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Abstract

In his monograph Chebyshev and Fourier Spectral Methods, John Boyd
claimed that, regarding Fourier spectral methods for solving differential
equations, “[t]he virtues of the Fast Fourier Transform will continue to
improve as the relentless march to larger and larger [bandwidths] con-
tinues” [3, pg. 194]. This paper attempts to further the virtue of the Fast
Fourier Transform (FFT) as not only bandwidth is pushed to its limits,
but also the dimension of the problem. Instead of using the traditional
FFT however, we make a key substitution: a high-dimensional, sparse

Fourier transform (SFT) paired with randomized rank-1 lattice meth-
ods. The resulting sparse spectral method rapidly and automatically
determines a set of Fourier basis functions whose span is guaranteed
to contain an accurate approximation of the solution of a given elliptic
PDE. This much smaller, near-optimal Fourier basis is then used to
efficiently solve the given PDE in a runtime which only depends on the
PDE’s data compressibility and ellipticity properties, while breaking
the curse of dimensionality and relieving linear dependence on any mul-
tiscale structure in the original problem. Theoretical performance of the
method is established herein with convergence analysis in the Sobolev
norm for a general class of non-constant diffusion equations, as well as
pointers to technical extensions of the convergence analysis to more
general advection-diffusion-reaction equations. Numerical experiments
demonstrate good empirical performance on several multiscale and
high-dimensional example problems, further showcasing the promise of
the proposed methods in practice.
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1 Introduction

Consider as a model problem an elliptic PDE with periodic boundary
conditions

−∇ · (a∇u) = f (1)

where, for T := R/Z taken to be the one-dimensional torus, a, f : Td → R

are the PDE data, and u : Td → R is the solution. Herein we propose a two
stage method for solving such PDE. First, we use recently developed SFT
methods for high-dimensional functions [26] to approximate the Fourier data
of both the diffusion coefficient a and the forcing function f . So long as the
PDE data, a and f , are well represented by sparse Fourier approximations, we
then provide a technique for using the SFT output to find a relatively small
number of Fourier coefficients that are guaranteed to reconstruct an accu-
rate approximation of the solution u. In all, this results in a sublinear-time,
curse-of-dimensionality-breaking spectral method for solving non-constant dif-
fusion equations under periodic boundary conditions. Moreover, the technique
presented is theoretically sound, with H1 convergence guarantees provided.

These convergence guarantees hinge on a novel analysis of the Fourier-
Galerkin representation of a non-constant diffusion operator where we are able
to fully characterize the Fourier compressibility of the solution to (1) in terms
of the Fourier compressibility of the PDE data. Additionally, we provide algo-
rithmic improvements to the SFT developed in [26] that allow the method to
run in fully sublinear-time (with respect to the size of the initial frequency set
of interest). This is accompanied by new L∞ error guarantees for this SFT
which, in addition to the original L2 guarantees, allow for the final H1 conver-
gence analysis of the spectral method. We also provide implementations of our
methods along with various numerical experiments. Of special note, we con-
clude by further extending our methods beyond the simple diffusion equation
(1) to also apply to multiscale and/or high-dimensional advection-diffusion-
reaction equations including, e.g., the governing equations for flow dynamics
in a porous medium used in hydrological modeling [42].

Solving (1) using a traditional Fourier spectral method amounts to replac-
ing the data and the solution with their Fourier series, simplifying the left-hand
side into a single Fourier series, matching the Fourier coefficients of both sides,
and solving the resulting system of equations for the Fourier coefficients of
u. See Section 5 for further explanation of this Galerkin formulation and the
related formulations discussed below.

Two main sources of approximation error arise when implementing this
technique computationally. The first is due to truncating the Fourier series
involved to a finite number of terms. The second is due to numerically approx-
imating the Fourier coefficients of the PDE data. Due to the rich theory of
traditional spectral methods, these two sources of error can directly quantify
the error of the resulting approximation of u.

Lemma 1 (Strang’s lemma, [11]). Let utruncation be the function which has
the same Fourier series as u but truncated in some manner, and aapproximate
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and fapproximate be computed using approximations of the Fourier series of a
and f truncated in the same way as utruncation. Then the procedure outlined
above produces a solution uspectral which satisfies

∥

∥u− uspectral
∥

∥

H1 .a,f

∥

∥u− utruncation
∥

∥

H1 +
∥

∥a− aapproximate
∥

∥

L∞

+
∥

∥f − fapproximate
∥

∥

L2

where the exact notion of the periodic Sobolev space H1 is discussed further in
Section 3, and .a,f denotes an upper bound with constants that depend on the
PDE data.

This is a rough simplification of Strang’s lemma [11], which is itself a gen-
eralization of the well-known Céa’s lemma (the specific version of this lemma
used in this paper is presented and proven in Lemma 6 below). Effectively,
it states that the spectral method solution is optimal up to its Fourier series
truncation and the approximation of the PDE data a and f . Thus, analyzing
convergence reduces to estimating these two errors.

This outline provides the three primary ingredients for this paper:
1. a truncation method and the resulting error analysis (Section 6),
2. a (sparse) Fourier series approximation technique (Sections 7 and 8), and
3. a version of Strang’s lemma that ties everything together (Section 9).

The final method is given in Algorithm 1. Its convergence guarantee in Corol-
lary 5 shows that the error in approximating u converges like the (near-optimal)
convergence rates of the SFT approximation error of a and f in addition to
an exponentially decaying term related to the ellipticity properties of a.

The sections preceding the main theoretical analysis listed above include
background on sparse spectral methods and motivation for our techniques
(Section 2), setting the notation and PDE setup (Sections 3 and 4 respectively),
and the aforementioned Galerkin formulation of our model PDE underpinning
the spectral method approach (Section 5). The paper is closed with a numerics
section (Section 10) describing the implementation of our technique and a
variety of numerical experiments demonstrating the theory.

2 Background and motivation

We now outline some of the previous literature on spectral methods with an
emphasis on exploiting sparsity. Along the way, various shortcomings will arise,
and we will use these as opportunities to motivate and explain our approach
in the sequel.

2.1 Convergence and computational complexity

Using a d-dimensional FFT (see, e.g., [39, Section 5.3.5] for details) to compute
aapproximate and fapproximate in the procedure suggested in Lemma 1 naturally
enforces a Fourier series truncation. A d-dimensional FFT using a tensorized
grid of K uniformly spaced points in each dimension will produce approximate
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Fourier coefficients indexed by frequencies in the d-dimensional hypercube on
the integer lattice Zd of sidelength K (note that when we refer to “band-
width” in a multidimensional sense, we are still referring to the sidelength K
of the hypercube containing these integer frequencies). The cost of each d-
dimensional FFT in general requires more than Kd operations, as does the
linear-system solve (in the absence of any sparsity or other tricks). Thus, not
only do traditional Fourier spectral methods suffer from the curse of dimen-
sionality, but even in moderate dimensions, multiscale problems (i.e., PDE
data which require very high bandwidth to be fully resolved) can result in
intractable computations.

Note that a standard FFT requires more than Kd operations in the discus-
sion above exactly because we implicitly chose to expand our PDE data and
solution with respect to an impractically huge set of Kd Fourier basis functions
there. What if we instead expand all of a, f , and u in terms of the union of
their individual best possible s� Kd Fourier basis functions from this larger
set? Note that doing so would automatically lead to each term on the right
hand side of Lemma 1 becoming related to a nonlinear best s-term approxi-
mation error with respect to the Fourier basis in the sense of, e.g., Cohen et al
[13]. Furthermore, whenever these errors decayed fast enough in s it would in
fact imply that each of a, f , and u was effectively sparse/compressible in the
Fourier basis, allowing the theory of compressive sensing to imply the suffi-
ciency of a small discretization of (1). Of course, this procedure is not terribly
useful in practice unless one can actually rapidly discover the best possible
subset of s� Kd Fourier basis functions for each function involved above via,
e.g., compressive sensing.

A naive application of standard compressive sensing theory in pursuit
of this strategy flounders in at least two ways here, however: First, though
extremely successful at reducing the number of linear measurements needed
in order to reconstruct a given function, standard compressive sensing recov-
ery algorithms such as basis pursuit must still individually represent all Kd

basis functions (in this simple case) during the function’s numerical approx-
imation. As a result, no dramatic runtime speedups can be expected here
without additional modifications. Second, standard compressive sensing the-
ory also generally requires direct linear measurements (in the form of, e.g.,
point samples) to be gathered from the function whose sparse approximation
one seeks. In the case of (1) this may be trivially possible for both a and
f , but is not generally possible for the a priori unknown solution u that one
aims to compute (at least, not without additional innovations). Of course these
difficulties can be overcome to various degrees even when using standard com-
pressive sensing reconstruction strategies, and at least one such approach for
doing so will be discussed below in Section 2.5.

In this paper, however, we instead circumvent the two difficulties men-
tioned above by using modified sparse Fourier transform methods. SFTs
[2, 19, 20, 29, 30, 37] are compressive sensing algorithms which are highly spe-
cialized to take advantage of the number theoretic and algebraic structure of
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the Fourier basis as much as possible. As a result, SFTs rarely have to consider
Fourier basis functions individually during the reconstruction process, and so
can simultaneously reduce both their measurement needs and computational
complexities to effectively depend only on the number of important Fourier
series coefficients in the function one aims to approximate. In the present set-
ting, this means that SFT algorithms will run in sublinear o(Kd)-time, more
or less automatically sidestepping the reconstruction runtime issues plaguing
standard compressive sensing recovery algorithms which must represent each
of the Kd-basis functions individually as they run. To circumvent the issues
related to not being able to measure the solution u directly, we then use yet
another approach. Instead of attempting to apply compressive sensing methods
to u at all, we instead use the more easily discovered most-significant Fourier
basis elements of a and f to predict in advance where the most significant
Fourier basis elements of u must reside by analyzing the structure of (1). Of
course, once we have discovered which Fourier basis elements are important in
representing u in this fashion, standard Galerkin techniques can then be used
to solve a small truncated discretization of (1) thereafter.

2.2 Prior attempts to relieve dependence on bandwidth

via SFT-type methods

A key work pioneering the use of SFTs in computing solutions to PDEs is
due to Daubechies, et al. [15]. This work mostly focuses on time-dependent,
one-dimensional problems where the spectral scheme is formulated as alternat-
ing Fourier-projections and time-steps. Thus, there is no need to impose an a
priori Fourier basis truncation on the solution. The proposed projection step
instead utilizes an SFT at each time step to adaptively retain the most signif-
icant frequencies throughout the time-stepping procedure. Time-independent
problems like (1) can then be handled by stepping in time until a stationary
solution is obtained.

A simplified form of this algorithm is shown to succeed numerically in [15],
and it is also analyzed theoretically in the case where the diffusion coefficient
consists of a known, fine-scale mode superimposed over lower frequency terms.
There, the Fourier-projection step can be considered to be fixed. However,
removing the known fine-scale assumption leads to many difficulties, including
the possibility of sparsity-induced omissions in early time steps cascading into
larger errors later on. In this paper, on the other hand, we focus on the case
of time-independent problems. This allows us to utilize SFTs only once ini-
tially. By doing so we avoid the possibility of SFT-induced error accumulation
over many time steps. The main difficulty in our analysis then becomes deter-
mining how the Fourier-sparse representations of the PDE data discovered by
high-dimensional SFTs can be used to rapidly find a suitable Fourier represen-
tation of the solution. This takes the form of mixing the Fourier supports of
a and f into stamping sets (discussed in detail in Section 6) on which we can
analyze the projection error of the solution. In fact, these stamping sets can
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be viewed as a modification and generalization of the techniques used in the
one-dimensional and known fine-scale analysis from [15].

2.3 Attempts to relieve the curse of dimensionality

High-dimensional PDEs are important modeling tools in many fields. Common
examples include the Black-Scholes equation in mathematical finance [28], the
Hamilton-Jacobi-Bellman equations in game theory and control theory [31],
the Fokker-Planck equation in mathematical physics [12], and the electronic
Schrödinger equation in quantum chemistry [45, 46]. The wide reach of high-
dimensional PDEs has thus spurred the need for numerical methods that avoid
the curse of dimensionality (see, e.g., [17] for a broad overview of modern
approaches).

In the specific case of Fourier spectral methods, many attempts to overcome
the curse of dimensionality have focused on using basis truncations which allow
for an efficient high-dimensional Fourier transform. One of the most popular
techniques is the sparse grid spectral method, which computes Fourier coeffi-
cients on the hyperbolic cross [10, 14, 22–24, 33, 43]. In general, a sparse grid
method reduces the number of sampling points necessary to approximate the
PDE data toO(K logd−1(K)), where K acts as a type of bandwidth parameter.
Algorithms to compute spectral representations using these sparse sampling
grids run with similar complexity. When used in conjunction with spectral
methods for solving PDE, these sparse grid Fourier transforms produce solu-
tion approximations with error estimates similar to the full d-dimensional
FFT-versions reduced by factors only on the order of 1/ logd−1(K).

In the context of sparse grid Fourier transforms, these methods compute
Fourier coefficients with frequencies on hyperbolic crosses of similar cardinality
to the number of sampling points. These hyperbolic crosses have intimate links
with the space of bounded mixed derivative, in the sense that they are the
optimal Fourier-approximation spaces for this class. Thus, sparse grid Fourier
spectral methods are particularly apt for problems where the solution is of
bounded mixed derivative, as this produces an optimal u− utruncation term in
Lemma 1 above.

Though sparse-grid spectral methods can efficiently solve a variety of high-
dimensional problems, there are clear downsides for the types of problems we
target in this paper. While many problems fit the bounded mixed derivative
assumption, and therefore have accurate Fourier representations on the hyper-
bolic cross, the multiscale, Fourier-sparse problems that we are interested are
especially problematic. In fact, since a hyperbolic cross of bandwidth K con-
tains only those frequencies k ∈ Zd with

∏d
i=1 |ki| = O(K), d-dimensional

frequencies active in all dimensions can have only ‖k‖∞ = O(K1/d). Thus, in
a multiscale problem with even one frequency that interacts in all dimensions,
a hyperbolic cross is required with a bandwidth exponential in d to properly
resolve the data. This then forces the traditionally curse-of-dimensionality-
mitigating logd−1(K) terms characteristic of sparse grid methods to be at least
on the order of dd−1.
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2.4 More on high-dimensional Fourier transforms

As outlined in Section 2.2 above, this paper uses sparse Fourier transforms
to create an adaptive basis truncation suited to the PDE data. This mimics
a similar evolution in the field of high-dimensional Fourier transforms from
sparse grids to more flexible techniques [16, 24, 27, 34–36, 38, 39]. In particular,
the high-dimensional sparse Fourier transforms discussed in Section 7 originate
from a link between early high-dimensional quadrature techniques and Fourier
approximations on the hyperbolic cross [34, 35]. Instead of sampling functions
on sparse grids, these methods sample high-dimensional functions along a rank-
1 lattice. Rank-1 lattices are described by sampling M points in Td in the
direction of a generating vector z ∈ Nd, that is, using the sampling set

Λ(z,M) :=

{

j

M
z mod 1 | j ∈ {0, . . . ,M − 1}

}

.

So long as a rank-1 lattice satisfies certain properties with respect to a
frequency space of interest I ∈ Zd, these sampling points are sufficient to
compute the Fourier coefficients of a function on I with a length-M univariate
FFT. Though many references take I to be the hyperbolic cross to leverage
the well-studied regularity properties and cardinality bounds similarly enjoyed
in the sparse-grid literature, rank-1 lattice results are available for arbitrary
frequency sets. The computationally efficient extension of these techniques via
sparse Fourier transforms in [26] as well as the randomization trick presented
in Section 8 take this frequency set flexibility to its limit, allowing I to be the a
priori unknown set of the most important Fourier coefficients of the function to
be approximated. This again suggests the applicability of these methods over
sparse grid (or other non-sparsity exploiting) Fourier transforms in the context
of multiscale problems involving even a small number of Fourier coefficients in
extremely high dimensions.

2.5 Additional links to compressive sensing

As discussed above, the SFT literature overlaps considerably with the language
and techniques of compressive sensing. As detailed in Section 7 below, the
high-dimensional SFT we use in this paper provides error bounds with best
s-term approximation, compressive-sensing-type error guarantees [13]. As a
result, the Fourier coefficients of the PDE data are approximated with errors
depending on the compressibility of their true Fourier series, and then the
compressibility of the PDE’s solution in the Fourier basis is inferred from the
Fourier compressibility of the data in a direct and constructive fashion.

Another very successful line of work, however, aims to more directly
apply standard compressive sensing reconstruction methods to the general
spectral method framework for solving PDEs. Referred to as CORSING [4–
6, 8, 9], these techniques use compressed sensing concepts to recover a sparse
representation of the solution to the system of equations derived from the
(Petrov-)Galerkin formulation of a PDE. These methods have been further
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extended to the case of pseudospectral methods in [7], in which a simpler-
to-evaluate matrix equation is subsampled and used as measurements for a
compressive sensing algorithm (as an aside, [7] and discussions with the author
served as a primary inspiration for this paper). This compressive spectral col-
location method works by finding the largest Fourier-sine coefficients of the
solution with frequencies in the integer hypercube with bandwidth K by apply-
ing Orthogonal Matching Pursuit (OMP) on a set of samples of the PDE
data. By using OMP, the method is able to succeed with measurements on the
order of O(d exp(d)s log3(s) log(K)) where s is the imposed sparsity level of
the solution’s Fourier series. Thus, while the O(Kd) dependence from a tradi-
tional Fourier (pseudo)spectral method is avoided and the method adapts well
to large bandwidths, the curse of dimensionality is still apparent.

In the preparation of this paper, the authors became aware of an improve-
ment on [7] that addresses the curse of dimensionality and is therefore
well-suited for similar types of problems discussed in this paper. In [44], the
approach of approximating Fourier-sine coefficients on a full hypercube is
replaced with approximating Fourier coefficients on a hyperbolic cross. This
has the effect of converting the linear dependence on d in the sampling complex-
ity to a log(d) due to cardinality estimates of the hyperbolic cross. However,
the exp(d) term is refined using a different technique. The key theoretical
ingredient for being able to apply compressive sensing to these problems is
bounding the Riesz constants of the basis functions that result after apply-
ing the differential operator [8]. A careful estimation of these constants on
the Fourier basis on the hyperbolic cross is able to entirely remove the expo-
nential in d dependence, leading to a sampling complexity on the order of
O(Cas log(d) log

3(s) log(K)), where Ca involves terms depending on elliptic-
ity and compressibility properties of a. Notably, this estimation procedure has
connections to our stamping set techniques described in Section 6.

On the other hand, though focusing on the hyperbolic cross in compres-
sive spectral collocation breaks the curse of dimensionality in the sampling
complexity, the method still suffers from the inability to generalize to multi-
scale problems or generic frequency sets of interest like those described in 2.3.
Additionally, as previously mentioned in this section, the compressive-sensing
algorithm used for recovery (in this case OMP) suffers from a computational
complexity on the order of the cardinality of the truncation set of interest.
For the hyperbolic cross, this can still be, at worst, exponential in d. Finally,
the error estimates are presented in terms of the compressibility of the Fourier
series of the solution u, which may not be known a priori from the PDE data.
We expect that there may be some way to link our stamping theory and con-
vergence estimates with the compressive sensing theory to refine and generalize
both approaches.
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3 Notation

Define the one-dimensional torus to be T := R/Z. Unless otherwise stated, all
functions are complex-valued and defined on the torus Td. For example, we
take the inner product for u, v ∈ L2 := L2(Td; C) to be

〈u, v〉L2 :=

∫

Td

u(x)v(x) dx.

Additionally, unless otherwise stated, all multiindexed infinite sequences are
complex-valued and indexed on Zd. For example, we take the inner product
for û, v̂ ∈ `2 := `2(Zd; C) to be

〈û, v̂〉`2 :=
∑

k∈Zd

ûkv̂k.

All finite length vectors/tensors will be denoted in boldface and when required,
will be implicitly extended to larger index sets by taking on the value zero
wherever they are not originally defined. We also denote the complex-valued
finite-length vectors or infinite-length sequences supported on a set D as CD.
Since sparse approximations will be an important tool in our final algorithm,
we also define the best s-term approximation of a sequence û as û restricted
to its s largest magnitude entries and denote this as ûopt

s .
We now define periodic Sobolev spaces (see also [4, Section 2.1] and [33,

Appendix A.2.2]).

Definition 1. For u ∈ L2 and α ∈ Nd
0 a multiindex, if there exists a v ∈ L2

such that

〈v, φ〉L2 = (−1)|α|〈u, ∂αφ〉L2 for all φ ∈ C∞ ⊆ L2, 1

we call v the weak α derivative of u, and write ∂αu := v. We define the inner
product

〈u, v〉H1 := 〈u, v〉L2 +

∫

Td

∇u(x) · ∇v(x) dx,

(where all derivatives are taken in the weak sense) and have the associated
norm ‖u‖H1 :=

√

〈u, u〉H1 . The periodic Sobolev space H1 is defined as H1 :=
{u ∈ L2 | ‖u‖H1 <∞}.

In order to set our notation for Fourier coefficients and series, we first note
the density of trigonometric monomials in L2 and H1.

Theorem 1. The space of all infinitely differentiable periodic functions C∞ is
dense in L2 and H1. In particular, space of trigonometric monomials {ek(x) :=

1Here C∞ :=
{

φ : Td → C | ∂αφ is continuous ∀α ∈ N
d

0

}

.
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e2πik·x ∈ C∞ | k ∈ Zd} is a basis for C∞, an orthonormal basis for L2, and
an orthogonal basis for H1.

Definition 2. For any u ∈ L1, and any k ∈ Zd, we define the kth Fourier
coefficient

ûk = 〈u, ek〉L2 =

∫

Td

u(x)e−2πik·x dx.

If u ∈ L2, the orthonormality of the trigonometric monomials in Theorem 1
allows us to write the Fourier series for u,

u(x) =
∑

k∈Zd

ûkek(x).

We also note the well-known Parseval–Plancherel identity for use later.

Proposition 1 (Parseval–Plancherel identity). If u ∈ L2, then û ∈ `2 with
‖u‖L2 = ‖û‖`2 . If v ∈ L2, then 〈u, v〉L2 = 〈û, v̂〉`2 .

Definition 3. We additionally define the mean-zero periodic Sobolev space H
as H1/R where the representative u is chosen so that û0 = 0, endowed with
the inner product2

〈u, v〉H :=

∫

Td

∇u(x) · ∇v(x) dx.

In the sequel, we will often consider restrictions in frequency space denoted
by, e.g., û|D, where D ⊆ Zd. We will simultaneously consider this to be an
element of CD and a complex valued sequence on Zd with zero entries on
Zd \ D. When û represents the Fourier coefficients of a function u, we define
the associated restriction

u|D :=
∑

k∈Zd

(û|D)k ek =
∑

k∈D

ûkek,

where the fact that D ⊆ Zd is treated as a set of frequencies indicates that
we are restricting u in frequency, not space. Given a hatted sequence v̂ or
vector v̂, the associated function with Fourier series

∑

k∈Zd v̂kek will always be
implicitly labeled using the non-hatted, roman font letter (in this example, v).

4 Elliptic PDE setup

We begin with a model elliptic partial differential equation.

2note that by Proposition 1, 〈u, v〉H ' 〈u, v〉
H1 for u, v ∈ H.
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Definition 4. For some a : Td → R sufficiently smooth, define the linear,
elliptic partial differential operator in divergence form L[a] : C2 → C0 by

L[a]u = −∇ · (a∇u) .

If for some f : Td → R sufficiently smooth, u ∈ C2 satisfies

L[a]u = f, (SF)

we say that u solves the given elliptic PDE with periodic boundary conditions
in the strong form.

Now, after multiplying by the complex conjugate of a test function v ∈
H1(Td) and integrating by parts, we define the bilinear form associated to L[a]
as L[a] : H1 ×H1 → C with

L[a](u, v) :=

∫

Td

a(x)∇u(x) · ∇v(x) dx,

and we say that u ∈ H1 solves the given elliptic PDE with periodic boundary
conditions in the weak form if

L[a](u, v) = 〈f, v〉L2 for all v ∈ H1. (WF)

For our purposes, we will take a ∈ L∞(Td; R), and f ∈ L2(Td; R).

By the conditions specified in the Lax-Milgram theorem (see, e.g., [18]),
we are guaranteed that a unique mean-zero solution to (WF) exists so long as
the right-hand side and test space is also mean-zero. See [4, Proposition 2.1]
for a more specific formulation in our setting and its proof.

Proposition 2. For a ∈ L∞(Td; R), L[a] is continuous with continuity
constant β ≤ ‖a‖L∞ , that is

|L[a](u, v)| ≤ β‖u‖H‖v‖H for all u, v ∈ H. (2)

Additionally, if a(x) ≥ amin > 0 a.e. on Td, then L[a] is also coercive with
coercivity constant α ≥ amin, that is

|L[a](u, u)| ≥ α‖u‖2H for all u ∈ H. (3)

Under conditions (2) and (3), if f ∈ L2(Td; R) is mean-zero, that is, f̂0 = 0,
then (WF) has unique, mean-zero solution u ∈ H satisfying

‖u‖H ≤
‖f‖L2

α
. (4)
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5 Galerkin spectral methods

By Theorem 1 one may rewrite the weak PDE (WF) in the new form

L[a](u, ek) = 〈f, ek〉L2 =: f̂k for all k ∈ Zd.

Now rewriting the bilinear form on the left-hand side and using the Fourier
series representations of a and u, we obtain

L[a](u, ek) =
∑

l1,l2∈Zd

âl1 ûl2

∫

Td

el1(x)∇el2(x) · ∇ek(x) dx

=
∑

l1,l2∈Zd

(2π)2(l2 · k)âl1 ûl2δl1,k−l2

=
∑

l∈Zd

(2π)2(l · k)âk−lûl

=: (L[â]û)k,

where L[â] is an operator in `2. This leads to the Galerkin form of our PDE,

L[â]û = f̂ . (GF)

The computational advantages of (GF) are clear. By numerically approx-

imating â and f̂ (thereby also truncating L[â]), we arrive at a discretized,
finite system of equations that can be solved for the Fourier coefficients of our
solution.

We will use a fast sparse Fourier transform (SFT) for functions of many
dimensions to approximate our PDE data which then leads to a sparse system
of equations that we can quickly solve to approximate û. This SFT will use the
values of a and f at equispaced nodes on a randomized rank-1 lattice in Td,
and therefore, our technique is effectively a pseudospectral method where the
discretization of the solution space {û | u ∈ H} is adapted to the PDE data.

Before we move to the detailed discussion of this SFT, we provide a more
detailed analysis of the Galerkin operator in Section 6 to help us analyze
the resulting spectral method. But first, we note that L[â] also captures the
behavior of L[a] as a bilinear form.

Proposition 3. For û, v̂ ∈ `2 with u, v ∈ H,

L[a](u, v) = 〈L[â]û, v̂〉`2 .

Proof By the Fourier series representation of v,

L[a](u, v) =
∑

k∈Zd

L[a](u, ek)v̂k =
∑

k∈Zd

(L[â]û)k v̂k = 〈L[â]û, v̂〉`2 .

�
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6 Stamping sets and truncation analysis

Notably, (GF) gives us insight into the frequency support of û. The structure
outlined in the following proposition is crucial in constructing a fast spectral
method that exploits Fourier-sparsity.

Proposition 4. For any set F ⊆ Zd and N ∈ N0, recursively define the sets

SN [â](F ) :=

{

F if N = 0

SN−1[â](F ) + supp(â) if N > 0
,

S∞[â](F ) :=

∞
⋃

N=0

SN [â](F ),

(5)

where here, addition is the Minkowski sum of sets. Under the conditions of
Proposition 2, supp(û) ⊆ S∞[â](supp(f̂)).

Proof The fact that a is strictly positive implies that â0 6= 0, and the fact that a is
real implies supp(â) = − supp(â). Now, for any k ∈ Zd \ {0}, we may rearrange the
equality (L[â]û)k = f̂k to obtain

ûk =
f̂k −

∑

l∈({k}+supp(â))\{k}(2π)
2(l · k)âk−lûl

(2π)2(k · k)â0

=
f̂k −

∑

l∈supp(â)\{0}(2π)
2(k · k− l · k)âlûk−l

(2π)2(k · k)â0
.

Thus, ûk explicitly depends only on the values of û on S1[â]({k}) \ {k}, which
themselves then depend only on values of û on S2[â]({k}), and so on. This decouples
the system of equations L[â]û into a disjoint collection of systems of equations, one
for each class of frequencies S∞[â]({k}). Since Proposition 2 implies that v̂ = 0 is
the unique solution of L[â]v̂ = 0, the unique solution of the system of equations
for û on S∞[â]({k}) for any k /∈ supp(f̂) is û|S∞[â]({k}) = 0. Therefore, supp û ⊆

S∞[â](supp(f̂)) as desired. �

In what follows, when the set F and Fourier coefficients â are clear from con-
text, we suppress them in the notation given by (5) so that SN := SN [â](F ).
Intuitively, we can imagine constructing SN by first creating a “rubber stamp”
in the shape of supp(â). This rubber stamp is then stamped onto every fre-
quency in F =: S0 to construct S1. Then, this process is repeated, stamping
each element of S1 to produce S2, and so on. For this reason, we will col-
loquially refer to these as “stamping sets.” Figure 1 gives an example of this
stamping procedure for d = 2.
Remark 1. Note that the inclusion supp(û) ⊆ S∞ can be shown to be sharp
using more direct applications of Fourier series. Indeed, consider an ODE of
the form (SF) with

a(x) = 3 + 2 cos(2πkax), f(x) = sin(2πkfx),



Springer Nature 2021 LATEX template

14 Sparse spectral methods

supp(â) supp(f̂) = S0[â]
(

supp(f̂)
)

S1[â]
(

supp(f̂)
)

S2[â]
(

supp(f̂)
)

S3[â]
(

supp(f̂)
)

N = 0

N = 1

N = 2

N = 3

Fig. 1: New frequencies in each stamping level up to N = 3 where N = 0 is
supp(f̂).

with ka, kf ∈ N. Letting g(x) = 1/a(x), taking Fourier series of both sides
of (SF), solving for û, and simplifying with the convolution theorem implies

supp(û) = supp(f̂ ∗ ĝ), where ∗ is the discrete convolution. It can be shown
by directly computing a complex contour integral that ĝkan 6= 0 for all n ∈ Z.

Thus, f̂ ∗ ĝ (and therefore û) is supported on kf + kaZ = S∞.
On the other hand, there are cases when supp(û) is strictly contained in

S∞. Consider the case where we choose some Fourier sparse a and u, and let
supp(L[â]û) =: f̂ . By construction, u solves (GF) with a and f as PDE data.

The proof of Proposition 5 below, however, implies that f̂ is also sparse and
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therefore
∣

∣SN
∣

∣ < ∞ for any stamping level N . Since |supp(û)| is also finite,
there must be some minimal N such that supp(û) ⊆ SN ( S∞.

A key approach of our further analysis will be analyzing the decay of û on
successive stamping levels. The stamping level will become the driving param-
eter in the spectral method rather than bandwidth in a traditional spectral
method. Before moving onto this analysis however, we provide an upper bound
for the cardinality of the stamping sets. This will ultimately be used to upper
bound the computational complexity of our technique. The proof of this bound
is given in Appendix A.

Lemma 2. Suppose that 0 ∈ supp(â), supp(â) = − supp(â), and |supp(â)| =
s. Then

∣

∣

∣
SN [â](supp(f̂))

∣

∣

∣
≤ 6

∣

∣

∣
supp(f̂)

∣

∣

∣

(

max(s, 2N)√
2

)min(s,2N)

. (6)

Proposition 4 gives us a natural way to consider truncations of the solution
u in frequency space. We will use these truncations to discretize the Galerkin
formulation (GF) in Section 9 below. In order to analyze the error in the
resulting spectral method algorithm, we will need quantitative bounds on how
the solution decays outside of the frequency sets SN := SN [â](supp(f̂)). For

SN to be finite, we assume in this section that supp â and supp f̂ are finite.
This assumption will be lifted later via Lemma 5.

We begin with a technical result regarding the interplay between L[â] and
the supports of vectors that it acts on.

Proposition 5. For any v̂ with supp(v̂) ⊆ Sn \ Sn−1, supp(L[â]v̂) ⊆ Sn+1 \
Sn−2.

Proof For any k ∈ Zd, consider

(L[â]v̂)k =
∑

l∈Zd

(2π)2(l · k)âk−lv̂l

=
∑

l∈({k}−supp(â))∩supp(v̂)

(2π)2(l · k)âk−lv̂l

=
∑

l∈({k}−supp(â))∩(Sn\Sn−1)

(2π)2(l · k)âk−lv̂l.

This sum is nonempty only if k is such that there exists l ∈ Sn \ Sn−1 and
k
∗
a ∈ supp(â) with k = l + k

∗
a. By definition of l ∈ Sn \ Sn−1, n is the minimal

number such that

l = kf +
n
∑

m=1

k
m
a , where kf ∈ supp(f̂), km

a ∈ supp(â) for all m = 1, . . . , n

holds. In particular, this implies that k
m
a 6= 0 for all m = 1, . . . , n.

There are now two cases. First, if k∗
a = −k

m
a for any m, k = l+k

∗
a ∈ Sn−1\Sn−2,

and the proposition is satisfied. On the other hand, we consider the case when k
∗
a
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does not negate any k
m
a involved in the sum equalling l. If k

∗
a = 0, then clearly

k = l ∈ Sn \ Sn−1. In any other case, we represent

k = kf +
n
∑

m=1

k
m
a + k

∗
a =: kf +

n+1
∑

m=1

k
m
a ,

where n + 1 is the smallest number for which this holds. Thus, k ∈ Sn+1 \ Sn.
Altogether then, the only possible k values such that the sum is nonzero are those
in Sn+1 \ Sn−2, completing the proof. �

Noting that supp(L[â]û) = supp(f̂), we observe the following interesting
relationship between the values of û on neighboring stamping levels. Below, to
simplify notation, for all m,n ∈ N0, we set

bm,n := 〈L[â]ûSm\Sm−1 , ûSn\Sn−1〉`2 ,

with the convention that S−1 = ∅.

Corollary 1. For all n ∈ N0,

bn+1,n + bn,n + bn−1,n =

{

〈f̂ , û|S0〉`2 if n = 0

0 otherwise.

Proof By Proposition 5, û|Sn\Sn−1 is `2-orthogonal to L[â]û|Sm\Sm−1 for all m /∈
{n − 1, n, n + 1}. In our simplified notation, bm,n = 0 for all m /∈ {n − 1, n, n + 1}.
Thus

〈f̂ , û|Sn\Sn−1〉`2 = 〈L[â]û, û|Sn\Sn−1〉`2 =
∞
∑

m=0

bm,n = bn+1,n + bn,n + bn−1,n.

The proof is finished by noting that

〈f̂ , û|Sn\Sn−1〉`2 =

{

〈f̂ , û|S0〉 if n = 0

0 otherwise
,

which follows from the definition of Sn in (5). �

We are now ready to estimate û|Sn\Sn−1 in terms of its neighbors û|Sn+1\Sn

and û|Sn−1\Sn−2 . The standard approach would be to use a combination of
coercivity and continuity (see, e.g., the proof of Lemma 6 or [11, Section 6.4] for
other examples): where α and β are respectively the coercivity and continuity
constants in Propositon 2, for n > 0,

α
∥

∥u|Sn\Sn−1

∥

∥

2

H
≤ |bn,n|
≤ |bn+1,n|+ |bn−1,n|
≤ β

∥

∥u|Sn\Sn−1

∥

∥

H

(∥

∥u|Sn+1\Sn

∥

∥

H
+
∥

∥u|Sn−1\Sn−2

∥

∥

H

)

,
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and we obtain

∥

∥u|Sn\Sn−1

∥

∥

H
≤ β

α

(
∥

∥u|Sn+1\Sn

∥

∥

H
+
∥

∥u|Sn−1\Sn−2

∥

∥

H

)

.

However, we will hope to iterate this bound, and the fact that β ≥ α will not
allow for us to show any decay as n→∞. Thus, we require a slightly subtler
estimate than simply using continuity.

Proposition 6. For n > 0, we have

|bn±1,n| ≤ ‖a− â0‖L∞

∥

∥u|Sn\Sn−1

∥

∥

H

∥

∥u|Sn±1\Sn±1−1

∥

∥

H
.

Proof Restricting all sums to the support of the vectors they index, we have

bn±1,n =
∑

k∈Sn\Sn−1

∑

l∈(k−supp(â))∩(Sn±1\Sn±1−1)

(2π)2(l · k)âk−lûlûk.

Clearly, choosing l = k ∈ Sn\Sn−1 would not allow for l ∈ Sn±1\Sn±1−1. Thus, no
term multiplying âk−k = â0 will appear in this sum. We then have the equivalence

bn±1,n = 〈L[â− â0]û|Sn±1\Sn±1−1 , û|Sn\Sn−1〉`2 ,

which by the standard argument for continuity, implies

|bn±1,n| ≤ ‖a− â0‖L∞

∥

∥

∥u|Sn\Sn−1

∥

∥

∥

H

∥

∥

∥u|Sn±1\Sn±1−1

∥

∥

∥

H
,

as desired. �

The same argument preceding Proposition 6 then gives the desired
“neighbor” estimate.

Corollary 2. For all n > 1,

∥

∥u|Sn\Sn−1

∥

∥

H
≤ ‖a− â0‖L∞

amin

(∥

∥u|Sn+1\Sn

∥

∥

H
+
∥

∥u|Sn−1\Sn−2

∥

∥

H

)

.

We now have the pieces to state an estimate of the truncation error.

Lemma 3. Let a, f , and u be as in Proposition 2. Assume

3‖a− â0‖L∞ < amin (7)

Then

‖u− u|SN ‖H ≤
( ‖a− â0‖L∞

amin − 2‖a− â0‖L∞

)N+1 ‖f‖L2

amin
.
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Proof We begin by breaking supp(û) \ SN into
⋃∞

n=N+1

(

Sn \ Sn−1
)

, the sets of

new contributions (which holds due to Proposition 4). Thus

‖u− u|SN ‖H ≤
∞
∑

n=N+1

∥

∥

∥u|Sn\Sn−1

∥

∥

∥

H
=: TN .

Applying the neighbor bound, Corollary 2, (where we define A := ‖a− â0‖L∞/amin),
we have

TN ≤ A





∞
∑

n=N+1

∥

∥

∥u|Sn+1\Sn

∥

∥

∥

H
+

∞
∑

n=N+1

∥

∥

∥u|Sn−1\Sn−2

∥

∥

∥

H





= A (TN+1 + TN−1)

= 2ATN +A
(∥

∥

∥u|SN\SN−1

∥

∥

∥

H
−

∥

∥

∥u|SN+1\SN

∥

∥

∥

H

)

.

After rearranging, and ignoring the negative term, we find

TN ≤
A

1− 2A

∥

∥

∥u|SN\SN−1

∥

∥

∥

H
. (8)

Noting that we always have
∥

∥

∥u|SN\SN−1

∥

∥

∥

H
≤ TN−1, (9)

iterating (8) and (9) in turn gives

‖u− u|SN ‖H ≤ TN ≤

(

A

1− 2A

)N+1

‖u|S0‖H ≤

(

A

1− 2A

)N+1 ‖f‖L2

amin
,

where the final inequality follows by bounding ‖u|S0‖H ≤ ‖u‖H from above by (4).
�

Remark 2. Condition (7) is necessary for there to be truncation decay in the
stamping level in the upper bound provided. However, as shown in numerical
examples (see Section 10.4), there are situations where a proxy for this condi-
tion is not satisfied, but there can still be decay in the stamping level. Thus,
we are lead to believe that (7) is an artifact of the proof, and a less restrictive
condition may apply.

7 Previous results on SFTs

In [26], two methods for high-dimensional SFTs are presented, each with a
deterministic and Monte Carlo variant. Here, we use the faster of the two
algorithms (at the cost of slightly suboptimal error guarantees). We focus on
only the Monte Carlo variant as the improvements to this technique described
in Section 8 below use an additional layer of randomization.

This method relies on applying one-dimensional SFTs to samples of a high-
dimensional function along special sets called reconstructing rank-1 lattices.

Definition 5. Given a number of sampling points M ∈ N and a generating
vector z ∈ {1, . . .M − 1}d, we define the rank-1 lattice Λ(z,M) as the set

Λ(z,M) :=

{

j

M
z mod 1 | j ∈ {0, . . . ,M − 1}

}

⊆ Td.
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Additionally, given a set of frequencies I ⊆ Zd, we say that Λ(z,M) is a
reconstructing rank-1 lattice for I if

l · z 6≡ k · z mod M for all l 6= k ∈ I.

The fundamental idea of a reconstructing rank-1 lattice is that it takes a
multivariate function g : Td → R and gives the locations for M equispaced
samples of the univariate function t 7→ g(tz). The univariate Fourier con-
tent of these samples can then be assigned to the original function g with
the reconstructing property ensuring that no multidimensional frequencies of
interest are aliased together in the one-dimensional analysis. For the follow-
ing theorem, we assume that we know a reconstructing rank-1 lattice exists
for a given frequency set of interest, I. This assumption will be lifted in the
following section.

The following theorem is a restatement of [26, Corollary 2] with minor
simplifications and improvements (most notably, L∞ error bounds). The proof
of these improvements is given in Appendix B.

Theorem 2 ([26], Corollary 2). Let I ⊆ Zd be a frequency set of interest with
expansion defined as K := maxj∈{1,...,d}(maxk∈I kj−minl∈I lj) (i.e., the side-
length of the smallest hypercube containing I), and Λ(z,M) be a reconstructing
rank-1 lattice for I.

There exists a fast, randomized SFT which, given Λ(z,M), sampling access
to g ∈ L2, and a failure probability σ ∈ (0, 1], will produce a 2s-sparse
approximation ĝs of ĝ and function gs :=

∑

k∈supp(ĝs) ĝ
s
kek approximating g

satisfying

‖g − gs‖L2 ≤ ‖ĝ − ĝs‖`2 ≤ (25 + 3K)

[‖ĝ|I − (ĝ|I)opts ‖1√
s

+
√
s‖ĝ − ĝ|I‖1

]

with probability exceeding 1− σ. If g ∈ L∞, then we additionally have

‖g − gs‖L∞ ≤ ‖ĝ − ĝs‖`1 ≤ (35 + 3K)
[∥

∥ĝ|I − (ĝ|I)opts

∥

∥

1
+ s‖ĝ − ĝ|I‖1

]

with the same probability estimate. The total number of samples of g and
computational complexity of the algorithm can be bounded above by

O
(

ds log3(dKM) log

(

dKM

σ

))

.

8 Improvements with randomized lattices

To use the previous SFT algorithm, we need to know a reconstructing rank-
1 lattice in advance. Though there are deterministic algorithms to construct
a reconstructing rank-1 lattice given any frequency set I (for example, the
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component-by-component construction [32, 39]), these algorithms are superlin-
ear in |I| as they effectively search the frequency space for collisions throughout
construction.

This section presents an alternative based on choosing a random lat-
tice. This lattice is chosen by drawing z from a uniform distribution over
{1, . . . ,M − 1}d for M sufficiently large. Below, we provide probability
estimates for when this lattice is reconstructing for a frequency set I.

Lemma 4. Let K := maxj∈{1,...d}(maxk∈I kj −minl∈I lj) be the expansion of

the frequency set I ⊆ Zd. Let σ ∈ (0, 1], and fix M to be the smallest prime

greater than max(K, |I|2

σ ). Then drawing each component of z i.i.d. uniformly
from {1, . . .M − 1} gives that Λ(z,M) is a reconstructing rank-1 lattice for I
with probability at least 1− σ.

Proof In order to show that Λ(z,M) is reconstructing for I, it suffices to show that
for any k 6= l ∈ I, k · z 6≡ l · z mod M . Thus, we are interested in showing that
P[∃k 6= l ∈ I s.t. (k− l) · z ≡ 0 mod M ] is small.

If k, l ∈ I are distinct, at least one component kj − lj is nonzero. Since
M > K, we therefore have that kj − lj 6≡ 0 mod M , and since M is prime,
kj − lj has a multiplicative inverse modulo M . Then P[(k − l) · z ≡ 0 mod

M ] = P
[

zj =
(

(kj − lj)
−1 ∑

i∈{1,...d},i 6=j(ki − li)zi mod M
)]

. Since zj is uniformly

distributed in {1, . . .M − 1}, this probability is 1
M−1 . By the union bound,

P[∃k 6= l ∈ I s.t. (k− l) · z ≡ 0 mod M ] ≤
∑

k 6=l∈I

P[(k− l) · z ≡ 0 mod M ]

≤
|I|2

M − 1

≤ σ

as desired.
�

One important consequence of Lemma 4 is that we no longer need to
provide the frequency set of interest in Theorem 2. Having chosen K, the
expansion, and s, the sparsity level, we can always take I to be the frequen-
cies corresponding to the largest s Fourier coefficients of the function g in
the hypercube [−K/2,K/2]d. Lemma 4 then implies that a randomly gener-
ated lattice with length max(K, s2/σ) will be reconstructing for these optimal
frequencies with probability σ. We summarize this in the following corollary.

Corollary 3. Fix a multivariate bandwidth K. For a multivariate function’s
Fourier series ĝ, then define ĝ|K := ĝ|[−K/2,K/2]d . Now also fix a sparsity level
s and a probability of failure σ ∈ (0, 1], and suppose that you have sampling
access to a given g ∈ L2. Then, there exists a fast, randomized SFT which
will produce a 2s-sparse approximation ĝs of ĝ as well as a function gs :=
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∑

k∈supp(ĝs) ĝ
s
kek approximating g that will satisfy

‖g − gs‖L2 ≤ ‖ĝ − ĝs‖`2 ≤ (25 + 3K)
√
s
∥

∥ĝ − (ĝ|K)opts

∥

∥

`1

with probability at least 1 − σ. If g ∈ L∞, then gs and ĝs will also satisfy the
upper bound

‖g − gs‖L∞ ≤ ‖ĝ − ĝs‖`1 ≤ (35 + 3K)s
∥

∥ĝ − (ĝ|K)opts

∥

∥

`1

with the same probability estimate. Furthermore, both the total number of sam-
ples of g and computational complexity of the algorithm is always bounded
above by

O
(

ds log3(dKmax(K, s/σ)) log

(

dKmax(K, s/σ)

σ

))

.

If, e.g., we fix σ (to, say, σ = 0.95), this reduces to a complexity of

O
(

ds log4(dKmax(K, s))
)

.

9 A sparse spectral method via SFTs

Let âs and f̂s be s-sparse approximations of â and f̂ respectively. We will use
these approximations to discretize the Galerkin formulation (GF) of our PDE.
The first step is to reduce to the case where the PDE data is Fourier-sparse
which is motivated by the following lemma.

Lemma 5. Let a′ := a|supp âs and f ′ := f |supp f̂s
. Suppose that a′ and f ′

satisfy the conditions of Proposition 2 and let u′ be the unique solution of the
resulting elliptic PDE, which we write in Galerkin form as

L[â′]û′ = f̂ ′. (10)

Then

‖u− u′‖H ≤
‖f − f ′‖L2

amin
+
‖a− a′‖L∞‖f ′‖L2

amina′min

.

Proof We begin by observing

L[â](û− û′) = L[â]û− L[â′]û′ − L[â− â′]û′ = f̂ − f̂ ′ − L[â− â′]û′,

and therefore
∣

∣〈L[â](û− û′), û− û′〉
∣

∣ ≤
∣

∣

∣〈f̂ − f̂ ′, û− û′〉
∣

∣

∣+
∣

∣〈L[â− â′]û′, û− û′〉
∣

∣.

After an application of Proposition 3 to convert the `2 inner products into bilinear
forms, we can make use of coercivity, (3), continuity, (2) and the Cauchy-Schwarz
inequality to produce the H approximation

amin

∥

∥u− u′
∥

∥

H
≤

∥

∥

∥f̂ − f̂ ′
∥

∥

∥

`2
+

∥

∥a− a′
∥

∥

L∞

∥

∥u′
∥

∥

H
.
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An application of the stability estimate (4) gives the desired bound

∥

∥u− u′
∥

∥

H
≤

∥

∥f − f ′
∥

∥

L2

amin
+

∥

∥a− a′
∥

∥

L∞

∥

∥f ′
∥

∥

L2

amina
′
min

.

�

We can now replace the trial and test spaces in (WF) with finite dimen-
sional approximations so as to convert (GF) to a matrix equation. Inspired by
Proposition 4 and the truncation error analysis in Section 6, we use the space
of functions whose Fourier coefficients are supported on SN := SN [â](supp f̂).
By doing so, we discretize the Galerkin formulation of the problem (GF) into
the finite system of equations

(LN û)k :=
∑

l∈SN

(2π)2(l · k)âk−lûl = f̂k for all k ∈ SN . (11)

However, in practice, we do not know â and f̂ exactly (and indeed, they may
not be exactly sparse). Thus, we substitute the SFT approximations âs and

f̂s, defining the new finite-dimensional operator LN,s : C
SN → CSN

by

(LN,sû)k :=
∑

l∈SN

(2π)2(l · k)âsk−lûl for all k ∈ SN .

Our new approximate solution will be ûN,s ∈ CSN

which solves

LN,sû
N,s = f̂s. (12)

We summarize our technique in Algorithm 1.

Algorithm 1 Sparse spectral method

Input: PDE data a and f , a sparsity parameter s, a bandwidth parameter
K, and a stamping level N

Output: Fourier coefficients ûs,N of approximate solution
1: âs ← SFT[s,K](a) // SFT is the algorithm in [26] using a random rank-1

lattice (cf. Section 8)

2: f̂s ← SFT[s,K](f)

3: Compute SN [âs](supp(f̂s)) // see, e.g., (5) or (A3)
4: (LN,s)k∈SN ,l∈SN ← (2π)2(l · k)âsk−l

5: ûN,s ← LN,s\f̂s // using MATLAB backslash notation for matrix solve

Showing that uN,s converges to u now relies on a version of Strang’s lemma
[11, Equation (6.4.46)]. We make the assumption here that supp(â) = supp(âs)

and supp(f̂) = supp(f̂s) so that our use of SN is unambiguous. However, this
assumption will be lifted by Lemma 5 in Corollary 4 below.
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Lemma 6 (Strang’s Lemma). Suppose that supp(â) = supp(âs) and that

supp(f̂) = supp(f̂s). Also suppose that as ≥ asmin > 0 on Td. Let u and uN,s

be as above. Then

∥

∥u− uN,s
∥

∥

H
≤

(

1 +
‖a‖L∞

asmin

)

∥

∥u|Zd\SN

∥

∥

H
+
‖a− as‖L∞

asmin

‖u|SN ‖H

+
‖f − fs‖L2

asmin

.

Proof We let ê := û
N,s − û|SN , and consider

LN,sê = LN,sû
N,s − (L[âs]û|SN )|SN

= f̂
s − f̂ + (L[â]û)|SN − (L[âs]û|SN )|SN

= f̂
s − f̂ + (L[â]û|Zd\SN )|SN + (L[â]û|SN − L[âs]û|SN )|SN

= f̂
s − f̂ + (L[â]û|Zd\SN )|SN + (L[â− â

s]û|SN )|SN .

Noting that LN,sê = (L[âs]ê)|SN and owing to coercivity of L[âs], we have

asmin‖e‖
2
H ≤

∣

∣〈LN,sê, ê〉
∣

∣

≤
∥

∥fs − f
∥

∥

L2‖e‖H + ‖a‖L∞

∥

∥

∥u|Zd\SN

∥

∥

∥

H
‖e‖H

+
∥

∥a− as
∥

∥

L∞‖u|SN ‖H‖e‖H .

The result then follows from rearranging to estimate ‖e‖H and using the triangle

inequality to estimate
∥

∥

∥u− uN,s
∥

∥

∥

H
≤ ‖u− u|SN ‖H + ‖e‖H . �

We can now thread all of our results together into a final convergence
analysis. The first corollary below is a more direct application of Strang’s
lemma which is then followed by another corollary which takes advantage of the
SFT recovery results. We will also return to the setting where a and f are not
necessarily Fourier sparse. Thus, for as and fs Fourier sparse approximations
of a and f , we again let a′ = a|supp âs and f ′ = f |supp f̂s

as in Lemma 5.

Corollary 4. Suppose a, f and as, fs respectively satisfy the conditions of
Proposition 2. Additionally, suppose that

4
∑

k∈supp(âs)\{0}

|âk| ≤ â0. (13)

Then with u the exact solution to (WF) and uN,s the output of Algorithm 1,
we have

∥

∥u− uN,s
∥

∥

H
≤ ‖f − f ′‖L2

amin
+
‖a− a′‖L∞‖f ′‖L2

amina′min

+

(

1 +
‖a′‖L∞

asmin

)( ‖a′ − â′0‖L∞

a′min − 2‖a′ − â′0‖L∞

)N+1 ‖f ′‖L2

a′min
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+
‖a′ − as‖L∞‖f ′‖L2

asminamin
+
‖f ′ − fs‖L2

asmin

Proof The condition (13) ensures that a′ is coercive, and therefore a′ and f ′ also
satisfy Proposition 2. Additionally, since

â0 −
∥

∥â′ − â′0
∥

∥

`1
≤ â0 −

∥

∥a′ − â′0
∥

∥

L∞ ≤ â′min

this allows the use of Lemma 3, which upper bounds the truncation error in Lemma 6.
Combining Lemma 5 with this bound from Lemma 6 and applying the stability
estimate from Proposition 2 finishes the proof. �

Remark 3. In order for this bound to hold, it is necessary for the weak forms
of both

L[a]u = f and L[as]us = fs

to be well-posed, that is, satisfy the continuity and coercivity conditions of
Proposition 2. In practice, this condition is not much more restrictive than
assuming only the original equation is well-posed as long as the diffusion coef-
ficient is Fourier-compressible and the sparsity level s is large enough to ensure
that as stays strictly positive. In fact, (13) allows for the simple (if pessimistic)
check after computing âs that ‖âs − âs0‖`1 < |âs0| to ensure the positivity of as.

With minor modifications, we can rewrite this upper bound to pass all
dependence on sparsity through the error in approximating a and f via SFTs.

Corollary 5. Under the same conditions as Corollary 4 above substituting
(13) with

3‖â− â0‖`1 + ‖â− âs‖`1 < amin, (14)

we have

∥

∥u− uN,s
∥

∥

H
≤

(

1 +
‖â‖`1

amin − ‖â− âs‖`1

) ‖f‖L2

amin − ‖â− âs‖`1

×
(‖f − fs‖L2

‖f‖L2

+ ‖a− as‖L∞

+

( ‖â− â0‖`1
amin − 2‖â− â0‖`1 − ‖â− âs‖`1

)N+1
)

.

Proof Since â′ = â|supp âs ,
∥

∥a− a′
∥

∥

L∞ ≤
∥

∥â− â′
∥

∥

`1
≤

∥

∥â− â
s∥
∥

`1
,

∥

∥a′ − as
∥

∥

L∞ ≤
∥

∥â′ − â
s∥
∥

`1
≤

∥

∥â− â
s∥
∥

`1
,

and analogously to show that
∥

∥f − f ′
∥

∥

L2 and
∥

∥f ′ − fs
∥

∥

L2 are bounded above by
‖f − fs‖L2 . Additionally,

as ≥ a−
∥

∥a− as
∥

∥

L∞ ≥ a−
∥

∥â− â
s∥
∥

`1
and

a′ ≥ a−
∥

∥a− a′
∥

∥

L∞ ≥ a−
∥

∥â− â
s∥
∥

`1

giving min(asmin, a
′
min) ≥ amin − ‖â− â

s‖`1 . The rest follows from applications of
(4) and rearranging. �
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Remark 4. Though this final bound is difficult to parse, we can focus our
attention on the final factor

‖f − fs‖L2

‖f‖L2

+ ‖a− as‖L∞ +

( ‖â− â0‖`1
amin − 2‖â− â0‖`1 − ‖â− âs‖`1

)N+1

, (15)

since the other factors are more or less fixed. The first two terms are respec-
tively controlled by having good SFT approximations to f in the L2 norm and
a in the L∞ norm. In our algorithm, these terms can be reduced by increas-
ing the bandwidth K and the sparsity s. As a reminder, the errors in these
approximations given in Theorem 2 are near optimal, as

‖f − fs‖L2 ≤ (25 + 3K)
√
s

∥

∥

∥

∥

f̂ −
(

f̂ |K
)opt

s

∥

∥

∥

∥

`1

and

‖a− as‖L∞ ≤ (35 + 3K)s
∥

∥

∥
â− (â|K)

opt
s

∥

∥

∥

`1

with high probability.
The final term is controlled by properties of a as well as the final stamping

level used. Overall, the convergence is exponential in N , the stamping level.
This convergence is accelerated as the base of the exponent decreases: effec-
tively, this happens as the diffusion coefficient approaches a large constant.
Indeed, the numerator can be thought of as an upper bound for the absolute
deviation of a from its mean while the denominator grows with the minimum
of a.
Remark 5. The computational complexity of Algorithm 1 is

O
(

ds log4(dKmax(K, s)) + s3 max(s, 2N)3min(s,2N)
)

.

This is due to the two SFTs and a matrix solve of a
∣

∣SN
∣

∣×
∣

∣SN
∣

∣ system. Note
that computing the stamping set can be done by enumerating the frequencies
using the techniques in Lemma 8 and therefore is subject to the same upper
bound as given in Lemma 2 for a stamp set’s cardinality. Recall also that the
SFT complexity can be tuned to produce SFT approximations satisfying the
above bounds with higher probability.

We do not analyze the complexity of the matrix solve in depth, and
instead resort to the upper bound given by Gaussian elimination on the dense
matrix, O

(

s3 max(s, 2N)3min(s,2N)
)

. However, LN,s is relatively sparse for
larger stamping levels. As the capabilities of sparse solvers depend strongly on
analyzing the graph connecting interacting rows in LN,s (cf. [21, Chapter 11]),
we expect that the analysis of an efficient sparse solver could be carried out
using much of the same analysis of stamping sets performed in Section 6.
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Remark 6. This paper considers the theory for solving the simple diffusion
equation (1). However, these techniques extend to more complex advection-
diffusion-reaction (ADR) equations. The test problem is then

−∇ · (a(x)∇u(x)) + b(x) · ∇u(x) + c(x)u(x) = f(x) for all x ∈ T3. (16)

As before a, f, u : Td → R are the diffusion coefficient, forcing function, and
solution respectively. These are now joined by an advection field b : Td → Rd

and an additional reaction coefficient c : Td → R. For more on the properties
and well-posedness of this periodic ADR equation, we refer to [4].

Adapting Algorithm 1 for solving ADR equations requires two modifica-
tions:

1. When computing the approximations âs, f̂s via SFT, additionally com-
pute b̂s := (b̂s

j)
d
j=1, an approximation to the Fourier coefficients of each

component of b, and compute ĉs, an approximation to ĉ.
2. Redefine the “stamp” used to define SN [âs](supp(f̂s)) by including the

supports of b̂s and ĉs. Mathematically, we define

SN [âs, b̂s, ĉs](supp(f̂s))

:=

{

supp(f̂s) if N = 0

SN−1 + supp(âs) +
∑d

j=1 supp(b̂
s
j) + supp(ĉs) if N > 0

where, as usual, we suppress the Fourier coefficients when clear from
context.

The convergence analysis for this method is much the same as that lead-
ing to Corollary 5 where terms like ‖a− as‖L∞ are replaced by the term
max

{

‖a− as‖L∞ , ‖‖b− bs‖`2‖L∞ , ‖c− cs‖L∞

}

and similarly for the mean-
zero version of a used in the exponentially decaying term. For full details see
[25].

10 Numerics

This section gives examples of the algorithm summarized above applied to
various problems. We begin with an overview of our implementation as well as
some techniques used to evaluate the accuracy of our approximations. We then
present solutions to univariate and very high-dimensional multiscale problems
with both exactly sparse and Fourier-compressible data. We then close with an
extension of our methods to a three-dimensional advection-diffusion-reaction
equation.
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10.1 Code and testing overview

We implement Algorithm 1 described above in MATLAB using an object-
oriented approach, with all code publicly available.3 All SFTs are computed
using the rank-1 lattice sparse Fourier code from [26].4

In order to evaluate the quality of our approximations, we need to choose
an appropriate metric. Letting us,N be the approximation returned by our
algorithm, the ideal choice would be

∥

∥u− us,N
∥

∥

H
. However, for the types of

problems we will be investigating, the true solution u is unavailable to us.
Instead, we will use a proxy that takes advantage of the stability result in
Proposition 2.

Lemma 7. Let u be the true solution to (GF) and us,N be the approximation

returned by solving (12). Define f̂s,N := L[â]ûs,N with fs,N = L[a]us,N . Then

∥

∥u− us,N
∥

∥

H
≤

∥

∥f − fs,N
∥

∥

L2

amin
=

∥

∥

∥
f̂ − f̂s,N

∥

∥

∥

`2

amin
.

Proof The result follows from the fact that û − ûs,N solves L[â]
(

û− ûs,N
)

= f̂ −

L[â]ûs,N = f̂ − f̂s,N and applying Proposition 2. �

In the sequel, we will ignore amin since we are mostly interested in
convergence properties in s and N and we will compute the relative error

∥

∥f − fs,N
∥

∥

L2

‖f‖L2

or

∥

∥

∥
f̂ − f̂s,N

∥

∥

∥

`2
∥

∥

∥
f̂
∥

∥

∥

`2

as our proxy instead. Whenever f̂ and â are exactly sparse, the numerator
of the second term can be computed exactly due to the fact that supp(f̂s,N )
is known to be contained in SN+1 (cf. Proposition 5). However, in the non-
sparse setting, even though f−fs,N can be evaluated pointwise, computing an
accurate approximation of its norm on Td is challenging for large d. For this
reason, we approximate the norm via Monte Carlo sampling. We also furnish

the cases where exactly computing
∥

∥

∥
f̂ − f̂s,N

∥

∥

∥

`2
is possible with the pointwise

Monte Carlo estimates to show that in practice, Monte Carlo sampling does
as well as the exact computation.

3https://gitlab.com/grosscra/SparseADR
4this code is publicly available at https://gitlab.com/grosscra/Rank1LatticeSparseFourier
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10.2 Univariate compressible

We begin by replicating the lone numerical example of solving an elliptic
problem in [15, Section 5.1]. In this case, we solve the univariate problem

−(a(x)u′(x))′ = f(x) for all x ∈ T, where

a(x) =
1

10
exp

(

0.6 + 0.2 cos(2πx)

1 + 0.7 sin(256πx)

)

,

f(x) = exp(− cos(2πx))−
∫

T

exp(− cos(2πy)) dy

(17)

(note that the only difference from [15] is that we use the domain T = [0, 1]
rather than [0, 2π]). This data is not Fourier sparse, but is compressible. In the
original paper, a bandwidth of K = 1536 is considered and approximations
with 9 and 17 Fourier coefficients are used.

We first construct a high accuracy approximation of the solution to (17) by
numerically integrating on an extremely fine mesh of 10 000 points. This allows
us to forgo our proxy error described in Lemma 7. As in [15], the bandwidth
of our SFT used is set to K = 1536. Due to our SFT returning a 2s sparse
approximation, we use s = 4 and s = 8 to compare with the 9 and 17 terms
respectively considered in the original paper, and also provide an example with
s = 12. We set the stamping level to N = 1 throughout, which, as discussed
in the introduction, is similar to the technique used in [15].

4 8 12

10
−2

10
−1

10
0

10
1

s (sparsity)

R
el

a
ti

v
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r

L
2

H
1 Proxy error

Fig. 2: Errors in approximating the solution to (17).

The relative errors approximated in L2 and H1 are given in Figure 2. The
original paper does not give numerical results, and instead, gives qualitative
results, comparing the approximate solutions and their derivatives with the
true solution and its derivative. We have replicated this qualitative analysis in
Figure 3 with similar results.
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(a) Approximate solutions of (17).
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(b) Approximate derivatives of (17).

Fig. 3: Qualitative results.

Figure 2 also shows the error computed via the proxy described by
Lemma 7, and in particular, how pessimistic the proxy error can be. In this
case, the small errors in the derivative (visualized in Figure 3b) are com-
pounded by passing the approximate solution through the operator where a′ is
often large relative to a. In future examples, we will see that the convergence
of the proxy error is much more tolerable.

10.3 Multivariate exactly sparse

10.3.1 Low sparsity

Moving to the multivariate case, we start with a simple example with exactly
sparse data. Our goal is to solve

−∇ · (a(x)∇u(x)) = f(x) for all x ∈ Td, where

a(x) = â0 + ca cos(2πka · x), f(x) = sin(2πkf · x).
(18)

We draw ca ∼ Unif ([−1, 1]), keep it constant for each dimension, and set
â0 = 4 so that our problem remains elliptic (in the specific example below,
ca ≈ −0.6). For dimensions varying from d = 1 to d = 1024, we then draw
ka,kf ∼ Unif

(

[−499, 500]d ∩ Zd
)

. The PDE (18) is then solved for stamping
levels N = 1, . . . , 5. The bandwidth of the SFT is set to 1000 and the sparsity
is set to 2. We then compute a Monte Carlo approximation of the proxy error
choosing 200 points drawn uniformly from Td and also compute the proxy error
exactly by virtue of the sparsity of a and f . The results are given in Figure 4.

We see that the results do not depend on the dimension of the problem.
Since all dependence on d is in the runtime of the SFT, we also observe that
in practice, after the SFTs of the data have been computed, re-solving the
problem on different stamping levels takes about the same amount of time
for each d. The error also converges exponentially in the stamping level as
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d = 1 Monte Carlo d = 1 exact

d = 4 Monte Carlo d = 4 exact

d = 16 Monte Carlo d = 16 exact

d = 64 Monte Carlo d = 64 exact

d = 256 Monte Carlo d = 256 exact

d = 1024 Monte Carlo d = 1024 exact

Fig. 4: Proxy error solving (18) with d = 1, 4, 16, 64, 256, 1 024 and N =
1, . . . , 5.

suggested by the theoretical error guarantees. Notably, we also see that the
Monte Carlo approximation with 200 points captures the same proxy error as
the exact computation.

10.3.2 High sparsity

We expand on the exactly sparse case by testing a diffusion coefficient with
much higher sparsity. Here, we solve (18) with

a(x) = â0 +
∑

k∈Ia

ck cos(2πk · x). (19)

The vector of coefficients is drawn as c ∼ Unif
(

[−1, 1]25
)

once and reused
in each test. For every d, the frequencies k ∈ Ia are each drawn uniformly
from [−499, 500]d ∩ Zd as before with |Ia| = 25. Here â0 = 4 d‖c‖2e to ensure
ellipticity. Again, the bandwidth of the SFT algorithm is set to 1 000, but the
sparsity is now fixed to 26. We only consider stamping levels up to N = 3
due to memory considerations (see the following section, Section 10.3.3, for
details). The results are given in Figure 5.

Again, we see that the results do not depend on the spatial dimension
except for the notable example of d = 1. The d = 1 case suffers from similar
issues in a pessimistic proxy error as in Figure 2. Specifically, the right hand-
side for this example was generated with frequency kf = −10 and is therefore
relatively low-frequency. Thus, the high-frequency modes leading to errors in
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Fig. 5: Proxy error solving (18) with diffusion coefficient (19) in dimensions
d = 1, 4, 64, 256, 1 024 and stamping levels N = 1, . . . , 3.

the approximate solution are amplified by the high-frequencies in a when com-
puting fs,N . Indeed, in further experiments (not pictured here), increasing the
frequencies of f or decreasing the frequencies of a result in a lower proxy error.

For the other dimensions, the slight offsets in the exact proxy error can
be attributed to the randomized frequencies as well as slight variations in the
randomized SFT code. We do see slightly more variance in the proxy error
computed using Monte Carlo sampling however. This is to be expected for
data with more varied frequency content, and as such, in future experiments,
we increase the number of sampling points.

10.3.3 Stamp size and complexity comparisons

We also use this exactly sparse setting to provide insight into the memory
and computational complexity of Algorithm 1. First, Figures 6 and 7 show the
cardinality of the stamping sets used in Figures 4 and 5 respectively. We also
show the upper bound for the stamp set cardinality provided in (6) as well as
the more accurate combinatorial bound (A1) used to prove this bound.

In the low sparsity case depicted in Figure 6, we see that the stamp set
sizes do not depend on dimension. This contrasts with the fact that the d =
1 case flattens out quickly in the high sparsity setting depicted in Figure 7
while the sizes for the remaining dimensions are indistinguishable and grow
exponentially in the stamping level N .

However, this is to be expected, since in one dimension, there is significant
overlap in stamping levels that does not occur when stamping sets in higher
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Fig. 6: Cardinality of the stamp sets used in Figure 4 compared against the
combinatorial upper bound (A1) and the more general upper bound (6).
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Fig. 7: Cardinality of the stamp sets used in Figure 5 compared against the
combinatorial upper bound (A1) and the more general upper bound (6).

dimensions are able to “spread out” in those additional dimensions. In the
low sparsity case, the same amount of overlapping as in one dimension also
happens in higher dimensions since the stamping sets effectively grow in the
direction dictated by the few frequencies of the diffusion coefficient. In exam-
ples not pictured here, when diffusion coefficients are randomly generated with
frequencies in a small band, stamping sets in lower dimensions (e.g., d < 4) will
sometimes grow somewhat slowly due to this overlap. But generally, stamping
sets in larger dimensions will grow in cardinality somewhat quickly.
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We also see that the general upper bound (6) is quite rough, though it
does properly capture the polynomial versus exponential asymptotic growth
in stamping level in the low versus high sparsity cases, respectively. The com-
binatorial bound (A1) on the other hand is very accurate for predicting the
size of a “fully spread out” stamping set.

In Figure 7, we not only depict the sizes of the stamping sets used to solve
the PDE (that is, N = 1, 2, 3) but also include the size at N = 4 which is
used to exactly compute the proxy error function f26,3 (cf. Section 10.1). In
particular, this demonstrates the fact that the algorithm is memory limited
by the size of the stamping set for large sparsity values. In the N = 3 case, a
full stamping set has cardinality ≈ 4× 104, which, when used to construct the
∣

∣S3
∣

∣ ×
∣

∣S3
∣

∣ Galerkin operator of double precision floats, uses approximately
16 GB in a dense matrix representation. For N = 4, the stamp set size is
≈ 6 × 105, corresponding to an approximately 2.5 TB dense matrix (and the
sparse matrix barely fits into the 1 TB of memory on the compute node that
we use).

In Figure 8, we also show the relationship between the runtime for con-
structing and solving the discretized PDE and the runtime in computing the
SFT approximation of the data in the high sparsity example from Figure 5.
In general, the SFT dominates the runtime, though at stamping level N = 3,
the ratio of solve to SFT runtime does exceed one in the cases of d = 1, 4 (and
nearly d = 16). We also see the dependence of dimension on the SFT step
(the decreasing vertical intercept of each line) and the relative independence
of dimension on the stamping and solving procedure (the fixed shape of each
line) with the notable exception of d = 1 due to the reduced stamp set size.
However, we do warn that the parameters for the SFT routines are chosen for
higher success rates rather than highly optimized runtimes and the Galerkin
operator construction step is parallelized over 64 cores. Using a better opti-
mized and/or parallelized SFT routine may give more competitive runtime
splits.

10.4 Multivariate compressible

In order to test Fourier-compressible data which is not exactly sparse, we
use a series of tensorized, periodized Gaussians. Here, we present the only
details necessary to demonstrate our algorithm’s effectiveness on Fourier-
compressible data, but for a fuller treatment on the Fourier properties of
periodized Gaussians, see e.g., [37, Section 2.1].

Here, we define the periodic Gaussian Gr : T→ R by

Gr(x) =

√
2π

r

∞
∑

m=−∞

e−
(2π)2(x−m)

2r2

where the dilation-type parameter r allows us to control the effective support
of Ĝr. In practice, we truncate the infinite sum to m ∈ {−10, . . . , 10} as
additional terms do not change the output up to machine precision. Note
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Fig. 8: The ratio of runtimes of Lines 3–5 in Algorithm 1 (the construction
and solution of the discretized Galerkin equation) versus Lines 1–2 (the SFT
of the PDE data).

here that the nonstandard multiplicative factors help control the behavior of
the function in frequency rather than space. Given a multivariate modulating
frequency k ∈ Zd, we define the modulated, tensorized, periodic Gaussian by

Gr,k(x) =

d
∏

j=1

e2πikjxjGr(xj).

Finally, given a set of frequencies I ⊆ Zd, dilation parameters r ∈ RI
+, and

coefficients c ∈ RI , we can define Gaussian series

GI
c,r(x) :=

∑

k∈I

ckGrk,k(x).

Depending on the severity of the dilations chosen (i.e., rk � 1), this can
well approximate a Fourier series with frequencies in I. On the other hand, a
less severe dilation results in Fourier coefficients with magnitudes forming less
concentrated Gaussians centered around the “frequencies” k ∈ I and −k. An
example of a series with its associated Fourier transform is given in Figure 9.

In our first experiment, we fix d = 2 and vary both stamping level and
sparsity to again solve (18). The diffusion coefficient in (18) is replaced with
a two-term Gaussian series a = c0 +GI

c,r, where

I ∼ Unif
(

(

[−24, 25]2 ∩ Z2
)2
)

, c ∼ Unif
(

[−1, 1]2
)

,

r = 1.121, c0 = 10 d‖c‖2e .
(20)
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Fig. 9: An example Gaussian series with c1 = c2 = 1, r1 = 0.5, r2 = 2, k1 =
(3, 2), and k2 = (−5, 15). The first term corresponds to the wider Gaussian
shape and more spread out portions of the Fourier transform. The second term
contributes to the highly oscillatory parts and the isolated spikes in the Fourier
transform.

Note the increased constant factor from our previous examples to decrease the
likelihood of sparse approximations of a not satisfying the ellipticity property.
The Fourier transform of the resulting a used for the following test is depicted
in Figure 10 below.
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Fig. 10: The specific â used in examples depicted in Figure 11.

The diffusion equation is then solved across various sparsities with increas-
ing stamping level. The bandwidth parameter of the SFT is set to K = 100
to account for the wider effective support of â. The Monte Carlo proxy error
is computed with 1 000 samples and depicted in Figure 11.
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Fig. 11: Proxy error solving (18) with Gaussian series diffusion coefficient
with sparsity levels s = 2, 4, 8, 16, 32, 64, and stamping levels N = 1, . . . , 3.

Here, the stamping level does not affect convergence until the sparsity is
above s ≥ 16. This demonstrates the tradeoff between sparsity and stamping
level in regards to the error bound (15). Until the SFT is able to capture
enough useful information in â, the ‖a− as‖L∞ in the error bound dominates.
Eventually, this factor is reduced far enough that the stamping term becomes
apparent.

We provide another example, where sparsity is fixed at s = 16, and dimen-
sion and stamping level are increased. Again we solve (18) with the diffusion
coefficient replaced by the two-term Gaussian series a = c0 +GI

c,r, where

I ∼ Unif
(

(

[−249, 250]d ∩ Zd
)2
)

, c ∼ Unif
(

[−1, 1]2
)

,

r = 1.1d1, c0 = 10 d‖c‖2e ,

and c and c0 are not redrawn across test cases. The bandwidth of the SFT
is set to 1 000 to again account for the potentially widened Fourier transform
of a. With a 1 000 point Monte Carlo approximation of the proxy error, the
results are given in Figure 12.

Here we observe much the same behavior as the previous test case. This
is due to the fact that the dimension additionally drives the sparsity of the
Gaussian Fourier transforms based on the choice of dilation r = 1.1d1. In
additional experiments performed at higher dimensions (not pictured here),
this factor results in numerical instability and the approximation error blows
up. We also see that the d = 2 and d = 4 examples are swapped from their
assumed positions (and the d = 2 case even mildly benefits from increased
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Fig. 12: Approximate proxy error solving (18) with Gaussian series diffusion
coefficient with d = 2, 4, 8, 16 and N = 1, . . . , 5.

stamping level). This is attributed to the random draw of the frequency loca-
tions affecting the proxy error as well as the SFT algorithm performing better
in lower dimensions when all parameters are fixed.

Returning to the d = 2 example from Figure 11, we take this opportunity
to investigate the conditions (13) and (14) ensuring that the terms related to
stamping in the error bounds given by Corollaries 4 and 5 decay. Dividing both
sides of these inequalities by the right hand side gives a ratio that should be
less than one to ensure geometric decay in the stamping term.

In order to check these conditions, we use a 1 000× 1 000 two-dimensional
FFT of the a described by (20) as the “ground truth” â. We then compute the
two ratios for various sparse approximations as depicted in Figure 13.

We first observe that condition (13) deteriorates as sparsity increases while
(14) improves. This is expected, due to (13) corresponding to (7) for the diffu-
sion coefficient a restricted to supp(âs) in frequency. As the sparsity increases,
this condition gets closer and closer to (7) on the true a.

Additionally, we see that for this diffusion coefficient, only sparsity values
s = 2, 4, 8 satisfy a condition necessary for decay in the stamping term. This
clearly contrasts with the fact that the s = 16, 32, 64 cases in Figure 11 are the
only examples which do actually decay with the stamping level. However, as
stated there, it is possible there is stamping decay in the s = 2, 4, 8 terms, but
this is being overpowered by the error from a poor sparse approximation. The
fact that there is still decay in the larger sparsity cases shows that conditions
(13) and (14) are too pessimistic. It remains an open problem as to whether
this gap is in producing the more “user friendly” condition (14) or whether the
condition (7) can be improved, reducing (13) and (14) as a result.
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Fig. 13: Comparison of the “simplified iteration ratio” corresponding to (13)
and the “full iteration ratio” corresponding to (14) versus the sparsity used in
the SFT approximation.

10.5 Three-dimensional exactly sparse

advection-diffusion-reaction equation

We now extend our numerical experiments to the situation of a three-
dimensional advection-diffusion-reaction equation. See Remark 6 for the PDE
setup and necessary algorithmic modifications.

Numerically, we work with the following exactly sparse data:

a(x) = â0 +
∑

k∈Isine
a

csinea,k sin(2πk · x) +
∑

k∈Icosine
a

ccosinea,k cos(2πk · x)

bj(x) =
∑

k∈Isine
bj

csinebj ,k sin(2πk · x) +
∑

k∈Icosine
bj

ccosinebj ,k cos(2πk · x) for all j = 1, 2, 3

c(x) = ĉ0 +
∑

k∈Isine
c

csinec,k sin(2πk · x) +
∑

k∈Icosine
c

ccosinec,k cos(2πk · x)

f(x) =
∑

k∈Isine
f

csinef,k sin(2πk · x) +
∑

k∈Icosine
f

ccosinef,k cos(2πk · x),

(21)
where

∣

∣Isine
a

∣

∣ =
∣

∣Icosine
a

∣

∣ = 2
∣

∣

∣
Isine
bj

∣

∣

∣
=

∣

∣

∣
Icosine
bj

∣

∣

∣
=

∣

∣Isine
c

∣

∣ =
∣

∣Icosine
c

∣

∣ = 5 for all j = 1, 2, 3
∣

∣Isine
f

∣

∣ = 2, and
∣

∣Icosine
f

∣

∣ = 3.

In total, there are 46 terms composing the differential operator, and 5 terms
composing the forcing function. Each frequency is randomly drawn from



Springer Nature 2021 LATEX template

Sparse spectral methods 39

Unif([−49, 50]3 ∩ Z3) and each coefficient for a and f from Unif([−1, 1]). The
coefficients for b and c are drawn from Unif([0, 1]). To ensure well-posedness,

â0 = 4

⌈

√

‖csinea ‖22 + ‖ccosinea ‖22
⌉

, and ĉ0 = 4

⌈

√

‖csinec ‖22 + ‖ccosinec ‖22
⌉

. The

bandwidth of the SFT is set to K = 100 and we consider sparsity levels s = 2, 5
and 10. Due to the large size of the stamp, we only consider stamping levels
N = 1, 2.

∥

∥f − fs,N
∥

∥

L2/‖f‖L2

s N exact Monte Carlo

2
1 0.518 0.518

2 0.518 0.518

5
1 0.054 0.054

2 0.031 0.031

10
1 0.047 0.047

2 0.012 0.012

Table 1: Error in approximating solution to ADR equation (16).

The resulting true and Monte Carlo proxy error (sampled over 1 000 points)
is given in Table 1. Additionally, Figure 14 shows a portion of a slice through f
as well as f2,1 and f10,2 which are computed by passing u2,1 and u10,2 through
the differential operator.

We note that f10,2 and f appear qualitatively indistinguishable. However,
since the sparsity level, s = 2, used to compute u2,1 is lower than the sparsity
of any term in (21), f2,1 loses some of characteristics of the original source
term. Though it captures some of the true behavior in both larger scales (e.g.,
the oscillations moving in the northeast direction) and finer scales (e.g., the
oscillations moving in the southeast direction), some interfering modes which
produce the “wavy” effect are left out. This is supported by the relative errors
reported in Table 1. Note also that the stamping level affects the convergence
in the s = 5 and s = 10 cases, but not in the s = 2 case. This is due to the
sparsity related errors in (15) overwhelming the stamping term until the SFT
approximations of the data are accurate enough.

11 Conclusion

In this paper, we have presented a new way to join the theory of spectral
methods and sparse Fourier transforms for solving diffusion equations. The
key contribution is the idea of stamping sets, which allow us to find the prov-
ably most important frequencies of the PDE solution by running efficient,
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Fig. 14: Samples of f10,2 and f on the x1 = 63/128 plane.

high-dimensional SFTs on the PDE data. This recharacterizes the Galerkin
solution step into a procedure which is no longer directly dependent on either
the spatial dimension of the problem or the solution’s effective bandwidth.
We have demonstrated the method’s applicability in solving problems with
both bandwidths and dimensions over 1 000, with sparse or compressible data,
and in generalizations to ADR equations. We also provide a full H1 conver-
gence guarantee in Corollary 5, with a condition on the PDE data and sparse
approximation that can be checked to ensure convergence.

However, as demonstrated in Section 10.4, we believe that condition (14)
which ensures that the estimate in Corollary 5 holds is too pessimistic. In
future work, it would be useful to better understand the relationship between
condition (14) and conditions (13) and (7) from which it is derived. Since all
are tightly coupled with decay in their respective upper bounds, it is likely that
any improvement in these conditions would also result in improved convergence
guarantees.
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Another area of future investigation would be the extension of these
methods to time-dependent problems, especially those exhibiting spatially mul-
tiscale behavior. Rather than needing to use a very fine grid to resolve or
eventually adapt to any high-frequency behavior, we anticipate that SFTs and
stamping sets can be used to directly find the solution’s most important fre-
quencies at various time steps. This would ideally be able to accelerate the
time-stepping procedure while also potentially allowing for a stamp-adapted
stability condition to relax time-step sizes.

Finally, the numerical experiments in this paper have demonstrated that
our sparse spectral method can achieve high accuracy at low-sparsity levels,
and moderate accuracy for moderate sparsity levels (≈ 50 complex Fourier
coefficients). Thus, we do not expect that this technique will be easily appli-
cable to high-dimensional problems without a strong sparsity assumption.
However, we do see its viability in accelerating existing sparse grid or other
high-dimensional PDE solvers. In particular, stamping sets can be used to
better understand and adapt to anisotropic behavior in higher dimensions.
Applying a quick SFT on the diffusion coefficient and observing the shape
of the output’s support can help show the dimensions in which a solution
will have important high-frequency information. Additionally, one could also
consider restricting attention to a stamping set within a fixed frequency trun-
cation (e.g., a hyperbolic cross), to quickly create an adaptive spectral basis.
An especially interesting application of this approach could be in weighted `1

minimization in compressed sensing [1, 40, 41], where polynomial basis coef-
ficient indices are penalized in recovery based on their likelihood to include
important coefficients in the recovered solution. The stamping level in which
these frequencies lie could, e.g., be used as an additional penalization based
on the truncation analysis in Lemma 3.
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Appendix A Stamp set cardinality bound

We begin by proving the following combinatorial upper bound for the
cardinality of a stamp set.
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Lemma 8. Suppose that 0 ∈ supp(â), supp(â) = − supp(â), and |supp(â)| =
s. Then

∣

∣

∣
SN [â](supp(f̂))

∣

∣

∣
≤

∣

∣

∣
supp(f̂)

∣

∣

∣

N
∑

n=0

min(n,(s−1)/2)
∑

t=0

2t
(

(s− 1)/2

t

)(

n− 1

t− 1

)

. (A1)

Proof We begin by separating SN into the disjoint pieces

SN =

N
⊔

n=0

(

Sn \
(

n−1
⋃

i=0

Si

))

and computing the cardinality of each of these sets (where we take S−1 = ∅). If

k ∈ Sn \
(

∪n−1
i=0 Si

)

, then we are able to write k as

k = kf +

n
∑

m=1

k
m
a (A2)

where kf ∈ supp(f̂) and k
m
a ∈ supp(â) \ {0} for all m = 1, . . . , n. Additionally, since

k is not in any earlier stamping sets, this is the smallest n for which this is possible.
In particular, it is not possible for any two frequencies in the sum to be negatives of
each other resulting in pairs of cancelled terms.

With this summation in mind, arbitrarily split supp(â) \ {0} into A t −A (i.e.,
place all frequencies which do not negate each other into A and their negatives in
−A). By collecting like frequencies that occur as a k

m
a term in (A2), we can rewrite

this sum as
k = kf +

∑

ka∈A

s(k,ka)m(k,ka)ka, (A3)

where the sign function s(k,ka) is given by

s(k,ka) :=











1 if ka is a term in the summation (A2)

−1 if −ka is a term in the summation (A2)

0 otherwise

and the multiplicity function m(k,ka) is defined as the number of times that ka or
−ka appears as a k

m
a term in (A2). Letting s(k) := (s(k,ka))ka∈A and m(k) :=

(m(k,ka))ka∈A, we can then identify any k ∈ Sn \
(

∪n−1
i=0 Si

)

with the tuple

(kf , s(k),m(k)) ∈ supp(f)× {−1, 0, 1}A × {0, . . . , n}A.

Upper bounding the number of these tuples that can correspond to a value of k ∈
Sn \

(

∪n−1
i=0 Si

)

will then upper bound the cardinality of this set.

Since any kf ∈ supp(f̂) can result in a valid k value, we will focus on the pairs

of sign and multiplicity vectors. Define by Tn ⊆ {−1, 0, 1}A × {0, . . . , n}A the set of

valid sign and multiplicity pairs that can correspond to a k ∈ Sn \
(

∪n−1
i=0 Si

)

. In

particular, for (s,m) ∈ Tn, ‖m‖1 = n and supp(s) = supp(m). Thus, we can write

Tn ⊆
min(n,|A|)
⊔

t=0

{

(s,m) ∈ {−1, 0, 1}A × {0, . . . , n}A

| ‖m‖1 = n and | supp(s)| = | supp(m)| = t
}

.
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This inner set then corresponds to the t-partitions of the integer n spread over the
|A| entries of m where each non-zero term is assigned a sign −1 or 1. The cardinality

is therefore 2t
(|A|

t

)(n−1
t−1

)

: the first factor is from the possible sign options, the second
is the number of ways to choose the entries of m which are nonzero, and the last is
the number of t-partitions of n which will fill the nonzero entries of m. Noting that
|A| = s−1

2 , our final cardinality estimate is

∣

∣

∣
SN
∣

∣

∣
=

N
∑

n=0

∣

∣

∣

∣

∣

Sn \
(

n−1
⋃

i=0

Si

)
∣

∣

∣

∣

∣

≤
N
∑

n=0

∣

∣

∣
supp(f̂)

∣

∣

∣
|Tn|

≤
∣

∣

∣
supp(f̂)

∣

∣

∣

N
∑

n=0

min(n,(s−1)/2)
∑

t=0

2t
(

(s− 1)/2

t

)(

n− 1

t− 1

)

as desired. �

Though this upper bound is much tighter than the one given in the main
text, it is harder to parse. As such, we simplify it to the bound presented in
Lemma 2, restated here for convenience.

Lemma 2. Suppose that 0 ∈ supp(â), supp(â) = − supp(â), and |supp(â)| =
s. Then

∣

∣

∣
SN [â](supp(f̂))

∣

∣

∣
≤ 6

∣

∣

∣
supp(f̂)

∣

∣

∣

(

max(s, 2N)√
2

)min(s,2N)

.

Proof Let r = (s− 1)/2. We consider two cases:

Case 1: (s ≥ 2N =⇒ r ≥ N) We estimate the innermost sum of (A1). Since r ≥
N ≥ n, min(n, (s − 1)/2) = n. By upper bounding the binomial coefficients
with powers of r, we obtain

n
∑

t=0

2t
(

r

t

)(

n− 1

t− 1

)

≤
n
∑

t=0

2t(rt)2

≤ 2(2r2)n

where the second estimate follows from approximating the geometric sum.
Again, bounding the next geometric sum by double the largest term, we have

∣

∣

∣
SN
∣

∣

∣
≤
∣

∣

∣
supp(f̂)

∣

∣

∣

N
∑

n=0

2(2r2)n ≤
∣

∣

∣
supp(f̂)

∣

∣

∣
4(2r2)N ≤ 4

∣

∣

∣
supp(f̂)

∣

∣

∣

(

s√
2

)2N

.

Case 2: (s < 2N =⇒ r < N) Bounding the innermost sum of (A1) proceeds much
the same way as Case 1, but we must first split the outermost sum into the first
r + 1 terms and last N − r terms. Working with the first terms, we find

r
∑

n=0

n
∑

t=0

2t
(

r

t

)(

n− 1

t− 1

)

≤ 4(2r2)r
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using the argument in Case 1. Now, we bound

N
∑

n=r+1

r
∑

t=0

2t
(

r

t

)(

n− 1

t− 1

)

≤
N
∑

n=r+1

2(2(n− 1)2)r

≤ 2N(2(N − 1)2)r

≤
√
2(
√
2N)2r+1.

Thus,

∣

∣

∣
SN
∣

∣

∣
≤
∣

∣

∣
supp(f̂)

∣

∣

∣

[

4(2r2)r +
√
2(
√
2N)2r+1

]

≤ (4 +
√
2)
∣

∣

∣
supp(f̂)

∣

∣

∣

(

2N√
2

)s

.

Combining the two cases gives the desired upper bound.
�

Appendix B Proof of SFT recovery guarantees

We restate the theorem for convenience.

Theorem 2 ([26], Corollary 2). Let I ⊆ Zd be a frequency set of inter-
est with expansion defined as K := maxj∈{1,...,d}(maxk∈I kj − minl∈I lj) + 1
(i.e., the sidelength of the smallest hypercube containing I), and Λ(z,M) be a
reconstructing rank-1 lattice for I.

There exists a fast, randomized SFT which, given Λ(z,M), sampling access
to g ∈ L2, and a failure probability σ ∈ (0, 1], will produce a 2s-sparse
approximation ĝs of ĝ and function gs :=

∑

k∈supp(ĝs) ĝ
s
kek approximating g

satisfying

‖g − gs‖L2 ≤ ‖ĝ − ĝs‖`2 ≤ (25 + 3K)

[‖ĝ|I − (ĝ|I)opts ‖1√
s

+
√
s‖ĝ − ĝ|I‖1

]

with probability exceeding 1− σ. If g ∈ L∞, then we additionally have

‖g − gs‖L∞ ≤ ‖ĝ − ĝs‖`1 ≤ (33 + 4K)
[∥

∥ĝ|I − (ĝ|I)opts

∥

∥

1
+ ‖ĝ − ĝ|I‖1

]

with the same probability estimate. The total number of samples of g and
computational complexity of the algorithm can be bounded above by

O
(

ds log3(dKM) log

(

dKM

σ

))

.

Proof The L2 upper bound is mostly the same as the original result. We are not
considering noisy measurements here which removes the

√
se∞ term from that result

(though, this could be added back in if desired). Additionally, we have upper bounded
‖ĝ − ĝ|I‖2 by

√
s‖ĝ − ĝ|I‖1 adding one to the constant.

The L∞ / `1 bound was not given in the original paper, but can be proven using
the same techniques. In particular, replacing the `2 norm by the `1 norm in [26,
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Lemma 4] has the effect of replacing all `2 norms with `1 norms and replacing
√
2s

by 2s. This small change cascades through the proof of Property 3 in [26, Theorem
2] (again, with `2 norms replaced by `1 norms) to produce the univariate `1 upper
bound (in the language of the original paper)

‖â− v‖1 ≤
∥

∥

∥
â− â

opt
2s

∥

∥

∥

1
+ (16 + 6

√
2)
(
∥

∥

∥
â− â

opt
s

∥

∥

∥

1
+ s(‖â− â‖1 + ‖µ‖∞)

)

=: η1.

A similar logic applies to revising the proof of [26, Lemma 1]. Equation (4) with
all `2 norms replaced by `1 norms is derived the same way, and the first term is upper
bounded by the maximal entry of the vector multiplied by the number of elements
without the square root. The remainder of the proof carries through without change
which leads to a final error estimate of

‖b− c‖`2 ≤ (β + η∞)max(s−
∣

∣Sβ

∣

∣, 0) + η1 +
∥

∥c|I − c|Sβ

∥

∥

1
+ ‖c− c|I‖1.

Finally, the proof of [26, Corollary 2] follows using the same logic as the original
substituting these revised upper bounds. �
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