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the physics from the point of view of the dynamics of free fermions in backgrounds with
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1 Introduction

Since its inception in the late 1980’s, string theory in a 1 + 1 dimensional spacetime has
played an important role in the development of the subject (see e.g. [1-7] for reviews). In
particular, its dual description in terms of matrix quantum mechanics in a double scaling
limit was an early example of holography, a precursor to the AdS/CFT correspondence [8-11]
and Little String Theory [12-14]. The fact that the theory is solvable allows one to use it to
test general ideas in string theory and holography in a setting where explicit calculations can
be performed. An example is the study of non-perturbative effects (in the string coupling);
see e.g. [15-27] for some recent discussions.



The theory was originally formulated in a static background, where a natural set of
observables is given by S-matrix elements for scattering of (massless) “tachyons”. It is known
that the theory is solvable in time-dependent backgrounds as well (see e.g. [28-39]), however
in some of these backgrounds the nature of the observables is less clear. The main goal of
this paper is to discuss the physics of a class of such backgrounds, and try to learn from them
how to treat backgrounds with similar features in more realistic settings in higher dimensions,
such as backgrounds with cosmological singularities.

1.1 The standard background

To set the stage, we start with a brief review of the situation in the standard background [1-
7]. In Euclidean two dimensional spacetime with (Euclidean) worldsheet metric g, it is
described by the action

Sp = % /dzz\/§ {(?X)Q + (%)2 +26R(§) — Ampde?| | (1.1)

The linear dependence of the dilaton on ¢ leads to a string coupling that behaves like
gs(®) ~ exp(2¢). One can think of ¢ as the conformal factor of a dynamical metric, and
of (1.1) as a conformal gauge description of worldsheet gravity coupled to a massless scalar
field, X.

The worldsheet theory (1.1) becomes free in the region ¢ — —oo, where the string
coupling gs(¢) goes to zero. This region is the boundary of the two dimensional spacetime
labeled by (X, ¢). Conversely, as ¢ increases, the string coupling increases, and one might
think that perturbative string theory breaks down due to strong coupling effects associated
with the large positive ¢ region. However, the cosmological constant term in the action (1.1)
gives rise to a potential for ¢ that prevents it from exploring this region.! This potential
is often referred to as the Liouville wall. It leads to the fact that in the background (1.1)
the gs expansion is essentially a 1/u expansion.

Physical observables in the background (1.1) are correlation functions of vertex operators
characterized by their behavior near the boundary. A large set of such operators corresponds
to modes of the massless “tachyon” field, described by the vertex operators?

L'(|pl) / 2 (2—] ‘
T, ~ [ g2,02=pDéginX 1.2
P o)) (12

In (1.2) we chose to normalize the operators in a conventional way; see e.g. [3, 40]. The ~
means that (1.2) describes the behavior of the operators as ¢ — —oo; the finite ¢ form of
the operators (1.2) is more complicated. The physical observables are correlation functions
of the operators T,

(Tplsz e sz> : (1'3)

These correlation functions are uniquely determined by the asymptotic form (1.2).

'"Here p is taken to be positive, and as discussed below, the form of the potential in (1.1) is only valid for
large negative ¢. As ¢ increases, the potential receives corrections, so that it goes to infinity as ¢ — oco.

2Here and below we take the worldsheet metric § to be flat, i.e. z is a coordinate on the complex plane
with flat metric.



An important feature of the operators (1.2) is that they are non-normalizable. Indeed,
their wavefunctions behave in the limit ¢ — —oo like ¥,,(X, ¢) ~ ePX=IPl9)  Thus, adding
them to the worldsheet Lagrangian corresponds to a deformation of the Lagrangian of the
spacetime theory. We note, for future reference, that the wavefunctions ¥, have the property
that for positive (negative) p they depend on the (anti-)holomorphic variable ¢ FiX.

The worldsheet field X is often taken to be compact, X ~ X + 27 R, e.g. to study the
theory at finite temperature. In that case the momentum p is quantized, pR € Z, and there
are also winding modes. The latter will not play a role in our discussion below. They are
related to momentum modes by T-duality, which can be used to relate their correlation
functions to those of momentum modes, (1.3).

The cosmological term in the worldsheet action (1.1) can be written as uTy. The
prefactor in (1.2) has a pole at p = 0; this pole is responsible for the factor of ¢ in front of
the exponential in (1.1). Differentiating the path integral w.r.t. u gives an insertion of —Tj.
We will use this fact in the calculation of the correlation functions (1.3).

A property of these correlation functions that will be useful below is their dependence
on pu, known as KPZ scaling. By analyzing the behavior of (1.3) under a shift of ¢, one
can show that (to leading order in g;)

(Tp\ Ty -+ Tp,) ~ pu®, (1.4)

with a determined by
l
Zz—\p] )+2a=4. (1.5)

The coefficient of p* in (1.4) contains the non-trivial dependence of (1.3) on the momenta
pj. In order to determine it, one needs to solve the worldsheet theory (1.1).
The Lorentzian analog of (1.1) is obtained by taking X — —it, which gives

= / >z +(Vo)* — dmpupe™) . (1.6)

The target spacetime is now 1 + 1 dimensional, with a spacelike linear dilaton and a Liouville
wall in the spatial (¢) direction, which as before shields the strong coupling region. This
is depicted in figure 1, where the red line is the Liouville wall, defined as the surface along
which the Liouville potential V (¢) is of order one.? The shaded region is shielded by the
Liouville potential.

The natural Lorentzian observables are obtained by taking |p| — —iw (w > 0) in (1.2),*

7;:‘: ~ Flgf — Zw /d226 2+zw)q5€:szt ) (17)

3This wall is soft, in the sense that particles with higher energy penetrate it to larger ¢; see e.g. [41] for a
discussion.

4Each of the vertex operators 7 is in fact a linear combination of incident and reflected waves, as is
standard in quantum mechanics. The relative coefficient between the incident and reflected waves is the
reflection coefficient.
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Figure 1. The correlation functions (1.8) describe scattering processes, where n right-moving tachyons
T+ come in from the boundary ¢ — —oo and scatter off the Liouville wall (depicted in red) into n’
left-moving tachyons 7~ that go back towards the boundary.

The vertex operators (1.7) describe particles with energy w propagating in the background (1.6).
T corresponds to an incoming particle, moving to the right, towards the wall, while 7
corresponds to an outgoing, left-moving, particle with energy w, moving away from the
wall (see figure 1). The corresponding wavefunctions W2(t, ¢) ~ (@) are §-function
normalizable, as appropriate for describing asymptotic particle states.

Correlation functions of the form

ﬁ ﬁ (18)

describe scattering amplitudes of n tachyons with energies {w;} to n’ tachyons with energies
{w} (see figure 1). Time translation invariance of the background implies that energy is
conserved in such processes, 37 ; w; = s wj.

As before, the u dependence of (1.8) is determined by KPZ scaling. The analog
of (1.4), (1.5) is

f[ TS T ~ (1.9)

with

n n
> 2+ iwy) + Y (24iw) +2a=14. (1.10)
j=1 =1

In particular, the dependence of the amplitudes (1.8) on wj. is via the phase pu~ 39 = e 5w Inp

and similarly the dependence on wj is via the phase e~ gwilnp, Looking back at the form
of the vertex operators 7., (1.7), we see that this factor has a simple interpretation — it



indicates that the scattering process described by the correlation function (1.8) happens
in the vicinity of the wall, ¢* ~ —% Inp (see figure 1), and thus is sensitive to the value
of the vertex operators at that location.

As in the Euclidean case, the dynamical information about the scattering processes (1.8)
is contained in the coefficient of u® in (1.8). In principle, one can obtain it by calculating
the scattering amplitudes (1.8) using the worldsheet description (1.6), but in practice this is
difficult for general n and n’, due to the interacting nature of the worldsheet theory. The
dual matrix model allows one to calculate these amplitudes much more efficiently. It also
allows one to calculate quantum corrections to the leading terms, which from the worldsheet
perspective come from higher genus contributions to the correlation functions (1.8). We
will use some of the matrix model results below.

1.2 Time-dependent backgrounds

As mentioned above, our main interest will be in time-dependent backgrounds, that are
obtained by deforming (1.6). Such backgrounds were discussed in the past, e.g. in [28-39],
and we will use some of their results. A special case of these backgrounds was recently
revisited in [42-44].

The particular deformations we will consider correspond to adding to the worldsheet

action the terms®

r
68, =M T+ AT, = F(l(f)p) / d?ze(2~P)? ()\+e”t + )\_e_pt> : (1.11)

The couplings A+ are taken to be real, so that the worldsheet action remains real after
deformation. If AL are both non-zero, one can take them to satisfy Ay = +A_ by shifting
the origin of time. We will mostly focus on the case where one of the two couplings vanishes,
in which case the remaining coupling controls the time at which the perturbation (1.11)
becomes important. Obviously, for A_ = 0 the perturbation (1.11) becomes important in
the future, while for Ay = 0 it becomes important in the past.

We see from (1.11) that there is a qualitative difference between the cases 0 < p < 2 and
p > 2. In the former case, the perturbation goes to zero near the boundary of spacetime
¢ — —oo (for fixed t). In the latter, it grows as we approach the boundary. The origin
of this behavior is well understood. For p < 2, the operators exp(+£pt) are relevant, and
thus, after coupling to ¢, their effective coupling in (1.11) goes to zero in the UV region
¢ — —oo. Conversely, for p > 2 these operators are irrelevant, and modify the UV behavior.
We will restrict to the case p < 2 below.

The addition of the perturbation (1.11) to the worldsheet Lagrangian (1.6) modifies the
worldsheet potential. From now on, we will focus on the case A_ = 0, unless explicitly stated
otherwise. The worldsheet potential takes in this case the form (at large negative ¢)

Vis(t, ¢) = —ppe®® + Ay eCPIotet (1.12)

where 5\+ = /\+%. The situation is described in figure 2, which generalizes figure 1 to

Ay > 0. The solid red line in figure 2 is the surface V (¢, ¢) ~ 1, which can be thought of
as a time-dependent Liouville wall.

5Here and below, we take p > 0, without loss of generality.
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Figure 2. In the presence of the perturbation (1.12), the Liouville wall becomes time-dependent.

As t — —oo, it approaches the static wall of the unperturbed system, while as t — +00, its velocity

approaches —ﬁ. For p < 1, the Liouville wall remains timelike for all ¢, (a), while for p > 1 it

eventually becomes spacelike, (b).

For early time (t — —o0), the perturbation proportional to Ay in (1.12) goes to zero,
and we recover the static Liouville wall described in the previous subsection. For late time
(t — o0), the velocity of the modified Liouville wall approaches a finite constant, as indicated
in figure 2. The transition between the two regimes occurs around the point (¢, t) = (¢*,t*),

e 1 1« 2-p
(¢,t)—(—§lnu,—];lnA++ o ln,u> (1.13)

depicted in figure 2. This is the regime in which the Liouville wall accelerates from its
initial to its final velocity.

As is evident from the figure, there is a qualitative difference between the cases 0 < p < 1
and 1 < p < 2. In the former case, exhibited in figure 2(a), the trajectory of the Liouville
wall is timelike for all t. On the other hand, for 1 < p < 2, figure 2(b), the Liouville wall
is spacelike at large t, i.e. it moves faster than light at late times. Note that this is not
inconsistent with special relativity, since the Liouville wall is not a dynamical object. It is
rather a non-normalizable background, and thus cannot be used to propagate information
faster than light. The dynamical field — the tachyon — is massless, and can be used to
transmit information at the speed of light.

There is an important subtlety in the above discussion that will play a role in our analysis.
In the holographic map between 141 dimensional string theory and matrix quantum mechanics,
the tachyon field on the worldsheet, whose momentum modes are given by the exponentials
in equations (1.2), (1.7), and its matrix model analog, are related by a momentum dependent
factor — the ratio of Gamma functions in these formulae. This ratio can be thought of as due
to the non-zero modes of the worldsheet fields (¢, t). Therefore, the deformation (1.11), that
gives rise to the worldsheet interaction [ d?zVis(t(z, 2), (2, 2)), (1.12), yields the potential

Vie(t, ) = uTo 4+ ATy = pe® + X, e-P)otpt (1.14)



for the zero modes of the worldsheet fields (¢(z, 2),t(z, 2)). The time-dependent Liouville
wall is described by the equation Vi (t,¢) = 1.

The qualitative discussion above of the worldsheet potential Vi mostly goes through
when it is replaced by Vi, but there are a couple of important changes. First, the time-
dependent term in (1.14) is positive for Ay > 0, whereas in (1.12) it is A, that must be
positive. For 0 < p < 1 the two notions coincide, but for 1 < p < 2 they differ. We will take
the point of view that the spacetime potential Vg is the important one for the dynamics
of the tachyon field, and thus take Ay to be positive. We will see later that this gives a
coherent picture of the physics. The second change is that the point (¢*,t*) in figure 2 is
still given by (1.13), but with A; replaced by Ay,

2—-p

(¢*, %) = (—;lnu,—;ln)ur—i— lnu). (1.15)
This too will play a role in our analysis.

The form of the time-dependent Liouville wall has an important impact on the observables
in this background. Past lightlike infinity is part of the boundary for all p < 2, and therefore
we can define the observables 7. in figure 2 for non-zero A;, p. However, future lightlike
infinity is only part of the boundary for p < 1. Hence, the outgoing particles 7, can only
be defined as asymptotic observables in that regime. Thus, for p < 1, we can compute
scattering amplitudes of the sort (1.8) with any n,n’ > 0, as depicted in figure 2. However,
for 1 < p < 2 we cannot define amplitudes with n’ > 0, since the region where the operators
7. are to be defined is shielded by the potential (1.14).

This issue is especially significant when both A, and A_ are positive and 1 < p < 2. In
that case it seems like there are no good observables, since both 7 and 7, appear not to
exist, for the same reason as above. We will mainly focus on the case A_ = 0 and p < 1
below, but will comment on p > 1 and A_ > 0 at various points in our analysis.

The fact that the background (1.11) with A_ = 0 is time-dependent implies that energy
is not conserved. For example, we can consider amplitudes of the form

(7. (1.16)

where n particles are incident on the wall and are absorbed by the time-dependent background.
For p < 1 we can also consider the amplitudes

Y, (1.17)

~~ |

(I 7
=1

corresponding to the creation of n’ outgoing particles in the time-dependent Liouville po-
tential (1.12). And, of course, we can consider general amplitudes of the form (1.8) with
any non-negative (n,n’), and any energies (wj,w;).

In the case where the Liouville wall is static, KPZ scaling (1.9), (1.10) provides insight
into the dynamics — it suggests that the scattering processes of figure 1 generically happen
in the vicinity of the Liouville wall. It is thus interesting to generalize the scaling analysis



to the case of figure 2. For example, for the amplitude (1.16) one has
n
(T 720 ~u\y (1.18)
j=1

The powers a, b can be determined by analyzing the behavior of the amplitude (1.18) under
shifts of ¢ and ¢t. This gives

n

> (2+iw;)+2a+(2—p)b=4, (1.19)
j=1
and .
iy wj+bp=0, (1.20)
j=1

respectively. The solution of these equations is

. n . n
i i
a:—waj—n—i—Q, b:waj. (1.21)
Plugging (1.21) into (1.18), we see that the dependence of the correlator on each of the
energies w = wj is via the phase factor

iw

(M)  _ exp (W In A+> (1.22)
7 P

These factors have a similar interpretation to the one discussed for the static background
after eq. (1.10). Evaluating the vertex operator T (1.7) at the location (¢*,¢*) near which
the Liouville wall accelerates (see figure 2), given in (1.15), we find that at that location
the vertex operator is given by 1/u multiplying the phase factor (1.22). The former is the
factor of gs that relates a vertex operator to the wavefunction, while the latter implies that
the amplitude (1.18) is dominated by the region near (¢*,t*).

In other words, as one would have expected, the time-dependent Liouville wall of figure 2
can best absorb incident tachyons in the region where its velocity changes from zero to
a finite value. The precise location and width of this region depends on the parameters,
A+, 1, and the energies of the particles w;. And, as mentioned above, to actually compute
this amplitude one needs to evaluate the coefficient of ,u“)\ﬁ_ in (1.18). We will address this
problem in the next sections.

The above discussion can be repeated for the amplitude (1.17), which corresponds to a
process where no particles are incident on the time-dependent Liouville wall, and n’ particles
with energies {w;} are emitted by the wall. As before, we have

(TT75) ~ meah (1.23)
=1

with (a,b) determined by the conditions

n

> (@2+iw]) +2a+ (2-p)b=4, (1.24)
=1



and

n/

iy wj+bp=0. (1.25)
=1

The solution is

/

—
|
i
S

.on!
wj—n+2, b:—%Zw{. (1.26)
=1
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The analog of the phase factor (1.22) is in this case

iw

()\+up_1> P =exp [—i;)ln()ur,up_l)} . (1.27)

The phase factor (1.27) has the same interpretation as before — it is obtained by evaluating
the vertex operator 7, (1.7) at the location (¢*,t*). As expected, we conclude that the
emission of tachyons from the time-dependent Liouville wall of figure 2 is centered in the
region where the wall accelerates.

We finish this subsection with some comments:

o Looking back at figure 2, one can ask whether there are processes in which incoming
tachyons are reflected from the Liouville wall far from the region where the wall
accelerates, e.g. at t < t*. Such processes are of course possible, but as is clear from the
figure, they are insensitive to A4, and in particular conserve energy. What we found
above is that amplitudes that violate energy conservation are in general due to physics
in the vicinity of (¢*,t*).

o In the discussion above we took either n or n’ to vanish, but it is easy to generalize
to any non-negative n and n/. As expected, one finds that energy violating processes
of the sort depicted in figure 2 are dominated by the region where the Liouville wall
accelerates.

e Since the backgrounds we consider are not time translation invariant, the amplitudes
we compute below receive, in general, contributions from disconnected diagrams. We
will focus on connected diagrams, but it is easy to include disconnected ones.

o As mentioned above, to compute amplitudes like (1.16), (1.17), we need to calculate
the coefficients of A% in (1.18), (1.23). In general, this requires the use of the matrix
model. In the next subsection we explain our strategy for doing this calculation.

1.3 Strategy of the calculation

We will take an approach to this problem that proved fruitful in studying time-dependent
solutions in open string theory (see e.g. [45] for a review). We start with the Euclidean
problem (1.1), and add to the worldsheet action the term

0Sp =M\ Ty + AT, = F(E(f)p) / d?ze27P)? ()\+eipX + )\_e’i”X> : (1.28)



As mentioned above, we will mostly consider the case A_ = 0. At first sight this looks
problematic, since the worldsheet action is not real unless A_ = A%, however this is standard
in field theory (and string theory). We can study the theory with complex action (1.28), with
the understanding that we are really interested in the Lorentzian theory obtained by taking
X — —it. In that theory, Ay and A_ are independent (real) couplings.

We will take the field X to live on a circle of radius R, anticipating that the Lorentzian
background of interest has thermal features. In order for the perturbation (1.28) to make
sense, the momentum p must be an integer multiple of 1/R. We will see that the discussion
simplifies significantly if we take

P=5 (1.29)
i.e. the perturbation (1.28) carries one unit of quantized momentum. We do not have a
good understanding why this is the case, but will comment on what happens if we make
other choices.

We will use the Euclidean action (1.1), (1.28), and the dual matrix model, to calculate

some correlation functions of the form (1.2),

( H To, 1T T4, (1.30)

(with ¢;,q; > 0). For \; = 0, these correlation functions must satisfy the selection rule
DY q;, due to X translation invariance. However, for A} > 0 this sum rule does not
need to be satisfied, since the deformation (1.28) breaks this symmetry.

In particular, we will study the amplitudes (1.30) with n = 0, which vanish for AL = 0,
but don’t for finite Ay. We will also study the amplitudes with n’ = 1, for which the result
can be read off from calculations in the existing literature.

We will then Wick rotate the Euclidean results (1.30) to Lorentzian signature. We will
find it convenient to first Fourier transform the momentum space results to position space,
then Wick rotate the position space result, and finally Fourier transform back to (Lorentzian)
momentum space, to obtain the S-matrix elements (1.8).

The plan of the rest of the paper is the following. In section 2, we describe the procedure
we employ in later sections for the case of an accelerating Liouville wall, for the usual static
case. We start with Euclidean momentum space amplitudes, transform them to position
space, then Wick rotate to Lorentzian signature, and finally Fourier transform back to
Lorentzian momentum (energy) space.

In section 3 we generalize this procedure to the time-dependent case. We consider
backgrounds that correspond to a Liouville wall that is static in the far past, and approaches
a finite velocity in the far future. The final velocity can be either smaller or larger than the
speed of light, and we discuss both cases. For the former case we compute the scattering
amplitude of n incoming particles to one outgoing one (eq. (1.8) with n’ = 1). We also
compute the amplitude for creation of n particles in the time-dependent background, (1.17).
We show that these amplitudes have a thermal character, a phenomenon reminiscent of the
Unruh effect [46]. For the latter case, future null infinity is shielded by the potential, and
we discuss the observables that one can define in this case.

,10,



In section 4 we discuss some generalizations of the analysis of section 3. The main goal
of this section is to study the case where the Liouville wall accelerates both in the far past
and in the far future, corresponding to eq. (1.11) with Ay > 0 and figure 5. In the regime
where the trajectory of the Liouville wall is timelike for all ¢, we compute the amplitude
for particle creation. We find that these amplitudes have a singularity at a finite value of
the coupling Ay A_ (1.11). In a Hartle-Hawking construction, this singularity appears to
correspond to the disappearance of time.

In section 5 we describe the results of the previous sections from the matrix model point of
view. As is well known, in the double scaling limit the matrix model reduces to the dynamics
of free fermions in an inverted quadratic potential. The massless tachyon field corresponds to
a perturbation of the Fermi surface of these fermions. The time-dependent backgrounds we
study in sections 3, 4 correspond in this model to backgrounds with a time-dependent Fermi
surface. We discuss the dynamics of perturbations of such surfaces, focusing on the difference
between the cases p < 1 and p > 1. We relate the free fermion description to that in terms
of an accelerating Liouville wall, and show that the dynamics of perturbations of the Fermi
surface is compatible with that seen from the bulk 1+ 1 dimensional string theory perspective.

In section 6 we discuss our results and possible extensions. Two appendices contain
reviews of technical results useful for our analysis.

2 Wick rotation in the standard background

In this section we illustrate the procedure we will follow for the time-dependent backgrounds,
in the usual, time-independent, background of two dimensional string theory, corresponding
to a static Liouville wall.

We start with the Euclidean theory (1.1) and take X to live on a circle of radius R. In
this theory, it is known from both continuum and matrix model perspectives [3, 40] that the
Euclidean continuation of the n — 1 scattering amplitude takes the form

< II Tq].T_q/> RO G s (2.1)
j=1

Here m’ = ¢'R and m; = ¢;R, j = 1,--- ,n are integer momenta.
In order to Wick rotate this amplitude to Lorentzian signature, we proceed as follows.
We start by Fourier transforming the operators Tj (1.2) to position space. We define a
complex coordinate y = y; + ty2, and write
1 oo

27TR Z e’ Tm,  T(y) = T ¢RI _m . (2.2)

As is clear from (2.2), y; is a compact coordinate, y; ~ y1 +27R, so y parameterizes a cylinder.
Using (2.1), (2.2), we find:

n - 1 & 1
(Hrw)t@)=crm oo Ity 29)
j=1 Fisil—pre 7YY
We now Wick rotate y; = —iyg, which means y = —iu and y = —iv, where u = yg — y2,

v = yo +y2 are lightlike coordinates on R!. The corresponding Wick rotation in (X, ¢) space

— 11 —



is X — —it, as described in section 1. Looking back at (1.2) we see that after Wick rotation
one can identify u with ¢t — ¢ and v with t+ ¢, at least asymptotically (i.e. near the boundary).
After Wick rotation, the correlation function (2.3) takes the form

L _ _ Py 1
(T )T @) = R [ s - (24)
j=1 j=1 HWRe R
The next step is to Fourier transform back to Lorentzian momentum space. With
[e%¢] X ¢} .
Th = / due™™" T (u), T, :/ dve™ T (v), (2.5)
—c0 —o0
the n — 1 S-matrix elements are given by
(TIT575) = —2m o s = Y [l “ewiB). (26)
j=1 j=1  j=1
where
+o0 etrz 5 7)
= d . .
o) = [ e (

The integral (2.7) is divergent from z — —oo. This divergence can be regularized by an
ie prescription. Replacing x — x — ie in (2.7), the contribution to the integral from the
region z — —oo becomes convergent.

The integrand in (2.7) also has a pole at the origin of the z-plane, which can be treated as
usual by deforming the integration contour to go either above or below it. In both cases the
integral can be computed by standard contour deformation techniques. Closing the contour
in the upper half plane, using the fact that in (2.6) we are interested in the case where x
in (2.7) has a positive real part, we get that the integral receives contributions from the
residues of the poles at z = 27ik, with integer k ranging from 0 (or 1) to oo:

00 — e27r:v 1
g(gj) = —2m1 Z e TR — —Qﬁlm or — zﬂlm . (28)
k=0or 1

In our application (2.6), x = wR, where R is related to the temperature via 5 = 1/T = 27 R.

At zero temperature, R — oo, with the first choice in (2.8), g(wR) approaches a constant,

while for the second it goes to zero. Therefore, to get a finite zero temperature limit, we choose

the first expression in (2.8). We have checked that the finite temperature amplitudes (2.6),

obtained via the Wick rotation described above, are consistent with those calculated in [23].
In the limit R — oo, the amplitude (2.6) takes the form:

n n
_ . _ g n 1
< H 7;’;7;/> =2mi"0(w' — Z w;)0), 25 DY (2.9)
j=1 j=1
This result is consistent with what we would have obtained by a simple continuation of (2.1)
to Lorentzian signature, but in the present discussion it is obtained as a limit from finite
temperature of (2.6), which contains more information. In particular, the factor g(wR) for
each incoming particle can be written as
. 1

g=—2m—)F

p— e_

; (2.10)
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This function is constant for w > T, but varies for w ~ T', and in fact diverges as w — 0.
In section 1 we discussed the fact that an insertion of a zero momentum tachyon can be

thought of as differentiating the path integral w.r.t. u. We see that at finite temperature in

Lorentzian signature, the situation is a bit more subtle. Equations (2.6), (2.10) imply that

+ T
2Ty _ oy W g (2.11)

wlg%) g(wR) wlg%) T

This is different from the situation at zero temperature, where we can see from (2.9) that the
limit w — 0 of 7 gives d,, times a multiplicative, w-independent factor. It is not surprising
that the two cases are different, since the range of energies w < T that is responsible
for (2.11) does not exist for T' = 0.

3 Amplitudes in time-dependent backgrounds

In this section we generalize the discussion of section 2 to the case of the time-dependent
backgrounds described in section 1. The starting point of that discussion was a Euclidean
analysis at a finite value of the radius of Euclidean time, R, and it is natural to generalize
it to the present case.

The calculation of section 2 can be done for any R, but in the perturbed system (1.28),
R must satisfy the constraint pR = m,, € Z. Here m,, is the quantized momentum in the
Euclidean time direction. As mentioned in section 1, the analysis simplifies significantly for
mp = 1, i.e. for R = 1/p as in (1.29), and we will mainly restrict to this case below. We
will comment in the next section on what happens for m, > 1.

In the rest of this section we will study some examples of amplitudes in the back-
ground (1.11) with A\_ = 0. We start with the n — 1 amplitude, the analog of (2.6) for
non-zero A4, and then move on to the amplitude for production of n particles.

We also note that the calculations in this section involve the connected diagrams with
given external legs. In general, these amplitudes receive contributions from disconnected
diagrams as well, which are in fact generally dominant in the weak coupling limit.

3.1 n — 1 amplitude

To generalize the analysis of section 2 to the case of non-zero A;, we need first to find
the analog of (2.1) for this case. In the Euclidean theory with compact X, we expect the
Euclidean amplitude to be perturbative in A;. Expanding the exponential exp(—AT}), we
need to evaluate amplitudes of the form (T;" [}, Ty, T ) in the standard background of
two dimensional string theory. The momenta g;, ¢’ are integer multiples of L

/
L L 3.1
G="J =5 (3.1)
as in (2.1). For p=1/R, i.e. my, = 1, the momenta (3.1) are integer multiples of p, but the
analysis of this subsection can be performed for any m,,. As mentioned above, we will restrict
to the case m;, = 1 in this section, and will comment on m, > 1 later.
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The amplitude of interest is essentially the same as (2.1). It is given by

n
2 /
_ +namtn—2, ¢'—1
<Tgn 1_[1 quT_q/> = ?(—1)m na;” e (5m+2?:1 mm! (3.2)
]:

where the correlator on the Lh.s. is computed at A = 0, and ¢;, ¢’ are given by (3.1).
At finite A, we have

u n27T — AT m-+n— d
<HTq].Tq/>A = (—r== Y SRgmnya 15m+2?:1mj7m,. (3.3)
j=1 +

| TH
mem

As in section 2, we next pass to position space using (2.2), which gives

N NT( 7 _ 7& U impy am+n—2 mp—l)‘ﬁ “ 1
<j1;[1T(yJ)T(y)>>\ —< 271.) Ze aﬂ K m) 1_e—ip(yj—§)lup' (3.4)

+ m=0 T =1

Next we Wick rotate the position space expression, by replacing y; — —iu;, and y — —iv.
We find

n+~7 —_pnoo)\vam+n2m1 1
<jHl7' (us)T (v)>A+—( 27T> Z ml Peay 't H ==y (3.5)

m=0 : 7=1

Fourier transforming back to (Lorentzian) momentum space, as in (2.5), we find

n P Ly (1) e
7;7;> = —(=2m) [ dud @i g T g9(w;i/p),
<1:[ )\+ ( ) oo ZZ lw] it ( J/)
(3.6)
where
r — _pv,p—1
m =P Ay (3.7)

and g(z) is given by (2.8).
For p < 1 and Ay > 0, as v varies from —oo to oo, r varies from 0 to 1. Changing
variables from v to r in (3.6), we find

n - F(O‘)F(ﬁ) 1 _
7;+7;/> =—(-2 "—8n ,3)\ o 38
<jHl BN =2 pla+p3+1)* ]ng%/p (3.8)
where
. ) n . . n 1 / N
a:%(w—ij)E%Aw, ﬁ:%ijJrzpp W =i —a. (3.9)

j=1
Thus, a measures the extent to which energy conservation is violated, and « + S measures
the energy of the outgoing particle.

We next discuss some special cases of the general expression (3.8). When any of the
incoming momenta w; goes to zero, we can use (2.11) to eliminate the corresponding operator
from the correlation function. One can check that the structure of (3.8) is consistent with
the resulting relation between the amplitudes with n and n — 1 incoming particles.
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Another interesting limit is the one in which the process (3.8) conserves energy, which
corresponds to a — 0 in (3.8). In this limit the amplitude approaches

(1777 =(am (-2
i N P

Jj=1

) TR f[ g(wi/p) - (3.10)

J=1

The structure of (3.10) can be understood as follows. An energy conserving process does not
require the time-dependent perturbation proportional to Ay — it can happen arbitrarily far
from the time-dependent part of the Liouville wall. The In Ay dependence in (3.10) can be
thought of as parametrizing the length of time up to the point (1.15), available to the energy

conserving process. Indeed, eq. (3.10) is the same as (2.6), with the energy conservation
In )\+
P

0-function in the latter equation replaced by — , as expected from the discussion above.

For n = 0, the correlation function (3.8) reduces to the one point function

L) p—1 1 iy
(T5), = el G g 1)M—iPTT1W’+1Aj“ (3.11)
W xy pl(iw’ +1) '

One can think of (3.11) as the amplitude for creation of one outgoing particle with energy
w’ in the time-dependent background under consideration. We will discuss the (connected)
amplitude for production of multiple particles in the next subsection.

3.2 Particle production

In this subsection we compute the amplitudes for the production of n particles of energies
(w1, wa, - ,wy) in the time-dependent background (1.11) with A_ = 0. These amplitudes
were discussed in section 1, around eq. (1.17), (1.23) — (1.27). Here we will omit the primes
on the various variables, for notational simplicity. These amplitudes are only defined for
p < 1, since for p > 1 null future infinity is not part of the boundary. We will comment
on the case p > 1 later in this section.

We follow the same procedure as in the previous subsection. Thus, our first goal is to
compute the Euclidean amplitude (T4, T ¢, - - - T—¢,)x,. In order to do that, we need to
compute the amplitudes (T;"T_, T, - - - T—4,) in the standard ¢ = 1 background. Unlike
the situation in subsection 3.1, here these amplitudes were not computed in the literature.
Therefore, we calculated them ourselves, using the (matrix model) techniques of [47]. The
calculation is described in appendix B.

The calculations simplify significantly for the case m, = 1, i.e. R = 1/p, (1.29). In
this subsection we will present the results for this case. We found the following expression

for the above correlation functions:®

po1 27 MRS D (L —p)my +1)
p [Tj=1 T'(m; + DI(1 — pmy) mY i m
(3.12)

(I T Tgy - - Tg,) = (=1)

Here g; are integer multiples of p, ¢; = m;p, as in (3.1) with (1.29).

As a consistency check, if we take all ¢; = p, i.e. all m; = 1, (3.12) reduces to the amplitude computed
in [29], and the results agree.
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Eq. (3.12) leads to

121 (=A) =™ S D2 L T (L pm )

<T—fh T g, 'T—Qn>)\+ =(-1)""

p J:1T(mj+1)T(1—pmj) ’
(3.13)
and in position space (2.2),
n—1 n
5 N e p n-3l ipy; -
T Ta = (—5) % T ™, @)
where [48]
_\ "L (m(1—p)+1)
f(x) —mZ::O mvp( mp + 1)
_ ﬁ i (=2)"T (m(1 —p) +p) (3.15)
ox —~  mIl'(—mp+p+1)
_ g(l —r)P
9z p
and r(z) is defined similarly to (3.7),
r
T—ri» =x. (3.16)
Wick rotating as before, y; = —iv;, gives
n—1 n
_ _ _ D sl o _
(T (Ul)T (1}2) T (vn)>)\+ = (—271_) 8# 3; H f(ep J)\+MP 1) . (3'17)
j=1
Finally, Fourier transforming to w space, as in (2.5), we find
W —1.
1 n—1 1 1 n (p])r(pTZw]+1> LWy
T T Ty, = —— - = A P~H 7L (3.18
T T = (=52) S0 I S e (UG R

To better understand the structure of (3.18), it is useful to consider the position space
correlator (3.17). The basic building block of this correlator is a factor of the function
f(x) (3.15), with

x=eP A Pt (3.19)

for each external leg. The momentum space correlator (3.18) is obtained from f by Fourier
transforming in v, whch is related to x via (3.19).

In the left panel of figure 3 we plot the function f(z) for a few values of p. We chose
values close to one since, as we discussed in section 1, one of the interesting issues is what
happens to the particle creation amplitudes as p — 1, a point beyond which future null
infinity disappears. We see that as p approaches 1, the function f(x) approaches a step
function centered at z = 1. In the right panel of figure 3 we verify this by focusing on the
behavior of the function f very close to x = 1 for p very close to one.
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Figure 3. The position space amplitude (3.17) includes a factor of the function f for each created
particle. In this figure we plot this function for a range of values of p, and demonstrate that it
approaches a step function as p — 1.

The form of the function f in figure 3 seems in agreement with the physical picture
suggested by figure 2. The particles are created throughout the whole process of the
acceleration of the Liouville wall, which corresponds to v between —oo and +oo, and indeed
for general p between 0 and 1 the function f has support for all = in the range (0, 00).
However, as p approaches 1, the velocity of the wall at late times approaches the speed of
light, and at p = 1 there is an upper bound on the value of v, corresponding to the position
of the wall. Thus, it is natural that in this limit f approaches a step function. The location
of the step is at v* = t* 4+ ¢*, where (¢*,t*) appear in figure 2 and are given by eq. (1.15).
One can check that eq. (1.15) implies that v* = t* + ¢* is equal to the v that corresponds
to x = 1 in figure 3 via eq. (3.19).

The steep decline of the function f near x = 1 for p close to 1 corresponds physically
to the fact that as p — 1 the region v ~ v* corresponds to larger and larger u(=t — ¢),
where the speed of the Liouville wall is already approximately equal to its final value. Thus,
this region doesn’t radiate, and its contribution to the Fourier transform performed in going
from (3.17) to (3.18) is small.

It is interesting to take the limit w — 0 of (3.18), following the same logic as in (2.11).
To get a finite answer, we must take the limit as follows:

lim 2miwT, _

lim == —0, . (3.20)

Recalling that the temperature T is given by T'= 1/2wR = p/2m, we see that the limit (3.20)
is compatible with that taken in (2.11).

Another interesting limit is p — 0. As is clear from eq. (1.12) and figure 2, in this limit
we go back to the time-independent background corresponding to a stationary Liouville wall
of section 2. Thus, in this limit the particle production amplitudes (3.18) should go to zero.
To see that this is indeed the case, note that in this limit the phase in (3.18), which is given
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in (1.27), together with a contribution from the beta function prefactor, is more and more
rapidly oscillating for any non-zero w. Thus, the amplitude to create particles with a finite
distribution of energies goes to zero in the limit p — 0.

The above discussion also has an interesting consequence for the results of subsection 3.1.
Equation (3.8) has a finite limit as w’ — 0:

n -1 n+1 27) " n- . AN L 7.1_ wj n
<H7;|;7'0_> :( ) ( 7T) Trsinhil (Trzsz—l(’uj> 8271,“ ij:l J)\_Z;_ZJ_l Hg(w]R) .

Z?: 195

j=1 Ap j=1

(3.21)
Using (3.20), we conclude that the amplitude (1.18) vanishes, for all n and energies {w;}.
In other words, the amplitude for a process in which n tachyons come in from past null
infinity, are absorbed by the time-dependent Liouville wall, and no tachyons come out at
late time, vanishes for all p < 1.

33 p>1

The general discussion in section 1 leads one to believe that for p > 1 the observables 7 (1.7)
should be problematic. Indeed, looking back at figure 2, we see that for p > 1 future null
infinity is shielded by the dynamical Liouville wall, so an S-matrix cannot be defined. It
is interesting to see how this is reflected in the calculations reported earlier in this section.
This is the goal of this subsection.

Following the discussion of subsection 3.2, the Euclidean results (3.12) — (3.14) are clearly
valid for all p. We can again Wick rotate and get the position space correlation function (3.17).
An important difference between the case p < 1 and the present one concerns equation (3.16).
Recalling that the variable x in that equation is related to v via eq. (3.19), we see that for
p <1 as v goes from —oo to oo, x goes from 0 to oo, and r goes from 0 to 1. However, for
p > 1 the situation is different. In that case, one can write (3.16) as = r(1 — 7)?~! and as
r goes from 0 to 1, x first increases, from 0 to a maximal value, ., and then decreases
back to 0 at 7 = 1. The maximum of the function z(r) occurs at r = 1/p, so

Tmax = 2(1/p) = (p— 1)P"1p7P. (3.22)

In terms of the variable v (3.19), as r varies between 0 and 1, v increases from —oo, to
some Upax, related to Tmax (3.22) via (3.19), and then goes back to —oo. This means that
the Fourier transform (2.5) that was done for p < 1 in going from position space, (3.17),
to momentum space, (3.18), can no longer be done since the range of v does not extend
all the way to +oo.

The above discussion is in nice correspondence with properties of the potential of figure 2
and eq. (1.14). The solid line in that figure is obtained by setting Vi (¢, ) = 1. Since we are
interested in the process of emission of tachyons from the accelerating Liouville wall, we are
interested in the value of v along the wall. It is clear from figure 2(a), that for p < 1, as we
move along the Liouville wall, v varies from —oo to oo, but for p > 1, the behavior is different.

In that case, the wall starts at v = —oo at early times, moves to larger v, but then
reaches a maximal value of v, vyax in figure 2(b), at which its velocity reaches the speed of
light, and then it starts decreasing, going back to v = —oo at late times. A short calculation
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Figure 4. The form of the function f(x), (3.15), for p > 1. The singularity of the function is at
T = Zmax (3.22). The two branches correspond to r < 1/p (upper) and r > 1/p (lower) or, equivalently,
to the timelike and spacelike parts of the trajectory of the Liouville wall.

using eq. (1.14) shows that

_ 11
(p—1)r . (3.23)
pPAL Pt

Umax = — In

In our discussion of the function x(r) above, we obtained the value of vyax by plugging (3.22)
into (3.19). Interestingly, the two values of vy, computed in these different ways coincide.”

This also explains why the function z(r) has the property (for p > 1) that each < Zmax
appears twice as r varies from 0 to 1. In terms of figure 2(b), this is a reflection of the
fact that each v < vnax appears twice, once in the timelike part of the trajectory of the
Liouville wall, and once in the spacelike one. The former corresponds to 0 < r < 1/p; the
latter, to 1/p < r < 1.

As for p < 1, it is interesting to plot the function f(z) for p > 1. We do this for a
few values of p in figure 4. As expected, the function f has two branches. The upper one
corresponds to the timelike part of the trajectory of the Liouville wall. It starts at z = 0
(i.e. 7 =0, v = —00) at f =1, just like for p < 1 (figure 3), but in this case it monotonically
increases, and diverges as & — Tmax, (3.22). This divergence appears to be due to the fact
that the acceleration of the Liouville wall diverges as its speed approaches that of light.

Viewed as a function of r, (3.16), f has a single pole at r = 1/p. Thus, as we transition
to the spacelike part of the trajectory of the Liouville wall, » > 1/p, described by the lower
branch of the curve in figure 4, f starts from —oo and rapidly goes to zero. Its decline
becomes more and more pronounced as p — 1 (from above).

In order to understand this behavior, one needs to make sense of the observables (3.17)
in this case. For p < 1, they were related by a Fourier transform to amplitudes for detecting
particles at future null infinity, (3.18). As mentioned above, for p > 1 such amplitudes do not

“In general, we expect agreement up to an order one constant, that has to do with the fact that we could
have set Vi (¢, ¢) (1.14) to a constant # 1, but as it happens, for V = 1 the agreement appears to be exact.
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make sense. This is reflected in our analysis in the fact that the variables v; in (3.17) are in this
case bounded from above by vpax (3.23). Thus, the usual Fourier transform cannot be done.

There are two attitudes that one can take to this state of affairs. One is that for p > 1
there are no physical observables associated with the future region. This seems problematic,
especially given the fact that as discussed in the introduction and in the next section, one
can turn on both Ay and A_, (1.11), in which case all asymptotic particle states cease to
exist, since both past and future null infinities are shielded by the potential. The other
possible attitude is that the correlation functions (3.17) do make sense for p > 1, as seems to
be the case from the above analysis. In that case, one needs to interpret them physically.
We will return to this question in later sections.

4 Generalizations

The main goal of this section is to discuss the generalization of the analysis of section 3 to
the case where both Ay and A_ in (1.11) are positive. However, we start with two brief
comments about other issues that were mentioned earlier.

The first involves quantum corrections to the results of section 3. The analysis of that
section was done at leading order in gs, i.e. the worldsheet was taken to have spherical topology.
The matrix model allows one to compute higher order (in g5) corrections to these results.
For example, in (B.9) and (B.18) we present the results for the first subleading corrections
to the Euclidean correlation functions (ToT;"T—4) and (ToT;"T—q, T—g,), respectively. These
corrections come from the worldsheet torus and, as in section 3, they can be used to calculate
the torus contributions to the one and two-point functions of 7. We will leave a detailed
study of these contributions to future work.

The second issue we want to comment on involves eq. (1.29). We said there (and in
section 3) that in the Euclidean calculation one could in principle consider other values of
the quantized momentum, i.e. take pRR = m,, > 1, but it seems that the right value is m, = 1.
One of the reasons we believe this is that for m, > 1 the structure of the amplitudes becomes
much more involved. Here we would like to explain what we mean by this.

For general integer m,, > 1, the calculation that for m, = 1 leads to (3.13), gives the
following results. For n = 3, ¢; = % and Z?Zl m; an integer multiple of m,, we find

2R
<T—Q1T—q2T—qa>x\+ = T()‘+Mp 1 mp H ha( qJ (4.1)

where
la/pl q
ma) = (p— 1@ T (4-1) . (42)
i=1 \?
One can check that for m, = 1, (4.1) and (4.2) agree with (3.13). For m, > 1, (4.1) is
more complicated, but it follows the same pattern as (3.13) — it is still a product of factors
associated with the external legs.
For the four point function the factorized structure breaks down. We find

2rR 8 1
(T T, T gsT—gi)xy = —T()\+Mp l)m” 2 "ha(qr, - qu) H (4.3)
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where

> (=DM g(T) —ipl

ha(q1,q2,93,94) =mp—m — 1+ L

(4.4)
TC{q1,92,93,94}

Here T is any subset of {q1,q2,¢3,q4}, and |T| and ¢(T) denote the number and sum of
the elements in T', respectively. One can check that when g;/p are integers, which is the
case for my = 1, eq. (4.3) reduces to (3.13). However, for general m, > 1, ¢;/p is not an
integer, and (4.3) is more complicated.

This complexity increases as the number of insertions n increases, and we believe that
the resulting theory does not correspond after Wick rotation to the theory described in
section 1. It would be interesting to understand whether it has a physical interpretation.
This too is left for future work.

We next turn to the case where both Ay and A_ in (1.11) are positive. We start with

a few comments:

e In section 3 we discussed the case A_ = 0, in which the Liouville wall is stationary in
the past and has a time-dependent form in the future. The case Ay = 0 can be similarly
studied by taking ¢ — —t, and exchanging the roles of 7+ and T ~.

o Turning on both T}, and T, in (1.11), the potential (1.14) takes the form
Vie(t, ) = pe®® + Ape2Potet 4 )\ -p)é—pt (4.5)
We will take the couplings A+ to be positive, as before.

o In principle, we could take the momentum of the A_ deformation in (4.5) to be different
from (the negative of) that of the A4 one. However, as discussed above, our Euclidean
space techniques make it natural to take both of them to be 1/R, (1.29). This is
consistent with [34], who show that the perturbation (4.5) leads to thermodynamic
behavior with temperature p/2r. Thus, we will restrict to the case where the two
momenta are equal (and opposite).

o When Ay > 0, we can set AL = A_ = X in (4.5), by shifting the origin of time. In this
case, which is depicted in figure 5, the worldsheet theory has a symmetry ¢ — —¢. This
allows one to use the Hartle-Hawking construction: replace the ¢t < 0 region of the
background by its Euclidean analog, (1.28), which similarly has an X — —X symmetry,
and view it as providing an initial state for the Lorentzian evolution at ¢ > 0.

e When Ay are both non-zero, there is an ambiguity in the definition of u. If either of
these couplings vanishes, we can go to a region where the Liouville wall is stationary
and read off p there. However, when A A_ # 0, such a region does not exist. This
ambiguity will play a role below.

In the rest of this section we will generalize the discussion of section 3 to the case
Ay, A= > 0. We will use the same method as there: start with the Euclidean calculation,
go to position space, Wick rotate, and go back to (Lorentzian) momentum space. We will
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Figure 5. For general A\, and A_, the trajectory of the Liouville wall takes the qualitative form
depicted here.

only consider the amplitude for emission of n outgoing tachyons (1.17). The amplitude
for absorption of n tachyons, (1.16), can be obtained from it by using the time reversal
symmetry mentioned above.

Fortunately, the Euclidean amplitudes needed for the analysis have been calculated
before. In particular, from (3.12), we have

m~+m/ m/ n+m’— 27 n+m'— —1)(m+m')—
<Tp ’ T—pT—q1T—q2 o Tg,) =(-1) el (m + m')!@u+ Sﬂ(p D mAm’) -1
w Ty _L((1=p)m;+1) (4.6)
(1-p) HF 1 T(1 ,5m,27 mj
j=1 (mJ + ) ( _pmj) J=1

and therefore

- (_)\+)m+m’(_)\7)m’ m~+m' m/
T Toge Togudren- = Z (m + m/)Im/! (T T T gy - Togp)
m,m’=0 U
Y Z;'L=1 mj+m/ Y m/ 9
_ ( +) ( *) (_1)n+m’71£8n+m/73 (47)
— m/! p H

3
.

)(Z;;l mi+m/)=1,.  \m/ 5 I ((1 _p)mj + 1)
=2 1 5, 5 ra =y

Fourier transforming, as in (2.2), (3.14), gives

00 _ m’ n—1 ,
<T(Q1)T(Qz) o T@n»)ur,)\, _ Z ((p—1DALA0) <_ p ) 8Z+m -3
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and Wick rotating, y; = —iv;, we find

e _ m’ n—1 ,
(T ()T (v2) - T~ (V) )rpr. = Z ((p 17);\,?)\) <—2€T> o3

(p Dm —1erpvj)\+ﬂp .
7j=1

For p < 1, we expect to be able to Fourier transform (4.9) to momentum space. Performing
the transform, we find

e _ & (p— D)™ IN"Y 1 s
<7;)17:u2 e 7;n>>\+v)‘* - WL,ZZO m/! <27T) pa

i, 4.10)
, n wj T Ll?,w +1 " (
/QL(pfl)m -1 | I ( p %‘(Zu(Jjj—l)] )(}\+Mp1)1;7
1

and after summing over m':

jp=1 N7
I I\ 1 (1) 2t
UZJJ;Z”I""M’A‘_( 27r> p*op 1+(1—p)s 411
()1 (2 liv; +1) w; (4.11)

- 4 —1\—i—-2
AP P,
jI;[1 I'(iw; + 1) A7)
where s
Tt = - DA (412)

Note that for p < 1, for given values of u and Ay, (4.12) has two solutions for s. One should
take the one that goes to zero when A_ — 0, so that (4.11) reduces to (3.18) in the limit.
For general s, one can Fourier transform back to position space, and obtain the analog
of (3.17) for this case. One finds®
1 n
_— H f(eP% (1—s)1=PA puP~L) |
]:1

n—1
(T ()T (v2) =T~ (va))ay a- = (‘5;) On 3;1+(1

(4.13)
We next comment on some properties of (4.11) — (4.13).

One property is that for p < 1,7 (4.11), (4.13) diverge as s — zﬁ' That value of s
corresponds to the maximal value of the coupling Ay A_, according to (4.12). The physics of
this singularity was discussed in [31, 32| in the Euclidean system. In that case, the worldsheet
potential is proportional to cos pX, and the singularity is associated with the field X settling
at the minimum of the potential and disappearing from the dynamics.

In our Lorentzian system, this would correspond to the disappearance of time — an
exotic phenomenon. We leave a more complete understanding of this phenomenon to future
work. Here, we note that a setting in which the question what happens as s approaches the

critical value zﬁ can be addressed is the Hartle-Hawking construction mentioned above.

8This is a more explicit form of (4.9).

9 . . . . S . . .
For p > 1 there is no such singularity, since s = 7118 outside the physical regime 0 < s < 1.
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Another interesting feature of (4.13) is that the effect of non-zero s on the function f is
to change its argument by the multiplicative factor (1 — s)!=P. One possible way to interpret
this is to use an observation we made earlier. When both couplings AL are non-zero, the
notion of what is u is ambiguous. Thus, we can view the multiplicative factor in the argument
of f in (4.13) as due to a renormalization of p. Indeed, if we make the replacement

w—p(l—s), (4.14)

the argument of f in (4.13) goes back to that in (3.17). This choice is natural since it also

simplifies eq. (4.12), which becomes!”

s=(p— DA A_pP2. (4.15)

Note also that the replacement (4.14) was found in [32] to simplify the expression for the
partition sum of the Euclidean theory (1.28); see the discussion around eq. (3.11) in that paper.
We will see that the replacement (4.14) is also natural from the point of view of the
dynamics of the free fermions in the matrix model. However, whether we make this replacement
or not, the important thing is that for non-zero s we have an ambiguity of rescaling u by a
function of s, and different descriptions of the theory may differ by such rescalings.

In section 3, we showed that for Ay > 0, A_ = 0, the n-point function (1.16) vanishes
(see the discussion around eq. (3.21)). Here we note that this feature also follows from (4.11).
Indeed, the symmetry under ¢ <+ —t, + > — implies that the amplitude (1.16) is proportional
to )\_% ij.

amplitude vanishes in the limit A_ — 0.

As A_ decreases, this factor leads to a rapidly oscillating phase and the

Another calculation from section 3 that is interesting to generalize to the case AL > 0is the
comparison of vpax, (3.23), obtained from the potential (1.14) and from the amplitudes (3.17).
For A_ = 0 we found a precise agreement between the two. For general A_, the second way
of determining vpax gives the same answer, (3.23), in terms of the renormalized cosmological
constant, since after the redefinition (4.14) the argument of the function f in (4.13) is the
same as before.

To determine vy, from the potential, we need to calculate the value of v for which
the Liouville wall associated with (4.5) reaches the speed of light. A short calculation
leads to the result
(p— P'F(s)

PPA P!

ep”max —

(4.16)
where F(s) is determined by
pPs

p—1
F(s) <1 + (p—1)P(1 — 5)2PF(5)> =

For s = 0, (4.17) gives F(0) = 1, and (4.16) agrees with (3.23), as expected. As s — 1,
it behaves as

(4.17)

P(P*Ql)

p— _

F(s—1)~ (p) (1—s)Pt. (4.18)
p—1

"Note that since for p > 1 (4.12) implies that 0 < s < 1, in terms of the rescaled p the r.h.s. of (4.15)

is bounded from above. This is just a different parametrization of coupling space, a standard phenomenon
in QFT.
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Figure 6. Solutions of (4.17) for several values of p.

For general s € (0,1), (4.17) interpolates between the two behaviors, as demonstrated in
figure 6. Thus, it does not agree with (3.23). The two differ by a redefinition of p, similar
to that in (4.14),

1= uG(s)iT (4.19)

where G(s) is the ratio of the two F' functions (4.16). This ratio is a smooth finite function
for all s € [0,1]. Our view is that agreement up to such a redefinition is sufficient. The
difference between the two calculations seems to be due to the fact that one of them (the
one from the amplitudes) includes quantum effects in the worldsheet theory, while the other
one (based on the form of the Liouville potential) is classical.

Note that the fact that vyax takes the general form (4.16) follows from the symmetry
of the problem under shifts of ¢, ¢, with the appropriate rescaling of u, Ay, such that the
potential (4.5) is invariant. This, together with the freedom to rescale p by a function of
s, (4.19), seems to make the agreement between the different calculations superfluous. We
believe that the main test of the agreement between the different calculations is that, as
mentioned above, the resulting ratio G(s) is finite for all s.

5 Free fermion perspective

The analysis of the previous sections was performed from the perspective of 1+ 1 dimensional
string theory — the bulk theory in the holographic correspondence. We did use some results
from the dual boundary theory, matrix quantum mechanics (MQM) in a double scaling limit,
but only as a tool for computing correlation functions in the standard background (1.1).
In this section we discuss the physical picture obtained in these earlier sections from the
point of view of the boundary theory.

As reviewed in appendix A, double scaled MQM can be viewed as a theory of N — oo
free fermions in an inverted harmonic potential, (A.1). The standard background corresponds
to a state in which all energy levels up to —pu are filled (figure 10), and the Fermi surface
takes the form in figure 11.
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The backgrounds of this paper correspond to Fermi surfaces that are time-dependent. The
dynamics of such Fermi surfaces was studied in [33-39]. In particular, the backgrounds (1.11)
with general 0 < p < 2 were discussed in [33-35]. For A_ = 0, these backgrounds correspond
to Fermi surfaces that take the parametric form

A = agcoshw + aell=Pwtpt
py = ag sinhw + a+e(1*p)“’+pt ) (51
with —o0 < w < oo, and
1 p=1
ag = —\/2u, ay = —\ﬁ)uru 7 . (5.2)
Eliminating w in (5.1), the Fermi surface takes the form!!
A2 —pi + 2aiJrem(pA — AP = ag . (5.3)

(—ag)P—?

In figure 7, we plot (5.3) for p = 0.5 and p = 1.5, to illustrate the time evolution of the
Fermi surface for p < 1 and p > 1, respectively. At early times, t — —o0, the Fermi surface
is approximately static, given by the A < 0 branch of the hyperbola \? — pi = 2u. The
fermions fill the region —oo < A < —/2u in A space. In terms of the coordinate ¢, related
to A via the relation [49]

A= —V2e"?, (5.4)

it is —oo < ¢ < —%lnu.

As t increases, the Fermi surface moves to the left. Its rightmost edge, Amax(t), can be
determined by solving the equation d,\ = 0. At large t and p < 1 one finds, from (5.1),
w ~ —2%1?75, Amax ~ eﬁt, and (5.4), Gmax ~ —ﬁt. So, the edge of the distribution moves
to the left with speed ZLip’ which is smaller than the speed of light. Note that this velocity is
the same as that of the Liouville wall (see figure 2), though we will see that the two (the
edge of the Fermi surface and the Liouville wall) are distinct objects. For p > 1, Apax(t)
corresponds at large t to w ~ t. S0 Amax ~ €', and ¢max ~ —t. Thus, in this case the edge
of the Fermi surface moves to the left with the speed of light.

The lower branch of the Fermi surface in figure 7 corresponds asymptotically to w — oo
in (5.1). In this limit, py — A = |agle™ — 0, so the Fermi surface approaches the line py = A
for all ¢. The asymptotic region of the upper branch in figure 7 corresponds to w — —oo.
Using the fact that py + A = age® + 2a+e(1_p)w+pt, we see that for p < 1, py + X — 0 in
this limit, while for p > 1, py + A = —o00.1?

The massless tachyon in the bulk 1+ 1 dimensional string theory description corresponds
in the fermion language to a ripple on the Fermi surface. In the standard background, which is
described by the Fermi surface of figure 11, an incoming tachyon is described by a ripple that
starts at early time on the upper branch of the hyperbola, at large negative A (or ¢, (5.4)).
Since p), is positive there, the ripple propagates to the right. It corresponds to 7' in figure 1.

"Note that (5.1), (5.2) imply that py > A for all p, w.
2Note, however, that the sum py + A grows slower with |w| than each of the two quantities separately.
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(a) (b)

Figure 7. Profile of Fermi sea for (a) p = 0.5 and (b) p = 1.5, with a9 = —1 and ey = —0.1. In
terms of the parametrization (5.1), (5.2), w — +oo correspond to the asymptotic regions of the lower
and upper branch, respectively.

As time goes by, the ripple propagates down the Fermi surface of figure 11. Eventually,
at some time, it reaches the A axis, after which it moves to the lower branch of the hyperbola.
There, it has py < 0, and thus is moving to the left. It corresponds (asymptotically, at large t)
to 7. The transition between the two regimes happens at py =0, i.e. A = —/2p, and (5.4)
o= —% In 1. The latter is precisely the location of the Liouville wall (see figure 1), as expected.

Clearly, the above description can be generalized to the case of non-zero A;. In this
case, the incoming tachyons correspond to ripples starting at early times in the upper left
region in figure 7, propagate to the right, and change direction at the value of A where the
time-dependent Fermi surface intersects the A\ axis. Thus, the position of the Liouville wall is
given by setting py = 0 in the expression for the Fermi surface (5.3). Using (1.14), (5.2), (5.4),
one can check that this gives precisely the equation Vi (¢, ¢) = 1, with Vi given by (1.14).

In the previous sections, we saw that there is a qualitative difference between the case
p < 1, where the trajectory of the Liouville wall remains timelike for all ¢, and p > 1, where
it eventually becomes spacelike. It is interesting to see how this difference manifests itself
in the free fermion language.

For this purpose, we turn to a more detailed description of the ripples on the Fermi
surface, that correspond in this language to tachyon perturbations in the 1 + 1 dimensional
string theory. Small ripples can be thought of as points on the Fermi surface that follow
the trajectories [50]

pa= A, A=px . (5.5)
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The solution of these equations is
A= —pcosh(t — o), px = —psinh(t — o), (5.6)

where p and o are determined by the initial conditions. We will take p > 0, since we want to
consider perturbations on the Fermi surface that extends to A — —oo.

The parameter o is not independent of p, since the trajectories in question must lie on
the Fermi surface. Plugging (5.6) in (5.3), we get

1 P an)
olp) = pl Sanas 7 . (5.7)

The trajectories (5.6), (5.7) have the following qualitative structure. As ¢t — —o0, eq. (5.6)
implies that A — —oo0, px — oo, with py ~ —A. Thus, at early times (5.6) describes a
ripple moving to the right from large negative A\, with speed close to the speed of light. At
t =o(p), (5.7), the ripple turns around, and starts going to the left (i.e. p) changes sign). At
that time, the ripple is at A = —p, which is thus the position of the Liouville wall at ¢t = o(p).
Ast — oo, A, py — —o0, with py ~ A, i.e. the speed of the ripple approaches the speed of
light again. We plot a few examples of these trajectories in figure 8.

Eq. (5.7) implies that the constant p varies from |ag| to infinity. As p — |agl|, 0 — —o0,
and (5.6) describes a trajectory which coincides with the shape of the early-time Fermi surface.
The trajectory crosses the \ axis at ¢ = o, which also goes to —oco in this limit. Thus, this limit
describes ripples that are reflected from the time-dependent Liouville wall at a very early time.

For such ripples, at finite times, e.g. t = 0, A = —pcosh(—0o) ~ ape”? — —oo, which is
much larger (in absolute value) than Ay at that time. Furthermore, py ~ A at that time,
which means that the ripple approaches the speed of light. This corresponds to a ripple
that propagates to the left along the lower branch of the Fermi surface in figure 7, and is
well separated from the tip of the Fermi surface.

For large p, (5.7) implies that o ~ 2?%7“ In p. Such ripples are reflected from the Liouville
wall at a late time, t = 0. The fate of these ripples depends on the sign of p — 1. To see
that, it is useful to ask at what time does a ripple with given p pass the tip of the Fermi

surface. This time is obtained by solving the equation
OpAli=t, = — cosh(to — o(p)) + psinh(to — o (p))o’(p) =0, (5.8)

which gives

2
2o 1 (p* = ag)(=ao)”\ " (5.9)
(1—p)p?+adp 2a0a4

As a check of this equation, it is clear from figures 7, 8, that it must be that to(p) > o(p),
i.e. a ripple with given p first encounters the Liouville wall, turns around, and at a later
time approaches the tip of the Fermi surface. One can check that for all p for which (5.9)
has a real solution, this is indeed the case.

As p — |aol, to(p) — —oo. This is consistent with what we discussed above, where we
saw that for p — |ag|, the ripple crosses the A axis at t = 0 — —o0, (5.7). At that early
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A
Figure 8. The solid lines describe the form of the Fermi surface for p = 1.5, ag = —1, ax = —0.1 and

a few values of t. The dashed black lines describe ripples with various values of p.

time, the hyperbola describing the Fermi surface is symmetric under py — —p, (the Fermi
surface is approximately static), so the time at which py = 0 approximately coincides with
the tip of the Fermi surface, o(p) ~ to(p).

As p increases, to(p), (5.9), increases monotonically. For p < 1, as p varies from |ag| to
00, to runs from —oo to +00. In other words, a ripple with any p starts on the upper branch
of the Fermi surface at early time, reaches the tip of the Fermi surface at some finite time
to(p), (5.9), and then moves to the lower branch of the Fermi surface in figure 7(a). The
S-matrix discussed in section 3 for this case corresponds to such processes.

On the other hand, for p > 1, as we increase p, we get to a critical p,

[P
po =1/ Lol (5.10)

at which ¢y (5.9) diverges. For |ag| < p < p., the picture is like for p < 1, as illustrated

by the two rightmost dashed lines in figure 8. But for p > p., the ripple never gets to the
tip of the Fermi surface, and stays on the upper branch for all £. This is the case for the
trajectories described by the two leftmost dashed lines in figure 8. For p = p., the ripple
approaches the tip of the Fermi surface as t — oo.

Interestingly, the bound p < p. described above corresponds to the bound on v, (3.23),
encountered in section 3 above. Indeed, we can calculate the value of v =t 4+ ¢ at which
a ripple with p = p. is reflected from the Liouville wall. The time at which it is reflected
is t. = o(pe) (5.7). The spatial position is A\, = —p, (see the discussion after (5.6)), or
¢ = —1In %, (5.4). One can check that t. + ¢ = Vmax given in (3.23).

Ripples with p < p. are reflected at v(p) < vmax. As expected from the above discussion,
the function v(p), has a maximum at p = p.. This can be seen as follows. We have

v(p) = t(p) + ¢(p) = o(p) —In % - (5.11)
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Thus, v/ = 0 is equivalent to
a(p)=~. (5.12)

To see that this relation is satisfied at p = p., we look back at (5.8), recalling that as p — p,,
to — oo. Conversely, if (5.12) is satisfied at some p, and o(p) is finite, ¢ty must go to infinity,
which means that p = p., (5.9).

Therefore, v(p) has the following qualitative structure. It monotonically increases with p
until the critical value (5.10), at which it is given by vmax, (3.23), and then monotonically
decreases for p > p.. This is precisely the behavior one expects from the form of the Liouville
wall of figure 2(b).

For p < p¢, i.e. v < Umax, we have a picture similar to that for p < 1. In particular, it
appears that for ripples with these values of p there is an S-matrix, describing the propagation
from asymptotic past infinity on the upper branch to asymptotic future infinity on the lower
one. We will return to these observables in the next section. Here, we want to mention
two things about them. One is that they are very similar to the position space observables
we defined in section 3, e.g. in eq. (3.17).'% In particular, the range of v and the physical
interpretation are very similar in the two cases.

The second is that in both cases there is a puzzle associated with these observables. In
the language of this section, an incoming ripple that is reflected from the Liouville wall at a
v(p) < Umax, can propagate to the left on the lower branch of the Fermi surface. However,
eventually it is overtaken by the Liouville wall, which corresponds to the intersection of the
Fermi surface with the A axis in figure 7(b), and asymptotically moves faster than light.
Thus, their physical interpretation as string theory observables is unclear, since the latter
should be defined far from the Liouville wall.

In section 4 we discussed the generalization of the above analysis to the case where both
A+ and A_ are non-zero. It is interesting to describe this case in the free fermion language.
The Fermi surface takes now the form [35]

X = aj coshw + ayel™Pwet g o=(=plw=pt

N
Py = a1 sinhw + a+e(1_p)w+pt —q_e (U-P)w=pt (5:13)
where a+ = —272Ai|ay [P~ and a; satisfies the equation
2 2\ P!
a a
= 51 + (1 —p)AA (;) : (5.14)

Egs. (5.13), (5.14) generalize (5.1), (5.2) to the case where both A; and A_ are non-zero.
In figure 9 we plot the resulting Fermi surfaces.
To understand (5.14), it is useful to define a quantity 1, via the equation

aj .
5 = W (5.15)

13The direct analog of the discussion here is the two point function (777 7).
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(a) (b)

Figure 9. The profile of the Fermi sea (5.13) for (a) p = 0.5 and (b) p = 1.5, with a; = —1 and
ay = —0.1. Note the symmetry under ¢t — —t¢.

Plugging (5.15) into (5.14), and comparing to (4.12), we see that

Y= . (5.16)

2
. a . . . . .
Thus, one can think of & as the renormalized cosmological constant discussed in section 4,

2
around eq. (4.14).

The qualitative picture is expected to be the same for this case, as in the discussion
of the special case A_ = 0 above. For p < 1, ripples on the Fermi surface propagate from
the upper branch of the hyperbolas in figure 9(a) at early times to the lower branch at late
times, and one can define an S-matrix. For p > 1, there is a maximal value of v, vnax,
beyond which they remain trapped, and do not make it to asymptotic infinity on the lower
branch. We next calculate vpax.

Recall that v(p) is the value of ¢ 4+ ¢ at the point where the ripple with a certain p is
reflected from the Liouville wall. As p approaches its critical value, v approaches vyax, and
the time at which the ripple passes the edge of the Fermi surface goes to infinity. This can
be used to calculate vyax for the general case (5.13).

The tip of the Fermi surface can be obtained by solving the equation

oA

0 = U sinhw + (1 — p)age™PWFPE _ (1 — pyg_e~07PIw=Pt — (5.17)

for w, and plugging back into (5.13). To calculate vyax, we need to take t — oo. In this
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limit, the solution of (5.17) is

1. 2(p—1
w:t—i—flnu. (5.18)
p ay
Plugging (5.18) into (5.13), we get
1
e (2pPlarlP M ay|)?
)~ -5 | 5.19
(0 2( T (5.19)
On the other hand, from (5.6) we learn that at large t,
ot
A(t) =~ —5,066_00 . (5.20)
Comparing the two equations, we have
jar oy |\
_ 2pP|a1|P~ ag| \ P
Oc 52].
pee ( el (5:21)

The expression on the Lh.s. of (5.21) has a nice interpretation. As discussed earlier in this
section, the critical ripple is reflected from the Liouville wall at (¢, A) = (o¢, —p¢), or in terms

of (t,¢) at (te,pc) = (0¢, —In \p/‘%) Thus,

e'Umax — e¢c+0'c — Qeac 3 (522)
Pe

Plugging (5.22) in (5.21), we conclude that

gUmax — \/§< (p— 1P~ )p ’ (5.23)

2pPla1|P~ay |
or
(2p —2)P~1

2p—2
pPALay

ePmax — (5.24)
This is the same result we got from an analysis of the amplitudes in section 4, and as there,
it also agrees with the result we got for A_ = 0, (3.23), written in terms of the renormalized
cosmological constant (5.15).

6 Summary and discussion

6.1 Summary

The main goal of this paper was to study 1 + 1 dimensional string theory in time-dependent
backgrounds, building on previous work on this subject. From the bulk point of view in
the holographic duality between 1 4 1 dimensional string theory and double scaled matrix
quantum mechanics, these backgrounds correspond to solutions in which the Liouville wall is
accelerating from one velocity in the far past to another in the far future. In the boundary
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theory, they correspond to solutions in which the Fermi surface of free fermions in an inverted
harmonic potential is time-dependent.

We discussed different types of backgrounds of this kind. In the background we studied
in detail in section 3, the Liouville wall moves towards the boundary, with a velocity that
goes from zero as t — —o0, to a finite value as ¢ — oco. The final velocity of the wall can be
smaller or larger than the speed of light. In the former case, depicted in figure 2(a), one can
define an S-matrix for n incoming tachyons to go to n’ tachyons. We used a Wick rotation
from Euclidean spacetime to study some particular processes: n — 1 scattering (3.8), and
production of n outgoing tachyons (3.18) in the time-dependent background.

When the final velocity of the Liouville wall is larger than the speed of light, asymptotic
future null infinity is shielded by the Liouville wall, and the outgoing massless tachyons can
no longer be defined. Nevertheless, we found that one seems to be able to define asymptotic
observables, (3.17) with v; < vUmax, the latter given by (3.23). One can think of these
observables as associated with outgoing tachyons produced in the time-dependent background.
The bound on the null coordinate v =t + ¢ is related to the fact that these tachyons are
produced at the Liouville wall, which in this case has a maximal value of v, see figure 2(b).

In section 4 we discussed a generalization of the above system, in which the velocity
of the Liouville wall approaches (equal and opposite) finite values at early and late times
(see figure 5). When these velocities are smaller than the speed of light, we found a similar
structure to that of section 3. One can again define an n — n/ S-matrix for tachyon scattering,
and compute it using matrix model and worldsheet techniques. We demonstrated this by
computing the amplitude for creation of n tachyons, given in eq. (4.11). These amplitudes
are qualitatively similar to those encountered in section 3, (3.18), and become even more
so after a rescaling of p given in (4.14).

A new feature of these amplitudes is a divergence at a finite value of the coupling (4.15),
that determines the local acceleration of the Liouville wall. In the closely related Euclidean
problem, the corresponding divergence signals the decoupling of the Euclidean time X from
the worldsheet dynamics — a kind of dynamical dimensional reduction. We proposed that
similarly, the divergence of (4.11) may be due to a decoupling of time, though a more
complete understanding is required.

In section 5 we discussed the time-dependent backgrounds described above from the
point of view of the dual matrix quantum mechanics. In the double scaling limit this theory
reduces to a theory of free fermions, and different backgrounds correspond to different choices
of the shape of the Fermi surface. Tachyon perturbations in the bulk 14 1 dimensional string
theory are described in this language by ripples on the Fermi surface.

We presented the Fermi surfaces corresponding to the backgrounds of sections 3, 4,
and studied the dynamics of ripples on these surfaces as a function of the parameters. We
found a nice agreement between the picture based on scattering amplitudes in sections 3, 4,
and the free fermion description.

In the region of parameter space where the Liouville wall follows a timelike trajectory,
we found that ripples on the Fermi surface propagate from the upper branch in figure 9(a) at
early times to the lower branch at late times, thus giving an analog of the 1 — 1 S-matrix
of section 3. We showed that their trajectories can be viewed as due to reflection from
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a time-dependent wall, that coincides with the Liouville wall discussed in section 1. We
also showed that the Fermi surface picture only exists below some critical value of the
coupling (4.15), which agrees precisely with that found in section 4.

In the region where the Liouville wall turns spacelike at early and/or late times, we
showed that the trajectories of ripples on the Fermi surface make it to the corresponding
asymptotic infinity only for some values of the parameters describing the ripple. We found
that the bounds on these parameters are the same as those found from a seemingly very
different point of view, by studying the amplitudes in sections 3, 4.

In summary, we found a nice agreement between three, seemingly quite different, points of
view on tachyon dynamics in the time-dependent backgrounds we studied: (1) scattering from
the time-dependent Liouville wall (1.14), (4.5); (2) amplitudes obtained by Wick rotation
from the Euclidean correlation functions; (3) the dynamics of ripples on the time-dependent
Fermi surfaces of section 5.

Much remains to be done. We next list some issues that require further attention.

6.2 Observables for p > 1

One of the surprising results of our analysis was that in backgrounds where a priori there
should not be asymptotic observables associated with past and/or future asymptotic infinity,
we nevertheless found such observables. Moreover, we found them from two different points
of view: the study of scattering amplitudes in sections 3, 4, and the study of ripples on a
time-dependent Fermi surface in section 5.

As an example, in the analysis of section 3.3, we found that one can define observ-
ables, (3.17), which depend on lightlike position variables v;, that are bounded from above by
Umax, (3.23). One can think of these observables as describing the emission of tachyons from
the time-dependent Liouville wall, and of vy.x as the largest value of v = ¢ + ¢ along the
wall (figure 2(b)). In the analysis of section 5, these observables correspond to ripples (5.6),
with p < p. (5.10), which start at early times on the upper branch of the hyperbola of
figure 7(b) and make it at late times to the lower branch, along which they propagate to
asymptotic infinity.

The existence of these observables is at first sight puzzling. As mentioned above, in
terms of figure 2(b) they appear to correspond to outgoing tachyons, 7., emitted by the
accelerating Liouville wall. However, regardless of the value of v at which they were emitted,
eventually the Liouville wall catches up with them, and they are absorbed by it. In terms
of the picture of section 5, they correspond to ripples propagating to the left on the lower
branch of the hyperbolas in figure 7(b). In that picture, the Liouville wall corresponds to the
intersection of the hyperbolas with the A axis, which asymptotically, at late times, moves
faster than light, and thus eventually these ripples find themselves behind the wall.

This raises the question how we can define the 7~ observables, when they do not make
it to the future region well outside the Liouville wall. We will leave a detailed analysis of
this issue to future work, but a possible resolution of this tension is the following. It seems
clear that the operators 7 defined in (1.7) with real w do not make sense when future null
infinity is behind the Liouville wall. However, it is possible that these observables can be
defined when w has a finite imaginary part. This imaginary part must be taken to be positive,
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since otherwise the corresponding operators (1.7) are normalizable, which would imply the
existence of normalizable states, that are in general not there.

If we write w = w, + iw;, with w; > 0, the resulting operators 7, behave at late times
like exp(—w;t), i.e. they go exponentially to zero at late times, which is consistent with
the picture suggested by figure 2(b), that they correspond to tachyons that penetrate the
Liouville wall at late times. It also resolves the puzzle regarding the definition of these
observables, since they are now defined at the boundary of the spacetime, ¢ — —oo, which
remains outside the Liouville wall for all ¢.

The proposal that the late time observables decay exponentially as ¢ — oo suggests that
the system with an asymptotically spacelike Liouville wall has a unique final state. This
is reminiscent of the proposal by [51] of a unique final state associated with the black hole
singularity, and of the Hartle-Hawking proposal for a unique wavefunction of the universe,
which is associated to the Big Bang singluarity [52].

This proposal is also reminiscent of [53], who studied string dynamics in backgrounds with
cosmological singularities. These backgrounds contain big bang and big crunch singularities,
and thus one cannot define standard string theory S-matrix observables. At the same time,
they are described by solvable worldsheet theories, which contain physical observables that
can be studied using standard worldsheet techniques.

The authors of [53] showed that the resolution of this tension is that the cosmological
spacetimes they studied contain additional regions, referred to as “whiskers”, and the natural
string observables are non-normalizable vertex operators defined at the boundaries of these
regions, where they approach linear dilaton spacetimes.

The setup of [53] is similar to the one depicted in our figure 5 with p > 1. Like there,
the Liouville wall of figure 5 shields the past and future null infinities, and thus provides soft
versions of big bang and big crunch singularities. Therefore, one cannot define a standard
S-matrix but, according to our proposal above, one can define non-normalizable observables
at the timelike boundary ¢ — —oo, which is the analog of the boundary of one of the
whiskers for this case.

One advantage of the systems described in this paper over those in [53] is that in the
ones here one can study the behavior both when there is no spacelike singularity (p < 1)
and when there is one (p > 1). In contrast, in the system of [53], a past and future spacelike
singularity is always present.

If the proposal for the observables we made before for p > 1 is correct, one needs to
understand its implications for the Fermi surface picture of section 5. In particular, one
needs to understand how to see the fact that the observables correspond to non-normalizable
operators that decay exponentially at early and/or late time. It may be that to do that
one will have to generalize the description of ripples on the Fermi surface as points that
follow the trajectories (5.6) to a study of the dynamics of finite size ripples. We will leave
all these issues to future work.

Another puzzle that may require going beyond the description of tachyons in 1 + 1
dimensional string theory as pointlike ripples on the Fermi surface is the following. In
section 4 we showed that when the coupling (4.15) increases, we encounter a singularity
of the amplitudes (4.11), (4.13) at a finite value of the coupling. In section 5 we argued
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that in the fermion language this corresponds to the fact that the time-dependent Fermi
surface (5.13), (5.14) only exists in some region in parameter space, and showed that this
region is the same as that in section 4. However, if one looks at the critical Fermi surface,
by plugging s = 1/(p — 1) in (5.16), one finds a smooth Fermi surface, that does not show
any signs of the divergences encountered in section 4. It is possible that to understand
these divergence in the language of section 5, one needs to study the dynamics of finite
size ripples. Another possibility, suggested by the form of the divergences in eq. (4.11), is
that they are a feature of the vacuum, and are insensitive to the perturbations. This too
will be left to future work.

6.3 Properties of scattering amplitudes

The string scattering amplitudes computed in this work relied on a worldsheet analysis
of the background (1.11). Indeed, the MQM was used only as a computational tool to
evaluate string scattering amplitudes in the undeformed 1 4+ 1 dimensional string theory.
In section 5, we reviewed the Fermi surface picture that is dual to the time-dependent
background (1.11), but used it only to study properties of the time-dependent Liouville wall,
and the trajectories of pointlike ripples. It would be interesting to use this free fermion
description to compute the scattering amplitudes (3.6), (3.18) for p < 1. This would be a
non-trivial check of the procedure to compute the scattering amplitudes followed in this
work, as well as of the proposed Fermi surface dual to the time-dependent background. We
leave this question to future work.

In the region of parameter space for which p < 1, the scattering amplitudes should
satisfy constraints coming from unitarity and causality. In time-dependent backgrounds, these
constraints are not straightforwardly implemented, and it would be interesting to explore
how the scattering amplitudes (3.6), (3.18) satisfy them.

6.4 The limit p — 2

A time-dependent background similar to the one considered in this work was recently discussed
in [42, 43] (see also [44]). The background in these works is similar to the limit p — 2 of
our (1.11), with Ay = 0, A_ # 0. We focused (in section 3) on the opposite case, A_ = 0,
A+ # 0; the two are related by time-reversal symmetry. Interestingly, the results for the
correlators in [42—-44] were different from ours. As an example, we found that the n-point
functions (1.16) vanish, while their analogs in the above papers did not.

An important difference between the two constructions is that in [42, 43], in our notation,
A =0and A_ = —u < 0, see [44]. After applying time-reversal, this is related to our system
with Ay = —u, A_ = 0. We, on the other hand, took Ay to be positive. It is possible that
this difference is responsible for the above difference in the correlation functions. Note that
flipping the sign of A\ in our construction has an important effect. For positive A\ (our
analysis), the potential Vi, (1.14), goes to infinity everywhere in the shaded region in figure 2.
For negative A, there is a region along the positive v axis, where the potential remains small.
Thus, incoming 7+ waves can penetrate the potential in this direction, and it is possible
that these are the processes captured by the correlation functions of [42-44].
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Note also that in the limit p — 2, the worldsheet theory (1.6), (1.11), with Ay A_ =0
factorizes into a direct product of a theory for ¢ and one for ¢. The ¢ theory is a Liouville
theory with ¢ = 25, while that of ¢ is timelike Liouville with ¢ = 1. This factorization played an
important role in the analysis of [42-44]. For p < 2, the subject of our paper, this factorization
breaks down, and one cannot use the techniques of [42—44] to analyze the resulting background.
This is one of the reasons we used matrix model results to analyze the dynamics.

We also note that if Ay are both non-zero, it looks superficially from (1.6), (1.11) that
for p = 2 the worldsheet theory still factorizes into a product of theories for ¢ and ¢, but
in fact this is not the case. The reason is that the would be theory for ¢ is a Wick rotated
version of the Sine-Gordon model, and the coupling Ay A_ is in this case marginal but not
truly marginal. Thus, the ¢ theory exhibits an RG flow, and after coupling to ¢ this RG
happens as a function of ¢, [31].

6.5 Closed string radiation

The time-dependent background considered in this work is reminiscent of the rolling tachyon
solution [45], which is an open-string analogue of our time-dependent background for p = 2.
However, while in our case the fate of the background is not known, in the rolling tachyon
case the brane decays by emitting closed strings. In particular, it was shown in [54] that the
closed string radiation produced by the rolling tachyon is given by a coherent state of the form

e’ |0y, (6.1)

where al is the creation operator for a closed string, and « is proportional to the disk 1-point
function for the closed string vertex operator, with rolling tachyon boundary condition. The
closed string radiation state produced by the time-dependent background in our case is
similar, except now « is computed from the sphere 1-point function (3.11) (for p < 1), and
in particular is of order 1/gs.
From (6.1), we can follow [54] and compute the total number N and energy E of closed
strings produced by the time-dependent background. We find
o0 2
N:/O dw w [(T5),,,|

E= /Ooodw w? ‘<7;7>/\+‘

)

) (6.2)

where the polynomial factors of w relative to [54] come from the normalization of the tachyon
operator, (1.7). Using the expression (3.11) in (6.2), we find that the integral converges'* at
large w for p < 1. Note however that N, E are of order 1/¢2, since <7;7>/\+ ~ 1/gs. This
means that the total number and energy of closed strings produced by the time-dependent
background is of the same order as those of the original background, so backreaction should
be taken into account. We leave a more detailed understanding of this backreaction to

future work.

14The expressions (6.2) have IR divergences from the small w region. These can be dealt with by introducing
an IR cutoff.
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6.6 Moving mirror

Our description of the dynamics in terms of scattering of tachyons off a time-dependent
Liouville wall is reminiscent of the moving mirror problem in QFT [55]. That model is often
used as a toy model of black hole physics. In that application, the mirror is taken to be
receding from the observer, and approaching the speed of light at late times [56-59]. More
generally, the mirror can be taken to move away or towards the observer, and have a final
speed different from that of light; see e.g. [60] for a recent discussion.

In our model, the Liouville wall is qualitatively similar to a moving mirror. The analogy
is not precise, since in the case of the moving mirror one typically takes the quantum fields
to vanish at the mirror, whereas the Liouville wall is soft, as mentioned earlier in the paper.
Another difference between the two problems is that since the Liouville wall is not a physical
object, it can move faster than light, something that is not possible for a physical mirror.

Nevertheless, it would be interesting to study the relation between our results and the
moving mirror problem, for example by comparing the particle production and scattering
amplitudes we get to those obtained by studying a moving mirror that follows a similar
trajectory. This too will be left for future work.
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A Matrix model dual of 1 4+ 1 dimensional string theory

To calculate the correlation functions (1.3), we use the matrix quantum mechanics dual
to 1 + 1 dimensional string theory, following the approach of [29, 47]. In this appendix,
we briefly review this approach.

The Hamiltonian of the matrix quantum mechanics is

H= %Tr (P2 x?), (A.1)

where X is an N-by-N Hermitian matrix and P its canonically conjugate momentum. Closed
string excitations are dual to states in the singlet sector of the matrix quantum mechanics.
To study that sector, it is convenient to diagonalize X by writing X = U~!'AU, where
U e U(N), and A = diag(A1,--- ,An). The singlet sector wavefunction ¥ depends only on
the eigenvalues \;, and is completely symmetric under exchange of any pair of eigenvalues,

\P("'v/\ia"‘;/\j"'):\p("'7)\j7"‘;>\z’"') . (A_Q)

It is useful to make a similarity transformation, H = AHA™!, where A = Hf\ij(/\i —Aj)
is the Vandermonde determinant, and

_
H:

N
2 (—aii - A?) . (A.3)

N |
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Figure 10. Semiclassical description of the closed string vacuum in the dual ¢ = 1 matrix quantum
mechanics.

v

Figure 11. The Fermi sea (shaded region) corresponding to the standard background of 1 + 1
dimensional string theory described in section 2.

The Hamiltonian H acts on the wavefunction ¥();) = AW¥()\;). The wavefunction W();) is
antisymmertic under exchanging any pair of eigenvalues. Thus, the Hamiltonian H describes
a system of N non-relativistic, non-interacting fermions, moving in the potential V() = —/\2—2.

The potential V() is unbounded from below. To arrive at the theory that is dual to
two-dimensional string theory, we consider the following double-scaling limit. We study
the system at fixed Fermi energy £ = —p < 0, and send N — oo. Thus, the fermions
fill all states with energy less than £ = —pu; see figure 10. This is the state that is dual
to the closed string vacuum.

The vertex operators (1.2) correspond to infinitesimal perturbations of the closed string
vacuum. It is sufficient to consider perturbations of the Fermi surface on one side of the
potential in the figure, say the one with A < 0. As is clear from figure 10, effects that mix
the two sides are non-perturbative in 1/u. They correspond to non-perturbative effects in
string theory; see e.g. [15-17, 20, 21, 23, 27] for recent discussions.
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In a semiclassical description, the fermions fill a Fermi sea up to the surface A = 4/ p%\ ~+ 2,
where p) denotes the momentum conjugate to A\ (see figure 11). The string coupling g; is
given by 2mg, = p~ ', while closed string excitations are dual to perturbations of the Fermi
surface; see [3, 4, 50] for details.

The Fermi surface can be written in terms of the fermion density, which is a fermion
bilinear. Using this, correlation functions of tachyon operators (1.2) can be calculated using
the dual matrix quantum mechanics description. This formalism allows one to express the
string theory correlation functions (1.3) in terms of the S-matrix of free fermions [47].

By decomposing the fluctuations of the Fermi sea into particle-hole pairs, [47] developed
an efficient formalism for computing the S-matrix R(gj, —q;) (¢;,q; > 0). For a particle/hole
pair with Euclidean momentum ¢, the reflection amplitude is

2 . 1 1
Ry =02 eos (5 +in = 1a) ) T (5 = in+ lal) - (A4)
m 22 2

In terms of the reflection amplitude, the S-matrix is constructed as follows.

n n' ) min{n,n'} 1
R(gj. —q}) =0 (Z 4 — Z(Jf) A3 /dQ
i l k=1 AFy

ﬁ Y CDTle(a) - @+ alFy))|

where ¢; denote the incoming Euclidean momenta, —¢, denote the outgoing Euclidean
momenta, ¢(F;) denotes the sum of the momenta in the set F}, and AF, is an admissible
filtration (AF) of order k defined as a tower of subsets, i.e.

B=FCF3C- - C Fyp) = {4, —a}, (A.6)
such that Fy; 11 — Fy; is a set of negative momenta, namely
Fyjir — Foj C{~q1,~db,+, —ap}, (A.7)
and Fp; — Fy;_1 is a set of positive momenta, namely
Fyj — Fpj_1 C{q1,q2,- - ,qn} - (A.8)

The theta functions in (A.5) restricts the integration range of the integration variable @,
namely for all j we have

—q(T-) < Q + q(Fy)) < q(T4) - (A.9)
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Since T+ - F2j — F2j—17

Q + q(Fa)) < q(Fzj) — q(Fzj-1), (A.10)

which is equivalent to @ + ¢(F2j—1) < 0. So, from the definition (A.4),

. 2 . 1
Roiqry; 1) = MQ+q(F2J1)\/;em/4 oS (;r (2 +ip+Q + Q(FQj—l)))

r (; —ip—Q - q(sz—1)> :

(A.11)

On the other hand, in (A.9) T_ C Fyj;1 — Fyj, which means that ¢(7_) < 0. Therefore,
Q + q(ng) > 0 and

* —Q—q(Fs;) | —im /4 T . )
RQ q(sz) =W a( QJ) —e€ / COS (2 (2 - — Q — q(F2])>>

1 (A.12)
I (2 +ip+Q + Q(FQj)> .
Combining the two reflection amplitudes, we find the interesting property that
S T
Q5 %
pe=i= Y T Rgq(ray ) Rotq(Fay 40) (A.13)
j=1

depends on p and @ only through the combination iy + Q.

The matrix model S-matrix R(g;, —¢;) is dual to string theory scattering amplitude of
closed strings. The relation between them is given by

<

In practice, it is easier to calculate scattering amplitudes with an insertion of the cosmological

!

T, ﬁT )= P2 R (g;, —q)) (A.14)
. - i . .
sl | J R

n

J

constant operator Tp. As discussed below (1.3), the insertion of T is equivalent to acting
with —d, on the correlation function with Ty stripped off. Thus, we have

n n’ n n
<T0 H 1T, H T—QZ> - 61_13& <Tn€ H Tgj—e H T—q{>
=1 =1 j=1 =1
n n’
== Jim O [1 7o [T 7-) (4.15)
j= =
1 0

lm —————— — <u ?:1‘“7%(%‘ —6,—612)) :
=0+ 10 45 1%y ¢ On
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Then, since from (A.5) and (A.13) R(g;, —¢;) depends on x and @ only through the combina-
tion iu+ @, it follows that we can convert the p-derivative into a Q-derivative. More explicitly,

n

9 "o
o <u =1 YR (g5 — €, q{)) =0 (Z ZQ) e 2 9

J

mln{n n'} 1 k+1
§:/EQ{&911 S )T - @+ a(By)  (A16)
k 1 J=2 T CFyj—Faj 4
H Z (-1 )lT ‘H(Q + Q(FQJ) +q(T )} H RQ+q F2J+1)RQ+q(F2J+2)} ’
J=1T_CFojy1—Faj j=1

where we have integrated by parts in (). The derivative of the theta functions are just delta
functions, which after the integration give a finite sum.

Finally, note that in the compact case X ~ X 4 27 R, the Dirac delta function for
momentum conservation should be replaced by a Kronecker delta times 27 R.

B Closed string amplitudes

In this appendix, we outline the calculations of the closed string amplitudes, (ToT," [[7_1 T-q;)
using the matrix model techniques discussed in appendix A.

B.1 One outgoing particle
For ¢ = mp (m € ZT), (A.15) and (A.16) lead to
(ToT,"T—4) = lim <TT T

e—0
= hm+ 27rR mp/dQ{aQ[ Z (— )|T+|9( (Ty) — (Q+Q(F4)))
e—0 T, CFa—Fy
> (- |9(Q+Q(F4)+Q( )) RQ+q(F3)RQ+q(F4)}
T_CF3—Fy
(B.1)
where
Fy — Fy = {—q}, (B.2)
and
Fy—Fs={p—e-,p—€}. (B.3)
Performing the integration over ) we find,
<TOT T_q> = e]i)r(l)l+ 27TRH/L
— > COM™MRyry Ry Y (CDT0(a(Ty) + o(T0))
T, CFy—F3 T_CF3—Fy
+ > (_1)|T_|R*q(T_)fmpR*_q(T7) > (—1)‘T+|9(Q(T+) +Q(T—)>1-
T_CF3—F, Ty CFyi—F
(B.4)
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The first term in the square bracket can be simplified to

—Z ( )Rw m)pBRp - (B.5)

The second term in the square bracket vanishes. To see this, consider the two possible
choices for T_. If T_ =

Z (—1)\T+|9<q(T+) + q(T_)) = Z (—1)|T+|9<q(T+)) _ i(_l)b (Z) —0.

T,CF4—F;s T,CFy—F; b=0
(B.6)

On the other hand, if T_ = {—q}, ¢(T%+) + q(T-) = ¢(T}+) — ¢ < —me < 0. So, the theta
function gives zero. Therefore,

(ToT"T—y) :—27TR mpz ( ) (bom)pREy - (B.7)

To leading order in the 1/u expansion (i.e. to leading order in string perturbation the-
ory), we find

m—1

_mL(m(1 —p))
m m—+41 mp—m _ mp—m

(ToT,"T—q) = (=1)"" 2w R~ Il — 1) = 2nRu™" T —mp)

=1

(B.8)

We have checked that (B.8) follows from (B.7) for 1 < m < 20, and conjecture that the
result holds for all integers m. In this case, this conjecture is known to be correct, since
the scattering amplitude in (B.7) is known exactly, see e.g. [3, 40]. However, for us this is a
warmup exercise towards other cases, where the answer is not known from other work.

Using (B.7) one can compute corrections to (B.8) in the 1/u expansion. The leading
correction is given by

L(m(1 —p) +2)mp? —mp —1
(1 —mp) 2412 )

(ToT" T g)orus = — 27 Ru™ ™™ (B.9)

B.2 Two outgoing particles

In this subsection, we calculate the correlation function (7 OT;”T,qlT,@), for g =mip >0
and g2 = (m — my)p > 0 with integers 0 < m; < m. First, from (A.15) and (A.16),

<T0TmT—Q1T—Q2> = hm 27TRZm+1 mpp mgyqs Z Z/dQ H {RQ‘W F21+1)RQ+¢I(F2]+2)
k= 1 7=1

k+1

I Y o™o(ar) - (@+amy)

J=2T4 CFaj—Foj1

MY Como(Qram)+ q(T))]} .

J=1T_CFoji1—Faj

(B.10)
When k =

F3—F={—q, ¢}, (B.11)
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and
Fy—Fs5={p—¢€---,p—€}. (B.12)
m
Without loss of generality, we take m1 < m — mq. Then, the contribution of AF; to the
r.h.s. of (B.10) is

m

/dQ{—Z(—l)b@)é(bp—Q) > 0T0(Q+ (1)) Ro-mp R
b=0 T_C{—q1,—¢q2}

m

+> (=1 (2’:) 9<bp - Q) > (_1)|Tf|5(Q + q(T_))RQmpR*Q}

b=0 T_C{—q1,—q2} (B.13)
my m § m m *

S () Rty 3 0 () R
b=0 b=m—mi+1

—(—1)’”1“( >R R:, — ()™ m1+1<m )R R, .
mi m—imi

When k£ = 2 on the r.h.s. of (B.10), F3 can be either {—¢;} or {—¢2}. Due to the symmetry
of exchanging F3 — Fy <+ F5 — Fy and Fy — F3 <> Fg — F5 in (B.10), both the possibilities
lead to the same contribution. So we only need to look at one of them, namely

Fyji1 — Foj = {—q;} . (B-14)
Besides,
FQj—FQj_lz{p_ea"'vp_€}7 (B15)
—— — ’
nj

with any integers ni,ng > 0 such that n; + ns = m. Then, the contribution of AFs to
the r.h.s. of (B.10) is given by

nidmy+1 [ M — N1 — 1 * %
92 Z _nl) [ (—1)mtm < m )ROngmpR Rmp

mln{m mi,n1—1}

mi—ni+1 [ 11 m—mny —1 * ok
- Z (== < b > <m1 —ny + b) Rgo—tpBny—b)p Rop L, — (ny —b)p (B.16)
b=0

o ni—mq (M — M1 ni — 1 * %
- Z(—l) ! 1( b ) (b +ng—my — 1) Rq1—pr(m—n1—b)prp (b+n1)p—q1

Note that the overall factor of 2 comes from the same contribution for the case F3 = {—¢a},
and it will cancel with the factor 4 in (B.10).

Extrapolating from the cases 1 < m < 12, we conjecture the following general formula
at leading order in 1/pu:

m—m1
<TOT;1T—Q1T—Q2> = (_1)m27rR/‘mp_m ! , H H (QQ - i2)
(m=m)t 5 i2=1 (B.17)

T((l —p)mi +1) ['((1—p)ma+1)

—27R mp—m—1 | .
i " my+ )T —pm) T (ma + 1) T (1 — pma)
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The leading correction to B.17 is

mp—m=2
24,2
+(=2m? = m + 2mima)p? + (m* — mima)p’ )

<T0T£LT—Q1T—qz>torus = <TOT T, T g5 )sphere (m +1+ (m2 — mima)p

(B.18)

B.3 Three and four outgoing particles

Let’s now consider the amplitude for three outgoing particles, (To7," H?Zl T 4;). Using (A.15)
and (A.16), let m; = g;/p be integers and m = my +ma+mg. To leading order in 1/ we find

<T0T T T-g,T-g5) = — (1) 27 Rp™ ™™™ 2 m!(mp —m — 1) H qul)
mi.
J=1 J

3

e L'((1—=pm;+1)

- _9 mp—m—2 ! o -1 J

TR m!(mp —m )”I’(quLl)F(lfpmj)’

j=1
(B.19)

where we checked this result for 1 < m < 10 and conjectured the general formula.
For four outgoing particles, (TOT}Z” ?:1 T_qj>, we again start with ¢; = m;p, m; € Z,
where m1 + mo + mg + my = m. We find

<T0T;;nT*Q1 T*QQ T*QB T*Q4 >

4 m
— (=)™ 2x Ry 3 ml (mp — m — 1) (mp —m — 2) [ Lﬂ?)

i m;! (B.20)
4
=20 R~ 3l (mp — m — 1) (mp — m — 2) 1;[ F(( )p)ﬁjj‘pl?z%),

where we checked the result for 1 < m = mi + mg + m3 + myg < 10.

B.4 Any number of outgoing particles

Interestingly, from the results of (ToT," [[j—1 T—¢;) with n = 1,2,3,4, we find that the

correlation functions can be expressed in a universal way:

I'((1=p)m; +1)

n n
T [ T-g) = (—1)"27 RO 2P~ 1! :
(BT [1 7)) = (-1)"20RO; 0 mt[] TSI vrp— (B.21)
Jj=1 =
Integrating w.r.t. u once, we can get rid of Ty by using Ty = —0,,, to find
d D (1= p)my +1)
n 1 n—3 m m—1 J
- 2w RO, P m) . B.22
B 1T ATt v 000 —pmy) - B2

We conjecture that this result holds for all n.
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