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Abstract

We analyze the forward error in the floating point summation of real numbers, for
computations in low precision or extreme-scale problem dimensions that push the
limits of the precision. We present a systematic recurrence for a martingale on a
computational tree, which leads to explicit and interpretable bounds with nonlinear
terms controlled explicitly rather than by big-O terms. Two probability parameters
strengthen the precision-awareness of our bounds: one parameter controls the first
order terms in the summation error, while the second one is designed for control-
ling higher order terms in low precision or extreme-scale problem dimensions. Our
systematic approach yields new deterministic and probabilistic error bounds for three
classes of mono-precision algorithms: general summation, shifted general summation,
and compensated (sequential) summation. Extension of our systematic error analysis
to mixed-precision summation algorithms that allow any number of precisions yields
the first probabilistic bounds for the mixed-precision FABsum algorithm. Numerical
experiments illustrate that the probabilistic bounds are accurate, and that among the
three classes of mono-precision algorithms, compensated summation is generally the
most accurate. As for mixed precision algorithms, our recommendation is to minimize
the magnitude of intermediate partial sums relative to the precision in which they are
computed.
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1 Introduction

We analyze algorithms for the summation s,, = x1+- - -+x, in floating point arithmetic
of n floating-point numbers x1, . . ., x,, and bound the forward error ¢, =5, — s, in
the computed sums,, in terms of the unit roundoff u.

Our bounds are designed for low precision computations, or extreme-scale problem
dimensions 7 that push the limits of the arithmetic precision withn > u~!. The idea is
to set up a systematic recurrence for a martingale on a computational tree (Sect.2.2),
and strengthen its precision-awareness with the help of two probability parameters:
one to control the first order terms in the summation error; and a second one to
control higher order terms which become more influential with increasing problem
dimension or decreasing precision. This precision-aware martingale makes possible
a unified and clean derivation of bounds with explicit non-linear terms in place of
the usual asymptotic big-O terms, for a wide variety of mono- and mixed-precision
summation algorithms.

As an illustration, we derive new deterministic and probabilistic bounds for three
classes of mono-precision algorithms: general summation on a computational tree
(Sect. 2), shifted general summation (Sect. 3), and compensated summation (Sect.4).
For compensated summation, our bounds imply that third and higher order terms do
not matter, unless the problem dimension n > u~2, in which case the first-order error
terms are likely to have already exceeded the limitations of the precision.

We extend our bounds to mixed-precision summation, allowing any number of pre-
cisions, on a computational tree (Sect.5). The special case of two precisions leads to
the first probabilistic bounds for the mixed-precision FABsum algorithm [2]. Numer-
ical experiments (Sect. 6) illustrate that the bounds are informative, and that, among
the three classes of mono-precision algorithms, compensated summation is the most
accurate method.

1.1 Contributions

We present systematic derivations for interpretable precision-aware forward error
bounds for summation in mono- and mixed-precision on a computational tree.

Martingales on a computational tree. We present a systematic recurrence for mar-
tingales on a computational tree (Theorem 2.2, Corollary 1), which makes possible a
unified and clean derivation of bounds with explicit non-linear terms in place of the
usual asymptotic big-O terms, for a wide variety of summation algorithms.

Our analysis of summation serves as a model problem for systematic error analyses
of higher level matrix computations in mixed precision [2], or on hardware with wider
accumulators [7].

Precision-aware bounds. Our bounds are exact and hold to all orders. This is
important when the problem dimension exceeds the precision n > u~!; or in low
precision, where asymptotic terms O(u?) in first-order bounds are too large to be
ignored. Precision-awareness is strengthened with two probability parameters: one
for controlling the first order terms in the summation error, and a second one for
controlling the O(u?) terms.
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Precision-aware deterministic and probabilistic error... 85

General summation on a computational tree. We extend the error bounds in [12, 17]
by customizing them to specific summation algorithms. Rather than depending on the
number of inputs n, our bounds depend primarily on the height / of the computational
tree, which can be much smaller than 7, particularly in parallel computations.

We derive a deterministic bound for the summation error e, that is proportional
to hu (Theorem 2.1) and a probabilistic bound that is proportional to v/ u. The
probabilistic bound treats the roundoffs as zero-mean random variables that are mean-
independent (Theorem 2.3, Corollary 2) and employs a novel staggered martingale
approach in the proof.

Shifted summation algorithms. We extend the shifted sequential summation in [2]
to shifted general summation (Algorithm 3.1). We derive probabilistic bounds for
mean-independent roundoffs (Theorem 3.1).

Compensated summation. We derive a recursive expression for the exact error
(Theorem 4.1), an explicit expression for the second-order error (Corollary 3), and
a probabilistic bound (Theorem 4.3) based on our martingale approach. In particular
(Remark 7) we note the discrepancy by a unit roundoff u of existing bounds with ours,

n
Si=Y (+px. ol < 3u+ Omud).
k=1

Mixed precision summation. We present bounds for mixed-precision summation,
in any number of precisions, on a computational tree (Theorem 5.1). The special case
of two precisions yields the first probabilistic bounds (Corollary 4) for the mixed-
precision FABsum algorithm [2]. More generally, we extend the mono-precision
recommendation [11, Sect. 4.2] to mixed-precision (Remark 2): Try to minimize the
magnitude of the intermediate partial sums s; relative to the precision uy in which
they are computed, that is, try to minimize |uysi| for all .

Table 1 summarizes our contributions compared to recent related papers. In the case
of pairwise summation, the recent paper [8] uses a stronger version of the Azuma-
Hoeffding inequality to derive bounds in terms of the input data x; that are tighter
than our probabilistic bounds by roughly a constant factor of /2.

1.2 Modeling roundoff

We assume the inputs x are floating point numbers, that is, they can be stored exactly
without error; and that the summation produces no overflow or underflow. Let 0 <
u < 1 denote the unit roundoff to nearest.

Individual roundoffs. Apply an operation op € {4, —, %, /} to floating point num-
bers x and y. In the absence of underflow or overflow, IEEE floating-point arithmetic
can be interpreted as computing [11]

filxopy) =(xopy)(1+46), [8] <u. (1.1

Our probabilistic bounds treat roundoffs as zero-mean mean-independent random
variables.
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86 E. Hallman, I. C. F. Ipsen

Table 1 A summary of important features in probabilistic error bounds for summation

All orders Partial sums Mean independent Tree
Higham/Mary [12] v
Ipsen/Zhou [17] v
Higham/Mary [13] v v
Connolly/Higham/Mary [4] v v
El Arar et al. [8] v v
This paper v v v v

Check marks in the four columns highlight the presence of the following features. The bounds: (i) hold to
all orders (‘All Orders’); (ii) are expressed in terms of partial sums s instead of inputs x;, which makes
them tighter (‘Partial Sums’); (iii) assume mean-independence of roundoffs rather than the stricter notion
of total independence ("Mean Independent’); (iv) apply to algorithms on any computational tree rather than
just sequential summation (‘Tree’)

Probabilistic model for sequences of roundoffs. Assume the summation gener-
ates roundoffs §7, 83, ..., whose labeling is consistent with the partial order of the
underlying algorithm. We treat the §; as zero-mean random variables that are mean
independent!

E[6k|02, - .., 0k—1] = E[6x] = 0. (1.2)
Mean-independence (1.2) of roundoff is a weaker assumption than mutual indepen-
dence but stronger than uncorrelated roundoffs [13]. At least one mode of stochastic

rounding [4] produces the mean-independent errors in (1.2), but the stochastic round-
ing error bound |§| < 2u is weaker than (1.1).

1.3 Probability theory

For the derivation of the probabilistic bounds, we need a martingale, and a concentra-
tion inequality.

Definition 1 (Martingale [25]) A sequence of random variables Z1, ..., Z, is a mar-
tingale with respect to the sequence X1, ..., X, if the following three properties are
satisfied:

1. Ziisafunctionof Xq,..., Xr, 1 <k <n,

2. E[|Z]] < o0, and
3. E[Zk+1|X1, e, Xk] = Z.

Lemma 1 (Azuma-Hoeffding inequality [26]) Let Z1, ..., Z,, be a martingale as in
Definition 1 and let by be constants with

|Zk — Zr—1l < by, 2=<k<=<n.

I For simplicity, the conditioning also includes those 8¢, 1 < £ < k — 1, that are not descendants in the
partial order. With stochastic rounding such 8, are fully independent of §y.
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Then for any 0 < § < 1, with probability at least 1 — 4,

n 172
|Zy — Z1| < (Z b,%) V21n(2/8). (1.3)
k=2

If abound | Zy — Zx—1| < bx is permitted to fail with probability at most 7, then a
similar but weaker version of the Azuma-Hoeffding inequality still holds.

Lemma 2 (Relaxed Azuma-Hoeffding inequality [3]) Let Z1, . .., Z, be a martingale
as in Definition 1. For any 0 < n < 1, let by be constants so that with probability at
least 1 — n, the following bounds hold simultaneously,

|Zk — Zk—1l < by, 2=<k<=<n.

Then for any 0 < § < 1, with probability at least 1 — (6 + 1),

n 1/2
Zn = 21| < (Zb,%) V21n(2/8).
k=2

2 General summation on a computational tree

We recall the algorithm for general summation (Algorithm 2.1); define its compu-
tational tree (Definition 2); derive error expressions and a deterministic error bound
(Sect.2.1); and at last set up a martingale on the tree (Sect.2.2).

Algorithm 2.1 General summation [11, Algorithm 4.1]
Input: A set of floating point numbers S = {xy, ..., Xn}

Output: s, = Y }_| X

l: fork =2:ndo

2:  Remove two elements x and y from S

3 sp=x+y
4: Adds;gtoS
5: end for

6: return sy,

Denote by s; the exact partial sum, by §; the sum computed in floating point
arithmetic, and by ¢; =5 — sy the absolute forward error, 2 < k < n.

Definition 2 (Computational tree for Algorithm 2.1) The partial order of pairwise
sums s7, ..., S, in Algorithm 2.1 for summing »n inputs x1, ..., X, is represented by
a binary tree with 2n — 1 vertices. Specifically,

e Each vertex represents a pairwise sum s or an input x.
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88 E. Hallman, I. C. F. Ipsen

S4
S4
53
T4 S2 S3
52
x3
T T2 T3 T4
x1 x2
Fig. 1 Computational trees for two different summation orderings in Algorithm 2.1 for n = 4. Left:
sequential (a.k.a. recursive) summation. Right: pairwise summation
e The root is the final sum s,, and the leaves are the inputs xp, ..., X,.

e Each pairwise sum s; = x + y is a vertex with downward edges (sx, x) and (sg, ¥).
Vertices x and y are the children of s.

The tree defines a partial ordering. We say j < kif s is a descendant of s, and j < k
if 5 = sy is possible.

e The height of a vertex is the length of the longest downward path from that vertex
to a leaf.

e [eaves have height zero.

e The height of the tree is the height of its root. Sequential summation yields a tree
of heightn — 1.

Algorithm 2.1 imposes a topological ordering on the graph: j < k implies that
Jj < k. Thus if the vertices are visited in the order s», ..., s,, no vertex is visited
before its children. Figure 1 shows two computational trees, one of height n — 1 for
sequential summation; and another of height [log, n] for pairwise summation.

To make our bounds as tight as possible, we express them in terms of partial sums.
However, the dependence on the height of the computational tree is more explicit when
the bounds are expressed in terms of the inputs. Below is the translation from partial
sums to inputs.

Lemma 3 (Relation between partial sums and inputs) If h is the height of the compu-
tational tree in Algorithm 2.1, then

Z|sk|<h2|x,

j=1

Proof The first bound follows from the triangle inequality:

Z|sk|<2 Z'%'—Z > |x,|<h2|x,

=2 [x;]<k j=1 [xjl<k=n
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Precision-aware deterministic and probabilistic error... 89

where [x;] < k means that leaf x; is a descendant of vertex k. The second bound
follows from the first:

2

n n n n n
2
> sp < max [s; | ) Isel < [ DIl A Dbl | = A D] 1xl
2<j=n ; ; :
k=2 k=2 j=1 j=1 j=1

2.1 Explicit expressions and deterministic bounds for errors on computational
trees

We present two expressions for the error in Algorithm 2.1 (Lemmas 4 and 5), and a
deterministic bound (Theorem 2.1).

We generalize the error for sequential summation in [10, Lemma 3.1] to errors on
computational trees. Expression (4) in Lemma 4 and expression (2.2) are analogs of
[11, (4.2)], but with exact partial sums instead of computed ones.

Lemma 4 (First explicit expression) The error in Algorithm 2.1 equals
n
en=Sn—sn=) s [] (148, @1
k=2 k<j=n
where the product is equal to 1 if k = n.

Proof The proof proceeds by strong induction on 7.

e Induction basis: For n = 1, no sums are computed and the error is zero.

e Induction hypothesis: Assume that (2.1) holds for any number of summands less
than n.

e Induction step: Express the computed parent sum in line 3 of Algorithm 2.1 as the
sum of the computed children X = x + e, andy = y +e¢,,

Sn =&+ +68)

where ex = 0 if x = x; is an input, and likewise for ey. Use the error in the
computed children,

Spten =5 =((x+e)+ (+ ey))(1+68,) = (sn +ex +ey)(1 +3,)
= (ex +€y)(1 + 8n) + Sudn + Sn

to obtain the error in the computed parent
ep = (ex + ey)(l +8,) + $,0,.
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90 E. Hallman, I. C. F. Ipsen

Denote by £(n) and r(n), respectively, the left and right children of the vertex
corresponding to 5,,. Then the induction hypothesis implies

ex= Y s&q [ 48, ey= D s& [[ a+8p.

k=£(n) k<j=t(n) k=r(n) k<j=rn)

where a sum is empty if the corresponding child is a leaf. Inserting the above
expressions for e, and ey into the expression for e, gives

en = suby + (1L +8)(ex +ey) = sudy + (1 +380) Y _side [] (1+8))

k<n k=<j<n
=subn+ Y s [ (1438, )_Zskak [T a+sp.
k<n k<j=n k<j=n

O

Lemma 4 represents the forward error as a sum of local errors at a vertex, each
perturbed by subsequent rounding errors. Truncating (2.1) yields the first order bound

en =) skdk+ 0w, 2.2)
k=2

which extends the result for sequential summation [13, Lemma 2.1]. Lemma 4 also
allows us to conveniently obtain a deterministic error bound.

Theorem 2.1 If the computational tree for Algorithm 2.1 has height h, then the error
in Algorithm 2.1 is bounded by

n

n
leal <D Isillsel [ 1481 <u+w) ) |sd

k=2 k<j=n k=2

n
<hu(l+uw)" ) |xl.

j=1

Proof The first bound follows from Lemma 4, while the last bound follows from
Lemma 3. O

Remark 1 A bound [11, (4.3)] similar to the first one in Theorem 2.1,

n
lenl <u > ISkl
k=2

is accompanied by the following recommendation:
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In designing or choosing a summation method to achieve high accuracy, the aim
should be to minimize the absolute values of the intermediate sums si.

Reducing the height of the computational tree often helps in this regard. The depen-
dence on the height / is explicitly visible in the second bound of Theorem 2.1.

Remark 2 The error expression in (2.1) still holds for mixed precision. If the rounding
errors satisfy |8x| < ug, 2 < k < n, then with u = maxy uy, the error satisfies

n n

leal <D Iselux [T A +up) =) Isilux + O

k=2 k=<j=n k=2

Thus we extend the recommendation in [11, Sect. 4.2] to mixed-precision environ-
ments:

In designing a mixed-precision summation method to achieve high accuracy,
the aim should be to minimize the absolute values of the intermediate quantities
SkU.

The FABsum Algorithm 5.1 attempts to do just this by reserving its high-precision
computations for the end, when the intermediate sums s; are likely to have larger
magnitudes.

Remark 3 The sum in (2.1) in Lemma 4 is not a martingale with respect to the errors
82, ..., &,. Since each term sy 8 is further perturbed by subsequent roundoffs, the sum
of the first k terms is not a function of &>, ..., &.

However, if the roundoffs §», . .., §, are assumed to be fully independent, then the
sum in reverse order is a martingale with respect to §,, ..., 62, as noted in [10] for
sequential summation. Unfortunately, this approach does not work under the weaker
assumption of mean independence in (1.2).

Finally, the sum in (2.2) is a martingale in the original ordering under the assumption
of mean independence, but it is accurate only to first order.

The primary contribution of this paper is an expression for the error that overcomes
the obstacles in Remark 3. Section2.2 shows that the sum in Lemma 5 below is a
martingale in the original ordering. Lemma 5 also expresses the error in terms of exact
partial sums, thereby making it more amenable to a probabilistic analysis than the
computed partial sums in e, = ZZ:zgkak [11, (4.2)].

Lemma 5 (Second explicit expression) The error in Algorithm 2.1 equals
n
en =Sy —su=Y_ (s;+ fS. 2.3)
j=2

where f; = 0 for all vertices both of whose children are leaves. For all other vertices,
the child-errors satisfy the recurrence

kaZ(sj-q-fj)aj, 2<k<n. 2.4

Jj=<k
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92 E.Hallman, I. C.F. Ipsen

Proof As in the proof of Lemma 4, express the error in the computed parent sum in
terms of the errors in the computed children,

ex =(ex +e)(1+8) +si0 = fu + sk + fi)de,  2<k=<n, (25)
———
Ji

and unravel the recurrence for fj. O

We refer to the term fi as a child-error, because fj is the sum of the errors in the
computed children at vertex k.

Example 1 A pairwise tree summation for n = 8 illustrates the recurrences for the
child-errors in Lemma 5.

1. Leaves: The exact sums are
2 = X1+ X2, $3=Xx3+X4, S4=2Xx5+X6, S§5=x7+ X3,

while the computed sums are §j = s5;j +s;8; with child-errors f; = 0,2 < j <5.
2. Intermediate level: The exact sums are s = s + s3 and s7 = s4 + 55 while the
computed sums are

S6 = (52 + 83)(1 + 86) = (5282 + 5383)(1 + 86) + 5686 + 6
—_—
Je
= fo + (56 + f6)36 + S6,
§7 = (84 + 85)(1 + 87) = (5484 + 5585)(1 + 87) + $787 + 57
—— ——
f
= f1+ (s7+ f1)87 + s7.

The child-errors are

fo =280+ 5383 = (52 + f2)82 + (53 + f3)83 = Z (sj + f1)8;,
j<6

f1= 5484+ 5585 = (s + f)a+ (55 + f5)85 = Y _ (5j + £,
Jj=<7

3. Root: The exact sum is s§ = s¢ + s7 while the computed sum is

5§ = (86 +57)(1 + 83)
= (fo + (s6 + f6)d6 + f7 + (s7 + f1)87)(1 + 88) + 5888 + s8
/3
= fg + (s8 + f3)ds + 58,
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with child-error

S8 = fo+ f1+ (s6 + f6)de + (s7 + f7)87
5 7
=" (sj+ [)8) + (6 + fo)de + (s7+ )87 = D (sj + £1)8;.

j=2 j=2

The total error is

7 8
eg = fg + (s + f3)08 = Z(Sj + fi)8; + (s3 + f3)ds = Z(Sj + fi)8;.

j=2 j=2
2.2 Setting up martingales on computational trees

We derive a probabilistic bound (Lemma 6) for the child-errors in Lemma 5, followed
by two types of probabilistic bounds for the error in Algorithm 2.1: one in terms
of a recurrence relation (Theorem 2.2, Corollary 1) and a second in closed form
(Theorem 2.3, Corollary 2).

We introduce our first probability parameter n which controls terms of order two
and higher in ¢,, and guarantees, with probability at least 1 — 7, that all child errors
| fx| are simultaneously bounded. Below are the key ingredients for the results in this
section, and Sects. 3 and 5.

Definition 3 For a computational tree with n inputs, height /2, and summations with
unit roundoff u, define the following quantities.

L is the number of vertices both of whose children are leaves.
n =n — L — 1 is the number of interior vertices with at least one non-leaf child.

For0 <§ < 1,let A5 = /21In(2/6).
For0 <n < 1,let

Aig =+/2InQa/n) and ¢; .y = Ai vV 2huexp (A%’nhuz) .

The quotient 71/n occurs in a union bound over 1 vertices that simultaneously
bounds all child-errors | fi|, while ¢; 1, , appears only in second and higher order
error terms. Specifically, the error bound in Theorem 2.3 is equal to its first order
approximation multiplied by a factor of 1 + ¢ 5, ;-

Remark 4 We illustrate the potential values of the quantities in Definition 3.

1. The value of A; , grows very slowly. If 7 = 4 and n = 1/2 then 4; , ~ 2.35. If
ii = 10'% and n = 10732 then A; , ~ 13.96.

2. The extreme values of 7 are attained by recursive summation with 7 = [n/2] — 1;
and by sequential summation with 7 = n — 2.
The structure of the tree therefore has almost no impact on Aj; ,,. To wit, doubling
the value of 7 in item 1 gives A; , ~ 2.63 and A; , ~ 14.01, respectively.
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94 E. Hallman, I. C. F. Ipsen

3. The value of ¢; ;, ,, becomes significant only if the computational tree is deep

enough so that A; ,+/2hu ~ 1.
Consider single precision with u = 27%* ~ 5.96 - 10~8. If the number of interior
vertices is 7 = 100, the failure probability 7 = 10732, and the maximal tree height

h = n — 1, then exp (A% nhuz) ~ 1.00, and the total contribution of the higher
order terms is merely a factor of 1 + ¢ 5, < 1.12.

The following lemma establishes simultaneous bounds for the child errors in (2.4).
Lemma 6 Abbreviate as in Definition 3, number the interior vertices with two leaf

children by 2, ..., L + 1, and define

0 2<k=L+1,
1/2 (2.6)

Fiejin = 2
P it (S Usil + Fiag)®) T L4225k =n

If the §; are mean independent as in (1.2), then with probability at least 1 — 1, the
n — 1 bounds

[kl < Frigy  2=<k=n,

hold simultaneously.
Proof This is an induction proof over k and the failure probability 7.

e Induction basis 2 < k < L + 1: Since the leaf inputs are exact, fr = 0in (2.4),
thus | fx| < Fi i, holds always.
e Induction hypothesis: For k > L + 2, assume that the k£ — 2 bounds

lfil <Fjan 2=<j<k-—1

hold simultaneously with probability at least 1 — keL=2,

n
e Induction step: Move the precedence relation j < k inside the sum, so as to write
the child-error recurrence (2.4) as a contiguous sum,

k—1
fe=) (i + sl 2.7
Jj=2
We show that the sequence
i
Zy=0.  Zi=) (sj+ )l 2<i<k-1,
j=2

is a martingale with respect to 41, ..., §;—1, by confirming the three properties in
Definition 1.
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1. According to (2.4) and (2.7), f; is a functionof ;1 =0, 82, ..., 8;_1, thus Z;
is a function of 81, ...,8;_1,1 <i <k — 1.

2. The boundedness of the random variables §; implies deterministic bounds
|Z;| < ¢; for appropriate constants ¢;, 1 <i < k — 1, which, in turn, implies
finite expectations E[|Z;|] < 00,1 <i <k — 1.

3. The dependence of f; on 8y, ..., 8;_1 also implies

i+1
E[Zit1l81,....8]1=E [Z (57 + f7) 8L j<ist (al,...,a,}
j=2

i
=E |:(Si+1 + fi+Ddir1Li<it1 ‘ 81sns 5i] + Z(Sj + fi)8; 1<
j=2

= (541 + fisDLj<ir1E[Sig1161, ..., S|+ zi =z,

where the last equality follows from the mean independence (1.2) of the §;. The
three properties above confirm that the Z; are indeed a martingale with respect to
81, ..., 8i—1.

The induction hypothesis implies that the k — 2 bounds

12—z < (PP T Ty e,
0 i Ak,
hold simultaneously with probability at least 1 — k‘ﬂ#n. We now use the fact

that fy = Zx—1 — Z) = Zi_1 is a martingale in Lemma 2 with § = n/n, and
conclude that the bound

1/2
[fil < digu | D sl + Fran* | = Frag
j=<k
holds with probability at least

1 (k4 8) = 1 - e,

Therefore the k — 1 bounds | f;| < Fj 7, 2 < j < k hold simultaneously with
probability at least 1 — K=L=1

n

n, which concludes the induction.

As a consequence of the induction, the n — 1 bounds | fx| < Fy 5, 2 < k < n, hold

simultaneously with probability at least 1 — ”*n#*ln =1-n. O

Finally we are ready to set up a martingale on a computational tree, with a second
probability parameter § to control the first-order terms in e,,.
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Theorem 2.2 Abbreviate as in Definition 3, assume mean independence of the §; in
(1.2), and define F; j; , as in (2.6). Then forany0 < n < 1and0 <6 < 1 —n, with
probability at least 1| — (8 + n), the error in Algorithm 2.1 is bounded by

; 1/2
lenl < Asu | > (Isjl+ Fran? | 2.8)

j=2

Proof The sequence

i
Zy=0. Zi=) (s;+f)8, 2<i=n,
j=2

is a martingale with respect to §; = 0, 42, ..., §,. Lemma 6 implies that with proba-
bility at least 1 — n, the n — 1 bounds | f;| < Fiin2=<j=<n, hold simultaneously.
These bounds, in turn, imply that with probability at least 1 — n, the n — 1 martingale
differences are simultaneously bounded by

|Zi — Zi—1| = |(si + f)dil <ullsil+ F7,), 2=<i=<n.

The bound for the error (2.3) in Lemma 5,

n

D Gsi+ f)i

i=2

n n
< IGi+ 8l <uy | (sil + Fiig)

i=2 i=2

len| =

is the sum of the above martingale differences. Applying Lemma 2 shows that (2.8)
holds with probability at least 1 — (§ + ). O

The next bound holds for every summation algorithm, and represents, to our
knowledge, the first probabilistic bound for an arbitrary summation tree. It simpli-
fies Theorem 2.2 by disposing of the number of vertices with at least one non-leaf
child 7, and replacing it instead by the total number of vertices n. In the first-order
version, 7 is absent from the first-order error term, suggesting that its effect on the
overall bound is negligible.

Corollary 1 Abbreviate as in Definition 3, define

12
Fz,n,n =0, Fk,n,n = )\n,nu Z('Sj| + Fj,n,n)2 , 3<k<n,

Jj=<k

and assume mean independence of the §; as in (1.2). Then for any 0 < n < 1 and
0 < § < 1 — n, with probability at least 1 — (§ + n), the error in Algorithm 2.1 is
bounded by
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1/2

n
lel < Asu [ Y (sl + Fjny)?
j=2

Proof The first bound follows from 72 < n, and the second one from F; , , = O(u).
O

A closed-form analogue of the above Theorem 2.2 is Theorem 2.3 below. It shows
that, with high probability, the first-order summation error is proportional to /A, where
h is the height of the computational tree. As a consequence, even in a probabilistic
context, summation algorithms based on shallow computational trees are likely to be
more accurate.

Remark 5 We introduce the following novel approach for proving Theorem 2.3.

1. Write the forward errors ¢, in terms of child-errors f; (see Lemma 5).

2. Express each f; as a martingale in terms of the preceding child-errors, and repeat-
edly use the Azuma-Hoeffding inequality in Lemma 1 to bound all of them
simultaneously with probability at least 1 — 1 (see Lemma 6).

3. Express the error e, as a martingale whose bounds depend on the f; bounds, and
then derive a bound for |e,| that holds with probability at least 1 — (1 + &) (see
Theorem 2.2).

4. Simplify the bound through repeated applications of the triangle inequality.

Theorem 2.3 Abbreviate as in Definition 3, and assume mean independence of the § ;
asin (1.2). Then forany 0 < n < 1and 0 < § < 1 — n, with probability at least
1 — (6 + n), the error in Algorithm 2.1 is bounded by

lenl < Asu (1+ diiny) Zsk

< hsvhu (1 + Giiny) Z |xk .

k=1
Proof Apply the 2-norm triangle inequality to the sum in Theorem 2.2,
1/2

n
D Usil+ Fiap®| <

J1=2

1/2

n
ésk Zann

J13n

@ Springer



98 E. Hallman, I. C. F. Ipsen

Apply the recurrence for F; ; , from (2.6), followed by the triangle inequality,

1/2 1/2

Z szlﬁsn = Z Z )”%,n"ﬂ('S/Z' + szft,n)z

Jjizn J13n ja=<ji

- 2 - 2
< Aii gt Z Sp T iyl Z sz,ﬁ,ﬂ
J2=<j13n J2=j1=5n
1/2
h - /
< Ajpl Zsz + Aj gl Z F?
— 1 k .1 J2.7,m ’
k=2 J2=<j1=n

where the final inequality follows from the fact that for each index j», there are at
most & — 1 occurrences of the index jj, thus each partial sum s; appears at most
h — 1 < h times. Repeating this and combining the result with Theorem 2.2 shows
that with probability at least 1 — (6 4 1) the error is bounded by

1/2

h

i ("

len| < Asu |1+ Aﬁ u’ .
>

j=1 /

(2.9)

Next, we bound the first sum in (2.9) by a simpler expression. Let z1, . . ., z;, be scalars,
and set y; = 2/, 1 < j < h. The Cauchy-Schwarz inequality implies

2 2
h

h h 1 1 h h
>3 = ZF-W_;Z; S DBl | DML EDIRZE AL
j=1 ! j=1

j=1 =1 Vi j=1

Abbreviate z; = ké nuf \/ (’;) and apply (2.10) to the first sum in (2.9),
12

h h h h h h
}: Jo _ Z Z i 2 _ Z j42) 2)

Faal| (1) IR SR Vo) B P St J(j)
j=1 j=1

J=1 J=1

= Ja+22 -1 < \/exp (222 ) =1

172

< \/2)\% nhuz exp (2)»% nhu2> = Gjihn-

Substituting the above into (2.9) gives the first bound.
The second bound follows from applying Lemma 3 to the first. O

Remark 6 In the special case of sequential summation, Theorem 2.3 is more informa-
tive for a larger n than existing bounds.
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To see this, consider the following probabilistic bound from [13, Theorem 2.4],

n
TS'\n —su| < Asvn — lu(l + u)n—Z Z |)Cj|,

j=1

which is less tight than the first bound in Theorem 2.3. It does agree with the second
bound in Theorem 2.3 to first order, but its quadratic terms are larger by a factor of
roughly +/n than ours. The difference becomes significant for nu ~ 1, since (14u)" >
grows quickly past this point. In contrast, Remark 4 implies that 1 + ¢ 5 , ~ 1 until

)"ﬁ”?\/ 2hu ~ 1.

The simpler bound below holds for all summation algorithms, and like Corollary 1,
depends only on the total number n of inputs.

Corollary 2 Abbreviate as in Definition 3, and assume mean independence of the §
asin (1.2). Then forany 0 < n < 1and 0 < § < 1 — n, with probability at least
1 — (8§ + n), the error in Algorithm 2.1 is bounded by

len] < Asu (1 + ¢n,h,n)

n
2
Z Sk
k=2

= )\8\/EM (1 + ¢n,h,n) Z xk|.

k=1

3 Shifted summation

We present a general algorithm for shifted summation (Algorithm 3.1) that extends
the algorithm for shifted sequential summation in [13], and derive a probabilistic error
bound (Theorem 3.1).

Shifted summation is motivated by work in computer architecture [5, 6] and formal
methods for program verification [24] where not only the roundoffs but also the inputs
are interpreted as random variables sampled from some distribution. Then one can
compute statistics for the total roundoff error and estimate the probability that it is
bounded by tu for a given ¢.

Probabilistic bounds for random inputs are derived in [13], with improved higher-
order terms in [10], to show that sequential summation is accurate for inputs x; that
are tightly clustered around zero. As a consequence, accuracy can be improved by
shifting the inputs to have zero mean, which is affordable in the context of matrix
multiplication [13, Sect. 4].

Our Algorithm 3.1 extends the shifted algorithm for sequential summation [13,
Algorithm 4.1] to general summation. Its pseudo-code is geared towards exposition,
because in practice one shifts the x; immediately prior to the summation, to avoid
allocating additional storage for yr = xx — c. The ideal choice for centering is the
empirical mean ¢ = s, /n. A simpler approximation is ¢ = (ming x; + maxy xi)/2.
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Algorithm 3.1 Shifted General Summation

Input: A set of loating point numbers {x1, ..., xp }; floating point shift ¢
Output: s, = Y 7| X

l: fork=1:ndo

2. yg=xk—c

: end for

P Yn+1 = nc

.ty = output of Algorithm 2.1 applied to {y, ..., yu}

s return s; =1t + yu4

Fig.2 Computational tree for
shifted summation of n = 2
inputs. The dotted lines
distinguish the call to Algorithm
2.1 in line 5 of Algorithm 3.1

Error bounds for Algorithm 3.1 follow almost directly from the ones for Algo-
rithm 2.1. Figure 2 illustrates a computational tree for n = 2, with 4n + 3 vertices, and
height equal to two plus the height of the tree in Algorithm 2.1. The one twist is the
additional multiplication y = nc, but if n and ¢ can be stored exactly then the error
analysis remains the same.?

Theorem 3.1 Abbreviate as in Definition 3, assume mean independence of the §; as
in (1.2), and define ty as the partial sum of k terms, 1 < k < n, in the application
of Algorithm 2.1 to y1, ..., y,. Then forany 0 < n < land0 < § < 1 —n, with
probability at least 1 — (8 + 1), the error in Algorithm 3.1 is bounded by

n n+1
lenl < Aste (1+ @) [s2+ D 2+ 37
k=2 k=1

n
< ot (U ) (mlel + 3 (bel + VA F Tho e

k=1

Proof The first bound follows from Corollary 2. The factor A, , = +/2In(2n/n)
in ¢, 5,y appears because the tree for Algorithm 3.1 has at least L = n + 1 vertices,
both of whose children are leaves. Hencen < 2n+ 1) — (n + 1) = n.

The second bound follows from the first, based on techniques similar to those in
Lemma 3. From the triangle inequality and y,+1 = nc in line 4 of Algorithm 3.1
follows

2 If n does not admit an exact floating point representation, then we could append an additional vertex for
the artificial ‘addition’ n + 0, to induce the rounding of n.
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n+1

n
2+ Y P+ Yy < lsal +nlcl + (€R)
k=2 k=1

We treat the sums under the square root as in the proof of the second bound in Lemma 3,

n n 2 n 2

>t (Vi) = (3w -a)
k=2 k=1 k=1

n n n 2 n 2

2
max i < = X —¢C .

I;yk max |y,|k_Z] il < (1; |yk|) (;;l : |)

IA

Combine the two bounds above,

n n n
Ztkz—i-Zy,fS«/h—i-lZka—cl,
k=1

k=2 k=1

insert them into (3.1), and merge the bound for |s, | into the resulting sum,

n+l n

n
s2+ Zt,? + Zy,% <nlc| + Z (kal + Vh+ 1/ |xx — c|).
k=2 k=1 k=1

4 Compensated sequential summation

Our approach extends beyond algorithms whose computational graphs are trees, and
we demonstrate its versatility by analyzing the forward error for compensated sequen-
tial summation (Algorithm 4.1). After deriving exact error expressions and bounds that
hold to second order (Sect.4.1), we derive an exact probabilistic bound (Sect. 4.2).

Algorithm 4.1 Compensated Summation [9, Theorem 8] [20]
Input: A set of floating point numbers {x1, ..., x,}

Output: s, = Y 7| X

1: 51 =x1,¢c1 =0

2: fork=2:ndo
30 Yk =Xk — k-1
4 sp=sp—1+ 2
5

6

7

Cx = (Sk — Sk—1) — Yk
: end for
: return s,
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Algorithm 4.1 is the formulation [9, Theorem 8] of the ‘Kahan Summation Formula’
[20]. We follow [21, page 9-5] and add notation for the computed terms 7, to arrive
at our finite precision model

Si=s1=x1, <=0 m=0

Vi= @k —c-D(+m), 2<k=<n

Sk = Gr—1 + )1 + o) 4.1
2k = Gk = Sk—1) (1 +8)

Ck = @k — ) 1+ Br),

The presentation of compensated summation varies slightly across sources. The ver-
sions in [9, 22] align with our Algorithm 4.1, while the correction terms in [11, 20,
21] are the negatives of our c.

4.1 Second-order deterministic bound

We derive recursions for the child-errors at each vertex (Theorem 4.1) and a second-
order expression for the error Algorithm 4.1 (Corollary 3), and present a comparison
to existing bounds (Remark 7).

We follow the strategy for general summation, and derive an analogue of Lemma 5,
where the recursions (4.4a)—(4.4d) correspond to (2.5), and Theorem 4.1 corresponds
to (2.4). We differentiate among the different types of errors as follows. Single dots
represent individual forward errors,?

Yk =Yk — Xk, Sk =Sk — Sk, Ik =2k — Xk,  Ck =C, (4.2

whose exact arithmetic counter parts are yy = zx = x; and ¢y = 0. Double dots
represent child-errors,

Yk = —Ck—1, Sk =Sk—1+ Wk Ik =8k —Sk—1,  Ck=2Zr — k. (4.3)

The expressions (4.1) for the computed quantities lead to the forward error recursions

Vi = ( + i)k + Vi (4.4a)
Sk = (sk + SK)ox + 5k, (4.4b)
2k = (X + Z1)Sk + Zk, (4.4c)
Cx = Ck Bk + Ck. (4.4d)

Now we derive recurrence relations for the child-errors. Fortunately, the recurrences
for i, Zx, and ¢ are mercifully short, with a length independent of k.

3 The dots do not refer to differentiation!
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Theorem 4.1 The child-errors in Algorithm 4.1 equal
¥2=0, 5» =0, Zx=s0, = (x2+72)+ 5207, 4.5)
and for3 < k <n,
Yk = —=C—1(1 4 Br—1), (4.6a)
k
fe= 0 (G +50m) = GmBimt = (o1 +E2085-1 ), (46b)
j=3
Zk = (Sk + Sp)ok + (k. + )k + Vi, (4.6¢)
Cx = (g + Zk) S + (s + Sk)ok. (4.6d)
Proof First, (4.6a) follows directly from (4.3) and (4.4d). Second,
Ck =2k — Yk by(4.3)
= (xx + Zr)Sk + Zrx — & by(4.4c)
= (X + )0k + Sk — Sk—1 — Yk by (4.3)
= (xx + Z) 0k + (sk + 5ok + 5k — (Sk—1 + V) by(4.4b)
= (X + 2Kk + (s + S)o, by (4.3)
which establishes(4.6d).Third,
Sp=S—1+ W by (4.3)
= 5k—1 + (k=1 + Sk—Dox—1 + ek + ) + Y by(4.4a), (4.4b)
= 8p—1 + (k=1 + k—1)0ok—1 + Ok + Yk — Cx—1(1 + Br—1)  by(4.6a)
= Sp—1 + (& + YO — Cr—1Bk—1 — (Xk—1 + Zk—1)8k—1, by(4.6d)
and unraveling the recurrence yields(4.6b).Finally,
Zk = Sk — Sk—1 by (4.3)
= (sk + Sp)or + Sk — Sk—1 by(4.4D)
= (sx + Sr)ox + Vi by (4.3)
= (5% + Sp)ox + (g + Yk + V. by(4.4a)
The assumption 7, implies (4.5). O

The expressions below suggest that the errors in the ‘correction’ steps 3 and 5 of

Algorithm 4.1 dominate the first order terms of the summation error.

Corollary 3 Let n > 3. For the expressions in (4.1) define
ik = Nk — Ok,

Then the error in Algorithm 4.1 up to second order equals

n—1

2<k=n-—1, py=n,.

n
€n :Tg\n —Sp = 8p = 8$p05 + (1 +0y) Zxkﬂk - Zskak(ﬂk+l + Br + k)

k=2 k=2
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n—1

- ZXk5k (k1 + B +m) + O@W?),
k=2

and the computed sum equals

5 = Z(l + 0%k, 1okl < 3u+ (4(n — k) + 5)u* + O@W?). 4.7
k=1

Proof The expression for e, follows from truncating the expressions for ¥, Zx, and
¢, to first order, and substituting them into (4.6b). The expression (4.7) fors,, follows
from taking absolute values and bounding |u,| < u (as opposed to |ui| < 2u for
k<n-—1). 0

Remark 7 The error bounds for compensated summation have sometimes been mis-
stated in the literature. In contrast to (4.7), [9, Theorem 8], [11, (4.8)] and earlier
printings* of [22, Exercise 19 in Sect. 4.2.2] state

n
S = Z (1 + p)xr  where |px| < 2u + O(nu?).
k=1

It appears that this expression does not properly account for the final error ;. In
comparison, [21, page 9-5] and later printings of [22] correctly state

n
S—Ci=) (It px where |pi] < 2u+O((n —ku?).
k=1

4.2 Probabilistic bounds

We derive probabilistic bounds for the child-errors in compensated summation
(Lemma 7) and derive a bound on the summation error in terms of the child-error
bounds (Theorem 4.2), which is, however, difficult to interpret. Thus, we express the
child-error bounds mostly in terms of the partial sums (Lemma 8), which leads to an
alternative probabilistic bound (Theorem 4.3).

We start with an analogue of Lemma 6. The default strategy would be to write each
child-error in terms of a martingale involving the previous child-errors, and to bound
them probabilistically with the Azuma-Hoeffding inequality (Lemma 1). Instead, we
found it easier here to bound §; via Lemma 1, and then apply the triangle inequality
to ¥k, Zk, and Cy.

Lemma7 Let os, 62, B2, 13, - - -, N, On in (4.1) be mean independent as in (1.2) and
have mean zero. Define

=0, $=0, Zy=ulszl, Cr=u(lx2]+ Z2)+ulsal, (4.8)

4 An especially alert reviewer discovered that the typo was found in March 2007, as mentioned in the
earliest errata for [22] from January 2011.
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and5f0r3 <k<n,

Ye =Cr1(1 4+ u), (4.9a)
. 12
S = hmge | D2 (i1 + Y2+ €Ly + Gyl + 20 |0 @)
j=3
Zi = u(lskl + Sk) + u(lxe| + Yi) + Y, (4.9¢)
Cre = u(lxk| + Zi) + u(lskl + Se)- (4.9d)

For any 0 < n < 1, with probability at least 1 — n, the following bounds hold
simultaneously:

el < Yio ISkl < Sk |Zkl < Zg, |G| <Cr, 2<k<n. (4.10)

Proof This is an induction proof over k and the failure probability 7.

e Induction basis k = 2: From (4.5) in Theorem 4.1 follows that (4.8) holds deter-
ministically.

e Induction hypothesis: Assume that for 2 < j < k — 1 the bounds (4.10) hold
simultaneously with probability at least 1 — (k — 1)n/n.

e Induction step: The induction hypothesis implies that |[¢;—1| < Ci—1 holds with
probability at least 1 — (k — 1)n/n. From (4.6a), it follows that

[Vl = ICk—1(1 + Br—1D)| < Cr1(1 +u) =Y.

We want to write the 5; in (4.6b) as a martingale with respect to o2, 82, B2, 13, - . .,
nr. However since the latter sequence is roughly 4 times as long as the sequence
of 5y, we artificially expand the 53 by introducing a new term for each of the 4
roundoffs in (4.6b), with W(") = §;. Introduce the new terms as the roundoffs
appear by unravelling the expressmn for §;, from the back,

WP =5 =0,
(o) _ ywm
Wj 1=Wj 1
W =W — (o 2518 3<j<k
-1 = j—1TZj-1)0j-1, =J =k

W(.ﬁ) EW<) _Ej—l,Bj—l,
W(") W(ﬂ) + (xj + ¥j)n; =§j.
We show that the sequence Wz(a) W2(8), Wz(’3 ) Wg("), . W(") is a martingale by

confirming the three properties in Definition 1, with a few detalls omitted as the
proof is similar to that of Lemma 6.

5 Although the quantities depend on n and ;, we omit the subscripts, and simply write Sy instead of Sg ,; -

@ Springer



106 E.Hallman, I. C. F. Ipsen

1. Each W(U) is a function of 03, 82, B2, 03, . . ., 0.
Each W(S) is a function of 02, 82, B2, 13, ..., 0}, §;.
Each W;ﬁ) is a function of 02, 82, B2, 13, ..., 0}, 8}, Bj.

Each W;Tl is a function of 02, 82, B2, 13, ..., 0}, 8}, Bj, Nj+1.
2. The martingale elements are bounded deterministically,

B[w ] =m B[] =m, B[] =M, E[Iw")] < M,
where

E)
M = max (W WL w1 W) < oo,
1<i<k
3. The essential martingale property follows from

E[W/@a)wz, 82, B2, M3, .Ml = W(”)

]E[W/@é)| 02,82, B2, M3s ... ), 0] = W),
]E[W](ﬂ)l 02,82, B2. 3. ..., mj. 0}, 8] = W;(S)’
E[Wﬂ)ﬂoz, 82, B2y M35 - 1j> 0, 8, Bjl = W;ﬂ).

Therefore, the sequence Wk(g), Wk(‘s) s W,Eﬁ ), Wk(") is a martingale, which in turn
implies that the sequence 5§ is a martingale.
The induction hypothesis hypothesis implies that the bounds

|Gj+3pmjl <ulxjl+Y),  3<j<k,
I¢;—1Bj—1l <uCj_y,
|1 +Zj-D8j-1] < u(lxj—1l+ Zj-1)

all hold simultaneously with probability at least 1 — (k — 1)n/n. These bounds
and the above martingale properties allow us to apply Lemma 2 with § = n/n to
conclude that |5;| < S; holds with probability at least 1 — n/n — (k — 1)n/n =
1 —kn/n.

From (4.6¢) and (4.6d) follows |Zi| < Zy and |¢x| < Cy.

O

The following probabilistic bound expresses the error in compensated summation
in terms of the bounds for child-errors.

Theorem 4.2 Letos, 82, B2, 113, . . ., M, O in(4.1), (4.2) and (4.3) be mean independent

as in (1.2) and have mean zero. Let the bounds Y;, S;, Z;, Cj, 2 < j < n, be defined
as in Lemma 7. Then forany 0 < n < 1, and 0 < § < 1 — n, with probability at least
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1 — (8§ + n), the error in Algorithm 4.1 is bounded by

n 1/2
lenl < hsu <(|sn| + 502+ 3 (ol + Y% + Coy o+ (| + Zj_1)2)> .
j=3

Proof From e, = s,, (4.6b) and (4.4b), it follows that

n n n
en = (Sn + Sp)on + Z(x,/ +Vjnj — Z'C'j—lﬂj—l - Z(xj—l +Zj-18-1.
=3 j=3 =3

Apply Lemma 7 to bound the magnitude of the summands with probability at least
1 — 7, and apply Lemma 2 with additional probability &, and the ordering &>, B2, 13,

83, ..., In—1, 0y, for the martingale. This derivation mirrors the proof of Theorem 2.2
which relies on Lemma 6 to bound the magnitude of the summands in the martingale.
O

Compared to Theorem 2.2, the many interacting terms make Theorem 4.2 difficult
to interpret. The simplest approach at this point would be to truncate the bounds Sk,
Y, Zi, Ci so that the overall bound still holds to second order —or higher, if desired.

However, based on Lemma 8 and Theorem 4.3, we are able to derive a bound that
holds to all orders, at the cost of a more complicated proof. Consequently we derive
an alternative bound in the same manner as before, alternating between the triangle
inequality and the following bound.

Lemma 8 Assume that 0 < u < 1 satisfies u(1 + u®) < 1. Then there is a constant
o = /6 4+ O(u), so that the quantities in Lemma 7 can be bounded by

' 1/2 o 1/2
S (rrcii+zi)| sew| XAl . 3sk=n
j=3 j=2
Proof The precise value of « is derived in the Appendix 1. O

Our last bound for compensated summation is expressed in terms of partial sums
and inputs.
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Theorem 4.3 Let 0, 62, B2, 113, - . ., Ny, On be mean independent as in (1.2) and have
mean zero. Forany0 < n < 1,and0 < & < 1—n, with probability at least 1 — (§+n),
the error in Algorithm 4.1 is bounded by

n
lenl < Aste | Isul +y (V2 +eu) | Y xF +you
k=2

< o (1 V24 Vo + D) 3 il + O,
k=1

2
Zsk

k=2

where

VIF30 +w? +2(0 +uw*
Cad T a? =V6+0w),

=/1+22 u2 (l + An v/ 2nu’ exp (Aﬁ’naznu“)) =1+ 0®u?).

Proof With e,, = §,, abbreviate the summands in Theorem 4.2 and (4.9b) by

o

2 2 2 172 :
Ry = (il + Y2+ CLy 4+ (xjm |+ Z-0) . 3=<j=n.

We treat 2?23 R? as a two-norm and apply the following inequality to the vectors x,
¥, z,and w,

2 2 2 172 * Y Y
(e + 313+ e+ 2B+ 1wid) " =[x |+ |z || =v2Ixb+]] 2
0 w w

2 2

followed by Lemma 8, two triangle inequalities, and the definition of S,

. 1/2 12 . 1/2
SR fz(Zxk> + Z<Y2+C2 7))
j=3 j=3
172
< (Z%) + au Z(|s,|+|x,|+s>2
1/2 n—1 172
< <Zxk> +au (Z(|5k|+|xk|)> +ou ZSZ
1/2
n n
<(«/_+au)< x) + au Zs,§+)»om2 Z Rjz-
k= k=2 j<Jji<n
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Proceed as in the proof of Theorem 2.3,

172

n n n
.| (n
E Rjz. < E (An,nauz)/ (]) (V2 + au) E x,% + au
j=3 j=0 k=2

@11

where
n _ .
Z(An,nau2)] <J) < Anyov/2nu® exp (A%)naznu“) . (4.12)
j=1

From Theorem 4.2; the inequality (a + b)> + ¢*> < (a 4+ ~/b2 + %) fora, b, ¢ > 0;
and the definition of S, in (4.9b) follows

1/2 12
n n
[$ul < hote | G5+ S)>+ D RF | < dsulsul +hsu | S5+ R
j=3 j=3
; 12
= Asu|sy| + Asu,/1 +A%,nu2 ZR?
j=3
Combine this with (4.11) and (4.12). O

Note that y ~ 1 as long as A, yu < 1 and )L,,,,,ot\/Zntﬂ < 1.

5 Mixed precision

Mixed-precision algorithms aim to do as much of the computation as possible in a
lower precision without significantly degrading the accuracy of the computed result
[1, 14]. We extend Corollaries 1 and 2 to any number of precisions (Theorems 5.1
and 5.2), present the first probabilistic error bounds for the mixed precision FABsum
algorithm (Corollary 4), and end with a heuristic for designing mixed-precision algo-
rithms (Remark 2).

The FABsum summation algorithm [2, Algorithm 3.1] computes the sum s, =
X1 + -+ 4+ x, in two stages. First, it splits the inputs into blocks of b numbers, and
sums each block with a fast summation algorithm, say in low precision. Second, it
sums the results with an accurate summation algorithm, say in high precision or with
compensated summation. We extend our approach to mixed precision, and derive the
first rigorous probabilistic error bounds for FABsum. Our computational model is very
general, so that, in theory, each operation can be evaluated in a different precision.

Probabilistic model for sequences of roundoffs in mixed precision. We extend (1.2),
which models roundoffs §; as mean independent random variables with mean zero
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by addtionally allowing each §; to be a roundoff in a different precision uy, that is,
8kl < ug, 1 <k <n.

Definition 4 Given a mixed-precision computational tree with n summands and height
h. Let

® u = maxj<k<p U be the coarsest among all precisions;
o Ik =53y i<, 4} be the weighted depth of node k;
o h = maxy<i<, hy be the weighted height of the tree, with 1 < h < h.

Below is an immediate extension of Corollary 1 to mixed precision.

Theorem 5.1 Abbreviate as in Definitions 3 and 4, assume mean independence of
the §; as in (1.2), and define

1,2
2
FZ,n,n =0, Fk,n,r] = )\n,n Zu3 (|Sj| + Fj,n,n) 5 3<k=<n.

Jj=<k

Then forany 0 < n < land 0 < § < 1 — n, with probability at least 1 — (§ 4+ n), the
error in the mixed precision version of Algorithm 2.1 is bounded by

1/2
" /

leal < 2 [ Y ui(ls;l+ Fjny)?
j=2

Next is the extension of Corollary 2 to mixed precision, for which we derive a
closed-form error bound with the same approach as in the proof of Theorem 2.3.

Theorem 5.2 Abbreviate as in Definitions 3 and 4, and assume mean independence
of the §; as in (1.2). Then for any 0 < n < 1and 0 < § < 1 — n, with probability at
least 1 — (8 4+ 1), the error in the mixed precision version of Algorithm 2.1 is bounded
by

n

eal <25 (14 ,5,) | D uds?

n
< )L(g\/Zu (1 + d)n);l)n) Z |xk|.
k=1

Proof Define
12
Ty = > e u)*| . 2<k=n (5.1)

k<ty<--<tlj=n
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Repeated application of the two-norm triangle inequality to the bound in Theorem 5.2
implies that

172

1/2 h
|en| = )"(S (Z uksk) + Z)\ (Z Tk ]”k5k> (52)
j=1

holds with probability at least 1 — (§ + ).

We illustrate the derivation of (5.2) by presenting the first two steps. Although the
precisions uy are arbitrary, intuitively one can think of the jth summand representing
the jth order term in the error expression. Start with the bound in Theorem 5.2, apply
the triangle inequality, insert the expression for F; ,, , from Theorem 5.1, and apply
the triangle inequality again,

| . 1/2
2 2
—lenl < | D_uilsil+ Fyny)
B =
. 1/2 . 1/2
2.2 22
< 57
= Ujsj + Wi Fjnn
j=2 j=2
1/2 1/2
n / n /
2.2 2 2 2
= usy + Ay Zuquk(lskl—l—Fk,,,,ﬂ)
j=2 j=2  k=j
) 1/2 1/2 1/2
2.2
S D) RSV b oiih i) INEUS 5 3V) SUTe0
j=2 Jj=2 k<j j=2 k<j

In the second summand, we swap the sums and apply abbreviation (5.1),

1/2 1/2

n 1/2
Z Zuksk = Any Zuksk Z uj = Any (ZTkz’lu%s,%> .

= k=<j k<j=<n k=2

If all precisions are equal to u, then Ty ; < ul (?) as in the proof of Theorem 2.3.

Now apply the Cauchy-Schwarz inequality (2.10) as before and swap the order of
summation,

h 172 h 172
j=1 j=1
" n 1/2
iv2] 2 2.2
= | 2 ( o | wisi
k=2 \ j=1

(5.3)
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With i = 3, <n u? being the weighted depth of node , the inner sums are bounded
by

h

Yooluh it = [l a+222uh -1, 2<ks<n
j=1 k<€=n

< exp (uﬁ‘nﬁk) —1 <232 g exp (2x3,nﬁk) .

Insert the bounds fzk < h into (5.3),

h 12
=1

and combine this inequality with (5.2). O

Example 2 Consider recursive summation with n = 4 and k = 2. Then

1+Zzu 21_1+Zzu S ey ue)?

k<t <t <4
=1+m2 U3+ ug) + 4h usug
= (14222, ud)(1+222 ud)
=1+ [] a+243,ud.

k<t<4

Note that T} ; # 0 for j = 1,2 only. In general, T , = 0,2 <k <n.

What follows is the first rigorous probabilistic error bound for the mixed-precision
version of FABsum [2] in Algorithm 5.1, which makes use of only two different
precisions.

Algorithm 5.1 Mixed-precision FABsum
Input: Set of floating point numbers xi, ..., xp; block size b; precisions uq, Up;

Output: s, = Y }_| X
1: fork=1:[n/b] do

2: st = output of Algorithm 2.1 applied t0 {X(x—1)p41> - - - » ¥min{kb,n}} in Precision uj,
3: end for
4: s, = output of Algorithm 2.1 applied to {sy, ..., s[5/p1} in precision up;

Corollary 4 Abbreviate as in Definitions 3 and 4, and assume mean independence of
the §j as in (1.2). In Algorithm 5.1, let hj, be the maximum tree height in all low-
precision calls to Algorithm 2.1, and hy; the sub-tree height in the high-precision call
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to Algorithm 2.1. Then for any 0 < n < 1 and 0 < § < 1 — n, with probability at
least 1 — (8 + n), the error in Algorithm 5.1 is bounded by

n
leal = AV huty (14 6,7.,) D Il
k=1

- 2
with weighted tree height h = hy, + (M> hpi.

Ulo

Proof This follows directly from the second bound in Theorem 5.2, which contains
the coarsest precision

u = max up = max{u, Uni} = Ulo- 5.4)
1<k=<n

According to Definition 4, the weighted tree height is

F= 3 (o + i) = Ao + (22) iy
= ”120 lo/Mo T Upifthi ) = Nlo hi-

Ulo

6 Numerical experiments

After describing the setup, we present numerical experiments for sequential and pair-
wise summation (Sect.6.1), shifted summation (Sect.6.2), compensated summation
(Sect.6.3), and mixed-precision FABSum (Sect. 6.4).

Experiments are performed in MATLAB R2022a, with the following unit roundoffs
(implied by IEEE arithmetic [16]):

e Half precision u = 2711 ~ 4.88 - 107%.

e Single precision up; = 272* ~ 5.96 - 10~® as the high precision in FABsum
Algorithm 5.1.

e Double precision # =273 ~ 1.11 - 1071© for ‘exact’ computation.

Experiments plot errors from two rounding modes: round-to-nearest and stochastic
rounding as implemented with chop [15].

The summands x; are independent uniform [0, 1] random variables. The plots show
relative errors |, — s,|/|sn| versus n, for 100 < n < 10°. We choose relative errors
rather than absolute errors to allow for meaningful calibration: Relative errors < u
indicate full accuracy; while relative errors > .5 indicate zero digits of accuracy.

For probabilistic bounds, the combined failure probability is § + 7 = 107241073,
hence As = 3.26. Forn = 107 and 1 = n — 1 we get An,y A 6.2. In half precision the
higher-order errors, 1 + ¢, ., ~ 4.4, have a non-negligible effect on our bounds.
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6.1 Sequential and pairwise summation

Figure 3 shows the errors in half precision from Algorithm 2.1 for sequential sum-
mation in one panel, and for pairwise summation in another panel, along with the
deterministic bounds from Theorem 2.1,

leal <u (1 +1)" > Ist] (6.1)
k=2
<hu(l+w)" ) |xjl, (6.2)

j=1

and the probabilistic bounds from Corollary 2,

len| < )LBM 1 + &n.h, n Zsk (6.3)
=< )\8\/}_’” (1 + ¢n,h,n) Z |.Xk|. (64)
k=1

Sequential summation. The bounds (6.1) and (6.3) remain within a factor of 2 of
(6.2) and (6.4), respectively. Although the higher-order error terms 1+¢;, 5, , represent
only a small part of the error bounds, they may still be pessimistic, as the bounds curve
upwards for large n, while the actual errors increase more slowly.

The reason may be the distribution of floating point numbers: spacing between
consecutive numbers is constant within each interval [2, 2/*1], so a roundoff & is
affected by previous errors primarily if |log,(5x)] # [log,(sx)]. Some analyses have
derived deterministic error bounds for summation that do not contain second-order
terms [18, 19, 23, 27], and perhaps a more careful analysis could do the same for prob-
abilistic bounds. Our bounds otherwise accurately describe the behavior of stochastic
rounding, but round-to-nearest suffers from stagnation for larger problem sizes.

Pairwise summation. The bound (6.4) grows proportional to ,/log, (n), while (6.3)
remains essentially constant. The behavior of (6.3) may be due to the monotonically
increasing partial sums for uniform [0, 1] inputs, where the final sum is likely to
dominate all previous partial sums, (3 _;_, s,%) 172 = O(s,). This suggests that pairwise
summation of uniform [0, 1] inputs is highly accurate. The constant bound accurately
describes the behavior of the error under stochastic rounding, but not round-to-nearest.
We are not sure of the exact reason for the difference in behavior between the two.

6.2 Shifted summation

For shifted summation we use the empirical mean of two extreme summands, ¢ =
(ming xx + maxy xx)/2, due to the uniform [0, 1] distribution of the data.
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Fig.3 Relative errors in half precision for sequential summation (left) and pairwise summation (right) ver-
sus number of summands n. The symbol (+) indicates round-to-nearest (RTN), and (x) indicates stochastic
rounding (SR). Horizontal line indicates unit roundoff u = 2—1 , and remaining points indicate determin-
istic bounds (6.1) and (6.2) and probabilistic bounds (6.3) and (6.4)
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Fig. 4 Relative errors in half precision for shifted sequential summation (left) and shifted pairwise sum-
mation (right) versus number of summands n. The symbol (+) indicates round-to-nearest (RTN), and (x)
indicates stochastic rounding (SR). Horizontal line indicates unit roundoff u = 2711 and remaining points

indicate probabilistic bounds (6.5) and (6.6)

Figure 4 shows the errors in half precision from Algorithm 3.1 for shifted sequential
summation and shifted pairwise summation, along with the probabilistic bounds from

Theorem 3.1,

n+l1

len| < Astt (1+ @) +Ztk —i—Zyk (6.5)

< hsu (L4 Guny) [nlel + ) (al+Vi+ 1 —c)).  (6.6)

k=1

A comparison with Fig. 3 shows that shifting reduces both the actual errors and the
bounds. Errors are on the order of unit roundoff, in all cases: round-to-nearest and
stochastic rounding, and sequential and pairwise summation.
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Fig.5 Relative errors in half precision for compensated summation (left) and mixed precision with FABsum
with high precision up; = -2 (right) versus number of summands . The symbol (+) indicates round-to-
nearest (RTN), and (x) indicates stochastic rounding (SR). Horizontal line indicates unit roundoff u), =
2= and remaining points indicate bounds (6.7)—(6.10) (left) and (6.11)—(6.13) (right)

6.3 Compensated summation

IA

The first panel in Fig. 5 shows the errors in half precision for Algorithm 4.1 for 10?
n < 107 summands®, along with deterministic bounds derived from Corollary 3,

—1

len] < ulsn| + 2u(l +3M)Z|xk| +4u22|sk| +0@W?) (6.7)
k=2 k=2
< GBu + (4n — 2)u?) Z Ixk| + O@?), 6.8)
k=1

and the probabilistic bounds from Theorem 4.3,

lenl < Aot { Isal + v (V2 +au) | Y37 + you (6.9)
k=2
< hsu (1 + V2 4+ V6(n + 1)M)Z|Xk| +OwWd. (6.10)
k=1

The probabilistic bounds (6.9) and (6.10) track the error behavior accurately, with
(6.9) even capturing the correct order of magnitude. This also illustrates the higher
accuracy of bounds involving partial sums.

6.4 Mixed-precision FABsum summation

The second panel of Fig.5 shows the errors for Algorithm 5.1 with uj, = 27! &
444 . 107%, up; = 272* ~ 5.96 - 1078, block size b = 32 and 10> < n < 107

6 Our simulation of half-precision ignores the range restriction realmax = 65504.
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summands, where each internal call to Algorithm 2.1 uses sequential summation. We
also plot the deterministic first-order bound from [2, Eqn. 3.5],

leal < bu Yy x| + O@?), (6.11)
k=1

and the probabilistic bounds derived from Theorem 5.2,

o n
el <25 (14 0,5,) |Dubsi+ Y ulst (6.12)
k=2 k=njo+1

n
< oV (14 9,5,) 3 b, (6.13)
k=1

where 1 = (b — 1) 4+ ([n/b] — 1)(uni /u1o)* and njo = n — [n/b] + 1. Errors are on
the order of unit roundoff for round-to-nearest. We were surprised to observe that for
stochastic rounding, errors fell to more than an order of magnitude below unit roundoff
for large problem sizes. This behavior is correctly predicted by the bound in terms of
the partial sums (6.12) but not the bound in terms of the inputs (6.13), demonstrating
the importance of error expressions involving the partial sums.
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A Proof of Lemma 8
Define 8 = u(1 + u)? and

o = |si| + |xk| + Sk,  2<k=<n-1 (A.1)
By assumption, 8 < 1. Lemma 7 implies

Zkzua)k—i—(l—}—u)Yk=ua)k+(l+u)2Ck_1, 3<k<n-—1 (A2)
Cr=uwy+uZy =u(l +u)wg + BCr—1, (A.3)

where Z> < uwjy and Cr < u(1 + u)w,. For 3 < k < n, define the vectors
a=[Cio1 ) m=[Zici .. 2], wi=[oer o]
From (A.3) follows the componentwise inequality
¢ < u(l +u)wp + pUck,

@ Springer



118 E.Hallman, I. C. F. Ipsen

where U is an upper shift matrix. Solving for ¢; gives another componentwise inequal-
ity with a unit upper triangular matrix I — U,

e < u(l+w) I = pU) " 'wy,
and a bound
legllz < u(l + W@ = AU willa < “EE2 will.
The bound for ||z || follows from (A.2) and the definition of 8,

2 242
lzll2 < wllwillz + (1 + w)?(lex 2 < w||w .

Finally, from Yy = (1 + u)Cy_ follows the Frobenius norm bound

. 1/2

3 (yZ +C+ Z/—l) =[0I +wer e z]| < cullwill,
j=3

where the higher order terms in « follow from the Taylor series expansion (1 —8) ™2 =
1+ 2u 4+ O®W?),

o 1431 +uw)?+2(0 +u)?
B (1—p)?

=6+ 26u + Ou?).
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