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We describe and solve three puzzles arising in covariant and supertranslation-invariant formulas for the
flux of angular momentum and other Lorentz charges in asymptotically flat spacetimes: (i) Supertranslation
invariance and covariance imply invariance under spacetime translations; (ii) the flux depends on redundant
auxiliary degrees of freedom that cannot be set to zero in all Lorentz frames without breaking Lorentz
covariance; (iii) supertranslation-invariant Lorentz charges do not generate the transformations of the
Bondi mass aspect implied by the isometries of the asymptotic metric. In this Letter, we solve the first two
puzzles by presenting covariant formulas that unambiguously determine the auxiliary degrees of freedom
and clarify the last puzzle by explaining the different roles played by covariant and canonical charges. Our
construction makes explicit the choice of reference frame underpinning seemingly unambiguous results
presented in the current literature.
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Introduction.—The problem of a proper definition of
angular momentum and boost charges for asymptotically
flat spacetimes in general relativity has existed since it was
discovered in [1–4] that the metrics of spacetimes allowing
for gravitational radiation enjoy an infinite-dimensional
asymptotic symmetry algebra. This is the Bondi-Metzner-
Sachs (BMS) algebra, which contains the Poincaré algebra
as a proper but not normal subalgebra. The Poisson brackets
of angular momentum with supertranslations, which are an
infinite-dimensional Abelian subalgebra of BMS, do not
vanish; consequently, the total angular momentum and the
flux of angular momentum through null infinity can be
changed by a gravitational wave of infinite wavelength.
Since such a wave cannot be detected by any finite-size
observer, the ambiguity due to BMS seems to preclude a
meaningful definition of angular momentum and the other
Lorentz charges in general relativity (GR). Problems inher-
ent in defining angular momentum in GR were noticed by
Penrose as early as 1964 [5].
The problem is even sharper in quantum gravity, because

it implies that two states differing by a supertranslation
have the same energy, so, in particular, the vacuum state is
infinitely degenerate. This can be seen as follows: Denote
schematically with Sa the generators of supertranslations
and with Jμν (μ, ν ¼ 0, 1, 2, 3) the Lorentz generators; then

the commutator ½Sa; Jμν# is nonzero, so two zero-energy
states differing by a supertranslation have different angular
momenta. Explicitly,

Jijj0i¼0⇒Jij½1þcaSa#j0i¼½Jij;Sa#j0i≠0;i; j¼1;2;3;

ð1Þ

so j0i and ½1þ caSa#j0i are different (vacuum) states. In
well-defined quantum field theories in flat spacetime and in
holographic theories of quantum gravity in anti–de Sitter
(AdS) space, instead, the vacuum is unique. The apparent
nonuniqueness of vacuum in quantum field theories with
spontaneously broken symmetries is resolved, because the
physical Hilbert space decomposes into superselection
sectors [6], while an infinity of states at zero energy
are excluded in holographic theories in AdS, because the
dual CFT has a unique vacuum. Besides, infinite vacuum
degeneracy would violate generalizations of the Bekenstein
bound [7] such as [8]. The previous observations suggest
that the Jμν’s appearing in the BMS algebra may not be the
correct operators to associate to angular momentum and
boosts. Other, unambiguous quantities should be found.
Life is easy in Minkowski spacetime, because the

Lorentz generators can be defined as Jμν ¼
R
Σ nρT

ρ½μxν#,
where Σ is a complete Cauchy surface with timelike normal
nρ. Unfortunately, this formula becomes ill defined in
general relativity and must be substituted by an integral
over a 2-surface at infinity, but this is precisely what
introduces supertranslation ambiguities.
The problems we have outlined are not merely formal.

In numerical general relativity, ambiguities due to
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supertranslations have been shown to affect the computa-
tion of waveforms [9,10] that are essential tools for
detection and study of black hole mergers. The danger of
supertranslation-dependent quantities is that they mix the
effect of unobservable background noise due to very long
waves to the signal due to a given physical process
(gravitational scattering, black hole mergers, etc.). This
danger manifest both at the level of formal definitions and
in dealing with numerical simulations that by construction
have finite resolution. Finding unambiguous conserved
charges and fluxes in general relativity is, therefore, a serious
problem, all the more urgent now after computational
advances in general relativity (see, e.g., [11]) and observa-
tional discoveries [12].
In fact, the first direct detection of gravitational waves

from black hole mergers [12] renewed interest in the quest
for a better definition of symmetries and conserved charges
in asymptotically flat 4D spacetime. Novel supertransla-
tion-invariant definitions for angular momentum and angu-
lar momentum flux as well as for charges and fluxes of the
other Lorentz algebra generators have recently appeared in
the literature. To our knowledge, the first supertranslation-
invariant formula for angular momentum was given in
Ref. [13]. In fact, Ref. [13] defines the Bondi charge for
angular momentum at any retarded time, so it also provides
a definition of flux. References [14,15] give an independent
definition of supertranslation-invariant Lorentz Bondi
charges which, while agreeing with [13] at retarded time
u → −∞, differ at finite u. References [16,17] provide
formulas for supertranslation-invariant Lorentz charges and
their fluxes based on a canonical formalism that applies
equally well to the quantum theory.
The angular momentum flux given in [13,16,17] begins

at OðG3Þ in a perturbative expansion in powers of the
Newton constant G. This is in disagreement with explicit
computation of mechanical angular momentum flux
done by several groups with different methods. In particular,
both [18] using techniques developed in [19] and [20–26]
agree on the presence of a nonvanishing angular momentum
flux at OðG2Þ. The origin of this discrepancy was traced
back in [27] to the difference between the supertranslation
frame used in perturbative calculation of gravitational
scattering and a “canonical” frame in which the Bondi
angular momentum at u ¼ −∞ agrees [28] with the
Arnowitt-Deser-Misner (ADM) definition [29].
Reference [30] employs the results of [27] to define, to
all orders inG, a supertranslation-invariant angular momen-
tum flux that agrees toOðG2Þwith perturbative calculations
and is defined only in term of asymptotic metric data on I .
All supertranslation-invariant formulas for the Lorentz

charges flux depend on Cðu;ΘÞ, the “electric” component
of the shear CABðu;ΘÞ. These quantities are defined in the
next section. The shear is independent of the first two
harmonics of Cðu;ΘÞ, while the invariant flux depends
on them. This fact requires an independent choice of the

l ¼ 0, 1 harmonic components of Cðu;ΘÞ≡P∞
l¼0 ×P

−l≤m≤m Cl;mðuÞYlmðΘÞ. The simplest choice would be
to set them to zero in all Lorentz frames. Besides being
aesthetically unpleasant, this choice is inconsistent with
Lorentz covariance, because we will see that boosts mix the
higher harmonics of C with the l ¼ 0, 1 ones. So, neither
the Lorentz charges flux in [14,15] nor those in [30] are
Lorentz covariant unless a new prescription is found. The
effect of this noninvariance was explicitly verified in the
case of two-particle scattering in [31], where it was shown
that, while the charge defined in [30] agrees with pertur-
bative calculations in the center of mass rest frame of the
two particles, it does differs in the rest frame of one of the
two particles.
In fact, all existing proposals for a supertranslation-

invariant flux of Lorentz charges share an even more serious
flaw: Any covariant formula for the flux (or the Lorentz
charge) is a Lorentz tensor, and no such quantity can be
supertranslation invariant without being also invariant under
spacetime translations. The proof follows simply from the
structure of the BMS algebra and is valid also for the
quantum BMS algebra. So, whether we use the formulas
of [13–16] or [30], one thing is clear: Whatever we are
computing is an angular momentum defined with respect to
a particular choice of the origin of coordinates.
In this Letter, we show that the need to define an

“intrinsic” angular momentum flux depending on an
independently prescribed origin of coordinates is not a
problem but rather the feature that allows us to solve the
puzzles due to the ambiguity in the choice of Clm, l ¼ 0, 1,
and to the lack of covariance. These are not mere technical-
ities but foundational problems that have so far precluded a
covariant and unambiguous definition of angular momen-
tum in general relativity and have also introduced redun-
dant quantities, Clm, l ¼ 0, 1, without apparent physical
meaning. Our Letter instead shows that they do have a clear
meaning; we will show that they define the origin of the
spacetime coordinate system. Angular momentum depends
on the point from which it is computed, but the quantities
that determine that point are nowhere to be found among
the asymptotic components of the metric. Wewill show that
the “redundant” s- and p-wave components of the electric
shear are precisely those “missing” quantities.
We begin by defining our notations and deriving the key

result that supertranslation-invariant definitions of the flux
must also be spacetime translation invariant. Next, we
derive fully covariant formulas for the charges and fluxes
defined in Refs. [14,15]. Key to the covariantization is the
use of the transformation law of the boundary graviton
under boosts, together with covariant and supertranslation-
invariant definitions of the center of mass frame, which are
used to determine the first two harmonics of the boundary
graviton. Finally, we give a physical interpretation to the
supertranslation-invariant charges we previously defined,
show that differences among different prescriptions do not
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manifest themselves until OðG3Þ, and show how current
calculations found in the literature implicitly use the same
choice of reference frame as our own.
We also solve the third puzzle by clarifying the differ-

ence between supertranslation-invariant charges and the
generators of asymptotic symmetries.
Notations and transformation properties of covariant

quantities.—The metric near future null infinity Iþ in
Bondi-Sachs coordinates is [1–4]

ds2 ¼ −du2 − 2dudrþ r2
!
hAB þ CAB

r

"
dΘAdΘB

þDACABdudΘB þ 2m
r

du2 þ 1

16r2
CABCABdudr

þ 1

r

!
4

3
ðNA þ u∂AmÞ − 1

8
∂AðCBDCBDÞ

"
dudΘA

þ 1

4
hABCCDCCDdΘAdΘB þ ' ' ' ; ð2Þ

where the mass aspect mðu;ΘÞ is a scalar, the angular
momentum aspect NAðu;ΘÞ is a vector, and the shear
CABðu;ΘÞ is a symmetric traceless tensor. All these
quantities are defined on the celestial sphere with coor-
dinates ΘA and round metric hAB and also depend on the
retarded time u. The dots in (2) denote subdominant terms
in 1=r. The coordinate system in Eq. (2) is invariant under

the asymptotic symmetries u → uþ fðΘÞ, called super-
translations [2]. Energy, momentum, and Lorentz charges
are defined in terms of m, NA, the l ¼ 1 spherical
harmonics Y⃗, and the six conformal Killing vectors YA

of the celestial sphere [2]:

EðuÞ ¼ 1

4πG

Z
d2Θ

ffiffiffi
h

p
mðu;ΘÞ;

P⃗ðuÞ ¼ 1

4πG

Z
d2Θ

ffiffiffi
h

p
Y⃗mðu;ΘÞ;

JYðuÞ ¼
1

8πG

Z
d2Θ

ffiffiffi
h

p
YANAðu;ΘÞ: ð3Þ

By definition, the conformal Killing vectors obey
DAYB þDBYA ¼ hABDCYC. For rotations DCYC ¼ 0,
while for boosts DCYC is an l ¼ 1 harmonic. In the latter
case, we can write YA ¼ DAψ with ψ obeying
DADAψ ¼ −2ψ . When it is well defined, the total energy
flux ΔE≡ Eðþ∞Þ − Eð−∞Þ is invariant under super-
translations. This is not true for the flux of the Lorentz
charges; so, in particular, the angular momentum flux
ΔJY ≡ JYðþ∞Þ − JYð−∞Þ can be changed by a
supertranslation.
The Lorentz Bondi charges at retarded time u defined

in [15] are

JCWWY
Y ðuÞ ¼ JYðuÞ − jY ½mðuÞ; CðuÞ#;

jY ½mðuÞ; CðuÞ# ¼ 1

8πG

Z
d2Θ

ffiffiffi
h

p
YA½3mðu;ΘÞDACðu;ΘÞ þDAmðu;ΘÞCðu;ΘÞ#

¼ 1

4πG

Z
d2Θ

ffiffiffi
h

p
mðδ−1=2Y CÞ ¼ −

1

4πG

Z
d2Θ

ffiffiffi
h

p
ðδ3=2Y mÞC; ð4Þ

where

δwYF≡ wD · YF þ Y ·DF: ð5Þ

The “electric shear” Cðu;ΘÞ is defined by

DADBCABðu;ΘÞ ¼ D2ðD2 þ 2ÞCðu;ΘÞ: ð6Þ

The operator D2ðD2 þ 2Þ is diagonalized by spherical
harmonics, on which D2ðD2þ 2ÞCl ¼ lðl2− 1Þðlþ 2ÞCl,
so the l ¼ 0, 1 harmonics in C do not appear at all in the
asymptotic metric. The constraint relating the change in the
mass aspect to the change in the electric shear is

ΔmðΘÞ¼1

4
D2ðD2þ2ÞΔCðΘÞ−

Z
þ∞

−∞
duTuuðu;ΘÞ; ð7Þ

ΔCðΘÞ ¼ Cðþ∞;ΘÞ − Cð−∞;ΘÞ;
ΔmðΘÞ ¼ mðþ∞;ΘÞ −mð−∞;ΘÞ: ð8Þ

Here, Tuu ¼ 1
8NABNAB þ limr→∞r2TM

uu, with TM ¼ matter
stress-energy tensor and NAB ≡ ∂uCAB is the Bondi
news. In gravitational scattering NAB ¼ OðG2Þ so, through
OðG2Þ, ΔmðΘÞ¼ 1

4D
2ðD2þ2ÞΔCðΘÞ. This equation

shows a further ambiguity in Cl¼0;1ðu;ΘÞ: Their depend-
ence on the retarded time u is completely arbitrary. They
are undetermined even if the initial value for all harmonics
of C is given at u ¼ −∞.
We now prove that a supertranslation-invariant tensor

must also be spacetime translation invariant by computing
the commutator

δYδfΔJCWWY
Z − δfδYΔJCWWY

Z ¼ δ½Y;f#ΔJCWWY
Z ; ð9Þ

with f a supertranslation and Y a Lorentz boost. The
transformation of the flux is determined by Lorentz
covariance to be δYΔJCWWY

Z ¼ ΔJCWWY
½Y;Z# , where ½Y; Z#≡

LYZ − LZY with LW the Lie derivative along the vectorW.
Invariance under supertranslations, therefore, implies that
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the left-hand side of Eq. (9) vanishes. The right-hand side is
the transformation of the flux under ½Y; f#≡ δ−1=2Y f.
A boost can be written as YA ¼ DAψ with ψ an l ¼ 1
harmonic obeying D2ψ ¼ −2ψ . So, for an l ¼ 2 super-
translation obeying D2f ¼ −6f, we find

½Y; f# ¼ −
1

2
fðD2ψÞ þ 1

2
D2ðfψÞ þ fψ þ 3fψ : ð10Þ

The product fψ contains an l ¼ 1 harmonic on
which D2ðfψÞjl¼1 ¼ −2ðfψÞjl¼1; therefore, ½Y; f#jl¼1 ¼
4ðfψÞjl¼1 ≠ 0 and the boost of a supertranslation is a
nonzero spacetime translation.
The flux ΔJCWWY

Y ¼ JCWWY
Y ðþ∞Þ − JCWWY

Y ð−∞Þ is
manifestly translation and supertranslation invariant if
we define the transformation law of Cðu;ΘÞ to be

Cðu;ΘÞ → C0ðu;ΘÞ ¼ Cðu;ΘÞ þ fðΘÞ ð11Þ

for any function fðΘÞ. Its l ¼ 0, 1 harmonics are spacetime
translations, so the l ¼ 0, 1 harmonics of Cð−∞;ΘÞ
represent the choice of origin for the coordinate system
used to define the angular momentum.
The upshot of this analysis is that any supertranslation

invariant flux is necessarily an intrinsic flux, defined with
respect to an origin of the coordinate system, which is
equivalent to a choice of Cjl for l ¼ 0, 1. An independent,
covariant prescription for the l ¼ 0, 1 components of the
boundary graviton is necessary to define the flux.
We cannot simply set Cjl≤1 ¼ 0 in all Lorentz frames,

because this choice is inconsistent with Lorentz trans-
formations. The problem is that the lth harmonic of the
boundary graviton transforms under boosts exactly like
a supertranslation; therefore, in parallel with Eq. (10),
we find

δ−1=2Y C ¼ −
1

2
D · YCþ Y ·DC ¼ ψCþDψ ·DC

¼ 1

2
½D2 þ 4þ lðlþ 1Þ#ðψClÞ: ð12Þ

The same argument as given after Eq. (10) shows that
δ−1=2Y C generically contains a nonvanishing l ¼ 1 harmonic.
Lorentz-covariant definitions of angular momentum and

boost charges and fluxes.—We found in the previous
section that an independent definition for CðuÞjl≤1 is
necessary to completely define ΔJCWWY

Y . The prescription
should maintain covariance and should not introduce an
additional arbitrariness in the flux. Here, we propose a
simple recipe, which is covariant by construction. We also
present a small variation on the prescription that we later
prove to coincide with the previous one to OðG2Þ.
Let us consider the flux, computed in the initial center of

mass rest frame (CMRF), which is defined by the condition
m−

1;m ≡ R
d2Θ

ffiffiffi
h

p
Y1mmð−∞;ΘÞ ¼ 0. The definition of the

frame is not complete, because the origin of the coordinate

system can be translated arbitrarily in space and time. We
remove this arbitrariness by requiring that in the CMRF the
initial boost charge vanish. We denote by (u-dependent
quantities evaluated at (∞ and impose

J−Ȳ −jȲ ½m−;C−#¼0; for allȲA¼boost¼DAψ ; D2ψ¼−2ψ :

ð13Þ

These are three conditions that uniquely determine the three
components of Cjl¼1. Explicitly, we use Eq. (4) and

δ3=2Y m−
l ¼ 3

2
D · Ym−

l þ Y ·Dm−
l

¼ −3ψm−
l þDψ ·Dm−

l

¼ 1

2
½D2 − 4þ lðlþ 1Þ#ðψm−

l Þ;

ðD2 þ 2Þðψm−
2 Þjl¼1 ¼ 0; ð14Þ

to obtain

jȲ ½m−; C−jl≤1# ¼ jȲ ½m−jl≤1; C−jl≤1#

¼ 3m−
0

8πG

Z
d2Θ

ffiffiffi
h

p
Dψ ·DC−jl≤1

¼ 3m−
0

4πG

Z
d2Θ

ffiffiffi
h

p
ψ · C−jl≤1: ð15Þ

Equation (13) then reduces to

3m−
0

4πG
C−
1m¼J−ȲA −jȲA ½m−;C−jl>1#; ȲA¼DAY1−m: ð16Þ

Under both supertranslations and spacetime translations
and for any conformal Killing vector Y, J−Y →
J−Y þ ð1=4πGÞ

R
d2Θ

ffiffiffi
h

p
m−δ−1=2Y f, so J−Y − jY ½m−; C−# is

by construction invariant. Our definition specifies the
origin of the system of coordinates (up to a time trans-
lation). We are free to setCjl¼0 to whichever value we want,
and we will choose Cjl¼0 ¼ 0.
To extend our definition to any Lorentz frame with

celestial sphere coordinates Θ ¼ ðθ;ϕÞ, we choose three
conformal Killing vectors ŶA, related to the pure boosts of
the rest frame with coordinates Θ̄ ¼ ðθ̄; ϕ̄Þ by

ŶAðΘÞ ¼ ∂gA

∂Θ̄B Ȳ
BðΘ̄Þ; ȲB ¼ ∂ψ̄

∂Θ̄B ; ð17Þ

evaluated at ΘA ¼ gAðΘ̄Þ. We fix the Lorentz transforma-
tion gA from the CMRF to the Lorentz frame moving with
velocity β⃗ by requiring that it is a pure boost along β⃗.
Covariance is preserved by this choice, as it is most easily
seen by writing the Lorentz charge as an antisymmetric
matrix J, the boost from the CMRF as a pseudo-orthogonal
matrix Bðβ⃗Þ, and the constraint as
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Jy ¼ 0; y ¼ Bðβ⃗Þȳ; ȳ ¼

0

BBB@

1

0

0

0

1

CCCA: ð18Þ

This definition is covariant, because any Lorentz trans-
formation can be decomposed as L ¼ BR, with B a pure
boost and R a pure rotation. In the CMRF, Rȳ ¼ ȳ so
Lȳ ¼ Bȳ. Definition (18) is also unique, because Lorentz

transformation L to a frame moving with velocity β0
!

maps
y into y0 ¼ LBðβ⃗Þy. This is not a pure boost from the
CMRF, but the difference is a pure rotation of the CMRF,

Bð−β0
!
ÞLBðβ⃗Þ ¼ R; hence, LBðβ⃗Þy ¼ Bðβ0

!
ÞRy ¼ Bðβ0

!
Þy.

So, a translation, supertranslation, and covariant definition
of the Lorentz charges is

J−
Y ¼ J−Y − jY ½m−; C−#; ð19Þ

where the l ¼ 0, 1 harmonics of the boundary graviton are
given by solving the equation

J−
Ŷ
− jŶ ½m−; C−# ¼ 0: ð20Þ

To define the flux, we have several possibilities. For all
of them,

Jþ
Y ¼ JþY − jY ½mþ; Cþ#; ΔJY ¼ Jþ

Y −J−
Y : ð21Þ

The difference is in the choice of the equations for Cjl≤1.
Two simple choices are (A) set Cþjl≤1 ¼ C−jl≤1 and
(B) solve JþỸ − jỸ ½mþ; Cþ# ¼ 0, where ỸA is defined by
Lorentz-transforming pure boosts defined in the final center
of mass rest frame. We show in the next section that these
two definitions coincide to OðG3Þ.
Interpretation of the invariant charges and fluxes.—We

proposed a Lorentz-covariant, supertranslation-invariant
definition of the Lorentz Bondi charges at u ¼ (∞, which
differs from [14,15] only in the condition used to fix the
l ¼ 0, 1 components of the boundary graviton. By con-
struction, both J(

Y are invariant under supertranslations, so
we can compute them by changing coordinates in the
nonradiative far past and far future regions to set C(

AB ¼ 0:

ΔJY ¼ JYðþ∞ÞjCþjl>1¼0 − JYð−∞ÞjC−jl>1¼0: ð22Þ

So the covariant, supertranslation-invariant flux reduces to
the difference of canonical Bondi charge at þ∞, computed
in the frame where the angular metric at u ¼ þ∞ is
hAB þOð1=r2Þ, minus the canonical Bondi charge at
u ¼ −∞, computed in the frame where the angular metric
at u ¼ þ∞ is also hAB þOð1=r2Þ. References [27,28]
argue that hAB þOð1=r2Þ is the frame where the Bondi
charge reduces to the ADM charge. This identification
suggests a very natural interpretation of ΔJY : It is the
canonical charge measured after a gravitational scattering

in a “round metric” frame minus the initial canonical
charge, also measured in a round metric frame. The
reference frames are fixed by requiring that the initial
metric is round before the scattering occurs and then after
the scattering has occurred by requiring that the final metric
is also round. This procedure “forgets” the initial frame
fixing. The interpretation of the flux and its form is
essentially the same as in [14,31–33] once the subtleties
due to Lorentz covariance and covariant subtraction of the
low-l harmonics in C( are properly taken into account
using Eq. (20) for C−jl≤1 and either prescription (A) or (B)
for Cþjl≤1. The Lorentz-covariant prescription (20) can be
used also to covariantize the flux defined in [16]. It differs
from ΔJY by terms proportional to the gravitational
memory Cþ − C−. This computation was performed in
the CMRF in [31,32], but the role of gravitational memory
in the definition of angular momentum in general relativity
was noticed long before, e.g., in [34]. We will expand on
this question in a future publication [35].
The difference between prescriptions (A) and (B) can be

seen most clearly for the flux of angular momentum ΔJ⃗.
Prescription (A) computes the difference between initial
and final angular momenta in the initial CMRF. So it
includes a term due to the motion of the final CMRF,
namely, ΔJ⃗ ¼ ΔJ⃗intrinsic þ a⃗ × ΔP⃗, with a⃗ the displace-
ment of the origin of the final CMRF with respect to
the initial CMRF. Prescription (B) instead gives
ΔJ⃗ ¼ ΔJ⃗intrinsic. The difference between the two prescrip-
tions amounts to a term proportional to ΔP⃗, i.e., the change
of the center of mass momentum due to gravitational
radiation. Because of the constraint equation (7), the
definition of momentum (3), and Tuu¼OðG4Þ, ΔP⃗¼
OðG3Þ so prescriptions (A) and (B) agree to OðG2Þ.
We defined the l ¼ 0, 1 harmonics of C by requiring that

the boost charges vanish in the initial CMRF. This is the
same prescription used in, e.g., Ref. [25], which considered
the scattering of two particles of initial 4-momenta pμ

i ,
i ¼ 1, 2, and impact parameters bi obeying pi · bj ¼ 0 for
all i, j. In the CMRF these constraints are satisfied by p1 ¼
ðE1; p; 0; 0Þ and p2 ¼ ðE2;−p; 0; 0Þ, so b1 ¼ ð0; 0; y1; z1Þ
and b2 ¼ ð0; 0; y2; z2Þ, and the nonzero boost charges
are J02 ¼ E1y1 þ E2y2 and J03 ¼ E1z1 þ E2z2. Setting
J02 ¼ J03 ¼ 0, we reproduce the particular solution of
the constraints chosen in [25]. Similar choices are done in
other papers on gravitational scattering. They are natural
because they set the origin of coordinates at the center of
mass of the incoming particles.
Difference between two consistent definitions of Lorentz

charges.—By construction, any definition of supertransla-
tion-invariant Lorentz generators JinvY , so, in particular,
JinvY ¼ J−

Y , makes them commute with the l > 1 harmonics
of the mass aspect m−ðΘÞ:

½JinvY ; m−ðΘÞjl>1# ¼ 0: ð23Þ
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On the other hand, the transformation law of m− can be
found by performing a Lorentz transformation on the
asymptotic metric (2). It is given by Eq. (5) with
w ¼ 3=2, from which it is obvious that neither boosts
nor rotations vanish on ml>1.
We must then conclude that, while the supertranslation-

invariant Lorentz generators are useful quantum
operators—in fact, essential for defining unambiguously
the angular momentum of the vacuum as well as other
quantum numbers—they should not be used to generate
Lorentz transformations on the fields. In fact, the super-
translation-invariant Lorentz charges are elements of the
universal enveloping algebra of an enlarged BMS algebra
that includes logarithmic supertranslations. Their explicit
form is given in Eq. (9.7) in Ref. [36].
In this Letter, we defined the covariantization of the charge

JCWWY
Y ; in a future work, we will expand on the results

presented here and discuss the covariantization and inter-
pretation of other charges, such as those given in [16,30].
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