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We describe and solve three puzzles arising in covariant and supertranslation-invariant formulas for the
flux of angular momentum and other Lorentz charges in asymptotically flat spacetimes: (i) Supertranslation
invariance and covariance imply invariance under spacetime translations; (ii) the flux depends on redundant
auxiliary degrees of freedom that cannot be set to zero in all Lorentz frames without breaking Lorentz
covariance; (iii) supertranslation-invariant Lorentz charges do not generate the transformations of the
Bondi mass aspect implied by the isometries of the asymptotic metric. In this Letter, we solve the first two
puzzles by presenting covariant formulas that unambiguously determine the auxiliary degrees of freedom
and clarify the last puzzle by explaining the different roles played by covariant and canonical charges. Our
construction makes explicit the choice of reference frame underpinning seemingly unambiguous results

presented in the current literature.
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Introduction.—The problem of a proper definition of
angular momentum and boost charges for asymptotically
flat spacetimes in general relativity has existed since it was
discovered in [1-4] that the metrics of spacetimes allowing
for gravitational radiation enjoy an infinite-dimensional
asymptotic symmetry algebra. This is the Bondi-Metzner-
Sachs (BMS) algebra, which contains the Poincaré algebra
as a proper but not normal subalgebra. The Poisson brackets
of angular momentum with supertranslations, which are an
infinite-dimensional Abelian subalgebra of BMS, do not
vanish; consequently, the total angular momentum and the
flux of angular momentum through null infinity can be
changed by a gravitational wave of infinite wavelength.
Since such a wave cannot be detected by any finite-size
observer, the ambiguity due to BMS seems to preclude a
meaningful definition of angular momentum and the other
Lorentz charges in general relativity (GR). Problems inher-
ent in defining angular momentum in GR were noticed by
Penrose as early as 1964 [5].

The problem is even sharper in quantum gravity, because
it implies that two states differing by a supertranslation
have the same energy, so, in particular, the vacuum state is
infinitely degenerate. This can be seen as follows: Denote
schematically with S the generators of supertranslations
and with J* (4, v = 0, 1, 2, 3) the Lorentz generators; then
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the commutator [S%, J#] is nonzero, so two zero-energy
states differing by a supertranslation have different angular
momenta. Explicitly,

JU10) =0 = Ji[1+¢,8|0) = [J7,89]|0) #£0.i, j=1,2.3,
(1)

so |0) and [1 + ¢,59]|0) are different (vacuum) states. In
well-defined quantum field theories in flat spacetime and in
holographic theories of quantum gravity in anti-de Sitter
(AdS) space, instead, the vacuum is unique. The apparent
nonuniqueness of vacuum in quantum field theories with
spontaneously broken symmetries is resolved, because the
physical Hilbert space decomposes into superselection
sectors [6], while an infinity of states at zero energy
are excluded in holographic theories in AdS, because the
dual CFT has a unique vacuum. Besides, infinite vacuum
degeneracy would violate generalizations of the Bekenstein
bound [7] such as [8]. The previous observations suggest
that the J#*’s appearing in the BMS algebra may not be the
correct operators to associate to angular momentum and
boosts. Other, unambiguous quantities should be found.

Life is easy in Minkowski spacetime, because the
Lorentz generators can be defined as J# = [y in”["x”],
where X is a complete Cauchy surface with timelike normal
n,. Unfortunately, this formula becomes ill defined in
general relativity and must be substituted by an integral
over a 2-surface at infinity, but this is precisely what
introduces supertranslation ambiguities.

The problems we have outlined are not merely formal.
In numerical general relativity, ambiguities due to
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supertranslations have been shown to affect the computa-
tion of waveforms [9,10] that are essential tools for
detection and study of black hole mergers. The danger of
supertranslation-dependent quantities is that they mix the
effect of unobservable background noise due to very long
waves to the signal due to a given physical process
(gravitational scattering, black hole mergers, etc.). This
danger manifest both at the level of formal definitions and
in dealing with numerical simulations that by construction
have finite resolution. Finding unambiguous conserved
charges and fluxes in general relativity is, therefore, a serious
problem, all the more urgent now after computational
advances in general relativity (see, e.g., [11]) and observa-
tional discoveries [12].

In fact, the first direct detection of gravitational waves
from black hole mergers [12] renewed interest in the quest
for a better definition of symmetries and conserved charges
in asymptotically flat 4D spacetime. Novel supertransla-
tion-invariant definitions for angular momentum and angu-
lar momentum flux as well as for charges and fluxes of the
other Lorentz algebra generators have recently appeared in
the literature. To our knowledge, the first supertranslation-
invariant formula for angular momentum was given in
Ref. [13]. In fact, Ref. [13] defines the Bondi charge for
angular momentum at any retarded time, so it also provides
a definition of flux. References [14,15] give an independent
definition of supertranslation-invariant Lorentz Bondi
charges which, while agreeing with [13] at retarded time
u — —oo, differ at finite u. References [16,17] provide
formulas for supertranslation-invariant Lorentz charges and
their fluxes based on a canonical formalism that applies
equally well to the quantum theory.

The angular momentum flux given in [13,16,17] begins
at O(G?) in a perturbative expansion in powers of the
Newton constant G. This is in disagreement with explicit
computation of mechanical angular momentum flux
done by several groups with different methods. In particular,
both [18] using techniques developed in [19] and [20-26]
agree on the presence of a nonvanishing angular momentum
flux at O(G?). The origin of this discrepancy was traced
back in [27] to the difference between the supertranslation
frame used in perturbative calculation of gravitational
scattering and a “canonical” frame in which the Bondi
angular momentum at u = —oco agrees [28] with the
Arnowitt-Deser-Misner (ADM) definition [29].
Reference [30] employs the results of [27] to define, to
all orders in G, a supertranslation-invariant angular momen-
tum flux that agrees to O(G?) with perturbative calculations
and is defined only in term of asymptotic metric data on Z.

All supertranslation-invariant formulas for the Lorentz
charges flux depend on C(u, ®), the “electric” component
of the shear Cy3(u, ®). These quantities are defined in the
next section. The shear is independent of the first two
harmonics of C(u,®), while the invariant flux depends
on them. This fact requires an independent choice of the

I =0, 1 harmonic components of C(u,®)=3) %, x
> —i<m<m Cim ()Y, (). The simplest choice would be
to set them to zero in all Lorentz frames. Besides being
aesthetically unpleasant, this choice is inconsistent with
Lorentz covariance, because we will see that boosts mix the
higher harmonics of C with the [ = 0, 1 ones. So, neither
the Lorentz charges flux in [14,15] nor those in [30] are
Lorentz covariant unless a new prescription is found. The
effect of this noninvariance was explicitly verified in the
case of two-particle scattering in [31], where it was shown
that, while the charge defined in [30] agrees with pertur-
bative calculations in the center of mass rest frame of the
two particles, it does differs in the rest frame of one of the
two particles.

In fact, all existing proposals for a supertranslation-
invariant flux of Lorentz charges share an even more serious
flaw: Any covariant formula for the flux (or the Lorentz
charge) is a Lorentz tensor, and no such quantity can be
supertranslation invariant without being also invariant under
spacetime translations. The proof follows simply from the
structure of the BMS algebra and is valid also for the
quantum BMS algebra. So, whether we use the formulas
of [13-16] or [30], one thing is clear: Whatever we are
computing is an angular momentum defined with respect to
a particular choice of the origin of coordinates.

In this Letter, we show that the need to define an
“Intrinsic” angular momentum flux depending on an
independently prescribed origin of coordinates is not a
problem but rather the feature that allows us to solve the
puzzles due to the ambiguity in the choice of Cy,,,, [ = 0, 1,
and to the lack of covariance. These are not mere technical-
ities but foundational problems that have so far precluded a
covariant and unambiguous definition of angular momen-
tum in general relativity and have also introduced redun-
dant quantities, C;,,, [ =0, 1, without apparent physical
meaning. Our Letter instead shows that they do have a clear
meaning; we will show that they define the origin of the
spacetime coordinate system. Angular momentum depends
on the point from which it is computed, but the quantities
that determine that point are nowhere to be found among
the asymptotic components of the metric. We will show that
the “redundant” s- and p-wave components of the electric
shear are precisely those “missing” quantities.

We begin by defining our notations and deriving the key
result that supertranslation-invariant definitions of the flux
must also be spacetime translation invariant. Next, we
derive fully covariant formulas for the charges and fluxes
defined in Refs. [14,15]. Key to the covariantization is the
use of the transformation law of the boundary graviton
under boosts, together with covariant and supertranslation-
invariant definitions of the center of mass frame, which are
used to determine the first two harmonics of the boundary
graviton. Finally, we give a physical interpretation to the
supertranslation-invariant charges we previously defined,
show that differences among different prescriptions do not
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manifest themselves until O(G?), and show how current
calculations found in the literature implicitly use the same
choice of reference frame as our own.

We also solve the third puzzle by clarifying the differ-
ence between supertranslation-invariant charges and the
generators of asymptotic symmetries.

Notations and transformation properties of covariant
quantities.—The metric near future null infinity Z* in
Bondi-Sachs coordinates is [1-4]

Cup
ds? = —du® — 2dudr + r (hAB + —> 4" dOP
b DAC, pdud®® + 2" i + —2 CupCBdudr
r 16r
1/4 1 BD
+ — §<NA + uaAm) —gaA(CBDC ) dud@A
r

1
+7 hugCepCPd®AdOE + - - | (2)

where the mass aspect m(u,®) is a scalar, the angular
momentum aspect N,(u,®) is a vector, and the shear
Cup(u,®) is a symmetric traceless tensor. All these
quantities are defined on the celestial sphere with coor-
dinates ®, and round metric i,p and also depend on the
retarded time u. The dots in (2) denote subdominant terms
in 1/r. The coordinate system in Eq. (2) is invariant under
|

the asymptotic symmetries u — u + f(©), called super-
translations [2]. Energy, momentum, and Lorentz charges
are defined in terms of m, N4, the [ =1 spherical
harmonics Y, and the six conformal Killing vectors Y4
of the celestial sphere [2]:

E(u) = 4;G/d2®fm(u 0),
P(u) = 4;G/d2 OVhYm(u,®),
Jy(u) = SlG / d*OVhYAN 4 (u, ©). (3)

By definition, the conformal Killing vectors obey
DYg+ DgY, = hyyDcYC. For rotations DqYC =0,
while for boosts DY€ is an [ = 1 harmonic. In the latter
case, we can write Y, =D,y with w obeying
D,D*y = —2y. When it is well defined, the total energy
flux AE = E(+o0)— E(—o0) is invariant under super-
translations. This is not true for the flux of the Lorentz
charges; so, in particular, the angular momentum flux
AJy =Jy(4+0) —Jy(—o0) can be changed by a
supertranslation.

The Lorentz Bondi charges at retarded time u defined
in [15] are

T () = Ty (u) = jy[m(u), C(u)],
1
Jy[m(u), C(u)] = g G/d2®\/_YA[3m(u ®)D,C(u,®) + Dym(u,®)C(u, 0)]
T
1 512 1 3/2
alo) / —— [ d*eVh(s 4
—ng | OVl ) == [ @6V m)c. 4)
|
where Here, T, = § NapN*® + lim,_, . r*T%,, with T = matter
stress-energy tensor and N,z =0,C,p is the Bondi
SyF=wD-YF+Y -DF. (5)  news. In gravitational scattering N .5 = O(G?) so, through

The “electric shear” C(u, ®) is defined by

DADPC,5(u,®) = D*(D?> +2)C(u,0). (6)
The operator D?(D? +2) is diagonalized by spherical
harmonics, on which D*(D?>+2)C;=I(?-1)(1+2)C,,
so the / = 0, 1 harmonics in C do not appear at all in the
asymptotic metric. The constraint relating the change in the
mass aspect to the change in the electric shear is

Am(®) :%DZ(DZ—FZ)AC(G)) - / " T, (1,0),  (7)

- C(~00,0),
— m(—o0,0). (8)

0(G*), Am(®)=1iD*(D*42)AC(®). This equation
shows a further ambiguity in C;_q(u, ®): Their depend-
ence on the retarded time u is completely arbitrary. They
are undetermined even if the initial value for all harmonics
of C is given at u = —oo.

We now prove that a supertranslation-invariant tensor
must also be spacetime translation invariant by computing
the commutator

SySrAJSVWY — 5.5y AJGVWY = Oy f] AJSWVWY - (9)
with f a supertranslation and Y a Lorentz boost. The
transformation of the flux is determined by Lorentz
covariance to be yAJSVYY = AJGYVY, where [V, Z] =

[v.Z]
LyZ — L,Y with Ly, the Lie derivative along the vector W.

Invariance under supertranslations, therefore, implies that
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the left-hand side of Eq. (9) vanishes. The right-hand side is
the transformation of the flux under [Y,f]=35,"*f.
A boost can be written as Y4 = DAy with y an [ =1
harmonic obeying D*y = —2y. So, for an [ = 2 super-
translation obeying D?f = —6f, we find

| 1
Y. fl=- Ef(Dzu/) + 5D2(fl//) + fw +3fw.  (10)

The product fy contains an [ =1 harmonic on
which D*(fy)|_; = =2(fy)|_,; therefore, [Y,f]|,_; =
4(fw)|,.; #0 and the boost of a supertranslation is a
nonzero spacetime translation.

The flux AJSWWY = JEWWY (4 o0) — is

manifestly translauon and supertranslation invariant if
we define the transformation law of C(u, ®) to be

=Cu.0)+f(®)  (11)

J§WY (~o0)

C(u,®) > C'(u,0)

for any function f(@®). Its / = 0, 1 harmonics are spacetime
translations, so the /=0, 1 harmonics of C(—c0,®)
represent the choice of origin for the coordinate system
used to define the angular momentum.

The upshot of this analysis is that any supertranslation
invariant flux is necessarily an intrinsic flux, defined with
respect to an origin of the coordinate system, which is
equivalent to a choice of C|; for [ = 0, 1. An independent,
covariant prescription for the | =0, 1 components of the
boundary graviton is necessary to define the flux.

We cannot simply set C|,.; = 0 in all Lorentz frames,
because this choice is inconsistent with Lorentz trans-
formations. The problem is that the /th harmonic of the
boundary graviton transforms under boosts exactly like
a supertranslation; therefore, in parallel with Eq. (10),
we find

. 1
5,'*C = - ~5D-YC+Y.-DC=yC+Dy-DC

:%[D2+4+l(l+ D]y C)). (12)

The same argument as given after Eq. (10) shows that

5;]/ ’c generically contains a nonvanishing / = 1 harmonic.

Lorentz-covariant definitions of angular momentum and
boost charges and fluxes.—We found in the previous
section that an independent definition for C(u)|,<, is
necessary to completely define AJ$"WY. The prescription
should maintain covariance and should not introduce an
additional arbitrariness in the flux. Here, we propose a
simple recipe, which is covariant by construction. We also
present a small variation on the prescription that we later
prove to coincide with the previous one to O(G?).

Let us consider the flux, computed in the initial center of
mass rest frame (CMRF), which is defined by the condition
my,, = [ d*©VhY |, m(—c0,®) = 0. The definition of the
frame is not complete, because the origin of the coordinate

system can be translated arbitrarily in space and time. We
remove this arbitrariness by requiring that in the CMRF the
initial boost charge vanish. We denote by fu-dependent
quantities evaluated at oo and impose

J3—jy[m=.C7]=0, forallY* =boost= Dy, D*y=-2y.

(13)

These are three conditions that uniquely determine the three
components of C|,_;. Explicitly, we use Eq. (4) and

3
8/ my = 3D Ymp +Y-Dmy

= —3wym; + Dy - Dmy
1

=5 [D* =4+ 1+ D]ymp),
(D* +2)(ym3)|=y = 0. (14)
to obtain
Jelm™. Clict) = Jylm™ i<, € |i<]
:;Tig / d*@OVhDy - DC |,

s [ eVl (15)
Equation (13) then reduces to
3my - - - A A
mclmsz—ﬁf‘[m Clsa], YA=DAY . (16)

Under both supertranslations and spacetime translations
and for any conformal Killing vector Y, Jy —
Iy + (1/42G) [ dOVhm=8,"*f, so Jy — jy[m=, C7] is
by construction invariant. Our definition specifies the
origin of the system of coordinates (up to a time trans-
lation). We are free to set C|,_, to whichever value we want,
and we will choose C|,_, = 0.

To extend our definition to any Lorentz frame with
celestial sphere coordinates ® = (6, ¢), we choose three
conformal Killing vectors ¥4, related to the pure boosts of

the rest frame with coordinates ® = (6, ¢) by
i o 5 oy

r(e Yp=—=. 17

(©) = 55 7"(6). 5= 350 (17)

evaluated at @ = ¢*(@). We fix the Lorentz transforma-
tion g* from the CMREF to the Lorentz frame moving with
velocity ﬁ by requiring that it is a pure boost along B
Covariance is preserved by this choice, as it is most easily
seen by writing the Lorentz charge as an antisymmetric
matrix J, the boost from the CMRF as a pseudo-orthogonal

matrix B(ﬁ) and the constraint as
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(18)

S O O =

This definition is covariant, because any Lorentz trans-
formation can be decomposed as L = BR, with B a pure
boost and R a pure rotation. In the CMRF, Ry =y so
Ly = BYy. Definition (18) is also unique, because Lorentz

=
transformation L to a frame moving with velocity ' maps

-

y into y' = LB(f)y. This is not a pure boost from the
CMRE, but the difference is a pure rotation of the CMREF,

— > > — —
B(—p")LB(B) = R; hence, LB(p)y = B(f')Ry = B(f')y.
So, a translation, supertranslation, and covariant definition
of the Lorentz charges is

Sy =Jy —Jjylm™.C]. (19)

where the / = 0, 1 harmonics of the boundary graviton are
given by solving the equation

J5 = jy[m=.C7] =0. (20)

To define the flux, we have several possibilities. For all
of them,

Sy =4y —jylm.CT AZy =3y -3Jy. (2D
The difference is in the choice of the equations for C|,;.
Two simple choices are (A) set C*| = C| and
(B) solve J; — jy[m", C*] =0, where Y* is defined by
Lorentz-transforming pure boosts defined in the final center
of mass rest frame. We show in the next section that these
two definitions coincide to O(G?).

Interpretation of the invariant charges and fluxes.—We
proposed a Lorentz-covariant, supertranslation-invariant
definition of the Lorentz Bondi charges at u = +oc0, which
differs from [14,15] only in the condition used to fix the
[ =0, 1 components of the boundary graviton. By con-
struction, both S% are invariant under supertranslations, so
we can compute them by changing coordinates in the
nonradiative far past and far future regions to set Ci, = 0:

Ay = Jy(+00)|c+), =0 = Jy(=0)|c-|. 0. (22)

So the covariant, supertranslation-invariant flux reduces to
the difference of canonical Bondi charge at +o00, computed
in the frame where the angular metric at u = +o0 is
hag + O(1/r?), minus the canonical Bondi charge at
u = —oo, computed in the frame where the angular metric
at u = +oo is also hyup + O(1/r?). References [27,28]
argue that hyp + O(1/r?) is the frame where the Bondi
charge reduces to the ADM charge. This identification
suggests a very natural interpretation of AJy: It is the
canonical charge measured after a gravitational scattering

in a “round metric” frame minus the initial canonical
charge, also measured in a round metric frame. The
reference frames are fixed by requiring that the initial
metric is round before the scattering occurs and then after
the scattering has occurred by requiring that the final metric
is also round. This procedure “forgets” the initial frame
fixing. The interpretation of the flux and its form is
essentially the same as in [14,31-33] once the subtleties
due to Lorentz covariance and covariant subtraction of the
low-/ harmonics in C* are properly taken into account
using Eq. (20) for C~|,., and either prescription (A) or (B)
for C*|,<;. The Lorentz-covariant prescription (20) can be
used also to covariantize the flux defined in [16]. It differs
from AJy by terms proportional to the gravitational
memory CT — C~. This computation was performed in
the CMREF in [31,32], but the role of gravitational memory
in the definition of angular momentum in general relativity
was noticed long before, e.g., in [34]. We will expand on
this question in a future publication [35].

The difference between prescriptions (A) and (B) can be
seen most clearly for the flux of angular momentum AJ.
Prescription (A) computes the difference between initial
and final angular momenta in the initial CMRFE. So it
includes a term due to the motion of the final CMREF,
namely, AJ = AJMUISC L 2 AP, with @ the displace-
ment of the origin of the final CMRF with respect to
the initial CMREF. Prescription (B) instead gives
AJ = AJ™™¢ The difference between the two prescrip-
tions amounts to a term proportional to AP, i.e., the change
of the center of mass momentum due to gravitational
radiation. Because of the constraint equation (7), the
definition of momentum (3), and T,,=O(G*), AP=
O(G?) so prescriptions (A) and (B) agree to O(G?).

We defined the [ = 0, 1 harmonics of C by requiring that
the boost charges vanish in the initial CMRF. This is the
same prescription used in, e.g., Ref. [25], which considered
the scattering of two particles of initial 4-momenta p¥,
i =1, 2, and impact parameters b; obeying p; - b; = 0 for
all i, j. In the CMREF these constraints are satisfied by p; =
(Ey,p,0,0) and p; = (E;,—p,0,0), s0 by = (0,0,y,2)
and b, = (0,0,y,,2,), and the nonzero boost charges
are J? = Ey, + E,y, and J® = E,z; + E,z,. Setting
J02 = J% =0, we reproduce the particular solution of
the constraints chosen in [25]. Similar choices are done in
other papers on gravitational scattering. They are natural
because they set the origin of coordinates at the center of
mass of the incoming particles.

Difference between two consistent definitions of Lorentz
charges.—By construction, any definition of supertransla-
tion-invariant Lorentz generators Ji¥, so, in particular,
Jiv = §y, makes them commute with the / > 1 harmonics
of the mass aspect m~(0):

[, m™(©)],s,] = 0. (23)
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On the other hand, the transformation law of m~ can be
found by performing a Lorentz transformation on the
asymptotic metric (2). It is given by Eq. (5) with
w =3/2, from which it is obvious that neither boosts
nor rotations vanish on m;. ;.

We must then conclude that, while the supertranslation-
invariant Lorentz generators are useful quantum
operators—in fact, essential for defining unambiguously
the angular momentum of the vacuum as well as other
quantum numbers—they should not be used to generate
Lorentz transformations on the fields. In fact, the super-
translation-invariant Lorentz charges are elements of the
universal enveloping algebra of an enlarged BMS algebra
that includes logarithmic supertranslations. Their explicit
form is given in Eq. (9.7) in Ref. [36].

In this Letter, we defined the covariantization of the charge
JSWWY: in a future work, we will expand on the results
presented here and discuss the covariantization and inter-
pretation of other charges, such as those given in [16,30].
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