
Holography for the trace anomaly action

Gregory Gabadadze1 and Massimo Porrati1,2
1Center for Cosmology and Particle Physics, Department of Physics, New York University,

726 Broadway, New York, New York 10003, USA
2The Blackett Laboratory, Imperial College London,

Prince Consort Road, London SW7 2AZ, United Kingdom

(Received 6 July 2023; accepted 12 September 2023; published 9 October 2023)

A recently proposed effective action for the trace anomaly describes a tensor-scalar theory that is weakly
coupled up to a certain high energy scale, where it becomes strongly interacting. Its ultraviolet completion is
obtained by coupling to gravity a quantum field theory in which conformal invariance is spontaneously
broken. In this paper, we show that if the field theory that gives rise to the trace anomaly is a large Nc

conformal field theory, then the trace anomaly action has a completion above the strong scale in a holographic
Randall-Sundrum two-brane theory, with the radion as a low energy remnant of the spontaneously broken
conformal symmetry. Furthermore, we note that the subleading Nc terms can be derived by adding localized
fields to the UV brane, so that the theory remains weakly coupled. The subleading terms are also obtained by
introducing the Weyl squared terms in the 5D bulk. These, however, exhibit strongly coupled behavior at the
respective sub-Planckian energy scales.
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I. INTRODUCTION AND SUMMARY

A local diffeomorphism-invariant action capturing the
gravitational trace anomaly [1] has been know thanks to
the works of Riegert, and Efim Fradkin and Tseytlin [2,3];
it is referred to as the local Riegert action, albeit the works
[2,3] are practically simultaneous, with Riegert’s derivation
being more general. The current understanding of the
Riegert action as an effective action for the trace anomaly
was achieved by Komargodski and Schwimmer [4] [see
also an SOð2; 4Þ=ISOð1; 3Þ coset construction leading to
this action in [5]].1

However, general relativity (GR) coupled to the Riegert
action is a strongly coupled theory at an arbitrary low

energy scale (see [6,7], and references therein). One of us
proposed in [7] to resolve this problem by augmenting the
classical GR action so that the amended theory, together
with the Riegert action, is weakly coupled all the way up to
a certain high energy scale M̄, which could presumably be
in the interval, M0 ∼ 105 GeV ≪ M̄ ≪ MPl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
∼

1018 GeV. The augmented action [7], without the Riegert
term, reads:

SR−R̄ ¼ M2

Z
d4x

ffiffiffiffiffiffi−gp
R − M̄2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
R̄; ð1Þ

where R̄≡ RðḡÞ, M ¼ MPl=
ffiffiffi
2

p
≫ M̄, and the two metric

tensors are related as

gμν ¼ e2τḡμν; ð2Þ

where τ is a scalar field. Consequently, the total effective
action that captures classical gravitational physics and the
trace anomaly equation reads as follows [7]:

Seff ¼ SR−R̄ þ SAðτ; ḡÞ; ð3Þ

where SA—denoting the local Riegert action—has the
form [2–4]

SA ¼ −2a
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
ðτĒ − 4Ḡμν∇μτ∇ντ − 4ð∇2τÞð∇τÞ2

− 2ð∇τÞ4Þ þ 2c0
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
τW̄2; ð4Þ

1After deriving the local but seemingly noncovariant anomaly
action, Riegert went on to rewrite it as a manifestly diff-invariant,
but nonlocal action [2]. This rewriting introduced a fourth-order
derivative into the action via a nonlocal field redefinition used in
Eq. (19) of [2]. The resulting action in Eqs. (24) and (25) of [2]
has a ghost because of the fourth-order derivative term. This
ghost, even if projected out classically, will still lead to un-
physical quantum instabilities. For that reason, the anomaly
actions containing fourth-order derivatives will not be considered
here. In this work we only use Riegert’s local action, presented in
Eqs. (6) and (8) of [2], which is diffeomorphism invariant [4], and
has no four-derivative kinetic terms.
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with the covariant derivative ∇, the Euler (Gauss-Bonnet)
invariant, Ē ¼ R̄2

μναβ − 4R̄2
μν þ R̄2, and the Weyl tensor

squared, W̄2 ¼ R̄2
μναβ − 2R̄2

μν þ R̄2=3, all made out of the
metric ḡ.
The action (3), with c0 ¼ 0, was introduced earlier in [8]

in a different, entirely classical context without reference to
the quantum trace anomaly, but as a scalar-tensor action
maintaining two derivative conformally invariant equations
of motion, in spite of the action itself not being conformally
invariant. This action belongs to a more general class of
Horndeski’s scalar-tensor theories, which maintain second
order equations of motion [9].
It is evident that Eq. (3) should be regarded as defining

an effective low energy action. Since M̄ ≪ MPl, all Planck-
scale suppressed higher dimensional terms can be ignored
in this action; it describes a weakly coupled theory up to the
scale M̄, where it becomes strongly coupled [7].
Recall that the GR action breaks the scale invariance

explicitly, with MPl being the breaking scale.2 The param-
eter M̄, on the other hand, can be viewed as a scale where
the conformal symmetry is spontaneously broken [5,7].
The low energy remnant of the spontaneous breaking is τ.
Thus, the action (3), when viewed as a functional of g and τ,
contains terms for explicit, spontaneous, and anomalous
breaking of the conformal symmetry. That being said,
the respective high energy theory above M̄ is likely to
contain more terms and degrees of freedom. The goal of
this paper is to discuss the UV completion of the above
action at the scale M̄.
The Riegert action is in fact part of the universal action

describing the dynamics of a conformal field theory (CFT)
with spontaneously broken conformal invariance below the
breaking scale [4]. The field τ is identified with the dilaton,
that is the Nambu-Goldstone boson of spontaneously
broken conformal invariance, and the second term in (1)
contains its kinetic term.
When a generic CFT is coupled to gravity many relevant

operators—such as scalar masses—are induced, which
make the theory gapped and lift the flat directions in the
scalar potential. The flat directions are the very reason why
conformal invariance is broken spontaneously instead of
being broken explicitly, so spontaneous conformal sym-
metry breaking is nongeneric in quantum field theory. An
exception to this scenario is represented by theories that
come from certain highly supersymmetric compactifica-
tions of string theory.
Another interesting example is large-Nc CFTs, which

have a holographically dual description in 5D. Here we will
study the UV completion of the action (3) in the case when

a quantum field theory (QFT) that gives rise to the
Riegert action is a large Nc CFT that has a holographic
dual. There are simplifications in this case that help our
analysis. Indeed, the general trace anomaly equation,
hTμ

μi ¼ −aEþ c0W2, simplifies in the large Nc limit of
a CFT where a ¼ c0

hTμ
μi ¼ aðW2 − EÞ ¼ N2

c

32π2

"
R2
μν −

1

3
R2

#
: ð5Þ

Henningson and Skenderis have shown in [10] that the
term, R2

μν− 1
3R

2, generically emerges in equations of motion
via 5D AdS holography, where they derived the trace
anomaly equation for a large Nc CFT (5). One would
therefore expect that the corresponding 4D effective action
for the trace anomaly could also be derived from the 5D
AdS theory. We will show how this expectation is indeed
fulfilled.
After writing 5D gravity in the formalism that we will

use throughout the paper (see, Sec. II) we will derive the
Riegert action as an effective action in Sec. III. The 4D
action would appear nonlocal if only the metric field were
to be used. However, it can be rewritten as a local diff-
invariant action by integrating into it the field τ. Since τ is
also the dilaton, we need a 5D model for spontaneously
broken conformal invariance coupled to gravity. This
requirement can be realized by the two-brane Randall-
Sundrum model [11] (RS1), which is indeed holographic to
a CFT coupled to gravity [12]. Importantly, the position of
the IR brane in RS1, which is not stabilized, is precisely the
massless dilaton, as shown in [13].
In Sec. IV we will recover the result of [13–15] that shows

how the R − R̄ term naturally emerges in the holographic
picture of the RS1 model. The main result of Sec. IV is to
show that the RS1 action also generates the Riegert term
with a ¼ c0, together with certain specific conformally-
invariant dimension-4 terms. Unlike the Riegert terms, the
latter are nonuniversal and model-dependent. In Sec. V we
show that our action satisfies the Ward identities of sponta-
neously broken conformal invariance. In Sec. VI we will
study deviations from the a ¼ c0 limit. In Sec. VII we will
discuss some open questions.

II. THE 5D THEORY

First of all we summarize the 5D action and equations
in the formalism developed by Shiromizu et al. [16].
The bulk action is

SBulk ¼ M3
5

Z
d4xdz

ffiffiffi
ĝ

p
NðR̂þ K̂2 − K̂2

αβ − 2Λ5Þ; ð6Þ

where N is the lapse in the 5th dimension, and Nμ is the
respective shift (see Ref. [17] for more details). The 5D
cosmological constant will be chosen to be negative,

2To be more precise, the scale transformations here refer to the
transformations formed by the dilatations together with simulta-
neous global diffeomorphisms, such that the coordinates do not
transform under the combined transformations, but the metric
tensor transforms as, g → e2λg, with a constant λ.
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−2Λ5 ¼ 12=L2, where L is the radius-curvature of a 5D
AdS spacetime. The extrinsic curvature of 4D spacetime is
defined as follows

K̂μν ¼
1

2N
ð∂zĝμν − ∇̂μNν − ∇̂νNμÞ: ð7Þ

Variation of the bulk action (6) with respect to the lapse
N gives

R̂ − 2Λ5 ¼ K̂2 − K̂2
αβ; ð8Þ

and the equation obtained by variation of the action with
respect to Nβ reads

∇̂αK̂αβ ¼ ∇̂βK̂: ð9Þ

As long as the above equation is satisfied, we can substitute
Nμ ¼ 0 in the bulk fμνg equation, which then reads as
follows:

Ĝμν þ Λ5ĝμν ¼
1

2
ĝμνðK̂2 − K̂2

αβÞ þ 2ðK̂ρ
μK̂ρν − K̂K̂μνÞ

þ
∇̂μ∇̂νN − ĝμν∇̂2N

N

− ĝμαĝνβ
∂zð

ffiffiffiffiffiffi
−ĝ

p
ðK̂ĝαβ − K̂αβÞÞ
N

ffiffiffiffiffiffi
−ĝ

p : ð10Þ

We will use these equations below, together with the
appropriate boundary conditions, to determine an effective
4D theory.
In the next section we will consider only one brane,

together with the corresponding boundary conditions
specified there. We will show that by integrating out the
bulk in the single-brane RS model one gets at low energies
4D GR plus the Riegert action, with a ¼ c0.

III. THE RIEGERT ACTION FROM AdS5

After taking into account the equations of motion,
(8) and (9), we can set Nμ ¼ 0, N ¼ AðzÞ ¼ L=ðzþ LÞ
for z ≥ 0, and consider the metric:

ds2 ¼ ĝμνðx; zÞdxμdxν þ A2ðzÞdz2: ð11Þ

Wewill follow Kanno and Soda [18] to integrate out the 5D
bulk. This is done via a classical nonlinear order-by-order
expansion of the 5D equations of motion in powers of RL2,
where R is a 4D curvature experienced by a 4D observer on
the positive tension brane in the single-brane RS model.
The corresponding expansion of the metric is parametrized
as follows:

ĝμνðx; zÞ ¼ A2ðzÞ
$
gμνðxÞ þ gð1Þμν ðx; zÞ þ gð2Þμν ðx; zÞ þ…

%
;

ð12Þ

where gðjÞμν ðx; z ¼ 0Þ ¼ 0, for j ¼ 1; 2; 3;… Using the
above expansion one can find the corresponding power
series expression for the extrinsic curvature

K̂μ
ν ¼

X∞

n¼0

KðnÞμ
ν : ð13Þ

The expression for Kð2Þμ
ν depends of an unknown tensor

that cannot be written as a variation of a local tensor made
out of the metric and its derivatives [18]. On the other hand,
traces of KðnÞμ

ν can be determined unambiguously in terms
of local quantities [18]. We use this observation and come
up with a scheme that only utilizes the traces of the extrinsic
curvatures evaluated at z ¼ 0:

Kð0Þμ
μ

&&&
z¼0

¼ −
4

L
; Kð1Þμ

μ

&&&
z¼0

¼ −
L
6
RðgÞ;

Kð2Þμ
μ

&&&
z¼0

¼ −L3

24

"
R2
μν −

1

3
R2

#
: ð14Þ

Taking the trace of the junction condition at z ¼ 0þ

T4ĝμν − 2M3
5ðK̂μν − K̂gμνÞ ¼ 0; ð15Þ

one gets

4T4 þ 6M3
5K̂ ¼ 0: ð16Þ

Using the RS fine tuning condition

T4 ¼ 6M3
5=L; ð17Þ

and noticing that R̂ðĝÞjz¼0þ ¼ RðgÞ, we can rewrite the
trace equation (16) as follows:

M2R ¼ −
M3

5L
3

4

"
R2
μν −

1

3
R2

#
≡ −aðW2 − EÞ; ð18Þ

where M2 ¼ M3
5L is the 4D Planck mass squared divided

by 2, and a≡ M3
5
L3

8 ∼ Nc
2. The above is the trace anomaly

equation. As noted earlier, the emergence of the 4D trace
anomaly equation from a 5D AdS bulk was first shown
in [10].
Our goal is to derive the action that gives rise to Eq. (18).

To achieve this we can follow the method used by
Riegert [2]. We multiply both sides of the Eq. (18) byffiffiffiffiffiffi−gp

, and perform the following field redefinition,
gμνðxÞ ¼ e2τḡμν; this gives
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M2
ffiffiffiffiffiffi
−ḡ

p
e2τðR̄ðḡÞ − 6ð∇2τÞ − 6∇2τÞ ¼ −2a

ffiffiffiffiffiffi
−ḡ

p "
−
Ē
2
þ W̄2

2
− 4R̄μνð∇μ∇ντ −∇μτ∇ντÞ þ 2R̄∇2τ

#

− 2a
ffiffiffiffiffiffi
−ḡ

p
ð−4ð∇2τÞ2 þ 4ð∇μ∇ντÞ2 − 4ð∇2τÞð∇τÞ2 − 8ð∇α∇βτÞð∇ατÞ∇ατÞ:

ð19Þ

We now look for an action, as a functional of τ and ḡ and their derivatives, that can be varied with respect to τ to give rise
to (19). This action reads

S ¼ M2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
e2τðR̄ðḡÞ þ 6ð∇τÞ2Þ þ IðḡÞ

− 2a
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
ðτĒ − 4Ḡμν∇μτ∇ντ − 4ð∇2τÞð∇τÞ2 − 2ð∇τÞ4Þ þ 2a

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
τW̄2: ð20Þ

The second line is the Riegert action with a ¼ c0 ¼
M3

5L
3=8, consistent with a large Nc CFT. The first term

in the first line is the Einstein-Hilbert term written in the
Jordan frame. The second term in the first line, denoted by
IðḡÞ, is a functional that does not depend on τ, but can
depend on ḡ and its derivatives. In a sense, IðḡÞ is an
“integration functional” which cannot be determined by
the above procedure. If one assumes IðḡÞ ¼ 0, as it was
done by Riegert [2], then the theory is strongly coupled at
arbitrarily low energies [6,7]. One way to avoid this
problem is to postulate that, IðḡÞ ¼ −M̄2

R
d4x

ffiffiffiffiffiffi
−ḡ

p
R̄,

based on symmetry and anomaly considerations, as was
done in [7].
From the 5D perspective the strong coupling issue stems

from the fact that the gravitational Kaluza-Klein modes are
infinitely strongly coupled at the nonlinear level near the
AdS horizon in the single-brane RS model [19]. This issue
gets resolved by introducing a second brane which cuts
off the AdS horizon in the RS model. Interestingly, the
expression for IðḡÞ—precisely with the negative sign—
naturally emerges in the holographic picture as soon as one
introduces the second brane in the RS model [11]; this leads
to a radion field, which can then be identified with the τ
field introduced above. All this is discussed in gradually
increasing detail in the subsequent sections.

IV. DERIVATION OF IðḡÞ

The expression for IðḡÞ could be obtained from the
comprehensive work of Kanno and Soda [20]; it is for sake
of presentation that we will give a different derivation of
IðḡÞ here.
First we use the bulk equation (8) in the bulk action (6) to

get a partially “on-shell” action

SBulkj ¼ 2M3
5

Z
d4xdz

ffiffiffi
ĝ

p
NðR̂ − 2Λ5Þ: ð21Þ

To introduce a radion field we parametrize the metric as
follows:

ds2 ¼ ĝμνðx; zÞdxμdxν þ N2ðx; zÞdz2; ð22Þ

and adopt new notations, as well as more general expansion
for the metric than the one used in the previous section:

ĝμνðx; zÞ≡Ω2ðx; zÞgμνðx; zÞ
≡Ω2ðx; zÞðgμνðxÞ þ δgμνðx; zÞÞ; ð23Þ

where δgμνðx; z ¼ 0Þ ¼ 0. The metric gμνðxÞ denotes the RS
zero mode, while δgμν encodes subleading curvature cor-
rections due to the bulk. Using (22) and (23) one can find the
corresponding expression for the extrinsic curvature

K̂αβ ¼
∂zΩ2

2NΩ2
ĝαβðx; zÞ þ

Ω2

2N
∂zδgαβ: ð24Þ

Note that the first term on the right-hand side contains the
leading and subleading pieces in ĝ. Substituting the latter
expression into (9), and focusing on the leading order, we get
the following relation between N and Ω

Nðx; zÞ ¼ U
2

∂zΩ2

Ω2
; ð25Þ

where U is an integration constant. By substituting (25) into
the bulk equation (8) one can determine the integration
constant from the obtained relation

−2Λ5 ¼
12

U2
¼ 12

L2
: ð26Þ

We can now use (25) and (26) in (21) to obtain

SBulkj ¼ M3
5L

Z
d4x

Z
dz

ffiffiffiffiffiffi−gp ð∂zðΩ2ÞRðgÞ

þ 6∂zð∇ΩÞ2 − ð∂zΩ4ÞΛ5Þ: ð27Þ

It is clear that the z integration can be done explicitly
and that the result of that integration depends only on
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the boundary values of Ω. We choose the following
boundary conditions

Ωðx; z ¼ 0Þ ¼ 1;

Ωðx; z ¼ χðxÞÞ ¼ ΦðxÞ ¼ L
zIR þ L

e−τðxÞ; ð28Þ

where we parametrized the x-dependent boundary, χðxÞ,
by the field ΦðxÞ. Using the junction conditions at both
branes to integrate (27) with respect to z from the UV,
z ¼ 0, to the IR, z ¼ χðxÞ, we obtain

M2

Z
d4x

ffiffiffiffiffiffi−gp ðR −Φ2R − 6ð∇ΦÞ2Þ

¼ M2

Z
d4xð ffiffiffiffiffiffi−gp

R − ϵ2
ffiffiffiffiffiffi
−ḡ

p
R̄Þ: ð29Þ

Here ϵ ¼ L=ðzIR þ LÞ≡ M̄=M, and hence we find
that IðḡÞ ¼ −M̄2

R
d4x

ffiffiffiffiffiffi
−ḡ

p
R̄.

Note that we require M̄ ≪ M. This hierarchy can be
achieved if the average distance between the two branes is
much greater than the radius curvature of AdS5, zIR ≫ L.
This implies that the mass scale of the lightest Kaluza-Klein
(KK) modes, ∼z−1IR , is below the scale of the curvature of
AdS5. Moreover, we find that, M̄ ∼ Nc=zIR, which is much
higher than the KK mass scale, z−1IR , and, by construction, is
much smaller than the 4D Planck scale, MPl ∼M ∼ Nc=L.
The action (29) was found in [13–15] by dimensional

reduction of the 5D RS1 action. We will also derive it in the

next sections by a dimensional reduction that solves the
radial Hamiltonian and momentum constraints Eqs. (8)
and (9). By taking care of the constraints we can also
compute the first order correction to the action, which
depends on δgμν. This can be done systematically using
the formalism of Ref. [20] and by selecting appropriate
integration constants in their equations. When considering
the first correction to the lowest-order results—i.e.,
δgμν ¼ gð1Þμν ≡ hμν in the expansion (23)—we can simplify
the derivation and explicitly perform integrals in z that
are left implicit in [18,20]. We can also find at the same
time the Riegert action and the next to leading Weyl-
invariant terms.

A. Solving the equations for the extrinsic curvature Kμν

We are interested in an effective field theory in which
the expansion parameter is zIR times gradients of the fields.
The first term in the expansion is Eq. (29) while the second
is obtained by expanding gμνðx; yÞ ¼ gμνðxÞ þ hμνðx; yÞ in
the action (6) up to the fourth order in zIR∂μ. It is also
convenient to define a new radial coordinate y as
z ¼ zIRy − L, and since 0 ≤ z ≤ zIR in this section, the
integration range for y is L

zIR
≤ y ≤ 1þ L

zIR
. In the rest of this

section and in Sec. VI we also use a different definition of
Ω, which is ðzþ LÞ=L times the Ω used in the previous
section. With this new definition the exact anti–de Sitter
metric ds2 ¼ L2

ðLþzÞ2 ðημνdx
μdxν þ dz2Þ corresponds to

Ω ¼ 1. We find

SBulk ¼
c
z2IR

Z
1þL=zIR

L=zIR

dy
y3

Z
d4x

ffiffiffiffiffiffi−gp
'
NΩ2ð∇μ∇νhμν −∇2h − hμνGμνÞ − 6hμν∇μðNΩÞ∇νΩþ 3h∇μðNΩÞ∇μΩ

þ Ω4

4Nz2IR

"
dh
dy

dh
dy

−
dhμν

dy
dhμν
dy

#(
: ð30Þ

Here, c ¼ M3
5L

3, hμν ≡ gμρgνσhρσ , h≡ gμνhμν, Gμν ¼ Rμν − 1
2 gμνR, and Kμν ¼ 1

2N
d
dy hμν, since we set Nμ ¼ 0. The

equations of motion for hμν are

1

z2IR

d
dy

'
Ω4

2Ny3

"
dhμν
dy

− gμν
dh
dy

#(
¼ 1

y3
ðgμν∇2ðNΩ2Þ −∇μ∇νðNΩ2Þ þ GμνΩ2

þ 3∇μðNΩÞ∇νΩþ 3∇νðNΩÞ∇μΩ − 3gμν∇λðNΩÞ∇λΩÞ: ð31Þ

Using the identities

gμν∇μðNΩÞ∇νΩ ¼ − 1

2
y3

d
dy

ðy−2gμν∇μΩ∇νΩÞ; NΩ2 ¼ − 1

2
y3

d
dy

ðy−2Ω2Þ; ð32Þ

we find that the left-hand side (lhs) of (31) is a total derivative so we can write
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Ω4

z2IRNy3

"
dhμν
dy

− gμν
dh
dy

#
¼ 1

y2
Ω2Xμν þ Cμν;

Xμν ≡Ω−2ð∇μ∇νΩ2 − gμν∇2Ω2 −GμνΩ2þ
− 6∇μΩ∇νΩþ 3gμν∇λΩ∇λΩÞ: ð33Þ

The y-independent integration function Cμν can be con-
strained by demanding that (33) solves the momentum
constraint (9). Using the Bianchi identity ∇μGμν ¼ 0 and
the identity

ð∇μ∇ν∇μ −∇ν∇2ÞS ¼ Rμν∇μS; ð34Þ

which is valid for any scalar S, we find

∇μ

'
Ω4

z2IRNy3

"
dhμν
dy

− gμν
dh
dy

#(

¼ 1

y2
∂μΩðΩR − 6∇2ΩÞ þ∇μCμν: ð35Þ

This solves the constraint if ∇μCμν ¼ 0.
Furthermore, it is convenient to rewrite Xμν in terms of a

new variable σ defined as Ω ¼ expðσÞ. We find:

Xμν ¼ −2∂μσ∂νσþ 2∇μ∂νσ −Gμν − gμν∂λσ∇λσ − 2gμν∇2σ:

ð36Þ

Another useful identity is Xμν¼−GμνðΩ2gÞ¼−Gμνðe2σgÞ.

B. The boundary condition at y= 1

We need to find the boundary conditions for Kμν at
y ¼ 1þ L=zIR ≈ 1 (recall that L=zIR ≪ 1). The variation of
Eq. (30) contains the boundary term

c
z2IR

Z
d4x

ffiffiffiffiffiffi−gp Ω4

2L2N

"
dhμν
dy

− gμν
dh
dy

#
δhμνjy¼1

¼ −c
Z

d4x
ffiffiffiffiffiffi−gp ½e−2τGμνðe−2τgÞ − Cμν&δhμνjy¼1; ð37Þ

where τ≡ −σjy¼1. Note that there is no boundary term
at y ¼ L=zIR because there we impose the Dirichlet
boundary conditions δhμν ¼ 0. We can decompose,
δhμν ¼ δhTTμν þ∇μξν þ∇νξμ − 2gμνω, and notice that
the gradient and trace term in the variation can be canceled
by varying ψ in the action of the zero modes (29) according
to δψ ¼ ξm∇μψ þ ωψ . So, to make the action stationary
we have to impose only that the transverse-traceless
part of Kμν vanish: KTT

μν ¼ 0. This identifies Cμν as
Cμν ¼ ½e−2τGμνðe−2τgÞ&TT .

C. The effective action to Oðz0IRÞ
Let us substitute the solution of the hμν equations of

motion into the action (6). Since we chose free boundary
conditions at y ¼ 1, and the Dirichlet boundary conditions
at y ¼ L=zIR, we can discard the boundary contributions
and get the action Seff þ S1, with Seff given in Eq. (29) and

S1 ¼ −
c

zIR2

Z
1

L=zIR

dy
y3

Z
d4x

ffiffiffiffiffiffi−gp Ω4

4Nz2IR

"
dh
dy

dh
dy

−
dhμν

dy
dhμν
dy

#

¼ c
4

Z
1

L=zIR
dyy3

Z
d4x

ffiffiffiffiffiffi−gp
NΩ−4

'"
−

1

y2
Ω2GμνðγÞÞ þ Cμν

#
2

−
1

3

"
1

y2
Ω2gμνRμνðγÞ þ C

#
2
(
: ð38Þ

Here, γμνðx; yÞ≡Ω2ðx; yÞgμνðxÞ. A key identity that follows from Eq. (36) is

d
dy

GμνðγÞ ¼ −2DμDν
dσ
dy

þ 2γμνD2 dσ
dy

; ð39Þ

where Dμ denotes the covariant derivative with respect to the metric γμνðx; yÞ. Expanding Eq. (38) in powers of Cμν we get
three terms. Using integration by part in y we rewrite the first term as

c
4

Z
1

L=zIR

dy
y

Z
d4x

ffiffiffiffiffiffi−gp
N
"
gμρgνσGμνðγÞGρσðγÞ −

1

3
½gμνGμνðγÞ&2

#

¼ −
c
4

Z
1

L=zIR
dy

Z
d4x

ffiffiffiffiffiffi−gp
"
d
dy

ðσ − log yÞ
#"

gμρgνσGμνðγÞGρσðγÞ −
1

3
½gμνGμνðγÞ&2

#

¼ −
c
4

Z
d4x

ffiffiffiffiffiffi−gp
'
−τ

"
G2

μνðe−2τgÞ −
1

3
G2ðe−2τgÞ

#
þ logðL=zIRÞ

"
G2

μνðgÞ −
1

3
G2ðgÞ

#(

− c
Z

1

L=zIR
dy

Z
d4x

ffiffiffiffiffiffi−γp ðσ − log yÞ
"
DμDν

dσ
dy

#
GρσðγÞγμργνσ: ð40Þ
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Notice that we define G2
μν ¼ GμνGρσgμρgνσ etc. An integration by parts in Dμ transforms the last term into

c
Z

1

L=zIR
dy

Z
d4x

ffiffiffiffiffiffi−gp
∂μσ

"
∂ν

dσ
dy

#
GρσðγÞgμρgνσ

¼ c
2

Z
1

L=zIR
dy

Z
d4x

ffiffiffiffiffiffi−gp
"
d
dy

∂μσ∂νσ

#
GρσðγÞgμρgνσ

¼ c
2

Z
d4x

ffiffiffiffiffiffi−gp
∂μτ∂ντGμνðe−2τgÞ þ c

Z
1

0
dy

Z
d4x

ffiffiffiffiffiffi−γp
γμργνσ∂μσ∂νσðDρDσ − γρσD2Þ dσ

dy
: ð41Þ

We set L=zIR ¼ 0 in the converging integrals and used the Bianchi identityDμGμνðγÞ ¼ 0. To deal with the last integral in y
we use

DμVν þDνVμ ¼ γρσVρ∂σγμν þ ∂μðγσρVσÞγρν þ ∂νðγσρVσÞγρμ
¼ ∇μVν þ∇νVμ þ Ω−2Vλð∂λΩ2Þgμν þΩ2∂μðΩ−2ÞVν þ Ω2∂νðΩ−2ÞVμ

¼ Ω2½∇μðΩ−2VνÞ þ∇νðΩ−2VμÞ − Vλð∂λΩ−2Þgμν&; ð42Þ

where indices are raised and lowered with the metric gμν. For Vμ ¼ ∂μðdσ=dyÞ Eq. (42) gives

ðDðμ∂νÞ − γμνγρσDρ∂σÞ
dσ
dy

¼ d
dy

'
ð∇μ∂ν − gμν∇2Þσ − ∂μσ∂νσ −

1

2
gμν∂ρσ∇ρσ

(
: ð43Þ

Inserting this identity in (41) we find that the integral in y is a total derivative

c
Z

1

0
dy

Z
d4x

ffiffiffiffiffiffi−gp
gμρgνσ∂ρσ∂σσ

d
dy

'
ð∇μ∂ν − gμν∇2Þσ − ∂μσ∂νσ −

1

2
gμν∂λσ∇λσ

(
:

¼ c
Z

d4x
ffiffiffiffiffiffi−gp

"
−∂μτ∂ντ∇μ∇ντ −

3

4
∂μτ∇μτ∂ντ∇ντ

#
: ð44Þ

The other terms in (38) are treated analogously. The cross term is

−
c
4

Z
1

L=zIR
dy

Z
d4x

ffiffiffiffiffiffi−gp
"
d
dy

ðy2Ω−2Þ
#"

GμνðγÞCμν −
1

3
GðγÞC

#

¼ −
c
4

Z
d4x

ffiffiffiffiffiffi−gp
e2τ

"
Gμνðe−2τgÞCμν −

1

3
Gðe−2τgÞC

#
−
c
2

Z
1

L=zIR
dy

Z
d4x

ffiffiffiffiffiffi−gp ðy2Ω−2Þ
"
DμDν

dσ
dy

#
Cμν: ð45Þ

Here too the indices are raised and lowered with the metric gμν and the last term vanishes because Cμν is transverse with
respect to the covariant derivative ∇μ and the traceless part of Eq. (42) is Ω−2DðμVnÞT ¼ ∇ðμΩ−2VνÞT .
The last term is

c
Z

1

L=zIR
dy

Z
d4x

ffiffiffiffiffiffi−gp
"
d
dy

ðy4Ω−4Þ
#"

C2
μν −

1

3
C2

#
¼ c

Z
d4x

ffiffiffiffiffiffi−gp
e4τ

"
C2
μν −

1

3
C2

#
: ð46Þ

Notice that (45) and (46) give only Weyl-invariant terms so the anomaly arises only from (40)

SAnomaly ¼
c
4

Z
d4x

ffiffiffiffiffiffi−gp
'
−τ

"
−G2

μνðe−2τgÞ þ
1

3
G2ðe−2τgÞ

#
þ 2∂μτ∂ντGμνðe2τgÞ þ

− 4∂μτ∂ντ∇μ∇ντ − 3∂μτ∇μτ∂ντ∇ντ

(
: ð47Þ

This is the same as Eq. (4) with a ¼ c0 once the identities
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Z
d4x∂μτ∂ντ∇μ∇ντ ¼ − 1

2

Z
d4xð∇τÞ2∇2τ;

Z
d4xð∇τÞ2∇2τ ¼

Z
d4xð∇̄τÞ2½∇̄2τ þ 2ð∇̄τÞ2& ð48Þ

are taken into account.

V. HOLOGRAPHY AND WARD IDENTITIES

The action (6) computed on shell at a fixed value of the
metric at z ¼ 0 has a dual holographic interpretation as
the effective action obtained from integrating out the CFT
degrees of freedom [12]. Because it is a 5D gravitational
action, it is invariant under the infinitesimal coordinate
change z ¼ wþ ωðqÞðwþ LÞ, xμ ¼ qμ þ Fμðq; wÞ,
Fμðq; 0Þ ¼ 0. When ðwþ LÞ∂μωðqÞ þ gμν∂wFνðq; wÞ ¼ 0
the metric still has the form (11) and (23) and its boundary
value transforms to gμνðxÞ ¼ ð1 − 2ωðxÞÞgμνðxÞ. To first
order in ω, the limits of integration in (6), 0 ≤ z ≤ zIR,
change to −ωðxÞL ≤ w ≤ zIRðxÞ − ωðxÞðzIRðxÞ þ LÞ.
General coordinate invariance thus gives the equation

S½ð1 − 2ωðxÞÞgμνðxÞ;−ωðxÞL; zIRðxÞ − ωðxÞðzIRðxÞ þ LÞ&
¼ S½gμνðxÞ; 0; zIRðxÞ& þOðω2Þ: ð49Þ

This action diverges in the limit L → 0. It can be written
as [10]

S½gμν; L; zIR& ¼ SD½gμνν; L& þ SF½gμν; zIR& þOðLÞ: ð50Þ

The divergent part depends only on the behavior of the
metric near the z ¼ 0 boundary so it does not depend on
zIRðxÞ [10,13,21]. The finite part does not depend on L and
the rest vanishes in the limit L → 0. The first variation of S
with respect to ω vanishes thanks to Eq. (49) so, up to terms
that vanish in the L → 0 limit we find

0 ¼ δωSD þ
Z

d4x
ffiffiffiffiffiffi−gp

'
δωgμνðxÞ

δSF
δgμνðxÞ

þ δωzIRðxÞ
δSF

δzIRðxÞ

(
: ð51Þ

Reference [10] finds δSD=δωðxÞ ¼ −aðE −W2Þ [see
Eq. (18)]. Notice that

δωSD ¼
Z

d4x
ffiffiffiffiffiffi−gp

'
δωgμνðxÞ

δSD
δgμνðxÞ

þ δωLðxÞ
δSD
δLðxÞ

(
:

ð52Þ

The second term is a variation with respect to L. In RS1 L is
the position of the UV brane, which is kept fixed. Keeping
L fixed and introducing a bare Einstein-Hilbert term on
the UV brane explicitly breaks Weyl invariance. The terms
that break Weyl invariance in SD are a 4D cosmological
constant ∝ L−4 R d4x

ffiffiffiffiffiffi−gp
and an Einstein-Hilbert term

∝ L−2 R d4x
ffiffiffiffiffiffi−gp

RðgÞ. The holographic interpretation of
these terms is that they are induced by the CFT loops.
The induced 4D cosmological constant is canceled by
the brane tension while the bare and induced Newton
constants give the 4D Newton constant G ¼ 2=M2. So,
S satisfies the equation

Z
d4x

ffiffiffiffiffiffi−gp
'
δωgμνðxÞ

δS
δgμνðxÞ

þ δωzIRðxÞ
δS

δzIRðxÞ

(
¼ −

Z
d4x

ffiffiffiffiffiffi−gp
'
δωLðxÞ

δSD
δLðxÞ

(
þOðLÞ

¼
Z

d4x
ffiffiffiffiffiffi−gp

ωðxÞaðE −W2Þ þ
Z

d4x
ffiffiffiffiffiffi−gp

δωgμνðxÞ
δSD

δgμνðxÞ
þOðLÞ:

¼
Z

d4x
ffiffiffiffiffiffi−gp

ωðxÞaðE −W2Þ − 2

16πG

Z
d4x

ffiffiffiffiffiffi−gp
ωðxÞRðgÞ þOðLÞ:

ð53Þ

This is indeed the Ward identity for a spontaneously broken
CFT coupled to gravity.

VI. DERIVATION OF THE SUBLEADING TERMS

A. Subleading W2 contributions to the anomaly

The general anomaly is the sum of the term R2
μν − 1

3R
2

and the square of the Weyl tensor. The additional 5D term
that gives rise to this anomaly is [22–24]

SW ¼ αk
Z

LþzIR

L
dz

Z
d4x

ffiffiffiffi
G

p
CM
NPQC

NPQ
M ; ð54Þ

where CM
NPQðGÞ is the Weyl tensor in 5D, α ≪ c, and for

convenience in this section we will use the z coordinate
that is shifted by L with respect to the one used in the
previous sections, so the z integration range is, L ≤
z ≤ Lþ zIR ≃ zIR. Its key property is that it is Weyl
Invariant: CM

NPQðω2GÞ ¼ CM
NPQðGÞ. We only need to
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evaluate this integral on the zero-mode metric because the
contribution of hμν terms is Oðz2IR∂2μÞ. By defining Ω as in
Sec. IVA we can write this metric as

ds2 ¼ Ω2L2

z2
ðΩ−2ð1 − z∂zΩΩ−1Þ2dz2 þ gμνdxμdxνÞ;

with
dgμν
dz

¼ 0: ð55Þ

The coordinate change T ¼ zΩ−1, ðΩ−1 − z∂zΩΩ−2Þdz ¼
dT þ T∂μΩΩ−1dxm transforms metric (55) into

ds2 ¼ L2

T2
ds̃2

¼ L2

T2
½dT2 þ 2T∂μσdxmdT

þ ðgμνðxÞ þ T2∂μσ∂νσÞdxmdxν&; σ ¼ logΩ:
ð56Þ

Since the Weyl tensor is invariant under conformal rescal-
ing, we can compute it on the metric ds̃2. Moreover, since
T ≲ zIR, when we compute curvature tensor in the effective
4D theory we expand in powers of zIR∂μ. So, in considering
the most relevant terms in the expansion, we can neglect
all terms proportional to T in the metric except for those

where derivatives of T cancel out the T dependence. In the
Riemann tensor there is only one such term:

RTμTν ¼ −∂TKμν

¼ −
1

2
∂Tð2T∂μσ∂νσ − 2T∇μ∂νσÞ

¼ −∂μσ∂νσ þ∇μ∂νσ: ð57Þ

Hence Rμνρσ ¼ RμνρσðgÞ and

Rμν ¼ RμνðgÞ − ∂μσ∂νσ þ∇μ∂νσ;

RTT ¼ −∂μσ∇μσ þ∇2σ;

R ¼ RðgÞ − 2∂μσ∇μσ þ 2∇2σ: ð58Þ

A short calculations gives

CM
NPQC

NPQ
M ¼ 4RTμTνRTμTν þ RμνρσRμνρσ

−
4

3
RμνRμν −

4

3
RTTRTT þ 1

6
R2; ð59Þ

with indices μ; ν; ' ' ' raised and lowered with the metric gμν.
Substituting Eqs. (57) and (58) into (59) a tedious but
straightforward calculation gives

ffiffiffi
g

p
CM
NPQC

NPQ
M ¼ ffiffiffi

g
p

'
RμνρσðgÞRμνρσðgÞ − 2RμνðgÞRμνðgÞ þ 1

3
R2ðgÞ

(
þ ffiffiffi

γ
p

'
2

3
RμνðγÞRμνðγÞ − 1

6
R2ðγÞ

(
; ð60Þ

where all the terms in the second bracket are defined with respect to the metric γμν ¼ e2σgμν, which is also used there to raise
and lower indices. Notice that the first term is proportional to the Weyl anomaly termW2 ¼ ðRμνρσRμνρσ − 2RμνRμν þ 1

3R
2Þ.

We can therefore recall the definition τ ¼ −σjy¼1 and rewrite SW as

SW ¼ α
Z

d4x
Z

zIReτ

L

dT
T

'
ffiffiffi
g

p
W2 þ ffiffiffi

γ
p

"
2

3
RμνðγÞRμνðγÞ − 1

6
R2ðγÞ

#(

¼ 64α
Z

d4x
ffiffiffi
g

p
τW2 þ α

Z
d4x

Z
zIReτ

L

dT
T

ffiffiffi
γ

p
"
2

3
RμνðγÞRμνðγÞ − 1

6
R2ðγÞ

#
: ð61Þ

The first term is the Weyl tensor contribution to the anomaly. To compute the last term we transform back from T to z using
dT ¼ ðΩ−1 − zΩ−2∂zΩÞdz − zΩ−2∂μΩdxμ. Setting z ¼ zIRy, the second term in (61) becomes

α
Z

1

L=zIR

dy
y

Z
d4x

ffiffiffi
γ

p
N
"
2

3
γμργνσGμνðγÞGρσðγÞ − 1

6
½γμνGμνðγÞ&2

#
: ð62Þ

This action vanishes when GμνðγÞ ¼ 0 so it can be canceled up by a redefinition of the metric hμν in Eq. (30). Concretely,
we set

hμν ¼ h̄μν þ Δhμν ¼ h̄μν þ
z2IRy

2

Ω2N
½VGμνðγÞ þ BγμνGðγÞ&; ð63Þ
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where h̄μν solves Eq. (33). Substituting in (30) the linear
term in Δhμν vanishes and, discarding terms of higher order
in zIR we get the additional OðΔhμνÞ2 term

c
zIR4

Z
1

L=zIR

dy
y3

Z
d4x

ffiffiffiffiffiffi−gp Ω4

4N

"
dΔh
dy

dΔh
dy

−
dΔhμν

dy
dΔhμν
dy

#

¼ c
Z

1

L=zIR

dy
y3

Z
d4x

ffiffiffiffiffiffi−γp ½V2GμνðγÞ2

− ðV2 þ 6VBþ 12B2ÞGðγÞ2&: ð64Þ

Hence V ¼ ( α
c

ffiffiffi
6

p
=3, B ¼ ∓ α

c

ffiffiffi
6

p
=12 so we need α > 0.

When translated into the coefficients of the general
anomaly, hTμ

μi¼c0W2−aE, it means c0 > a. Presumably
the other sign could be dealt with by studying the 5D Euler
density (Lovelock) action as in Ref. [24].
We note that the departure from the a ¼ c0 can also

be achieved by introducing the bulk 5D Gauss-Bonnet
term [23]. In this case, similarly to the case of the 5DWeyl-
tensor square considered above, one would be introducing
in the bulk another scale below M5 at which the 5D theory
would become strongly coupled (or else these 5D terms
would have to be suppressed by M5, in which case such
terms cannot be differentiated from generic terms emerging
from quantum gravity at M5.)
In the next section we will discuss a framework in a

weakly coupled theory that enables to relax the condi-
tion a ¼ c0.

B. Subleading terms from a boundary-localized QFT

There is another way for the theory to depart from the
a ¼ c0 limit. Suppose there is a 4D boundary QFT localized
on a positive tension brane. This QFT is coupled to the
metric ĝμνðx; z ¼ 0Þ ¼ gμνðxÞ. Let us integrate out the
boundary QFT in the path integral, and use dimensional
regularization to deal with the divergences. This would
make the brane world-volume to become D ¼ 4 − 2δ
dimensional, with δ → 0 to be taken after all the diver-
gences are subtracted. The result of this calculation—with
the massless limit taken at the very end—has long been
known (see, Duff’s work in [1] and an overview in [25]), it
is proportional to

Γð2−D=2Þ
Z

dDx
ffiffiffiffiffiffi−gp ðabEðgÞ−cbðR2

μναβ−2R2
μνþR2=3ÞÞ;

ð65Þ

where Γ is the Euler gamma function, E is the Euler
(Gauss-Bonnet) invariant, E ¼ R2

μναβ − 4R2
μν þ R2, ab and

cb are calculable coefficients, and in general ab ≠ cb. The
combination of the curvature square invariants proportional
to cb combines into the Weyl tensor squared only after the
δ → 0 limit is taken. Since the term (65) is localized on
the UV brane, it will have to be added to the holographic

4D action. This would shift the holographic theory away
from the a ¼ c0 limit, to atot ≠ ctot, where atot ¼ aþ ab
and ctot ¼ c0 þ cb. For simplicity, we will focus on the E
term in (65), while requiring a QFT that has ab not equal
to cb.
As we mentioned earlier, it is known that the trace of

the variation of (65) with respect to g gives the right trace
anomaly equation after taking the limit δ → 0. If so,
then (65) should also contain the Riegert action in the
δ → 0 limit. This can be shown under the assumption of
validity of the analytic continuation to negative values of δ,
and by representing the interval of the 4þ n dimensional
theory as,

d4þns ¼ gμνðxÞdxμdxν þ e2τðxÞd2nz; ð66Þ

where n ¼ −2δ. Then, taking the limit n ¼ −2δ → 0, the
divergent coefficient proportional to 1=δ coming from the Γ
function is canceled by the terms proportional to δ coming
from E and the resulting finite term is exactly the Riegert
term written in terms of the metric g and the scalar τ [26]
(see, also [6] and references therein)
Z

d4x
ffiffiffiffiffiffi−gp ðτEþ 4Gμν∇μτ∇ντ − 4ð∇2τÞð∇τÞ2 þ 2ð∇τÞ4Þ:

ð67Þ

Furthermore, using g ¼ e2τḡ in (67), one recovers the
a-terms of (4).
To summarize, with the help of a localized QFT on the

positive tension RS brane one obtains a weakly coupled
completion for the trace anomaly action with atot ≠ ctot.

VII. DISCUSSION

The location of the IR brane in the 5D theory considered
in the present work is not stabilized. One could introduce
a potential to stabilize its location in the 5th dimension, and
stabilize the radion via the Goldberger-Wise (GW) mecha-
nism [15]; however, this would in general alter the ability
of the resulting theory to correctly recover the 4D trace
anomaly equation. That said, if the scales in the GW
potential are much smaller than M̄, the resulting equation
could give a good approximation to the trace anomaly
equation [4]. Without the GW mechanism, the vacuum
expectation value of the Φ field is a modulus. This VEV
sets the value of the scale M̄, which is not dynamically
determined. As we discussed, M̄ has to be significantly
below the Planck scale for the trace anomaly effective
field theory to be distinguished from other higher dimen-
sional terms, which are suppressed by the Planck scale.
Furthermore, 1=M̄ serves as a constant determining the
self-interactions of the radion, which in the 4D holographic
theory can be regarded as a dilaton of spontaneously broken
conformal symmetry.
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What are the couplings of the matter fields to the metric
and dilaton? The answer depends on where the matter fields
are assumed to be placed in 5D. If they are localized on the
IR brane, as they are in the RS1 scenario for the sake of
solving the hierarchy problem, then matter would coupe to
the metric times Ω4. Because of the presence of a long-
range radion such a theory would be ruled out observa-
tionally in our case. In the holographic approach adopted in
this work it is more natural to assume that matter—that is
the weakly coupled matter that we have added to the
strongly coupled CFT—is localized on the UV brane, in
which case it would couple to the metric g. Based on
symmetry considerations matter was coupled in [7] to the
metric ĝ ¼ gð1 −Φ2=M2Þ. Since M ¼ MPl=

ffiffiffi
2

p
≫ M̄, the

difference between coupling to g and ĝ is small.
In either case, there is a fifth force produced by the long-

range dilaton. If the matter couples to g the coupling to the
dilaton appears at the linear level and its strength is
proportional to ðM̄=MÞ2, while in the case when matter
couples to ĝ the coupling to dilaton only emerges at the
nonlinear level and its strength is proportional to aðM̄=MÞ2,
as shown by Tsujikawa [27]–who has recently found a

black hole solution in the effective trace anomaly
action and explicitly calculated the corrections to the
Schwarzschield geometry proportional to aðM̄=MÞ2.
Comparison of these predictions with observational data
will likely impose strong bounds on the value of the
scale M̄.
While the 5D construction serves the point of identifying

a completion of the 4D effective theory above its strong
scale M̄, the 4D effective theory should still be a more
convenient tool for practical calculations: in general, it is
significantly easier to work with 4D differential equations
(in many symmetric cases being ordinary differential
equations) rather than to work with 5D partial differential
equations.
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