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Abstract. We present a mechanism for Arnold diffusion in energy in
a model of the elliptic Hill four-body problem. Our model is expressed
as a small perturbation of the circular Hill four-body problem, with the
small parameter being the eccentricity of the orbits of the primaries.
The mechanism relies on the existence of two normally hyperbolic in-
variant manifolds (NHIM’s), and on the corresponding homoclinic and
heteroclinic connections. The dynamics along homoclinic/heteroclinic
orbits is encoded via scattering maps, which we compute numerically.
Having several scattering maps, at each point we select the scattering
map that gives the largest gain in energy or the scattering map that
gives the smallest loss in energy. Using Birkhoff’s Ergodic Theorem we
show that there are pseudo-orbits generated by the selected scattering
maps along which, on average, the energy grows by an amount indepen-
dent of the small parameter. A shadowing lemma yields the existence
of diffusing orbits.

1. Introduction

1.1. Overview of results. We consider the planar elliptic restricted four-
body problem (ER4BP), describing the dynamics of a massless body under
the gravitational influence of three massive bodies (primaries) of masses
m1 > m2 > m3 forming an equilateral central configuration, where each
primary moves on an elliptic orbit about the common center of mass. This
represents a homographic solution of the general three-body problem. We
derive the elliptic Hill four-body problem (EH4BP), which is an approxi-
mation of the ER4BP describing the dynamics of the infinitesimal body in
a neighborhood of the smaller body, in the limit case when m3 → 0 and
m1,m2 are sent to infinity. The EH4BP can be written as a perturbation of
the circular Hill four-body problem (CH4BP), with the eccentricity ϵ of the
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elliptic orbits being the small parameter. While for some orbits the effect
of the perturbation may average out, for other orbits it may accumulate in
the long run. We show that the EH4BP exhibits Arnold diffusion, in the
sense that there exist orbits of the infinitesimal body that undergo signifi-
cant changes over time. In particular, the energy along these orbits increases
by O(1) with respect to the perturbation parameter ϵ.

A motivation for this work is the system consisting of Sun, Jupiter, the
Trojan asteroid (624) Hektor, and its moonlet Skamandrios, which can be
modeled by the EH4BP. Hektor is located close to the Lagrangian point
L4 of the Sun-Jupiter system. The motion of Skamandrios exhibits various
resonances, so a small perturbation could potentially lead to ejection of the
moonlet or to collision with the asteroid [MDCR+14]. There is a theoretical
possibility that Arnold diffusion may lead to such scenarios.

1.2. Methodology. Our arguments for Arnold diffusion rely on geometric
methods and numerical verifications.

The geometric method is concerned with identifying the geometric objects
that organize the dynamics for the unperturbed system, and computing the
effect of the perturbation on these objects.

For the unperturbed problem, corresponding to the CH4BP, we find 4
equilibrium points: L1, L2, of center-saddle linear stability type, and L3, L4,
of center-center type. We focus on the dynamics near L1, L2. For a range
of energies slightly above that of L1, L2, we find families of Lyapunov pe-
riodic orbits around these points. Each family forms a normally hyperbolic
invariant manifold (NHIM), which is an annulus that can be parametrized
via symplectic action-angle coordinates. The NHIM’s posses stable and un-
stable manifolds. For these energies, the motion of the massless body is
confined to an inner region around m3 connected to an outer region open-
ing towards m1, m2. The two regions are separated by two ‘bottlenecks’
where the Lyapunov orbits near L1, L2 lie. There exist transverse homo-
clinic and heteroclinic connections between the two NHIM’s within both the
inner region and the outer region. Each homoclinic orbit is asymptotic in
both forward and backwards time to the same Lyapunov orbit, and each
heteroclinic orbit is asymptotic in forward and backwards time to two Lya-
punov orbits – one near L1 and the other near L2 – of the same energy. We
can encode the asymptotic behavior of homoclinic/heteroclinic orbits via
the scattering map – a geometrically defined map acting on the NHIM’s. It
turns out that, when expressed in action-angle coordinates, the unperturbed
scattering map preserves the action and shifts the angle coordinate.

We then consider the effect of the perturbations on the NHIM’s and on
the transverse homoclinic/heteroclinic orbits. For small perturbations, the
NHIM’s survive while being slightly deformed, due to the standard normally
hyperbolicity theory. The transverse homoclinic/heteroclinic orbits also sur-
vive, due to the robustness of transversality. However the perturbed scatter-
ing map can increase or decrease the action coordinate. Using deformation
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theory, one can compute the perturbed scattering map as an expansion in
terms of the perturbation parameter: the zero-th order term in the expan-
sion is the unperturbed scattering map, and the first order term is given
by a Hamiltonian function in the action-angle variables. This Hamiltonian
can be explicitly computed via Melnikov theory in terms of improper, con-
vergent integrals of the perturbation along homoclinic/heteroclinic orbits of
the unperturbed system. Moreover, these integrals converge exponentially
fast, which allows for their efficient numerical computation. Through the
computation of the perturbed scattering map, we can identify regions where
a scattering map increases the action coordinate by O(ϵ), as well as regions
where a scattering map decreases the action coordinate by O(ϵ). In this
paper, we make use of several scattering maps. On the domains where the
scattering maps increase the action, we select the scattering map that yields
the largest growth in action, and on the domains where the scattering maps
decrease the action, we select the scattering map that yields the smallest
decay in action. We then apply Birkhoff’s Ergodic Theorem to show that
there exist pseudo-orbits generated by the selected scattering maps along
which the action grows on average by O(1). Finally, a shadowing lemma
shows that there are true orbits along which the action grows by O(1).

When the action increases, the corresponding Lyapunov periodic orbits
get bigger, and their stable/unstable manifolds in the inner region pass closer
to m3. At the same time, the ‘bottlenecks’ around L1, L2 get wider, and
orbits can escape more easily from the inner region to the outer region. In
the context of the Sun-Jupiter-Hektor system, it is possible that, in the long
run, Arnold diffusion can push the moonlet Skamandrios towards collision
with Hektor, or, on the contrary, to escape from Hektor’s capture.

While our numerical calculations are not validated via computer assisted
proofs, they are sufficiently accurate by numerical analysis standards. A rig-
orous numerical verification can be done using the CAPD library [KMWZ21].

The novel aspects of this work can be summarized as follows:

• We derive the Hamiltonian for the EH4BP and write it is as a per-
turbation of the CH4BP.

• We show the existence of Arnold diffusion for the EH4BP, in a model
with realistic parameters for the masses of the bodies and for the
energy levels.

• We describe an argument for diffusion based on several scattering
maps, where at each step we select either the scattering map that
gives the largest energy growth or the one that gives the smallest
energy loss, so on the average we keep growing energy.

• We compare two diffusion mechanisms – via homoclinic and via het-
eroclinic orbits.

• We provide a complete chart of diffusion pathways in terms of the
level sets of the Hamiltonians that generate the scattering maps.
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1.3. Related works. The Arnold Diffusion problem [Arn64] asserts that in-
tegrable Hamiltonian systems subject to small, generic perturbations, have
diffusing orbits along which the action coordinate changes by an amount
independent of the size of the perturbation. While Arnold illustrated this
phenomenon on a simple model consisting of a rotator and a pendulum plus
a small time-dependent perturbation of a special type, he conjectured “I be-
lieve that the mechanism of transition chain that guarantees that nonstability
in our example is applicable to the general case (for example, to the problem
of three bodies)”.

Despite its long history, there are few results on proving Arnold diffusion
in celestial mechanics, particularly with realistic parameters (e.g., for the
masses of the bodies, or for the energy levels). Some works prove Arnold
diffusion in realistic models of the restricted three-body problem by combin-
ing analytical methods with numerical computations. The paper [FGKR16]
shows that diffusion along mean motion resonances in the Sun-Jupiter sys-
tem can be used to explain the Kirkwood gaps in the main asteroid belt.
The paper [CGDlL17] shows the existence of orbits that exhibit Arnold dif-
fusion in energy for the Sun-Jupiter system at energy levels close to that of
the comet Oterma. A computer assisted proof for Arnold diffusion in en-
ergy for the Neptune-Triton system is given in [CG23]; moreover, this paper
shows that the energy of diffusing orbits evolves according to a Brownian
motion with drift. Numerical evidence for Arnold diffusion in the dynamics
of Jupiter’s Trojan asteroids is provided in [RG06], by the means of the
Frequency Map Analysis [Las90].

There are some purely analytical proofs of Arnold diffusion in celestial
mechanics models. These include [DKdlRS19] where, in the case of the pla-
nar elliptic restricted three-body problem, for mass ratio and eccentricities
of the primaries sufficiently small, they construct orbits with large drift in
angular momentum. This result is extended for arbitrary masses in [GPS23].
The paper [CFG22] proves Arnold’s conjecture in a planetary spatial 4-body
problem as well as in the corresponding hierarchical problem (where the
bodies are increasingly separated); in particular, they show that one of the
planet may change inclination in a random fashion, and, moreover, it can
flip from a prograde nearly horizontal orbit to a retrograde one.

In the present paper, we use analytical methods and numerical verifica-
tions to show Arnold diffusion in an elliptic Hill four-body problem modeling
the dynamics of the moonlet Skamandrios relative to the Sun-Jupiter-Hektor
system, for realistic values of the masses and energies. In this model, the
diffusion mechanism can affect the orbit of the moonlet dramatically, so that
it can pass closer and closer to the asteroid, or it can escape from the aster-
oid’s capture. A model for this system based on the circular Hill four-body
problem is derived in [BGG15], and further studied in [BG16, BGBFP22].
The paper [BGCG+20] develops a model that takes into account the highly
oblate shape of Hektor, and derives a circular Hill four-body problem in this
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case. In a follow-up paper [BGL23], collision orbits are studied via McGe-
hee regularization. The geometric approach that we use in the present paper
has the advantage that it can be adapted to incorporate additional realistic
effects, such as the oblateness of the asteroid. We can also include the effect
of inclination of the orbits of the asteroid and of the moonlet, as in [DGR16],
or the effect of dissipation, as in [AGMS23].

The methodology to prove diffusion in our model is similar to that in
[CGDlL17]. The main tool that we use is the scattering map. This was used
in [DdlLS06a] to prove Arnold diffusion in a priori unstable Hamiltonian
systems; see also the related papers [DdlLS00, DdlLS06b]. The geometric
properties of the scattering map have been studied in [DdlLS08]. A gen-
eral mechanism of diffusion that relies mostly on the scattering map, and
uses only the Poincaré recurrence of the inner dynamics (which is automat-
ically satisfied in Hamiltonian systems over regions of bounded measure)
was developed in [GdlLMS20] (see also [GdlLMS19]). This mechanism ap-
plies only in the case when the unperturbed scattering map is the identity.
In the present paper, we introduce a new mechanism of diffusion based on
several scattering maps. Unlike in [GdlLMS20], the unperturbed scattering
map is a shift in the angle variable rather than the identity. Also, unlike in
[CGDlL17], where for each point in the NHIM we can always select a scat-
tering map that increases the energy, in the present model, besides domains
where the scattering maps increase the energy there are also domains where
they decrease the energy. We use Birkhoff’s Ergodic Theorem to show that
we can intertwine the application of the scattering maps so that, on average,
we can grow the energy. The idea of estimating the average growth of energy
along orbits also appears in [GdlL17].

An important quality of the scattering map that we explore in this paper
is that it can be computed explicitly, either analytically, via perturbation
theory, or numerically [DdlLS06a, DGR16]. In the perturbative case, the
perturbed scattering map can be expanded in powers of the perturbation
parameter, such that the zero-th order term in the expansion is the unper-
turbed scattering map, and the first order term is given by a Hamiltonian
function on the NHIM. These level sets can be use to detect the fastest
pathways for diffusing orbits [DS18, DS17, DGR]. In the present work, we
perform a direct computation of the level sets of the Hamiltonians generat-
ing the scattering maps associated to homoclinic as well as to heteroclinic
connections, and discuss their role in diffusion.

1.4. Structure of the paper. In Section 2 we describe the ER4BP. In
Section 3 we derive the Hill approximation for the ER4BP, and we express
the Hamiltonian of the EH4BP as a perturbation of the CH4BP. In Sec-
tion 4 we describe the geometric objects that organize the dynamics in the
CH4BP: equilibrium points, Lyapunov periodic orbits, and their stable and
unstable manifolds. We also provide numerical evidence for the existence of
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homoclinic and heteroclinic connections. In Section 5 we provide a geomet-
ric method to show the existence of Arnold diffusion, and then in Section 6
we implement it numerically in the case of the EH4BP.

2. The elliptic restricted four body problem

Consider a massless particle that moves on the same plane of three massive
bodies, called primaries, without affecting their motion. The equations for
the massless particle in a (X,Y ) inertial coordinate system with origin at
the center of mass of the system are given by

d2X

dt2
= −G

3
∑

i=1

mi(X −Xi)

Ä3i
,

d2Y

dt2
= −G

3
∑

i=1

mi(X −Xi)

Ä3i
,(1)

where (Xi, Yi) are the positions of the three primaries, Äi is the distance
between the massless particle and each primary for i = 1, 2, 3, and G denotes
the gravitational constant. Using the complex coordinate Z = X + iY we
can write the equations (1) in the following form

(2)
d2Z

dt2
= −G

3
∑

i=1

mi(Z − Zi)

Ä3i
,

with Äi = |Z − Zi|. The positions of the primaries can be considered as
solutions of the three-body problem such as the Euler solution [ML99], the
eight-shaped solution [LB22], or the Lagrange solution to produce differ-
ent kinds of restricted four-body problems. Some authors have considered
elliptical motions for the primaries which are not actual solutions of the
three-body to generate other kinds of elliptic restricted four-body problems
[LG18, CPT22].

The restricted four-body problem considering the Lagrangian configura-
tion has been studied recently by several authors for the case when the
primaries move in circular orbits. See for instance, [BGD13b, BGD13a,
BGLJ19] and references therein. However, there are few studies of the el-
liptic case [CN19, AP20] where the equations of motion were obtained for
special values of the masses. Since the Lagrange solution exists for all the
physical values of the masses and we are interested in the case when one
primary is too small compared with the remaining two, we provide a full
discussion of the problem considering the elliptic case to obtain the equations
of motion of the elliptic restricted four-body problem, hereafter referred as
ER4BP.

We start considering solutions of the planar three-body problem (in com-
plex notation) of the form qi(t) = ϕ(t)ai where each ai is a complex number
and ϕ(t) is a time-dependent complex-valued function. It is well known
that the substitution of this expression into the equations of the three-body
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Figure 1. The solution of the Lagrangian central configu-
ration of the three body problem with m1 = 0.6, m2 = 0.3,
m3 = 0.1 and ϵ = 0.13.

problem gives rise to the equations [Mey09]:

d2ϕ

dt2
= − ¼ϕ

|ϕ|3 ,(3)

∂U

∂q
(a) + ¼

∂I

∂q
(a) = 0,(4)

where q = (q1, q2, q3), a = (a1, a2, a3), U is the potential of the three-body
problem and I = 1

2

(

m1|q1|2 +m2|q2|2 +m3|q23|
)

is the moment of inertia of
the system. The solutions of (4) give a central configurations of the three-
body problem, and the equation (3) is a two-dimensional Kepler problem.
The solutions of the equation (4) are the celebrated Euler (collinear) and
Lagrange (equilateral) configurations. See Fig. 1. Moreover, the Lagrangian
configuration was studied in [BGCG+20] when the masses are considered as
oblate bodies and the main conclusion is that the equilateral shape of the
configuration deforms into an isosceles or a scalene triangle depending on
the oblateness of the bodies.

For the equilateral configuration the distances between the three primaries
Äij = ∥qi − qj∥ satisfy

Ä12 = Ä23 = Ä31 =

(

GM

¼

)−1/3

where ¼ is a scale factor that fixes the size of the system and M = m1 +
m2 +m3. For the elliptic solutions of (3) the function ϕ(t) can be written
in polar coordinates ϕ(t) = reif , where r and f satisfy the two dimensional
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Kepler problem

dr

dt
− r

(

df

dt

)2

= − ¼

r2
,(5)

r2
df

dt
= c,(6)

and they are related by

(7) r =
c2/¼

1 + ϵ cos(f)
.

The constant c is the magnitude of the angular momentum, ϵ denotes the
eccentricity, and f is the true anomaly.

Now, to consider the positions of the primaries fixed, we introduce the
so-called pulsating coordinates

(8) Z = reifz,

where we can apply the chain rule to obtain the expressions

dz

dt
=

dz

df

df

dt
,

d2z

dt2
=

dz

df

d2f

dt2
+

d2z

df2

(

df

dt

)2

,

which are necessary to compute the second derivative in the expression (8).
A straightforward computation shows that the second derivative of Z is
given by

d2Z

dt2
e−if = r

(

df

dt

)2(d2z

df2
+ 2i

dz

df

)

+ z

(

dr

dt
− r

(

df

dt

)2
)

+

(

dz

df
+ iz

)(

r2
d2f

dt2
+ 2

dr

dt

df

dt

)

.

The second term on the right side of the above equation corresponds to
the equation (5), and the third term are equal to zero because the term

r2
d2f

dt2
+ 2

dr

dt

df

dt

is the derivative of the expression (6). Therefore, the left side of the equation
(2) becomes

(9)
d2Z

dt2
= eif

(

r

(

df

dt

)2(d2z

df2
+ 2i

dz

df

)

− z
¼

r2

)

.

On the other hand, using the expression (8), the right-side of (2) becomes

(10) −G
3
∑

i=1

mi(Z − Zi)

Ä3i
= −Geif

r2

3
∑

i=1

mi(z − zi)

|z − zi|3
.
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If we define µi = mi/M , where M is the total mass of the system, the
equation (2) in pulsating coordinates is given by the expression:

(11) r

(

df

dt

)2(d2z

df2
+ 2i

dz

df

)

= z
¼

r2
− GM

r2

3
∑

i=1

µi(z − zi)

|z − zi|3
.

From equations (7) and (6) we obtain

1

r2
=

r
(

df
dt

)2

¼(1 + ϵ cos(f))
,

so the equation (11) becomes

r

(

df

dt

)2(d2z

df2
+ 2i

dz

df

)

=
r
(

df
dt

)2

1 + ϵ cos(f)

(

z − GM

¼

3
∑

i=1

µi(z − zi)

|z − zi|3

)

.

We recall that the distances between the primaries are given by Äij =

(GM
¼ )−1/3 so, in order to fix the length of the triangle equal to 1, we choose

¼ = GM . Dividing the above equation by r
(

df
dt

)2
we obtain

(12)
d2z

df2
+ 2i

dz

df
=

1

1 + ϵ cos(f)

(

z −
3
∑

i=1

µi(z − zi)

|z − zi|3

)

.

In the new coordinates, the positions zi are the solutions of equation (4)
and consequently, the positions are constant and the coordinates are given
by the same expressions used in the circular version of the ER4BP:

x1 =
−|K|

√

m2
2 +m2m3 +m2

3

K
y1 = 0

x2 =
|K|[(m2 −m3)m3 +m1(2m2 +m3)]

2K
√

m2
2 +m2m3 +m2

3

y2 =
−
√
3m3

2m
3/2
2

√

m3
2

m2
2 +m2m3 +m2

3

x3 =
|K|

2
√

m2
2 +m2m3 +m2

3

y3 =

√
3

2
√
m2

√

m3
2

m2
2 +m2m3 +m2

3

,

where K = m2(m3 − m2) + m1(m2 + 2m3), and we have reconsidered the
mass ratios µi as mi in such a way that they satisfy m1 +m2 +m3 = 1.

If we denote by ż = dz
df and separate the real and imaginary parts of

z = x+ iy in (12), we obtain the equations in Cartesian coordinates

ẍ− 2ẏ = Ωx,

ÿ + 2ẋ = Ωy,
(13)

where

Ω(x, y;m1,m2,m3) =
1

1 + ϵ cos(f)

(

1

2
(x2 + y2) +

3
∑

i=1

mi

ri

)

,
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and ri =
√

(x− xi)2 + (y − yi)2, for i = 1, 2, 3. Making the transformation
ẋ = px + y, ẏ = py − x, we obtain that the equations (13) are equivalent to
the equations given by the Hamiltonian
(14)

H =
1

2
(p2x+p2y)+ypx−xpy+

1

2
(x2+y2)− 1

1 + ϵ cos(f)

(

1

2
(x2 + y2) +

3
∑

i=1

mi

ri

)

.

Remark 2.1. Since a planar homographic solution of the general N -body
problem is defined as qi(t) = r(t)ei¹(t)ai where the ai’s describe a central con-
figuration, and r(t) and ¹(t) satisfy the equations (5) and (6), the performed
construction can be easily extended to generate elliptic restricted problems
for N > 3 primaries moving in homographic solutions.

3. The limit case and equations of motion

In this section we study the limit case when m3 → 0 in the Hamiltonian
of the ER4BP. For our purposes it is sufficient to consider small values of
the eccentricity, however, the procedure can be easily extended for all values
of eccentricity. Expanding the expression 1/(1 + ϵ cos(f)) in terms of the
eccentricity in a neighborhood of ϵ = 0 we have

(15)
1

1 + ϵ cos(f)
= 1− ϵ cos(f) +O(ϵ2).

Therefore the Hamiltonian (14) becomes

(16) HER4BP = HCR4BP + ϵ cos(f)

(

1

2
(x2 + y2) +

3
∑

i=1

mi

ri

)

+O(ϵ2),

where HCR4BP is the Hamiltonian of the circular restricted four body prob-
lem.

Theorem 3.1. Let HCH4BP be the Hamiltonian of the circular Hill four-
body problem, given by

HCH4BP =
1

2
(p2x + p2y) + ypx − xpy − U(x, y),(17)

with

(18) U(x, y) = −1

8
x2 +

3
√
3

4
(1− 2µ)xy +

5

8
y2 +

1
√

x2 + y2

being the gravitational potential relative to the co-rotating frame, m1 = 1−µ
and m2 = µ.

Then, for small values of the eccentricity ϵ, and after the conformally
symplectic scaling

(x, y, px, py) → m
1/3
3 (x, y, px, py),
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the limiting Hamiltonian (16) as m3 → 0 is

(19) HEH4BP = HCH4BP + ϵ cos(f)

(

1

2
(x2 + y2) + U(x, y)

)

+O(ϵ2).

The system associated to HEH4BP yields an approximation of the motion

of the infinitesimal mass in an O(m
1/3
3 )-neighborhood of m3, and will be

referred to as the Elliptic Hill’s Four-Body Problem (EH4BP).

Proof. If we ignore the higher order terms in the Hamiltonian (16) we can
write it as

(20) H = HCH4BP + ϵ cos(f)H1.

The Hill approximation for the Hamiltonian HCH4BP was already carried
out in [BGG15], therefore it will be enough to work with H1. First, we
perform the change of coordinates x → x + x3, y → y + y3, px → px − y3,
py → py + x3, therefore in these new coordinates the term (20) becomes

H1 =
1

2
(x2 + y2) + x3x+ y3y +

3
∑

i=1

mi

r̄i
,

where we have omitted the constant term 1
2(x

2
3 + y23) and r̄2i = (x + x3 −

xi)
2 + (y + y3 − yi)

2 := (x+ x̄i)
2 + (y + ȳi)

2, for i = 1, 2, 3. We expand the
terms 1

r̄1
and 1

r̄2
in Taylor series around the new origin of coordinates; if we

ignore the constant terms we obtain the following expressions

f1 : =
1

r̄1
=
∑

kg1

P 1
k (x, y),

f2 : =
1

r̄2
=
∑

kg1

P 2
k (x, y),

where P j
k (x, y) is a homogenous polynomial of degree k for j = 1, 2. We

perform the conformally symplectic scaling x → m
1/3
3 x, y → m

1/3
3 y, px →

m
1/3
3 px, py → m

1/3
3 py with multiplier m

−2/3
3 , obtaining

H1 =
1

2
(x2 + y2) +

1
√

x2 + y2
+m

−1/3
3 (x3x+ y3y + P 1

1 + P 2
1 )

+
∑

kg2

m
k−2

3

3 m1P
1
k (x, y) +

∑

kg2

m
k−2

3

3 m2P
2
k (x, y).

(21)

The term

m
−1/3
3 (x3x+ y3y + P 1

1 + P 2
1 ) +

∑

kg2

m
k−2

3

3 m1P
1
k (x, y) +

∑

kg2

m
k−2

3

3 m2P
2
k (x, y)
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was already computed for the circular case HCR4BP , so if we use these
computations we can write

H1 =
1

2
(x2 + y2) +

1
√

x2 + y2
+m1P

1
2 +m2P

2
2 +O(m

1/3
3 ).

Finally, taking the limit m3 → 0 we obtain

H1 =
1

2
(x2 + y2) +

1
√

x2 + y2
− 1

8
x2 +

3
√
3

4
(1− 2µ)xy +

5

8
y2,

as desired. □

We can rotate the coordinate system so that the axis from the center of
mass to m3 becomes the x-axis:

Corollary 3.2. The Hamiltonian (17) can be written, after a coordinate
rotation which has eigenvalues ¼1 = 3

2(1 − d) and ¼2 = 3
2(1 + d), where

d =
√

1− 3µ+ 3µ2, in the form

HCH4BP =
1

2
(p2x + p2y) + ypx − xpy − Urot(x, y),(22)

with

(23) Urot = −ax2 − by2 +
1

√

x2 + y2

where a = 1
2(1− ¼2) and b = 1

2(1− ¼1).
The effective potential is

(24) Ωeff =
1

2
(x2 + y2) + Urot(x, y) =

1

2
(¼2x

2 + ¼1y
2) +

1
√

x2 + y2

so

HCH4BP =
1

2
(px + y)2 +

1

2
(py − x)2 − Ωeff (x, y).(25)

The Hamiltonian (19) can be written as

(26) HEH4BP = HCH4BP + ϵ cos(f)

(

1

2
(x2 + y2) + Urot(x, y)

)

.

4. Equilibrium points, Hill regions, and invariant manifolds in

the CH4BP

We assume µ = 0.00095, representing the relative mass of Jupiter in the
Sun-Jupiter system.

For the case when ϵ = 0, we obtain the circular Hill Four-Body Problem
(CH4BP) which is described by the Hamiltonian HCH4BP given by (19).
After applying a rotation of coordinates, as in Corollary 3.2, the Hamiltonian
of the CH4BP reduces to:

(27) HCH4BP =
1

2
(p2x + p2y) + ypx − xpy − Urot(x, y).

The equations of motion possess the following symmetries:
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Figure 2. Hill’s region for the CH4BP for µ = 0.00095 and
h = −2.125. The second figure is a magnification of the first
one.

• S(x, y, ẋ, ẏ, t) = (x,−y,−ẋ, ẏ,−t), with respect to the x-axis;
• S′(x, y, ẋ, ẏ, t) = (−x, y, ẋ,−ẏ,−t), with respect to the y-axis;
• S′′ = S ◦ S′(x, y, ẋ, ẏ, t) = (−x,−y,−ẋ,−ẏ, t), the composition of S
and S′, with respect to the origin.

The equations of motion for the circular case have 4 equilibrium points
given by the coordinates

L1 =

(

1
3
√
¼2

, 0

)

, L2 =

(

− 1
3
√
¼2

, 0

)

, L3 =

(

0,
1

3
√
¼1

)

, L4 =

(

0,− 1
3
√
¼1

)

.

The linear stability of L1 and L2 is of center-saddle type, for all µ, while
that of L3 and L4 is of center-center type, for µ less or equal than some
critical value µcr, and of complex-saddle type otherwise; see [BGG15]. The
value of the energy HCH4BP at the equilibrium point L1 is hL1

= −2.16286.
In Fig. 2 we show the Hill regions

{(x, y) |Ωeff g −h}
for the value h = −2.125 of HCH4BP , where we observe the inner region
around the tertiary connected with the outer region through two ‘bottle-
necks’, which become wider as we increase the energy level h.

We compute numerically the stable W s and unstable W u manifolds of the
Lyapunov orbits for the saddle-center equilibrium points L1 and L2, using
the (x, y, ẋ, ẏ) coordinates, where ẋ = px + y and ẏ = py − x. We also
compute the intersection of these manifold with the section

Σ := {(x, y, ẋ, ẏ) ∈ R
4 | y = 0}.

In the (x, y)-configuration space, y = 0 corresponds to intersections with
the x-axis.

We show the evolution of the invariant manifolds in the plane (x, ẋ) for
some values of the energy level h in Fig. 3. It is notable that the invariant
manifolds in the unbounded outer region do not escape to infinity, as in the
lunar Hill’s problem. In Fig. 4 we show the first intersections between the
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Figure 3. Stable (red) and unstable (blue) manifolds af-
ter 25 cuts with the Poincaré section Σ, and tangency curve
(grey) in the plane (x, ẋ), corresponding to trajectories that
intersect Σ tangentially: h = −2.15 (left); h = −2.075 (cen-
ter); h = −2.0 (right).
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Figure 4. First intersections between the invariant mani-
folds for: inner region h = −2.15 (left); inner region h =
−2.075 (center); outer region h = −2.0 (right).

invariant manifolds in the inner and outer region, where we note the presence
of symmetric intersections (ẋ = 0) which correspond to homoclinic orbits
symmetric with respect to the x-axis. In Fig. 5 we show two symmetric
homoclinic orbits in the outer region. The computations were performed
using a linear approximation around the periodic orbits and integrating
numerically the vector field with tolerances for the error of order of machine
epsilon.

5. The mechanism of diffusion in the elliptic problem

In the previous section we showed that the elliptic problem for small
values of the eccentricity can be written as

HEH4BP = HCH4BP + ϵ cos(f)H1 +O(ϵ2),
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Figure 5. Homoclinic orbits corresponding to the points
(5.05682901163445, 0) and (4.42411675944339, 0) in the
(x, ẋ)-plane for h = −2.0. Magnification of the homoclinic
orbit for x0 = 5.05682901163445.

where HCH4BP is the Hamiltonian of the circular Hill problem, f is the new
time variable (which is 2Ã-periodic), ϵ is the eccentricity, and

H1 =
1

2
(x2 + y2) + Urot(x, y),

with Urot(x, y) given by (23). This is a time-dependent perturbation of
HCH4BP , with perturbation parameter ϵ. Let

G(x, y, t) := cos(t)H1(x, y),

so the Hamiltonian that we consider is

(28) Hϵ(x, y, px, py, t) = H0(x, y, px, py) + ϵG(x, y, t) +O(ϵ2),

Here we simplified the notation Hϵ = HEH4BP , H0 = HCH4BP , and t = f .
We now formulate the main theoretical result on Arnold diffusion:

Theorem 5.1. Consider the dynamics of the 2Ã-map fϵ associated to the
flow system (28). Assume that the following conditions are satisfied for all
energy levels h within some range [h³, h´ ] of H0:

(i) The unperturbed system for ϵ = 0 possesses two NHIM’s Λi
0, con-

sisting of periodic orbits ¼i(h) around Li, for i = 1, 2.
(ii) The NHIM’s for ϵ = 0 can be parametrized in terms of symplectic

action-angle coordinates (Ii, ¹i), with the coordinate I1 = I2 uniquely
determined by h.

(iii) The corresponding stable and unstable manifolds W s(Λj
0), W

u(Λi
0),

intersects transversally for i, j = 1, 2.
(iv) There exists a collection of scattering maps {Ãi

0} associated to the
transverse homoclinic connections W u(Λi

0) ⋔ W s(Λi
0), i = 1, 2, as

well as a collection of scattering maps {Ãi,j
0 } associated to the trans-

verse heteroclinic connections W u(Λi
0) ⋔ W s(Λj

0), i ̸= j, such that,
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each scattering map expressed in the appropriate action-angle coor-
dinate is of the form

(I, ¹) 7→ (I, ¹ +∆(I))

where ∆ depends on the scattering map and on h.
(v) Each perturbed scattering map associated to a transverse homoclinic

/ heteroclinic connections is of the form

Ãϵ(I, ¹) =(I, ¹ +∆(I)) + ϵJ∇S(I, ¹ +∆(I))

+O(ϵ2),
(29)

for some function S = S(I, ¹) depending on the scattering map.
(vi) Assume that the perturbed scattering maps satisfy satisfy the non-

degeneracy conditions (50), (51), (52), (53), (54) from Proposition 5.7.

Then, there exist ϵ0 > 0 and energy levels h̃³ < h̃´, such that, for all
0 < ϵ < ϵ0, there exists a diffusing orbit Φt

ϵ(z) of the perturbed system and
T = T (ϵ) > 0 such that

H0(z) < h̃³ and H0(Φ
T
ϵ (z)) > h̃´ .

Moreover, there exist diffusing orbits that closely follow the homoclinic
connections, as well as diffusing orbits that follow the heteroclinic connec-
tions.

The NHIM’s assumed in (i) will be described in Section 5.1. The action-
angle coordinates assumed in (ii) will be introduced in Section 5.2. In Section
5.3, we will first recall the scattering map and the formula for Hamiltonian
function that generates it, and then we provide formulas for the scattering
map in the case of the EH4BP. In Section 5.4 we provide a general result
– Proposition 5.7 – from which Theorem 5.1 immediately follows. The nu-
merical verification of the conditions of Theorem 5.1 is done in Section 6.

Remark 5.2. It is clear that the change of coordinates from the inertial non-
rotating system to the pulsating system involves the perturbation parameter
(similar changes of coordinates can be found in [Sze67, Bel04]). The main
point is to obtain a system of the form (28) in such a way that H0 possesses
a normal hyperbolic invariant manifold and transverse intersections between
its stable and unstable manifolds. The model considered here satisfies these
requirements. The effect of the parameter ϵ in the geometry of the coordi-
nates could be relevant only if we consider the original non-rotating inertial
system, which is not the case in the current work.

5.1. The unperturbed NHIM’s. We consider the unperturbed system
corresponding to ϵ = 0. For each center-saddle equilibrium point Li, i = 1, 2,
we consider a family of Lyapunov orbits ¼i(h) associated to energy levels h
within some suitable energy range [h³, h´ ] (to be specified later).

Due to the symmetry S′(x, y, px, py) = (−x, y, px,−py), the Lyapunov or-
bits ¼i(h), i = 1, 2, form a symmetric pair. The Lyapunov orbits about L1

and L2 are both traveled clockwise. The existence of Lyapunov orbits about



ARNOLD DIFFUSION IN THE EH4BP 17

the points Li, i = 1, 2, follows from the Lyapunov Center Theorem [Mos58],
for energy levels near the critical energy hL1

= H0(L1) = H0(L2). These
orbits can be computed by numerical continuation for higher energy levels,
up to collision with m3. Their existence can be established rigorously via
computer assisted proofs [Cap12]. In this paper we have non-rigorous com-
putations of the Lyapunov orbits for the specific energy levels considered.

The family of Lyapunov orbits for the energy range [h³, h´ ] determines

Λi
0 =

⋃

h∈[h³,h´ ]

¼i(h), for i = 1, 2,
(30)

which is a 2-dimensional NHIM with boundary for the unperturbed flow Φt
0

of H0.

5.2. Coordinate systems on the NHIM’s and inner dynamics. Below
we provide some parametrizations for the NHIM’s. We focus on Λ1

0; a similar
parametrization can be obtained for Λ2

0.
Each Lyapunov periodic orbit ¼1(h) intersects the x-axis in precisely two

points, each of the form (q, p) = (x, 0, 0, py), one on the left of L1 and
the other on the right of L1. Let (x∗, 0, 0, p∗y) be the intersection between
the Lyapunov orbit and the x-axis on the left of L1, which is character-
ized by p∗y > 0. The orbit ¼1(h) is uniquely determined by the coordinate
x∗ = x∗(h), as the coordinate p∗y = p∗y(h) follows implicitly from the en-
ergy condition. Let T (h) be the period of ¼1(h). Since the energy level is
uniquely determined by x∗, we can also write T (h) = T (x∗) for x∗ = x∗(h).
Then the Lyapunov periodic orbit is given by

¼1(h) = {Φt
0(x

∗(h), 0, 0, p∗y(h)) | t ∈ R/(T (h)Z)}.

Then the NHIM Λ1
0 can be described as

Λ1
0 =

⋃

h∈[h³,h´ ]

¼1(h)

={Φt
0(x

∗(h), 0, 0, p∗y(h)) | t ∈ R/(T (h)Z) for h ∈ [h³, h´ ]},
(31)

and can be parametrized by (x∗, t∗) for x∗ ∈ [x∗(h³), x
∗(h´)] and t∗ ∈

R/(T (h)Z), where x∗ = x∗(h) for h ∈ [h³, h´ ]. The coordinate system
(x∗, t∗) is not symplectic on Λ1

0.
We define symplectic coordinates (I, ¹) on Λ1

0 as follows. Let ÉΛ1
0
=

(dp'dq)Λ1
0
:= (dpx'dx+dpy'dy)Λ1

0
be the induced symplectic form on Λ1

0;

since the induced form is non-degenerate, it endows Λ1
0 with a symplectic

structure [DdlLS08]. Let

¹ =
t∗

T (x∗)
and I =

∫

¼1
0
(h)

pdq.
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The action I = I(h) is uniquely determined by the energy level h, and
corresponds to a unique Lyapunov orbit. We then have

dI ' d¹ = É|Λ1
0
.

The condition h ∈ [h³, h´ ] implies that I ∈ [I³, I´ ] for I³ = I(h³) =
I(x∗(h³)) and I´ = I(h´) = I(x∗(h´)). Each I ∈ [I³, I´ ] is in unique corre-
spondence with some h ∈ [h³, h´ ] as well as with some x∗ ∈ [x∗(h³), x

∗(h´)],
so we can write T (I) = T (x∗(I)).

We define the reference manifold

N = {(I, ¹) | I ∈ [I³, I´ ], ¹ ∈ T
1}

and the parametrization of Λ1
0 given by

k0 : N → Λ1
0, where k0(I, ¹) = Φ

¹T (I)
0 (x∗(I), 0, 0, p∗y(I)).

The parametrization k0 induces a flow Rt on N given by

Rt(I, ¹) = (I, ¹ + Ét) where É =
1

T (I)
.

We have the following conjugacy

N N

Λ1
0 Λ1

0

Rt

k0 k0

Φt
0

When we consider both NHIM’s Λ1
0, Λ

2
0, we have the corresponding (x

∗
1, t

∗
1)

and (x∗2, t
∗
2)-coordinates, and the action-angle coordinates (I1, ¹1) and (I2, ¹2).

By the symmetry of the Lyapunov orbits x∗2 = −x∗1. The angle ¹1 is mea-
sured clockwise starting from the point (x∗1, 0, 0, p

∗
1,y), and the angle ¹2 is

measured clockwise starting from the point (x∗2, 0, 0, p
∗
2,y). Since the action

I is uniquely determined by the energy level H0 = h, the action coordinate
is the same I1 = I2 := I for both NHIM’s.

5.3. The scattering map. In Sections 5.1 we have identified two NHIM’s,
as well as homoclinic and heteroclinic connections between them. Moving
along the homoclinic / heteroclinic orbits represents the outer dynamics.
The outer dynamics can be described by scattering maps. First we review
the definition of the scattering map and its properties, following [DdlLS08].
Second, we describe the scattering map for the unperturbed problem, that
is, in the context of the CH4BP.

5.3.1. The scattering map: definition and properties. Consider the general
case of a normally hyperbolic invariant manifold Λ for a flow Φt on some
smooth manifold M . We assume that M and Φt are sufficiently regular;
explicit regularity conditions can be found in [DdlLS08]. Let W s(Λ), W u(Λ)
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be the stable and unstable manifolds of Λ. Define the wave maps as canonical
projections along fibers, i.e.,

Ω+ : W s(Λ) → Λ,

Ω− : W u(Λ) → Λ,

where Ω+ assigns to z ∈ W s(Λ) its stable foot point z+ = Ω+(z), uniquely
defined by z ∈ W s(z+), and, similarly, Ω− assigns to z ∈ W u(Λ) its unstable
footpoint z− = Ω−(z), uniquely defined by z ∈ W u(z−).

The wave maps satisfy the following equivariance property

(32) Ω± ◦ Φt = Φt ◦ Ω±.

A homoclinic channel Γ is a submanifold in W u(Λ)∩W s(Λ) that satisfies
the following strong transversality conditions for all z ∈ Γ:

TzΓ =TzW
s(Λ) ∩ TzW

u(Λ),

TzM =TzΓ· TzW
u(z−)· TxW

s(z+),
(33)

and such that

Ω±
|Γ : Γ → Ω±(Γ) is a diffeomorphism.

Then, the scattering map associated to the homoclinic channel Γ is the
mapping

Ã =ÃΓ : Ω−(Γ) ¦ Λ → Ω+(Γ) ¦ Λ,

Ã =Ω+
|Γ ◦ (Ω−

|Γ)
−1.

(34)

The map Ã is a diffeomorphism from its domain onto its image in Λ.
We have that Ã(z−) = z+ if and only if

(35) d(Φ−T−(z),Φ−T−(z−)) → 0, and d(ΦT+(z),ΦT+(z+)) → 0

as T−, T+ → +∞, respectively, for some uniquely defined z ∈ Γ.
The equivariance of the wave maps yields the following equivariance prop-

erty of the scattering map:

(36) Φt ◦ ÃΓ = ÃΦt(Γ) ◦ Φt.

An important property of the scattering map is that Ã is symplectic pro-
vided that M , Λ, Φt are symplectic.

Remark 5.3. If the strong transversality condition (33) is satisfied at a
point z∗, then it is satisfied in a small neighborhood Γ∗ of z∗ in W u(Λ) ∩
W s(Λ). One can take Γ∗ as a homoclinic channel and define the associated
scattering map, and then extend Γ∗ to a maximal domain on which the wave
maps Ω±

|Γ∗

are diffeomorphisms. Extending Γ∗ beyond its maximal domain

may result in failure of monodromy. Monodromy here means that when the
scattering map is applied to (I, ¹) and to (I, ¹ + 1) it gives the same value,
in other words the scattering map is well defined as a map on the annulus,
since ¹ is defined mod 1; this does not happen in general, see [CGDlL17].
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For example, consider the homoclinic orbit Φt(z∗); each point z on this
homoclinic orbit is of the form z = Φt(z∗) for some t. The equivariance
property (32) implies

(37) Ω±(z) = Ω±(Φt(z∗)) = Φt ◦ Ω±(z∗) = Φt(z±∗ ).

Therefore, it is possible to have a pair of points z1 = Φt1(z∗), z2 = Φt2(z∗)
such that Ω−(z1) = Ω−(z2) and Ω+(z1) ̸= Ω+(z2), so Ω+ ◦ (Ω−)−1 is not
a well-defined map. Restricting to a suitable Γ∗ will ensure the monodromy
property.

An alternative is to define a scattering correspondence rather than a scat-
tering map, which allows for assigning to a given point z− multiple points
z+; see [GM22].

We now consider the scattering map in the case of a perturbed system.
Consider a family of NHIM’s Λϵ for Φt

ϵ on M , for 0 f ϵ < ϵ0. We will
implicitly assume that Φt

ϵ and Λϵ are sufficiently regular in the variables
and in the parameter ϵ. Here we view Φt

ϵ as a perturbation of Φt
0. Below, we

will also consider the special case when the flow Φt
ϵ is the flow of a perturbed

Hamiltonian system Hϵ.
Assume that Λϵ has a smooth parametrization in terms of some reference

manifold N , that is, there exists a family of diffeomorphisms (in a suitable
regularity class)

kϵ : N → Λϵ = kϵ(N), for 0 f ϵ < ϵ0.

Assume that W u(Λϵ) and W s(Λϵ) intersect transversally along a homo-
clinic channel Γϵ. Let Ãϵ : Ω−(Γϵ) ¦ Λϵ → Ω+(Γϵ) ¦ Λϵ be the scattering
map associated to Γϵ.

This is induces a locally defined diffeomorphism on N given by

sϵ = k−1
ϵ ◦ Ãϵ ◦ kϵ.

We will also refer to sϵ as the scattering map. Note that for all ϵ the map
sϵ is a diffeomorphism on some subset of the same manifold N , in contrast
with Ãϵ, which is a diffeomorphism on some subset of a manifold Λϵ that
depends on ϵ. The advantage of using the scattering map sϵ induced on the
reference manifold N is that one can compare sϵ’s for different parameter
values ϵ.

It turns out that the perturbed scattering map sϵ can be expanded in
powers of ϵ as follows

sϵ(I, ¹) =s0(I, ¹) + ϵJ∇S ◦ s0(I, ¹) +O(ϵ2)

=s0(I, ¹) + ϵ

(

−∂S

∂¹
,
∂S

∂I

)

◦ s0(I, ¹) +O(ϵ2)
(38)

for some Hamiltonian function S defined on some domain in N . Above,
s0 is the scattering map induced by Ã0, corresponding to the unperturbed
system.
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In the perturbative setting S can be computed explicitly. In the context
of a perturbed Hamiltonian system Hϵ, S can be computed as a Melnikov
integral

S(k−1
0 (z+0 )) =

∫ 0

−∞

[

∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0(z0)−
∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0(z
−
0 )

]

dt

+

∫ +∞

0

[

∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0(z0)−
∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0(z
+
0 )

]

dt.

(39)

The integrals in (39) are improper integrals whose integrand is given by
the difference between the perturbation evaluated on homoclinic orbits of the
unperturbed system and the perturbation evaluated on the asymptotic orbits
on the unperturbed NHIM. The improper integrals converge exponentially
fast, so they can be efficiently computed via numerical methods.

In the context of Section 5.2, if k−1
0 (z+0 ) = (I, ¹), then we can write S in

terms of (I, ¹) as

S(I, ¹) =

∫ 0

−∞

[

∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0 ◦ (Ω−)−1 ◦ Ã−1
0 ◦ k0(I, ¹)

−∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0 ◦ Ã−1
0 ◦ k0(I, ¹)

]

dt

+

∫ +∞

0

[

∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0 ◦ (Ω+)−1 ◦ k0(I, ¹)

−∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0 ◦ k0(I, ¹)
]

dt,

(40)

It is clear that (40) is equivalent to (39) since, for k−1
0 (z+0 ) = (I, ¹), we

have

k0(I, ¹) = z+0 ,

Ã−1
0 ◦ k0(I, ¹) = z−0 ,

(Ω−)−1 ◦ Ã−1
0 ◦ k0(I, ¹) = (Ω+)−1 ◦ k0(I, ¹) = z0.

The scattering map can be defined in a similar way for heteroclinic con-
nections between two NHIM’s Λ1 and Λ2. Assuming that W u(Λ2) intersects
transversally W s(Λ1), we can define wave maps

Ω1,+ : W s(Λ1) → Λ1,

Ω2,− : W u(Λ2) → Λ2,

and a heteroclinic channel Γ ¦ W u(Λ2)∩W s(Λ1) in a similar fashion to the
homoclinic case. Then we define

Ã = Ω1,+
|Γ ◦ (Ω2,−

|Γ )−1.

The scattering map in the heteroclinic case enjoys similar properties to the
one for the scattering map in the homoclinic case.
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In the sequel, we will use a two-dynamics approach: the outer dynamics,
along homoclinic/heteroclinic orbits to the NHIM’s, encoded by the scatter-
ing map, and the inner dynamics, defined as the restriction of the flow to
the NHIM’s. Note that both dynamics are defined on the NHIM’s.

5.3.2. The unperturbed scattering map associated to homoclinic connections
for the CH4BP. First, we show that, in general, the unperturbed scattering
map associated to a homoclinic channel is a phase shift in the angle variable.

For a given range of energies h ∈ [h³, h´ ], let z = z(h) be a homoclinic
point, z± be its stable and unstable foot points, ¹± their corresponding angle
coordinates, and T = T (h) the period of the Lyapunov orbit ¼(h). We can
define the homoclinic channel

Γ =
⋃

h∈[h³,h´ ]

¹∈[¹−,1+¹−]

Φ
(¹−¹−)T
0 (z).

The flow Φt
0 acts on the fiber W u(z−) = W u(k0(I, ¹

−)) by shifting its
base point k0(I, ¹

−) to k0(R
t(I, ¹−)) = k0(I, ¹

− + t
T (I)), and on the fiber

W s(z+) = W u(k0(I, ¹
+)) by shifting its base point k0(I, ¹

+) to k0(R
t(I, ¹+)) =

k0(I, ¹
+ + t

T (I)). The flow Φt
0 takes z ∈ W u(z−) ∩ W s(z+) to Φt

0(z) ∈
W u(Φt

0(z
−)) ∩W s(Φt

0(z
+)). In particular, for t = (¹ − ¹−)T , we have

Φ
(¹−¹−)T
0 (W u(z−)) =W u(k0(I, ¹)),

Φ
(¹−¹−)T
0 (W s(z+)) =W s(k0(I, ¹ + ¹+ − ¹−)).

By the S-symmetry of the flow on the Lyapunov orbit we also have

Φ
(1+¹−¹−)T
0 (W u(z−)) =Φ

(¹−¹−)T
0 ◦ ΦT

0 (W
u(z−)) = Φ

(¹−¹−)T
0 (W u(ΦT

0 (z
−))

=Φ
(¹−¹−)T
0 (W u(z−)).

and similarly

Φ
(1+¹−¹+)T
0 (W s(z+)) = Φ

(¹−¹+)T
0 (W s(z+)).

The following result [GdlLM22] gives a complete description of the unper-
turbed scattering map.

Lemma 5.4. The unperturbed scattering map is globally defined, and is
given in the action-angle (I, ¹)-coordinates by

Ã0(I, ¹
−) = (I, ¹+) = (I, ¹− +∆),

where I = I(h) and ∆ = ∆(h) depend on the energy level h.

Proof. Let z0 ∈ Γ be a homoclinic point. If H0(z) = h. If z±0 = ΩΓ
±(z), then

z±0 are points on the Lyapunov orbit ¼(h). Let (I, ¹±0 ) be the action-angle
coordinates of z±. Then Ã(z−0 ) = z+0 is given in local coordinates by

s0(I, ¹
−
0 ) = (I, ¹+0 ) := (I, ¹−0 +∆).

where we denote ∆ = ∆(h) = ¹+0 − ¹−0 .
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Then, if z1 ∈ Γ ∩ {H0(z) = h} is another homoclinic point, then z1 =
Φt1
0 (z0) for some t1. Let (I, ¹

±
1 ) be the action-angle coordinates of z

±
1 , respec-

tively. By the equivariance property (32), z±1 = ΩΓ
±(z1) = ΩΓ

±(Φ
t1
0 (z0)) =

Φt1
0 (Ω

Γ
±(z0)) = Φt1

0 (z
±
0 ), therefore ¹

±
1 = ¹±0 + 1

T t1 so ¹+1 −¹−1 = ¹+0 −¹−0 , thus

s0(I, ¹
−
1 ) = (I, ¹−1 +∆).

□

5.3.3. The unperturbed NHIM’s and scattering map in the extended phase
space. Since the perturbation G(t) = ϵ cos(t)H1 +O(ϵ2) is time-periodic, it
is convenient to consider time as an additional variable which we denote by
s. The extended phase space is M × T

1. The equations of motion in the
extended phase space are augmented with an equation for the evolution of
the new variable ds

dt = 1. Denoting by Φ̃t
0 the flow in the extended space, we

have Φ̃t
0(z, s) = (Φt

0(z), s+ t).
In the extended space, the NHIM Λi

0 corresponds to the NHIM

Λ̃i
0 = Λi

0 × T
1.

Similarly, any homoclinic/heteroclinic channel Γ gives rise to a homo-
clinic/heteroclinic channel in the extended space

Γ̃0 = Γ0 × T
1.

The scattering map corresponding to Ã0 in the extended space is given by

Ã̃0(z, s) = (Ã0(z), s)

5.3.4. The perturbed NHIM’s. We now consider the effect of the perturba-
tion G(t) = ϵ cos(s)H1 +O(ϵ2) on the NHIM’s in the extended phase space.

We denote by Φ̃t
ϵ the extended flow.

The standard theory of normally hyperbolic invariant manifolds, [Fen72,
HPS77] shows the persistence of compact NHIM’s (without boundary) under
small perturbations. In the case of manifolds with boundary, the theory
only guarantees the persistence of a normally hyperbolic manifold that is
locally invariant but not necessarily unique (see [BLZ00, BB13, E+13]). The
proof in that case involves extending the vector field in such a way that
the manifold we consider is an invariant manifold without boundary. Then,
applying the result of persistence of an invariant manifold without boundary,
one obtains the existence of a locally invariant manifold. The persistent
manifold depends on the extension considered, and hence is not unique.
However, all orbits that remain in a small neighborhood of the manifold
and away from its boundary remain present in all extensions that do not
modify the dynamics in that neighborhood.

This theory implies that there exists ϵ0 such that the NHIM Λ̃i
0, i = 1, 2,

persists as a normally hyperbolic manifold Λ̃i
ϵ, which is locally invariant

under the flow Φ̃t
ϵ, for all 0 < ϵ < ϵ0. Moreover, there exists smooth

parametrizations of these manifolds (see [DdlLS08]):
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k̃ϵ : N × T
1 → Λ̃ϵ.

Choosing ϵ0 sufficiently small ensures that the transverse homoclinic/heteroclinic
channels for the unperturbed system also persist as homoclinic/heteroclinic

channels Γ̃ϵ for Φ̃t
ϵ. Therefore, we have a scattering map Ã̃ϵ associated to

each channel. To compute the perturbed scattering map, we use (38). Since
we work in the extended space the formula (40) for S becomes

S(I, ¹, s) =

∫ 0

−∞

[(

∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0 ◦ (Ω−)−1 ◦ Ã−1
0 ◦ k0(I, ¹), s+ t

)

−
(

∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0 ◦ Ã−1
0 ◦ k0(I, ¹), s+ t

)]

dt

+

∫ +∞

0

[(

∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0 ◦ (Ω+)−1 ◦ k0(I, ¹), s+ t

)

−
(

∂Hϵ

∂ϵ |ϵ=0
◦ Φt

0 ◦ k0(I, ¹), s+ t

)]

dt.

(41)

In the subsequent sections, we will compute the perturbed scattering map
for the EH4BP.

5.3.5. The perturbed scattering map in the EH4BP. Consider a homoclinic
channel Γ̃ϵ. The unperturbed scattering map (68) in (I, ¹)-coordinate is
given by

Ã̃0(I, ¹, t) = (I, ¹ +∆, t) where ∆ = ∆(h).

Then we have

k−1
0 (Ω−

0 (Φ
(¹−¹−)T (I)(z))) = (I, ¹),

k−1
0 (Ω+

0 (Φ
(¹−¹−)T (I)(z))) = (I, ¹ +∆),

s0(I, ¹) = (I, ¹ +∆).

(42)

To compute the perturbed scattering map Ã̃ϵ we use (38) where S is given
by (41).

We recall that

∂Hϵ

∂ϵ |ϵ=0
(z, s) =G(z, s) = cos(s)H1(z)

(Ω−
0 )

−1(k0(s
−1
0 (I, ¹))) =(Ω−

0 )
−1(k0(I, ¹ −∆)) = Φ(¹+¹−)T (I)(z),

s−1
0 (I, ¹) =(I, ¹ −∆) = (I, ¹ + 2¹−),

(Ω+
0 )

−1(k0(I, ¹)) =Φ
(¹+¹−)T (I)
0 (z).
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Substituting in (40) we obtain

S(I, ¹, s) =

∫ 0

−∞

[

G(Φ
t+(¹+¹−)T (I)
0 (z), t+ s))

−G(Φt
0(I, ¹ + 2¹−), t+ s)

]

dt

+

∫ +∞

0

[

G(Φ
t+(¹+¹−)T (I)
0 (z), t+ s)

−G(Φt
0(I, ¹), t+ s)

]

dt.

(43)

For our particular case of the EH4BP we have the following:

Proposition 5.5. In the EH4BP, the derivative with respect to the angle
variable of the Hamiltonian that generates the scattering map in the extended
phase space is given by the expression

d

d¹
S(s0(I, ¹), s) = T (I) cos(s)

[

H1(Φ
(¹−¹−)T (I)
0 (k0(I, ¹

+)))

−H1(Φ
(¹−¹−)T (I)
0 (k0(I, ¹

−)))
]

+ T (I)

∫ 0

−∞
sin(t+ s)

[

H1(Φ
t+(¹−¹−)T (I)
0 (z))

−H1(Φ
t+(¹−¹−)T (I)
0 (k0(I, ¹

−)))
]

dt

+ T (I)

∫ +∞

0
sin(t+ s)

[

H1(Φ
t+(¹−¹−)T (I)
0 (z))

−H1(Φ
t+(¹−¹−)T (I)
0 (k0(I, ¹

+)))
]

dt.

(44)

Proof. We will use the fact that the perturbation is a separable function,
i.e., G(z, s) = cos(s)H1(z). We will also use that

Φt(k0(I, ¹)) = k0(R
t(I, ¹)) = k0(I, ¹ + tÉ(I)).

We perform the change of variable Ä = t+ (¹+ ¹−)T (I) in (43). We note
that, under this change of variable, we have

Φt
0(k0(I, ¹ + 2¹−)) =Φ

Ä−(¹+¹−)T (I)
0 (k0(I, ¹ + 2¹−))

=ΦÄ
0(k0(I, ¹ + 2¹− − (¹ + ¹−)T (I)É(I)))

=ΦÄ
0(k0(I, ¹

−))

since T (I)É(I) = 1. Similarly,

Φt
0(k0(I, ¹)) =ΦÄ

0(k0(I, ¹ − (¹ + ¹−)T (I)É(I)))

=ΦÄ
0(k0(I,−¹−)) = ΦÄ

0(k0(I, ¹
+)).

The last equality is by the S-symmetry.
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We obtain

S(I, ¹, s) =

∫ (¹+¹−)T (I)

−∞
cos(s+ Ä − (¹ + ¹−)T (I)) [H1(Φ

Ä
0(z))

−H1(Φ
Ä
0(k0(I, ¹

−)))
]

dÄ

+

∫ +∞

(¹+¹−)T (I)
cos(s+ Ä − (¹ + ¹−)T (I)) [H1(Φ

Ä
0(z))

−H1(Φ
Ä
0(k0(I, ¹

+)))
]

dÄ.

(45)

We recall the following property

d

d¹

∫ b(¹)

a(¹)
f(x, ¹)dx =

∫ b(¹)

a(¹)

∂

∂¹
f(x, ¹)dx

+ f(b(¹), ¹)b′(¹)− f(a(¹), ¹)a′(¹).

(46)

We apply (46) to (45), first, for a(¹) = −∞ and b(¹) = (¹+ ¹−)T (I), and
second for a(¹) = (¹ + ¹−)T (I) and b(¹) = +∞. Since the integrands in
(45) converge to 0 exponentially fast as t → ±∞, the terms corresponding
to the infinite limits on the right hand side of (46) vanish. We obtain:

d

d¹
S(I, ¹, s) = T (I) cos(s)

[

H1(Φ
(¹+¹−)T (I)
0 (z))−H1(Φ

(¹+¹−)T (I)
0 (k0(I, ¹

−)))
]

− T (I) cos(s)
[

H1(Φ
(¹+¹−)T (I)
0 (z))−H1(Φ

(¹+¹−)T (I)
0 (k0(I, ¹

+)))
]

+ T (I)

∫ (¹+¹−)T (I)

−∞
sin(s+ Ä − (¹ + ¹−)T (I)) [H1(Φ

Ä
0(z))

−H1(Φ
Ä
0(k0(I, ¹

−)))
]

dÄ

+ T (I)

∫ +∞

(¹+¹−)T (I)
sin(s+ Ä − (¹ + ¹−)T (I)) [H1(Φ

Ä
0(z))

−H1(Φ
Ä
0(k0(I, ¹

+)))
]

dÄ.

(47)
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After cancelations and changing the variable back t = Ä − (¹ + ¹−)T (I)
we obtain

d

d¹
S(I, ¹, s) = T (I) cos(s)

[

H1(Φ
(¹+¹−)T (I)
0 (k0(I, ¹

+)))

−H1(Φ
(¹+¹−)T (I)
0 (k0(I, ¹

−)))
]

+ T (I)

∫ 0

−∞
sin(s+ t)

[

H1(Φ
t+(¹+¹−)T (I)
0 (z))

−H1(Φ
t+(¹+¹−)T (I)
0 (k0(I, ¹

−)))
]

dt

+ T (I)

∫ +∞

0
sin(s+ t)

[

H1(Φ
t+(¹+¹−)T (I)
0 (z))

−H1(Φ
t+(¹+¹−)T (I)
0 (k0(I, ¹

+)))
]

dt.

(48)

Last, we calculate d
d¹S(s0(I, ¹), Ä) =

d
d¹S(I, ¹ − 2¹−, Ä), obtaining

d

d¹
S(s0(I, ¹), s) = T (I) cos(s)

[

H1(Φ
(¹−¹−)T (I)
0 (k0(I, ¹

+)))

−H1(Φ
(¹−¹−)T (I)
0 (k0(I, ¹

−)))
]

+ T (I)

∫ 0

−∞
sin(s+ t)

[

H1(Φ
t+(¹−¹−)T (I)
0 (z))

−H1(Φ
t+(¹−¹−)T (I)
0 (k0(I, ¹

−)))
]

dt

+ T (I)

∫ +∞

0
sin(s+ t)

[

H1(Φ
t+(¹−¹−)T (I)
0 (z))

−H1(Φ
t+(¹−¹−)T (I)
0 (k0(I, ¹

+)))
]

dt.

(49)

□

Remark 5.6. We can obtain in a similar fashion a formula for ∂S
∂I ; see

[GdlLM22]. However, we do not need it in this paper.

5.3.6. Reduction to a Poincaré section. We switch from continuous-time
(flow) dynamics to discrete-time dynamics by taking the time-2Ã map of
the extended flow. For some fixed s∗ define

Σs∗ = {(z, s) | s = s∗}.

We denote by fϵ the time-2Ã map of the extended flow. Then

Λϵ := Λ̃ϵ ∩ Σs∗
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is a NHIM for fϵ. Any scattering map for the extended flow Ã̃Γ̃ϵ
ϵ induces a

scattering map on Λϵ given by

ÃΓϵ
ϵ (z) = Ã̃Γ̃ϵ

ϵ (z, s∗) for z ∈ Ω−(Γ̃ϵ) ∩ Λϵ,

where Γϵ = Γ̃ϵ ∩ Σs∗ .

5.4. Mechanism of diffusion based on several scattering maps. We
describe a general mechanism of diffusion based on several scattering maps.
To avoid notation overload, we will identify Λϵ with T

1 × [I³, I´ ] and the
scattering map Ãϵ on Λϵ with its action-angle coordinate representation sϵ
on T

1 × [I³, I´ ].
Assume that there exists a family of scattering maps Ãi

ϵ : Ω−(Γi) →
Ω+(Γi), i = 1, . . . , L, such that

(50)
⋃

i=1,...,L

Ω−(Γi) § A,

where each scattering map Ãi
ϵ expressed in the action-angle coordinates is of

the form

Ãi
ϵ(I, ¹) =(I, ¹ +∆i(I)) + ϵ

(

−∂Si

∂¹
,
∂Si

∂I

)

(I, ¹ +∆i(I)) +O(ϵ2),(51)

for (I, ¹) ∈ Ω−(Γi) ∩ A.
Assume that A can be partition into finitely many strips Si of the form

(52) Si = {(I, ¹) ∈ A | I ∈ [I³, I´ ], Ci(I) < ¹ < Ci+1(I)},
where each Ci(I) is a C1-function in I, CL+1 = C1, and

(53) −∂Si

∂¹
(I, ¹ +∆i(I)) ̸= 0 for all (I, ¹) ∈ Si,

for i = 1, . . . , L.
As such, each strip Si is bounded by two C1-curves that run from the

lower boundary of the annulus to the upper boundary. Any two strips
Si, Sj , i ̸= j, are either disjoint or they only intersect along a boundary

curve. On each strip Si, the function −∂Si

∂¹ (I, ¹ + ∆i(I)) is either negative
or positive. See Fig. 6

Assume that the following non-degeneracy condition holds

(54)

L
∑

i=1

∫

Si

[

−∂Si

∂¹
(I, ¹ +∆i(I))

]

dI ' d¹ ̸= 0.

Proposition 5.7. Assume the conditions (50), (51), (52), (53), (54).
Then there exists ϵ0 > 0 and C > 0, such that for each 0 < ϵ < ϵ0

there exists an orbit (In, ¹n), n = 0, . . . , N , of the iterated function system
generated by {Ãi

ϵ}i=1,...,L such that

|IN − I0| > C > 0.
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Proof. Suppose that the sum of the integrals in (54) is positive. (A similar
argument can be done when the sum is negative.) Then there exists C1 > 0
such that:

(55)

L
∑

i=1

∫

Si

[

−∂Si

∂¹
(I, ¹ +∆i(I))

]

dI ' d¹ > C1 > 0.

Define A
′ = T

1 × [I ′³, I
′
´ ] for some I ′³ ≳ I³ and I ′´ ≲ I´ . That is, the

annulus A′ is inside and slightly smaller than then annulus A. We will later
impose additional conditions on I ′³ and I ′´ . Define the integrals

(56) Ii =







∫

Si∩A′

[

−∂Si

∂¹

]

dµ, when −∂Si

∂¹ > 0,
∫

Si∩A

[

−∂Si

∂¹

]

dµ, when −∂Si

∂¹ < 0.

In (56), we are evaluating the integrals for which −∂Si

∂¹ > 0 on slightly
smaller domains, so we only slightly decrease the contribution of the positive
integrals to the sum (55).

Then (55) implies that we can choose I ′³ ≳ I³ and I ′´ ≲ I´ , and 0 < C2 <
C1, such that

(57)
L
∑

i=1

Ii > C2 > 0.

Define

(58) Tϵ(I, ¹) := Ãi
ϵ(I, ¹) whenever (I, ¹ +∆i(I)) ∈ Si, for i = 1, . . . , L.

The orbits of Tϵ are in fact pseudo-orbits of the iterated function system
generated by {Ãi

ϵ}i=1,...,L. We denote such an orbit by

(In, ¹n), for n = 0, . . . , N.

We will argue that on each strip Si, i = 1, . . . , L, the change in I resulting
from applying the corresponding scattering map Ãi

ϵ, , can be approximated

by the integral of −∂Si

∂¹ over that strip.
We give the details below.
Let ϵ > 0 be fixed and sufficiently small. We consider the set

Xϵ =
⋃

ng0

Tn
ϵ (A

′),

provided that this set is well-defined in A. See Fig. 6.
In the case when the set Xϵ is not well-defined in A, it means that there

are points (I0, ¹0) ∈ A
′ whose orbits leave A at some moment. In this case,

there exist N such that

I0 < I ′´ and IN > I´ , or I0 > I ′³ and IN < I³.

In either case we obtain a pseudo-orbit that changes the action coordinate
by O(1), which proves our claim.
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ε

Figure 6. The strips Si, the annuli A and A
′, and the set Xϵ.

From now on, we assume thatXϵ is a well-defined set in A. Since Tϵ(Xϵ) ¦
Xϵ, it follows that any orbit (In, ¹n)ng0 starting at a point (I0, ¹0) inXϵ stays
in Xϵ for all future times.

Recall Birkhoff’s Ergodic Theorem. If T : X → X is a measure preserving
map, where (X,B, µ) is a finite measure space, and f ∈ L1(X), then

1

N

N−1
∑

n=0

f ◦ Tn(x) → f̄(x) for µ− a.e. x ∈ X

where f̄ ∈ L1(X) is T -invariant and satisfies
∫

X
f̄dµ =

∫

X
fdµ.

Moreover, if T is ergodic (i.e., any T -invariant set has either zero or full
measure), then the pointwise limit is a constant f̄ = 1

µ(X)

∫

X fdµ.

We will apply Birkhoff’s theorem in the case when X := Xϵ, µ is the
Lebesgue measure on A restricted to Xϵ, and T := Tϵ. We are under the
assumption that Xϵ is a well-defined subset of A, hence of finite measure,
and that any pseudo-orbit under Tϵ starting in Xϵ does not leave Xϵ, hence
Tϵ : Xϵ → Xϵ is well-defined. Since each scattering map Ãi

ϵ, i = 1, . . . , L, is
symplectic, the map Tϵ is also symplectic, hence measure preserving.

Define
(59)

fi(I, ¹) := −∂Si

∂¹
(I, ¹+∆i(I)) whenever (I, ¹+∆i(I)) ∈ Si, for i = 1, . . . , L.

Applying Birkhoff’s theorem to Tϵ and fi we obtain

1

N

N−1
∑

n=0

fi ◦ Tn
ϵ (I0, ¹0) → f̄i(I0, ¹0) for µ− a.e. (I0, ¹0),

for some L1-function f̄i, satisfying
∫

Xϵ

f̄idµ =

∫

Xϵ

fidµ.
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Since Tϵ may not be ergodic, when we apply Birkhoff’s theorem we obtain
a pointwise limit that is in general not a constant but a function.

We have

A
′ ¦ Xϵ ¦ A.

If −∂Si

∂¹ > 0 on Si, then

∫

Xϵ

f̄idµ g
∫

{(I,¹) | (I,¹)∈Si∩A′}

[

−∂Si

∂¹
(I, ¹ +∆i(I))

]

dI ' d¹ = Ii.(60)

The last equality follows from the change of variable formula.

If −∂Si

∂¹ < 0 on Si, then we similarly obtain

∫

Xϵ

f̄idµ g
∫

{(I,¹) | (I,¹)∈Si∩A}

[

−∂Si

∂¹
(I, ¹ +∆i(I))

]

dI ' d¹ = Ii.(61)

In either case,

(62)

∫

Xϵ

f̄idµ g Ii.

For every ϵ > 0 there exists Ni = Ni(ϵ) such that for N g Ni we have
∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

[

−∂Si

∂¹
(In, ¹n +∆i(In))

]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

fi ◦ Tn
ϵ (I0, ¹0)− f̄i

∣

∣

∣

∣

∣

< ϵ,

so

(63)

N−1
∑

n=0

fi ◦ Tn
ϵ (I0, ¹0) > N(f̄i − ϵ).

Whenever a point (In, ¹n) of the pseudo-orbit is such that (In, ¹n+∆i(In))
lands in Si, the corresponding change in action when moving to the next
point of the pseudo-orbit (In+1, ¹n+1) is

In+1 − In = −ϵ
∂Si

∂¹
(In, ¹n +∆i(In)) +O(ϵ2).

On A we can uniformly bound each error term by C0ϵ
2 for some C0 > 0.

Thus, the cumulative change in I associated to the points of the pseudo-orbit
that land in Si is given by

Σi :=
∑

n=0,...,N−1
¹n+∆i(In)∈Si

[

−ϵ
∂Si

∂¹
(In, ¹n +∆i(In)) +O(ϵ2)

]

.

Considering the bounds on the error terms we have

Σi > ϵ

N−1
∑

n=0

fi ◦ Tn(I0, ¹0)−NCϵ2 > ϵN(f̄i − (1 + C0)ϵ).
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Then the cumulative change in I along the pseudo-orbit (In+1, ¹n+1), for
n = 0, . . . , N , where N g N̄ = N̄(ϵ), with N̄(ϵ) sufficiently large, is bounded
by

Σ :=
L
∑

i=1

Σi > ϵN(f̄ − (1 + C0)ϵ),

where

f̄ =

L
∑

i=1

f̄i.

From (62) it follows

∫

Xϵ

f̄dµ =

L
∑

i=1

∫

Xϵ

f̄i g
L
∑

i=1

Ii g C2 > 0.

This implies that

µ{(I, ¹) | f̄(I, ¹) g C2/µ(Xϵ)} > 0.

Since C2/µ(Xϵ) g C2/µ(A) > 0, then for C3 = C2/µ(A), which is inde-
pendent of ϵ, we have that there exists a positive measure set D of points
(I0, ¹0) such that

f̄(I0, ¹0) > C3 > 0.

For points (I0, ¹0) ∈ D we have

Σ :=
L
∑

i=1

Σi > ϵN(C3 − (1 + C0)ϵ) > ϵNC4,

for some 0 < C4 ≲ C3 independent of ϵ. The last inequality holds whenever
ϵ is sufficiently small with respect to C3. Since this holds for N large enough,
we can choose N > 1/ϵ, and we conclude that

Σ > C4 > 0.

That is, there exists a positive measure set D of points (I0, ¹0) in Xϵ such
that the change in I along the corresponding pseudo-orbit (In, ¹n)n=0,...,N is
at least C4 > 0. □

Remark 5.8. It is well known that for general ergodic dynamical systems,
the rate of convergence of the Birkhoff sums can be arbitrarily slow, as shown
in [Kre78]. Even for a rigid rotation of the circle, estimating the convergence
rate is non-trivial, as it depends on continued fraction expansion of the ro-
tation number; a related result is the Denjoy-Koksma’s inequality [Her79].
Therefore, in the above argument we may need to choose N very large. This
approach does not immediately lead to estimates for the diffusion time. It
may be possible that by using weighted Birkhoff averaging methods one can
obtain fast convergence and time estimates [DY18, DSSY17].



ARNOLD DIFFUSION IN THE EH4BP 33

Remark 5.9. Proposition 5.7 only says that there is a pseudo-orbit along
which I changes by O(1), but it does not say whether I increases or decreases
along that pseudo-orbit. If we have more information on the scattering maps,
we can also obtain the existence of pseudo-orbits along which I increases
(decreases) by O(1). See Section 6.4.

6. Numerical verification of the conditions in Theorem 5.1

In Sections 6.1, 6.2, 6.3 we verify numerically the conditions (i)-(v) in
Theorem 5.1. That is, we establish numerically the existence of transverse
homoclinic and heteroclinic connections to the NHIM’s Λ1

0 and of hetero-
clinic connections between Λ1

0 and Λ2
0 for the unperturbed system, we com-

pute the unperturbed scattering map associated to homoclinic/heteroclinic
connections, and then we compute the effect of the perturbation on these
maps. In Section 6.4 we verify numerically the condition (vi) in Theorem 5.1,
which amounts to verifying Proposition 5.7. The conclusion of this section
is the existence of diffusing orbits along which energy grows by O(1).

6.1. Homoclinic and heteroclinic connections to the unperturbed
NHIM’s.

6.1.1. Lyapunov orbits. We compute the NHIM’s Λ1
0 near L1, for the energy

range

(64) [h³, h´ ] = [−2.10446079,−2.07715457]

The corresponding range for x∗(h) is [x∗(h´), x
∗(h³)] = [0.615, 0.63]. In

Table 1, we give the energy levels, the initial conditions and the periods for
a family of periodic orbits with x∗(h) within this range. The corresponding
periodic orbits are shown in Fig. 7.

h ±x∗(h) ±py(h) T (h)

−2.07715457 ±0.615 ±0.48123483 3.05967299
−2.08671819 ±0.62 ±0.45248801 3.05678890
−2.09582648 ±0.625 ±0.42353750 3.05406407
−2.10446079 ±0.63 ±0.39437305 3.05150060

Table 1. Initial conditions, periods and energy levels of the
Lyapunov periodic orbits shown in Fig. 7.

6.1.2. Homoclinic connections. We compute the stable and unstable mani-
folds, W s(¼1(h)) and W u(¼1(h)), respectively, associated to the Lyapunov
orbits ¼1(h), for h ∈ [h³, h´ ]. As an example, we show the projections of
the stable and unstable manifolds of the Lyapunov orbit corresponding to
x∗(h³) = 0.63, onto the (x, y, px)-coordinates, (x, y)-coordinates, and (x, px)
coordinates in Fig. 8.
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Figure 7. Families of periodic Lyapunov orbits emanating
from L1 and L2 for |x∗(h)| ∈ [0.615,0.63].

(a) Projection on the
(x, y, px)-coordinatese.

(b) Projection on the (x, y)-
coordinates.

(c) Projection on the (x, px)-
coordinates.

Figure 8. Stable (red) and unstable (blue) manifold of the
Lyapunov periodic orbit for x∗(h³) = 0.63.

The manifolds are computed up to the their first intersections with the
section Σ = {y = 0, py < 0}. On this section, we can find transverse homo-
clinic points as intersection between the stable and unstable manifold cuts
with the section Σ. For example, the intersections of the stable and unstable
manifold associated with the periodic orbit corresponding to x∗(h³) = 0.63
are shown in Fig. 9. Note that there are two homoclinic points, z1 and z2
(given explicitly in Table 2 and Table 3 for x(h³) = 0.63), which give rise
to two homoclinic orbits that are shown in Fig. 9.

6.1.3. Heteroclinic connections. For studying the heteroclinic connections
between Λ1

0 and Λ2
0, we consider the same energy range [h³, h´ ] given in

(64).
The corresponding range for x∗(h) is [x∗1(h´), x

∗
1(h³)] = [0.615, 0.63] and

[x∗2(h³), x
∗
2(h´)] = [−0.63,−0.615], with the positive sign corresponding to

L1 and the negative sign to L2.
In Table 1, we give the energy levels, initial conditions and periods of the

families of Lyapunov periodic orbits. The corresponding periodic orbits are
shown in Fig. 7.
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(a) Homoclinic points z2 (on
the left) and z1 (on the
right).
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(b) Homoclinic orbit Φt
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(c) Homoclinic orbit Φt
0(z1).

Figure 9. Homoclinic points and orbits.

(a) Projection on the (x, y)
plane.

(b) Projection on the (x, py)
plane.

Figure 10. Stable manifold (red) of the Lyapunov peri-
odic orbit that start at x∗1(h³) = 0.63 and unstable man-
ifold (blue) of the Lyapunov periodic orbit that start at
x∗2(h³) = −0.63.

Then we compute the stable and unstable manifolds, W s(¼1(h)) and
W u(¼2(h)) associated to Lyapunov orbits ¼1(h) and ¼2(h), respectively, for
h ∈ [h³, h´ ]. As an example, we show the projection of the stable manifold
of the Lyapunov periodic orbit that start at x∗1(h³) = 0.63 and unstable
manifold of the Lyapunov periodic orbit that start at x∗2(h³) = −0.63, onto
the (x, y)-coordinates, and (x, px) coordinates in Fig. 10.

The manifolds are computed up to the their second intersection with the
section Σ = {x = 0, px > 0}. On this section, we can find a transverse inter-
section between the stable and unstable manifold, then we obtain two het-
eroclinic points, z1 and z2, from which two heteroclinic orbits are obtained.
See Fig. 11. Due to the symmetry S(x, y, px, py, t) = (x,−y,−px, py,−t)
there are also a symmetric heteroclinic connections given by the intersection
of W u(¼1(h)) and W s(¼2(h)). The corresponding heteroclinic points ẑ1, ẑ2
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(a) Heteroclinic points z2
(on the left) and z1 (on the
right).
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(b) Heteroclinic orbit
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0(z1).
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(c) Heteroclinic orbit
Φt

0(z2).

Figure 11. Heteroclinic points and orbits.

are the symmetric images under S of z1, z2, respectively. These heteroclinic
points are given explicitly in Table 6 and 7.

6.2. The unperturbed scattering map associated to homoclinic and
heteroclinic connections.

6.2.1. The unperturbed scattering map associated to homoclinic connections.
Consider the homoclinic points zi = zi(h), i = 1, 2, defined in Section 6.1.2,
for the corresponding energy range h ∈ [h³, h´ ]. For each homoclinic point

zi, let z
+
i ∈ Λ1

0 be the foot-point of the stable fiber through zi, and z−i ∈ Λ1
0

be the foot-point of the unstable fiber through zi. In (I, ¹)-coordinates,
z+i = k0(Ii, ¹

+
i ) and z−i = k0(Ii, ¹

−
i ).

A sample of homoclinic points zi = zi(h) and the corresponding values
of x∗(h) for the considered energy range are given in Table 2 and Table 3,
and shown in Fig. 12. The corresponding values ¹±i are given in Table 2

and Table 3. Finally, the points z±i are given in Table 4 and 5. Note that,

z±i ≈ (x∗(h), 0, 0, py(h)).
Consider the homoclinic channel given by

(65) Γi
hom =

⋃

h∈[h³,h´ ]

¹∈[¹−i ,1+¹−i ]

Φ(¹−¹−i )T (zi(h)).

The associated scattering maps in (I, ¹)-coordinates are the phase-shift
given by

Ãi
0(I, ¹) = (I, ¹ + (¹+i − ¹−i )), for i = 1, 2.

(As in Section 5.4, we identify a scattering map Ãi
0 with its representa-

tion si0 in the action-angle coordinates.) By the symmetry S(x, y, ẋ, ẏ, t) =
(x,−y,−ẋ, ẏ,−t) we have ¹+i = −¹−i , then

(66) Ãi
0(I, ¹) = (I, ¹ +∆i), where ∆i = ¹+i − ¹−i = −2¹−i .
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x∗(h) z1(h) ¹±1 (h)

0.615 (−0.14646739, 0, 0,−3.09272039) ±2.27849625
0.62 (−0.13707337, 0, 0,−3.23629663) ±2.28369125
0.625 (−0.12723761, 0, 0,−3.40227909) ±2.29106293
0.63 (−0.11666113, 0, 0,−3.60215892) ±2.30161988

Table 2. Homoclinic point z1 and ¹±1 .

x∗(h) z2(h) ¹±2 (h)

0.615 (−0.02675921, 0, 0,−8.40169252) ±2.49677491
0.62 (−0.03085457, 0, 0,−7.78778643) ±2.48835256
0.625 (−0.03563430, 0, 0,−7.20679133) ±2.47799047
0.63 (−0.04141244, 0, 0,−6.64009686) ±2.46465922

Table 3. Homoclinic point z2 and ¹±2 .

x∗(h) z±1 (h)

0.615 (0.61500027,∓0.00000005,∓0.00000100, 0.48123436)
0.62 (0.62000004,∓0.00000011,∓0.00000028, 0.45248794)
0.625 (0.62500023,∓0.00000006,∓0.00000083, 0.42353712)
0.63 (0.63000040,∓0.00000000,±0.00000132, 0.39437240)

Table 4. Footpoints z±1 of the homoclinic point z1.

x∗(h) z±2 (h)

0.615 (0.61499366,±0.00000076,±0.00001982, 0.48124537)
0.62 (0.61999254,±0.00000079,±0.00002317, 0.45250024)
0.625 (0.62499943,∓0.00000216,±0.0000008, 0.42353842)
0.63 (0.63000023,±0.00000018,±0.0000008, 0.39437267)

Table 5. Footpoints z±2 of the homoclinic point z2.

6.2.2. The unperturbed scattering map associated to heteroclinic connections
in the CH4BP. Consider now a heteroclinic point zi = zi(h), i = 1, 2 defined
in Section 6.1.3, for the corresponding energy range h ∈ [h³, h´ ]. Consider
the heteroclinic channel

(67) Γi
het =

⋃

h∈[h³,h´ ]

¹∈[¹−i ,1+¹−i ]

Φ(¹−¹−i )T (zi).

This heteroclinic channel is represented in Fig. 15.
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Figure 12. Homoclinic point z2 (on the left) and z1 (on the
right) for x∗(h) = 0.615, 0.62, 0.625, 0.63.
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Figure 13. Homoclinic channels Γ1
hom and Γ2

hom.

A sample of heteroclinic points zi, ẑi and the corresponding values of x∗

for the considered energy range are given in the Table 7. The corresponding
values ¹±i and z±i are given in Tables 6 and 7.

The associated scattering map in (I, ¹)-coordinates is a phase-shift given
by

Ãi
0(I, ¹) = (I, ¹ + (¹+i − ¹−i )).

Since, by the symmetry S′(x, y, ẋ, ẏ, t) = (−x, y, ẋ,−ẏ,−t) we have ¹+i =

−¹−i , we have

(68) Ãi
0(I, ¹) = (I, ¹ +∆i), where ∆i = ¹+i − ¹−i = −2¹−i .

6.3. Perturbed scattering map associated to homoclinic and hete-
roclinic connections.

6.3.1. Perturbed scattering map associated to homoclinic connections. Con-
sider the homoclinic channel Γi

hom defined by (65). For the energy range
[h³, h´ ] we compute the Hamiltonian Si that generates the scattering map
Ãi
ϵ associated to the homoclinic point zi, in the (non-symplectic) coordinates
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x∗(h) z1(h), ẑ1(h) ¹±2 (h)

0.615 (0,∓0.32513154,±1.413249476243125, 0) ±2.56696772
0.62 (0,∓0.31736214,±1.459016313792567, 0)) ±2.55400246
0.625 (0,∓0.30951753,±1.506725576126874, 0) ±2.54075381
0.63 (0,∓0.30157444,±1.55664227, 0) ±2.52702772

Table 6. Heteroclinic points z1, ẑ1 and ¹±1 .

x∗(h) z2(h), ẑ2(h) ¹±1 (h)

0.615 (0,∓0.13480207,±3.26837828, 0) ±2.04588521
0.62 (0,∓0.13957356,±3.18684274, 0) ±2.05160310
0.625 (0,∓0.14460595,±3.10468687, 0) ±2.05811547
0.63 (0,∓0.14991892,±3.02186543, 0) ±2.06560153

Table 7. Heteroclinic points z2, ẑ2 and ¹±2 .

x∗(h) z±1 (h)

0.615 (±0.61500108, 0.00000001, 0.00000360,±0.48123302)
0.62 (±0.62000004, 0.00000010, 0.00000045,±0.45248793)
0.625 (±0.62500059, 0.00000015, 0.00000215,±0.42353653)
0.63 (∓0.63000045, 0.00000009, 0.00000163,∓0.39437232)

Table 8. Footpoints z±1 of the heteroclinic point z1.

x∗(h) z±2 (h)

0.615 (±0.61499894,−0.00000004, 0.00000329,±0.48123659)
0.62 (±0.61999901,−0.00000003, 0.00000316,±0.45248962)
0.625 (±0.62499909,−0.00000000, 0.00000300,±0.42353896)
0.63 (±0.62999918,−0.00000002, 0.00000285,±0.39437436)

Table 9. Footpoints z±2 of the heteroclinic point z2 .

(x∗(h), ¹). To exclude possible failure of monodromy of the scattering map,
we restrict ¹ ∈ [0, 1).
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Figure 14. Heteroclinic point z2 (on the left) and z1 (on
the right) for x∗(h) = 0.615, 0.62, 0.625, 0.63.
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Figure 15. Heteroclinic channels Γ1
het and Γ2

het.

Using (43) we can write

Si(x∗, ¹, s) =

∫ 0

−∞

[

G(Φt
0 ◦ Φ

(¹+¹−i )T
0 (zi), s+ t))

−G(Φt
0(k0(x

∗, ¹ + 2¹−i )), s+ t)
]

dt

+

∫ +∞

0

[

G(Φt
0 ◦ Φ

(¹+¹−i )T
0 (zi), s+ t)

−G(Φt
0(k0(x

∗, ¹)), s+ t)
]

dt.

(69)
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For s = Ã/2 we obtain the explicit formula

Si(x∗, ¹, Ã/2) =−
∫ ∞

0
sin(t)

[

H1

(

Φ
t+(¹+¹−i )T (x∗)
0 (zi)

)

−H1

(

Φ
t+(¹+¹−i )T (x∗)
0 (k0(x

∗, ¹+i ))

)]

dt

−
∫ 0

−∞
sin(t)

[

H1

(

Φ
t+(¹+¹−i )T (x∗)
0 (zi)

)

−H1

(

Φ
t+(¹+¹−i )T (x∗)
0 (k0(x

∗, ¹−i ))

)]

dt

(70)

For brevity, we denote this by Si(x∗, ¹).
We stress that the explicit formula (70) is the formally the same for both

homoclinic and heteroclinic connections.
For a range x∗ = x∗(h) ∈ [0.615, 0.63] we show the 3D-plot and the

contour plot of the function

(x∗, ¹) 7→ Si(x∗, ¹)

in Fig. 16. The contour plot represents the level sets of the Hamiltonian Si

in terms of the (non-symplectic) coordinates (x∗, ¹). We notice the presence
of elliptic and saddle fixed points, elliptic islands, and separatrices that
organize the phase space of the NHIM.

We compute −∂Si

∂¹ (I, ¹+∆i(I)), for i = 1, 2, which follows from (44), and
we plot it in Fig. 17.

In Fig. 16 and Fig. 17 we can identify domains where the scattering map
yields the largest growth/decay in the action, as well as the portions where
the scattering map yields the smallest change. We note that, due to the

angle-shift in −∂Si

∂¹ (I, ¹+∆i(I)), applying the scattering map Ãi
ϵ to a point

(I, ¹) amounts to taking a step in the angle direction from (I, ¹) to (I, ¹ +
∆i(I)), and then taking a step of size ϵ along the contour plot of Si through
(I, ¹ +∆i(I)), plus a small error O(ϵ2).

6.3.2. Perturbed scattering map associated to heteroclinic connections. Con-
sider the heteroclinic connection W u(Λ2

0) ∩ W s(Λ1
0), and the heteroclinic

channels Γi
het given by (67), for i = 1, 2. For each scattering map Ãi

ϵ, the
corresponding generating Hamiltonian Si is given by the formula (70), where
in the case of heteroclinic connection zi refers to a heteroclinic point in
W u(Λ2

0) ∩ W s(Λ1
0), and the ¹ refers to the action-angle coordinate system

associated to Λ2
0.

As in the case of homoclinic connections, for the range x∗ ∈ [0.615, 0.63],
we show the 3D-plot and the contour plot of the function

(x∗, ¹) 7→ Si(x∗, ¹)

in Fig. 18 (as before, we dropped Ã/2 from the notation). The contour
plot represents the level sets of the Hamiltonian Si in terms of the (non-
symplectic) coordinates (x∗, ¹). Again, we notice the presence of elliptic and
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(a) Homoclinic case: plot of S1(x∗, θ).
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(b) Homoclinic case: contour plot of
S1(x∗, θ).

(c) Homoclinic case: plot of S2(x∗, θ).
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(d) Homoclinic case: contour plot of
S2(x∗, θ).

Figure 16. Homoclinic case: 3D-plot and contour plot of
Si(x∗, ¹), h ∈ [h³, h´ ], x

∗ ∈ [0.615, 0.63], and ¹ ∈ [0, 1).
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Figure 17. Homoclinic case: plot of −∂Si

∂¹ (I, ¹ +∆i(I)), i = 1, 2.

saddle fixed points, elliptic islands, and separatrices that organize the phase
space of the NHIM Λ2

0.
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(a) Heteroclinic case: plot of S1(x∗, θ).
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(b) Heteroclinic case: contour plot of
S1(x∗, θ).

(c) Heteroclinic case: plot of S2(x∗, θ).
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(d) Heteroclinic case: contour plot of
S2(x∗, θ).

Figure 18. Heteroclinic case: 3D-plot and contour plot of
Si(x∗, ¹), h ∈ [h³, h´ ], x

∗ ∈ [0.615, 0.63], and ¹ ∈ [0, 1).

We plot −∂Si

∂¹ (I, ¹ +∆i(I)), for i = 1, 2, in Fig. 19.
Because of the symmetry S(x, y, ẋ, ẏ, t) = (x,−y,−ẋ, ẏ,−t), we also have

a heteroclinic connection W u(Λ1
0)∩W s(Λ2

0), with heteroclinic channels Γ̂i
het

given by (67), for i = 1, 2. The scattering map Ã̂i
ϵ has the corresponding

generating Hamiltonian Ŝi given by the formula (70), where ¹ refers to
the action-angle coordinate system associated to Λ1

0. The expression of
the scattering map Ã̂i

ϵ in the action-angle coordinates on Λ1
0 is the same as

the expression of the scattering map Ãi
ϵ in the action-angle coordinates on

Λ2
0, and the corresponding generating Hamiltonian Ŝi and Si are given by

identical formulas.
Thus, one can travel along the heteroclinic connection W u(Λ2

0)∩W s(Λ1
0),

by using one of the scattering maps Ã1
ϵ , Ã

2
ϵ , and then then travel along the

heteroclinic connection W u(Λ1
0) ∩ W s(Λ2

0) by using one of the scattering
maps Ã̂1

ϵ , Ã̂
2
ϵ . By the symmetry, this is equivalent to applying the scattering

maps Ã1
ϵ , Ã

2
ϵ repeatedly, in any order.
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Figure 19. Heteroclinic case: plot of −∂Si

∂¹ (I, ¹ +∆i(I)), i = 1, 2.

6.4. Proof of Theorem 5.1. In both the homoclinic case and the hetero-
clinic case, we have computed two scattering maps of the form

Ã1
ϵ (I, ¹) =(I, ¹ +∆1(I)) + ϵ

(

−∂S1

∂¹
,
∂S1

∂I

)

(I, ¹ +∆1(I)) +O(ϵ2),

Ã2
ϵ (I, ¹) =(I, ¹ +∆2(I)) + ϵ

(

−∂S2

∂¹
,
∂S2

∂I

)

(I, ¹ +∆2(I)) +O(ϵ2),

(71)

for I within some range of the action variable [I³, I´ ].
To obtain diffusing orbits, we will apply Proposition 5.7.
We will consider the case of homoclinic connections and the case of hete-

roclinic connections at the same time.
We note that the direct application of Proposition 5.7 leads to pseudo-

orbits for which the action changes by O(1), not that it necessarily increases
by O(1). To obtain pseudo-orbits for which the action increases by O(1),
we will use the symmetries of the problem.

For each I ∈ [I³, I´ ] we identify angles A(I), B(I), C(I), D(I) such that

(1) for all ¹ ∈ [0, A(I)], we have:

−∂S1

∂¹
(I, ¹ +∆1(I)) g 0 and − ∂S1

∂¹
(I, ¹ +∆1(I)) g −∂S2

∂¹
(I, ¹ +∆2(I));

(2) for all ¹ ∈ [A(I), B(I)] we have:

−∂S2

∂¹
(I, ¹ +∆2(I)) g 0 and − ∂S2

∂¹
(I, ¹ +∆2(I)) g −∂S1

∂¹
(I, ¹ +∆1(I));

(3) for all ¹ ∈ [B(I), C(I)] we have:

−∂S2

∂¹
(I, ¹ +∆2(I)) f 0 and − ∂S2

∂¹
(I, ¹ +∆2(I)) g −∂S1

∂¹
(I, ¹ +∆1(I));

(4) for all ¹ ∈ [C(I), D(I)] we have:

−∂S1

∂¹
(I, ¹ +∆1(I)) f 0 and − ∂S1

∂¹
(I, ¹ +∆1(I)) g −∂S2

∂¹
(I, ¹ +∆2(I));



ARNOLD DIFFUSION IN THE EH4BP 45

x∗(h) A(x∗(h)) B(x∗(h)) C(x∗(h)) D(x∗(h))
0.615 0.28132387 0.52967673 0.78003687 0.92011641
0.62 0.28321770 0.52734711 0.78198690 0.92459880
0.625 0.28497921 0.52391183 0.78380023 0.93003525
0.63 0.28661829 0.51886508 0.78548687 0.93693844

Table 10. The value of A(x∗(h)), B(x∗(h)), C(x∗(h)) and
D(x∗(h)) for the homoclinic case.

x∗(h) A(x∗(h)) B(x∗(h)) C(x∗(h)) D(x∗(h))
0.615 0.36202487 0.64603186 0.86214616 0.88520444
0.62 0.36599741 0.64345707 0.86601010 0.89193879
0.625 0.36969259 0.640467541 0.86960783 0.89880348
0.63 0.37311753 0.63697309 0.87294588 0.90589438

Table 11. The value of A(x∗(h)), B(x∗(h)), C(x∗(h)) and
D(x∗(h)) for the heteroclinic case.

(5) for all ¹ ∈ [D(I), 1] we have:

−∂S1

∂¹
(I, ¹ +∆1(I)) g 0 and − ∂S1

∂¹
(I, ¹ +∆1(I)) g −∂S2

∂¹
(I, ¹ +∆2(I)).

The values A(I), B(I), C(I), D(I) determine curves in A that divide it
into strips:

S1 ={(I, ¹) ∈ A | ¹ ∈ [0, A(I)]},
S2 ={(I, ¹) ∈ A | ¹ ∈ [A(I), B(I)]},
S3 ={(I, ¹) ∈ A | ¹ ∈ [B(I), C(I)]},
S4 ={(I, ¹) ∈ A | ¹ ∈ [C(I), D(I)]},
S5 ={(I, ¹) ∈ A | ¹ ∈ [D(I), 1]},

(72)

The values of A, B, C, D for the homoclinic case are shown in Table 10,
and for the heteroclinic case in Table 11.

As in Proposition 5.7, to obtain diffusing orbits we consider pseudo-orbits
of the form

(73) (Ãin
ϵ ◦ . . . ◦ Ãi1

ϵ )(I0, ¹0), for i1, . . . , in ∈ {1, 2},
given by successive applications of Ã1

ϵ or Ã2
ϵ according to the following rules:

(1) if (I, ¹ +∆1(I)) ∈ S1 we apply Ã1
ϵ (I, ¹);

(2) if (I, ¹ +∆2(I)) ∈ S2 we apply Ã2
ϵ (I, ¹);

(3) if (I, ¹ +∆2(I)) ∈ S3 we apply Ã2
ϵ (I, ¹);

(4) if (I, ¹ +∆1(I)) ∈ S4 we apply Ã1
ϵ (I, ¹);

(5) if (I, ¹ +∆1(I)) ∈ S5 we apply Ã1
ϵ (I, ¹).
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(b) For x∗ = 0.615.
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(c) For x∗ = 0.62.
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(d) For x∗ = 0.625.
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(e) For x∗ = 0.63.

Figure 20. Homoclinic connections.

That is, on each strip Si, i = 1, . . . , 5, we select the scattering map Ã
ς(i)
ϵ

that yields the maximum growth in the action variable, or the minimum loss

in the action variable. We display the corresponding −∂Sς(i)

∂¹ (I, ¹+∆ς(i)(I))
for the homoclinic case in Fig. 20, and for the heteroclinic case in Fig. 21.

The pseudo-orbits obtained by applying the scattering maps Ã1
ϵ or Ã2

ϵ

according to these rules are in fact the orbits of the mapping

(74) Tϵ(I, ¹) :=























Ã1
ϵ (I, ¹), if (I, ¹ +∆1(I)) ∈ S1,

Ã2
ϵ (I, ¹), if (I, ¹ +∆2(I)) ∈ S2,

Ã2
ϵ (I, ¹) if (I, ¹ +∆2(I)) ∈ S3,

Ã1
ϵ (I, ¹) if (I, ¹ +∆1(I)) ∈ S4,

Ã1
ϵ (I, ¹) if (I, ¹ +∆1(I)) ∈ S5.

There is another map T̃ϵ, where in (74) we swap Ã1
ϵ with Ã2

ϵ . Then,

applying T̃ϵ has the opposite effect to applying Tϵ.
Recall that in the proof of Proposition 5.7 we consider the set

Xϵ =
⋃

ng0

Tn
ϵ (A

′),
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(b) For x∗ = 0.615.
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(c) For x∗ = 0.62.
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(d) For x∗ = 0.625.
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(e) For x∗ = 0.63.

Figure 21. Heteroclinic connections.

where A
′ is an annulus slightly smaller than and inside A. If the set Xϵ is

not well-defined in A there exist N such that

I0 < I ′´ and IN > I´ or I0 > I ′³ and IN < I³.

In the first case we obtain an orbit of Tϵ that grows the action coordinate
from I ′´ to I´ . In the second case, since T̃ϵ has the opposite effect of Tϵ,

there is an orbit of T̃ϵ that grows the action coordinate from I³ to I ′³. In
either case we obtain a pseudo-orbit that increases the action coordinate by
O(1).

If the set Xϵ is a well-defined set in A, then, as in the proof of Propo-
sition 5.7, we apply Birkhoff’s Ergodic Theorem. To obtain pseudo-orbits
along which the action increases by O(1) we need to verify that there is a
constant C > 0 such that

(75)

5
∑

i=1

∫

Si

[

−∂Sς(i)

∂¹
(I, ¹ +∆ς(i)(I))

]

dI ' d¹ > C > 0

where ς(i) ∈ {1, 2} is chosen by the rules described above.



48 JAIME BURGOS–GARCÍA, MARIAN GIDEA, AND CLAUDIO SIERPE

x∗
∫ A
0

∂S1

∂¹ d¹
∫ B
A

∂S2

∂¹ d¹
∫ C
B

∂S2

∂¹ d¹
∫ D
C

∂S1

∂¹ d¹
∫ 1
D

∂S1

∂¹ d¹
0.615 0.01108517 0.00559062 −0.00569440 −0.00265228 0.00090362
0.62 0.01116304 0.00555252 −0.00596178 −0.00275864 0.00081121
0.625 0.01108579 0.00544458 −0.00623825 −0.00287422 0.00069592
0.63 0.01082731 0.00525498 −0.00654766 −0.00301109 0.00055637

Table 12. Integrals for the homoclinic case.

x∗
∫ A
0

∂S1

∂¹ d¹ +
∫ B
A

∂S2

∂¹ d¹ +
∫ C
B

∂S2

∂¹ d¹ +
∫ D
C

∂S1

∂¹ d¹ +
∫ 1
D

∂S1

∂¹ d¹
0.615 0.00923273
0.62 0.00880635
0.625 0.00811382
0.63 0.00707991

Table 13. Sum of integrals for the homoclinic case.

x∗
∫ A
0

∂S1

∂¹ d¹
∫ B
A

∂S2

∂¹ d¹
∫ C
B

∂S2

∂¹ d¹
∫ D
C

∂S1

∂¹ d¹
∫ 1
D

∂S1

∂¹ d¹
0.615 0.01240600 0.00128406 −0.00084456 −0.00007556 0.00179646
0.62 0.01277860 0.00140479 −0.00100277 −0.00009677 0.00162126
0.625 0.01299019 0.00151934 −0.00117848 −0.00012280 0.00143060
0.63 0.01302879 0.00162423 −0.00137258 −0.00015460 0.00122945

Table 14. Integrals for the heteroclinic case.

The corresponding integrals and their sums are given in the homoclinic
case in the Tables 12 and 13, and in the heteroclinic case in Tables 14 and
15. In both cases, the sum of the integrals is positive. By Proposition 5.7
we obtain pseudo-orbits along which the action increases by O(1).

In order to obtain true diffusing orbits, we appply the shadowing lemma
type of result [GdlLMS20, Theorem 3.7]. This result requires the inner
dynamics given by fϵ restricted to the NHIM to satisfy Poincaré recurrence.
Since we restrict ourselves to a bounded domain in A, this condition is
automatically satisfied. The aforementioned shadowing lemma implies that
for any ¶ > 0, any pseudo-orbit obtained by successively applying scattering
maps according to the rules above can be shadowed by a true orbit.

Remark 6.1. Comparing the Tables 14 and 15, we note that the sum of the
integrals is larger in the heteroclinic case in comparison to the homoclinic
case, implying that this mechanism of diffusion by heteroclinic orbits is more
efficient than the one by homoclinic orbits.

Still, both mechanisms of diffusion are not particularly efficient, since
they involve applying scattering maps even when they yield energy loss. An
alternative could be to apply only scattering maps that yield energy growth
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x∗
∫ A
0

∂S1

∂¹ d¹ +
∫ B
A

∂S2

∂¹ d¹ +
∫ C
B

∂S2

∂¹ d¹ +
∫ D
C

∂S1

∂¹ d¹ +
∫ 1
D

∂S1

∂¹ d¹
0.615 0.01456639
0.62 0.0147051059
0.625 0.01463885
0.63 0.014355300

Table 15. Sum of integrals for the heteroclinic case.

in the domains where such scattering maps exist, and to apply the inner
dynamics restricted to the NHIM in the domains where the scattering maps
yield energy loss. However, for such a mechanism we would need detailed
information on the inner dynamics.
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cercle à des rotations. Inst. Hautes Études Sci. Publ. Math., (49):5–233, 1979.
[HPS77] M.W. Hirsch, C.C. Pugh, and M. Shub. Invariant manifolds, volume 583 of

Lecture Notes in Math. Springer-Verlag, Berlin, 1977.
[KMWZ21] Tomasz Kapela, Marian Mrozek, Daniel Wilczak, and Piotr Zgliczyński.
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