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ABSTRACT. We present a heuristic argument for the propensity of Topo-
logical Data Analysis (TDA) to detect early warning signals of critical
transitions in financial time series. Our argument is based on the Log-
Periodic Power Law Singularity (LPPLS) model, which characterizes fi-
nancial bubbles as super-exponential growth (or decay) of an asset price
superimposed with oscillations increasing in frequency and decreasing
in amplitude when approaching a critical transition (tipping point). We
show that whenever the LPPLS model is fitting with the data, TDA
generates early warning signals. As an application, we illustrate this
approach on a sample of positive and negative bubbles in the Bitcoin
historical price.

1. INTRODUCTION

Topological Data Analysis (TDA) has emerged in recent years as a pow-
erful methodology in time-series analysis and signal processing. A preva-
lent approach relies on time-delay coordinate embedding, which is used to
construct, from the time-series, a point-cloud in some high-dimensional Eu-
clidean space [Tak81]. The dynamics on the point-cloud allows one to recover
the evolution laws driving the time-series. The shape of the point-cloud can
be characterized via Persistent Homology — a fundamental tool in TDA —
which measures the number of holes of a geometric approximation of the
point-cloud, as well as their ‘visibility’ at any given ‘resolution’ level. Ap-
plying a sliding window to a time series allows one to measure how the
shape of the point-cloud associated to each window changes over time. The
robustness of persistent homology of the point-cloud under small pertur-
bations makes this approach particularly suitable for analyzing noisy time
series. The method can be used, for example, for detection of periodic behav-
ior, attractors, and bifurcations. More broadly, it can be used for detection
of critical transitions (tipping points). These represent abrupt shifts of a
system from one steady state to another, due to small changes in external
conditions. Critical transitions are relevant to many disciplines, including
finance, climate, ecology, and biomedicine; see, e.g., [SBBT09, Len11, TS11,
DCB*12, BSP*21]. Some applications of TDA to detect critical transitions
have been developed in [BGVJ14, BG14, SSGC*18, IYG20, DUC20].
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An important class of applications of TDA concerns critical transitions
in financial time series, particularly market crashes and financial bubbles.
A positive bubble represents a rapid increase of the price of an asset —
which does not reflect the asset’s intrinsic value — followed by a crash. A
negative bubble represents a rapid decay followed by a quick rebound. In
this context, the asset price peak in a positive bubble prior to a crash, and
the trough in a negative bubble prior to a rebound, represent tipping points
of the system. There is a practical interest in the detection of early warning
signals of critical transitions, which would allow minimizing the losses from
a bubble crash, or maximize the profit from a rebound.

It is important to distinguish between crashes of endogenous origins,
caused by factors within the financial market, and crashes of exogenous ori-
gins, caused by external factors. On the one hand, endogenous crashes are
associated with speculative unsustainable accelerating price growth, being
fueled by self-reinforcements of cooperative herding and imitative behaviors
of market agents. These determine specific, precursory signatures in the
trajectory of the price [Bla79, BW82, Fer06, SH03, JS*10]. On the other
hand, exogenous crashes may be caused by natural cataclysms, pandemics,
fraud, or political events [SSZ22, SSZ21, ACAMNH21]|. Exogenous crashes
are less likely to yield early warning signals in comparison to the endogenous
ones [Fry12].

Several mathematical models for endogenous bubbles have been proposed
in recent years.

An important model — which we will focus on in this paper — is the Log-
Periodic Power Law Singularity (LPPLS) model. This characterizes positive
bubbles by super-exponential growth superimposed with oscillations of in-
creasing frequency and decreasing amplitude when approaching the tipping
point. A similar characterization holds for negative bubbles. The LPPLS
model stems from the economic theory of rational expectation, behavioral
finance of herding of traders, and the mathematical and statistical physics
of bifurcations and phase transitions. See, e.g., [SJB96, JSW*96, FF96,
JS99a, JS99b, JSL99, JLS00, YRWS12, LS13, SS16, Sorl7].

Another significant model describes a bubble as a price process over a
finite horizon, which is a strict local martingale (i.e., a local martingale that
is not a true martingale) with respect to a risk neutral measure. The strict
local martingale property is equivalent to the volatility function having a
certain asymptotic behavior [Prol3]. One can test the specific asymptotic
behavior of the volatility function, and assess the occurrence of bubbles, by
using various estimators (parametric or non-parametric), or via Reproducing
Kernel Hilbert Spaces (RKHS) theory [JKP11].

There are also models that characterize a bubble by three regimes that
carry different processes: an initial normal regime, when the price fol-
lows a pure random walk, a second, market exuberance regime, when the
price follows a mildly explosive process which ends in an abrupt collapse,
and a final normal regime, when the price returns to a martingale process
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[PWYT11]. Other models have four regimes, as they insert a market recov-
ery regime, between the collapse and the return to normal market behavior
[PSY15a, PSY15b, HLS15]. Regression methods can be used to detect crises
and estimate their associated turning points [PY11, HLST16, PS18].

In addition to model-based approaches, numerous empirical methods have
also been developed to detect financial uncertainties and anomalies. TDA
methods based on persistence homology have been used to study the 2000
dot-com bubble, the 2008 subprime morggage crisis, and the 2018 cryp-
tocurrency crash in [Gid17, GK18, GGK™20, KB21, RQD21]. Relatedly,
Ball Mapper algorithms have been used to identify anomalies in the associ-
ation between financial ratios and stock returns in [DR21].

Most of the evidence, so far, on the ability of TDA to detect financial
bubbles has been empirical. A key question remains: what features of a time
series yield to significant changes in the shape of the associated point cloud,
more precisely, in terms of the holes that appear in the point-cloud? Some
previous works attempted to explain this by drawing analogies between a
market undergoing a crash and bifurcations in a complex dynamical system,
or in terms of changes in drift and volatility of the strong non-stationary
process described by a market near a crash [Gid17, GK18, GGK 120, AKV21,
GK23]

In this paper, we propose a heuristic argument for why TDA is able to
detect financial bubbles. As we are interested in early warning signals, we
focus on the time period of a bubble before the tipping point. The ansatz is
that the time series during such a period follows the LPPLS model. From a
topological view-point, the time-delay embedding of the LPPLS oscillatory
signal yields loops (surrounding holes) in the point-clouds. Changes in the
frequency and/or amplitude of the oscillations yield changes in the structure
of the holes in the point-cloud, which can be measured via persistent homol-
ogy. When approaching the tipping point of a bubble, there is a significant
change in the features of the oscillatory signal and consequently in the TDA
output.

The upshot of our work is that whenever the LPPLS model for the de-
tection of a positive (negative) bubble applies to some data set, the TDA
method on that data set provides early warning signals of critical transition.
As far as we know, this is the first time when the TDA method is justified
in terms of a deterministic model for the expected dynamics of financial
bubbles.

As an illustration, we apply both the LPPLS model and the TDA to
Bitcoin — the largest cryptocurrency by market cap. Bitcoin has been ex-
periencing numerous phases of extreme price growth and massive crashes,
hence it provides a rich data set for exploring financial bubbles. Some
related works on detection of bubbles in the cryptocurrency market in-
clude [FC16, GDS18, ADGK18, WWS18, RCPB19, WSH*19, GGK ™20,
ALGK20, SZ20b, SNC20].
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Our experiments show a good agreement between the TDA method and
the LPPLS model. Moreover, even when the LPPLS model fits poorly with
some of the data, the TDA method can show relatively strong signal prior
to the tipping point. While the TDA method is robust, the LPPLS appears
to be sensitive to noise [BCP13].

The structure of the paper is as follows. In Section 2 we provide some
background: in Section 2.1 we recall the LPPLS model; in Section 2.2 we
briefly review the TDA approach based on persistence homology; in Section
2.3 we describe how to apply this method to time-series. In Section 3 we
consider some examples of periodic, quasi-periodic, and frequency-changing
oscillatory time-series, and observe the dependence of the TDA output on
the time-series parameters as well as on the TDA parameters. The main
contribution is Section 4, in which we explain how TDA method extracts
topological features from time-series generated by the LPPLS model. Next,
we illustrate the application of the TDA method on some concrete financial
time-series. In Section 5 we review some methods to segment a given finan-
cial time series into up- and down-trends. In Section 6 we take the Bitcoin
price data between October 1st, 2021 and July 1st, 2022, we segment it
into up- and down-trends, and then we apply both the LPPLS model and
the TDA method to the segments. We show the results in Appendix A.
Conclusions and future directions are delineated in Section 7.

2. BACKGROUND

2.1. Log-Periodic Power Law Singularity (LPPLS) Model. Below we
summarize the LPPLS model following [JSW*96, JLS00, YRWS12, SS16,
Sorl7, GDS18]. This is a model for both positive bubbles as well as for
negative bubbles. In either case the market reaches a point when it no
longer reflects the real underlying value of the asset (or it violates the market
efficiency with respect to its time-scale [SS17]), which triggers a critical
transition.

The LPPLS model can be derived from a network description of the mar-
ket, which assumes that the trading of the asset is driven by two types of
agents: a group consisting of traders with rational expectations, and an-
other group formed by noise traders. Noise traders are likely to deviate
from fundamental valuation in an accelerating mode, due to positive feed-
back and herding behaviour as a group. The collective behavior of the agents
eventually leads to market instability by pushing the market away from an
equilibrium between supply and demand. See [JLS00, SHO5, SS16, Sorl7].

It is important to keep in mind that the LPPLS model is concerned only
with bubble generated endogenously by the dynamics of the market, and
does not apply to bubbles of exogenous origins produced by external shocks.
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According to the model, the asset price p(t) during a (positive or negative)
bubble evolves according to the stochastic differential equation

(2.1)
dp
p

where t. represents the critical time, B',C’,¢' € R, 0 < m < 1 are parame-
ters, o(t) is the volatility, and dWW (t) is the increment of a standard Wiener
process with zero mean and unit variance. Hence the expectation of the
logarithm of the asset price satisfies

Ellnp(t)] =A+ Bt —t)™ + C(t. — t)™ cos(w In(t. — t) — ¢)
(2.2) =A+ B(t. —t)"™ + Ci(tc — t)™ cos(w In(t, — t))
+ Ca(t. — )™ sin(w In(t. — t)).

=B'(te —t)™ 1 + C'(t, — )™ Lcos(win(t, — t) — ¢') + o (t)dW (t)

Here A > 0,0 < m < 1, B,C and ¢ are parameters whose role is ex-
plained below. Also, C; = C cos(¢), Co = —C'sin(¢), and C = 1/C? + C3.
The function in (2.2) has a singularity at ¢ = ¢.. Slnce

tlin;l (te —t)™ cos(wln(t. —t)) =0,

the function can be extended by continuity at ¢t = t. by E[lnp(t.)] = A.
The critical time ¢, marks the termination of the bubble regime and the
transition time to a different regime, which could be a be a major crash or
rebound. The parameter A represents the expected value of the log price
Inp(t) at the critical time ¢..

The condition m < 1 ensures that there is a singularity at the critical time
te, while m > 0 ensures that the expected price remains finite at t.. The
parameter m is associated to the non-linearity of the trend, that is, m ~ 0
corresponds to a strong super-linear trend of In p(t), while m = 1 corresponds
to a nearly linear trend. The parameter m is also affecting, jointly with the
parameters C7 and Cs, the changing amplitude of the oscillations.

The case when B < 0 corresponds to a super-exponential growth of the
price p(t) as the time ¢ approaches t., while B > 0 corresponds to a super-
exponential decay.

Thus, the main features of the model (2.1) are the following

e the price of the asset oscillates about a trend-line that is character-
ized by super-exponential growth or decay;

e the amplitude of the oscillations decreases when approaching the
critical time t;

e the frequency of the oscillations increases when approaching the crit-
ical time t.;

e the oscillations are superimposed with Gaussian noise.

The LPPLS model can be fitted to data and allows for predictions of the
time of the crash [YRWS12, GDS18]. However, we note that the LPPLS
model is fairly sensitive to the system parameters, to where to start and end
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FIGURE 1. Synthetic LPPLS signal: without noise (left),
with noise (right).

the fit of a bubble, and to the length of the data window (see [BCP13] and
the references listed there).

2.2. Persistent homology. In this section we summarize the main topo-
logical tools that we will use: persistent homology and persistence land-
scapes. See [EH22, BT15, BD17|. Persistent homology converts a given
point cloud into a geometric shape and characterizes it in terms of its homol-
ogy generators. Persistence landscapes convert the information derived from
persistent homology into elements of a functional Banach space. Through
this process, a point cloud can be characterized by a single numerical value,
which is the norm of the corresponding persistence landscape.

2.2.1. Point-cloud. The input of persistent homology is a point-cloud Z =
{20,...,2m—1} embedded in some Euclidean space RY. The computation of
persistent homology involves a sequence of steps.

2.2.2. Vietoris-Rips simplicial complex. We associate to the point cloud Z
a topological space, thought of as a ‘shape’, depending on some parameter
€ > 0, where € represents the resolution at which the data is analyzed. The
Vietoris-Rips simplicial complex R(Z, ¢), or, simply Rips complex, is defined
as follows:

e For each k = 0,1,..., a k-simplex of vertices {z;,,..., %} is part
of the simplicial complex R(Z,¢) if and only if the mutual distance
between any pair of its vertices is less than ¢, that is

d(zij,zij,) < ¢, for all Zigs Zi € {Zigy -+ Ziy }-

In other words, a k-simplex is included in R(Z, ) whenever the vertices of
that simplex are ‘indistinguishable from one another’ at a resolution level €.

2.2.3. Filtration of simplicial complexes. The Rips simplicial complexes R(Z, )
form a filtration with respect to the resolution parameter ¢, that is,

R(Z,e) € R(Z,€') provided ¢ < €'
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2.2.4. Homology groups of simplicial complexes. At each resolution level ¢,
the corresponding shape can be characterized in terms of its homology.

e For each complex R(Z,¢), we compute its n-dimensional homology
H,(R(Z,¢)) with coefficients in some field, e.g., Zs.

The generators of the 0-dimensional homology module Hy(R(Z,¢)) corre-
spond to the connected components of R(Z,¢), the generators of the 1-
dimensional homology module H1(R(Z,¢)) correspond to ‘holes’ in R(Z,¢),
the generators of the 2-dimensional homology module Hs(R(Z,¢€)) corre-
spond to ‘voids’ in R(Z,¢), etc. For the rest of the paper we will use only
1-dimensional homology.

2.2.5. Filtration of homology modules. The filtration property of the Rips
complexes induces a filtration on the corresponding homologies, that is

H,(R(Z,e)) € Hy(R(Z,€")) provided € < &' for each n.
These inclusions determine canonical homomorphisms

H,(R(Z,e)) — H,(R(Z,€")), fore < €.

2.2.6. Persistent homology. For each non-zero n-dimensional homology gen-
erator « there exists a pair of values €1 < g9, such that:

e o is in H,(R(Z,e1)) but is not in the image of any element in
H,(R(Z,e1—9)) under the corresponding homomorphism, for § > 0;

e the image of a in H,(R(Z,&)) is non-zero for all e; < &’ < &9, but
the image of « in H,(R(Z,e2)) is zero.

In this case, one says that the generator « is ‘born’ at the parameter value
bo := €1, and ‘dies’ at the parameter value d, := 3. The pair (by,dq)
represents the ‘birth’ and ‘death’ indices of . The multiplicity pq (bq, do)
of the point (by, d,) equals the number of classes a that are born at b, and
die at d,. This multiplicity is finite since the simplicial complex is finite.

2.2.7. Persistence diagram. The information on the n-dimensional homol-
ogy generators at all resolution levels can be encoded in a persistence diagram
P,,. Such a diagram consists of:

e for each n-dimensional homology class « one assigns a point p, =
Palba, da) € R? together with its multiplicity pa = jta(ba, da);

e in addition, P, contains all points on the positive diagonal of R?;
these points represent all trivial homology generators that are born
and instantly die at every level; each point on the diagonal has infi-
nite multiplicity.

The axes of a persistence diagram are birth values on the horizontal axis
and death values on the vertical axis.
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2.2.8. Persistence landscapes. The space of persistence diagrams can be

embedded into a Banach space. One such embedding is based on persis-

tence landscapes, consisting of sequences of functions in the Banach space
LP(N x R), with p > 1.

e For each birth-death point (by,d,) € P,, we first define a piecewise
linear function

T —by, ifze (by,l2Fle];
(2.3) Jtoad) (@) =3 —a +da, if ve (Pl d,);
07 lf x ¢ (boudOé)'

e To a persistence diagram P, consisting of a finite number of off-
diagonal points, we associate a sequence of functions A\, = (\;)en,
where A\, (i) : R — [0, +00] is given by

(2.4) An(i)(x) = t-max{fe, d.) () | (ba; da) € Pr}

where i-max denotes the i-th largest value of a function. We set
An(?)(x) = 0 if the i-th largest value does not exist. Thus, the
persistence landscapes form a subset of the Banach space LP(N x R).

2.2.9. Norm of a persistence landscape. For each persistence landscape we
can compute its norm, and so we can compare persistence landscapes by
computing the mutual distances, using the metric derived from the norm.

e The norm of A\, € LP(N x R) is given by

o0 1/p
(2.5) [Anllp = <Z IAn(i)I£> :

i=1
Above, | - |, denotes the LP-norm, p = 1, ie., |f], = (§z |f|p)1/p7
where the integration is with respect to the Lebesgue measure on R.

We recall from [BT15, BD17] that the norms || - |; and || - || can be
computed via direct formulas

1
Palli =5 D = b0)?,

(2.6) e
1An oo =5 sup(da — ba)-

Throughout the paper we will only refer to the L'-norms of persistence
diagrams.

2.2.10. Stability. Persistence diagrams and persistence landscapes are ‘sta-
ble’ under small perturbations of a point-cloud [CDSO14, B*15].

2.3. Topological data analysis of time-series. As input, consider a time
series of numerical values of length L:

(2.7) X = {xo,21,..., 211}
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2.3.1. Time-series of time-delay coordinate vectors. We choose and fix an
embedded dimension NV and a time-delay d > 1.

e We transform the time series X into a sequence of N-dimensional
time-delay coordinate vectors

20 = (T0,Tdy - -+, T(N—1)d)5
Z1 = (xlv L14+dy--- 7x1+(N71)d)7
(2.8)
Rt = ($t7 Litdy - xt-i—(N—l)d)a
2L~ (N-1)d = (TL 1~ (N—1)d> TL—1—(N—2)d> - - - » TL—1)-

In our applications below, we will only be interested in detecting D = 1-
dimensional objects (loops), in which case it will be sufficient to choose
N = 2D + 1 = 3. The theoretical considerations behind the choice of
the embedding dimension N rely on Takens’ embedding theorem [Tak81]
and its generalization by Sauer, Yorke and Casdagli [TJM91]. Also, in our
applications we choose the delay d empirically. If we choose d too small,
then the coordinates ¢4 and zyy(;41)q can be too close to each other,
and so they do not represent two ‘independent’ coordinates in a statistical
sense. Similarly, if d is too large, then xii;4 and x4, (;41)q are completely
independent of each other, and so geometric information gets lost. Some
empirical rules on choosing a suitable delay d are discussed in [ABST93].

2.3.2. Sliding windows. To detect qualitative changes along a time series, we
apply a sliding window and assess how its features change along the sliding
window. In our case:

e We apply a sliding window of size w to the sequence (2.8), for w
sufficiently large with N « w « L, obtaining a time-varying point-
cloud embedded in RYV:

(29> Zt = {Zt,Zt+1, s 7Zt+w71}7 fort € {07 : '7K - 1}>
where we denote K —1=L—1— (N —1)d— (w —1).

2.3.3. Time series of norms of persistent landscapes. Fix n > 1 and p = 1.

e For each point-cloud Z! we compute the norm of the persistent land-
scape |AL|, , thus obtaining a time-series of norms

I, for te{0,... K —1}.

3. TDA APPLIED TO OSCILLATORY TIME-SERIES

The main question is to understand what features of a time-series yield
1-dimensional ‘holes’ in the persistence diagram and result in ‘peaks’ of the
norms of the persistence landscapes.
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Time-series generated by periodic and quasi-periodic signals are some
basic type of signals that result in ‘holes’ in the persistence diagram. We
will also consider oscillatory time series whose frequency changes over time.

3.1. Periodic time-series. First, consider time-series generated by a pe-
riodic signal of the form

X(t) = Ay sin(wit + ¢1) + oG(t)

where A1, w1, ¢1 are the parameters of the deterministic signal, o is the noise
intensity, and G(t) is Gaussian noise with zero mean and unit variance.
When o = 0, the embedding of X (¢) in RV with N > 2 fills densely a
topological circle, which is a homeomorphic copy of T'. It has a single hole,
which is 1-dimensional, thus the 1-dimensional homology is Hi(T!) = Z
whose generator is a 1-dimensional loop. When we add noise with intensity
o small, we obtain a ‘noisy’ circle.

To apply the TDA procedure, we first discretize the time t, i.e., we let
tiv1 = t; + At, with a step size of At > 0 small. Then we choose the
window size w and the delay d. It is important that the size of the sliding
window w is larger than the period 77 = 27/w; of the signal, and that the
delay d is less than 27/(w;AT) but not too small. Otherwise, if 71 > w,
then the embedding of a window does not yield a closed curve. If d is
too small, the embedding of the window may yield a point cloud with a
narrow ‘hole’. Indeed, if At is small and d is small then the components
of z = (w4, Tyyq, - - - ,wH(N,l)d) are very close to one another, and thus the
points z; are all located within a small neighborhood of the diagonal set
{x = (x1,...,o5) € RNV : 2y = ... = 2x}. In such a case, the persistence
of the homology generator for the topological circle may be relatively small,
and hence the corresponding norm of the persistence landscape may be
dominated by the effect of the noise. Some precise formulations on how to
choose the window size w and the delay d can be found in [PH15]. Related
works on applying TDA to periodic signals can be found in [KM18, DQR19].

An example of a periodic time-series without noise is shown in Fig. 2.
We note that delay d = 5 yields a stronger signal than d = 1 in both the
persistence diagram and the norm of the persistence landscape.

In either case, the norms of the persistence landscapes stay nearly con-
stant, since the reconstructed set in RV — a topological circle — is the same
for each sliding window. The deviations from a constant value are due to
the discretization of the signal.

An example with a periodic time-series with noise is shown in Fig. 3; in
this case we add noise with ¢ = 0.1. We note that delay d = 5 still yields
a stronger signal than d = 1. We also notice that adding the noise weakens
the TDA signal from the no-noise case. This is because the noise narrows
the ‘hole’ in the point cloud.
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FIGURE 2. Periodic signal without noise reconstructed in 2D
and 3D, persistence diagram and norms of persistence land-
scapes: d =1 (top), and d = 5 (bottom)
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FIGURE 3. Periodic signal with noise reconstructed in 2D
and 3D, persistence diagram and norms of persistence land-
scapes: d =1 (top), and d =5 (bottom)

3.2. Quasi-periodic time-series. Second, consider time-series generated
by a quasi-periodic signal with two incommensurate frequencies

X(t) = Ay sin(wit + ¢1) + Agsin(wat + ¢2) + 0G(t)

where A1, w1, @1, A, wa, P2 are the parameters of the deterministic signal,
and o, G(t) are as before; we assume that w;/ws is an irrational number.
When o = 0, for suitable window size w and delay d, the embedding of X (¢)
in RV with N > 3 yields a topological 2-dimensional torus T2. This has two
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FIGURE 4. Quasi-periodic signal without noise recon-
structed in 2D and 3D, persistence diagram and norms of
persistence landscapes: d =1 (top), and d = 5 (bottom)

1-dimensional homology generators, since Hy(T?) = Z2. In addition, there
is a single 2-dimensional homology generator, i.e., Ho(T?) = Z. See Fig. 4.

The norms of the persistence landscapes stay nearly constant, since the
reconstructed set in RN — a topological torus — is the same for each sliding
window. The deviations from a constant value are due to the discretization
of the signal.

Similarly, we can consider general quasi-periodic signals with m > 1 in-
commensurate frequencies

m
X(t) =] Aisin(wit + ¢) + 0G(2).

i=1
There are specific conditions on how to choose the windows size w, the delay
d and the embedding dimension N; see [PH15, Per16]. The reconstructed set
is an m-dimensional torus T, whose homology is given by Hy(T™) = Zg’“)
3.3. Oscillatory time-series with changing frequency. Another model
that produces ‘holes’ in point-cloud is an oscillatory signal of the form

X(t) = Ay sin(wy In{t. — t) + ¢1) + o G(t),

where . represents a critical time and ¢ € [0,¢.). Note that when ¢ — t.
the frequency of the oscillations wy In(t. — t) — oo at a logarithmic rate,
while the amplitude of the oscillations stays constant. This type of signal is
related to the LPPLS model (2.2).

There is a strong dependence of the TDA signal on the range [0,¢.) of
the time-series, on the parameter wq, and on size of the sliding window w.
Note that at any moment of time ¢ the approximate period of the signal
isT = m Each full oscillation in the time-series produces a hole
in point-cloud. As t increases, more holes appear in point-cloud for the
corresponding sliding window. When w is larger than the initial period

T = ﬁ%, then the TDA signal will capture the first oscillation in the
time-series as well as the subsequent ones. However, when w < —2%— the

w1 In(te)?
TDA signal will only capture oscillations in the time-series whose period

27
w1 In(tc—t) <uw.
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tence landscapes for w = 100, 150,230 (bottom).

In Fig. 5 we show an oscillatory signal as above with no noise, and its
TDA signal for various sizes of the sliding window.

4. TDA APPLIED TO THE LPPLS MODEL

We recall that for the LPPLS model, the price of the asset oscillates with
increasing frequency and decreasing amplitude about a super-exponential
trend line. When we apply the TDA procedure with a fixed window size we
observe the following:

e At the beginning of the time-series, the behavior is nearly periodic,
and the TDA output is similar to that of a periodic signal, producing
a single, persistent 1-loop dimensional loop in the point cloud;

e As the time increases, the time-series exhibits more than one fre-
quency, and TDA output produces a few persistent 1-dimensional
loops in the point cloud;

e As the time approaches the critical time, the time-series exhibits
oscillations of growing frequencies, and the TDA output yields more
and more persistent 1-dimensional loops, which decay in size. In
addition, the super-exponential trend makes the points in the point-
cloud more spread out, so the growing-in-size ‘gaps’ in the point-
cloud contribute with additional 1-dimensional loops. Consequently,
the norms of the persistent landscapes spike in the proximity of the
critical time.
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To capture such behavior, the size of the sliding window w should be
suitably chosen; this depends on the length of the data set as well as on the
parameters of the LPPLS model. For instance, using a larger window size
w will result in the larger loops in the earlier part of the time series to carry
more weight towards the TDA signal, which will result in a spike earlier in
the range as opposed to the end of the range. On the other hand, a smaller
window size w will not capture the larger loops but only the smaller ones
in the latter part of the time series, which will result in a spike towards the
end of the range.

In practice, one needs to explore a range of window size w and observe
the presence of a spike in the TDA signal that appears earlier in the range
for large w, and shifts towards the end of the range for smaller w.

As an example, we consider a noisy LPPLS model for a positive bubble,
with the following parameters

t. = 637, m = 3.003¢ — 01, w = 6.889¢ + 00,
(4.1) A=111le+01, B = —2.937¢ — 04
C = 5.515¢ — 05, Cy = 4.372¢ — 05, Cz = —3.362¢ — 05.

These parameters corresponds to fitting the LPPLS model to the Bitcoin
price between the dates 2021/03/22/-2021/04/16, sampled hourly.

We use the following TDA sliding-window size w, delay d, and embedding
dimension N:

(4.2) w="72d=5 N =4.

The TDA output for various levels of added noise is shown in Fig. 6. We
observe a peak in the TDA signal prior to the critical time, and note that
the growing trend towards the peak appears earlier when the noise intensity
is larger.

4.1. Dependence of the TDA signal on parameters. We consider syn-
thetic time series generated by (2.2), of 200 data points and with ¢, = 200.
We start with the following model parameters m = 0.3, w = 6.7, A = 11,
B = —0.0003, C; = 0.000044, C5 = —0.000034, and with a sliding widow
of size w = 48. These parameters are similar to the ones in (4.1), except
for the length of the time series, which is chosen shorter for computational
efficiency. In the experiments below we explore the changes in the TDA
signal when we change the parameters w,w, m, B, Cy,Co, one at a time. A
more detailed explorations would be needed to study the interdependence
among these parameters, which appears to be quite intricate.

4.1.1. Dependence on sliding window size w. The experiments displayed in
Fig. 7 show that as the window size is decreased, the peak of the TDA
signal gets shifted towards the end of the range of the time series. This is
because windows of larger size w capture more of the larger loops in the
point-cloud, while windows of smaller size capture more of the smaller loops
in the point-cloud. This is consistent with the remarks in Section 3.
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4.1.2. Dependence on frequency w. The experiments displayed in Fig. 8
show that as the frequency w is increased, the TDA signal increases in
strength.

4.1.3. Dependence on non-linearity parameter m. We note that when m =~

1, the main trend line of the log price is nearly linear.

The experiments

displayed in Fig. 9 show that as the frequency m is decreased, the TDA

signal gets shifted towards the end of the range.
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4.1.4. Dependence of positive/negative bubble parameter B. The sign of the
parameter b is associated with the bubble-type: B < 0 corresponds to posi-
tive bubble and b > 0 corresponds to negative bubble. In Figure 10 we show
a synthetic LPPLS model for a negative bubble. It is remarkable that for
both positive and negative bubbles the TDA signal spikes when approaching
the critical time.

4.1.5. Dependence on amplitude parameters C'1,Ca. We explore the depen-
dence of the TDA signal on the parameters C1, Co which are responsible of
the amplitude of the oscillations (here we use w = 60). When the amplitude
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of the signal is increased, the TDA signal grows in strength and becomes
more prominent towards the end of the range. See Fig. 11.

5. DATA SEGMENTATION INTO POSITIVE AND NEGATIVE BUBBLES

In this section we describe a method to segment a given financial time
series into positive and negative bubbles. For a positive bubble the main
idea is there will be a succession of positive returns, which may be inter-
rupted by negative returns no larger in amplitude than some pre-specified
tolerance level. An analogous description holds for negative bubbles. Our
segmentation algorithm is a simplified version of the “epsilon-drawdown”
method developed in [JS02, JST10, FS15], and of some of its variants in
[SZ20a, SZ20b, YRASTT20].

Let x(t;) be the time-series of the price of an asset, where t; = t;_1 + At.
The log-return of the asset at time t; is

pi =Inx(t;) —Inxz(t;—1).



18 S. W. AKINGBADE, M. GIDEA, M. MANZI, AND V. NATEGHI

Assume that some initial time ¢;, is the beginning of a up- (down-) trend.
The cumulative return at time ¢ is
i
Pioi = », (nz(t) —Inz(ti_1)) = ma(t) — na(t,).

i=ig+1
The largest deviation ¢;,; of the price trajectory from a previous minimum
(maximum) is given by
(5.1) 5. — ) MaXig<k<i Pig.k — Pio,iy for an up-trend,

’ *0; Dio,i — MiNy <k<i Pig k>  for a down-trend.

To find the end of the up-trend, we first compute icos5, the first time ¢ > g
when d;, ; crosses a certain tolerance level ¢;,

(5.2) (51'0,2‘ —g >0
and then define the end of the up- (down-) trend as the time

arg max p;, i, for an up-trend,
iogkgicrossl

arg min p;, 5, for a down-trend.
iogkgicrossl

(5.3) t, =

The time t;, is considered as the beginning of the next down- (up-) trend.
Through this procedure, the data is successively segmented in up and down
trends, which alternate one after the other. The procedure is carried out for
the whole time series and yields a sequence of peaks

{tu,la tu,2> .. '}7
and a sequence of troughs
{tan1,taz, .-},
such that peak is always followed by a trough and vice-versa.
At the end of this procedure, each up-trend corresponds to a positive
bubble, and each down-trend corresponds to a negative bubble.
The tolerance level €; can be chosen in multiple ways. One option is to
choose
E; = €&,
where € > 0 is some preset constant. Another option is to choose a time-
dependent tolerance level ; proportional to the volatility (standard devia-
tion) o; = o;(wp) at time i estimated over a preceding time window of some
fixed size wy, i.e.,

(5.4) €; = €005,

where gg is some scaling parameter. Thus the tolerance is more permis-
sive when the market presents high volatility and is stricter during calmer
periods. There are other ways to choose the tolerance level (see, e.g.,
[YRASTT20]).

The segmentation procedure in [GDS18] does not fix a single scaling pa-
rameter €y and a single window-size wq for the computation of the standard



WHY TDA DETECTS FINANCIAL BUBBLES? 19

LJU\

b 1000 2000 3000 4000 5000 6000

98 100 10.2 104 106 108 11.0

FIGURE 12. Log-price and standard deviation of Bitcoin
over 10/01/2021-07/01/2022

deviation, but rather considers some range of scaling parameters € € [£1, €3]
and of window-sizes wy € [wy, ws], each sampled with some frequency, and
computes a collection of peaks and a collection of troughs for each ¢y and
wp. Finally, it selects the most frequent peaks and troughs that appear over
the whole range of g, wg.

In Fig. 12 we show the log-price of Bitcoin over the period 10/01/2021-
07/01/2022 sampled at 1 hour intervals (resulting in 6552 data points),
and the standard deviation measured over a preceding time window of size
wo = 240.

In the examples in Section 6, as we are interesting in ‘large’ bubbles, we
will fix the scaling parameter at some large value of gg.

6. APPLICATION TO DETECTION OF BITCOIN BUBBLES

In this section we present a series of numerical experiments on hourly
Bitcoin price during the period 2021-10-01 and 2022-07-01. In Section 6.1
we segment the data into positive bubbles and negative bubbles following
the methodology described in Section 5. In Section 6.2 we fit the LPPLS
model to each of the segments. In Section 6 we apply the TDA procedure
to each segment, following the methodology described in Sections 2.2 and
2.3.

6.1. Data segmentation. The hourly Bitcoin price data set between 2021-
10-01 and 2022-07-01 consists of 6552 data points. We segment the data
following the procedure described in Section 5. To compute the standard
deviation (volatility) o; we use a fixed window size of wy = 240 data points.
We also use a fixed scaling parameter ¢g = 15.0. Thus, the tolerance level
is taken as €; = €po;, where o; is computed over a sliding window of length
wo-.

In the table below we identify the peak-time (P) and the crossing-time
(C) for each up-trend.

Table 2. Up-trend peak and crossing times:

P | 471|977 | 2105 | 3184 | 3662 | 3831 | 4290 | 4861 | 5447 | 5824 | 6443

C | 538 | 1104 | 2130 | 3355 | 3718 | 3934 | 4370 | 4887 | 5729 | 5894 | 6536
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In the table below we identify the trough-time (T) and the crossing-time
(C) for each down-trend.

Table 3. Down-trend troughs and crossing times:
T | 648 | 1873 | 2772 | 3509 | 3787 | 3934 | 4780 | 5358
C | 783 | 2010 | 2821 | 3531 | 3831 | 4075 | 4835 | 5601

5729
5804

6260
6415

Both peaks and troughs from Tables 1 and 2 are shown in Fig. 13.

Then we define up-trend (U) and down-trend (D) segments to be fitted
with LPPLS models as well as analyzed with TDA.

First, each segment is determined by the following criterion. For an
up- (down-) trend, the end-point is a peak (trough) from the list, and the
starting-point of the trend is the nearest crossing time in the past from the
previous down- (up-) trend. If the nearest crossing time in the past occurs
before the previous trough (peak), then the starting-point is chosen to be
that particular trough (peak).

The reason for choosing the starting-point of a trend at the previous
crossing-time is that, right after a trough (peak), the price may grow (drop)
dramatically, which yields a strong TDA signal that may eclipse the TDA
signal preceding the next bubble burst. We want the starting-point to be
after the recovery period for the previous bubble burst. Therefore, we empir-
ically choose the crossing time as a mark for the end of the recovery period.
As mentioned before, in some exceptional cases, the previous crossing time
may occur before the previous trough/peak, in which case we choose the
starting-point at that trough/peak. Making these choices results in up- and
down-trends that have no overlap, which is convenient for the data analysis.

Table 4. Up-trend and down-trend segments

U | 783-977 2010-2105 | 2821-3184 | 3531-3662 | 3783-3831 | 4075-4290
U | 4835-4861 | 5358-5447 | 5804-5824 | 6415-6443
D | 538-648 1104-1873 | 2130-2772 | 3355-3509 | 3718-3787 | 3831-3934
D | 4370-4780 | 4887-5358 | 5447-5729 | 5894-6260
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FIGURE 14. Fitness function in the domain [m,w], for con-
stant values of the remaining parameters. The objective func-
tion displays strong non-convexity.

Second, we perform some additional adjustments. We examine each of
the resulting segments and if we observe significant peaks or troughs inside
a segment we do an ad-hoc adjustment of the segment: we cut the portion
from the beginning of the segment to the last observed a peak/through. This
adjustment is occasionally needed since using the segmentation procedure
with fixed wy and fixed gp can miss some peaks/troughs.

Third, from the remaining segments we dismiss those that are very short,
since we cannot apply the LPPLS fitting and the TDA procedure to them.
Thus, the segments 3783 — 3831, 4835 — 4861, 5804 — 5824 and 6415 — 6443,
all corresponding to up-trends, were deemed as too short to perform the
analysis. We also disregard the first segment 1 — 471 as it was used to
initialize the process.

We retain the following;:

Table 5. Adjusted up-trend and down-trend segments
783-977 2010-2105 | 3020-3184 | 3531-3662 | 4175-4290
5358-5447
538-648 1104-1873 | 2500-2772 | 3355-3509 | 3718-3787
3831-3934 | 4370-4780 | 5150-5358 | 5447-5729 | 5894-6260

OIocla

6.2. Fitting the LPPLS model to Bitcoin time-series. Once a specific
segment is defined, we address the optimization problem, in which we aim at
best fitting the LPPLS model to the time series. More formally, using (6.1)
to obtain a vector of estimates of the expected log-price y = LPPLS(y)
from the segment x, the goal is to solve the unconstrained, non-convex
optimization problem:

(6.1) 19— yl13

min
te,m,w,A,B,C1,Co
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F1GURE 15. Distribution of residuals for a fitted model.

Figure 14 represents the fitness function in terms of two variables m and
w. The figure shows that the problem is highly non-convex and we cannot
easily use any local minimizers to find an optimum solution.

Given the geometry of the problem, a global optimization scheme based
on differential evolution [SP97] has been used. This method, as opposed to
gradient-based local optimizers, is based on performing function evaluation
on a set of sample points drawn from a large candidate space followed by
a local optimizer at the end. While similar works propose the use of grid
search in the space of initial conditions, each followed by local optimization,
also [SZ20b] makes use of evolutionary algorithms (specifically, covariance
matrix adaptation evolution strategy).

In order to speed up convergence, the problem is reformulated as

(6.2) ,min 5. AW). Bp), Cr(p), Ca(p) = wll3
In which ¢ = [A(p), B(p), C1(p), C2(p)] is determined, for each p, solving
a linear least square problem:

(6.3) q¢=(XTX)"'XTp.

For the optimization problem (6.1), we have assumed that the noise (the
residuals in (6.1)) follows a Gaussian distribution with zero mean and ho-
moscedasticity, that is, time-independent variance, indicating that the vari-
ance of samples taken from the time-series remains constant over time. Our
assumption is justified by the distribution of residuals depicted in Figure 15.
Under this assumption, solving for the fitness function in (6.1) is equivalent
to a maximum likelihood estimation.

We note that, when the time series exhibit heteroscedasticity, where the
variance of the time-series samples changes across time, a weighting scheme
can be introduced as a modification to the definition of the fitness function.
Such a weighting scheme assigns smaller weights to residuals with higher
variances, so that outliers have less impact on the estimates on the fitness
function (see, e.g., [HGBF21, NM23)]).
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The software developed in this context is built on top of the open-source
package [Bou]. The results of the LPPLS fitting are depicted in Appendix A.

6.3. TDA applied to Bitcoin time-series and comparison to fitted
LPPLS models. We apply TDA to each adjusted up-trend and down-
trend segment from Table 5. For each segments we have chosen a suitable
set of TDA parameters from the following range:

(6.4) w=48,60,72,d = 3,5, N = 4.

As noted in Section 4.1, adjustments of the TDA parameter are needed
because the segments have different lengths, and the trends of the corre-
sponding time-series (reflected by the fitted LPPLS models) are different.

In Appendix A we show, side-by-side, the fitted LPPLS model and TDA
signal for each up-/down-trend, in chronological order (i.e., alternating up-
and down-trends).

We observe that most of the segments show a primary peak in the TDA
signal towards the end of the range. Some of the segments show some
secondary peaks in the TDA signal (e.g., Appendix A — Figs.16b, 16¢, 16e,
16h, 16p), which seem to capture some intermediate price jumps or drops.

In a few instances (e.g., Appendix A — Fig. 161, 16n)) the primary peak
in the TDA signal occurs earlier than the end of the range. We note that
in these instance that an apparent tipping point seems to occur not at the
end of the range but closer to the middle. The fact that the segmentation
procedure used in Section 5 does not identify this apparent tipping point
is likely due to the dependence of the threshold (5.4) on volatility; if the
preceding time period is highly volatile, the threshold for the crossing time
(5.2) is higher, and if the volatility becomes lower at a later time, then
the threshold will also become lower, and hence the crossing time will be
registered at a later time.

We also note that some of the fitted LPPLS models do not display the
desired characteristics, that is, super-exponential growth (or decay) superim-
posed with oscillations increasing in frequency and decreasing in amplitude.
For instance, Appendix A — Figs. 16d, 16j, 161) show very few oscillations,
or weak nonlinearity.

The poor fit of some of the LPPLS model means that the LPPLS regime
does not hold for those segments. In fact, only LPPLS models that pass
certain filters should be selected as viable solutions. See [GDS18] and the
references listed there.

Nevertheless, the TDA signal is clearly distinguishable even in cases when
the LPPLS regime does not hold.

7. CONCLUSIONS

We provide an empirical argument on why TDA is able to provide early
warning signals for critical transitions in financial time series, for both posi-
tive and negative financial bubbles. The premise of our investigation is that
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financial bubbles are reflected by the LPPLS model, asserting that the price
of an asset exhibits super-exponential growth (or decay) superimposed with
oscillations that increase in frequency and decrease in amplitude when ap-
proaching a critical transition. When the time series is transformed into a
point cloud via time-delay coordinate embedding, these oscillations give rise
to persistent 1-dimensional homology generators (loops), which can be quan-
tified via persistence landscapes. By applying a sliding window to the time
series, one can capture the changes in the oscillations through the growth in
the norms of the corresponding persistence landscapes.

Our experiments show that, when the TDA procedure is applied to syn-
thetic LPPLS time-series, the norms of the persistence landscapes grow as
predicted. They also show an intricate dependence of the TDA signal on
the parameters of the LPPLS model and of the TDA procedure.

As a practical application, we run the TDA procedure on a collection of
positive and negative bubbles of the Bitcoin price between October 1st 2021
and July 1st 2022. In most cases, the TDA gives early warnings for tipping
points, even when the LPPLS regime does not seem to hold.

In terms of future work, we plan to undertake a more rigorous study of
the dependence of the TDA parameters on the underlying time-series, which
would enable automatic parameter selection. Additionally, it would be per-
tinent to explore further quantitative measures for TDA-based early warn-
ing signals, encompassing projections regarding the timing, magnitude, and
likelihood of a crash. We also plan to validate the TDA-based approach to
financial bubble detection through other models, including those described
in Section 1.
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APPENDIX A. LPPLS AND TDA APPLIED TO BITCOIN SEGMENTS
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