead to the forward error recursions

ẏk = (xk + ÿk)ηk + ÿk, (4.4a)

ṡk = (sk + s̈k)σk + s̈k, (4.4b)

żk = (xk + z̈k)δk + z̈k, (4.4c)

ċk = c̈kβk + c̈k . (4.4d)

Now we derive recurrence relations for the child-errors. Fortunately, the recurrences
for ÿk , z̈k , and c̈k are mercifully short, with a length independent of k.

3 The dots do not refer to differentiation!

123

Precision-aware deterministic and probabilistic error... 103

Theorem 4.1 The child-errors in Algorithm 4.1 equal

ÿ2 = 0, s̈2 = 0, z̈2 = s2σ2, c̈2 = (x2 + z̈2)δ2 + s2σ2, (4.5)

and for 3 ≤ k ≤ n,

ÿk = −c̈k−1(1 + βk−1), (4.6a)

s̈k =
k
∑

j=3

(

(x j + ÿ j)η j − c̈ j−1β j−1 − (x j−1 + z̈ j−1)δ j−1

)

, (4.6b)

z̈k = (sk + s̈k)σk + (xk + ÿk)ηk + ÿk, (4.6c)

c̈k = (xk + z̈k)δk + (sk + s̈k)σk . (4.6d)

Proof First, (4.6a) follows directly from (4.3) and (4.4d). Second,

c̈k = żk − ẏk by(4.3)
= (xk + z̈k)δk + z̈k − ẏk by(4.4c)
= (xk + z̈k)δk + ṡk − ṡk−1 − ẏk by (4.3)
= (xk + z̈k)δk + (sk + s̈k)σk + s̈k − (ṡk−1 + ẏk) by(4.4b)
= (xk + z̈k)δk + (sk + s̈k)σk, by (4.3)
which establishes(4.6d).Third,
s̈k = ṡk−1 + ẏk by (4.3)
= s̈k−1 + (sk−1 + s̈k−1)σk−1 + (xk + ÿk)ηk + ÿk by(4.4a), (4.4b)
= s̈k−1 + (sk−1 + s̈k−1)σk−1 + (xk + ÿk)ηk − c̈k−1(1 + βk−1) by(4.6a)

= s̈k−1 + (xk + ÿk)ηk − c̈k−1βk−1 − (xk−1 + z̈k−1)δk−1, by(4.6d)

and unraveling the recurrence yields(4.6b).Finally,
z̈k = ṡk − ṡk−1 by (4.3)
= (sk + s̈k)σk + s̈k − ṡk−1 by(4.4b)
= (sk + s̈k)σk + ẏk by (4.3)
= (sk + s̈k)σk + (xk + ÿk)ηk + ÿk . by(4.4a)

The assumption η2 implies (4.5). �

The expressions below suggest that the errors in the ‘correction’ steps 3 and 5 of

Algorithm 4.1 dominate the first order terms of the summation error.

Corollary 3 Let n ≥ 3. For the expressions in (4.1) define

μk ≡ ηk − δk, 2 ≤ k ≤ n − 1, μn ≡ ηn .

Then the error in Algorithm 4.1 up to second order equals

en = ŝn − sn = ṡn = snσn + (1 + σn)

n
∑

k=2

xkμk −
n−1
∑

k=2

skσk(μk+1 + βk + δk)

123

104 E. Hallman, I. C. F. Ipsen

−
n−1
∑

k=2

xkδk(μk+1 + βk + ηk) + O(u3),

and the computed sum equals

ŝn =
n
∑

k=1

(1 + ρk)xk, |ρk | ≤ 3u + (

4(n − k) + 5
)

u2 + O(u3). (4.7)

Proof The expression for en follows from truncating the expressions for ÿk , z̈k , and
c̈k to first order, and substituting them into (4.6b). The expression (4.7) for ŝn follows
from taking absolute values and bounding |μn| ≤ u (as opposed to |μk | ≤ 2u for
k ≤ n − 1). �

Remark 7 The error bounds for compensated summation have sometimes been mis-
stated in the literature. In contrast to (4.7), [9, Theorem 8], [11, (4.8)] and earlier
printings4 of [22, Exercise 19 in Sect. 4.2.2] state

ŝn =
n
∑

k=1

(1 + ρk)xk where |ρk | ≤ 2u + O(nu2).

It appears that this expression does not properly account for the final error σn . In
comparison, [21, page 9–5] and later printings of [22] correctly state

ŝn − ĉn =
n
∑

k=1

(1 + ρk)xk where |ρk | ≤ 2u + O((n − k)u2).

4.2 Probabilistic bounds

We derive probabilistic bounds for the child-errors in compensated summation
(Lemma 7) and derive a bound on the summation error in terms of the child-error
bounds (Theorem 4.2), which is, however, difficult to interpret. Thus, we express the
child-error bounds mostly in terms of the partial sums (Lemma 8), which leads to an
alternative probabilistic bound (Theorem 4.3).

We start with an analogue of Lemma 6. The default strategy would be to write each
child-error in terms of a martingale involving the previous child-errors, and to bound
them probabilistically with the Azuma-Hoeffding inequality (Lemma 1). Instead, we
found it easier here to bound s̈k via Lemma 1, and then apply the triangle inequality
to ÿk , z̈k , and c̈k .

Lemma 7 Let σ2, δ2, β2, η3, . . ., ηn, σn in (4.1) be mean independent as in (1.2) and
have mean zero. Define

Y2 ≡ 0, S2 ≡ 0, Z2 ≡ u|s2|, C2 ≡ u(|x2| + Z2) + u|s2|, (4.8)

4 An especially alert reviewer discovered that the typo was found in March 2007, as mentioned in the
earliest errata for [22] from January 2011.

123

Precision-aware deterministic and probabilistic error... 105

and5 for 3 ≤ k ≤ n,

Yk ≡ Ck−1(1 + u), (4.9a)

Sk ≡ λn,ηu

⎛

⎝

k
∑

j=3

(

(|x j | + Y j)
2 + C2

j−1 + (|x j−1| + Z j−1)
2
)

⎞

⎠

1/2

, (4.9b)

Zk ≡ u(|sk | + Sk) + u(|xk | + Yk) + Yk, (4.9c)

Ck ≡ u(|xk | + Zk) + u(|sk | + Sk). (4.9d)

For any 0 < η < 1, with probability at least 1 − η, the following bounds hold
simultaneously:

|ÿk | ≤ Yk, |s̈k | ≤ Sk, |z̈k | ≤ Zk, |c̈k | ≤ Ck, 2 ≤ k ≤ n. (4.10)

Proof This is an induction proof over k and the failure probability η.

• Induction basis k = 2: From (4.5) in Theorem 4.1 follows that (4.8) holds deter-
ministically.

• Induction hypothesis: Assume that for 2 ≤ j ≤ k − 1 the bounds (4.10) hold
simultaneously with probability at least 1 − (k − 1)η/n.

• Induction step: The induction hypothesis implies that |c̈k−1| ≤ Ck−1 holds with
probability at least 1 − (k − 1)η/n. From (4.6a), it follows that

|ÿk | = |c̈k−1(1 + βk−1)| ≤ Ck−1(1 + u) = Yk .

We want to write the s̈k in (4.6b) as a martingale with respect to σ2, δ2, β2, η3, . . .,
ηk . However since the latter sequence is roughly 4 times as long as the sequence
of s̈k , we artificially expand the s̈k by introducing a new term for each of the 4
roundoffs in (4.6b), with W (η)

j ≡ s̈ j . Introduce the new terms as the roundoffs
appear by unravelling the expression for s̈k from the back,

W (η)
2 ≡ s̈2 = 0,

W (σ)
j−1 ≡ W (η)

j−1,

W (δ)
j−1 ≡ W (σ)

j−1 − (x j−1 + z̈ j−1)δ j−1, 3 ≤ j ≤ k,

W (β)
j−1 ≡ W (δ)

j−1 − c̈ j−1β j−1,

W (η)
j ≡ W (β)

j−1 + (x j + ÿ j)η j = s̈ j .

We show that the sequence W (σ)
2 , W (δ)

2 , W (β)
2 , W (η)

3 , . . ., W (η)
k is a martingale by

confirming the three properties in Definition 1, with a few details omitted as the
proof is similar to that of Lemma 6.

5 Although the quantities depend on n and η, we omit the subscripts, and simply write Sk instead of Sk,n,η .

123

106 E. Hallman, I. C. F. Ipsen

1. Each W (σ)
j is a function of σ2, δ2, β2, η3, . . ., σ j .

Each W (δ)
j is a function of σ2, δ2, β2, η3, . . ., σ j , δ j .

Each W (β)
j is a function of σ2, δ2, β2, η3, . . ., σ j , δ j , β j .

Each W (η)
j+1 is a function of σ2, δ2, β2, η3, . . ., σ j , δ j , β j , η j+1.

2. The martingale elements are bounded deterministically,

E

[

|W (σ)
j |
]

≤ M, E

[

|W (δ)
j |
]

≤ M, E

[

|W (β)
j |
]

≤ M, E

[

|W (η)
j |
]

≤ M,

where

M ≡ max
1≤i≤k

{|W (σ)
i |, |W (δ)

i |, |W (β)
i |, |W (η)

i |} < ∞.

3. The essential martingale property follows from

E[W (σ)
j | σ2, δ2, β2, η3, . . . , η j] = W (η)

j−1,

E[W (δ)
j | σ2, δ2, β2, η3, . . . , η j , σ j] = W (σ)

j ,

E[W (β)
j | σ2, δ2, β2, η3, . . . , η j , σ j , δ j] = W (δ)

j ,

E[W (η)
j+1| σ2, δ2, β2, η3, . . . , η j , σ j , δ j , β j] = W (β)

j .

Therefore, the sequence W (σ)
k , W (δ)

k , W (β)
k , W (η)

k is a martingale, which in turn
implies that the sequence s̈k is a martingale.
The induction hypothesis hypothesis implies that the bounds

|(x j + ÿ j)η j | ≤ u(|x j | + Y j), 3 ≤ j ≤ k,

|c̈ j−1β j−1| ≤ u C j−1,

|(x j−1 + z̈ j−1)δ j−1| ≤ u(|x j−1| + Z j−1)

all hold simultaneously with probability at least 1 − (k − 1)η/n. These bounds
and the above martingale properties allow us to apply Lemma 2 with δ = η/n to
conclude that |s̈k | ≤ Sk holds with probability at least 1 − η/n − (k − 1)η/n =
1 − kη/n.
From (4.6c) and (4.6d) follows |z̈k | ≤ Zk and |c̈k | ≤ Ck .

�

The following probabilistic bound expresses the error in compensated summation

in terms of the bounds for child-errors.

Theorem 4.2 Letσ2, δ2,β2,η3, . . .,ηn, σn in (4.1), (4.2) and (4.3) bemean independent
as in (1.2) and have mean zero. Let the bounds Y j , S j , Z j , C j , 2 ≤ j ≤ n, be defined
as in Lemma 7. Then for any 0 < η < 1, and 0 < δ < 1− η, with probability at least

123

Precision-aware deterministic and probabilistic error... 107

1 − (δ + η), the error in Algorithm 4.1 is bounded by

|en| ≤ λδu

(

(|sn| + Sn)
2 +

n
∑

j=3

(

(|x j | + Y j)
2 + C2

j−1 + (|x j−1| + Z j−1)
2
)

)1/2

.

Proof From en = ṡn , (4.6b) and (4.4b), it follows that

en = (sn + s̈n)σn +
n
∑

j=3

(x j + ÿ j)η j −
n
∑

j=3

c̈ j−1β j−1 −
n
∑

j=3

(x j−1 + z̈ j−1)δ j−1.

Apply Lemma 7 to bound the magnitude of the summands with probability at least
1 − η, and apply Lemma 2 with additional probability δ, and the ordering δ2, β2, η3,
δ3, . . ., ηn−1, σn for the martingale. This derivation mirrors the proof of Theorem 2.2
which relies on Lemma 6 to bound the magnitude of the summands in the martingale.

�

Compared to Theorem 2.2, the many interacting terms make Theorem 4.2 difficult
to interpret. The simplest approach at this point would be to truncate the bounds Sk ,
Yk , Zk , Ck so that the overall bound still holds to second order –or higher, if desired.

However, based on Lemma 8 and Theorem 4.3, we are able to derive a bound that
holds to all orders, at the cost of a more complicated proof. Consequently we derive
an alternative bound in the same manner as before, alternating between the triangle
inequality and the following bound.

Lemma 8 Assume that 0 < u < 1 satisfies u(1 + u2) < 1. Then there is a constant
α = √

6 + O(u), so that the quantities in Lemma 7 can be bounded by

⎛

⎝

k
∑

j=3

(

Y 2
j + C2

j−1 + Z2
j−1

)

⎞

⎠

1/2

≤ α u

⎛

⎝

k−1
∑

j=2

(|s j | + |x j | + S j)
2

⎞

⎠

1/2

, 3 ≤ k ≤ n.

Proof The precise value of α is derived in the Appendix 1. �

Our last bound for compensated summation is expressed in terms of partial sums
and inputs.

123

108 E. Hallman, I. C. F. Ipsen

Theorem 4.3 Let σ2, δ2, β2, η3, . . ., ηn, σn be mean independent as in (1.2) and have
mean zero. For any 0 < η < 1, and 0 < δ < 1−η, with probability at least 1−(δ+η),
the error in Algorithm 4.1 is bounded by

|en| ≤ λδu

⎛

⎝|sn| + γ (
√
2 + αu)

√

√

√

√

n
∑

k=2

x2k + γαu

√

√

√

√

n
∑

k=2

s2k

⎞

⎠

≤ λδu
(

1 + √
2 + √

6(
√
n + 1)u

)
n
∑

k=1

|xk | + O(u3),

where

α ≡
√

1 + 3(1 + u)2 + 2(1 + u)4

1 − u(1 + u)2
= √

6 + O(u),

γ ≡
√

1 + λ2n,ηu
2
(

1 + λn,ηα
√
2nu2 exp

(

λ2n,ηα
2nu4

))

= 1 + O(u2).

Proof With en = ṡn , abbreviate the summands in Theorem 4.2 and (4.9b) by

R j ≡
(

(|x j | + Y j)
2 + C2

j−1 + (|x j−1| + Z j−1)
2
)1/2

, 3 ≤ j ≤ n.

We treat
∑n

j=3 R
2
j as a two-norm and apply the following inequality to the vectors x ,

y, z, and w,

(

‖x + y‖22 + ‖x + z‖22 + ‖w‖22
)1/2 =

∥

∥

∥

∥

∥

∥

⎡

⎣

x
x
0

⎤

⎦+
⎡

⎣

y
z
w

⎤

⎦

∥

∥

∥

∥

∥

∥

2

≤ √
2 ‖x‖2 +

∥

∥

∥

∥

∥

∥

⎡

⎣

y
z
w

⎤

⎦

∥

∥

∥

∥

∥

∥

2

.

followed by Lemma 8, two triangle inequalities, and the definition of S j ,

⎛

⎝

n
∑

j=3

R2
j

⎞

⎠

1/2

≤ √
2

(

n
∑

k=2

x2k

)1/2

+
⎛

⎝

n
∑

j=3

(

Y 2
j + C2

j−1 + Z2
j−1

)

⎞

⎠

1/2

≤ √
2

(

n
∑

k=2

x2k

)1/2

+ αu

⎛

⎝

n−1
∑

j=2

(|s j | + |x j | + S j)
2

⎞

⎠

1/2

≤ √
2

(

n
∑

k=2

x2k

)1/2

+ αu

(

n
∑

k=2

(|sk | + |xk |)2
)1/2

+ αu

⎛

⎝

n−1
∑

j=3

S2j

⎞

⎠

1/2

≤ (
√
2 + αu)

(

n
∑

k=2

x2k

)1/2

+ αu

√

√

√

√

n
∑

k=2

s2k + λαu2

⎛

⎝

∑

j< j1≤n

R2
j

⎞

⎠

1/2

.

123

Precision-aware deterministic and probabilistic error... 109

Proceed as in the proof of Theorem 2.3,

⎛

⎝

n
∑

j=3

R2
j

⎞

⎠

1/2

≤
⎛

⎝

n
∑

j=0

(λn,ηαu
2) j

√

(

n

j

)

⎞

⎠

⎛

⎝(
√
2 + αu)

√

√

√

√

n
∑

k=2

x2k + αu

√

√

√

√

n
∑

k=2

s2k

⎞

⎠ ,

(4.11)

where

n
∑

j=1

(λn,ηαu
2) j

√

(

n

j

)

≤ λn,ηα
√
2nu2 exp

(

λ2n,ηα
2nu4

)

. (4.12)

From Theorem 4.2; the inequality (a + b)2 + c2 ≤ (a + √
b2 + c2)2 for a, b, c ≥ 0;

and the definition of Sn in (4.9b) follows

|ṡn| ≤ λδu

⎛

⎝(sn + Sn)
2 +

n
∑

j=3

R2
j

⎞

⎠

1/2

≤ λδu|sn| + λδu

⎛

⎝S2n +
n
∑

j=3

R2
j

⎞

⎠

1/2

= λδu|sn| + λδu
√

1 + λ2n,ηu
2

⎛

⎝

n
∑

j=3

R2
j

⎞

⎠

1/2

.

Combine this with (4.11) and (4.12). �

Note that γ ≈ 1 as long as λn,ηu � 1 and λn,ηα

√
2nu2 � 1.

5 Mixed precision

Mixed-precision algorithms aim to do as much of the computation as possible in a
lower precision without significantly degrading the accuracy of the computed result
[1, 14]. We extend Corollaries 1 and 2 to any number of precisions (Theorems 5.1
and 5.2), present the first probabilistic error bounds for the mixed precision FABsum
algorithm (Corollary 4), and end with a heuristic for designing mixed-precision algo-
rithms (Remark 2).

The FABsum summation algorithm [2, Algorithm 3.1] computes the sum sn =
x1 + · · · + xn in two stages. First, it splits the inputs into blocks of b numbers, and
sums each block with a fast summation algorithm, say in low precision. Second, it
sums the results with an accurate summation algorithm, say in high precision or with
compensated summation. We extend our approach to mixed precision, and derive the
first rigorous probabilistic error bounds for FABsum. Our computational model is very
general, so that, in theory, each operation can be evaluated in a different precision.

Probabilistic model for sequences of roundoffs in mixed precision.We extend (1.2),
which models roundoffs δk as mean independent random variables with mean zero

123

110 E. Hallman, I. C. F. Ipsen

by addtionally allowing each δk to be a roundoff in a different precision uk , that is,
|δk | ≤ uk , 1 ≤ k ≤ n.

Definition 4 Given amixed-precision computational tree with n summands and height
h. Let

• u ≡ max1≤k≤n uk be the coarsest among all precisions;
• h̃k ≡ 1

u2
∑

k≺�	n u
2
� be the weighted depth of node k;

• h̃ ≡ max2≤k≤n h̃k be the weighted height of the tree, with 1 ≤ h̃ ≤ h.

Below is an immediate extension of Corollary 1 to mixed precision.

Theorem 5.1 Abbreviate as in Definitions 3 and 4, assume mean independence of
the δ j as in (1.2), and define

F2,n,η ≡ 0, Fk,n,η ≡ λn,η

⎛

⎝

∑

j≺k

u2j
(|s j | + Fj,n,η

)2

⎞

⎠

1/2

, 3 ≤ k ≤ n.

Then for any 0 < η < 1 and 0 < δ < 1− η, with probability at least 1− (δ + η), the
error in the mixed precision version of Algorithm 2.1 is bounded by

|en| ≤ λδ

⎛

⎝

n
∑

j=2

u2j (|s j | + Fj,n,η)
2

⎞

⎠

1/2

.

Next is the extension of Corollary 2 to mixed precision, for which we derive a
closed-form error bound with the same approach as in the proof of Theorem 2.3.

Theorem 5.2 Abbreviate as in Definitions 3 and 4, and assume mean independence
of the δ j as in (1.2). Then for any 0 < η < 1 and 0 < δ < 1 − η, with probability at
least 1− (δ +η), the error in the mixed precision version of Algorithm 2.1 is bounded
by

|en| ≤ λδ

(

1 + φn,h̃,η

)

√

√

√

√

n
∑

k=2

u2ks
2
k

≤ λδ

√

h̃u
(

1 + φn,h̃,η

)
n
∑

k=1

|xk |.

Proof Define

Tk, j ≡
⎛

⎝

∑

k≺�1≺···≺� j	n

(u�1 · · · u� j)
2

⎞

⎠

1/2

, 2 ≤ k ≤ n. (5.1)

123

Precision-aware deterministic and probabilistic error... 111

Repeated application of the two-norm triangle inequality to the bound in Theorem 5.2
implies that

|en| ≤ λδ

⎛

⎝

(

n
∑

k=2

u2ks
2
k

)1/2

+
h
∑

j=1

λ
j
n,η

(

n
∑

k=2

T 2
k, j u

2
ks

2
k

)1/2
⎞

⎠ (5.2)

holds with probability at least 1 − (δ + η).
We illustrate the derivation of (5.2) by presenting the first two steps. Although the

precisions uk are arbitrary, intuitively one can think of the j th summand representing
the j th order term in the error expression. Start with the bound in Theorem 5.2, apply
the triangle inequality, insert the expression for Fj,n,η from Theorem 5.1, and apply
the triangle inequality again,

1

λδ

|en | ≤
⎛

⎝

n
∑

j=2

u2j (|s j | + Fj,n,η)
2

⎞

⎠

1/2

≤
⎛

⎝

n
∑

j=2

u2j s
2
j

⎞

⎠

1/2

+
⎛

⎝

n
∑

j=2

u2j F
2
j,n,η

⎞

⎠

1/2

=
⎛

⎝

n
∑

j=2

u2j s
2
j

⎞

⎠

1/2

+ λn,η

⎛

⎝

n
∑

j=2

u2j
∑

k≺ j

u2k(|sk | + Fk,n,η)
2

⎞

⎠

1/2

≤
⎛

⎝

n
∑

j=2

u2j s
2
j

⎞

⎠

1/2

+ λn,η

⎛

⎝

n
∑

j=2

u2j
∑

k≺ j

u2ks
2
k

⎞

⎠

1/2

+ λn,η

⎛

⎝

n
∑

j=2

u2j
∑

k≺ j

u2k F
2
k,n,η

⎞

⎠

1/2

.

In the second summand, we swap the sums and apply abbreviation (5.1),

λn,η

⎛

⎝

n
∑

j=2

u2j
∑

k≺ j

u2ks
2
k

⎞

⎠

1/2

= λn,η

⎛

⎝

n
∑

k=2

u2ks
2
k

∑

k≺ j≺n

u2j

⎞

⎠

1/2

= λn,η

(

n
∑

k=2

T 2
k,1u

2
ks

2
k

)1/2

.

If all precisions are equal to u, then Tk, j ≤ u j
√

(h
j

)

as in the proof of Theorem 2.3.
Now apply the Cauchy-Schwarz inequality (2.10) as before and swap the order of

summation,

h
∑

j=1

λ
j
n,η

(

n
∑

k=2

T 2
k, j u

2
ks

2
k

)1/2

≤
⎛

⎝

h
∑

j=1

2 jλ
2 j
n,η

n
∑

k=2

T 2
k, j u

2
ks

2
k

⎞

⎠

1/2

=
⎛

⎝

n
∑

k=2

⎛

⎝

h
∑

j=1

2 jλ
2 j
n,ηT

2
k, j

⎞

⎠ u2ks
2
k

⎞

⎠

1/2

.

(5.3)

123

112 E. Hallman, I. C. F. Ipsen

With h̃k ≡ ∑

k≺�	n u
2
� being theweighted depth of node k, the inner sums are bounded

by

h
∑

j=1

2 jλ
2 j
n,ηT

2
k, j =

∏

k≺�	n

(1 + 2λ2n,ηu
2
�) − 1, 2 ≤ k ≤ n

≤ exp
(

2λ2n,ηh̃k
)

− 1 ≤ 2λ2n,ηh̃k exp
(

2λ2n,ηh̃k
)

.

Insert the bounds h̃k ≤ h̃ into (5.3),

h
∑

j=1

λ
j
n,η

(

n
∑

k=2

T 2
k, j u

2
ks

2
k

)1/2

≤ λn,η

√

2h̃ exp
(

λ2n,ηh̃
)

√

√

√

√

n
∑

k=2

u2ks
2
k ,

and combine this inequality with (5.2). �

Example 2 Consider recursive summation with n = 4 and k = 2. Then

1 +
n
∑

j=1

2 jλ
2 j
n,ηT

2 j
k, j = 1 +

n
∑

j=1

2 jλ
2 j
n,η

∑

k<�1<···<� j≤4

(u�1 · · · u� j)
2

= 1 + 2λ2n,η(u
2
3 + u24) + 4λ4n,ηu

2
3u

2
4

= (1 + 2λ2n,ηu
2
3)(1 + 2λ2n,ηu

2
4)

= 1 +
∏

k<�≤4

(1 + 2λ2n,ηu
2
�).

Note that Tk, j �= 0 for j = 1, 2 only. In general, Tk,h = 0, 2 ≤ k ≤ n.

What follows is the first rigorous probabilistic error bound for the mixed-precision
version of FABsum [2] in Algorithm 5.1, which makes use of only two different
precisions.

Algorithm 5.1Mixed-precision FABsum
Input: Set of floating point numbers x1, . . . , xn ; block size b; precisions ulo, uhi
Output: sn = ∑n

k=1 xk
1: for k = 1 :
n/b� do
2: sk = output of Algorithm 2.1 applied to {x(k−1)b+1, . . . , xmin{kb,n}} in precision ulo
3: end for
4: sn = output of Algorithm 2.1 applied to {s1, . . . , s
n/b�} in precision uhi

Corollary 4 Abbreviate as in Definitions 3 and 4, and assume mean independence of
the δ j as in (1.2). In Algorithm 5.1, let hlo be the maximum tree height in all low-
precision calls to Algorithm 2.1, and hhi the sub-tree height in the high-precision call

123

Precision-aware deterministic and probabilistic error... 113

to Algorithm 2.1. Then for any 0 < η < 1 and 0 < δ < 1 − η, with probability at
least 1 − (δ + η), the error in Algorithm 5.1 is bounded by

|en| ≤ λδ

√

h̃ulo
(

1 + φn,h̃,η

)
n
∑

k=1

|xk |

with weighted tree height h̃ ≡ hlo +
(

uhi
ulo

)2
hhi.

Proof This follows directly from the second bound in Theorem 5.2, which contains
the coarsest precision

u ≡ max
1≤k≤n

uk = max{ulo, uhi} = ulo. (5.4)

According to Definition 4, the weighted tree height is

h̃ = 1
u2lo

(

u2lohlo + u2hihhi
)

= hlo +
(

uhi
ulo

)2
hhi.

�

6 Numerical experiments

After describing the setup, we present numerical experiments for sequential and pair-
wise summation (Sect. 6.1), shifted summation (Sect. 6.2), compensated summation
(Sect. 6.3), and mixed-precision FABSum (Sect. 6.4).

Experiments are performed inMATLABR2022a, with the following unit roundoffs
(implied by IEEE arithmetic [16]):

• Half precision u = 2−11 ≈ 4.88 · 10−4.
• Single precision uhi = 2−24 ≈ 5.96 · 10−8 as the high precision in FABsum
Algorithm 5.1.

• Double precision u = 2−53 ≈ 1.11 · 10−16 for ‘exact’ computation.

Experiments plot errors from two rounding modes: round-to-nearest and stochastic
rounding as implemented with chop [15].

The summands xk are independent uniform [0, 1] random variables. The plots show
relative errors |ŝn − sn|/|sn| versus n, for 100 ≤ n ≤ 105. We choose relative errors
rather than absolute errors to allow for meaningful calibration: Relative errors ≤ u
indicate full accuracy; while relative errors ≥ .5 indicate zero digits of accuracy.

For probabilistic bounds, the combined failure probability is δ +η = 10−2 +10−3,
hence λδ ≈ 3.26. For n = 105 and h = n − 1 we get λn,η ≈ 6.2. In half precision the
higher-order errors, 1 + φn,h,η ≈ 4.4, have a non-negligible effect on our bounds.

123

114 E. Hallman, I. C. F. Ipsen

6.1 Sequential and pairwise summation

Figure3 shows the errors in half precision from Algorithm 2.1 for sequential sum-
mation in one panel, and for pairwise summation in another panel, along with the
deterministic bounds from Theorem 2.1,

|en| ≤ u (1 + u)h
n
∑

k=2

|sk | (6.1)

≤ h u (1 + u)h
n
∑

j=1

|x j |, (6.2)

and the probabilistic bounds from Corollary 2,

|en| ≤ λδu
(

1 + φn,h,η

)

√

√

√

√

n
∑

k=2

s2k (6.3)

≤ λδ

√
hu
(

1 + φn,h,η

)

n
∑

k=1

|xk |. (6.4)

Sequential summation. The bounds (6.1) and (6.3) remain within a factor of 2 of
(6.2) and (6.4), respectively. Although the higher-order error terms 1+φn,h,η represent
only a small part of the error bounds, they may still be pessimistic, as the bounds curve
upwards for large n, while the actual errors increase more slowly.

The reason may be the distribution of floating point numbers: spacing between
consecutive numbers is constant within each interval [2t , 2t+1], so a roundoff δk is
affected by previous errors primarily if �log2(ŝk)� �= �log2(sk)�. Some analyses have
derived deterministic error bounds for summation that do not contain second-order
terms [18, 19, 23, 27], and perhaps a more careful analysis could do the same for prob-
abilistic bounds. Our bounds otherwise accurately describe the behavior of stochastic
rounding, but round-to-nearest suffers from stagnation for larger problem sizes.

Pairwise summation. The bound (6.4) grows proportional to
√

log2(n), while (6.3)
remains essentially constant. The behavior of (6.3) may be due to the monotonically
increasing partial sums for uniform [0, 1] inputs, where the final sum is likely to
dominate all previous partial sums, (

∑n
k=2 s

2
k)

1/2 = O(sn). This suggests that pairwise
summation of uniform [0, 1] inputs is highly accurate. The constant bound accurately
describes the behavior of the error under stochastic rounding, but not round-to-nearest.
We are not sure of the exact reason for the difference in behavior between the two.

6.2 Shifted summation

For shifted summation we use the empirical mean of two extreme summands, c =
(mink xk + maxk xk)/2, due to the uniform [0, 1] distribution of the data.

123

Precision-aware deterministic and probabilistic error... 115

Fig. 3 Relative errors in half precision for sequential summation (left) and pairwise summation (right) ver-
sus number of summands n. The symbol (+) indicates round-to-nearest (RTN), and (×) indicates stochastic
rounding (SR). Horizontal line indicates unit roundoff u = 2−11, and remaining points indicate determin-
istic bounds (6.1) and (6.2) and probabilistic bounds (6.3) and (6.4)

Fig. 4 Relative errors in half precision for shifted sequential summation (left) and shifted pairwise sum-
mation (right) versus number of summands n. The symbol (+) indicates round-to-nearest (RTN), and (×)
indicates stochastic rounding (SR). Horizontal line indicates unit roundoff u = 2−11, and remaining points
indicate probabilistic bounds (6.5) and (6.6)

Figure4 shows the errors in half precision fromAlgorithm 3.1 for shifted sequential
summation and shifted pairwise summation, along with the probabilistic bounds from
Theorem 3.1,

|en| ≤ λδu
(

1 + φn,h,η

)

√

√

√

√s2n +
n
∑

k=2

t2k +
n+1
∑

k=1

y2k (6.5)

≤ λδu
(

1 + φn,h,η

)

(

n|c| +
n
∑

k=1

(|xk | + √
h + 1|xk − c|)

)

. (6.6)

A comparison with Fig. 3 shows that shifting reduces both the actual errors and the
bounds. Errors are on the order of unit roundoff, in all cases: round-to-nearest and
stochastic rounding, and sequential and pairwise summation.

123

116 E. Hallman, I. C. F. Ipsen

Fig. 5 Relative errors in half precision for compensated summation (left) andmixed precisionwith FABsum
with high precision uhi = 2−24 (right) versus number of summands n. The symbol (+) indicates round-to-
nearest (RTN), and (×) indicates stochastic rounding (SR). Horizontal line indicates unit roundoff ulo =
2−11, and remaining points indicate bounds (6.7)–(6.10) (left) and (6.11)–(6.13) (right)

6.3 Compensated summation

The first panel in Fig. 5 shows the errors in half precision for Algorithm 4.1 for 102 ≤
n ≤ 107 summands6, along with deterministic bounds derived from Corollary 3,

|en| ≤ u|sn| + 2u(1 + 3u)

n
∑

k=2

|xk | + 4u2
n−1
∑

k=2

|sk | + O(u3) (6.7)

≤ (3u + (4n − 2)u2)
n
∑

k=1

|xk | + O(u3), (6.8)

and the probabilistic bounds from Theorem 4.3,

|en| ≤ λδu

⎛

⎝|sn| + γ (
√
2 + αu)

√

√

√

√

n
∑

k=2

x2k + γαu

√

√

√

√

n
∑

k=2

s2k

⎞

⎠ (6.9)

≤ λδu
(

1 + √
2 + √

6(
√
n + 1)u

)
n
∑

k=1

|xk | + O(u3). (6.10)

The probabilistic bounds (6.9) and (6.10) track the error behavior accurately, with
(6.9) even capturing the correct order of magnitude. This also illustrates the higher
accuracy of bounds involving partial sums.

6.4 Mixed-precision FABsum summation

The second panel of Fig. 5 shows the errors for Algorithm 5.1 with ulo = 2−11 ≈
4.44 · 10−4, uhi = 2−24 ≈ 5.96 · 10−8, block size b = 32 and 102 ≤ n ≤ 107

6 Our simulation of half-precision ignores the range restriction realmax = 65504.

123

Precision-aware deterministic and probabilistic error... 117

summands, where each internal call to Algorithm 2.1 uses sequential summation. We
also plot the deterministic first-order bound from [2, Eqn. 3.5],

|en| ≤ bu
n
∑

k=1

|xk | + O(u2), (6.11)

and the probabilistic bounds derived from Theorem 5.2,

|en| ≤ λδ

(

1 + φn,h̃,η

)

√

√

√

√

nlo
∑

k=2

u2los
2
k +

n
∑

k=nlo+1

u2his
2
k (6.12)

≤ λδ

√

h̃ulo
(

1 + φn,h̃,η

)
n
∑

k=1

|xk |, (6.13)

where h̃ = (b − 1) + (
n/b� − 1)(uhi/ulo)2 and nlo = n −
n/b� + 1. Errors are on
the order of unit roundoff for round-to-nearest. We were surprised to observe that for
stochastic rounding, errors fell to more than an order of magnitude below unit roundoff
for large problem sizes. This behavior is correctly predicted by the bound in terms of
the partial sums (6.12) but not the bound in terms of the inputs (6.13), demonstrating
the importance of error expressions involving the partial sums.

Acknowledgements We are greatly indebted to Claude-Pierre Jeannerod for his many helpful suggestions
that improved the paper, and to the two reviewers for their unusually careful and constructive reading of
the paper. We also thank Johnathan Rhyne for helpful discussions.

A Proof of Lemma 8

Define β ≡ u(1 + u)2 and

ωk ≡ |sk | + |xk | + Sk, 2 ≤ k ≤ n − 1. (A.1)

By assumption, β < 1. Lemma 7 implies

Zk = uωk + (1 + u)Yk = uωk + (1 + u)2Ck−1, 3 ≤ k ≤ n − 1 (A.2)

Ck = uωk + uZk = u(1 + u)ωk + βCk−1, (A.3)

where Z2 ≤ uω2 and C2 ≤ u(1 + u)ω2. For 3 ≤ k ≤ n, define the vectors

ck ≡ [

Ck−1 · · · C2
]T

, zk ≡ [

Zk−1 . . . Z2
]T

, wk ≡ [

ωk−1 . . . ω2
]T

.

From (A.3) follows the componentwise inequality

ck ≤ u(1 + u)wk + βUck,

123

118 E. Hallman, I. C. F. Ipsen

whereU is an upper shift matrix. Solving for ck gives another componentwise inequal-
ity with a unit upper triangular matrix I − βU,

ck ≤ u(1 + u)(I − βU)−1wk,

and a bound

‖ck‖2 ≤ u(1 + u)‖(I − βU)−1wk‖2 ≤ u(1+u)
1−β

‖wk‖2.

The bound for ‖zk‖2 follows from (A.2) and the definition of β,

‖zk‖2 ≤ u‖wk‖2 + (1 + u)2‖ck‖2 ≤ u(2+2u+u2)
1−β

‖wk‖2.

Finally, from Yk = (1 + u)Ck−1 follows the Frobenius norm bound

⎛

⎝

k
∑

j=3

(

Y 2
j + C2

j−1 + Z2
j−1

)

⎞

⎠

1/2

= ∥

∥

[

(1 + u)ck ck zk
]∥

∥

F ≤ αu‖wk‖2,

where the higher order terms in α follow from the Taylor series expansion (1−β)−2 =
1 + 2u + O(u2),

α2 = 1 + 3(1 + u)2 + 2(1 + u)4

(1 − β)2
= 6 + 26u + O(u2).

References

1. Abdelfattah, A., Anzt, H., Boman, E.G., Carson, E., Cojean, T., Dongarra, J., Fox, A., Gates, M.,
Higham, N.J., Li, X.S., et al.: A survey of numerical linear algebra methods utilizing mixed-precision
arithmetic. Int. J. High Perform. Comput. Appl. 35(4), 344–369 (2021)

2. Blanchard, P., Higham, N.J., Mary, T.: A class of fast and accurate summation algorithms. SIAM J.
Sci. Comput. 42(3), A1541–A1557 (2020)

3. Chung, F., Lu, L.: Concentration inequalities and martingale inequalities: a survey. Internet Math. 3(1),
79–127 (2006)

4. Connolly, M.P., Higham, N.J., Mary, T.: Stochastic rounding and its probabilistic backward error
analysis. SIAM J. Sci. Comput. 43(1), A566–A585 (2021)

5. Constantinides, G., Dahlqvist, F., Rakamaric, Z., Salvia, R.: Rigorous roundoff error analysis of prob-
abilistic floating-point computations (2021). ArXiv:2105.13217

6. Dahlqvist, F., Salvia, R., Constantinides, G.A.: A probabilistic approach to floating-point arithmetic
(2019). ArXiv:1912.00867

7. Demmel, J., Hida, Y.: Accurate and efficient floating point summation. SIAM J. Sci. Comput. 25(4),
1214–1248 (2003/04)

8. El Arar, E.M., Sohier, D., de Oliveira Castro, P., Petit, E.: Bounds on non-linear errors for variance
computation with stochastic rounding (2023). ArXiv:2304.05177

9. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACMCom-
put. Surv. 23(1), 5–48 (1991)

10. Hallman, E.: A refined probabilistic error bound for sums (2021). ArXiv:2104.06531
11. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

123

http://arxiv.org/abs/2105.13217
http://arxiv.org/abs/1912.00867
http://arxiv.org/abs/2304.05177
http://arxiv.org/abs/2104.06531

Precision-aware deterministic and probabilistic error... 119

12. Higham, N.J., Mary, T.: A new approach to probabilistic rounding error analysis. SIAM J. Sci. Comput.
41(5), A2815–A2835 (2019)

13. Higham, N.J., Mary, T.: Sharper probabilistic backward error analysis for basic linear algebra kernels
with random data. SIAM J. Sci. Comput. 42(5), A3427–A3446 (2020)

14. Higham, N.J., Mary, T.: Mixed precision algorithms in numerical linear algebra. Acta Numer. 31,
347–414 (2022)

15. Higham, N.J., Pranesh, S.: Simulating low precision floating-point arithmetic. SIAM J. Sci. Comput.
41(5), C585–C602 (2019)

16. IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2008
(2019). http://ieeexplore.ieee.org/document/4610935

17. Ipsen, I.C.F., Zhou, H.: Probabilistic error analysis for inner products. SIAM J. Matrix Anal. Appl.
41(4), 1726–1741 (2020)

18. Jeannerod, C.P., Rump, S.M.: Improved error bounds for inner products in floating-point arithmetic.
SIAM J. Matrix Anal. Appl. 34(2), 338–344 (2013)

19. Jeannerod, C.P., Rump, S.M.: On relative errors of floating-point operations: optimal bounds and
applications. Math. Comput. 87(310), 803–819 (2018)

20. Kahan, W.: Further remarks on reducing truncation errors. Commun. ACM 8(1), 40 (1965)
21. Kahan, W.: Implementation of algorithms (lecture notes by W. S. Haugeland and D. Hough). Tech.

Rep. 20, Department of Computer Science, University of California, Berkeley, CA 94720 (1973)
22. Knuth, D.: The Art of Computer Programming, 3rd edn. Addison-Wesley, Reading, MA (1998)
23. Lange, M., Rump, S.: Sharp estimates for perturbation errors in summations. Math. Comput. 88(315),

349–368 (2019)
24. Lohar, D., Prokop, M., Darulova, E.: Sound probabilistic numerical error analysis. In: Intern. Conf.

Integrated Formal Methods, pp. 322–340. Springer, Cham (2019)
25. Mitzenmacher,M.,Upfal, E.: Probability andComputing:Randomization andProbabilistic Techniques

in Algorithms and Data Analysis. Cambridge University Press, Cambridge (2005)
26. Roch, S.: Modern discrete probability: an essential toolkit. University Lecture (2015)
27. Rump, S.M.: Error estimation of floating-point summation and dot product. BIT Numer. Math. 52(1),

201–220 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://ieeexplore.ieee.org/document/4610935

	Precision-aware deterministic and probabilistic error bounds for floating point summation
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Modeling roundoff
	1.3 Probability theory

	2 General summation on a computational tree
	2.1 Explicit expressions and deterministic bounds for errors on computational trees
	2.2 Setting up martingales on computational trees

	3 Shifted summation
	4 Compensated sequential summation
	4.1 Second-order deterministic bound
	4.2 Probabilistic bounds

	5 Mixed precision
	6 Numerical experiments
	6.1 Sequential and pairwise summation
	6.2 Shifted summation
	6.3 Compensated summation
	6.4 Mixed-precision FABsum summation

	Acknowledgements
	A Proof of Lemma 8
	References

