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Abstract
We analyse the calibration of BayesCG under the Krylov prior. BayesCG is a proba-
bilistic numeric extension of the Conjugate Gradient (CG)method for solving systems
of linear equations with real symmetric positive definite coefficient matrix. In addition
to the CG solution, BayesCG also returns a posterior distribution over the solution.
In this context, a posterior distribution is said to be ‘calibrated’ if the CG error is
well-described, in a precise distributional sense, by the posterior spread. Since it is
known that BayesCG is not calibrated, we introduce two related weaker notions of
calibration, whose departures from exact calibration can be quantified. Numerical
experiments confirm that, under low-rank approximate Krylov posteriors, BayesCG
is only slightly optimistic and exhibits the characteristics of a calibrated solver, and is
computationally competitive with CG.
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1 Introduction

We present a rigorous analysis of the probabilistic numeric solver BayesCG under the
Krylov prior [1, 2] for solving systems of linear equations
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240 T. W. Reid et al.

Ax∗ = b, (1)

with symmetric positive definite coefficient matrix A ∈ R
n×n .

Probabilistic numerics.
This area [3–5] seeks to quantify the uncertainty due to limited computational
resources, and to propagate these uncertainties through computational pipelines—
sequences of computations where the output of one computation is the input for the
next. At the core of many computational pipelines are iterative linear solvers [6–10],
whose computational resources are limited by the impracticality of running the solver
to completion. The solver’s premature termination leaves the user with residual uncer-
tainty about the exact solution x∗ of the linear system (1).

Probabilistic numeric linear solvers.
Probabilistic numeric extensions of Krylov space and stationary iterative methods [1,
2, 6, 11–14] model the ‘epistemic uncertainty’ in a quantity of interest, which can
be the matrix inverse A−1 [11, 13, 14] or the solution x∗ [1, 6, 11, 12]. Our quantity
of interest is the solution x∗, and the ‘epistemic uncertainty’ is the uncertainty in the
user’s knowledge of the true value of x∗.

The probabilistic solver takes as input a prior distribution which models the initial
uncertainty in x∗ and then computes posterior distributions which model the uncer-
tainty remaining after each iteration. Figure1 depicts a prior and posterior distribution
for the solution x∗ of a two–dimensional linear system.

Calibration.
An important criterion of probabilistic solvers is the statistical quality of their poste-
rior distributions, in terms of accurately quantifying the error. A solver is considered
‘calibrated’ if its posterior distributions accurately model the users’s uncertainty about
x∗ [1, Section 6.1]. Examples 4.4 and 4.5 in Sect. 4 provide verbal and visual intuition
for the meaning of ‘calibration’.

It turns out that probabilistic Krylov solvers are not always calibrated because
their posterior distributions tend to be pessimistic. This means, the posteriors imply
that the error is larger than it actually is [11, Section 6.4], [1, Section 6.1]. Previous
efforts for improving calibration have focused on scaling the posterior covariances [1,
Section 4.2], [12, Section 7], [14, Section 3]. Calibration, that is proper quantification
of errors, is a must for probabilistic solvers to become reliable components at the base
of computational pipelines.

BayesCG.
We analyze the calibration of BayesCG under the Krylov prior [1, 2]. BayesCG was
introduced in [1] as a probabilistic numeric extension of the Conjugate Gradient
(CG) method [15] for solving the linear system (1). The Krylov prior proposed in [2]
makes BayesCG competitive with CG. The numerical properties of BayesCG under
the Krylov prior are analysed in [2], while here we analyse its statistical properties.

1.1 Contributions and overview

Our overall conclusion is that BayesCG under theKrylov prior, although not calibrated
in the strict sense, has the desirable properties of a calibrated solver. Under the efficient
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Statistical properties of BayesCG under the Krylov prior 241

Fig. 1 Prior and posterior distributions for a linear system (1) with n = 2. Top plot: prior distribution.
Bottom plots: posterior distributions, where the bottom right is a zoomed in version of the bottom left.
The gray shaded contours represent the areas in which the distributions are concentrated, the symbol ‘×’
represents the solution, and the symbol ‘+’ the mean of the prior or posterior

approximate Krylov posteriors, BayesCG is competitive with CG, and only slightly
optimistic.
Background (Sect. 2).
We present a short review of BayesCG, and the Krylov prior and posteriors.
Approximate Krylov posteriors (Sect. 3).
We define the A-Wasserstein distance (Definition 3.3, Theorem 3.4); determine
the error between Krylov posteriors and their low-rank approximations in the A-
Wasserstein distance (Theorem 3.5); and present a statistical interpretation of a Krylov
prior as an empirical Bayesian procedure (Theorem 3.7, Remark 3.8).

Calibration (Sect. 4).
We review the strict notion of calibration for probabilistic solvers (Definition 4.1,
Lemma 4.2), and show that it does not apply to BayesCG under the Krylov prior
(Remark 4.6).

We relax the strict notion and propose as an alternative assessment two test statistics
that are necessary but not sufficient for calibration: the Z -statistic (Theorem 4.9) and
the new S-statistic (Theorem 4.15, Definition 4.17). We present implementations for
both statistics (Algorithms 4.1 and 4.2); and apply a Kolmogorov–Smirnov statistic
(Definition 4.11) for evaluating the quality of samples from the Z -statistic.
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242 T. W. Reid et al.

The Z -statistic is inconclusive about the calibration of BayesCG under the Krylov
prior (Theorem4.13),while the S-statistic indicates that it is not calibrated (Sect. 4.3.4).

Numerical experiments (Sect. 5).
We create a calibrated but slowly converging version of BayesCG with random search
directions, and use it as a baseline for comparison with two BayesCG versions that
both replicate CG: BayesCG under the inverse and under the Krylov priors.

We assess calibration with the Z - and S-statistics for BayesCGwith random search
directions (AlgorithmsB.1 andB.2); BayesCG under the inverse prior (Algorithms 2.1
and B.3); and BayesCG under the Krylov prior with full posteriors (Algorithm B.4)
and approximate posteriors (Algorithm B.5).

Both, Z - and S statistics indicate that BayesCG with random search directions is
indeed a calibrated solver, while BayesCG under the inverse prior is pessimistic.

The S-statistic indicates that BayesCG under full Krylov posteriors mimics a cal-
ibrated solver, while BayesCG under rank-50 approximate posteriors does almost as
well, being slightly optimistic.

Future research (Sect. 6).
We conclude with a few thoughts on possible future research directions.

1.2 Notation

Matrices are represented in bold uppercase, such asA; vectors in bold lowercase, such
as b; and scalars in lowercase, such as m.

The identity matrix is In ∈ R
n×n , or just I if the dimension is clear. The Moore–

Penrose inverse of a matrix A ∈ R
n×n is A†, and the matrix square root is A1/2 [16,

Chapter 6].
Probability distributions are represented in lowercase Greek letters, such as μm ;

and random variables in uppercase Roman, such as X . A random variable X with
distribution μ is represented by X ∼ μ, and its expectation by E[X ].

The Gaussian distribution with mean x ∈ R
n and covariance � ∈ R

n×n is denoted
by N (x,�), and the chi-squared distribution with f degrees of freedom by χ2

f .

2 Review of existing work

WereviewBayesCG(Sect. 2.1), the idealKrylovprior (Sect. 2.2), andpractical approx-
imations for Krylov posteriors (Sect. 2.3). All statements in this section hold in exact
arithmetic.

2.1 BayesCG

We review the computation of posterior distributions for BayesCGunder general priors
(Theorem 2.1), and present a pseudo code for BayesCG (Algorithm 2.1).

Given an initial guess x0, BayesCG [1] solves symmetric positive definite linear
systems (1) by computing iterates xm that converge to the solution x∗. In addi-
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Statistical properties of BayesCG under the Krylov prior 243

tion, BayesCG computes probability distributions that quantify the uncertainty about
the solution at each iteration m. Specifically, for a user-specified Gaussian prior
μ0 ≡ N (x0,�0), BayesCG computes posterior distributions μm ≡ N (xm,�m),
by conditioning a random variable X ∼ μ0 on information from m search directions
Sm .

Theorem 2.1 ([1, Proposition 1], [2, Theorem 2.1]) Let Ax∗ = b be a linear system
where A ∈ R

n×n is symmetric positive definite. Let μ0 ≡ N (x0,�0) be a prior
with symmetric positive semi-definite covariance �0 ∈ R

n×n, and initial residual
r0 ≡ b0 − Ax0.

Pick m ≤ n so that Sm ≡ [
s1 s2 · · · sm

] ∈ R
n×m has rank(Sm) = m and �m ≡

STmA�0ASm is non-singular. Then, the BayesCG posterior μm ≡ N (xm,�m) has
mean and covariance

xm = x0 + �0ASm�−1
m STmr0 (2)

�m = �0 − �0ASm�−1
m STmA�0. (3)

Algorithm 2.1 represents the iterative computation of the posteriors from [1, Propo-
sitions 6 and 7], [2, Theorem 2.7]. To illustrate the resemblance of BayesCG and the
Conjugate Gradient method, we present the most common implementation of CG in
Algorithm 2.2.

BayesCG (Algorithm 2.1) computes specific search directions Sm with two addi-
tional properties:

1. They are A�0A-orthogonal, which means that �m = STmA�0ASm is diagonal [1,
Section 2.3], thus easy to invert.

2. They form a basis for the Krylov space [17, Proposition S4]

range(Sm) = Km(A�0A, r0) ≡ span{r0,A�0Ar0, . . . , (A�0A)m−1r0}.

Remark 2.2 The additional requirement x∗−x0 ∈ range(�0) in Algorithm 2.1 ensures
the nonsingularity of�m as requiredbyTheorem2.1, even for singular prior covariance
matrices �0 [2, Theorem 2.7].

2.2 The ideal Krylov Prior

After defining the Krylov space of maximal dimension (Definition 2.3), we review
the ideal but impractical Krylov prior (Definition 2.4), and discuss its construction
(Lemma 2.6) and properties (Theorem 2.7).

Definition 2.3 The Krylov space of maximal dimension for Algorithm 2.2 is

Kg(A, r0) ≡ span{r0,Ar0, . . . ,Ag−1r0}.
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244 T. W. Reid et al.

Algorithm 2.1 BayesCG [2, Algorithm 2.1]
1: Input: spd A ∈ R

n×n , b ∈ R
n , prior μ0 = N (x0, �0) � with x∗ − x0 ∈ range(�0)

2: r0 = b − Ax0 � Initial residual
3: s1 = r0 � Initial search direction
4: m = 0 � Initial iteration count
5: while not converged do
6: m = m + 1 � Increment iteration count
7: αm =

(
rTm−1rm−1

)/ (
sTmA�0Asm

)

8: xm = xm−1 + αm�0Asm � Next posterior mean
9: �m = �m−1 − �0Asm (�0Asm )T

/
(sTmA�0Asm ) � Next posterior covariance

10: rm = rm−1 − αmA�0Asm � Next residual

11: βm =
(
rTmrm

) /(
rTm−1rm−1

)

12: sm+1 = rm + βmsm � Next A�0A-orthogonal search direction
13: end while
14: Output: μm = N (xm , �m ) � Final posterior

Algorithm 2.2 Conjugate Gradient Method (CG) [15, Section 3]
1: Input: spd A ∈ R

n×n , b ∈ R
n , x0 ∈ R

n

2: r0 = b − Ax0 � Initial residual
3: w1 = r0 � Initial search direction
4: m = 0 � Initial iteration count
5: while not converged do
6: m = m + 1 � Increment iteration count
7: γm = (rTm−1rm−1)

/
(wT

mAwm ) � Next step size
8: xm = xm−1 + γmwm � Next iterate
9: rm = rm−1 − γmAwm � Next residual
10: δm = (rTmrm )

/
(rTm−1rm−1)

11: wm+1 = rm + δmwm � Next search direction
12: end while
13: Output: xm � Final approximation for x∗

Here g ≤ n represents the grade of r0 with respect toA ∈ R
n×n [18, Definition 4.2.1],

or the invariance index for (A, r0) [19, Section 2], which is the minimum value where

Kg(A, r0) = Kg+i (A, r0), i ≥ 1.

The Krylov prior is a Gaussian distribution whose covariance is constructed from
a basis for the maximal dimensional CG Krylov space.

Definition 2.4 [2, Definition 3.1] The ideal Krylov prior for Ax∗ = b is η0 ≡
N (x0,�0) with symmetric positive semi-definite covariance

�0 ≡ V�VT ∈ R
n×n . (4)

The columnsofV ≡ [
v1 v2 · · · vg

] ∈ R
n×g are anA-orthonormal basis forKg(A, r0),

which means that

VTAV = Ig and span{v1, . . . , vi } = Ki (A, r0), 1 ≤ i ≤ g.
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Statistical properties of BayesCG under the Krylov prior 245

The diagonal matrix � ≡ diag
(
φ1 · · · φg

) ∈ R
g×g has diagonal elements

φi = (vTi r0)
2, 1 ≤ i ≤ g. (5)

Remark 2.5 The Krylov prior covariance satisfies the requirement of Algorithm 2.1
that x∗ − x0 ∈ range(�0). This follows from [18, Section 5.6],

x∗ ∈ x0 + Kg(A, r0) = range(�0).

If the maximal Krylov space Kg(A, r0) has dimension g < n, then �0 is singular.

Lemma 2.6 [2, Remark SM2.1] The Krylov prior �0 can be constructed from quanti-
ties computed by CG (Algorithm 2.2),

vi ≡ wi/(wT
i Awi ), and φi ≡ γi‖ri−1‖22, 1 ≤ i ≤ g.

The posterior distributions from BayesCG under the Krylov prior depend on sub-
matrices of V and �,

Vi : j ≡ [
vi · · · v j

]

�i : j ≡ diag
(
φi · · · φ j

)
, 1 ≤ i ≤ j ≤ g,

(6)

where V1:g = V, �1:g = �, and V j+1: j = � j+1: j = 0, 1 ≤ j ≤ n.
Under suitable assumptions, BayesCG (Algorithm 2.1) produces the same iterates

as CG (Algorithm 2.2).

Theorem 2.7 [2, Theorem 3.3] Let x0 be the starting vector for CG (Algorithm 2.2).
Then BayesCG (Algorithm 2.1) under the Krylov prior η0 ≡ N (x0,�0) produces
Krylov posteriors ηm ≡ N (xm,�m) whose mean vectors

xm = x0 + V1:mVT
1:mr0, 1 ≤ m ≤ g,

are identical to the iterates in CG (Algorithm 2.2), and whose covariance matrices

�m = Vm+1:g�m+1:gVT
m+1:g, 1 ≤ m < g, (7)

satisfy
trace(A�m) = trace(�m+1:g) = ‖x∗ − xm‖2A. (8)

Explicit construction of the ideal Krylov prior, followed by explicit computation
of the Krylov posteriors in Algorithm 2.1 is impractical, because it is more expensive
than solving the linear system (1) in the first place. That is the reason for introducing
practical, approximate Krylov posteriors.
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2.3 Practical Krylov posteriors

We dispense with the explicit computation of the Krylov prior, and instead compute a
low-rank approximation of the final posterior (Definition 2.8) by running d additional
iterations. The corresponding CG-based implementation of BayesCG under approxi-
mate Krylov posteriors is relegated to Algorithm B.5 in “Appendix B”.

Definition 2.8 [2, Definition 3.4] Given the Krylov prior η0 ≡ N (x0,�0) with pos-
teriors ηm ≡ N (xm,�m), pick some d ≥ 1. The rank-d approximation of ηm is a
Gaussian distribution η̂m ≡ N (xm, �̂m) with the same mean xm as ηm , and a rank-d
covariance

�̂m ≡ Vm+1:m+d�m+1:m+d VT
m+1:m+d , 1 ≤ m < g − d,

that consists of the leading d columns of Vm+1:g .

In contrast to the full Krylov posteriors, which reproduce the error as in (8), approx-
imate Krylov posteriors underestimate the error [2, Section 3.4],

trace(A�̂m) = trace(�m+1:m+d) = ‖x∗ − xm‖2A − ‖x∗ − xm+d‖2A, (9)

where ‖x∗ −xm+d‖2A is the error afterm+d iterations of CG. The error underestimate
trace(A�̂m) is equal to [20, Equation(4.9)], and it is more accurate when convergence
is fast. Fast convergence makes trace(A�̂m) a more accurate estimate because fast
convergence implies that ‖x∗ − xm+d‖2A 
 ‖x∗ − xm‖2A, and this, along with (9),
implies that trace(A�̂m) ≈ ‖x∗ − xm‖2A [20, Section 4].

3 Approximate Krylov posteriors

We determine the error in approximate Krylov posteriors (Sect. 3.1), and interpret the
Krylov prior as an empirical Bayesian method (Sect. 3.2).

3.1 Error in approximate Krylov posteriors

We review the p-Wasserstein distance (Definition 3.1), extend the 2-Wasserstein dis-
tance to the A-Wasserstein distance weighted by a symmetric positive definite matrix
A (Theorem 3.4), and derive the A-Wasserstein distance between approximate and
full Krylov posteriors (Theorem 3.5).

The p-Wasserstein distance is a metric on the set of probability distributions.

Definition 3.1 [21, Definition 2.1], [22, Definition 6.1] The p-Wasserstein distance
between probability distributions μ and ν on Rn is

Wp(μ, ν) ≡
(

inf
π∈�(μ,ν)

∫

Rn×Rn
‖M − N‖p

2 dπ(M, N )

)1/p

, p ≥ 1, (10)
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Statistical properties of BayesCG under the Krylov prior 247

where �(μ, ν) is the set of couplings between μ and ν, that is, the set of probability
distributions on R

n × R
n that have μ and ν as marginal distributions.

In the special case p = 2, the 2-Wasserstein or Fréchet distance between two
Gaussian distributions admits an explicit expression.

Lemma 3.2 [23, Theorem 2.1] The 2-Wasserstein distance between Gaussian distri-
butions μ ≡ N (xμ,�μ) and ν ≡ N (xν,�ν) on R

n is

(W2(μ, ν))2 = ‖xμ − xν‖22 + trace

(
�μ + �ν − 2

(
�1/2

μ �ν�
1/2
μ

)1/2)
.

We generalize the 2-Wasserstein distance to the A-Wasserstein distance weighted
by a symmetric positive definite matrix A.

Definition 3.3 The two-norm of x ∈ R
n weighted by a symmetric positive definite

A ∈ R
n×n is

‖x‖A ≡ ‖A1/2x‖2. (11)

The A-Wasserstein distance between Gaussian distributions μ ≡ N (xμ,�μ) and
ν ≡ N (xν,�ν) on Rn is

WA(μ, ν) ≡
(

inf
π∈�(μ,ν)

∫

Rn×Rn
‖M − N‖2A dπ(M, N )

)1/2

, (12)

where �(μ, ν) is the set of couplings between μ and ν.

We derive an explicit expression for the A-Wasserstein distance analogous to the
one for the 2-Wasserstein distance in Lemma 3.2.

Theorem 3.4 For symmetric positive definite A ∈ R
n×n, the A-Wasserstein distance

between Gaussian distributions μ ≡ N (xμ,�μ) and ν ≡ N (xν,�ν) on R
n is

(WA(μ, ν))2 = ‖xμ − xν‖2A + trace(�̃μ) + trace(�̃ν)

− 2 trace
(
(�̃

1/2
μ �̃ν�̃

1/2
μ )1/2

)
, (13)

where �̃μ ≡ A1/2�μA1/2 and �̃ν ≡ A1/2�νA1/2.

Proof First express the A-Wasserstein distance as a 2-Wasserstein distance, by sub-
stituting (11) into (12),

(WA(μ, ν))2 = inf
π∈�(μ,ν)

∫

Rn×Rn
‖A1/2M − A1/2N‖22 dπ(M, N ). (14)

Lemma A.1 in “Appendix A” implies that A1/2M and A1/2N are again Gaussian
random variables with respective means and covariances

μ̃ ≡ N (A1/2xμ, A1/2�μA1/2

︸ ︷︷ ︸
�̃μ

), ν̃ ≡ N (A1/2xν, A1/2�νA1/2
︸ ︷︷ ︸

�̃ν

).
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Thus (14) is equal to the 2-Wasserstein distance

(WA(μ, ν))2 = inf
π∈�(μ̃,ν̃)

∫

Rn×Rn
‖M̃ − Ñ‖22 dπ(M̃, Ñ ) = (W2(μ̃, ν̃))2 . (15)

At last, apply Lemma 3.2 and the linearity of the trace. �

We are ready to derive the A-Wasserstein distance between approximate and full

Krylov posteriors.

Theorem 3.5 Let ηm ≡ N (xm,�m) be a Krylov posterior from Theorem 2.7, and for
some d ≥ 1 let η̂m ≡ N (xm, �̂m) be a rank-d approximation from Definition 2.8. The
A-Wasserstein distance between ηm and η̂m is

WA(ηm, η̂m) =
( g∑

i=m+d+1

φi

)1/2

. (16)

Proof We factor the covariances into square factors, to obtain an eigenvalue decom-
position for the congruence transformations of the covariances in (13).

Expand the columndimension ofVm+1:g from g−m to n by adding anA-orthogonal
complement V⊥

m ∈ R
n×(n−g+m) to create an A-orthogonal matrix

Ṽ ≡ [
Vm+1:g V⊥

m

] ∈ R
n×n

with ṼTAṼ = In . Analogously expand the dimension of the diagonal matrices by
padding with trailing zeros,

�̃m+1:g ≡ diag
(
φm+1 · · · φg 01×(n−g+m)

) ∈ R
n×n,

�̃m+1:m+d ≡ diag
(
φm+1 · · · φm+d 01×(n−d)

) ∈ R
n×n .

Factor the covariances in terms of the above square matrices,

�m = Ṽ�̃m+1:gṼT and �̂m = Ṽ�̃m+1:m+dṼT .

Substitute the factorizations into (13), and compute the A-Wasserstein distance
between ηm and η̂m as

(WA(ηm, η̂m))2 = trace(G) + trace(J) − 2 trace
(
(G1/2 JG1/2)1/2

)
, (17)

where the congruence transformations of �m and �̂m are again Hermitian,

G ≡ A1/2 Ṽ�̃m+1:gṼT

︸ ︷︷ ︸
�m

A1/2 = U�̃m+1:gUT , U ≡ A1/2Ṽ

J ≡ A1/2 Ṽ�̃m+1:m+dṼT
︸ ︷︷ ︸

�̂m

A1/2 = U�̃m+1:dUT .
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Lemma A.3 implies that U is an orthogonal matrix, so that the second factorizations
of G and J represent eigenvalue decompositions. Commutativity of the trace implies

trace(G) = trace(�̃m+1:g) =
g∑

i=m+1

φi

trace(J) = trace(�̃m+1:m+d) =
m+d∑

i=m+1

φi .

Since G and J have the same eigenvector matrix, they commute, and so do diagonal
matrices,

G1/2JG1/2 = U�̃m+1:g�̃m+1:m+dUT

= U diag
(
φ2
m+1 · · · φ2

m+d 01×(n−d)

)
UT

where the last equality follows from the fact that �̃m+1:g and �̃m+1:m+d share the
leading d diagonal elements. Thus

trace
(
(G1/2 JG1/2)1/2

)
=

m+d∑

i=m+1

φi .

Substituting the above expressions into (17) gives

(WA(ηm, η̂m))2 =
g∑

i=m+1

φi +
m+d∑

i=m+1

φi − 2
m+d∑

i=m+1

φi =
g∑

i=m+d+1

φi .

�

Theorem 3.5 implies that theA-Wasserstein distance between approximate and full

Krylov posteriors is the sumof theCGsteps sizes skipped by the approximate posterior,
and this, as seen in (9) and [20, Equation (4.4)], is equal to the distance between the
error estimate trace(A�̂m) and the true error ‖x∗ − xm‖2A. As a consequence, the
approximation error decreases as the convergence of the posterior mean accelerates,
or the rank d of the approximation increases.

Remark 3.6 The distance in Theorem3.5 is a special case of the 2-Wasserstein distance
between two distributions whose covariance matrices commute [21, Corollary 2.4].

To see this, consider the A-Wasserstein distance between ηm and η̂m from The-
orem 3.5, and the 2-Wasserstein distance between νm ≡ N (xm,A1/2�A1/2) and
ν̂m ≡ N (xm,A1/2�̂A1/2). Then (15) implies that the A-Wasserstein distance is equal
to the 2-Wassterstein distance of a congruence transformation,

WA(ηm, η̂m) = W2(νm, ν̂m).
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The covariance matrices A1/2�mA1/2 and A1/2�̂mA1/2 associated with the 2-
Wasserstein distance commute because they are both diagonalized by the same
orthogonal matrix A1/2Ṽ.

3.2 Probabilistic interpretation of the Krylov prior

We interpret the Krylov prior as an ‘empirical Bayesian procedure’ (Theorem 3.7), and
elucidate the connection between the random variables and the deterministic solution
(Remark 3.8).

An empirical Bayesian procedure estimates the prior from data [24, Section 4.5].
Our ‘data’ are the pairs of normalized search directions vi and step sizes φi , 1 ≤ i ≤
m + d, from m + d iterations of CG. In contrast, the usual data for BayesCG are the
inner products vTi b, 1 ≤ i ≤ m. However, if we augment the usual data with the search
directions, which is natural due to their dependence on x∗, then φi is just a function
of the data.

From these data we construct a prior in an empirical Bayesian fashion, starting with
a random variable

X = x0 +
m+d∑

i=1

√
φivi Qi ∈ R

n,

where Qi ∼ N (0, 1) are independent and identically distributed scalar Gaussian
random variables, 1 ≤ i ≤ m + d. Due to the independence of the Qi , the above sum
is the matrix vector product

X = x0 + V1:m+d �
1/2
1:m+d Q (18)

where Q ∼ N (0, Im+d) is a vector-valued Gaussian random variable.
The distribution of X is the empirical prior, while the distribution of X conditioned

on the randomvariableY ≡ VT
1:mAX taking the valueVT

1:mb is the empirical posterior.
We relate these distributions to the Krylov prior.

Theorem 3.7 Under the assumptions of Theorem 2.7, the random variable X in (18)
is distributed according to the empirical prior

N
(
x0,V1:m+d�1:m+dVT

1:m+d

)
,

which is the rank-(m + d) approximation of the Krylov prior �0. The variable X
conditioned on Y ≡ VT

1:mAX taking the value VT
1:mb is distributed according to the

empirical posterior

N
(
xm,Vm+1:m+d�m+1:m+dVT

m+1:m+d

)
= N (

xm, �̂m
)
,

which, in turn, is the rank-d approximation of the Krylov posterior.
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Proof As in the proof of Theorem 2.1 in [17, Proof of Proposition 1], we exploit
the stability and conjugacy of Gaussian distributions in Lemmas A.1 and A.2 in
“Appendix A”.

Prior.
Lemma A.1 implies that X in (18) is a Gaussian random variable with mean and
covariance

X ∼ N
(
x0,V1:m+d�1:m+dVT

1:m+d

)
. (19)

Thus, the approximate Krylov prior is an empirical Bayesian prior.

Posterior.
From (19) follows that X and Y ≡ VT

1:mAX have the joint distribution

[
X
Y

]
∼ N

([
x0

E[Y ]
]

,

[
V1:m+d�1:m+dVT

1:m+d Cov(X ,Y )

Cov(X ,Y )T Cov(Y ,Y )

])
(20)

and that E[Y ] = VT
1:mAx0. This, together with the linearity of the expectation and the

A-orthonormality of V implies

Cov(Y ,Y ) = E

[
(Y − E[Y ])(Y − E[Y ])T

]

= VT
1:mA E

[
(X − x0)(X − x0)T

]
AV1:m

= VT
1:mA

(
V1:m+d�1:m+dVT

1:m+d

)
AV1:m

= [
Im 0

]
�1:m+d

[
Im
0

]
= �1:m .

Analogously,

Cov(X ,Y ) = E[(X − x0)(Y − E[Y ])T ] = E[(X − x0)(Y − VT
1:mAx0)T ]

= E[(X − x0)(X − x0)T ]AV1:m = V1:m+d�1:m+dVT
1:m+dAV1:m

= V1:m+d�1:m+d
[
Im 0

] = V1:m�1:m .

From [25, Theorem 6.20] follows the expression for the posterior mean,

xm = x0 + Cov(X ,Y )Cov(Y ,Y )−1
(
VT
1:mb − VT

1:mAx0
)

= x0 + V1:m�1:m�−1
1:mV

T
1:mr0 = x0 + V1:mVT

1:mr0,

and for the posterior covariance

�̂m = V1:m+d�1:m+dVT
1:m+d − Cov(X ,Y )Cov(Y ,Y )−1 Cov(X ,Y )T ,
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where

Cov(X ,Y )Cov(Y ,Y )−1 Cov(X ,Y )T = V1:m�1:m�−1
1:m�1:mVT

1:m
= V1:m�1:mVT

1:m .

Substituting this into �̂m gives the expression for the posterior covariance

�̂m = V1:m+d�1:m+dVT
1:m+d − V1:m�1:mVT

1:m
= Vm+1:m+d�m+1:m+dVT

m+1:m+d .

Thus, the posterior mean xm is equal to the one in Theorem 2.7, and the posterior
covariance �̂m is equal to the rank-d approximate Krylov posterior in Definition 2.8.

�


Remark 3.8 The random variable X in Theorem 3.7 is a surrogate for the unknown
solution x∗. The solution x∗ is a deterministic quantity, but prior to solving the linear
system (1), we are uncertain of x∗, and the prior models this uncertainty.

During the course of the BayesCG iterations, we acquire information about x∗, and
the posterior distributions μm , 1 ≤ m ≤ n incorporate our increasing knowledge and,
consequently, our diminishing uncertainty.

4 Calibration of BayesCG under the Krylov prior

We review the notion of calibration for probabilistic solvers, and show that this notion
does not apply toBayesCGunder theKrylov prior (Sect. 4.1). Thenwe relax this notion
and analyze BayesCG with two test statistics that are necessary but not sufficient for
calibration: the Z -statistic (Sect. 4.2) and the S-statistic (Sect. 4.3).

4.1 Calibration

We review the definition of calibration for probabilistic linear solvers (Definition 4.1,
Lemma 4.2), discuss the difference between certain random variables (Remark 4.3),
present two illustrations (Examples 4.4 and 4.5), and explain why this notion of cali-
bration does not apply to BayesCG under the Krylov prior (Remark 4.6).

Informally, a probabilistic numerical solver is calibrated if its posterior distributions
accurately model the uncertainty in the solution [6, 26].

Definition 4.1 [6, Definition 6] Let AX∗ = B be a class of linear systems where
A ∈ R

n×n is symmetric positive definite, and the random right hand sides B ∈ R
n are

defined by random solutions X∗ ∼ μ0 ≡ N (x0,�0).
Assume that a probabilistic linear solver under the prior μ0 and applied to a system

AX∗ = B computes posteriors μm ≡ N (xm,�m), 1 ≤ m ≤ n. Let rank(�m) = pm ,
and let �m have an orthogonal eigenvector matrix U = [

Um U⊥
m

] ∈ R
n×n where
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Um ∈ R
n×pm and U⊥

m ∈ R
n×(n−pm) satisfy

range(Um) = range(�m), range(U⊥
m) = ker(�m).

The probabilistic solver is calibrated if all posterior covariances �m are independent
of B and satisfy

(UT
m�mUm)−1/2UT

m(X∗ − xm) ∼ N (0, Ipm ),

(U⊥
m)T (X∗ − xm) = 0, 1 ≤ m ≤ n.

(21)

Alternatively, one can think of a probabilistic linear solver as calibrated if and only
if the solutions X∗ are distributed according to the posteriors.

Lemma 4.2 Under the conditions of Definition 4.1, a probabilistic linear solver is
calibrated, if and only if

X∗ − xm(X∗) ∼ N (0,�m), 1 ≤ m ≤ n,

where the notation xm(X∗) highlights the dependence of xm on X∗ through its depen-
dence on the projections STmB = STmAX∗, while �m is independent of X∗ as assumed
in Definition 4.1.

Proof Let �m = UDUT be an eigendecomposition where the eigenvalue matrix D =
diag

(
Dm 0

)
is commensurately partitioned withU in Definition 4.1. Multiply the first

equation of (21) on the left by D1/2
m = (UT

m�mUm)1/2,

UT
m(X∗ − xm) ∼ N (0,Dm),

combine the result with the second equation in (21),

UT (X∗ − xm) ∼ N (0,D),

and multiply by U on the left,

(X∗ − xm) ∼ N (0,UDUT ), 1 ≤ m ≤ n.

At last, substitute �m = UDUT and subtract xm . �

Since the covariance matrix �m is singular, its probability density function is zero

on the subspace ofRn where the solver has eliminated the uncertainty about X∗. From
(21) follows that X∗ = xm ∈ ker(�m). Hence, this subspace must be ker(�m), and
any remaining uncertainty about X∗ lies in range(�m).

Remark 4.3 We discuss the difference between the random variable X∗ in Defini-
tion 4.1 and the random variable X in Theorem 3.7.

In the context of calibration, the random variable X∗ ∼ μ0 represents the set of
all possible solutions that are accurately modeled by the prior μ0. If the solver is
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calibrated, then Lemma 4.2 shows that X∗ ∼ μm . Thus, solutions accurately modeled
by the prior μ0 are also accurately modeled by all posteriors μm .

By contrast, in the context of a deterministic linear system Ax∗ = b, the random
variable X represents a surrogate for the particular solution x∗ and can be viewed as
an abbreviation for X | X∗ = x∗. The prior μ0 models the uncertainty in the user’s
initial knowledge of x∗, and the posteriors μm model the uncertainty remaining after
m iterations of the solver.

The following two examples illustrate Definition 4.1.

Example 4.4 Suppose there are three people: Alice, Bob, and Carol.

1. Alice samples x∗ from the prior μ0 and computes the matrix vector product b =
Ax∗.

2. Bob receivesμ0, b, andA fromAlice. He estimates x∗ by solving the linear system
with a probabilistic solver under the prior μ0, and then samples y from a posterior
μm .

3. Carol receives μm , x∗ and y, but she is not told which vector is x∗ and which is y.
Carol then attempts to determine which one of x∗ or y is the sample from μm . If
Carol cannot distinguish between x∗ and y, then the solver is calibrated.

Example 4.5 This is the visual equivalent of Example 4.4, where Carol receives the
images in Fig. 2 of three different probabilistic solvers, but without any identification
of the solutions and posterior samples.

• Top plot. This solver is calibrated because the solutions look indistinguishable
from the samples of the posterior distribution.

• Bottom left plot. This solver is not calibrated because the solutions are unlikely to
be samples from the posterior distribution.
The solver is optimistic because the posterior distribution is concentrated in an
area of Rn that is too small to cover the solutions.

• Bottom right plot. The solver is not calibrated. Although the solutions could plau-
sibly be sampled from the posterior, they are concentrated too close to the center
of the distribution.
The solver is pessimistic because the area covered by the posterior distribution is
much larger than the area containing the solutions.

Remark 4.6 The posterior means and covariances from a probabilistic solver can
depend on the solution x∗, as is the case for BayesCG. If a solver is applied to a
random linear system in Definition 4.1 and if the posterior means and covariances
depend on the solution X∗, then the posterior means and covariances are also random
variables.

Definition 4.1 prevents the posterior covariances from being random variables by
forcing them to be independent of the random right hand side B. Although this is
a realistic constraint for the stationary iterative solvers in [2], it does not apply to
BayesCG under the Krylov prior, because Krylov posterior covariances depend non-
linearly on the right-hand side. In Sects. 4.2 and 4.3, we present a remedy for BayesCG
in the form of test statistics that are motivated by Definition 4.1 and Lemma 4.2.
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Fig. 2 Posterior distributions and solutions from three different probabilistic solvers: calibrated (top), opti-
mistic (bottom left), and pessimistic (bottom right). The gray contours represent the posterior distributions,
the red symbols “×” the solutions, and the blue symbols “+” samples from the posterior distributions

4.2 The Z-statistic

We assess BayesCG under the Krylov prior with an existing test statistic, the Z -
statistic, which is a necessary condition for calibration and can be viewed as a weaker
normwise version of criterion (21). We review the Z -statistic (Sect. 4.2.1), and apply
it to BayesCG under the Krylov prior (Sect. 4.2.2).

4.2.1 Review of the Z-statistic

We review the Z -statistic (Definition 4.7), and the chi-square distribution (Defini-
tion 4.8), which links the Z -statistic to calibration (Theorem 4.9). Then we discuss
how to generate samples from the Z -statistic (Algorithm 4.1), how to use the samples
for the assessment of calibration (Remark 4.10), and then present the Kolmogorov–
Smirnov statistic as a computationally inexpensive estimate for the difference between
two general distributions (Definition 4.11).

The Z -statisticwas introduced in [1, Section 6.1] as ameans to assess the calibration
of BayesCG, and has subsequently been applied to other probabilistic linear solvers
[11, Section 6.4], [12, Section 9].
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Definition 4.7 [1, Section 6.1] Let AX∗ = B be a class of linear systems where
A ∈ R

n×n is symmetric positive definite, and X∗ ∼ μ0 ≡ N (x0,�0). Let μm ≡
N (xm,�m), 1 ≤ m ≤ n, be the posterior distributions from a probabilistic solver
under the prior μ0 applied to AX∗ = B. The Z -statistic is

Zm(X∗) ≡ (X∗ − xm)T�†
m(X∗ − xm), 1 ≤ m ≤ n. (22)

The chi-squared distribution below furnishes the link from Z -statistic to calibration.

Definition 4.8 [27, Definition 2.2] If X1, . . . , X f ∈ N (0, 1) are independent random

normal variables, then
∑ f

j=1 X
2
j is distributed according to the chi-squared distribution

χ2
f with f degrees of freedom and mean f .

In other words, if X ∼ N (0, I f ), then XT X ∼ χ2
f and E[XT X ] = f .

We show that the Z -statistic is a necessary condition for calibration. That is: If
a probabilistic solver is calibrated, then the Z -statistic is distributed according to a
chi-squared distribution.

Theorem 4.9 [17, Proposition 1] Let AX∗ = B be a class of linear systems where
A ∈ R

n×n is symmetric positive definite, and X∗ ∼ μ0 ≡ N (x0,�0). Assume that a
probabilistic solver under the prior μ0 applied to AX∗ = B computes the posteriors
μm ≡ N (xm,�m) with rank(�m) = pm, 1 ≤ m ≤ n.

If the solver is calibrated, then

Zm(X∗) ∼ χ2
pm , 1 ≤ m ≤ n.

Proof Write Zm(X∗) = MT
mMm , whereMm ≡ (�†

m)1/2(X∗−xm). Lemma4.2 implies
that a calibrated solver produces posteriors with

(X∗ − xm) ∼ N (0,�m), 1 ≤ m ≤ n.

With the eigenvector matrix Um ∈ R
n×pm as in Definition 4.1, Lemma A.1 in

“Appendix A” implies

Mm ∼ N (0,UmUT
m), 1 ≤ m ≤ n.

Since the covariance of Mm is an orthogonal projector, LemmaA.7 implies Zm(X∗) =
(MT

mMm) ∼ χ2
pm . �


Theorem 4.9 implies that BayesCG is calibrated if the Z -statistic is distributed
according to a chi-squared distribution with pm = rank(�0)−m degrees of freedom.
For the Krylov prior specifically, pm = g − m.

Generating samples from the Z -statistic and assessing calibration.
For a user-specified probabilistic linear solver and a symmetric positive definite
matrix A, Algorithm 4.1 samples Ntest solutions x∗ from the prior distribution μ0,
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defines the linear systems b ≡ Ax∗, runs m iterations of the solver on b ≡ Ax∗,
and computes Zm(x∗) in (22).

The application of the Moore–Penrose inverse in Line 6 can be implemented by
computing the minimal norm solution q∗ = �†

m(x∗ −xm) of the least squares problem

min
q∈Rn

‖(x∗ − xm) − �mq‖2, (23)

followed by the inner product zi = (x∗ − xm)Tq∗.

Algorithm 4.1 Sampling from the Z -statistic
1: Input: spd A ∈ R

n×n , μ0 = N (x0, �0), solver, m, Ntest
2: for i = 1 : Ntest do
3: Sample x∗ from prior distribution μ0 � Sample solution vector
4: b = Ax∗ � Define test problem
5: [xm , �m ] = solver(A, b, μ0,m) � Compute posterior μm ≡ N (xm , �m )

6: zi = (x∗ − xm )T �
†
m (x∗ − xm ) � Compute Z -statistic sample

7: end for
8: Output: Z -statistic samples zi , 1 ≤ i ≤ Ntest .

Remark 4.10 We assess calibration of the solver by comparing the Z -statistic
samples zi from Algorithm 4.1 to the chi-squared distribution χ2

pm with pm ≡
rank(�0) − m degrees of freedom, based on the following criteria from [1, Section
6.1].

Calibrated: If zi ∼ χ2
pm , then x∗ ∼ μm and the solutions x∗ are distributed

according to the posteriors μm .
Pessimistic: If the zi are concentrated around smaller values than χ2

pm , then the
solutions x∗ occupy a smaller area of Rn than predicted by μm .

Optimistic: If the zi are concentrated around larger values than χ2
pm , then the

solutions cover a larger area of Rn than predicted by μm .

In [1, Section 6.1] and [11, Section 6.4], the Z -statistic samples and the predicted
chi-squared distribution are compared visually. In Sect. 5, we make an additional
quantitative comparison with the Kolmogorov–Smirnov test to estimate the differ-
ence between two probability distributions.

Definition 4.11 [28, Section 3.4.1] Given two distributionsμ and ν onRn with cumu-
lative distribution functions Fμ and Fν , the Kolmogorov–Smirnov statistic is

K S(μ, ν) = sup
x∈R

|Fμ(x) − Fν(x)|,

where 0 ≤ K S(μ, ν) ≤ 1.
If K S(μ, ν) = 0, then μ and ν have the same cumulative distribution functions,

Fμ = Fν . If K S(μ, ν) = 1, then μ and ν do not overlap. In general, the lower
K S(μ, ν), the closer μ and ν are to each other.
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In contrast to the Wasserstein distance in Definition 3.1, the Kolmogorov–Smirnov
statistic in Definition 4.11 can be easier to estimate —especially if the distributions
are not Gaussian— but it is not a metric. Consequently, if μ and ν do not overlap, then
K S(μ, ν) = 1 regardless of how far μ and ν are apart, while the Wasserstein metric
still gives information about the distance between μ and ν.

4.2.2 Z-Statistic for BayesCG under the Krylov prior

We apply the Z -statistic to BayesCG under the Krylov prior. We start with an expres-
sion for theMoore–Penrose inverse of theKrylov posterior covariances (Lemma 4.12).
Then we show that the Z -statistic for the full Krylov posteriors has the same mean
as the corresponding chi-squared distribution (Theorem 4.13), but its distribution is
different. Therefore the Z -statistic is inconclusive about the calibration of BayesCG
under the Krylov prior (Remark 4.14).

Lemma 4.12 In Definition 2.8, abbreviate V̂ ≡ Vm+1:m+d and �̂ ≡ �m+1:m+d . The
rank-d approximate Krylov posterior covariances have the Moore–Penrose inverse

�̂
†
m =

(
V̂�̂V̂T

)† = V̂(V̂T V̂)−1�̂
−1

(V̂T V̂)−1V̂T , 1 ≤ m ≤ g − d.

Proof We exploit the fact that all factors of �̂m have full column rank.
The factors V̂ and V̂T have full column and row rank, respectively, because V has

A-orthonormal columns. Additionally, the diagonal matrix �̂ is nonsingular. Then
LemmaA.5 in “AppendixA” implies that theMoore-Penrose inverses can be expressed
in terms of the matrices proper,

V̂† = (V̂T V̂)−1V̂T , (V̂T )† = V̂(V̂T V̂)−1, (24)

and
(�̂V̂T )† = (V̂T )†�̂

−1 = V̂(V̂T V̂)−1�̂
−1

. (25)

Since �̂V̂T also has full row rank, apply Lemma A.5 to �̂m ,

�̂
†
m = (�̂V̂T )†V̂†,

and substitute (24) and (25) into the above expression. �

We apply the Z -statistic to the full Krylov posteriors, and show that Z -statistic

samples reproduce the dimension of the unexplored Krylov space.

Theorem 4.13 Under the assumptions of Theorem 2.7, let BayesCG under the Krylov
prior η0 ≡ N (x0,�0) produce full Krylov posteriors ηm ≡ N (xm,�m). Then the
Z-statistic is equal to

Zm(x∗) = (x∗ − xm)T�†
m(x∗ − xm) = g − m, 1 ≤ m ≤ g.
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Proof Express the error x0 − xm in terms of V̂ ≡ Vm+1:g by inserting

x∗ = x0 + V1:gVT
1:gr0, xm = x0 + V1:mVT

1:mr0, 1 ≤ m ≤ g, (26)

from Theorem 2.7 into

x∗ − xm = Vm+1:gVT
m+1:gr0 = V̂V̂T r0.

This expression is identical to [18, Equation (5.6.5)], which relates the CG error to the
search directions and step sizes of the remaining iterations.

With Lemma 4.12, this implies for the Z -statistic in Theorem 4.9

Zm(x∗) = (x∗ − xm)T�†
mx∗ − xm)

= rT0 V̂V̂
T

︸ ︷︷ ︸
(x∗−xm )T

V̂(V̂T V̂)−1�̂
−1

(V̂T V̂)−1V̂T
︸ ︷︷ ︸

�
†
m

V̂V̂T r0︸ ︷︷ ︸
(x∗−xm )

= rT0 V̂ (V̂T V̂)(V̂T V̂)−1
︸ ︷︷ ︸

I

�̂
−1

(V̂T V̂)−1(V̂T V̂)︸ ︷︷ ︸
I

V̂T r0

= rT0 V̂�̂
−1V̂T r0.

In other words,

‖x∗ − xm‖2
�̂
†
m

=
(
VT
m+1:gr0

)T
�−1

m+1:m+d

(
VT
m+1:gr0

)

=
g∑

j=m+1

φ−1
j (vTj r0)

2 = g − m, 0 ≤ m < g,

where the last inequality follows from φ j = (vTj r0)
2 in Definition 2.4. �


Remark 4.14 On the one hand, Theorem 4.13 shows that BayesCG is not calibrated
under the Krylov prior, since it is distributed according to a Dirac distribution at
g − m rather than following a χ2

g−m distribution. On the other hand, the assessment
of calibration by means of the Z -statistics is not well-motivated for the Krylov prior.

In our empirical Bayesian construction, the prior depends upon the residual r0, so
any linear system Ax∗ = b yields a different prior distribution. Arguments based on
randomising the solution x∗ according to the prior are therefore circular. Thismotivates
the assessment of calibration by means of a weaker criterion that avoids this circular
argument, which we will address in the next section.

Furthermore,Theorem 4.13 shows that the value of the Z-statistic is equal to the
mean of the ideal χ2

g−m distribution, suggesting that there is reason to believe that an
appropriate notion of calibratedness might show that BayesCG is calibrated under the
Krylov prior.
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4.3 The S-statistic

We introduce a new test statistic for assessing the calibration of probabilistic solvers,
the S-statistic. After discussing the relation between calibration and error estimation
(Sect. 4.3.1), we define the S-statistic (Sect. 4.3.2), compare the S-statistic to the Z -
statistic (Sect. 4.3.3), and then apply the S-statistic to BayesCG under the Krylov prior
(Sect. 4.3.4).

4.3.1 Calibration and error estimation

We establish a relation between the error of the posterior means and the trace of
posterior covariances (Theorem 4.15).

Theorem 4.15 LetAX∗ = B bea class of linear systemswhereA ∈ R
n×n is symmetric

positive definite and X∗ ∼ μ0 ≡ N (x0,�0). Let μm ≡ N (xm,�m), 1 ≤ m ≤ n be
the posterior distributions from a probabilistic solver under the prior μ0 applied to
AX∗ = B.

If the solver is calibrated, then

E[‖X∗ − xm‖2A] = trace(A�m), 1 ≤ m ≤ n. (27)

Proof For a calibrated solver Lemma 4.2 implies that X∗ ∼ μm . Then apply
Lemma A.8 from “Appendix A” to the error ‖X∗ − xm‖2A. �


For a calibrated solver, Theorem 4.15 implies that the equality ‖x∗ − xm‖2A =
trace(A�m) holds on average. This means, the trace can overestimate the error for
some solutions, while for others, it can underestimate the error.

We explain how Theorem 4.15 relates the errors of a calibrated solver to the area
in which its posteriors are concentrated.

Remark 4.16 The trace of a posterior covariance matrix quantifies the spread of its
probability distribution—because the trace is the sum of the eigenvalues, which in
the case of a covariance are the variances of the principal components [29, Section
12.2.1].

In analogy to viewing the A-norm as the 2-norm weighted by A, we can view
trace(A�m) as the trace of �m weighted by A. Theorem 4.15 shows that the A-norm
errors of a calibrated solver are equal to the weighted sum of the principal component
variances from the posterior. Thus, the posterior means xm and the areas in which the
posteriors are concentrated both converge to the solution at the same speed, provided
the solver is calibrated.

4.3.2 Definition of the S-statistic

We introduce the S-statistic (Definition 4.17), present an algorithm for generating sam-
ples from the S-statistic (Algorithm 4.2), and discuss their use for assessing calibration
of solvers (Remark 4.18).

The S-statistic represents a necessary condition for calibration, as established in
Theorem 4.15.
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Definition 4.17 LetAX∗ = B be a class of linear systemswhereA ∈ R
n×n is symmet-

ric positive definite, and X∗ ∼ μ0 ≡ N (x0,�0). Let μm ≡ N (xm,�m), 1 ≤ m ≤ n,
be the posterior distributions from a probabilistic solver under the prior μ0 applied to
AX∗ = B. The S-statistic is

Sm(X∗) ≡ ‖X∗ − xm‖2A. (28)

If the solver is calibrated then Theorem 4.15 implies

E[S(X∗)] = trace(A�m). (29)

Generating samples from the S-statistic and assessing calibration.
For a user specified probabilistic linear solver and a symmetric positive definite
matrix A, Algorithm 4.2 samples Ntest solutions x∗ from the prior distribution μ0,
defines the linear systems b = Ax∗, runs m iterations of the solver on the system, and
computes Sm(x∗) and trace(A�m) from (28).

Algorithm 4.2 Sampling from the S-statistic
1: Input: spd A ∈ R

n×n , μ0 = N (x0, �0), solver, m, Ntest
2: for i = 1 : Ntest do
3: Sample x∗ from prior distribution μ0 � Sample solution vector
4: b = Ax∗ � Define test problem
5: [xm , �m ] = solver(A, b, μ0,m) � Compute posterior μm ≡ N (xm , �m )

6: si = ‖x∗ − xm‖2A � Compute S-statistic for test problem
7: ti = trace(A�m ) � Compute trace for test problem
8: end for
9: h = 1

Ntest

∑Ntest
i=1 si � Compute empirical mean of S-statistic samples

10: Output: S-statistic samples si and traces ti ; S-statistic mean h

Remark 4.18 Weassess calibrationof the solver by comparing the S-statistic samples si
from Algorithm 4.2 to the traces ti , 1 ≤ i ≤ Ntest . The following criteria are based
on Theorem 4.15 and Remark 4.16.

Calibrated: If the solver is calibrated, the traces ti should all be equal to the empir-
ical mean h of the S-statistic samples si .

Pessimistic: If the si are concentrated around smaller values than the ti , then the
solutions x∗ occupy a smaller area of Rn than predicted by the posteriors μm .

Optimistic: If the si are concentrated around larger values than the ti , then the
solutions x∗ occupy a larger area of Rn than predicted by μm .

We can also compare the empirical means of the si and ti , because a calibrated
solver should produce si and ti with the same mean. Note that a comparison via the
Kolmogorov–Smirnov statistic is not appropriate because the empirical distributions
of si and ti are generally different.
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4.3.3 Comparison of the Z- and S-statistics

Both, Z - and S-statistic represent necessary conditions for calibration in (27) and (29);
and both measure the norm of the error X∗ − xm : The Z -statistic in the �†

m-pseudo
norm (Definition 4.7), and the S-statistic in the A-norm (Definition 4.17). Deeper
down, though, the Z -statistic projects errors onto a single dimension (Theorem 4.9),
while the S-statistic relates errors to the areas in which the posterior distributions are
concentrated.

Due to its focus on the area of the posteriors, the S-statistic can give a false positive
for calibration. This occurs when the solution is not in the area of posterior concentra-
tion but the size of the posteriors is consistent with the errors. The Z -statistic is less
likely to encounter this problem, as illustrated in Fig. 3.

The Z -statistic is better at assessing calibration, while the S statistic produces
accurate error estimates, which default to the traditional A-norm estimates. The S-
statistic is also faster to compute because it does not require the solution of a least
squares problem.

Fig. 3 Assessment of calibration from Z -statistic and S-statistic. The contour plots represent the posterior
distributions, and the symbol ‘×’ represents the solution. Top left: Both statistics decide that the solver is
not calibrated. Top right: The S-statistic decides that the solver is calibrated, while the Z -statistic does not.
Bottom: Both statistics decide that the solver is calibrated
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4.3.4 S-statistic for BayesCG under the Krylov prior

We show that BayesCG under the Krylov prior is not calibrated, but its performance is
similar to that of a calibrated solver under full posteriors, while it is optimistic under
approximate posteriors.

Calibration of BayesCG under full Krylov posteriors.
Theorem 2.7 implies that the S-statistic for any solution x∗ is equal to

Sm(x∗) = ‖x∗ − xm‖2A = trace(A�m), 1 ≤ m ≤ g.

Thus, the S-statistic indicates that the size of Krylov posteriors is consistent with the
errors, which is a desirable property of calibrated solvers. However, BayesCG under
the Krylov prior is not a calibrated solver because the traces of posterior covariances
from calibrated solvers are distributed around the average error instead of always
being equal to the error.

Calibration of BayesCG under approximate Krylov posteriors.
From (9) follows that trace(A�̂m) is concentrated around smaller values than the S-
statistic; and the underestimate of the trace is equal to theWasserstein distance between
full and approximate Krylov posteriors in Theorem 3.5. This underestimate points to
the optimism of BayesCG under approximate Krylov posteriors. This optimism is
expected because approximate posteriors model the uncertainty about x∗ in a lower
dimensional space than full posteriors.

5 Numerical experiments

We present numerical assessments of BayesCG calibration via the Z - and S-statistics.
After describing the setup of the numerical experiments (Sect. 5.1), we assess the

calibration of three implementations of BayesCG: (i) BayesCG with random search
directions (Sect. 5.2)—a solver known to be calibrated—so as to establish a baseline
for comparisons with other versions of BayesCG; (ii) BayesCG under the inverse
prior (Sect. 5.3); and (iii) BayesCG under the Krylov prior (Sect. 5.4). Two additional
experiments with BayesCG under approximate Krylov posteriors investigate: (i) the
potential improvement in calibration when BayesCG returns xm+d as the posterior
mean instead of xm (Sect. 5.5); and (ii) the effect of convergence on the calibration of
BayesCG (Sect. 5.6). The experiments focus on the inverse and Krylov priors because
their posterior means are identical to the CG iterates.

Conclusions from all experiments.
Both, Z - and S statistics indicate that BayesCG with random search directions is
indeed a calibrated solver, and that BayesCG under the inverse prior is pessimistic.

The S-statistic indicates that BayesCG under full Krylov posteriors mimics a cal-
ibrated solver, and that BayesCG under rank-50 approximate Krylov posteriors does
almost as well, but is slightly optimistic.

However, among all versions, BayesCG under approximate Krylov posteriors is the
only one that is computationally practical and that is competitive with CG.
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5.1 Experimental setup

We present the matrix A in the linear systems in Sects. 5.2–5.5 (Sect. 5.1.1); the setup
of the Z - and S-statistic experiments (Sect. 5.1.2); and the three BayesCG implemen-
tations (Sect. 5.1.3).

5.1.1 The matrix A in the linear system

The symmetric positive definite matrix A ∈ R
n×n of dimension n = 1806 is a pre-

conditioned version of the matrix BCSSTK14 from the Harwell–Boeing collection in
[30]. Specifically, B is BCSSTK14, and

A = D−1/2BD−1/2, where D ≡ diag
(
B11 · · · Bnn

)
.

Calibration is assessed at iterations m = 10, 100, 300.

5.1.2 Z-statistic and S-statistic

The Z -statistic and S-statistic experiments are implemented as in Algorithms
4.1 and 4.2, respectively. The calibration criteria for the Z -statistic are given in
Remark 4.10, and for the S-statistic in Remark 4.18.

We sample from Gaussian distributions by exploiting their stability. According to
Lemma A.1 in “Appendix A”, if Z ∼ N (0, I), and FFT = � is a factorization of the
covariance, then

FZ + z = X ∼ N (x,�).

Samples Z ∼ N (0, I) are generated with randn(n, 1) in Matlab, and with
numpy.random.randn(n, 1) in NumPy.

Z -statistic experiments.
We quantify the distance between the Z -statistic samples and the chi-squared distribu-
tion by applying the Kolmogorov–Smirnov statistic in Definition 4.11 to the empirical
cumulative distribution function of the Z -statistic samples and the analytical cumula-
tive distribution function of the chi-squared distribution.

We choose the degree of freedom for the chi-squared distribution as the median
numerical rank of the posterior covariances. To see why, note that the numerical rank
of �m can differ from

rank(�m) = rank(�0) − m,

while the median rank represents an integer value equal to the rank of at least one of
the posterior covariances.

In compliance with the Matlab function rank and the NumPy function numpy.
linalg.rank, we compute the numerical rank of �m as

rank(�m) = cardinality{σi | σi > nε‖�m‖2}, (30)

where ε is machine epsilon and σi , 1 ≤ i ≤ n, are the singular values of �m [31,
Section 5.4.1].
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Fig. 4 Relative errors ‖x∗ − xm‖2A/‖x∗‖2A for BayesCG under the inverse prior (solid red curve), Krylov
prior (dashed black curve), and with random search directions (dotted blue curve). Left panel: Vertical axis
has a logarithmic scale. Right panel: Vertical axis has a linear scale

5.1.3 Three BayesCG implementations

We consider three versions of BayesCG: BayesCG with random search directions,
BayesCG under the inverse prior, and BayesCG under the Krylov prior.

BayesCG with random search directions.
Algorithm B.2 in “Appendix B.2” computes posterior covariances that do not depend
on the solution x∗. To ensure that the search directions do not depend on x∗ either
[6, Section 1.1], we start with a random search direction s1 ∼ N (0, I) instead of the
initial residual r0 ≡ b0 − Ax0. The prior is N (0,A−1).

This version of BayesCG is calibrated by design. However, it is also impractical
due to its slow convergence, see Fig. 4, which takes n iterations. The random initial
search direction s1 produces uninformative subspaces, so that BayesCG has to explore
all of Rn before finding the solution.

BayesCG under the inverse prior μ0 ≡ N (0,A−1).
Algorithm B.3 in “Appendix B.3” is a modified version of Algorithm 2.1 for general
priors that maintains the posterior covariances in factored form.

BayesCG under the Krylov prior.
For full posteriors, the modified Lanczos solver Algorithm B.1 in “Appendix B.4”
computes the full prior, followed by the direct computation of the posteriors in Algo-
rithm B.2.

For approximate posteriors, Algorithm B.5 in “Appendix B.4” computes rank-d
covariances at the same computational cost as m + d iterations of CG.

For the Z - and S-statistic experiments, we cannot, as usual, sample the solutions
x∗ from the Krylov prior, because it differs from solution to solution. Instead, we
sample solutions from the reference distribution N (0,A−1). This is a reasonable
choice because the posterior means in BayesCG under the inverse and Krylov priors
are identical to the CG iterates [1, Section 3].
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Fig. 5 Z -statistic samples for BayesCG with random search directions after m = 10, 100, 300 iterations.
The solid red curve represents the chi-squared distribution and the dashed blue curve the Z -statistic samples
(color figure online)

Table 1 This table corresponds to Fig. 5

Iteration Z -stat mean χ2 mean K–S statistic

10 1.79 × 103 1.8 × 103 7.91 × 10−2

100 1.7 × 103 1.71 × 103 0.116

300 1.51 × 103 1.51 × 103 0.13

For BayesCG with random search directions, it shows the Z -statistic sample means; the chi-squared distri-
bution means; and the Kolmogorov–Smirnov statistic between the Z -statistic samples and the chi-squared
distribution

5.2 BayesCGwith random search directions

By design, BayesCG with random search directions is a calibrated solver. Its pur-
pose is to establish a baseline for comparisons with BayesCG under the inverse and
Krylov priors, and to demonstrate that the Z - and S-statistics perform as expected on
a calibrated solver.

Summary of experiments below.
Both, Z - and S-statistics strongly confirm that BayesCGwith random search directions
is indeed a calibrated solver, thereby corroborating Theorem 4.9 and Definition 4.17.
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Fig. 6 S-statistic samples and traces for BayesCG with random search directions after m = 10, 100, 300
iterations. The solid red curve represents the traces and the dashed blue curve the S-statistic samples (color
figure online)

Table 2 This table corresponds to Fig. 6

Iteration S-stat mean Trace mean Trace standard deviation

10 1.79 × 103 1.8 × 103 4.83 × 10−12

100 1.7 × 103 1.71 × 103 3.52 × 10−12

300 1.52 × 103 1.51 × 103 2.43 × 10−12

For BayesCG with random search directions, it shows the S-statistic sample means, the trace means, and
the trace standard deviations

Figure 5 and Table 1.
The Z -statistic samples in Fig. 5 almost match the chi-squared distribution; and the
Kolmogorov–Smirnov statistics in Table 1 are on the order of 10−1, thus close to zero.
This confirms that BayesCG with random search directions is indeed calibrated.

Figure 6 and Table 2.
The traces in Fig. 6 are tightly concentrated around the empirical mean of the S-
statistic samples. Table 2 confirms the strong clustering of the trace and S-statistic
sample means around 10−3, together with the very small deviation of the traces. Thus,
the area inwhich the posteriors are concentrated is consistentwith the error, confirming
again that BayesCG with random search directions is calibrated.
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Fig. 7 Z -statistic samples for BayesCG under the inverse prior afterm = 10, 100, 300 iterations. The solid
red curve represents the chi-squared distribution and the dashed blue curve the Z -statistic samples (color
figure online)

Table 3 This table corresponds to Fig. 7

Iteration Z -stat mean χ2 mean K–S statistic

10 52.5 1.8 × 103 1.0

100 0.509 1.72 × 103 1.0

300 7.61 × 10−6 1.56 × 103 1.0

For BayesCG under the inverse prior, it shows the Z -statistic sample means; the chi-squared distribu-
tion means; and Kolmogorov–Smirnov statistic between the Z -statistic samples and the chi-squared and
distribution

5.3 BayesCG under the inverse prior.

We assess calibration of BayesCG under the inverse priorμ0 = N (0,A−1), by means
of the Z - and S-statistics.

Summary of experiments below.
Both, Z - and S-statics indicate that BayesCG under the inverse prior is pessimistic,
and that the pessimism increases with the iteration count. This is consistent with the
experiments in [1, Section 6.1].

Figure 7 and Table 3.
The Z -statistic samples in Fig. 7 are concentrated around smaller values than the
predicted chi-squared distribution. The Kolmogorov–Smirnov statistics in Table 3
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Fig. 8 S-statistic samples and traces for BayesCG under the inverse prior afterm = 10, 100, 300 iterations.
The solid red curve represents the traces and the dashed blue curve the S-statistic samples (color figure
online)

Table 4 This table corresponds to Fig. 8

Iteration S-stat mean Trace mean Trace standard deviation

10 53.0 1.8 × 103 5.22 × 10−12

100 0.54 1.71 × 103 0.466

300 3.06 × 10−6 1.61 × 103 1.19

For BayesCG under the inverse prior, it shows the S-statistic sample means, the trace means, and the trace
standard deviations

are all equal to 1, indicating no overlap between Z -statistic samples and chi-squared
distribution. The Z -statistic mean and χ2 mean in Table 3 illustrate that Z -statistic
samples move further away from the chi-squared distribution during the course of the
iterations. Thus, BayesCG under the inverse prior is pessimistic, and the pessimism
increases with the iteration count.

Figure 8 and Table 4.
The S-statistic samples in Fig. 8 are concentrated around smaller values than the traces.
Table 4 indicates trace values at 103, while the S-statistic samples move towards zero
during the course of the iterations. Thus, the errors are much smaller than the area in
which the posteriors are concentrated, meaning the posteriors overestimate the error.
This again confirms the pessimism of BayesCG under the inverse prior.
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Fig. 9 Z -statistic samples for BayesCG under the Krylov prior and full posteriors at m = 10, 100, 300
iterations. The solid red curve represents the predicted chi-squared distribution and the dashed blue curve
the Z -statistic samples (color figure online)

Table 5 This table corresponds to Fig. 9

Iteration Z -stat mean χ2 mean K–S statistic

10 631.0 565.0 0.925

100 509.0 448.0 0.774

300 201.0 152.0 0.93

For BayesCG under the Krylov prior and full Kryov posteriors, it shows the Z -statistic sample means; the
chi-squared distribution means; and the Kolmogorov–Smirnov statistic between the Z -statistic samples and
the chi-squared distribution

5.4 BayesCG under the Krylov prior

Weconsider full posteriors (Sect. 5.4.1), and rank-50 approximate posteriors (Sect. 5.4.2).

5.4.1 Full Krylov posteriors

We assess the calibration of BayesCG under full Krylov posteriors, with the help of
the S- and Z -statisics.

Summary of experiments below.
The Z -statistic indicates that BayesCG under full Krylov posteriors is somewhat opti-
mistic, while the S-statistic indicates resemblance to a calibrated solver.
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Fig. 10 S-statistic samples and traces for BayesCG under the Krylov prior and full Krylov posteriors
at m = 10, 100, 300 iterations. The solid red curve represents the traces and the dashed blue curve the
S-statistic samples (color figure online)

Table 6 This table corresponds to Fig. 10

Iteration S-stat mean Trace mean Trace standard deviation

10 53.0 53.0 8.48

100 0.522 0.522 0.255

300 8.34 × 10−7 8.34 × 10−7 3.52 × 10−7

For BayesCG under the Krylov prior and full Krylov posteriors, it shows the S-statistic sample means, the
trace means, and the trace standard deviations

Figure 9 and Table 5.
The Z -statistic samples in Fig. 9 are concentrated at somewhat larger values than the
predicted chi-squared distribution. The Kolmogorov–Smirnov statistics in Table 5 are
around.75 and.9, thus close to 1, and indicate very little overlap between Z -statistic
samples and chi-squared distribution. Thus, BayesCG under full Krylov posteriors is
somewhat optimistic.

The numerical results in Table 5 differ from Theorem 4.13, which predicts Z -
statistic samples equal to g−m. A possible reason might be that the computed rank of
the Krylov prior fromAlgorithmB.1 is smaller than the exact rank. In exact arithmetic,
rank(�0) = g = n = 1806. However, in finite precision, rank(�0) is determined by
the convergence tolerance of 10−12, resulting in rank(�0) < g.
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Table 7 This table corresponds to Fig. 11

Iteration Z -stat mean χ2 mean K–S statistic

10 314.0 50.0 1.0

100 340.0 50.0 1.0

300 164.0 50.0 1.0

For BayesCG under rank-50 approximate Krylov posteriors, it shows the Z -statistic sample means; chi-
squared distribution means; and Kolmogorov–Smirnov statistic between the Z -statistic samples and the
chi-squared distribution

Figure 10 and Table 6.

The S-statistic samples in Fig. 10 match the traces extremely well, with Table 6 show-
ing an agreement to 3 figures, as predicted in Sect. 4.3.4, Thus, the area in which the
posteriors are concentrated is consistent with the error, as would be expected from a
calibrated solver.

However, BayesCG under the Krylov prior does not behave exactly like a calibrated
solver, such asBayesCGwith random search directions in Sect. 5.2,where all traces are
concentrated at the empirical mean of the S-statistic samples. Thus, BayesCG under
the Krylov prior is not calibrated in the rigorous sense, but exhibits the performance
of a calibrated solver.

5.4.2 Rank-50 approximate Krylov posteriors

We assess the calibration of BayesCG under rank-50 approximate Krylov posteriors,
with the help of the S- and Z -statisics.

Summary of the experiments below.
Both, Z - and S-statistic indicate that BayesCG under rank-50 approximate Krylov
posteriors is somewhat optimistic, and is not as well calibrated as BayesCG with full
Krylov posteriors. In contrast to the Z -statistic, the S-statistic samples and traces for
BayesCG under full and rank-50 posteriors are close.

Figure 11 and Table 7.
The Z -statistic samples in Fig. 11 are concentrated around larger values than the
predicted chi-squared distribution, which is steady at 50. All Kolmogorov–Smirnov
statistics in Table 7 are equal to 1, indicating no overlap between Z -statistic samples
and chi-squared distribution. Thus, BayesCG under approximate Krylov posteriors is
more optimistic than BayesCG under full posteriors.

Figure 12 and Table 8.
The traces in Fig. 12 are concentrated around slightly smaller values than the S-statistic
samples, but they all have the same order of magnitude, as shown in Table 8. This
means, the errors are slightly larger than the area in which the posteriors are concen-
trated; and the posteriors slightly underestimate the errors.

A comparison with the full Krylov posterior in Fig. 10 and Table 6 shows that
the S-statistic samples and traces, respectively, for full and rank-50 posteriors are
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Fig. 11 Z -statistic samples for BayesCG under rank-50 approximate Krylov posteriors atm = 10, 100, 300
iterations. The solid red curve represents the predicted chi-squared distribution and the dashed blue curve
the Z -statistic samples (color figure online)

Table 8 This table corresponds to Fig. 12

Iteration S-stat mean Trace mean Trace standard deviation

10 53.0 49.8 7.96

100 0.538 0.489 0.251

300 2.97 × 10−6 2.89 × 10−6 1.51 × 10−6

For BayesCG under rank-50 approximate Krylov posteriors, it shows the S-statistic sample means, trace
means, and trace standard deviations

close. From the point of view of the S-statistic, BayesCG under approximate Krylov
posteriors is somewhat optimistic, and close to a calibrated solver but not as close as
BayesCG under full Krylov posteriors.

5.5 BayesCG under the Krylov prior with xm+d as posterior mean

We investigate the effect of replacing the posterior mean xm by xm+d on the calibration
of BayesCG under approximate priors, because Algorithm B.5 computes xm+d at
minimal additional cost. After comparing the choice of xm+d as the posterior mean
to a common practice in CG error estimation, we present the results of numerical
experiments.
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Fig. 12 S-statistic samples and traces for BayesCG under rank-50 approximate Krylov posteriors at m =
10, 100, 300 iterations. The solid red curve represents the traces and the dashed blue curve the S-statistic
samples (color figure online)

Comparison with CG error estimation.
The strategy of ‘bootstrapping’ an error estimatewith a less accuratemethod, so-called
‘adaptive’ step size control or local extrapolation, is popular in numerical analysis,
i.e. the numerical solution of ODEs [32, Chapter II.4]. In the same vein, the output
of xm+d as the posterior mean is a common practice in CG error estimators that rely
on information from m + d iterations to estimate the error at iteration m [20, 33, 34].
There, the number of additional iterations d is usually referred to as the ‘delay’ [34,
Section 1]. The corresponding algorithms return the error at iteration m, along with
iterate xm+d as an approximation to the solution.

Summary of the experiments below.
The Z - and S-statistic experiments suggest that BayesCG becomes more pessimistic
whenxm+d replacesxm as the posteriormean. Specifically, the Z -statistic indicates that
BayesCG is less optimistic while the S-statistic indicates that it is more pessimistic.

Figure 13 and Table 9.
The Z -statistic samples are concentrated around larger values than the predicted chi-
square distribution, indicating that BayesCG is optimistic. At iteration m = 300,
Table 9 lists Kolmogorov–Smirnov statistic values less than 1, implying some overlap
between the Z -statistic and chi-square distributions. A comparison with Fig. 11 and
Table 7 shows that the Z -statistic samples are closer to the chi-square distribution
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Fig. 13 Z -statistic samples for BayesCG under rank-50 approximate Krylov posteriors with xm+d as the
posterior mean at m = 10, 100, 300 iterations. The solid red curve represents the predicted chi-squared
distribution and the dashed blue curve the Z -statistic samples (color figure online)

Table 9 This table corresponds to Fig. 13

Iteration Z -stat mean χ2 mean K–S statistic

10 233.0 50.0 1.0

100 258.0 50.0 0.999

300 94.4 50.0 0.692

For BayesCG under rank-50 approximate Krylov posteriors, it shows the Z -statistic sample means; chi-
squared distribution means; and Kolmogorov–Smirnov statistic between the Z -statistic samples and the
chi-squared distribution

when xm+d replaces xm as the posterior mean. Therefore, BayesCG with xm+d as the
posterior mean, looks less optimistic, thus better calibrated.

This is different than what we expected. In exact arithmetic, the Z -statistic samples
are all zero, pointing to extreme pessimism of BayesCG. Intuitively, onemight suspect
that x∗ is completely outside the support ofN (xm+d , �̂m), which we justify below by
showing that x∗ − xm+d ∈ ker(�̂m).

Lemma 5.1 If BayesCG under the approximate Krylov posterior outputs xm+d as the
posterior mean, then x∗ − xm+d ∈ ker(�̂m) and Z(x∗) = 0.
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Fig. 14 S-statistic samples and traces for BayesCG under rank-50 approximate Krylov posteriors with
xm+d as the posterior mean at m = 10, 100, 300 iterations. The solid red curve represents the traces and
the dashed blue curve the S-statistic samples (color figure online)

Proof From (26) follows

x∗ − xm+d = Vm+d+1:gVT
m+d+1:gr0 ∈ range(Vm+d+1:g).

The residuals ri , 0 ≤ i ≤ g−1, are an orthogonal basis for theKrylov spaceKg(A, r0)
[2, Theorem 2.8], and in particular,

range(Vi : j ) = span{ri−1, . . . , r j−1}, 1 ≤ i < j ≤ g.

Therefore range(Vm+d+1:g) ⊥ range(Vm+1:d), The symmetry of �̂m implies

range(Vm+1:d) = range(�̂m) ⊥ ker(�̂m) = ker(�̂
†
m).

Thus, range(Vm+d+1:g) ⊆ ker(�̂m).

Since x∗ − xm+d ∈ range(Vm+d+1:g) ⊆ ker(�̂
†
m) = ker(�̂

†
m), we have that

Z(x∗) = (x∗ − xm+d)
T �̂

†
m(x∗ − xm+d) = 0.

�
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Table 10 This table corresponds to Fig. 14

Iteration S-stat mean Trace mean Trace standard deviation

10 3.21 49.8 7.96

100 4.88 × 10−2 0.489 0.251

300 8.66 × 10−8 2.89 × 10−6 1.51 × 10−6

For BayesCG under rank-50 approximate Krylov posteriors with xm+d as the posterior mean, it shows the
S-statistic sample means, trace means, and trace standard deviations

Figure 14 and Table 10.
With xm+d as the posterior mean, the S-statistic samples are concentrated at much
smaller values than the traces, suggesting that BayesCG is pessimistic with xm+d

as the posterior mean. This is confirmed by a comparison to Fig. 12 and Table 8
which suggest that BayesCG becomes more pessimistic when xm+d replaces xm as
the posterior mean.

The S-statistic shows what we expected: trace(A�̂m) in (9) underestimates the
error ‖x∗ −xm‖2A. From ‖x∗ −xm‖2A ≥ ‖x∗ −xm+d‖2A follows that trace(A�̂m) either
overestimates ‖x∗ − xm+d‖2A or underestimates it by less. The S-statistic therefore
suggests that BayesCG is either pessimistic, or else less optimistic.

5.6 Convergence rate and calibration

We investigate how the convergence rate affects the calibration of BayesCG under the
approximate Krylov posterior. To this end, we perform the Z - and S-statistic exper-
iments as in the previous section, but for a different linear system. After presenting
the matrixA (Sect. 5.6.1), we discuss the results of the Z - and S- statistic experiments
(Sect. 5.6.2).

5.6.1 The matrix A in the linear system

The symmetric positive definitematrixA ∈ R
n×n has dimension n = 48 and is defined

as [20, Section 5]
A = QDQT , (31)

where Q is a random orthogonal matrix and D is a diagonal matrix with diagonal
elements

dii = 0.1 + i − 1

n − 1
(1000 − 0.1)(0.9)n−i , 1 ≤ i ≤ n.

This class of test matrices, first presented in [35], is popular for CG error estimation
because it leads to significant accumulation of round off, and to distinct periods of
slow and fast convergence, as illustrated in Fig. 15. This accumulation of roundoff
slows the convergence CG, and BayesCG under the Krylov prior, requiring far more
than n = 48 iterations before the error stops decreasing. This would not happen in
exact arithmetic, where CG computes the solution in at most n iterations.
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Fig. 15 Relative errors ‖x∗ − xm‖2A/‖x∗‖2A for BayesCG under the Krylov prior when applied to linear
systems Ax∗ = b with A in (31) (color figure online)

Fig. 16 Z -statistic samples for BayesCG under rank-50 approximate Krylov posteriors at m = 40, 100
iterations. The solid red curve represents the chi-squared distribution and the solid blue histogram the
Z -statistic samples (color figure online)

We investigate the calibration of BayesCG under the Krylov prior at m = 40
iterations, which is in the period of slow convergence, and atm = 100 iterations, which
is in the period of fast convergence. Although the iteration count of m = 100 exceeds
the matrix dimension n = 48 by a factor of more than 2, we can still approximate
Krylov posteriors as long as CG has not yet reached its maximum attainable accuracy.

5.6.2 Numerical experiments

We assess calibration of BayesCG under rank-4 approximate Krylov posteriors by
means of the Z - and S-statistics.

Summary of the experiments below.
Both test statistics indicate that BayesCG under rank-4 approximate Krylov posteriors
is better calibrated when convergence is fast. This behavior is expected: According
to (9) and Theorem 3.5, the errors produced by the approximate and full-rank Krylov
posteriors differ by the amount ‖x∗ − xm+d‖2A, which is small when convergence is
fast.

Figure 16 and Table 11.
To improve the visibility and interpretability of the figures for this particular linear
system, we plot the Z -statistic as a histogram. Figure16 shows that the Z -statistic sam-
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Table 11 This table corresponds to Fig. 16

Iteration Z -stat mean χ2 mean K–S statistic

40 (slow convergence) 1.29 × 103 4.0 0.988

100 (fast convergence) 1.68 1.0 0.684

For BayesCG under rank-4 approximate Krylov posteriors, it shows the Z -statistic sample means; chi-
squared distribution means; and Kolmogorov–Smirnov statistic between the Z -statistic samples and the
chi-squared distribution

Fig. 17 S-statistic samples and traces for BayesCG under rank-50 approximate Krylov posteriors at m =
40, 100 iterations. The solid red curve represents the traces, and the dashed blue curve the S-statistic samples
(color figure online)

Table 12 This table corresponds to Fig. 17

Iteration S-stat mean Trace mean Trace std. dev

40.0 (slow convergence) 0.561 0.144 0.163

100.0 (fast convergence) 6.15 × 10−16 5.47 × 10−16 1.53 × 10−15

For BayesCG under rank-4 approximate Krylov posteriors, it shows the S-statistic sample means, trace
means, and trace standard deviations

ples are concentrated around larger values than the predicted chi-squared distribution,
which suggests that the method is optimistic.

During the period of fast convergence at iteration m = 100, the Z -statistic samples
are much closer to the predicted chi-squared distribution than they are during the
period of slow convergence at iteration m = 40. The Kolmogorov–Smirnov statistic
of 0.68 at iteration m = 100 indicates some overlap between the distributions, while
the Kolmogorov–Smirnov statistic of 0.99 at iteration m = 40 indicates little overlap
between the distributions. Thus, while BayesCG under approximate Krylov priors
may not be calibrated in the strict sense, its calibration does improve with increasing
convergence rate.

Figure 17 and Table 12.
During slow convergence at iteration m = 40, S-statistic samples are concentrated
around larger values than the traces, suggesting that the S-statistic views BayesCG
under approximate Krylov posterior as optimistic. However, at iteration m = 100,
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the traces and S-statistic samples nearly match each other, indicating that BayesCG is
closer to being calibrated.

6 Future research

Although practical CG error estimates have been developed mostly for real linear
systems, CG can be naturally extended to complexHermitian positive definitematrices
[18, Section 2.5], with an attendant increase in arithmetic cost.

Does this extension to complex Hermitian matrices also carry over to BayesCG?
Preliminary numerical experiments suggest that the behaviour of BayesCG under the
Krylov prior appears to be the same, regardless ofwhether the linear system is complex
or real.

How about the Gaussian distributions? One option is to transform the complex
linear system Ax∗ = b to a real system of twice the dimension. Specifically, if A =
A1 + ıA2 ∈ C

n×n with A1,A2 ∈ R
n×n , is Hermitian positive-definite, then the real

matrix

[
A1 −A2
A2 A1

]
∈ R

(2n)×(2n)

is symmetric positive-definite [36, P4.2.1]. This transformation would allow the con-
tinued use of Gaussians, albeit in the higher-dimensional space R

2n . The posteriors
then represent separate uncertainties about the real and complex parts of x∗.

Another option is to design Gaussian distributions that can model uncertainty about
complex-valued solutions. One could prescribe a matrix mean with separate columns
for the real and complex parts, and a covariance tensor for the complex and real parts
and their interactions. Extending all of the analysis in [1, 2] to such tensor-valued
distributions looks non-trivial.
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Appendix A: Auxiliary results

We present auxiliary results required for proofs in other sections.
The stability of Gaussian distributions implies that a linear transformation of a

Gaussian random variable remains Gaussian.

Lemma A.1 (Stability of Gaussian Distributions [37, Section 1.2]) Let X ∼ N (x,�)

be a Gaussian random variable with mean x ∈ R
n and covariance � ∈ R

n×n. If
y ∈ R

n and F ∈ R
n×n, then
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Z = y + FX ∼ N (y + Fx,F�FT ).

The conjugacy of Gaussian distributions implies that the distribution of a Gaussian
random variable conditioned on information that linearly depends on the random
variable is a Gaussian distribution.

Lemma A.2 (Conjugacy of Gaussian Distributions [38, Section 6.1], [25, Corollary
6.21]) Let X ∼ N (x,�x ) and Y ∼ N (y,�y). The jointly Gaussian random variable
[
XT Y T

]T
has the distribution

[
X
Y

]
∼ N

([
x
y

]
,

[
�x �xy

�T
xy �y

])
,

where �xy ≡ Cov(X ,Y ) = E[(X − x)(Y − y)T ] and the conditional distribution of
X given Y is

(X | Y ) ∼ N (

mean
︷ ︸︸ ︷
x + �xy�

†
y(Y − y),

covariance
︷ ︸︸ ︷
�x − �xy�

†
y�

T
xy).

We show how to transform a B-orthogonal matrix into an orthogonal matrix.

Lemma A.3 Let B ∈ R
n×n be symmetric positive definite, and let H ∈ R

n×n be a
B-orthogonal matrix with HTBH = HBHT = I. Then

U ≡ B1/2H

is an orthogonal matrix with UTU = UUT = I.

Proof The symmetry of B and the B-orthogonality of H imply

UTU = HTBH = I.

From the orthonormality of the columns of U, and the fact that U is square follows
that U is an orthogonal matrix [39, Definition 2.1.3]. �

Definition A.4 [39, Section 7.3] The thin singular value decomposition of the rank-p
matrix G ∈ R

m×n is
G = UDWT ,

where U ∈ R
m×p and W ∈ R

n×p are matrices with orthonormal columns and
D ∈ R

p×p is a diagonal matrix with positive diagonal elements. TheMoore–Penrose
inverse of G is

G† = WD−1UT .

If a matrix has full column-rank or full row-rank, then its Moore–Penrose can be
expressed in terms of the matrix itself. Furthermore, the Moore–Penrose inverse of
a product is equal to the product of the Moore–Penrose inverses, provided the first
matrix has full column-rank and the second matrix has full row-rank.
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Lemma A.5 [40, Corollary 1.4.2] Let G ∈ R
m×n and J ∈ R

n×p have full column and
row rank respectively, so rank(G) = rank(J) = n. The Moore–Penrose inverses of G
and J are

G† = (GTG)−1GT and J† = JT (JJT )−1

respectively, and the Moore–Penrose inverse of the product equals

(GJ)† = J†G†.

Below is an explicit expression for the mean of a quadratic form of Gaussians.

Lemma A.6 [41, Sections 3.2b.1–3.2b.3] Let Z ∼ N (xz,�z) be a Gaussian random
variable in Rn, and B ∈ R

n×n be symmetric positive definite. The mean of ZTBZ is

E[ZTBZ ] = trace(B�z) + xTz Bxz .

We show that the squared Euclidean norm of a Gaussian random variable with an
orthogonal projector as its covariance matrix is distributed according to a chi-squared
distribution.

Lemma A.7 Let Z ∼ N (0,P) be a Gaussian random variable inRn. If the covariance
matrix P is an orthogonal projector, that is, if P2 = P and P = PT , then

‖X‖22 = (XT X) ∼ χ2
p,

where p = rank(P).

Proof We express the projector in terms of orthonormal matrices and then use the
invariance of the 2-norm under orthogonal matrices and the stability of Gaussians.

Since P is an orthogonal projector, there exists U1 ∈ R
n×p such that U1UT

1 = P
andUT

1 U = Ip. ChooseU2 ∈ R
n×(n−p) so thatU = [

U1 U2
]
is an orthogonal matrix.

Thus,
XT X = XTUUT X = XTU1UT

1 X + XTU2UT
2 X . (A1)

Lemma A.1 implies that Y = UT
1 X is distributed according to a Gaussian distribution

with mean 0 and covariance UT
1 U1UT

1 U = Ip. Similarly, Z = UT
2 X is distributed

according to a Gaussian distribution with mean 0 and covariance UT
2 U1UT

1 U2 = 0,
thus Z = 0.

Substituting Y and Z into (A1) gives XT X = Y T Y + 0T 0. From Y ∼ N (0, Ip)
follows (XT X) ∼ χ2

p. �


Lemma A.8 If A ∈ R
n×n is symmetric positive definite, and M ∼ N (xμ�μ) and

N ∼ N (xν,�ν) are independent random variables in Rn, then

E[‖M − N‖2A] = ‖xμ − xν‖2A + trace(A�μ) + trace(A�ν).
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Proof The random variable M − N has mean E[M − N ] = xμ − xν , and covariance

�M−N ≡ Cov(M − N , M − N )

= Cov(M, M) + Cov(N , N ) − Cov(M, N ) − Cov(N , M)

= Cov(M, M) + Cov(N , N ) = �μ + �ν,

where the covariances Cov(M, N ) = Cov(N , M) = 0 because M and N are inde-
pendent. Now apply Lemma A.6 to M − N . �


Appendix B: Algorithms

We present algorithms for the modified Lanczos method (Sect.B.1), BayesCG with
random search directions (Sect.B.2), BayesCG with covariances in factored form
(Sect.B.3), and BayesCG under the Krylov prior (Sect.B.4).

B.1 Modified Lanczos method

The Lanczos method [42, Algorithm 6.15] produces an orthonormal basis for the
Krylov space Kg(A, v1), while the modified version in Algorithm B.1 produces an
A-orthonormal basis.

Algorithm B.1Modified Lanczos Method
1: Input: spd A ∈ R

n×n , v1 ∈ R
n , basis dimension m, convergence tolerance ε

2: v0 = 0 ∈ R
n

3: i = 1
4: β = (vTi Avi )

1/2

5: vi = vi /β
6: while i ≤ m do
7: w = Avi − βvi−1
8: α = wTAvi
9: w = w − αvi
10: w = w − ∑i

j=1 v jv
T
j Aw � Reorthogonalize w

11: w = w − ∑i
j=1 v jv

T
j Aw

12: β = (wTAw)1/2

13: if β < ε then
14: Exit while loop
15: end if
16: i = i + 1
17: vi = w/β

18: end while
19: m = i − 1 � Number of basis vectors
20: Output: {v1, v2, . . . , vm } � A-orthonormal basis of Km (A, v1)

Algorithm B.1 reorthogonalizes the basis vectors vi with Classical Gram-Schmidt
performed twice, see Lines 10 and 11. This reorthogonalization technique can be
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implemented efficiently and produces vectors that are orthogonal to machine precision
[43, 44].

B.2 BayesCGwith random search directions

The version of BayesCG in Algorithm B.2 is designed to be calibrated because the
search directions do not depend on x∗, hence the posteriors do not depend on x∗ either
[6, Section 1.1].

After sampling an initial random search direction s1 ∼ N (0, I), Algorithm B.2
computes anA�0A-orthonormal basis for theKrylov spaceKm(A�0A, s1)withAlgo-
rithm B.1. Then Algorithm B.2 computes the BayesCG posteriors directly with (2)
and (3) from Theorem 2.1. The numerical experiments in Sect. 5 run Algorithm B.2
with the inverse prior μ0 = N (0,A−1).

Algorithm B.2 BayesCG with random search directions
1: Inputs: spd A ∈ R

n×n , b ∈ R
n , prior μ0 = N (x0, �0), iteration count m

2: r0 = b − Ax0 � Initial residual
3: Sample s1 fromN (0, I) � Initial search direction
4: Compute columns of S with Algorithm B.1
5: �m = STmA�0ASm � �m is diagonal

6: xm = x0 + �0ASm�−1
m STmr0 � Compute posterior mean with (2)

7: �m = �0 − �0ASm�−1
m STmA�0 � Compute posterior covariance with (3)

8: Output: μm = N (xm , �m )

B.3 BayesCGwith covariances in factored form

AlgorithmB.3 takes as input a general prior covariance�0 in factored form, and subse-
quently maintains the posterior covariances�m in factored form as well. TheoremB.1
presents the correctness proof for Algorithm B.3.

Theorem B.1 Under the conditions of Theorem 2.1, if �0 = F0FT
0 for F0 ∈ R

n×� and
some m ≤ � ≤ n, then �m = FmFT

m with

Fm = F0

(
I − FT

0 ASm(STmAF0FT
0 ASm)−1SmAF0

)
∈ R

n×�, 1 ≤ m ≤ n.

Proof Fix m. Substituting �0 = F0FT
0 into (3) and factoring out F0 on the left and

FT
0 on the right gives �m = F0PFT

0 where

P ≡ I − FT
0 ASm(STmAF0FT

0 ASm)−1SmAF0

= (I − Q(QTQ)−1QT ) where Q ≡ FT
0 ASm .
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Show that P is a projector,

P2 = I − 2Q(QTQ)−1QT + Q(QTQ)−1QTQ(QTQ)−1QT

= I − Q(QTQ)−1QT = P.

Hence �m = F0PFT
0 = F0PPFT

0 = FmFT
m . �


Algorithm B.3 BayesCG with covariances in factored form

1: Input: spd A ∈ R
n×n , b ∈ R

n , x0 ∈ R
n , F0 ∈ R

n×� � need x∗ − x0 ∈ range(�0)

2: r0 = b − Ax0
3: s1 = r0
4: P = 0 ∈ R

n×n

5: m = 0
6: while not converged do
7: m = m + 1
8: P(:,m) = FT0 Asm � Save column m of P
9: q = F0P(:,m) � Compute q = �0Asm
10: ηm = sTmAq
11: P(:,m) = P(:,m)

/
ηm � Normalize column m of P

12: αm =
(
rTm−1rm−1

) /
ηm

13: xm = xm−1 + αmq
14: rm = rm−1 − αmAq

15: βm =
(
rTmrm

) /(
rTm−1rm−1

)

16: sm+1 = rm + βmsm
17: end while
18: P = P(:, 1 : m) � Discard unused columns of P
19: Fm = F0(I − PPT )

20: Output: xm , Fm � Final posterior

B.4 BayesCG under the Krylov prior

We present algorithms for BayesCG under full Krylov posteriors (Sect.B.4.1) and
under approximate Krylov posteriors (Sect.B.4.2).

B.4.1 Full Krylov posteriors

Algorithm B.4 computes the following: a matrix V whose columns are an A-
orthonormal basis forKg(A, r0); the diagonal matrix � in (5); and the posterior mean
xm in (26). The output consists of the posterior mean xm , and the factors Vm+1:g and
�m+1:g for the posterior covariance.

B.4.2 Approximate Krylov posteriors

Algorithm B.5 computes rank-d approximate Krylov posteriors in two main steps: (i)
posterior mean and iterates xm in Lines 5–14; and (ii) factorization of the posterior
covariance �̂m in Lines 16–26.
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Algorithm B.4 BayesCG under the Krylov prior with full posteriors
1: Inputs: spd A ∈ R

n×n , b ∈ R
n , x0 ∈ R

n , iteration count m
2: r0 = b − Ax0 � Initial residual
3: v1 = r0 � Initial search direction
4: Compute columns of V with Algorithm B.1
5: � = diag((VT r0)2) � Compute � with (5)
6: xm = x0 + V1:mVT

1:mr0 � Compute posterior mean with (26)
7: Output: xm , Vm+1:g , �m+1:g

Algorithm B.5 BayesCG under the Krylov prior [2, Algorithm 3.1]
1: Inputs: spd A ∈ R

n×n , b ∈ R
n , x0 ∈ R

n , iteration count m, posterior rank d
2: r0 = b − Ax0 � Initial residual
3: v1 = r0 � Initial search direction
4: i = 0 � Initial iteration counter
5: while i < m do � CG recursions for posterior means
6: i = i + 1 � Increment iteration count
7: ηi = vTi Avi
8: γi = (rTi−1ri−1)

/
ηi � Next step size

9: xi = xi−1 + γivi � Next iterate
10: ri = ri−1 − γiAvi � Next residual
11: δi = (rTi ri )

/
(rTi−1ri−1)

12: vi+1 = ri + δivi � Next search direction
13: end while
14: d = min{d, g − m} � Compute full rank posterior if d > g − m
15: Vm+1:m+d = 0n×d � Initialize approximate posterior matrices
16: �m+1:m+d = 0d×d
17: for j = m + 1 : m + d do � d additional iterations for posterior covariance
18: η j = vTj Av j
19: γ j = (rTj−1r j−1)

/
η j

20: V(:, j) = v j
/√

η j � Next column of Vm+1,m+d

21: �( j, j) = γ j‖r j−1‖22 � Next diagonal element of �m+1,m+d
22: r j = r j−1 − γ jAv j
23: δ j = (rTj r j )

/
(rTj−1r j−1)

24: v j+1 = r j + δ jv j � Next un-normalized column of Vm+1,m+d
25: end for
26: Output: xm , Vm+1:m+d , �m+1:m+d
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